WorldWideScience

Sample records for image view view

  1. Lensless imaging for wide field of view

    Science.gov (United States)

    Nagahara, Hajime; Yagi, Yasushi

    2015-02-01

    It is desirable to engineer a small camera with a wide field of view (FOV) because of current developments in the field of wearable cameras and computing products, such as action cameras and Google Glass. However, typical approaches for achieving wide FOV, such as attaching a fisheye lens and convex mirrors, require a trade-off between optics size and the FOV. We propose camera optics that achieve a wide FOV, and are at the same time small and lightweight. The proposed optics are a completely lensless and catoptric design. They contain four mirrors, two for wide viewing, and two for focusing the image on the camera sensor. The proposed optics are simple and can be simply miniaturized, since we use only mirrors for the proposed optics and the optics are not susceptible to chromatic aberration. We have implemented the prototype optics of our lensless concept. We have attached the optics to commercial charge-coupled device/complementary metal oxide semiconductor cameras and conducted experiments to evaluate the feasibility of our proposed optics.

  2. Pixel extraction based integral imaging with controllable viewing direction

    International Nuclear Information System (INIS)

    Ji, Chao-Chao; Deng, Huan; Wang, Qiong-Hua

    2012-01-01

    We propose pixel extraction based integral imaging with a controllable viewing direction. The proposed integral imaging can provide viewers three-dimensional (3D) images in a very small viewing angle. The viewing angle and the viewing direction of the reconstructed 3D images are controlled by the pixels extracted from an elemental image array. Theoretical analysis and a 3D display experiment of the viewing direction controllable integral imaging are carried out. The experimental results verify the correctness of the theory. A 3D display based on the integral imaging can protect the viewer’s privacy and has huge potential for a television to show multiple 3D programs at the same time. (paper)

  3. An Ultra-High Speed Whole Slide Image Viewing System

    Directory of Open Access Journals (Sweden)

    Yukako Yagi

    2012-01-01

    Full Text Available Background: One of the goals for a Whole Slide Imaging (WSI system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed.

  4. Raspberry Pi: a 35-dollar device for viewing DICOM images

    Directory of Open Access Journals (Sweden)

    Omir Antunes Paiva

    2014-04-01

    Full Text Available Raspberry Pi is a low-cost computer created with educational purposes. It uses Linux and, most of times, freeware applications, particularly a software for viewing DICOM images. With an external monitor, the supported resolution (1920 × 1200 pixels allows for the set up of simple viewing workstations at a reduced cost.

  5. Virtual View Image over Wireless Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Gamantyo Hendrantoro

    2011-12-01

    Full Text Available In general, visual sensors are applied to build virtual view images. When number of visual sensors increases then quantity and quality of the information improves. However, the view images generation is a challenging task in Wireless Visual Sensor Network environment due to energy restriction, computation complexity, and bandwidth limitation. Hence this paper presents a new method of virtual view images generation from selected cameras on Wireless Visual Sensor Network. The aim of the paper is to meet bandwidth and energy limitations without reducing information quality. The experiment results showed that this method could minimize number of transmitted imageries with sufficient information.

  6. A technique for automatically extracting useful field of view and central field of view images.

    Science.gov (United States)

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints.

  7. A technique for automatically extracting useful field of view and central field of view images

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints

  8. View compensated compression of volume rendered images for remote visualization.

    Science.gov (United States)

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  9. 3D Reconstruction of NMR Images by LabVIEW

    Directory of Open Access Journals (Sweden)

    Peter IZAK

    2007-01-01

    Full Text Available This paper introduces the experiment of 3D reconstruction NMR images via virtual instrumentation - LabVIEW. The main idea is based on marching cubes algorithm and image processing implemented by module of Vision assistant. The two dimensional images shot by the magnetic resonance device provide information about the surface properties of human body. There is implemented algorithm which can be used for 3D reconstruction of magnetic resonance images in biomedical application.

  10. Ultrasonic off-normal imaging techniques for under sodium viewing

    International Nuclear Information System (INIS)

    Michaels, T.E.; Horn, J.E.

    1979-01-01

    Advanced imaging methods have been evaluated for the purpose of constructing images of objects from ultrasonic data. Feasibility of imaging surfaces which are off-normal to the sound beam has been established. Laboratory results are presented which show a complete image of a typical core component. Using the previous system developed for under sodium viewing (USV), only normal surfaces of this object could be imaged. Using advanced methods, surfaces up to 60 degrees off-normal have been imaged. Details of equipment and procedures used for this image construction are described. Additional work on high temperature transducers, electronics, and signal analysis is required in order to adapt the off-normal viewing process described here to an eventual USV application

  11. Stereo matching and view interpolation based on image domain triangulation.

    Science.gov (United States)

    Fickel, Guilherme Pinto; Jung, Claudio R; Malzbender, Tom; Samadani, Ramin; Culbertson, Bruce

    2013-09-01

    This paper presents a new approach for stereo matching and view interpolation problems based on triangular tessellations suitable for a linear array of rectified cameras. The domain of the reference image is initially partitioned into triangular regions using edge and scale information, aiming to place vertices along image edges and increase the number of triangles in textured regions. A region-based matching algorithm is then used to find an initial disparity for each triangle, and a refinement stage is applied to change the disparity at the vertices of the triangles, generating a piecewise linear disparity map. A simple post-processing procedure is applied to connect triangles with similar disparities generating a full 3D mesh related to each camera (view), which are used to generate new synthesized views along the linear camera array. With the proposed framework, view interpolation reduces to the trivial task of rendering polygonal meshes, which can be done very fast, particularly when GPUs are employed. Furthermore, the generated views are hole-free, unlike most point-based view interpolation schemes that require some kind of post-processing procedures to fill holes.

  12. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  13. Discriminative Multi-View Interactive Image Re-Ranking.

    Science.gov (United States)

    Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng

    2017-07-01

    Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.

  14. Exploring the World using Street View 360 Images

    Science.gov (United States)

    Bailey, J.

    2016-12-01

    The phrase "A Picture is Worth a Thousand Words" is an idiom of unknown 20th century origin. There is some belief that the modern use of the phrase stems from an article in a 1921 issue of a popular trade journal, that used "One Look is Worth A Thousand Words" to promote the use of images in advertisements on the sides of streetcars. There is a certain irony to this as nearly a century later the camera technologies on "Street View cars" are collecting images that look everywhere at once. However, while it can be to fun drive along the World's streets, it was the development of Street View imaging systems that could be mounted on other modes of transport or capture platforms (Street View Special Collects) that opened the door for these 360 images to become a tool for exploration and storytelling. Using Special Collect imagery captured in "off-road" and extreme locations, scientists are now using Street View images to assess changes to species habitats, show the impact of natural disasters and even perform "armchair" geology. A powerful example is the imagery captured before and after the 2011 earthquake and tsunami that devastated Japan. However, it is use of the immersive nature of 360 images that truly allows them to create wonder and awe, especially when combined with Virtual Reality (VR) viewers. Combined with the Street View App or Google Expeditions, VR provides insight into what it is like to swim with sealions in the Galapagos or climb El Capitan in Yosemite National Park. While these image could never replace experiencing these locations in real-life, they can inspire the viewer to explore and learn more about the many wonders of our planet. https://www.google.com/streetview/https://www.google.com/expeditions/

  15. View interpolation for medical images on autostereoscopic displays

    NARCIS (Netherlands)

    Zinger, S.; Ruijters, D.; Do, Q.L.; With, de P.H.N.

    2012-01-01

    We present an approach for efficient rendering and transmitting views to a high-resolution autostereoscopic display for medical purposes. Displaying biomedical images on an autostereoscopic display poses different requirements than in a consumer case. For medical usage, it is essential that the

  16. Few-view image reconstruction with dual dictionaries

    International Nuclear Information System (INIS)

    Lu Yang; Zhao Jun; Wang Ge

    2012-01-01

    In this paper, we formulate the problem of computed tomography (CT) under sparsity and few-view constraints, and propose a novel algorithm for image reconstruction from few-view data utilizing the simultaneous algebraic reconstruction technique (SART) coupled with dictionary learning, sparse representation and total variation (TV) minimization on two interconnected levels. The main feature of our algorithm is the use of two dictionaries: a transitional dictionary for atom matching and a global dictionary for image updating. The atoms in the global and transitional dictionaries represent the image patches from high-quality and low-quality CT images, respectively. Experiments with simulated and real projections were performed to evaluate and validate the proposed algorithm. The results reconstructed using the proposed approach are significantly better than those using either SART or SART–TV. (paper)

  17. Galileo spacecraft solid-state imaging system view of Antarctica

    Science.gov (United States)

    1990-01-01

    Galileo spacecraft solid-state imaging system view of Antarctica was taken during its first encounter with the Earth. This color picture of Antarctica is part of a mosaic of pictures covering the entire polar continent showing the Ross Ice Shelf and its border with the sea and mountains poking through the ice near the McMurdo Station. From top to bottom, the frame looks across about half of Antarctica. View provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37297.

  18. Exploring adolescent views of body image: the influence of media.

    Science.gov (United States)

    Spurr, Shelley; Berry, Lois; Walker, Keith

    2013-01-01

    The purpose of this article is to present findings from two parallel qualitative studies that used focus groups to explore adolescent views of psychological wellness and healthy bodies. Nine focus groups were held with 46 adolescents aged 16-19 years from two Mid-Western Canadian high schools. Both studies were designed with an interpretive humanist perspective and then a 6-step thematic approach was used to analyze the data. Common themes emerging in the focus group discussions in both studies included the negative impact of media on adolescent body image and pressure to conform to the Western views of physical appearance. These findings illustrate the need for nurses to understand the influence of the media on adolescents' views of their body image and to incorporate protocols for assessment, education, and counseling of adolescents on the healthy usage of media into their pediatric clinical practice. Through consistent participation in the development and implementation of health policies, nurses play a critical role in supporting adolescents to develop healthy views of body image.

  19. Angular relational signature-based chest radiograph image view classification.

    Science.gov (United States)

    Santosh, K C; Wendling, Laurent

    2018-01-22

    In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.

  20. Person recognition using fingerprints and top-view finger images

    Directory of Open Access Journals (Sweden)

    Panyayot Chaikan

    2010-03-01

    Full Text Available Our multimodal biometric system combines fingerprinting with a top-view finger image captured by a CCD camera without user intervention. The greyscale image is preprocessed to enhance its edges, skin furrows, and the nail shape before being manipulated by a bank of oriented filters. A square tessellation is applied to the filtered image to create a feature map, called a NailCode, which is employed in Euclidean distance computations. The NailCode reduces system errors by 17.68% in the verification mode, and by 6.82% in the identification mode.

  1. AUTOMATIC BUILDING OUTLINING FROM MULTI-VIEW OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Xiao

    2012-07-01

    Full Text Available Automatic building detection plays an important role in many applications. Multiple overlapped airborne images as well as lidar point clouds are among the most popular data sources used for this purpose. Multi-view overlapped oblique images bear both height and colour information, and additionally we explicitly have access to the vertical extent of objects, therefore we explore the usability of this data source solely to detect and outline buildings in this paper. The outline can then be used for further 3D modelling. In the previous work, building hypotheses are generated using a box model based on detected façades from four directions. In each viewing direction, façade edges extracted from images and height information by stereo matching from an image pair is used for the façade detection. Given that many façades were missing due to occlusion or lack of texture whilst building roofs can be viewed in most images, this work mainly focuses on improve the building box outline by adding roof information. Stereo matched point cloud generated from oblique images are combined with the features from images. Initial roof patches are located in the point cloud. Then AdaBoost is used to integrate geometric and radiometric attributes extracted from oblique image on grid pixel level with the aim to refine the roof area. Generalized contours of the roof pixels are taken as building outlines. The preliminary test has been done by training with five buildings and testing around sixty building clusters. The proposed method performs well concerning covering the irregular roofs as well as improve the sides location of slope roof buildings. Outline result comparing with cadastral map shows almost all above 70% completeness and correctness in an area-based assessment, as well as 20% to 40% improvement in correctness with respect to our previous work.

  2. Zograscopic viewing.

    Science.gov (United States)

    Koenderink, Jan; Wijntjes, Maarten; van Doorn, Andrea

    2013-01-01

    The "zograscope" is a "visual aid" (commonly known as "optical machine" in the 18th century) invented in the mid-18th century, and in general use until the early 20th century. It was intended to view single pictures (thus not stereographic pairs) with both eyes. The optics approximately eliminates the physiological cues (binocular disparity, vergence, accommodation, movement parallax, and image blur) that might indicate the flatness of the picture surface. The spatial structure of pictorial space is due to the remaining pictorial cues. As a consequence, many (or perhaps most) observers are aware of a heightened "plasticity" of the pictorial content for zograscopic as compared with natural viewing. We discuss the optics of the zograscope in some detail. Such an analysis is not available in the literature, whereas common "explanations" of the apparatus are evidently nonsensical. We constructed a zograscope, using modern parts, and present psychophysical data on its performance.

  3. An ultra-high speed whole slide image viewing system.

    Science.gov (United States)

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  4. Live cell imaging reveals at novel view of DNA

    International Nuclear Information System (INIS)

    Moritomi-Yano, Keiko; Yano, Ken-ichi

    2010-01-01

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) that are the most severe form of DNA damages. Recently, live cell imaging techniques coupled with laser micro-irradiation were used to analyze the spatio-temporal behavior of the NHEJ core factors upon DSB induction in living cells. Based on the live cell imaging studies, we proposed a novel two-phase model for DSB sensing and protein assembly in the NHEJ pathway. This new model provides a novel view of the dynamic protein behavior on DSBs and broad implications for the molecular mechanism of NHEJ. (author)

  5. Image-based fingerprint verification system using LabVIEW

    Directory of Open Access Journals (Sweden)

    Sunil K. Singla

    2008-09-01

    Full Text Available Biometric-based identification/verification systems provide a solution to the security concerns in the modern world where machine is replacing human in every aspect of life. Fingerprints, because of their uniqueness, are the most widely used and highly accepted biometrics. Fingerprint biometric systems are either minutiae-based or pattern learning (image based. The minutiae-based algorithm depends upon the local discontinuities in the ridge flow pattern and are used when template size is important while image-based matching algorithm uses both the micro and macro feature of a fingerprint and is used if fast response is required. In the present paper an image-based fingerprint verification system is discussed. The proposed method uses a learning phase, which is not present in conventional image-based systems. The learning phase uses pseudo random sub-sampling, which reduces the number of comparisons needed in the matching stage. This system has been developed using LabVIEW (Laboratory Virtual Instrument Engineering Workbench toolbox version 6i. The availability of datalog files in LabVIEW makes it one of the most promising candidates for its usage as a database. Datalog files can access and manipulate data and complex data structures quickly and easily. It makes writing and reading much faster. After extensive experimentation involving a large number of samples and different learning sizes, high accuracy with learning image size of 100 100 and a threshold value of 700 (1000 being the perfect match has been achieved.

  6. CT guided stereotaxy based on scout view imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wester, K; Kjartansson, O; Bakke, S J

    1987-05-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing.

  7. CT guided stereotaxy based on scout view imaging

    International Nuclear Information System (INIS)

    Wester, K.; Kjartansson, O.; Bakke, S.J.; Rikshospitalet, Oslo

    1987-01-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing. (orig.)

  8. NEPR World View 2 Satellite Mosaic - NOAA TIFF Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GeoTiff is a mosaic of World View 2 panchromatic satellite imagery of Northeast Puerto Rico that contains the shallow water area (0-35m deep) surrounding...

  9. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng; Xie, Qing; Zhu, Yonghua; Liu, Xingyi; Zhang, Shichao

    2015-01-01

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple

  10. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking.

    Science.gov (United States)

    Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary

    2011-08-01

    Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. An Accurate Framework for Arbitrary View Pedestrian Detection in Images

    Science.gov (United States)

    Fan, Y.; Wen, G.; Qiu, S.

    2018-01-01

    We consider the problem of detect pedestrian under from images collected under various viewpoints. This paper utilizes a novel framework called locality-constrained affine subspace coding (LASC). Firstly, the positive training samples are clustered into similar entities which represent similar viewpoint. Then Principal Component Analysis (PCA) is used to obtain the shared feature of each viewpoint. Finally, the samples that can be reconstructed by linear approximation using their top- k nearest shared feature with a small error are regarded as a correct detection. No negative samples are required for our method. Histograms of orientated gradient (HOG) features are used as the feature descriptors, and the sliding window scheme is adopted to detect humans in images. The proposed method exploits the sparse property of intrinsic information and the correlations among the multiple-views samples. Experimental results on the INRIA and SDL human datasets show that the proposed method achieves a higher performance than the state-of-the-art methods in form of effect and efficiency.

  12. Zograscopic viewing

    NARCIS (Netherlands)

    Koenderink, J.; Wijntjes, M.; Van Doorn, A.

    2013-01-01

    The “zograscope” is a “visual aid” (commonly known as “optical machine” in the 18th century) invented in the mid-18th century, and in general use until the early 20th century. It was intended to view single pictures (thus not stereographic pairs) with both eyes. The optics approximately eliminates

  13. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  14. Remote viewing.

    Science.gov (United States)

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  15. Synthesized view comparison method for no-reference 3D image quality assessment

    Science.gov (United States)

    Luo, Fangzhou; Lin, Chaoyi; Gu, Xiaodong; Ma, Xiaojun

    2018-04-01

    We develop a no-reference image quality assessment metric to evaluate the quality of synthesized view rendered from the Multi-view Video plus Depth (MVD) format. Our metric is named Synthesized View Comparison (SVC), which is designed for real-time quality monitoring at the receiver side in a 3D-TV system. The metric utilizes the virtual views in the middle which are warped from left and right views by Depth-image-based rendering algorithm (DIBR), and compares the difference between the virtual views rendered from different cameras by Structural SIMilarity (SSIM), a popular 2D full-reference image quality assessment metric. The experimental results indicate that our no-reference quality assessment metric for the synthesized images has competitive prediction performance compared with some classic full-reference image quality assessment metrics.

  16. A Precise Lane Detection Algorithm Based on Top View Image Transformation and Least-Square Approaches

    Directory of Open Access Journals (Sweden)

    Byambaa Dorj

    2016-01-01

    Full Text Available The next promising key issue of the automobile development is a self-driving technique. One of the challenges for intelligent self-driving includes a lane-detecting and lane-keeping capability for advanced driver assistance systems. This paper introduces an efficient and lane detection method designed based on top view image transformation that converts an image from a front view to a top view space. After the top view image transformation, a Hough transformation technique is integrated by using a parabolic model of a curved lane in order to estimate a parametric model of the lane in the top view space. The parameters of the parabolic model are estimated by utilizing a least-square approach. The experimental results show that the newly proposed lane detection method with the top view transformation is very effective in estimating a sharp and curved lane leading to a precise self-driving capability.

  17. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  18. Video compression and DICOM proxies for remote viewing of DICOM images

    Science.gov (United States)

    Khorasani, Elahe; Sheinin, Vadim; Paulovicks, Brent; Jagmohan, Ashish

    2009-02-01

    Digital medical images are rapidly growing in size and volume. A typical study includes multiple image "slices." These images have a special format and a communication protocol referred to as DICOM (Digital Imaging Communications in Medicine). Storing, retrieving, and viewing these images are handled by DICOM-enabled systems. DICOM images are stored in central repository servers called PACS (Picture Archival and Communication Systems). Remote viewing stations are DICOM-enabled applications that can query the PACS servers and retrieve the DICOM images for viewing. Modern medical images are quite large, reaching as much as 1 GB per file. When the viewing station is connected to the PACS server via a high-bandwidth local LAN, downloading of the images is relatively efficient and does not cause significant wasted time for physicians. Problems arise when the viewing station is located in a remote facility that has a low-bandwidth link to the PACS server. If the link between the PACS and remote facility is in the range of 1 Mbit/sec, downloading medical images is very slow. To overcome this problem, medical images are compressed to reduce the size for transmission. This paper describes a method of compression that maintains diagnostic quality of images while significantly reducing the volume to be transmitted, without any change to the existing PACS servers and viewer software, and without requiring any change in the way doctors retrieve and view images today.

  19. The power of Kawaii: viewing cute images promotes a careful behavior and narrows attentional focus.

    Directory of Open Access Journals (Sweden)

    Hiroshi Nittono

    Full Text Available Kawaii (a Japanese word meaning "cute" things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE=43.9 ± 10.3% improvement more than after viewing images that were less cute (dogs and cats; 11.9 ± 5.5% improvement. In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7 ± 2.2% improvement than after viewing less cute images (1.4 ± 2.1% improvement. Viewing images of pleasant foods was ineffective in improving performance (1.2 ± 2.1%. In the third experiment, participants performed a global-local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work.

  20. The Power of Kawaii: Viewing Cute Images Promotes a Careful Behavior and Narrows Attentional Focus

    Science.gov (United States)

    Nittono, Hiroshi; Fukushima, Michiko; Yano, Akihiro; Moriya, Hiroki

    2012-01-01

    Kawaii (a Japanese word meaning “cute”) things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE = 43.9±10.3% improvement) more than after viewing images that were less cute (dogs and cats; 11.9±5.5% improvement). In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7±2.2% improvement) than after viewing less cute images (1.4±2.1% improvement). Viewing images of pleasant foods was ineffective in improving performance (1.2±2.1%). In the third experiment, participants performed a global–local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work. PMID:23050022

  1. The power of Kawaii: viewing cute images promotes a careful behavior and narrows attentional focus.

    Science.gov (United States)

    Nittono, Hiroshi; Fukushima, Michiko; Yano, Akihiro; Moriya, Hiroki

    2012-01-01

    Kawaii (a Japanese word meaning "cute") things are popular because they produce positive feelings. However, their effect on behavior remains unclear. In this study, three experiments were conducted to examine the effects of viewing cute images on subsequent task performance. In the first experiment, university students performed a fine motor dexterity task before and after viewing images of baby or adult animals. Performance indexed by the number of successful trials increased after viewing cute images (puppies and kittens; M ± SE=43.9 ± 10.3% improvement) more than after viewing images that were less cute (dogs and cats; 11.9 ± 5.5% improvement). In the second experiment, this finding was replicated by using a non-motor visual search task. Performance improved more after viewing cute images (15.7 ± 2.2% improvement) than after viewing less cute images (1.4 ± 2.1% improvement). Viewing images of pleasant foods was ineffective in improving performance (1.2 ± 2.1%). In the third experiment, participants performed a global-local letter task after viewing images of baby animals, adult animals, and neutral objects. In general, global features were processed faster than local features. However, this global precedence effect was reduced after viewing cute images. Results show that participants performed tasks requiring focused attention more carefully after viewing cute images. This is interpreted as the result of a narrowed attentional focus induced by the cuteness-triggered positive emotion that is associated with approach motivation and the tendency toward systematic processing. For future applications, cute objects may be used as an emotion elicitor to induce careful behavioral tendencies in specific situations, such as driving and office work.

  2. Automated otolith image classification with multiple views: an evaluation on Sciaenidae.

    Science.gov (United States)

    Wong, J Y; Chu, C; Chong, V C; Dhillon, S K; Loh, K H

    2016-08-01

    Combined multiple 2D views (proximal, anterior and ventral aspects) of the sagittal otolith are proposed here as a method to capture shape information for fish classification. Classification performance of single view compared with combined 2D views show improved classification accuracy of the latter, for nine species of Sciaenidae. The effects of shape description methods (shape indices, Procrustes analysis and elliptical Fourier analysis) on classification performance were evaluated. Procrustes analysis and elliptical Fourier analysis perform better than shape indices when single view is considered, but all perform equally well with combined views. A generic content-based image retrieval (CBIR) system that ranks dissimilarity (Procrustes distance) of otolith images was built to search query images without the need for detailed information of side (left or right), aspect (proximal or distal) and direction (positive or negative) of the otolith. Methods for the development of this automated classification system are discussed. © 2016 The Fisheries Society of the British Isles.

  3. Improvement of viewing-zone angle and image quality of digital holograms

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Takanori, E-mail: nom@sys.wakayama-u.ac.j [Faculty of Systems Enigneering, Wakayama Univesity, 930 Sakaedani, Wakayama, 640-8510 (Japan)

    2010-02-01

    The method to improve of a viewing-zone angle and an image quality of a digital hologram is presented. A number of digital holograms of a central object are recorded from the position on the circumference. The holograms are used for a hologram synthesis to improve the image quality from whole viewing-zone angle. The synthesis is achieved by a correlation between a hologram and numerically propagated holograms. The large-sized synthesized digital hologram has a wide viewing-zone angle and less speckles. Some experimental results are shown to confirm the proposed method.

  4. Real-time RGB-D image stitching using multiple Kinects for improved field of view

    Directory of Open Access Journals (Sweden)

    Hengyu Li

    2017-03-01

    Full Text Available This article concerns the problems of a defective depth map and limited field of view of Kinect-style RGB-D sensors. An anisotropic diffusion based hole-filling method is proposed to recover invalid depth data in the depth map. The field of view of the Kinect-style RGB-D sensor is extended by stitching depth and color images from several RGB-D sensors. By aligning the depth map with the color image, the registration data calculated by registering color images can be used to stitch depth and color images into a depth and color panoramic image concurrently in real time. Experiments show that the proposed stitching method can generate a RGB-D panorama with no invalid depth data and little distortion in real time and can be extended to incorporate more RGB-D sensors to construct even a 360° field of view panoramic RGB-D image.

  5. A flexible new method for 3D measurement based on multi-view image sequences

    Science.gov (United States)

    Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu

    2016-11-01

    Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.

  6. Group sparse multiview patch alignment framework with view consistency for image classification.

    Science.gov (United States)

    Gui, Jie; Tao, Dacheng; Sun, Zhenan; Luo, Yong; You, Xinge; Tang, Yuan Yan

    2014-07-01

    No single feature can satisfactorily characterize the semantic concepts of an image. Multiview learning aims to unify different kinds of features to produce a consensual and efficient representation. This paper redefines part optimization in the patch alignment framework (PAF) and develops a group sparse multiview patch alignment framework (GSM-PAF). The new part optimization considers not only the complementary properties of different views, but also view consistency. In particular, view consistency models the correlations between all possible combinations of any two kinds of view. In contrast to conventional dimensionality reduction algorithms that perform feature extraction and feature selection independently, GSM-PAF enjoys joint feature extraction and feature selection by exploiting l(2,1)-norm on the projection matrix to achieve row sparsity, which leads to the simultaneous selection of relevant features and learning transformation, and thus makes the algorithm more discriminative. Experiments on two real-world image data sets demonstrate the effectiveness of GSM-PAF for image classification.

  7. Image viewing station for MR and SPECT : using personal computer

    International Nuclear Information System (INIS)

    Yim, Byung Il; Jeong, Eun Kee; Suh, Jin Suck; Kim, Myeong Joon

    1996-01-01

    Macro language was programmed to analyze and process on Macintosh personal computers, GEMR images digitally transferred from the MR main computer, with special interest in the interpretation of information such as patients data and imaging parameters under each image header. By this method, raw data(files) of certain patients may be digitally stored on a hard disk or CD ROM, and the quantitative analysis, interpretation and display is possible. Patients and images were randomly selected 4.X MR images were transferred through FTP using the ethernet network. 5.X and SPECT images were transferred using floppy diskettes. To process transferred images, an freely distributed software for Macintosh namely NIH Image, with its macro language, was used to import images and translate header information. To identify necessary information, a separate window named I nfo=txt , was made for each image series. MacLC, Centris650, and PowerMac6100/CD, 7100/CD, 8100/CD models with 256 color and RAM over 8Mbyte were used. Different versions of MR images and SPECT images were displayed simultaneously and a separate window named 'info-txt' was used to show all necessary information(name of the patient, unit number, date, TR, TE, FOV etc.). Additional information(diagnosis, pathologic report etc.) was stored in another text box in 'info-txt'. The size of the file for each image plane was about 149Kbytes and the images were stored in a step-like file folders. 4.X and 5.X GE Signa 1.5T images were successfully processed with Macintosh computer and NIH Image. This result may be applied to many fields and there is hope of a broader area of application with the linkage of NIH Image and a database program

  8. Axial loaded stress views and kinematic MR imaging evaluation of patellar alignment and tracking

    International Nuclear Information System (INIS)

    Shellock, F.G.; Mink, J.H.; Deutsch, A.; Meeks, T.; Fox, J.; Molnar, T.

    1990-01-01

    This paper evaluates patellar alignment and tracking in patients with suspected abnormalities by obtaining axial loaded stress views to assess dynamic stabilizers and kinematic MR images to assess static stabilizers of the patellofemoral joint. Ninety-eight symptomatic joints were studied; 21 joints had prior realignment surgery. Axial loaded stress views were achieved with a device that simulated weight bearing. Images were obtained with knees flexed at 20 degrees ± 5 degrees while the patient resisted with an isometric contraction. Kinematic MR imaging was performed according to previously described methods. Kinematic MR imaging showed normal findings in six joints, lateral subluxation in 22, medial subluxation in 58, lateral tilt in two, and lateral to medial subluxation in 10. Axial stress views showed normal findings in 30, lateral subluxation in 18, and medial subluxation in 50. Both tests agreed on abnormalities for 63% of the joints, while kinematic MR imaging showed abnormalities for an additional 32%

  9. How the task of evaluating image quality influences viewing behavior

    NARCIS (Netherlands)

    Alers, H.; Bos, Lennart; Heynderickx, I.E.J.

    2011-01-01

    Image quality scores collected in subjective experiments are widely used in image quality research, particularly in the design of objective quality assessment algorithms. It is therefore of vital importance to make sure that the collected scores reflect viewers' opinions in real-life situations.

  10. Temporal characteristics of radiologists’ and novices’ lesion detection in viewing medical images presented rapidly and sequentially

    Directory of Open Access Journals (Sweden)

    Ryoichi Nakashima

    2016-10-01

    Full Text Available Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers’ attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy. This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks.

  11. Immersive viewing engine

    Science.gov (United States)

    Schonlau, William J.

    2006-05-01

    An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.

  12. Imaging detectors and electronics - A view of the future

    International Nuclear Information System (INIS)

    Spieler, Helmuth

    2004-01-01

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays

  13. Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions

    Science.gov (United States)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; hide

    2016-01-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  14. A METHOD FOR RECORDING AND VIEWING STEREOSCOPIC IMAGES IN COLOUR USING MULTICHROME FILTERS

    DEFF Research Database (Denmark)

    2000-01-01

    in a conventional stereogram recorded of the scene. The invention makes use of a colour-based encoding technique and viewing filters selected so that the human observer receives, in one eye, an image of nearly full colour information, in the other eye, an essentially monochrome image supplying the parallactic......The aim of the invention is to create techniques for the encoding, production and viewing of stereograms, supplemented by methods for selecting certain optical filters needed in these novel techniques, thus providing a human observer with stereograms each of which consist of a single image...

  15. Gallium imaging of esophageal carcinoma: Increased sensitivity with lateral views of the thorax

    International Nuclear Information System (INIS)

    Sostre, S.; Romero, I.; Rivera, J.V.; Baez, L.; Cintron, E.

    1990-01-01

    Ga-67 imaging has not been very successful in the detection of esophageal carcinoma. In most reports, sensitivity for the primary tumor ranged from 25-61%, but imaging had been done only in anterior and posterior (A-P) projections. We performed gallium scans in 30 patients with esophageal carcinoma, adding lateral views to the routine A-P projections, to study the effect of lateral views on tumor detection. The A-P views detected only 57% of the tumors while the right lateral visualized 89%, and the left lateral detected 100%. Some lesions may be hidden by the sternum and the spine in the routine A-P views. Previous disappointments with Ga-67 imaging of esophageal carcinoma were probably due to this technical factor. Being gallium-avid, esophageal tumors deserve further studies with this agent to determine the role of Ga-67 imaging in this condition. These studies should be performed with multiple views of the thorax or, better yet, with SPECT imaging of the chest, to circumvent the problem of sternum and spine interference

  16. How does c-view image quality compare with conventional 2D FFDM?

    Science.gov (United States)

    Nelson, Jeffrey S; Wells, Jered R; Baker, Jay A; Samei, Ehsan

    2016-05-01

    The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D c-view and 2D FFDM images in terms of resolution, contrast, and noise. Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than c-view according to both the average observer and automated scores. In addition, between 50% and 70% of c-view images failed to meet the nominal minimum ACR accreditation requirements-primarily due to fiber breaks. Software analysis demonstrated that c-view provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the c-view image (11 lp/mm FFDM, 5 lp/mm c-view) and loss in detection of small microcalcification objects. Spectral analysis of the

  17. How does C-VIEW image quality compare with conventional 2D FFDM?

    International Nuclear Information System (INIS)

    Nelson, Jeffrey S.; Wells, Jered R.; Baker, Jay A.; Samei, Ehsan

    2016-01-01

    Purpose: The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D C-VIEW and 2D FFDM images in terms of resolution, contrast, and noise. Methods: Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Results: Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than C-VIEW according to both the average observer and automated scores. In addition, between 50% and 70% of C-VIEW images failed to meet the nominal minimum ACR accreditation requirements—primarily due to fiber breaks. Software analysis demonstrated that C-VIEW provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the C-VIEW image (11 lp/mm FFDM, 5 lp/mm C-VIEW) and loss in detection of small microcalcification

  18. How does C-VIEW image quality compare with conventional 2D FFDM?

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Jeffrey S., E-mail: nelson.jeffrey@duke.edu; Wells, Jered R. [Department of Radiology, Clinical Imaging Physics Group, Duke University Medical Center, Durham, North Carolina 27705 (United States); Baker, Jay A. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Department of Radiology, Clinical Imaging Physics Group, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Departments of Biomedical Engineering and Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2016-05-15

    Purpose: The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D C-VIEW and 2D FFDM images in terms of resolution, contrast, and noise. Methods: Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Results: Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than C-VIEW according to both the average observer and automated scores. In addition, between 50% and 70% of C-VIEW images failed to meet the nominal minimum ACR accreditation requirements—primarily due to fiber breaks. Software analysis demonstrated that C-VIEW provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the C-VIEW image (11 lp/mm FFDM, 5 lp/mm C-VIEW) and loss in detection of small microcalcification

  19. Is screening with digital imaging using one retinal view adequate?

    Science.gov (United States)

    Herbert, H M; Jordan, K; Flanagan, D W

    2003-05-01

    To compare the detection of diabetic retinopathy from digital images with slit-lamp biomicroscopy, and to determine whether British Diabetic Association (BDA) screening criteria are attained (>80% sensitivity, >95% specificity, &fashion. A single 45 degrees fundus image was obtained using the nonmydriatic digital camera. Each patient subsequently underwent slit-lamp biomicroscopy and diabetic retinopathy grading by a consultant ophthalmologist. Diabetic retinopathy and maculopathy was graded according to the Early Treatment of Diabetic Retinopathy Study. A total of 145 patients (288 eyes) were identified for screening. Of these, 26% of eyes had diabetic retinopathy, and eight eyes (3%) had sight-threatening diabetic retinopathy requiring treatment. The sensitivity for detection of any diabetic retinopathy was 38% and the specificity 95%. There was a 4% technical failure rate. There were 42/288 false negatives and 10/288 false positives. Of the 42 false negatives, 18 represented diabetic maculopathy, 20 represented peripheral diabetic retinopathy and four eyes had both macular and peripheral changes. Three eyes in the false-negative group (1% of total eyes) had sight-threatening retinopathy. There was good concordance between the two consultants (79% agreement on slit-lamp biomicroscopy and 84% on digital image interpretation). The specificity value and technical failure rate compare favourably with BDA guidelines. The low sensitivity for detection of any retinopathy reflects failure to detect minimal maculopathy and retinopathy outside the 45 degrees image. This could be improved by an additional nasal image and careful evaluation of macular images with a low threshold for slit-lamp biomicroscopy if image quality is poor.

  20. BrachyView: Combining LDR seed positions with transrectal ultrasound imaging in a prostate gel phantom.

    Science.gov (United States)

    Alnaghy, S; Cutajar, D L; Bucci, J A; Enari, K; Safavi-Naeini, M; Favoino, M; Tartaglia, M; Carriero, F; Jakubek, J; Pospisil, S; Lerch, M; Rosenfeld, A B; Petasecca, M

    2017-02-01

    BrachyView is a novel in-body imaging system which aims to provide LDR brachytherapy seeds position reconstruction within the prostate in real-time. The first prototype is presented in this study: the probe consists of a gamma camera featuring three single cone pinhole collimators embedded in a tungsten tube, above three, high resolution pixelated detectors (Timepix). The prostate was imaged with a TRUS system using a sagittal crystal with a 2.5mm slice thickness. Eleven needles containing a total of thirty 0.508U 125 I seeds were implanted under ultrasound guidance. A CT scan was used to localise the seed positions, as well as provide a reference when performing the image co-registration between the BrachyView coordinate system and the TRUS coordinate system. An in-house visualisation software interface was developed to provide a quantitative 3D reconstructed prostate based on the TRUS images and co-registered with the LDR seeds in situ. A rigid body image registration was performed between the BrachyView and TRUS systems, with the BrachyView and CT-derived source locations compared. The reconstructed seed positions determined by the BrachyView probe showed a maximum discrepancy of 1.78mm, with 75% of the seeds reconstructed within 1mm of their nominal location. An accurate co-registration between the BrachyView and TRUS coordinate system was established. The BrachyView system has shown its ability to reconstruct all implanted LDR seeds within a tissue equivalent prostate gel phantom, providing both anatomical and seed position information in a single interface. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. A resolution-enhancing image reconstruction method for few-view differential phase-contrast tomography

    Science.gov (United States)

    Guan, Huifeng; Anastasio, Mark A.

    2017-03-01

    It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.

  2. High speed color imaging through scattering media with a large field of view

    Science.gov (United States)

    Zhuang, Huichang; He, Hexiang; Xie, Xiangsheng; Zhou, Jianying

    2016-09-01

    Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that above-mentioned drawbacks can be essentially overcome. The realization of high speed color imaging through turbid media is successfully carried out by taking into account the media memory effect, the point spread function, the exit pupil of the optical system, and the optimized signal to noise ratio. By retrieving selected speckles with enlarged field of view, high quality image is recovered with a responding speed only determined by the frame rates of the image capturing devices. The immediate application of the technique is expected to register static and dynamic imaging under human skin to recover information with a wearable device.

  3. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng

    2015-05-28

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple visual features, the MMKR first maps them into a high-dimensional space, e.g., a reproducing kernel Hilbert space (RKHS), where test images are then linearly reconstructed by some representative training images, rather than all of them. Furthermore a classification rule is proposed to classify test images. Experimental results on real datasets show the effectiveness of the proposed MMKR while comparing to state-of-the-art algorithms.

  4. A global "imaging'' view on systems approaches in immunology.

    Science.gov (United States)

    Ludewig, Burkhard; Stein, Jens V; Sharpe, James; Cervantes-Barragan, Luisa; Thiel, Volker; Bocharov, Gennady

    2012-12-01

    The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. AN INTERFACE REGION IMAGING SPECTROGRAPH FIRST VIEW ON SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, T. M. D.; De Pontieu, B.; Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Tarbell, T. D.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Wülser, J. P.; Martínez-Sykora, J.; Kleint, L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Bldg. 252, Palo Alto, CA 94304 (United States); Golub, L.; McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.; Tian, H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jaeggli, S.; Kankelborg, C., E-mail: tiago.pereira@astro.uio.no [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2014-09-01

    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet-Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region, we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet-Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.

  6. Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging

    Science.gov (United States)

    Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.

  7. Direct view panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Yang, S.-P.; Robbins, C.D.; Merrit, E.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray fluoroscopy use is described. It has all linear components and yet a high brightness gain, in excess of 4,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window, a directly viewable full size output display screen, and a scintillator-photocathode screen having a thickness of at least 200 microns for a high X-ray photon utilization ability as well as X-ray stopping power, the scintillator-photocathode screen being suspended on insulators within the envelope and in between the input window and the output screen. The scintillator-photocathode screen is spaced from the output screen by at least 8mm to allow the application of a high negative potential at the scintillator-photocathode screen with respect to the output screen for high gain with low field emission, since all of the remaining components within the tube envelope are at neutral potential with respect to the output display screen. (Auth.)

  8. Imaging professionals' views of social media and its implications.

    Science.gov (United States)

    Bagley, Jennifer E; DiGiacinto, Dora D; Hargraves, Kensi

    2014-01-01

    To help radiation sciences students and professionals understand the implications of and best practices for personal postings on social media Web sites. The authors conducted a survey to capture radiologic science professionals' opinions regarding trends related to using social media for employment, as well as for their personal use. The majority of imaging professionals are mindful of their privacy settings and believe their activity on social media sites reflects on them professionally. Participants in this study noted they maintain high privacy settings. In spite of this, both supervisors and nonsupervisors in this study held opinions about the use of social media in employment decisions that are inconsistent with what can occur in the workplace. Survey respondents did not believe there should be employment sanctions for behaviors that routinely are sanctioned in the workplace. An important message that has emerged from this research is that employees should not only adhere to the strictest privacy settings on their personal social media sites, but they also should be judicious in what they choose to share, with the understanding that nothing posted online is truly private. Supervisors and nonsupervisors should become familiar with their institutional policies regarding the use of social media in the workplace, and supervisors specifically should ensure that they follow institutional policy regarding the use of social media in employment decisions.

  9. PHOTOJOURNALISM AND PROXIMITY IMAGES: two points of view, two professions?

    Directory of Open Access Journals (Sweden)

    Daniel Thierry

    2011-06-01

    Full Text Available For many decades, classic photojournalistic practice, firmly anchored in a creed established since Lewis Hine (1874-1940, has developed a praxis and a doxa that have barely been affected by the transformations in the various types of journalism. From the search for the “right image” which would be totally transparent by striving to refute its enunciative features from a perspective of maximumobjectivity, to the most seductive photography at supermarkets by photo agencies, the range of images seems to be decidedly framed. However, far from constituting high-powered reportingor excellent photography that is rewarded with numerous international prizes and invitations to the media-artistic world, local press photography remains in the shadows. How does oneoffer a representation of one’s self that can be shared in the local sphere? That is the first question which editors of the local daily and weekly press must grapple with. Using illustrations of the practices, this article proposes an examination of the origins ofthese practices and an analysis grounded on the originality of theauthors of these proximity photographs.

  10. A Study of Visual Descriptors for Outdoor Navigation Using Google Street View Images

    OpenAIRE

    Fernández, L.; Payá, L.; Reinoso, O.; Jiménez, L. M.; Ballesta, M.

    2016-01-01

    A comparative analysis between several methods to describe outdoor panoramic images is presented. The main objective consists in studying the performance of these methods in the localization process of a mobile robot (vehicle) in an outdoor environment, when a visual map that contains images acquired from different positions of the environment is available. With this aim, we make use of the database provided by Google Street View, which contains spherical panoramic images captured in urban en...

  11. Evaluative Processing of Food Images: A Conditional Role for Viewing in Preference Formation

    Directory of Open Access Journals (Sweden)

    Alexandra Wolf

    2018-06-01

    Full Text Available Previous research suggested a role of gaze in preference formation, not merely as an expression of preference, but also as a causal influence. According to the gaze cascade hypothesis, the longer subjects look at an item, the more likely they are to develop a preference for it. However, to date the connection between viewing and liking has been investigated predominately with self-paced viewing conditions in which the subjects were required to select certain items from simultaneously presented stimuli on the basis of perceived visual attractiveness. Such conditions might promote a default, but non-mandatory connection between viewing and liking. To explore whether the connection is separable, we examined the evaluative processing of single naturalistic food images in a 2 × 2 design, conducted completely within subjects, in which we varied both the type of exposure (self-paced versus time-controlled and the type of evaluation (non-exclusive versus exclusive. In the self-paced exclusive evaluation, longer viewing was associated with a higher likelihood of a positive evaluation. However, in the self-paced non-exclusive evaluation, the trend reversed such that longer viewing durations were associated with lesser ratings. Furthermore, in the time-controlled tasks, both with non-exclusive and exclusive evaluation, there was no significant relationship between the viewing duration and the evaluation. The overall pattern of results was consistent for viewing times measured in terms of exposure duration (i.e., the duration of stimulus presentation on the screen and in terms of actual gaze duration (i.e., the amount of time the subject effectively gazed at the stimulus on the screen. The data indicated that viewing does not intrinsically lead to a higher evaluation when evaluating single food images; instead, the relationship between viewing duration and evaluation depends on the type of task. We suggest that self-determination of exposure duration may

  12. The consequences of multiplexing and limited view angle in coded-aperture imaging

    International Nuclear Information System (INIS)

    Smith, W.E.; Barrett, H.H.; Paxman, R.G.

    1984-01-01

    Coded-aperture imaging (CAI) is a method for reconstructing distributions of radionuclide tracers that offers advantages over ECT and PET; namely, many views can be taken simultaneously without detector motion, and large numbers of photons are utilized since collimators are not required. However, because of this type of data acquisition, the coded image suffers from multiplexing; i.e., more than one object point may be mapped to each detector in the coded image. To investigate the dependence of the reconstruction on multiplexing, the authors reconstruct a simulated two-dimensional circular object from multiplexed one-dimensional coded-image data, then perform the reconstruction from un-multiplexed data. Each of these reconstructions are produced both from noise-free and noisy simulated data. To investigate the dependence on view angle, the authors reconstruct two simulated three-dimensional objects; a spherical phantom, and a series of point-like objects arranged nearly in a plane. Each of these reconstructions are from multiplexed two-dimensional coded-image data, first using two orthogonal views, and then a single viewing direction. The two-dimensional reconstructions demonstrate that, in the noise-free case, the multiplexing of the data does not seriously affect the reconstruction equality and that in the noisy-data case, the multiplexing helps, due to the fact that more photons are collected. Also, for point-like objects confined to a near-planar region of space, the authors show that restricted views can give satisfactory results, but that, for a large, three-dimensional object, a more complete viewing geometry is required

  13. Image quality in conventional chest radiography. Evaluation using the postprocessing tool Diamond View

    International Nuclear Information System (INIS)

    Niemann, Tilo; Reisinger, Clemens; Rau, Philipp; Schwarz, Jochen; Ruis-Lopez, Laura; Bongartz, Georg

    2010-01-01

    The objective of this work was to evaluate the influence of the postprocessing tool Diamond View (Siemens AG Medical Solutions, Germany) on image quality in conventional chest radiography. Evaluation of image quality remains a challenge in conventional radiography. Based on the European Commission quality criteria we evaluated the improvement of image quality when applying the new postprocessing tool Diamond View (Siemens AG Medical solutions, Germany) to conventional chest radiographs. Three different readers prospectively evaluated 102 digital image pairs of chest radiographs. Statistical analysis was performed with a p value <0.05 considered as significant. Images were evaluated on basis of the modified imaging Quality Criteria by the Commission of the European Communities. Each of the 11 image quality criteria was evaluated separately using a five point classification. Statistical analysis showed an overall tendency for improved image quality for Diamond View (DV) for all criteria. Significant differences could be found in most of the criteria. In conclusion DV improves image quality in conventional chest radiographs.

  14. AN IMAGE-BASED TECHNIQUE FOR 3D BUILDING RECONSTRUCTION USING MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2015-12-01

    Full Text Available Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  15. Concert Viewing Headphones

    Directory of Open Access Journals (Sweden)

    Kazuya Atsuta

    2011-01-01

    Full Text Available An audiovisual interface equipped with a projector, an inclina-tion sensor, and a distance sensor for zoom control has been developed that enables a user to selectively view and listen to specific performers in a video-taped group performance. Dubbed Concert Viewing Headphones, it has both image and sound processing functions. The image processing extracts the portion of the image indicated by the user and projects it free of distortion on the front and side walls. The sound processing creates imaginary microphones for those performers without one so that the user can hear the sound from any performer. Testing using images and sounds captured using a fisheye-lens camera and 37 lavalier microphones showed that sound locali-zation was fastest when an inverse square function was used for the sound mixing and that the zoom function was useful for locating the desired sound performance.

  16. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    Science.gov (United States)

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  17. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial

  18. Analysis of scene distortions in stereoscopic images due to the variation of the ideal viewing conditions

    Science.gov (United States)

    Viale, Alberto; Villa, Dario

    2011-03-01

    Recently stereoscopy has increased a lot its popularity and various technologies are spreading in theaters and homes allowing observation of stereoscopic images and movies, becoming affordable even for home users. However there are some golden rules that users should follow to ensure a better enjoyment of stereoscopic images, first of all the viewing condition should not be too different from the ideal ones, which were assumed during the production process. To allow the user to perceive stereo depth instead of a flat image, two different views of the same scene are shown to the subject, one is seen just through his left eye and the other just through the right one; the vision process is making the work of merging the two images in a virtual three-dimensional scene, giving to the user the perception of depth. The two images presented to the user were created, either from image synthesis or from more traditional techniques, following the rules of perspective. These rules need some boundary conditions to be explicit, such as eye separation, field of view, parallax distance, viewer position and orientation. In this paper we are interested in studying how the variation of the viewer position and orientation from the ideal ones expressed as specified parameters in the image creation process, is affecting the correctness of the reconstruction of the three-dimensional virtual scene.

  19. A Novel Multi-View-Angle Range Images Generation Method for Measurement of Complicated Polyhedron in 3D Space

    Directory of Open Access Journals (Sweden)

    Deming Kong

    2017-01-01

    Full Text Available A new kind of generation method is proposed in this paper to acquire range images for complicated polyhedron in 3D space from a series of view angles. In the proposed generation method, concept of three-view drawing in mechanical cartography is introduced into the range image generation procedure. Negative and positive directions of x-, y-, and z-axes are selected as the view angles to generate the range images for complicated polyhedron in 3D space. Furthermore, a novel iterative operation of mathematical morphology is proposed to ensure that satisfactory range images can be generated for the polyhedron from all the selected view angles. Compared with the existing method based on single view angle and interpolation operation, structure features contained in surface of the complicated polyhedron can be represented more consistently with the reality by using the proposed multi-view-angle range images generation method. The proposed generation method is validated by using an experiment.

  20. Large-field-of-view imaging by multi-pupil adaptive optics.

    Science.gov (United States)

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  1. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  2. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    International Nuclear Information System (INIS)

    Wang, Youmin; Raj, Milan; Bhave, Gauri; Yang, Bin; Zhang, Xiaojing; McGuff, H. Stan; Shen, Ting

    2012-01-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE V R® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment. (paper)

  3. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    Science.gov (United States)

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development of automatic extraction method of left ventricular contours on long axis view MR cine images

    International Nuclear Information System (INIS)

    Utsunomiya, Shinichi; Iijima, Naoto; Yamasaki, Kazunari; Fujita, Akinori

    1995-01-01

    In the MRI cardiac function analysis, left ventricular volume curves and diagnosis parameters are obtained by extracting the left ventricular cavities as regions of interest (ROI) from long axis view MR cine images. The ROI extractions had to be done by manual operations, because automatization of the extraction is difficult. A long axis view left ventricular contour consists of a cardiac wall part and an aortic valve part. The above mentioned difficulty is due to the decline of contrast on the cardiac wall part, and the disappearance of edge on the aortic valve part. In this paper, we report a new automatic extraction method for long axis view MR cine images, which needs only 3 manually indicated points on the 1st image to extract all the contours from the total sequence of images. At first, candidate points of a contour are detected by edge detection. Then, selecting the best matched combination of candidate points by Dynamic Programming, the cardiac wall part is automatically extracted. The aortic valve part is manually extracted for the 1st image by indicating both the end points, and is automatically extracted for the rest of the images, by utilizing the aortic valve motion characteristics throughout a cardiac cycle. (author)

  5. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    Science.gov (United States)

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  6. A study on projection angles for an optimal image of PNS water's view on children

    International Nuclear Information System (INIS)

    Son, Sang Hyuk; Song, Young Geun; Kim, Sung Kyu; Hong, Sang Woo; Kim, Je Bong

    2007-01-01

    This study is to calculate the proper angle for the optimal image of PNS Water's view on children, comparing and analyzing the PNS Water's projection angles between children and adults at every age. This study randomly selected 50 patients who visited the Medical Center from January to May in 2005, and examined the incidence path of central ray, taking a PNS Water's and skull trans-Lat. view in Water's filming position while attaching a lead ball mark on the Orbit, EAM, and acanthion of the patient's skull. And then, we calculated the incidence angles (angle A) of the line connected from OML and the petrous ridge to the inferior margin of maxilla on general (random) patient's skull image, following the incidence path of central ray. Finally, we analyzed two pieces of the graphs at ages, developing out the patient's ideal images at PNS Water's filming position taken by a digital camera, and calculating the angle (angle B) between OML and IP(Image Plate). The angle between OML and IP is about 43 .deg. in 4-years-old children, which is higher than 37 .deg. as age increases the angle decreases, it goes to 37 .deg. around 30 years of age. That is similar result to maxillary growth period. We can get better quality of Water's image for children when taking the PNS Water's view if we change the projection angles, considering maxillary growth for patients in every age stage

  7. Small saccades and image complexity during free viewing of natural images in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jose Ignacio Egaña

    2013-05-01

    Full Text Available In schizophrenia, patients display dysfunctions during the execution of simple visual tasks such as anti-saccade or smooth pursuit. In more ecological scenarios, such as free viewing of natural images, patients appear to make fewer and longer visual fixations and display shorter scanpaths. It is not clear whether these measurements reflect alterations in their proficiency to perform basic eye movements, such as saccades and fixations, or are related to high-level mechanisms, such as exploration or attention. We utilized free exploration of natural images of different complexities as a model of an ecological context where normally operative mechanisms of visual control can be accurately measured. We quantified visual exploration as Euclidean distance, scanpaths, saccades and visual fixation, using the standard SR-Research eye tracker algorithm (SR. We then compared this result with a computation that includes microsaccades (EM. We evaluated 8 schizophrenia patients and corresponding healthy controls (HC. Next, we tested whether the decrement in the number of saccades and fixations, as well as their increment in duration reported previously in schizophrenia patients, resulted from the increasing occurrence of undetected microsaccades. We found that when utilizing the standard SR algorithm, patients displayed shorter scanpaths as well as fewer and shorter saccades and fixations. When we employed the EM algorithm, the differences in these parameters between patients and HC were no longer significant. On the other hand, we found that image complexity plays an important role in exploratory behaviors, demonstrating that this factor explains most of differences between eye-movement behaviors in schizophrenia patients. These results help elucidate the mechanisms of visual motor control that are affected in schizophrenia and contribute to the finding of adequate markers for diagnosis and treatment for this condition.

  8. Moving object detection in top-view aerial videos improved by image stacking

    Science.gov (United States)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  9. 3D reconstruction from multi-view VHR-satellite images in MicMac

    Science.gov (United States)

    Rupnik, Ewelina; Pierrot-Deseilligny, Marc; Delorme, Arthur

    2018-05-01

    This work addresses the generation of high quality digital surface models by fusing multiple depths maps calculated with the dense image matching method. The algorithm is adapted to very high resolution multi-view satellite images, and the main contributions of this work are in the multi-view fusion. The algorithm is insensitive to outliers, takes into account the matching quality indicators, handles non-correlated zones (e.g. occlusions), and is solved with a multi-directional dynamic programming approach. No geometric constraints (e.g. surface planarity) or auxiliary data in form of ground control points are required for its operation. Prior to the fusion procedures, the RPC geolocation parameters of all images are improved in a bundle block adjustment routine. The performance of the algorithm is evaluated on two VHR (Very High Resolution)-satellite image datasets (Pléiades, WorldView-3) revealing its good performance in reconstructing non-textured areas, repetitive patterns, and surface discontinuities.

  10. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device.

    Science.gov (United States)

    Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy

    2018-04-01

    Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.

  11. An Effective Surface Modeling Method for Car Styling from a Side-View Image

    Institute of Scientific and Technical Information of China (English)

    LIBao-jun; ZHANGXue-fang; LVZhang-quan; QIYi-chao

    2014-01-01

    We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.

  12. Two-View Gravity Stress Imaging Protocol for Nondisplaced Type II Supination External Rotation Ankle Fractures: Introducing the Gravity Stress Cross-Table Lateral View.

    Science.gov (United States)

    Boffeli, Troy J; Collier, Rachel C; Gervais, Samuel J

    Assessing ankle stability in nondisplaced Lauge-Hansen supination external rotation type II injuries requires stress imaging. Gravity stress mortise imaging is routinely used as an alternative to manual stress imaging to assess deltoid integrity with the goal of differentiating type II from type IV injuries in cases without a posterior or medial fracture. A type II injury with a nondisplaced fibula fracture is typically treated with cast immobilization, and a type IV injury is considered unstable and often requires operative repair. The present case series (two patients) highlights a standardized 2-view gravity stress imaging protocol and introduces the gravity stress cross-table lateral view. The gravity stress cross-table lateral view provides a more thorough evaluation of the posterior malleolus owing to the slight external rotation and posteriorly directed stress. External rotation also creates less bony overlap between the tibia and fibula, allowing for better visualization of the fibula fracture. Gravity stress imaging confirmed medial-sided injury in both cases, confirming the presence of supination external rotation type IV or bimalleolar equivalent fractures. Open reduction and internal fixation was performed, and both patients achieved radiographic union. No further treatment was required at 21 and 33 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Multi-modality Imaging: Bird's eye view from the 2015 American Heart Association Scientific Sessions.

    Science.gov (United States)

    Einstein, Andrew J; Lloyd, Steven G; Chaudhry, Farooq A; AlJaroudi, Wael A; Hage, Fadi G

    2016-04-01

    Multiple novel studies were presented at the 2015 American Heart Association Scientific Sessions which was considered a successful conference at many levels. In this review, we will summarize key studies in nuclear cardiology, cardiac magnetic resonance, echocardiography, and cardiac computed tomography that were presented at the Sessions. We hope that this bird's eye view will keep readers updated on the newest imaging studies presented at the meeting whether or not they were able to attend the meeting.

  14. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    Science.gov (United States)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  15. INFLUENCE OF THE VIEWING GEOMETRY WITHIN HYPERSPECTRAL IMAGES RETRIEVED FROM UAV SNAPSHOT CAMERAS

    Directory of Open Access Journals (Sweden)

    H. Aasen

    2016-06-01

    Full Text Available Hyperspectral data has great potential for vegetation parameter retrieval. However, due to angular effects resulting from different sun-surface-sensor geometries, objects might appear differently depending on the position of an object within the field of view of a sensor. Recently, lightweight snapshot cameras have been introduced, which capture hyperspectral information in two spatial and one spectral dimension and can be mounted on unmanned aerial vehicles. This study investigates the influence of the different viewing geometries within an image on the apparent hyperspectral reflection retrieved by these sensors. Additionally, it is evaluated how hyperspectral vegetation indices like the NDVI are effected by the angular effects within a single image and if the viewing geometry influences the apparent heterogeneity with an area of interest. The study is carried out for a barley canopy at booting stage. The results show significant influences of the position of the area of interest within the image. The red region of the spectrum is more influenced by the position than the near infrared. The ability of the NDVI to compensate these effects was limited to the capturing positions close to nadir. The apparent heterogeneity of the area of interest is the highest close to a nadir.

  16. Reconstruction of initial pressure from limited view photoacoustic images using deep learning

    Science.gov (United States)

    Waibel, Dominik; Gröhl, Janek; Isensee, Fabian; Kirchner, Thomas; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-02-01

    Quantification of tissue properties with photoacoustic (PA) imaging typically requires a highly accurate representation of the initial pressure distribution in tissue. Almost all PA scanners reconstruct the PA image only from a partial scan of the emitted sound waves. Especially handheld devices, which have become increasingly popular due to their versatility and ease of use, only provide limited view data because of their geometry. Owing to such limitations in hardware as well as to the acoustic attenuation in tissue, state-of-the-art reconstruction methods deliver only approximations of the initial pressure distribution. To overcome the limited view problem, we present a machine learning-based approach to the reconstruction of initial pressure from limited view PA data. Our method involves a fully convolutional deep neural network based on a U-Net-like architecture with pixel-wise regression loss on the acquired PA images. It is trained and validated on in silico data generated with Monte Carlo simulations. In an initial study we found an increase in accuracy over the state-of-the-art when reconstructing simulated linear-array scans of blood vessels.

  17. Stereoscopic optical viewing system

    Science.gov (United States)

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  18. QlikView scripting

    CERN Document Server

    Floyd, Matt

    2013-01-01

    This mini book offers information about QlikView scripting written in an easy-to-understand manner, and covers QlikView scripting from basic to advanced features in a compact format.If you are a basic orintermediate developer with some knowledge of QlikView applications and a basic understanding of QlikView scripting and data extraction and manipulation, this book will be great for you. If you are an advanced user, you can also use this book as a reference guide and teaching aid. If you are a QlikView project team member such as a business user, data/ETL professional, project manager, orsystem

  19. Optimal usage of cone beam computed tomography system with different field of views in image guided radiotherapy (IGRT

    Directory of Open Access Journals (Sweden)

    Narayana Venkata Naga Madhusudhana Sresty

    2015-09-01

    Full Text Available Purpose: To find methods for optimal usage of XVI (X-ray volume imaging system in Elekta synergy linear accelerator with different field of views for same lesion in order to minimize patient dose due to imaging.Methods: 20 scans of 2 individual patients with ca sigmoid colon and ca lung were used in this study. Kilo voltage collimators with medium field of view were used as per the preset information. Images were reconstructed for another collimator with small field of view. The set up errors were evaluated with XVI software. Shift results of both methods were compared. Results: Variation in treatment set up errors with M20 and S20 collimators were ≤ 0.2 mm in translational and 0.30 in rotational shifts. Results showed almost equal translational and rotational shifts in both medium and small field of views with different collimators in all the scans. Visualization of target and surrounding structures were good enough and sufficient for XVI auto matching.Conclusion: Imaging with small field of view results less patient dose compared with medium or large field of views. It is Suggestible to use collimators with small field of view wherever possible. In this study, collimators with small field of view were sufficient for both patients though the preset information indicated medium field of view. But, it always depends on the area required for matching purpose. So, individual selection is important than preset information in the XVI system.

  20. Synchronizing XPath Views

    DEFF Research Database (Denmark)

    Pedersen, Dennis; Pedersen, Torben Bach

    2004-01-01

    The increasing availability of XML-based data sources, e.g., for publishing data on the WWW, means that more and more applications (data consumers) rely on accessing and using XML data. Typically, the access is achieved by defining views over the XML data, and accessing data through these views....... However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...

  1. A Study of Visual Descriptors for Outdoor Navigation Using Google Street View Images

    Directory of Open Access Journals (Sweden)

    L. Fernández

    2016-01-01

    Full Text Available A comparative analysis between several methods to describe outdoor panoramic images is presented. The main objective consists in studying the performance of these methods in the localization process of a mobile robot (vehicle in an outdoor environment, when a visual map that contains images acquired from different positions of the environment is available. With this aim, we make use of the database provided by Google Street View, which contains spherical panoramic images captured in urban environments and their GPS position. The main benefit of using these images resides in the fact that it permits testing any novel localization algorithm in countless outdoor environments anywhere in the world and under realistic capture conditions. The main contribution of this work consists in performing a comparative evaluation of different methods to describe images to solve the localization problem in an outdoor dense map using only visual information. We have tested our algorithms using several sets of panoramic images captured in different outdoor environments. The results obtained in the work can be useful to select an appropriate description method for visual navigation tasks in outdoor environments using the Google Street View database and taking into consideration both the accuracy in localization and the computational efficiency of the algorithm.

  2. Features and limitations of mobile tablet devices for viewing radiological images.

    Science.gov (United States)

    Grunert, J H

    2015-03-01

    Mobile radiological image display systems are becoming increasingly common, necessitating a comparison of the features of these systems, specifically the operating system employed, connection to stationary PACS, data security and rang of image display and image analysis functions. In the fall of 2013, a total of 17 PACS suppliers were surveyed regarding the technical features of 18 mobile radiological image display systems using a standardized questionnaire. The study also examined to what extent the technical specifications of the mobile image display systems satisfy the provisions of the Germany Medical Devices Act as well as the provisions of the German X-ray ordinance (RöV). There are clear differences in terms of how the mobile systems connected to the stationary PACS. Web-based solutions allow the mobile image display systems to function independently of their operating systems. The examined systems differed very little in terms of image display and image analysis functions. Mobile image display systems complement stationary PACS and can be used to view images. The impacts of the new quality assurance guidelines (QS-RL) as well as the upcoming new standard DIN 6868 - 157 on the acceptance testing of mobile image display units for the purpose of image evaluation are discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  3. An integrated 3-D image of cerebral blood vessels and CT view of tumor

    International Nuclear Information System (INIS)

    Suetens, P.; Baert, A.L.; Gybels, J.; Haegemans, S.; Jansen, P.; Oosterlinck, A.; Wilms, G.

    1984-01-01

    The authors developed a method that yields an integrated three-dimensional image of cerebral blood vessels and CT view of tumor. This method allows the neurosurgeon to choose any electrode trajectory that looks convenient to him, without imminent danger of causing a hemorrhage. Besides offering more safety to stereotactic interventions, this integrated 3-D image also has other applications. First, it gives a better characterization of most focal mass lesions seen by CT. Second, it allows high dose focal irradiation to be effected in such a way as to avoid arteries and veins. Third, it provides useful information for planning the strategy of open surgery

  4. Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions

    OpenAIRE

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Goodsitt, Mitch; Carson, Paul L.; Hadjiiski, Lubomir; Schmitz, Andrea; Eberhard, Jeffrey W.; Claus, Bernhard E. H.

    2011-01-01

    Purpose: To analyze the effects of projection-view (PV) distribution on the contrast and spatial blurring of microcalcifications on the tomosynthesized slices (X-Y plane) and along the depth (Z) direction for the same radiation dose in digital breast tomosynthesis (DBT).Methods: A GE GEN2 prototype DBT system was used for acquisition of DBT scans. The system acquires PV images from 21 angles in 3° increments over a ±30° range. From these acquired PV images, the authors selected six subsets of...

  5. View based approach to forensic face recognition

    NARCIS (Netherlands)

    Dutta, A.; van Rootseler, R.T.A.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    Face recognition is a challenging problem for surveillance view images commonly encountered in a forensic face recognition case. One approach to deal with a non-frontal test image is to synthesize the corresponding frontal view image and compare it with frontal view reference images. However, it is

  6. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  7. Rapid portal imaging with a high-efficiency, large field-of-view detector.

    Science.gov (United States)

    Mosleh-Shirazi, M A; Evans, P M; Swindell, W; Symonds-Tayler, J R; Webb, S; Partridge, M

    1998-12-01

    The design, construction, and performance evaluation of an electronic portal imaging device (EPID) are described. The EPID has the same imaging geometry as the current mirror-based systems except for the x-ray detection stage, where a two-dimensional (2D) array of 1 cm thick CsI(Tl) detector elements are utilized. The approximately 18% x-ray quantum efficiency of the scintillation detector and its 30 x 40 cm2 field-of-view at the isocenter are greater than other area-imaging EPIDs. The imaging issues addressed are theoretical and measured signal-to-noise ratio, linearity of the imaging chain, influence of frame-summing on image quality and image calibration. Portal images of test objects and a humanoid phantom are used to measure the performance of the system. An image quality similar to the current devices is achieved but with a lower dose. With approximately 1 cGy dose delivered by a 6 MV beam, a 2 mm diam structure of 1.3% contrast and an 18 mm diam object of 0.125% contrast can be resolved without using image-enhancement methods. A spatial resolution of about 2 mm at the isocenter is demonstrated. The capability of the system to perform fast sequential imaging, synchronized with the radiation pulses, makes it suitable for patient motion studies and verification of intensity-modulated beams as well as its application in cone-beam megavoltage computed tomography.

  8. A GENERALIZED NON-LINEAR METHOD FOR DISTORTION CORRECTION AND TOP-DOWN VIEW CONVERSION OF FISH EYE IMAGES

    Directory of Open Access Journals (Sweden)

    Vivek Singh Bawa

    2017-06-01

    Full Text Available Advanced driver assistance systems (ADAS have been developed to automate and modify vehicles for safety and better driving experience. Among all computer vision modules in ADAS, 360-degree surround view generation of immediate surroundings of the vehicle is very important, due to application in on-road traffic assistance, parking assistance etc. This paper presents a novel algorithm for fast and computationally efficient transformation of input fisheye images into required top down view. This paper also presents a generalized framework for generating top down view of images captured by cameras with fish-eye lenses mounted on vehicles, irrespective of pitch or tilt angle. The proposed approach comprises of two major steps, viz. correcting the fish-eye lens images to rectilinear images, and generating top-view perspective of the corrected images. The images captured by the fish-eye lens possess barrel distortion, for which a nonlinear and non-iterative method is used. Thereafter, homography is used to obtain top-down view of corrected images. This paper also targets to develop surroundings of the vehicle for wider distortion less field of view and camera perspective independent top down view, with minimum computation cost which is essential due to limited computation power on vehicles.

  9. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    Science.gov (United States)

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system

  10. Investigation of the noise effect on tomographic reconstructions for a tangentially viewing vacuum ultraviolet imaging diagnostic

    International Nuclear Information System (INIS)

    Ming, Tingfeng; Ohdachi, Satoshi; Suzuki, Yasuhiro

    2011-01-01

    Tomographic reconstruction for a tangentially viewing two-dimensional (2D) imaging system is studied. A method to calculate the geometry matrix in 2D tomography is introduced. An algorithm based on a Phillips-Tikhonov (P-T) type regularization method is investigated, and numerical tests using the P-T method are conducted with both tokamak and Heliotron configurations. The numerical tests show that the P-T method is not sensitive to the added noise levels and the emission profiles with higher mode numbers can be reconstructed with adequate resolution. The results indicate that this method is suitable for 2D tomographic reconstruction for a tangentially viewing vacuum ultraviolet telescope system. (author)

  11. Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K., E-mail: ktanaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Department of Advanced Energy Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Coda, S. [EPFL–SPC, Lausanne (Switzerland); Yoshida, M.; Sasao, H.; Kawano, Y.; Imazawa, R.; Kubo, H.; Kamada, Y. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan)

    2016-11-15

    A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization. The probing laser beam is injected tangentially and traverses the entire plasma region including both low and high field sides. The spatial resolution for an Internal Transport Barrier discharge is estimated at 30%–70% of the minor radius at k = 5 cm{sup −1}, which is the typical expected wave number of ion scale turbulence such as ion temperature gradient/trapped electron mode.

  12. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advance Studies), Toki 509-5292 (Japan); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan); Reinke, M. L.; Canik, J. M.; Lore, J. D.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Eden, G. G. van [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands)

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a time resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.

  13. ANALYSIS OF MOBILE LASER SCANNING DATA AND MULTI-VIEW IMAGE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    C. Briese

    2012-07-01

    Full Text Available The combination of laser scanning (LS, active, direct 3D measurement of the object surface and photogrammetry (high geometric and radiometric resolution is widely applied for object reconstruction (e.g. architecture, topography, monitoring, archaeology. Usually the results are a coloured point cloud or a textured mesh. The geometry is typically generated from the laser scanning point cloud and the radiometric information is the result of image acquisition. In the last years, next to significant developments in static (terrestrial LS and kinematic LS (airborne and mobile LS hardware and software, research in computer vision and photogrammetry lead to advanced automated procedures in image orientation and image matching. These methods allow a highly automated generation of 3D geometry just based on image data. Founded on advanced feature detector techniques (like SIFT (Scale Invariant Feature Transform very robust techniques for image orientation were established (cf. Bundler. In a subsequent step, dense multi-view stereo reconstruction algorithms allow the generation of very dense 3D point clouds that represent the scene geometry (cf. Patch-based Multi-View Stereo (PMVS2. Within this paper the usage of mobile laser scanning (MLS and simultaneously acquired image data for an advanced integrated scene reconstruction is studied. For the analysis the geometry of a scene is generated by both techniques independently. Then, the paper focuses on the quality assessment of both techniques. This includes a quality analysis of the individual surface models and a comparison of the direct georeferencing of the images using positional and orientation data of the on board GNSS-INS system and the indirect georeferencing of the imagery by automatic image orientation. For the practical evaluation a dataset from an archaeological monument is utilised. Based on the gained knowledge a discussion of the results is provided and a future strategy for the integration of

  14. Occlusion-Aware View Interpolation

    Directory of Open Access Journals (Sweden)

    Janusz Konrad

    2009-01-01

    Full Text Available View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally, luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are highly objectionable, especially if they vary with viewpoint change.

  15. Occlusion-Aware View Interpolation

    Directory of Open Access Journals (Sweden)

    Ince Serdar

    2008-01-01

    Full Text Available Abstract View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally, luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are highly objectionable, especially if they vary with viewpoint change.

  16. Mining Views : database views for data mining

    NARCIS (Netherlands)

    Blockeel, H.; Calders, T.; Fromont, É.; Goethals, B.; Prado, A.

    2008-01-01

    We present a system towards the integration of data mining into relational databases. To this end, a relational database model is proposed, based on the so called virtual mining views. We show that several types of patterns and models over the data, such as itemsets, association rules and decision

  17. Mining Views : database views for data mining

    NARCIS (Netherlands)

    Blockeel, H.; Calders, T.; Fromont, É.; Goethals, B.; Prado, A.; Nijssen, S.; De Raedt, L.

    2007-01-01

    We propose a relational database model towards the integration of data mining into relational database systems, based on the so called virtual mining views. We show that several types of patterns and models over the data, such as itemsets, association rules, decision trees and clusterings, can be

  18. The workplace window view

    DEFF Research Database (Denmark)

    Lottrup, Lene Birgitte Poulsen; Stigsdotter, Ulrika K.; Meilby, Henrik

    2015-01-01

    Office workers’ job satisfaction and ability to work are two important factors for the viability and competitiveness of most companies, and existing studies in contexts other than workplaces show relationships between a view of natural elements and, for example, student performance...... satisfaction, and that high view satisfaction was related to high work ability and high job satisfaction. Furthermore, the results indicated that job satisfaction mediated the effect of view satisfaction on work ability. These findings show that a view of a green outdoor environment at the workplace can...... be an important asset in workforce work ability and job satisfaction....

  19. Three-dimensional breast image reconstruction from a limited number of views

    Science.gov (United States)

    McCauley, Thomas G.; Stewart, Alexander X.; Stanton, Martin J.; Wu, Tao; Phillips, Walter C.

    2000-04-01

    Typically in three-dimensional (3D) computed tomography (CT) imaging, hundreds or thousands of x-ray projection images are recorded. The image-collection time and patient dose required rule out conventional CT as a tool for screening mammography. We have developed a CT method that overcomes these limitations by using (1) a novel image collection geometry, (2) new digital electronic x-ray detector technology, and (3) modern image reconstruction procedures. The method, which we call Computed Planar Mammography (CPM), is made possible by the full-field, low-noise, high-resolution CCD-based detector design that we have previously developed. With this method, we need to record only a limited number (10 - 50) of low-dose x- ray images of the breast. The resulting 3D full breast image has a resolution in two orientations equal to the full detector resolution (47 microns), and a lower, variable resolution (0.5 - 10 mm) in the third orientation. This 3D reconstructed image can then be viewed as a series of cross- sectional layers, or planes, each at the full detector resolution. Features due to overlapping tissue, which could not be differentiated in a conventional mammogram, are separated into layers at different depths. We demonstrate the features and capabilities of this method by presenting reconstructed images of phantoms and mastectomy specimens. Finally, we discuss outstanding issues related to the further development of this procedure, as well as considerations for its clinical implementation.

  20. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  1. MO-FG-204-08: Optimization-Based Image Reconstruction From Unevenly Distributed Sparse Projection Views

    International Nuclear Information System (INIS)

    Xie, Huiqiao; Yang, Yi; Tang, Xiangyang; Niu, Tianye; Ren, Yi

    2015-01-01

    Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, which are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality

  2. PSF Estimation of Space-Variant Ultra-Wide Field of View Imaging Systems

    Directory of Open Access Journals (Sweden)

    Petr Janout

    2017-02-01

    Full Text Available Ultra-wide-field of view (UWFOV imaging systems are affected by various aberrations, most of which are highly angle-dependent. A description of UWFOV imaging systems, such as microscopy optics, security camera systems and other special space-variant imaging systems, is a difficult task that can be achieved by estimating the Point Spread Function (PSF of the system. This paper proposes a novel method for modeling the space-variant PSF of an imaging system using the Zernike polynomials wavefront description. The PSF estimation algorithm is based on obtaining field-dependent expansion coefficients of the Zernike polynomials by fitting real image data of the analyzed imaging system using an iterative approach in an initial estimate of the fitting parameters to ensure convergence robustness. The method is promising as an alternative to the standard approach based on Shack–Hartmann interferometry, since the estimate of the aberration coefficients is processed directly in the image plane. This approach is tested on simulated and laboratory-acquired image data that generally show good agreement. The resulting data are compared with the results of other modeling methods. The proposed PSF estimation method provides around 5% accuracy of the optical system model.

  3. Going "open" with mesoscopy: a new dimension on multi-view imaging.

    Science.gov (United States)

    Gualda, Emilio; Moreno, Nuno; Tomancak, Pavel; Martins, Gabriel G

    2014-03-01

    OpenSPIM and OpenSpinMicroscopy emerged as open access platforms for Light Sheet and Optical Projection Imaging, often called as optical mesoscopy techniques. Both projects can be easily reproduced using comprehensive online instructions that should foster the implementation and further development of optical imaging techniques with sample rotation control. This additional dimension in an open system offers the possibility to make multi-view microscopy easily modified and will complement the emerging commercial solutions. Furthermore, it is deeply based on other open platforms such as MicroManager and Arduino, enabling development of tailored setups for very specific biological questions. In our perspective, the open access principle of OpenSPIM and OpenSpinMicroscopy is a game-changer, helping the concepts of light sheet and optical projection tomography (OPT) to enter the mainstream of biological imaging.

  4. One-inch field of view imaging probe for breast cancer sentinel node location

    International Nuclear Information System (INIS)

    D'Errico, Giovanni; Scafe, Raffaele; Soluri, Alessandro; Schiaratura, Alfiero; Maria Mangano, Anna; David, Vincenzo; Scopinaro, Francesco

    2003-01-01

    The already reported 1-in. 2 field of view mini gamma camera known since 1998 with the name of Imaging Probe (IP), has been used for sentinel node localization by a medical equipe that, though trained by the group of nuclear physicians of the University 'La Sapienza' who first conceived and used this detector, has used IP in its own Hospital to: (1) gain experience for future use during operations--a cooperative work on IP radio guided orthopaedic operations has already started working, and (2) to start with IP multicenter trials. In six patients with breast cancer, who underwent lymphoscintigraphy for sentinel node biopsy, sentinel node was checked and located with IP and non-imaging Neoprobe 2000 CdTe (Zn) probe, independent of location by means of large field of view Anger camera. Operators who used Neoprobe and IP were blinded to each other and not aware of the results of Anger camera imaging. Anger camera, as well as IP and neoprobe detected 7 nodes in 6 pts. Detection time was 2', 06'' SD 26'' with IP and 2', 18'' SD 47'' with neoprobe 2000. The most difficult to find node required 2 min and 56 s--inside sd--for IP detection and 3 min and 45 s with neoprobe. Subjective impression of being sure of having detected sentinel node was: absolutely sure on 7/7 nodes with IP and on 5/7 nodes with neoprobe

  5. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    Science.gov (United States)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  6. Mastering QlikView

    CERN Document Server

    Redmond, Stephen

    2014-01-01

    If you are a business application developer or a system analyst who has learned QlikView and Qlik Sense and now want to take your learning to a higher level, then this book is for you.It is assumed that you are aware of the fundamentals of QlikView and have working knowledge of development and in-memory analytics.

  7. VMware horizon view essentials

    CERN Document Server

    von Oven, Peter

    2014-01-01

    If you are a desktop administrator or an end user of a computing project team looking to speed up to the latest VMware Horizon View solution, then this book is perfect for you. It is your ideal companion to deploy a solution to centrally manage and virtualize your desktop estate using Horizon View 6.0.

  8. Drupal 7 Views Cookbook

    CERN Document Server

    Green, J Ayen

    2012-01-01

    This is a cookbook containing plenty of easy-to-follow practical recipes with screenshots that will help you in mastering the Drupal Views module. Drupal 7 Views Cookbook is for developers or technically proficient users who are fairly comfortable with the concepts behind websites and the Drupal environment.

  9. Hierarchical Linked Views

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robert; Frincke, Deb

    2007-07-02

    Coordinated views have proven critical to the development of effective visualization environments. This results from the fact that a single view or representation of the data cannot show all of the intricacies of a given data set. Additionally, users will often need to correlate more data parameters than can effectively be integrated into a single visual display. Typically, development of multiple-linked views results in an adhoc configuration of views and associated interactions. The hierarchical model we are proposing is geared towards more effective organization of such environments and the views they encompass. At the same time, this model can effectively integrate much of the prior work on interactive and visual frameworks. Additionally, we expand the concept of views to incorporate perceptual views. This is related to the fact that visual displays can have information encoded at various levels of focus. Thus, a global view of the display provides overall trends of the data while focusing in on individual elements provides detailed specifics. By integrating interaction and perception into a single model, we show how one impacts the other. Typically, interaction and perception are considered separately, however, when interaction is being considered at a fundamental level and allowed to direct/modify the visualization directly we must consider them simultaneously and how they impact one another.

  10. View synthesis using parallax invariance

    Science.gov (United States)

    Dornaika, Fadi

    2001-06-01

    View synthesis becomes a focus of attention of both the computer vision and computer graphics communities. It consists of creating novel images of a scene as it would appear from novel viewpoints. View synthesis can be used in a wide variety of applications such as video compression, graphics generation, virtual reality and entertainment. This paper addresses the following problem. Given a dense disparity map between two reference images, we would like to synthesize a novel view of the same scene associated with a novel viewpoint. Most of the existing work is relying on building a set of 3D meshes which are then projected onto the new image (the rendering process is performed using texture mapping). The advantages of our view synthesis approach are as follows. First, the novel view is specified by a rotation and a translation which are the most natural way to express the virtual location of the camera. Second, the approach is able to synthesize highly realistic images whose viewing position is significantly far away from the reference viewpoints. Third, the approach is able to handle the visibility problem during the synthesis process. Our developed framework has two main steps. The first step (analysis step) consists of computing the homography at infinity, the epipoles, and thus the parallax field associated with the reference images. The second step (synthesis step) consists of warping the reference image into a new one, which is based on the invariance of the computed parallax field. The analysis step is working directly on the reference views, and only need to be performed once. Examples of synthesizing novel views using either feature correspondences or dense disparity map have demonstrated the feasibility of the proposed approach.

  11. A STEP TOWARDS DYNAMIC SCENE ANALYSIS WITH ACTIVE MULTI-VIEW RANGE IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2012-07-01

    Full Text Available Obtaining an appropriate 3D description of the local environment remains a challenging task in photogrammetric research. As terrestrial laser scanners (TLSs perform a highly accurate, but time-dependent spatial scanning of the local environment, they are only suited for capturing static scenes. In contrast, new types of active sensors provide the possibility of simultaneously capturing range and intensity information by images with a single measurement, and the high frame rate also allows for capturing dynamic scenes. However, due to the limited field of view, one observation is not sufficient to obtain a full scene coverage and therefore, typically, multiple observations are collected from different locations. This can be achieved by either placing several fixed sensors at different known locations or by using a moving sensor. In the latter case, the relation between different observations has to be estimated by using information extracted from the captured data and then, a limited field of view may lead to problems if there are too many moving objects within it. Hence, a moving sensor platform with multiple and coupled sensor devices offers the advantages of an extended field of view which results in a stabilized pose estimation, an improved registration of the recorded point clouds and an improved reconstruction of the scene. In this paper, a new experimental setup for investigating the potentials of such multi-view range imaging systems is presented which consists of a moving cable car equipped with two synchronized range imaging devices. The presented setup allows for monitoring in low altitudes and it is suitable for getting dynamic observations which might arise from moving cars or from moving pedestrians. Relying on both 3D geometry and 2D imagery, a reliable and fully automatic approach for co-registration of captured point cloud data is presented which is essential for a high quality of all subsequent tasks. The approach involves using

  12. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  13. A comparison between digital images viewed on a picture archiving and communication system diagnostic workstation and on a PC-based remote viewing system by emergency physicians.

    Science.gov (United States)

    Parasyn, A; Hanson, R M; Peat, J K; De Silva, M

    1998-02-01

    Picture Archiving and Communication Systems (PACS) make possible the viewing of radiographic images on computer workstations located where clinical care is delivered. By the nature of their work this feature is particularly useful for emergency physicians who view radiographic studies for information and use them to explain results to patients and their families. However, the high cost of PACS diagnostic workstations with fuller functionality places limits on the number of and therefore the accessibility to workstations in the emergency department. This study was undertaken to establish how well less expensive personal computer-based workstations would work to support these needs of emergency physicians. The study compared the outcome of observations by 5 emergency physicians on a series of radiographic studies containing subtle abnormalities displayed on both a PACS diagnostic workstation and on a PC-based workstation. The 73 digitized radiographic studies were randomly arranged on both types of workstation over four separate viewing sessions for each emergency physician. There was no statistical difference between a PACS diagnostic workstation and a PC-based workstation in this trial. The mean correct ratings were 59% on the PACS diagnostic workstations and 61% on the PC-based workstations. These findings also emphasize the need for prompt reporting by a radiologist.

  14. A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Clever, M. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Arnoux, G.; Balshaw, N. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Garcia-Sanchez, P. [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Patel, K. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sergienko, G. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Soler, D. [Winlight System, 135 rue Benjamin Franklin, ZA Saint Martin, F-84120 Pertuis (France); Stamp, M.F.; Williams, J.; Zastrow, K.-D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► A new wide angle view camera system has been installed at JET. ► The system helps to protect the ITER-like wall plasma facing components from damage. ► The coverage of the vessel by camera observation systems was increased. ► The system comprises an in-vessel part with parabolic and flat mirrors. ► The required image quality for plasma monitoring and wall protection was delivered. -- Abstract: A new wide angle view camera system has been installed at JET in preparation for the ITER-like wall campaigns. It considerably increases the coverage of the vessel by camera observation systems and thereby helps to protect the – compared to carbon – more fragile plasma facing components from damage. The system comprises an in-vessel part with parabolic and flat mirrors and an ex-vessel part with beam splitters, lenses and cameras. The system delivered the image quality required for plasma monitoring and wall protection.

  15. Image quality of grating target in model eye when viewed through a small-aperture corneal inlay.

    Science.gov (United States)

    Inoue, Makoto; Bissen-Miyajima, Hiroko; Arai, Hiroyuki; Noda, Toru; Ohnuma, Kazuhiko; Hirakata, Akito

    2014-07-01

    To evaluate the quality of the image of a grating target placed in a model eye and viewed through a small-aperture corneal inlay. Kyorin Eye Center, Tokyo, Japan. Experimental study. A Kamra corneal inlay was placed on the anterior surface of a fluid-filled model eye, and a United States Air Force target and a calibrated scale were placed on the inner surface of the model eye. With a flat contact lens or a contact or noncontact wide-angle viewing system, the contrast of the grating images and the field of view through the inlay were compared with those without the inlay. A blurred dark ring was observed with the flat contact lens and MiniQuad wide-viewing contact lens in the model eye with the inlay. The contrast of the gratings was significantly decreased at 16 cycles/mm (P=.028), 32 cycles/mm (P=.046), and 64 cycles/mm (P=.015). With the Resight noncontact wide-angle viewing system, the field of view was reduced from 62 degrees to 32 degrees when the front lens was at 7.0 mm and slightly reduced from 75 degrees to 62 degrees at 5.0 mm with the inlay. The contrast of grating images observed through the inlay was significantly reduced when viewed with the flat contact lens. The field of view through the wide-angle viewing system was also altered. However, the noncontact wide-angle viewing system may be recommended for vitreous surgeries in eyes with the inlay by adjusting the distance of the front lens from the cornea. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. A Reception of Muslim Images in Magazines: British Residents View the Identities of Muslim Women

    Directory of Open Access Journals (Sweden)

    Mat Rahim Ainurliza

    2017-01-01

    Full Text Available In the context of multi-ethnic Britain, the major concern lies in the diversity and complexity of Muslims living in the West, which somehow is misrepresented in the western media as a frozen, static population, fixed in time and space. This misrepresentation dominates mainstream media through the hegemony of western superiority. The operation and role of Muslim media organisations are still underresearched yet potentially constitute an integral part of accommodating the minority population within the wider society. This paper discusses on the reception of images published in two British Muslim magazines by taking views from Muslims and non-Muslims into account. The results show that both groups recognize the identities of British Muslims via visual representations in the Muslim media and that the representations challenge the mainstream images of Muslims.

  17. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    Science.gov (United States)

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  18. Automatic landmark detection and face recognition for side-view face images

    NARCIS (Netherlands)

    Santemiz, P.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.; Broemme, Arslan; Busch, Christoph

    2013-01-01

    In real-life scenarios where pose variation is up to side-view positions, face recognition becomes a challenging task. In this paper we propose an automatic side-view face recognition system designed for home-safety applications. Our goal is to recognize people as they pass through doors in order to

  19. Methods for improving limited field-of-view radiotherapy reconstructions using imperfect a priori images

    International Nuclear Information System (INIS)

    Ruchala, Kenneth J.; Olivera, Gustavo H.; Kapatoes, Jeffrey M.; Reckwerdt, Paul J.; Mackie, Thomas R.

    2002-01-01

    There are many benefits to having an online CT imaging system for radiotherapy, as it helps identify changes in the patient's position and anatomy between the time of planning and treatment. However, many current online CT systems suffer from a limited field-of-view (LFOV) in that collected data do not encompass the patient's complete cross section. Reconstruction of these data sets can quantitatively distort the image values and introduce artifacts. This work explores the use of planning CT data as a priori information for improving these reconstructions. Methods are presented to incorporate this data by aligning the LFOV with the planning images and then merging the data sets in sinogram space. One alignment option is explicit fusion, producing fusion-aligned reprojection (FAR) images. For cases where explicit fusion is not viable, FAR can be implemented using the implicit fusion of normal setup error, referred to as normal-error-aligned reprojection (NEAR). These methods are evaluated for multiday patient images showing both internal and skin-surface anatomical variation. The iterative use of NEAR and FAR is also investigated, as are applications of NEAR and FAR to dose calculations and the compensation of LFOV online MVCT images with kVCT planning images. Results indicate that NEAR and FAR can utilize planning CT data as imperfect a priori information to reduce artifacts and quantitatively improve images. These benefits can also increase the accuracy of dose calculations and be used for augmenting CT images (e.g., MVCT) acquired at different energies than the planning CT

  20. Java-based remote viewing and processing of nuclear medicine images: toward "the imaging department without walls".

    Science.gov (United States)

    Slomka, P J; Elliott, E; Driedger, A A

    2000-01-01

    In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made easily and cost-effectively available to referring physicians and ambulatory clinics within and outside of the hospital, providing a convenient alternative to film media. We also find this system useful in home reporting of emergency procedures such as lung ventilation-perfusion scans or dynamic studies.

  1. "Private Views" Ungaris

    Index Scriptorium Estoniae

    1999-01-01

    9. juulist Dunaujvarosi Kaasaegse Kunsti Instituudis eesti ja briti kunstnike ühisnäitus "Private Views. Ruum taasavastatud eesti ja briti kaasaegses kunstis". Kuraatorid Pam Skelton, Mare Tralla. Osalejad.

  2. "Private Views" Ungaris

    Index Scriptorium Estoniae

    1999-01-01

    9. juulist Dunaujvarosi Kaasaegse Kunsti Instituudis eesti ja briti kunstnike ühisnäitus "Private Views. Ruum taasavastatud eesti ja briti kaasaegses kunstis" Kuraatorid Pam Skelton, Mare Tralla. Osalejad

  3. Japanese views on ASSET

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, M [Department of Reactor Safety Research, Japan Atomic Energy Research Inst. (Japan)

    1997-10-01

    The presentation briefly reviews the following aspects directed to ensuring NPP safety: Japanese participation in ASSET activities; views to ASSET activities; recent operating experience in Japan; future ASSET activities.

  4. BPMN process views construction

    NARCIS (Netherlands)

    Yongchareon, S.; Liu, Chengfei; Zhao, X.; Kowalkiewicz, M.; Kitagawa, H.; Ishikawa, Y.

    2010-01-01

    Process view technology is catching more attentions in modern business process management, as it enables the customisation of business process representation. This capability helps improve the privacy protection, authority control, flexible display, etc., in business process modelling. One of

  5. Competing views on cancer

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... 'system' (or 'network'); it is, rather, between views that are. 'cell-based' and ... In the spirit of the meeting that provided the motivation for bringing out ..... of applications usually reward applications that abide by the. 'consensus'.

  6. Television viewing and snacking.

    Science.gov (United States)

    Gore, Stacy A; Foster, Jill A; DiLillo, Vicki G; Kirk, Kathy; Smith West, Delia

    2003-11-01

    With the rise in obesity in America, the search for potential causes for this epidemic has begun to include a focus on environmental factors. Television (TV) viewing is one such factor, partially due to its potential as a stimulus for eating. The current study investigated the relationship between food intake and self-reported TV viewing in an effort to identify the impact of TV viewing on specific eating behaviors. Seventy-four overweight women seeking obesity treatment completed questionnaires assessing dietary habits and TV viewing behaviors. Results suggest that snacking, but not necessarily eating meals, while watching TV is associated with increased overall caloric intake and calories from fat. Therefore, interventions targeting stimulus control techniques to reduce snacking behavior may have an impact on overall caloric intake.

  7. Japanese views on ASSET

    International Nuclear Information System (INIS)

    Hirano, M.

    1997-01-01

    The presentation briefly reviews the following aspects directed to ensuring NPP safety: Japanese participation in ASSET activities; views to ASSET activities; recent operating experience in Japan; future ASSET activities

  8. to view fulltext PDF

    Indian Academy of Sciences (India)

    which encompasses India, Australia, a major portion of the .... Nepal earthquake in which many buildings and structures went ... The 1970 version (same as Figure 3) of code ... The national Seismic Zone Map presents a large-scale view of.

  9. A MULTI-CORE PARALLEL MOSAIC ALORITHM FOR MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-09-01

    Full Text Available As the spread of the error and accumulation often lead to distortion or failure of image mosaic during the multi-view UAV (Unmanned Aerial Vehicle images stitching. In this paper, to solve the problem we propose a mosaic strategy to construct a mosaic ring and multi-level grouping parallel acceleration as an auxiliary. First, the input images will be divided into several groups, each group in the ring way to stitch. Then, use SIFT for matching, RANSAC to remove the wrong matching points. And then, calculate the perspective transformation matrix. Finally weaken the error by using the adjustment equation. All these steps run between different groups at the same time. By using real UAV images, the experiment results show that this method can effectively reduce the influence of accumulative error, improve the precision of mosaic and reduce the mosaic time by 60 %. The proposed method can be used as one of the effective ways to minimize the accumulative error.

  10. Registration of clinical volumes to beams-eye-view images for real-time tracking

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I., E-mail: rberbeco@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  11. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem

    Science.gov (United States)

    Park, Won-Kwang

    2017-07-01

    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  12. A joint multi-view plus depth image coding scheme based on 3D-warping

    DEFF Research Database (Denmark)

    Zamarin, Marco; Zanuttigh, Pietro; Milani, Simone

    2011-01-01

    on the scene structure that can be effectively exploited to improve the performance of multi-view coding schemes. In this paper we introduce a novel coding architecture that replaces the inter-view motion prediction operation with a 3D warping approach based on depth information to improve the coding......Free viewpoint video applications and autostereoscopic displays require the transmission of multiple views of a scene together with depth maps. Current compression and transmission solutions just handle these two data streams as separate entities. However, depth maps contain key information...

  13. Imaging samples larger than the field of view: the SLS experience

    Science.gov (United States)

    Vogiatzis Oikonomidis, Ioannis; Lovric, Goran; Cremona, Tiziana P.; Arcadu, Filippo; Patera, Alessandra; Schittny, Johannes C.; Stampanoni, Marco

    2017-06-01

    Volumetric datasets with micrometer spatial and sub-second temporal resolutions are nowadays routinely acquired using synchrotron X-ray tomographic microscopy (SRXTM). Although SRXTM technology allows the examination of multiple samples with short scan times, many specimens are larger than the field-of-view (FOV) provided by the detector. The extension of the FOV in the direction perpendicular to the rotation axis remains non-trivial. We present a method that can efficiently increase the FOV merging volumetric datasets obtained by region-of-interest tomographies in different 3D positions of the sample with a minimal amount of artefacts and with the ability to handle large amounts of data. The method has been successfully applied for the three-dimensional imaging of a small number of mouse lung acini of intact animals, where pixel sizes down to the micrometer range and short exposure times are required.

  14. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  15. Affective attitudes to face images associated with intracerebral EEG source location before face viewing.

    Science.gov (United States)

    Pizzagalli, D; Koenig, T; Regard, M; Lehmann, D

    1999-01-01

    We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning. Copyright 1999 Elsevier Science B.V.

  16. Northeast Puerto Rico and Culebra Island World View 2 Satellite Mosaic - NOAA TIFF Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GeoTiff is a mosaic of World View 2 panchromatic satellite imagery of Northeast Puerto Rico that contains the shallow water area (0-35m deep) surrounding...

  17. The relationship between ambient illumination and psychological factors in viewing of display Images

    Science.gov (United States)

    Iwanami, Takuya; Kikuchi, Ayano; Kaneko, Takashi; Hirai, Keita; Yano, Natsumi; Nakaguchi, Toshiya; Tsumura, Norimichi; Yoshida, Yasuhiro; Miyake, Yoichi

    2009-01-01

    In this paper, we have clarified the relationship between ambient illumination and psychological factors in viewing of display images. Psychological factors were obtained by the factor analysis with the results of the semantic differential (SD) method. In the psychological experiments, subjects evaluated the impressions of displayed images with changing ambient illuminating conditions. The illumination conditions were controlled by a fluorescent ceiling light and a color LED illumination which was located behind the display. We experimented under two kinds of conditions. One was the experiment with changing brightness of the ambient illumination. The other was the experiment with changing the colors of the background illumination. In the results of the experiment, two factors "realistic sensation, dynamism" and "comfortable," were extracted under different brightness of the ambient illumination of the display surroundings. It was shown that the "comfortable" was improved by the brightness of display surroundings. On the other hand, when the illumination color of surroundings was changed, three factors "comfortable," "realistic sensation, dynamism" and "activity" were extracted. It was also shown that the value of "comfortable" and "realistic sensation, dynamism" increased when the display surroundings were illuminated by the average color of the image contents.

  18. Extracting oil palm crown from WorldView-2 satellite image

    Science.gov (United States)

    Korom, A.; Phua, M.-H.; Hirata, Y.; Matsuura, T.

    2014-02-01

    Oil palm (OP) is the most commercial crop in Malaysia. Estimating the crowns is important for biomass estimation from high resolution satellite (HRS) image. This study examined extraction of individual OP crown from a WorldView-2 image using twofold algorithms, i.e., masking of Non-OP pixels and detection of individual OP crown based on the watershed segmentation of greyscale images. The study site was located in Beluran district, central Sabah, where matured OPs with the age ranging from 15 to 25 years old have been planted. We examined two compound vegetation indices of (NDVI+1)*DVI and NDII for masking non-OP crown areas. Using kappa statistics, an optimal threshold value was set with the highest accuracy at 90.6% for differentiating OP crown areas from Non-OP areas. After the watershed segmentation of OP crown areas with additional post-procedures, about 77% of individual OP crowns were successfully detected in comparison to the manual based delineation. Shape and location of each crown segment was then assessed based on a modified version of the goodness measures of Möller et al which was 0.3, indicating an acceptable CSGM (combined segmentation goodness measures) agreements between the automated and manually delineated crowns (perfect case is '1').

  19. Mimicking honeybee eyes with a 280{sup 0} field of view catadioptric imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzl, W; Boeddeker, N; Dittmar, L; Egelhaaf, M, E-mail: wolfgang.stuerzl@uni-bielefeld.d [Department of Neurobiology and Center of Excellence ' Cognitive Interaction Technology' , Bielefeld University (Germany)

    2010-09-15

    We present a small single camera imaging system that provides a continuous 280{sup 0} field of view (FOV) inspired by the large FOV of insect eyes. This is achieved by combining a curved reflective surface that is machined into acrylic glass with lenses covering the frontal field that otherwise would have been obstructed by the mirror. Based on the work of Seidl (1982 PhD Thesis Technische Hochschule Darmstadt), we describe an extension of the 'bee eye optics simulation' (BEOS) model by Giger (1996 PhD Thesis Australian National University) to the full FOV which enables us to remap camera images according to the spatial resolution of honeybee eyes. This model is also useful for simulating the visual input of a bee-like agent in a virtual environment. The imaging system in combination with our bee eye model can serve as a tool for assessing the visual world from a bee's perspective which is particularly helpful for experimental setups. It is also well suited for mobile robots, in particular on flying vehicles that need light-weight sensors.

  20. Extracting oil palm crown from WorldView-2 satellite image

    International Nuclear Information System (INIS)

    Korom, A; Phua, M-H; Hirata, Y; Matsuura, T

    2014-01-01

    Oil palm (OP) is the most commercial crop in Malaysia. Estimating the crowns is important for biomass estimation from high resolution satellite (HRS) image. This study examined extraction of individual OP crown from a WorldView-2 image using twofold algorithms, i.e., masking of Non-OP pixels and detection of individual OP crown based on the watershed segmentation of greyscale images. The study site was located in Beluran district, central Sabah, where matured OPs with the age ranging from 15 to 25 years old have been planted. We examined two compound vegetation indices of (NDVI+1)*DVI and NDII for masking non-OP crown areas. Using kappa statistics, an optimal threshold value was set with the highest accuracy at 90.6% for differentiating OP crown areas from Non-OP areas. After the watershed segmentation of OP crown areas with additional post-procedures, about 77% of individual OP crowns were successfully detected in comparison to the manual based delineation. Shape and location of each crown segment was then assessed based on a modified version of the goodness measures of Möller et al which was 0.3, indicating an acceptable CSGM (combined segmentation goodness measures) agreements between the automated and manually delineated crowns (perfect case is '1')

  1. Mimicking honeybee eyes with a 2800 field of view catadioptric imaging system

    International Nuclear Information System (INIS)

    Stuerzl, W; Boeddeker, N; Dittmar, L; Egelhaaf, M

    2010-01-01

    We present a small single camera imaging system that provides a continuous 280 0 field of view (FOV) inspired by the large FOV of insect eyes. This is achieved by combining a curved reflective surface that is machined into acrylic glass with lenses covering the frontal field that otherwise would have been obstructed by the mirror. Based on the work of Seidl (1982 PhD Thesis Technische Hochschule Darmstadt), we describe an extension of the 'bee eye optics simulation' (BEOS) model by Giger (1996 PhD Thesis Australian National University) to the full FOV which enables us to remap camera images according to the spatial resolution of honeybee eyes. This model is also useful for simulating the visual input of a bee-like agent in a virtual environment. The imaging system in combination with our bee eye model can serve as a tool for assessing the visual world from a bee's perspective which is particularly helpful for experimental setups. It is also well suited for mobile robots, in particular on flying vehicles that need light-weight sensors.

  2. Full-view 3D imaging system for functional and anatomical screening of the breast

    Science.gov (United States)

    Oraevsky, Alexander; Su, Richard; Nguyen, Ha; Moore, James; Lou, Yang; Bhadra, Sayantan; Forte, Luca; Anastasio, Mark; Yang, Wei

    2018-04-01

    Laser Optoacoustic Ultrasonic Imaging System Assembly (LOUISA-3D) was developed in response to demand of diagnostic radiologists for an advanced screening system for the breast to improve on low sensitivity of x-ray based modalities of mammography and tomosynthesis in the dense and heterogeneous breast and low specificity magnetic resonance imaging. It is our working hypothesis that co-registration of quantitatively accurate functional images of the breast vasculature and microvasculature, and anatomical images of breast morphological structures will provide a clinically viable solution for the breast cancer care. Functional imaging is LOUISA-3D is enabled by the full view 3D optoacoustic images acquired at two rapidly toggling laser wavelengths in the near-infrared spectral range. 3D images of the breast anatomical background is enabled in LOUISA-3D by a sequence of B-mode ultrasound slices acquired with a transducer array rotating around the breast. This creates the possibility to visualize distributions of the total hemoglobin and blood oxygen saturation within specific morphological structures such as tumor angiogenesis microvasculature and larger vasculature in proximity of the tumor. The system has four major components: (i) a pulsed dual wavelength laser with fiberoptic light delivery system, (ii) an imaging module with two arc shaped probes (optoacoustic and ultrasonic) placed in a transparent bowl that rotates around the breast, (iii) a multichannel electronic system with analog preamplifiers and digital data acquisition boards, and (iv) computer for the system control, data processing and image reconstruction. The most important advancement of this latest system design compared with previously reported systems is the full breast illumination accomplished for each rotational step of the optoacoustic transducer array using fiberoptic illuminator rotating around the breast independently from rotation of the detector probe. We report here a pilot case studies

  3. Latest developments in image processing for the next generation of devices with a view on DEMO

    International Nuclear Information System (INIS)

    Murari, A.; Vega, J.; Mazon, D.; Arena, P.; Craciunescu, T.; Gabellieri, L.; Gelfusa, M.; Pacella, D.; Palazzo, S.; Romano, A.

    2012-01-01

    Highlights: ► Pattern recognition methods have been successfully applied to retrieve frames in massime databases. ► The technology of Cellular Nonlinear Networks (CNNs) has been upgraded to solve space variant problem. ► The CNNs have then been successfully applied to various tasks, from the real time hot spot detection to the automatic identification of instabilities. ► The method of the optical flow permits to derive information about the speed of the objects moving in the frames of a single camera. ► Since the next generation of devices will emit a lot of SXR radiation, also from the edge, new technologies (Gas Electron Multiplier detectors and policapillary lenses) are being developed to perform imaging over this region of the spectrum for a global view of the entire plasma column. - Abstract: In magnetic confinement fusion devices the use of cameras, both visible and infrared, has increased very significantly in the last years. The large amount of data (in the range of tens of Gbytes per shot) and the difficulty of the analysis tasks (ambiguity, ill posed problems, etc.), require new solutions. The technology of Cellular Nonlinear Networks (CNNs) has been successfully applied to various tasks, from the real time hot spot detection to the automatic identification of instabilities. The accuracy obtained is comparable to the one of more traditional serial algorithms but the CCNs guarantee deterministic computational times independently from the image contents. Moreover the latest developments have allowed obtaining these results also in the case of space variant image analysis, without compromising the computational speed (of the order of ten thousand frames per second). The method of the optical flow permits to derive information about the speed of the objects moving in the frames of a single camera. The results of previous applications have been so successful that the approach has been extended to videos in compressed format (MPEG) to reduce the

  4. Satisfactory visualization rates of standard cardiac views at 18 to 22 weeks' gestation using spatiotemporal image correlation.

    Science.gov (United States)

    Cohen, Leeber; Mangers, Kristie; Grobman, William A; Platt, Lawrence D

    2009-12-01

    The purpose of this study was to determine the frequency with which 3 standard screening views of the fetal heart (4-chamber, left ventricular outflow tract [LVOT], and right ventricular outflow tract [RVOT]) can be obtained satisfactorily with the spatiotemporal image correlation (STIC) technique. A prospective study of 111 patients undergoing anatomic surveys at 18 to 22 weeks was performed. Two ultrasound machines with fetal cardiac settings were used. The best volume set that could be obtained from each patient during a 45-minute examination was graded by 2 sonologists with regard to whether the 4-chamber, LVOT, and RVOT images were satisfactory for screening. All 3 views were judged satisfactory for screening in most patients: 1 sonologist graded the views as satisfactory in 70% of the patients, whereas the other found the views to be satisfactory in 83%. The position of the placenta did not alter the probability of achieving a satisfactory view, but a fetus in the spine anterior position was associated with a significantly lower probability that the views were regarded as satisfactory for screening (odds ratio, 0.28; 95% confidence interval, 0.09-0.70; P < .05). This study suggests that STIC may assist with screening for cardiac anomalies at 18 to 22 weeks' gestation.

  5. Prenatal diagnosis of bilateral anophthalmia by 3D "reverse face" view ultrasound and magnetic resonance imaging.

    Science.gov (United States)

    Araujo Júnior, Edward; Kawanami, Tatiana Emy; Nardozza, Luciano Marcondes Machado; Milani, Hérbene José Figuinha; Oliveira, Patrícia Soares; Moron, Antonio Fernandes

    2012-12-01

    Primary anophthalmia is a rare congenital malformation that affects 0.6/10,000 liveborn infants. It is usually associated with central nervous system malformations, aneuploidies, cytomegalovirus infection and mental retardation and it can also be part of genetic conditions such as Fraser, Goltz, Goldenhar, Waardenburg and Lenz syndromes. Neonatal prognosis depends on whether anophthalmia is an isolated malformation, or it is associated with other defects or part of a syndrome. A healthy 43-year-old woman, G4 P3 with three previous healthy children, was referred to our clinic for a routine obstetric ultrasound at 28 weeks' gestation. The fetal eye globes and lenses could not be seen on two-dimensional (2D) ultrasound, which led to the diagnosis of bilateral congenital anophthalmia. No other fetal malformations were detected. At 30 weeks' gestation, a three-dimensional (3D) ultrasound was performed using the rendering mode and "reverse face" view. Using this technique, the absence of both eye globes could be clearly seen through a "slit". 3D-ultrasound allowed the parents to better understand their child's problem and possible postnatal implications. Fetal magnetic resonance imaging (MRI) was also performed, to study the fetal cortex in more detail. This exam revealed right cerebral hemisphere sulci and gyri hypoplasia. At 41 1/7 weeks, she went into spontaneous labor and delivered vaginally a 3525 g male infant with Apgar scores of 9 and 10. Postnatal exams confirmed bilateral congenital anophthalmia. This is the first case report in the literature of prenatal diagnosis of bilateral anophthalmia using 3D "reverse face" view ultrasound and MRI. Copyright © 2012. Published by Elsevier B.V.

  6. Exploring viewing behavior data from whole slide images to predict correctness of students' answers during practical exams in oral pathology.

    Science.gov (United States)

    Walkowski, Slawomir; Lundin, Mikael; Szymas, Janusz; Lundin, Johan

    2015-01-01

    The way of viewing whole slide images (WSI) can be tracked and analyzed. In particular, it can be useful to learn how medical students view WSIs during exams and how their viewing behavior is correlated with correctness of the answers they give. We used software-based view path tracking method that enabled gathering data about viewing behavior of multiple simultaneous WSI users. This approach was implemented and applied during two practical exams in oral pathology in 2012 (88 students) and 2013 (91 students), which were based on questions with attached WSIs. Gathered data were visualized and analyzed in multiple ways. As a part of extended analysis, we tried to use machine learning approaches to predict correctness of students' answers based on how they viewed WSIs. We compared the results of analyses for years 2012 and 2013 - done for a single question, for student groups, and for a set of questions. The overall patterns were generally consistent across these 3 years. Moreover, viewing behavior data appeared to have certain potential for predicting answers' correctness and some outcomes of machine learning approaches were in the right direction. However, general prediction results were not satisfactory in terms of precision and recall. Our work confirmed that the view path tracking method is useful for discovering viewing behavior of students analyzing WSIs. It provided multiple useful insights in this area, and general results of our analyses were consistent across two exams. On the other hand, predicting answers' correctness appeared to be a difficult task - students' answers seem to be often unpredictable.

  7. Exploring viewing behavior data from whole slide images to predict correctness of students′ answers during practical exams in oral pathology

    Directory of Open Access Journals (Sweden)

    Slawomir Walkowski

    2015-01-01

    Full Text Available The way of viewing whole slide images (WSI can be tracked and analyzed. In particular, it can be useful to learn how medical students view WSIs during exams and how their viewing behavior is correlated with correctness of the answers they give. We used software-based view path tracking method that enabled gathering data about viewing behavior of multiple simultaneous WSI users. This approach was implemented and applied during two practical exams in oral pathology in 2012 (88 students and 2013 (91 students, which were based on questions with attached WSIs. Gathered data were visualized and analyzed in multiple ways. As a part of extended analysis, we tried to use machine learning approaches to predict correctness of students′ answers based on how they viewed WSIs. We compared the results of analyses for years 2012 and 2013 - done for a single question, for student groups, and for a set of questions. The overall patterns were generally consistent across these 3 years. Moreover, viewing behavior data appeared to have certain potential for predicting answers′ correctness and some outcomes of machine learning approaches were in the right direction. However, general prediction results were not satisfactory in terms of precision and recall. Our work confirmed that the view path tracking method is useful for discovering viewing behavior of students analyzing WSIs. It provided multiple useful insights in this area, and general results of our analyses were consistent across two exams. On the other hand, predicting answers′ correctness appeared to be a difficult task - students′ answers seem to be often unpredictable.

  8. Remote viewing of objects

    International Nuclear Information System (INIS)

    Motin, J.D.; Reformatsky, I.A.; Sinitsyn, P.R.; Ivanov, N.M.; Ivanov, B.I.; Malakhov, I.K.

    1979-01-01

    An object in a nuclear power plant is viewed through a radiation-proof shield by means of an entrance lens, optic fibre bundle and exit lens. The optic fibre bundle being heated to ensure thermostabilization of its light conducting properties in the presence of ionising radiation. Heating is by an electric heating coil. Alternatively, heating may be by argon itself heated by an electric heating element, a coating of resistive heating material, or absorption of neutrons in the material of the fibres or a coating therefor. Viewing may be on a CRT screen. (author)

  9. Viewing and imaging the solar system a guide for amateur astronomers

    CERN Document Server

    Clark, Jane

    2015-01-01

    Viewing and Imaging the Solar System: A Guide for Amateur Astronomers is for those who want to develop their ability to observe and image Solar System objects, including the planets and moons, the Sun, and comets and asteroids. They might be beginners, or they may have already owned and used an astronomical telescope for a year or more. Newcomers are almost always wowed by sights such as the rings of Saturn and the moons of Jupiter, but have little idea how to find these objects for themselves (with the obvious exceptions of the Sun and Moon). They also need guidance about what equipment to use, besides a telescope. This book is written by an expert on the Solar System, who has had a lot of experience with outreach programs, which teach others how to make the most of relatively simple and low-cost equipment. That does not mean that this book is not for serious amateurs. On the contrary, it is designed to show amateur astronomers, in a relatively light-hearted—and math-free way—how to become serious.

  10. Analysis of physiological responses associated with emotional changes induced by viewing video images of dental treatments.

    Science.gov (United States)

    Sekiya, Taki; Miwa, Zenzo; Tsuchihashi, Natsumi; Uehara, Naoko; Sugimoto, Kumiko

    2015-03-30

    Since the understanding of emotional changes induced by dental treatments is important for dentists to provide a safe and comfortable dental treatment, we analyzed physiological responses during watching video images of dental treatments to search for the appropriate objective indices reflecting emotional changes. Fifteen healthy young adult subjects voluntarily participated in the present study. Electrocardiogram (ECG), electroencephalogram (EEG) and corrugator muscle electromyogram (EMG) were recorded and changes of them by viewing videos of dental treatments were analyzed. The subjective discomfort level was acquired by Visual Analog Scale method. Analyses of autonomic nervous activities from ECG and four emotional factors (anger/stress, joy/satisfaction, sadness/depression and relaxation) from EEG demonstrated that increases in sympathetic nervous activity reflecting stress increase and decreases in relaxation level were induced by the videos of infiltration anesthesia and cavity excavation, but not intraoral examination. The corrugator muscle activity was increased by all three images regardless of video contents. The subjective discomfort during watching infiltration anesthesia and cavity excavation was higher than intraoral examination, showing that sympathetic activities and relaxation factor of emotion changed in a manner consistent with subjective emotional changes. These results suggest that measurement of autonomic nervous activities estimated from ECG and emotional factors analyzed from EEG is useful for objective evaluation of subjective emotion.

  11. Dutch radiodiagnostics viewed internationally

    International Nuclear Information System (INIS)

    Valois, J.C. de

    1990-01-01

    Dutch radiodiagnostics viewed internationally. - A quantitative description of diagnostic radiology is given in terms of radiological density (the number of radiological examinations per 1000 inhibitants), consumptions of roentgen film and contrast media. The data concerning examinations were recorded by a yearly inquiry system addressing all Dutch radiologists. The consumption of film and contrast media were derived from the data banks of the industries. In comparing these data with the data for Western Europe, Japan and the United States it is remarkable that diagnostic radiology scores lowest in regard to density, film consumption and use of contrast media. Only in the use of 35 mm cinefilm (coronary angiography) is The Netherlands number 2 on the list preceded by the United States. As a consequence radiation exposure of the population caused by diagnostic radiology is low in The Netherlands. Although the technical condition of the equipment is good due to regular and preventive service the life-span of the radiological equipment is gradually increasing beyond the limits of the normal economic depreciation. Growing arrears are found in the application of new technology: ultrasound, computer tomography and magnetic resonance imaging. The substitution of high osmolar contrast media by low osmolar media is also laggin gbehind. (author). 10 refs.; 1 fig.; 4 tab

  12. Neural correlates of viewing paintings

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Skov, Martin

    2014-01-01

    Many studies involving functional magnetic resonance imaging (fMRI) have exposed participants to paintings under varying task demands. To isolate neural systems that are activated reliably across fMRI studies in response to viewing paintings regardless of variation in task demands, a quantitative...

  13. to view fulltext PDF

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... in a short span of time in view of their safety and efficacy. However, it is ..... memory loss which is mainly caused due to reduced synthe- sis of the .... effects and 6–25 month follow-up did not reveal any long-term adverse ...

  14. Clashing world views

    International Nuclear Information System (INIS)

    Lagassa, G.

    1992-01-01

    This article examines how politics, economics, and an increasing awareness of environmental and societal impacts are affecting the market for new hydroelectric projects. The topics of the article include border conflicts, new opposition, resettlement issues, the problems and benefits of hydroelectric projects, taking action, and a clash of world views

  15. Taking a Long View

    DEFF Research Database (Denmark)

    Ougaard, Morten

    a global perspective which leads to a more positive assessment. I will do this from a historical materialist perspective and therefore I begin with a discussion of the long view in Marx. This leads on to a discussion of Marx’s law of the long term declining rate of profit (LTFRP) and its counteracting...

  16. VMware view security essentials

    CERN Document Server

    Langenhan, Daniel

    2013-01-01

    A practical and fast-paced guide that gives you all the information you need to secure your virtual environment.This book is a ""how-to"" for the novice, a ""reference guide"" for the advanced user, and a ""go to"" for the experienced user in all the aspects of VMware View desktop virtualization security.

  17. to view fulltext PDF

    Indian Academy of Sciences (India)

    Prakash

    widely accepted model is the 'funnel view' of protein folding. (Bryngelson et al. ... The detailed characterization of the structure, dynamics and folding process of a protein is crucial for understanding ... molecular motor complexes that generate force towards the .... DLC8 phosphorylation by Pak1 prevents interaction with.

  18. to view fulltext PDF

    Indian Academy of Sciences (India)

    Schwarzschild metric for data interpretation or we have to use more exotic ... lensing—the Galactic Center—large telescopes—VLBI interferometry. .... telescopes were used in a 16-year long study to obtain the most detailed view ever of .... 2005) in the K-band (see also perspectives for observations with GRAVITY facili-.

  19. to view fulltext PDF

    Indian Academy of Sciences (India)

    Abstract. In the rapidly developing field of study of the transient sky, fast radio transients are perhaps the most exciting objects of scrutiny at present. The SKA, with its wide field-of-view and significant improve- ment in sensitivity over existing facilities, is expected to detect a plethora of fast transients which, in addition to help ...

  20. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  1. Functional Neuroanatomy Associated with Natural and Urban Scenic Views in the Human Brain: 3.0T Functional MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Won; Jeong, Gwang Woo; Kim, Tae Hoon; Baek, Han Su; Oh, Seok Kyun; Kang, Heoung Keun; Lee, Sam Gyu; Kim, Yoon Soo; Song, Jin Kyu [Chonnam National University, Gwangju (Korea, Republic of)

    2010-10-15

    By using a functional magnetic resonance imaging (fMRI) technique we assessed brain activation patterns while subjects were viewing the living environments representing natural and urban scenery. A total of 28 healthy right-handed subjects underwent an fMRI on a 3.0 Tesla MRI scanner. The stimulation paradigm consisted of three times the rest condition and two times the activation condition, each of which lasted for 30 and 120 seconds, respectively. During the activation period, each subject viewed natural and urban scenery, respectively. The predominant brain activation areas observed following exposure to natural scenic views in contrast with urban views included the superior and middle frontal gyri, superior parietal gyrus, precuneus, basal ganglia, superior occipital gyrus, anterior cingulate gyrus, superior temporal gyrus, and insula. On the other hand, the predominant brain activation areas following exposure to urban scenic views in contrast with natural scenes included the middle and inferior occipital gyri, parahippocampal gyrus, hippocampus, amygdala, anterior temporal pole, and inferior frontal gyrus. Our findings support the idea that the differential functional neuroanatomies for each scenic view are presumably related with subjects emotional responses to the natural and urban environment, and thus the differential functional neuroanatomy can be utilized as a neural index for the evaluation of friendliness in ecological housing

  2. Functional Neuroanatomy Associated with Natural and Urban Scenic Views in the Human Brain: 3.0T Functional MR Imaging

    International Nuclear Information System (INIS)

    Kim, Gwang Won; Jeong, Gwang Woo; Kim, Tae Hoon; Baek, Han Su; Oh, Seok Kyun; Kang, Heoung Keun; Lee, Sam Gyu; Kim, Yoon Soo; Song, Jin Kyu

    2010-01-01

    By using a functional magnetic resonance imaging (fMRI) technique we assessed brain activation patterns while subjects were viewing the living environments representing natural and urban scenery. A total of 28 healthy right-handed subjects underwent an fMRI on a 3.0 Tesla MRI scanner. The stimulation paradigm consisted of three times the rest condition and two times the activation condition, each of which lasted for 30 and 120 seconds, respectively. During the activation period, each subject viewed natural and urban scenery, respectively. The predominant brain activation areas observed following exposure to natural scenic views in contrast with urban views included the superior and middle frontal gyri, superior parietal gyrus, precuneus, basal ganglia, superior occipital gyrus, anterior cingulate gyrus, superior temporal gyrus, and insula. On the other hand, the predominant brain activation areas following exposure to urban scenic views in contrast with natural scenes included the middle and inferior occipital gyri, parahippocampal gyrus, hippocampus, amygdala, anterior temporal pole, and inferior frontal gyrus. Our findings support the idea that the differential functional neuroanatomies for each scenic view are presumably related with subjects emotional responses to the natural and urban environment, and thus the differential functional neuroanatomy can be utilized as a neural index for the evaluation of friendliness in ecological housing

  3. Toward a unified view of radiological imaging systems. Part II: Noisy images

    International Nuclear Information System (INIS)

    Wagner, R.F.

    1977-01-01

    ''The imaging process is fundamentally a sampling process.'' This philosophy of Otto Schade, utilizing the concepts of sample number and sampling aperture, is applied to a systems analysis of radiographic imaging, including some aspects of vision. It leads to a simple modification of the Rose statistical model; this results in excellent fits to the Blackwell data on the detectability of disks as a function of contrast and size. It gives a straightforward prescription for calculating a signal-to-noise ratio, which is applicable to the detection of low-contrast detail in screen--film imaging, including the effects of magnification. The model lies between the optimistic extreme of the Rose model and the pessimistic extreme of the Morgan model. For high-contrast detail, the rules for the evaluation of noiseless images are recovered

  4. Centimeter-order view for magnetic domain imaging with local magnetization direction by longitudinal Kerr effect

    Directory of Open Access Journals (Sweden)

    Sakae Meguro

    2016-05-01

    Full Text Available An observation system of centimeter-order of view of magnetic domain with local magnetization direction was developed by designing a telecentric optical system of finite design through the extension of microscope technology. The field of view realized in the developed system was 1.40 × 1.05 cm as suppressing defocus and distortion. Detection of the local magnetization direction has become possible by longitudinal Kerr observation from the orthogonal two directions. This system can be applied to the domain observation of rough surface samples and time resolved analysis for soft magnetic materials such as amorphous foil strips and soft magnetic thin films.

  5. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  6. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-01-01

    This current report is a summary of information obtained in the 'Information Capture' task of the U.S. DOE-funded 'Under Sodium Viewing (USV) Project.' The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  7. Preoperative staging of endometrial cancer using reduced field-of-view diffusion-weighted imaging: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Takashi; Hori, Masatoshi; Onishi, Hiromitsu; Sakane, Makoto; Tsuboyama, Takahiro; Tatsumi, Mitsuaki; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Diagnostic and Interventional Radiology, Suita, Osaka (Japan); Nakamoto, Atsushi; Narumi, Yoshifumi [Osaka Medical College, Department of Radiology, Osaka (Japan); Kimura, Tadashi [Osaka University Graduate School of Medicine, Department of Obstetrics and Gynaecology, Osaka (Japan)

    2017-12-15

    To compare the image quality and diagnostic performance of reduced field-of-view (rFOV) versus conventional full field-of-view (fFOV) diffusion-weighted (DW) imaging of endometrial cancer. Fifty women with endometrial cancer underwent preoperative rFOV and fFOV DW imaging. Two radiologists compared the image qualities of both techniques, and five radiologists assessed superficial and deep myometrial invasion using both techniques. The statistical analysis included the Wilcoxon signed-rank test and paired t-test for comparisons of image quality and mean diagnostic values. Distortion, tumour delineation, and overall image quality were significantly better with rFOV DW imaging, compared to fFOV DW imaging (P < 0.05); however, the former was inferior in noise (P < 0.05). Regarding superficial invasion, the mean accuracies of the techniques did not differ statistically (rFOV, 58.0% versus fFOV, 56.0%; P = 0.30). Regarding deep myometrial invasion, rFOV DW imaging yielded significantly better mean accuracy, specificity, and positive predictive values (88.4%, 97.8%, and 91.7%, respectively), compared with fFOV DW imaging (84.8%, 94.1%, and 77.4%, respectively; P = 0.009, 0.005, and 0.011, respectively). Compared with fFOV DW imaging, rFOV DW imaging yielded less distortion, improved image quality and, consequently, better diagnostic performance for deep myometrial invasion of endometrial cancer. (orig.)

  8. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging

    Science.gov (United States)

    Kumar, Abhishek; Wu, Yicong; Christensen, Ryan; Chandris, Panagiotis; Gandler, William; McCreedy, Evan; Bokinsky, Alexandra; Colón-Ramos, Daniel A; Bao, Zhirong; McAuliffe, Matthew; Rondeau, Gary; Shroff, Hari

    2015-01-01

    We describe the construction and use of a compact dual-view inverted selective plane illumination microscope (diSPIM) for time-lapse volumetric (4D) imaging of living samples at subcellular resolution. Our protocol enables a biologist with some prior microscopy experience to assemble a diSPIM from commercially available parts, to align optics and test system performance, to prepare samples, and to control hardware and data processing with our software. Unlike existing light sheet microscopy protocols, our method does not require the sample to be embedded in agarose; instead, samples are prepared conventionally on glass coverslips. Tissue culture cells and Caenorhabditis elegans embryos are used as examples in this protocol; successful implementation of the protocol results in isotropic resolution and acquisition speeds up to several volumes per s on these samples. Assembling and verifying diSPIM performance takes ~6 d, sample preparation and data acquisition take up to 5 d and postprocessing takes 3–8 h, depending on the size of the data. PMID:25299154

  9. A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2015-01-01

    Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.

  10. The Inner Magnetospheric Imager (IMI): Instrument heritage and orbit viewing analysis

    Science.gov (United States)

    Wilson, Gordon R.

    1992-12-01

    For the last two years an engineering team in the Program Development Office at MSFC has been doing design studies for the proposed Inner Magnetospheric Imager (IMI) mission. This team had a need for more information about the instruments that this mission would carry so that they could get a better handle on instrument volume, mass, power, and telemetry needs as well as information to help assess the possible cost of such instruments and what technology development they would need. To get this information, an extensive literature search was conducted as well as interviews with several members of the IMI science working group. The results of this heritage survey are summarized below. There was also a need to evaluate the orbits proposed for this mission from the stand point of their suitability for viewing the various magnetospheric features that are planned for this mission. This was accomplished by first, identifying the factors which need to be considered in selecting an orbit, second, translating these considerations into specific criteria, and third, evaluating the proposed orbits against these criteria. The specifics of these criteria and the results of the orbit analysis are contained in the last section of this report.

  11. Beam’s-eye-view imaging during non-coplanar lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen S. F., E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross I. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: Beam’s-eye-view (BEV) imaging with an electronic portal imaging device (EPID) can be performed during lung stereotactic body radiation therapy (SBRT) to monitor the tumor location in real-time. Image quality for each patient and treatment field depends on several factors including the patient anatomy and the gantry and couch angles. The authors investigated the angular dependence of automatic tumor localization during non-coplanar lung SBRT delivery. Methods: All images were acquired at a frame rate of 12 Hz with an amorphous silicon EPID. A previously validated markerless lung tumor localization algorithm was employed with manual localization as the reference. From ten SBRT patients, 12 987 image frames of 123 image sequences acquired at 48 different gantry–couch rotations were analyzed. δ was defined by the position difference of the automatic and manual localization. Results: Regardless of the couch angle, the best tracking performance was found in image sequences with a gantry angle within 20° of 250° (δ = 1.40 mm). Image sequences acquired with gantry angles of 150°, 210°, and 350° also led to good tracking performances with δ = 1.77–2.00 mm. Overall, the couch angle was not correlated with the tracking results. Among all the gantry–couch combinations, image sequences acquired at (θ = 30°, ϕ = 330°), (θ = 210°, ϕ = 10°), and (θ = 250°, ϕ = 30°) led to the best tracking results with δ = 1.19–1.82 mm. The worst performing combinations were (θ = 90° and 230°, ϕ = 10°) and (θ = 270°, ϕ = 30°) with δ > 3.5 mm. However, 35% (17/48) of the gantry–couch rotations demonstrated substantial variability in tracking performances between patients. For example, the field angle (θ = 70°, ϕ = 10°) was acquired for five patients. While the tracking errors were ≤1.98 mm for three patients, poor performance was found for the other two patients with δ ≥ 2.18 mm, leading to average tracking error of 2.70 mm. Only one

  12. Frequent Computed Tomography Scanning Due to Incomplete Three-View X-Ray Imaging of the Cervical Spine

    NARCIS (Netherlands)

    Saltzherr, Teun Peter; Beenen, Ludo F. M.; Reitsma, Johannes B.; Luitse, Jan S. K.; Vandertop, W. Peter; Goslings, J. Carel

    2010-01-01

    Background: Conventional C-spine imaging (3-view series) is still widely used in trauma patients, although the utilization of computed tomography (CT) scanning is increasing. The aim of this study was to analyze the value of conventional radiography and the frequency of subsequent CT scanning due to

  13. The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies.

    Science.gov (United States)

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2004-01-01

    Imaging studies have provided evidence of how the human brain changes as an individual becomes addicted. Here, we integrate the findings from imaging studies to propose a model of drug addiction. The process of addiction is initiated in part by the fast and high increases in DA induced by drugs of abuse. We hypothesize that this supraphysiological effect of drugs trigger a series of adaptations in neuronal circuits involved in saliency/reward, motivation/drive, memory/conditioning, and control/disinhibition, resulting in an enhanced (and long lasting) saliency value for the drug and its associated cues at the expense of decreased sensitivity for salient events of everyday life (including natural reinforcers). Although acute drug intake increases DA neurotransmission, chronic drug consumption results in a marked decrease in DA activity, associated with, among others, dysregulation of the orbitofrontal cortex (region involved with salience attribution) and cingulate gyrus (region involved with inhibitory control). The ensuing increase in motivational drive for the drug, strengthened by conditioned responses and the decrease in inhibitory control favors emergence of compulsive drug taking. This view of how drugs of abuse affect the brain suggests strategies for intervention, which might include: (a) those that will decrease the reward value of the drug of choice; (b) interventions to increase the saliency value of non-drug reinforcers; (c) approaches to weaken conditioned drug behaviors; and (d) methods to strengthen frontal inhibitory and executive control. Though this model focuses mostly on findings from PET studies of the brain DA system it is evident that other neurotransmitters are involved and that a better understanding of their roles in addiction would expand the options for therapeutic targets.

  14. Learning and recognition of on-premise signs from weakly labeled street view images.

    Science.gov (United States)

    Tsai, Tsung-Hung; Cheng, Wen-Huang; You, Chuang-Wen; Hu, Min-Chun; Tsui, Arvin Wen; Chi, Heng-Yu

    2014-03-01

    Camera-enabled mobile devices are commonly used as interaction platforms for linking the user's virtual and physical worlds in numerous research and commercial applications, such as serving an augmented reality interface for mobile information retrieval. The various application scenarios give rise to a key technique of daily life visual object recognition. On-premise signs (OPSs), a popular form of commercial advertising, are widely used in our living life. The OPSs often exhibit great visual diversity (e.g., appearing in arbitrary size), accompanied with complex environmental conditions (e.g., foreground and background clutter). Observing that such real-world characteristics are lacking in most of the existing image data sets, in this paper, we first proposed an OPS data set, namely OPS-62, in which totally 4649 OPS images of 62 different businesses are collected from Google's Street View. Further, for addressing the problem of real-world OPS learning and recognition, we developed a probabilistic framework based on the distributional clustering, in which we proposed to exploit the distributional information of each visual feature (the distribution of its associated OPS labels) as a reliable selection criterion for building discriminative OPS models. Experiments on the OPS-62 data set demonstrated the outperformance of our approach over the state-of-the-art probabilistic latent semantic analysis models for more accurate recognitions and less false alarms, with a significant 151.28% relative improvement in the average recognition rate. Meanwhile, our approach is simple, linear, and can be executed in a parallel fashion, making it practical and scalable for large-scale multimedia applications.

  15. Form or function: Does focusing on body functionality protect women from body dissatisfaction when viewing media images?

    Science.gov (United States)

    Mulgrew, Kate E; Tiggemann, Marika

    2018-01-01

    We examined whether shifting young women's ( N =322) attention toward functionality components of media-portrayed idealized images would protect against body dissatisfaction. Image type was manipulated via images of models in either an objectified body-as-object form or active body-as-process form; viewing focus was manipulated via questions about the appearance or functionality of the models. Social comparison was examined as a moderator. Negative outcomes were most pronounced within the process-related conditions (body-as-process images or functionality viewing focus) and for women who reported greater functionality comparison. Results suggest that functionality-based depictions, reflections, and comparisons may actually produce worse outcomes than those based on appearance.

  16. TU-FG-209-12: Treatment Site and View Recognition in X-Ray Images with Hierarchical Multiclass Recognition Models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, X; Mazur, T; Yang, D [Washington University in St Louis, St Louis, MO (United States)

    2016-06-15

    Purpose: To investigate an approach of automatically recognizing anatomical sites and imaging views (the orientation of the image acquisition) in 2D X-ray images. Methods: A hierarchical (binary tree) multiclass recognition model was developed to recognize the treatment sites and views in x-ray images. From top to bottom of the tree, the treatment sites are grouped hierarchically from more general to more specific. Each node in the hierarchical model was designed to assign images to one of two categories of anatomical sites. The binary image classification function of each node in the hierarchical model is implemented by using a PCA transformation and a support vector machine (SVM) model. The optimal PCA transformation matrices and SVM models are obtained by learning from a set of sample images. Alternatives of the hierarchical model were developed to support three scenarios of site recognition that may happen in radiotherapy clinics, including two or one X-ray images with or without view information. The performance of the approach was tested with images of 120 patients from six treatment sites – brain, head-neck, breast, lung, abdomen and pelvis – with 20 patients per site and two views (AP and RT) per patient. Results: Given two images in known orthogonal views (AP and RT), the hierarchical model achieved a 99% average F1 score to recognize the six sites. Site specific view recognition models have 100 percent accuracy. The computation time to process a new patient case (preprocessing, site and view recognition) is 0.02 seconds. Conclusion: The proposed hierarchical model of site and view recognition is effective and computationally efficient. It could be useful to automatically and independently confirm the treatment sites and views in daily setup x-ray 2D images. It could also be applied to guide subsequent image processing tasks, e.g. site and view dependent contrast enhancement and image registration. The senior author received research grants from View

  17. TU-FG-209-12: Treatment Site and View Recognition in X-Ray Images with Hierarchical Multiclass Recognition Models

    International Nuclear Information System (INIS)

    Chang, X; Mazur, T; Yang, D

    2016-01-01

    Purpose: To investigate an approach of automatically recognizing anatomical sites and imaging views (the orientation of the image acquisition) in 2D X-ray images. Methods: A hierarchical (binary tree) multiclass recognition model was developed to recognize the treatment sites and views in x-ray images. From top to bottom of the tree, the treatment sites are grouped hierarchically from more general to more specific. Each node in the hierarchical model was designed to assign images to one of two categories of anatomical sites. The binary image classification function of each node in the hierarchical model is implemented by using a PCA transformation and a support vector machine (SVM) model. The optimal PCA transformation matrices and SVM models are obtained by learning from a set of sample images. Alternatives of the hierarchical model were developed to support three scenarios of site recognition that may happen in radiotherapy clinics, including two or one X-ray images with or without view information. The performance of the approach was tested with images of 120 patients from six treatment sites – brain, head-neck, breast, lung, abdomen and pelvis – with 20 patients per site and two views (AP and RT) per patient. Results: Given two images in known orthogonal views (AP and RT), the hierarchical model achieved a 99% average F1 score to recognize the six sites. Site specific view recognition models have 100 percent accuracy. The computation time to process a new patient case (preprocessing, site and view recognition) is 0.02 seconds. Conclusion: The proposed hierarchical model of site and view recognition is effective and computationally efficient. It could be useful to automatically and independently confirm the treatment sites and views in daily setup x-ray 2D images. It could also be applied to guide subsequent image processing tasks, e.g. site and view dependent contrast enhancement and image registration. The senior author received research grants from View

  18. Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions

    International Nuclear Information System (INIS)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Goodsitt, Mitch; Carson, Paul L.; Hadjiiski, Lubomir; Schmitz, Andrea; Eberhard, Jeffrey W.; Claus, Bernhard E. H.

    2011-01-01

    Purpose: To analyze the effects of projection-view (PV) distribution on the contrast and spatial blurring of microcalcifications on the tomosynthesized slices (X-Y plane) and along the depth (Z) direction for the same radiation dose in digital breast tomosynthesis (DBT). Methods: A GE GEN2 prototype DBT system was used for acquisition of DBT scans. The system acquires PV images from 21 angles in 3 deg. increments over a ±30 deg. range. From these acquired PV images, the authors selected six subsets of PV images to simulate DBT of different angular ranges and angular increments. The number of PV images in each subset was fixed at 11 to simulate a constant total dose. These different PV distributions were subjectively divided into three categories: uniform group, nonuniform central group, and nonuniform extreme group with different angular ranges and angular increments. The simultaneous algebraic reconstruction technique (SART) was applied to each subset to reconstruct the DBT slices. A selective diffusion regularization method was employed to suppress noise. The image quality of microcalcifications in the reconstructed DBTs with different PV distributions was compared using the DBT scans of an American College of Radiology phantom and three human subjects. The contrast-to-noise ratio (CNR) and the full width at half maximum (FWHM) of the line profiles of microcalcifications within their in-focus DBT slices (parallel to detector plane) and the FWHMs of the interplane artifact spread function (ASF) in the Z-direction (perpendicular to detector plane) were used as image quality measures. Results: The results indicate that DBT acquired with a large angular range or, for an equal angular range,with a large fraction of PVs at large angles yielded superior ASF with smaller FWHM in the Z-direction. PV distributions with a narrow angular range or a large fraction of PVs at small angles had stronger interplane artifacts. In the X-Y focal planes, the effect of PV

  19. New Paranal Views

    Science.gov (United States)

    2001-01-01

    Telescope (VST) as well as the location known as the "NTT Peak", now under consideration for the installation of the 4-m VISTA telescope. The last images are from to the second 8.2-m Unit Telescope, KUEYEN, that has been in full use by the astronomers with the UVES and FORS2 instruments since April 2000. ESO PR Photo 04a/01 ESO PR Photo 04a/01 [Preview - JPEG: 466 x 400 pix - 58k] [Normal - JPEG: 931 x 800 pix - 688k] [Hires - JPEG: 3000 x 2577 pix - 7.6M] Caption : PR Photo 04a/01 shows an afternoon view from the Paranal summit towards East, with the Base Camp and the new Residencia on the slope to the right, above the valley in the shadow of the mountain. ESO PR Photo 04b/01 ESO PR Photo 04b/01 [Preview - JPEG: 791 x 400 pix - 89k] [Normal - JPEG: 1582 x 800 pix - 1.1Mk] [Hires - JPEG: 3000 x 1517 pix - 3.6M] PR Photo 04b/01 shows the ramp leading to the main entrance to the partly subterranean Residencia , with the steel skeleton for the dome over the central area in place. ESO PR Photo 04c/01 ESO PR Photo 04c/01 [Preview - JPEG: 498 x 400 pix - 65k] [Normal - JPEG: 995 x 800 pix - 640k] [Hires - JPEG: 3000 x 2411 pix - 6.6M] PR Photo 04c/01 is an indoor view of the reception hall under the dome, looking towards the main entrance. ESO PR Photo 04d/01 ESO PR Photo 04d/01 [Preview - JPEG: 472 x 400 pix - 61k] [Normal - JPEG: 944 x 800 pix - 632k] [Hires - JPEG: 3000 x 2543 pix - 5.8M] PR Photo 04d/01 shows the ramps from the reception area towards the rooms. The VLT Interferometer The Delay Lines consitute a most important element of the VLT Interferometer , cf. PR Photos 26a-e/00. At this moment, two Delay Lines are operational on site. A third system will be integrated early this year. The VLTI Delay Line is located in an underground tunnel that is 168 metres long and 8 metres wide. This configuration has been designed to accommodate up to eight Delay Lines, including their transfer optics in an ideal environment: stable temperature, high degree of cleanliness, low

  20. Single view reflectance capture using multiplexed scattering and time-of-flight imaging

    OpenAIRE

    Zhao, Shuang; Velten, Andreas; Raskar, Ramesh; Bala, Kavita; Naik, Nikhil Deepak

    2011-01-01

    This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but l...

  1. INFLUENCE OF THE VIEWING GEOMETRY WITHIN HYPERSPECTRAL IMAGES RETRIEVED FROM UAV SNAPSHOT CAMERAS

    OpenAIRE

    Aasen, Helge

    2016-01-01

    Hyperspectral data has great potential for vegetation parameter retrieval. However, due to angular effects resulting from different sun-surface-sensor geometries, objects might appear differently depending on the position of an object within the field of view of a sensor. Recently, lightweight snapshot cameras have been introduced, which capture hyperspectral information in two spatial and one spectral dimension and can be mounted on unmanned aerial vehicles. This study investigates th...

  2. Viewing Age: Lifespan Identity and Television Viewing Choices.

    Science.gov (United States)

    Harwood, Jake

    1997-01-01

    Introduces a theoretical perspective on media viewing choices, grounded in social identity theory. Content analysis demonstrates that child, younger adult, and older adult television viewers show a preference for viewing characters of their own age. The experiment demonstrates that young adults' preference for viewing young adult characters exists…

  3. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    Science.gov (United States)

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an

  4. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    OpenAIRE

    Elson, DS; Jo, JA; Marcu, L

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues.

  5. NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

    Directory of Open Access Journals (Sweden)

    Bin Yan

    2015-01-01

    Full Text Available Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT. Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction technique that utilizes nonuniform fast Fourier transform is presented in this study along with the advanced total variation (TV regularization for sparse-view CT. Combined with the alternating direction method, the proposed approach shows excellent efficiency and rapid convergence property. Numerical simulations and real data experiments are performed on a parallel beam CT. Experimental results validate that the proposed method has higher computational efficiency and better reconstruction quality than the conventional algorithms, such as simultaneous algebraic reconstruction technique using TV method and the alternating direction total variation minimization approach, with the same time duration. The proposed method appears to have extensive applications in X-ray CT imaging.

  6. Image quality assessment of three limited field-of-view cone-beam computed tomography devices in endodontics

    International Nuclear Information System (INIS)

    Tran, Michel

    2015-01-01

    Since the beginning of Cone Beam Computed Tomography (CBCT) in dento-maxillo-facial radiology, many CBCT devices with different technical aspects and characteristics were produced. Technical variations between CBCT and acquisition settings could involve image quality differences. In order to compare the performance of three limited field-of-view CBCT devices, an objective and subjective evaluation of image quality was carried out using an ex-vivo phantom, which combines both diagnostic and technical features. A significant difference in image quality was found between the five acquisition protocols of the study. (author) [fr

  7. Space Elevators Preliminary Architectural View

    Science.gov (United States)

    Pullum, L.; Swan, P. A.

    Space Systems Architecture has been expanded into a process by the US Department of Defense for their large scale systems of systems development programs. This paper uses the steps in the process to establishes a framework for Space Elevator systems to be developed and provides a methodology to manage complexity. This new approach to developing a family of systems is based upon three architectural views: Operational View OV), Systems View (SV), and Technical Standards View (TV). The top level view of the process establishes the stages for the development of the first Space Elevator and is called Architectural View - 1, Overview and Summary. This paper will show the guidelines and steps of the process while focusing upon components of the Space Elevator Preliminary Architecture View. This Preliminary Architecture View is presented as a draft starting point for the Space Elevator Project.

  8. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  9. Side-View Face Recognition

    NARCIS (Netherlands)

    Santemiz, P.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2010-01-01

    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face

  10. Ring Fusion of Fisheye Images Based on Corner Detection Algorithm for Around View Monitoring System of Intelligent Driving

    Directory of Open Access Journals (Sweden)

    Jianhui Zhao

    2018-01-01

    Full Text Available In order to improve the visual effect of the around view monitor (AVM, we propose a novel ring fusion method to reduce the brightness difference among fisheye images and achieve a smooth transition around stitching seam. Firstly, an integrated corner detection is proposed to automatically detect corner points for image registration. Then, we use equalization processing to reduce the brightness among images. And we match the color of images according to the ring fusion method. Finally, we use distance weight to blend images around stitching seam. Through this algorithm, we have made a Matlab toolbox for image blending. 100% of the required corner is accurately and fully automatically detected. The transition around the stitching seam is very smooth, with no obvious stitching trace.

  11. An investigation on image of nuclear energy from the view of Japanese high school students

    International Nuclear Information System (INIS)

    Takahashi, Reiko; Nakayama, Kazuhiko.

    1996-01-01

    The authors have conducted an investigation on Japanese high school students' knowledge, recognition and interest on energy issues. How they are currently recognizing the 'Nuclear Energy' and whether there is a difference in the way of recognition with their attributes have been revealed in this investigation. A questionnaire based on a word association (WA) method and a cluster analysis have been carried out. Using these statistical methodologies, a picture of energy issues from the view of young generations has been cleared. The authors believe that the analysis in the field of nuclear energy by means of such techniques has been done for the first time in Japan. (author)

  12. Spectral ballistic imaging: a novel technique for viewing through turbid or obstructing media.

    Science.gov (United States)

    Granot, Er'el; Sternklar, Shmuel

    2003-08-01

    We propose a new method for viewing through turbid or obstructing media. The medium is illuminated with a modulated cw laser and the amplitude and phase of the transmitted (or reflected) signal is measured. This process takes place for a set of wavelengths in a certain wide band. In this way we acquire the Fourier transform of the temporal output. With this information we can reconstruct the temporal shape of the transmitted signal by computing the inverse transform. The proposed method benefits from the advantages of the first-light technique: high resolution, simple algorithms, insensitivity to boundary condition, etc., without suffering from its main deficiencies: complex and expensive equipment.

  13. Mouse cursor movement and eye tracking data as an indicator of pathologists′ attention when viewing digital whole slide images

    Directory of Open Access Journals (Sweden)

    Vignesh Raghunath

    2012-01-01

    Full Text Available Context: Digital pathology has the potential to dramatically alter the way pathologists work, yet little is known about pathologists′ viewing behavior while interpreting digital whole slide images. While tracking pathologist eye movements when viewing digital slides may be the most direct method of capturing pathologists′ viewing strategies, this technique is cumbersome and technically challenging to use in remote settings. Tracking pathologist mouse cursor movements may serve as a practical method of studying digital slide interpretation, and mouse cursor data may illuminate pathologists′ viewing strategies and time expenditures in their interpretive workflow. Aims: To evaluate the utility of mouse cursor movement data, in addition to eye-tracking data, in studying pathologists′ attention and viewing behavior. Settings and Design: Pathologists (N = 7 viewed 10 digital whole slide images of breast tissue that were selected using a random stratified sampling technique to include a range of breast pathology diagnoses (benign/atypia, carcinoma in situ, and invasive breast cancer. A panel of three expert breast pathologists established a consensus diagnosis for each case using a modified Delphi approach. Materials and Methods: Participants′ foveal vision was tracked using SensoMotoric Instruments RED 60 Hz eye-tracking system. Mouse cursor movement was tracked using a custom MATLAB script. Statistical Analysis Used: Data on eye-gaze and mouse cursor position were gathered at fixed intervals and analyzed using distance comparisons and regression analyses by slide diagnosis and pathologist expertise. Pathologists′ accuracy (defined as percent agreement with the expert consensus diagnoses and efficiency (accuracy and speed were also analyzed. Results: Mean viewing time per slide was 75.2 seconds (SD = 38.42. Accuracy (percent agreement with expert consensus by diagnosis type was: 83% (benign/atypia; 48% (carcinoma in situ; and 93% (invasive

  14. Mouse cursor movement and eye tracking data as an indicator of pathologists’ attention when viewing digital whole slide images

    Science.gov (United States)

    Raghunath, Vignesh; Braxton, Melissa O.; Gagnon, Stephanie A.; Brunyé, Tad T.; Allison, Kimberly H.; Reisch, Lisa M.; Weaver, Donald L.; Elmore, Joann G.; Shapiro, Linda G.

    2012-01-01

    Context: Digital pathology has the potential to dramatically alter the way pathologists work, yet little is known about pathologists’ viewing behavior while interpreting digital whole slide images. While tracking pathologist eye movements when viewing digital slides may be the most direct method of capturing pathologists’ viewing strategies, this technique is cumbersome and technically challenging to use in remote settings. Tracking pathologist mouse cursor movements may serve as a practical method of studying digital slide interpretation, and mouse cursor data may illuminate pathologists’ viewing strategies and time expenditures in their interpretive workflow. Aims: To evaluate the utility of mouse cursor movement data, in addition to eye-tracking data, in studying pathologists’ attention and viewing behavior. Settings and Design: Pathologists (N = 7) viewed 10 digital whole slide images of breast tissue that were selected using a random stratified sampling technique to include a range of breast pathology diagnoses (benign/atypia, carcinoma in situ, and invasive breast cancer). A panel of three expert breast pathologists established a consensus diagnosis for each case using a modified Delphi approach. Materials and Methods: Participants’ foveal vision was tracked using SensoMotoric Instruments RED 60 Hz eye-tracking system. Mouse cursor movement was tracked using a custom MATLAB script. Statistical Analysis Used: Data on eye-gaze and mouse cursor position were gathered at fixed intervals and analyzed using distance comparisons and regression analyses by slide diagnosis and pathologist expertise. Pathologists’ accuracy (defined as percent agreement with the expert consensus diagnoses) and efficiency (accuracy and speed) were also analyzed. Results: Mean viewing time per slide was 75.2 seconds (SD = 38.42). Accuracy (percent agreement with expert consensus) by diagnosis type was: 83% (benign/atypia); 48% (carcinoma in situ); and 93% (invasive). Spatial

  15. The view from Kiev

    International Nuclear Information System (INIS)

    Kiselyov, S.

    1993-01-01

    This article reports the observations of correspondents for the Bulletin (two Russian journalists, one based in Moscow, the other in Kiev) who investigated the status of the Soviet Union's Black Sea Fleet and Ukraine's status as a non-nuclear-weapons state. After two years of wrangling and two earlier failed settlements, Russian President Boris Yeltsin met with Ukrainian President Leonid Kravchuk at Massandra in Crimea. On September 3, the leaders announced that Russia would buy out Ukraine's interest in the fleet and lease the port at Sevastopol. The Massandra summit was also supposed to settle Ukraine's status as a non-nuclear-weapons state. Described here are the Kiev-based correspondent's views on the Massandra summit (and its major topics), which was to have been called off by the Russian foreign ministry when Ukrainian Prime Minister Leonid Kuchma resigned

  16. False color viewing device

    International Nuclear Information System (INIS)

    Kronberg, J.W.

    1992-01-01

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs

  17. Replacing single-view mediolateral oblique (MLO) digital mammography (DM) with synthesized mammography (SM) with digital breast tomosynthesis (DBT) images: Comparison of the diagnostic performance and radiation dose with two-view DM with or without MLO-DBT

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyo-Jin [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Chang, Jung Min, E-mail: imchangjm@gmail.com [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, 03080 (Korea, Republic of); Lee, Joongyub [Medical Research Collaborating Center, Biomedical Research Institution, Seoul National University Hospital, 03080 (Korea, Republic of); Song, Sung Eun; Shin, Sung Ui [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Kim, Won Hwa [Department of Radiology, Kyungpook National University Hospital, 41944 (Korea, Republic of); Bae, Min Sun [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, 03080 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University College Medical Research Center, 03080 (Korea, Republic of)

    2016-11-15

    Objectives: To evaluate the diagnostic performance and radiation dose of single view cranio-caudal (CC) digital mammography (DM) plus mediolateral oblique (MLO) digital breast tomosynthesis (DBT) combined with synthesized mammography (SM) in comparison with two-view DM with or without DBT. Material and methods: This study was approved by our institutional review board, and informed consent was obtained from 130 women. Paired two-view DM and single MLO-DBT with SM images were acquired, and four independent retrospective reading sessions of different combinations of DM, SM and DBT were performed for the presence of malignant tumors using jackknife alternative free-response receiver operator curve (JAFROC) methods. The diagnostic performances and average glandular dose (AGD) were compared between different combinations of DM, SM and DBT. Results: Of 159 lesions in 130 patients, 27 were malignant. When using MLO-DBT with SM instead of MLO-DM, a significantly higher sensitivity (P = 0.016) and specificity (P = 0.012) were noted than with two-view DM, and comparable figure of merit (FOM), sensitivity, and specificity to two-view DM with DBT were noted. The mean AGD of CC-DM plus MLO-DBT with SM was 5.78mGy ± 1.06 per patient, which was significantly lower than that with two-view DM with MLO-DBT (8.45mGy ± 1.32; P <0.001) and slightly higher than that with two-view DM (5.30mGy ± 0.63). Conclusions: The combined use of CC-DM plus MLO-DBT with SM showed higher sensitivity and specificity to two-view DM with a smaller AGD increment and comparable diagnostic performance to that of two-view DM with MLO-DBT with a significantly lower mean AGD.

  18. A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW

    International Nuclear Information System (INIS)

    Wang Shenghao; Wang Zhili; Gao Kun; Wu Zhao; Zhang Kai; Zhu Peiping; Wu Ziyu

    2015-01-01

    X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs. (authors)

  19. MAPCERN links to Google Street View

    CERN Multimedia

    Matilda Heron

    2015-01-01

    CERN’s online maps, MAPCERN, now have the added bonus of Google Street View, thanks to the new release of images of many CERN sites captured by Google.   New Street View images of CERN sites have been added to MAPCERN, see bottom-right-hand image in the screenshot above.   Google Street View, an integrated service of Google Maps introduced in 2007, links 360-degree panoramic photos into a virtual tour. CERN and Google began collaborating on this Street View project in 2010 and now these Street View images have been embedded into MAPCERN, accessible by clicking the “Street View” tab in MAPCERN’s bottom-right-hand window. If you need to locate a building at CERN, or plan an operation on some equipment, you can save time by using the Street View images to check out the area in advance. The CERN Meyrin site has been fully mapped, as well as the surfaces of the eight LHC points, BA2 and BA3. New Street View images of CERN, including the Pr...

  20. Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem

    Science.gov (United States)

    Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang

    2015-06-01

    This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.

  1. Magnetic resonance imaging in ophthalmic diagnosis. Results of examinations using a small field-of-view surface coil

    International Nuclear Information System (INIS)

    Kato, Yuji; Yoshida, Akitoshi; Kanno, Harumi; Ogasawara, Hironobu; Murakami, Noboru; Cheng, Hong-Ming.

    1997-01-01

    We obtained T 1 -and T 2 -weighted magnetic resonance (MR) images in 3 patients with vitreoretinal disorders using a recently developed surface coil that was inductively coupled and had a small field of view. On both T 1 -and T 2 -weighted images, tractional retinal detachment was clearly detected in the first patient, who had proliferative diabetic retinopathy. T 1 - and T 2 -weighted images of the second patient, who had total retinal detachment with proliferative vitreous retinopathy, revealed a funnel-shaped thickened retina. The third patient had postoperative rhegmatogenous retinal detachment with opacity due to postoperative cataract and intravitreous injection of gas; on this patient's MR images we could clearly differentiate the reattached retina, silicone used for scleral buckling, and intravitreous gas, even though these differentiations were not possible with ophthalmoscopy or B-scan ultrasonography. High resolution MR imaging with our technique can be performed in a short time and regardless of the eye's condition. Our findings strongly indicate that MRI with a small field-of-view surface coil is a useful tool for diagnosing various vitreoretinal disorders and observing pathological changes. (author)

  2. Combined multi-spectrum and orthogonal Laplacianfaces for fast CB-XLCT imaging with single-view data

    Science.gov (United States)

    Zhang, Haibo; Geng, Guohua; Chen, Yanrong; Qu, Xuan; Zhao, Fengjun; Hou, Yuqing; Yi, Huangjian; He, Xiaowei

    2017-12-01

    Cone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, which has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. Single-view data reconstruction as a key issue of CB-XLCT imaging promotes the effective study of dynamic XLCT imaging. However, it suffers from serious ill-posedness in the inverse problem. In this paper, a multi-spectrum strategy is adopted to relieve the ill-posedness of reconstruction. The strategy is based on the third-order simplified spherical harmonic approximation model. Then, an orthogonal Laplacianfaces-based method is proposed to reduce the large computational burden without degrading the imaging quality. Both simulated data and in vivo experimental data were used to evaluate the efficiency and robustness of the proposed method. The results are satisfactory in terms of both location and quantitative recovering with computational efficiency, indicating that the proposed method is practical and promising for single-view CB-XLCT imaging.

  3. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  4. Views from Space

    Science.gov (United States)

    Kitmacher, Gary H.

    2002-01-01

    aircraft like the high-flying U-2 spy planes for. Weather satellites permitted weather predictions as never before. Satellites were developed in the first ten years of the space program for earth resources and mapping. In this paper and presentation we will observe some of the best views taken in space and from space...of the Earth, and the moon and beyond. We will travel in space with our astronauts. Some of the photographs we will see are famous and others not nearly so. We will discuss some of the history behind the pictures and some of the benefits that have been gained from the views from space.

  5. VIRTUAL COMPETITIVENESS: YOUTHS’ VIEWS

    Directory of Open Access Journals (Sweden)

    M. Yu. Semenov

    2018-01-01

    Full Text Available Introduction. Nowadays, the use of information and communication technologies (ICT has become an integral part both of every individual’s life and of the society in general. It is no longer possible to deny the impact of virtual environment on socialisation and development of the identity of young people. In this regard, the investigation of young people’s view on virtual social networks, and the possibility of students’ own competitiveness realization through various web services. The aim of the research presented in the article is to study the factors of students’ assessment of virtual social networks as a tool of personal fulfillment. Methodology and research methods. Content analysis and synthesis of scientific publications studies were carried out at a theoretical stage of the research; secondary sampling analysis of sociologic data material sources was conducted. The empirical research stage involved the instrument of questionnaire surveys, statistical data processing and interpretation of the results. Results and scientific novelty. The social survey conducted in 2017 with the participation of 1087 high school students and 1196 college students of the Tyumen Region shown that the more competitive students consider themselves, the more competitive they perceive the people having great popularity on the Internet. At that, compared to girls, young people are more inclined to consider the people having great popularity on the Internet competitive. It is determined that having a popular virtual media account for the young person is less worthwhile than for female respondents. The author explains this fact: male representatives regard it as “social capital” which can contribute to growth of their competitiveness in society as well as to achieve some profit. The author concludes that youth views on competitiveness are not directly related to the activity in virtual social networks. Frequent use by respondents of the Internet and

  6. Ways of Viewing Pictorial Plasticity

    Directory of Open Access Journals (Sweden)

    Maarten W. A. Wijntjes

    2017-03-01

    Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  7. Ways of Viewing Pictorial Plasticity.

    Science.gov (United States)

    Wijntjes, Maarten W A

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter). By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  8. Activity quantification of phantom using dual-head SPECT with two-view planar image

    International Nuclear Information System (INIS)

    Guo Leiming; Chen Tao; Sun Xiaoguang; Huang Gang

    2005-01-01

    The absorbed radiation dose from internally deposited radionuclide is a major factor in assessing risk and therapeutic utility in nuclear medicine diagnosis or treatment. The quantification of absolute activity in vivo is necessary procedure of estimating the absorbed dose of organ or tissue. To understand accuracy in the determination of organ activity, the experiments on 99 Tc m activity quantification were made for a body phantom using dual-heat SPECT with the two-view counting technique. Accuracy in the activity quantification is credible and is not affected by depth of source organ in vivo. When diameter of the radiation source is ≤2 cm, the most accurate activity quantification result can be obtained on the basis of establishing the system calibration factor and transmission factor. The use of Buijs's method is preferable, especially at very low source-to-background activity concentration rations. (authors)

  9. Enhancing multi-view autostereoscopic displays by viewing distance control (VDC)

    Science.gov (United States)

    Jurk, Silvio; Duckstein, Bernd; Renault, Sylvain; Kuhlmey, Mathias; de la Barré, René; Ebner, Thomas

    2014-03-01

    Conventional multi-view displays spatially interlace various views of a 3D scene and form appropriate viewing channels. However, they only support sufficient stereo quality within a limited range around the nominal viewing distance (NVD). If this distance is maintained, two slightly divergent views are projected to the person's eyes, both covering the entire screen. With increasing deviations from the NVD the stereo image quality decreases. As a major drawback in usability, the manufacturer so far assigns this distance. We propose a software-based solution that corrects false view assignments depending on the distance of the viewer. Our novel approach enables continuous view adaptation based on the calculation of intermediate views and a column-bycolumn rendering method. The algorithm controls each individual subpixel and generates a new interleaving pattern from selected views. In addition, we use color-coded test content to verify its efficacy. This novel technology helps shifting the physically determined NVD to a user-defined distance thereby supporting stereopsis. The recent viewing positions can fall in front or behind the NVD of the original setup. Our algorithm can be applied to all multi-view autostereoscopic displays — independent of the ascent or the periodicity of the optical element. In general, the viewing distance can be corrected with a factor of more than 2.5. By creating a continuous viewing area the visualized 3D content is suitable even for persons with largely divergent intraocular distance — adults and children alike — without any deficiency in spatial perception.

  10. A journalist's view

    International Nuclear Information System (INIS)

    Coudret, Paul

    1989-01-01

    This paper is the result of five years of experience with the nuclear world in Switzerland (five Swiss nuclear plants) from the point of view of a journalist, who doesn't pretend to know everything; who is neither scientific nor a technical journalist, he is writing for the man in the street, and works for a daily paper i.e. has to work very fast and as close to the reality as possible. Understanding and mutual confidence between the nuclear industry and media is emphasised as essential. 'Nuclear' people are specialists and are warned about the fact that they are dealing with non-specialists, journalists and the public who would like to understand what are the processes that might affect them and do not have a dictionary of technical terminology at hand. It is pointed out that the nuclear industry should speak openly about problems and accept being criticised if they want to restore confidence with the media and with the public

  11. The present view

    International Nuclear Information System (INIS)

    Salles, Samanta

    2013-01-01

    “La mirada vigente” is a homenage to Dan Beninson, who was one of the creators of radiation protection worldwide. He taught several generations of nuclear scientists in our country and abroad, playing a key role in the scientific-technological development of Argentina. He was also one of the key figures in the nuclear activity of our country; the creator of the institution that ensures its safety. Likewise, this book, is a testament about what this man meant for many people in Argentina (his country) and in the world (his yard); and simultaneously, a testament of the key moments in the history of a scientific discipline and the activity to which he dedicated his entire life. “La mirada vigente” is also a testimony of other individuals’ point of view. The eyes of others over the features of his person, and career, and his achievements. But above all, it provides a personal and almost intimate perspective, about specific episodes that describe his interesting life. “La mirada vigente” is the exploration of his versatile life, rich as only a few. And the reflection of a work legacy that still remain alive. [es

  12. FWCW: a personal view.

    Science.gov (United States)

    Li, A S

    1995-12-01

    The personal experiences at the Beijing Fourth World Conference on Women and the Nongovernmental Organization (NGO) Forum were described by a Chinese American veterinarian. The author became aware that women were primarily the persons living in poverty in the world. Business and government appeared more concerned with economic growth. As a consequence, developed countries with 20% of world population consume 80% of the world's resources. The privilege of money secures a position of power in the world, power to buy up the resources of the world. This process is unsustainable and inequitable. Women are viewed as key players in shifting the balance in favor of a higher quality of life. The NGO workshops on Women in Livestock Development (WILD) was run by women veterinarians, who worked at the local level with women in poor areas. WILD operates out of offices in Arkansas in the USA. WILD women work in Sichuan, China, among the Han and Tibetans in increasing family income through heifer and livestock production. Conference participants from WILD programs talked about their experiences with increased income and loans to other women. The World Women's Veterinary Association members, who attended the conference, visited a small animal clinic in Beijing run by the Agriculture Ministry, and Beijing Agricultural University and its Veterinary Teaching Hospital. Demonstrations were given of small animal acupuncture. The author found the conference to be a success and found that press reports misrepresented the energy generated by the meeting.

  13. Large field of view quantitative phase imaging of induced pluripotent stem cells and optical pathlength reference materials

    Science.gov (United States)

    Kwee, Edward; Peterson, Alexander; Stinson, Jeffrey; Halter, Michael; Yu, Liya; Majurski, Michael; Chalfoun, Joe; Bajcsy, Peter; Elliott, John

    2018-02-01

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that can have heterogeneous biological potential. Quality assurance metrics of reprogrammed iPSCs will be critical to ensure reliable use in cell therapies and personalized diagnostic tests. We present a quantitative phase imaging (QPI) workflow which includes acquisition, processing, and stitching multiple adjacent image tiles across a large field of view (LFOV) of a culture vessel. Low magnification image tiles (10x) were acquired with a Phasics SID4BIO camera on a Zeiss microscope. iPSC cultures were maintained using a custom stage incubator on an automated stage. We implement an image acquisition strategy that compensates for non-flat illumination wavefronts to enable imaging of an entire well plate, including the meniscus region normally obscured in Zernike phase contrast imaging. Polynomial fitting and background mode correction was implemented to enable comparability and stitching between multiple tiles. LFOV imaging of reference materials indicated that image acquisition and processing strategies did not affect quantitative phase measurements across the LFOV. Analysis of iPSC colony images demonstrated mass doubling time was significantly different than area doubling time. These measurements were benchmarked with prototype microsphere beads and etched-glass gratings with specified spatial dimensions designed to be QPI reference materials with optical pathlength shifts suitable for cell microscopy. This QPI workflow and the use of reference materials can provide non-destructive traceable imaging method for novel iPSC heterogeneity characterization.

  14. Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories.

    Science.gov (United States)

    Açik, Alper; Onat, Selim; Schumann, Frank; Einhäuser, Wolfgang; König, Peter

    2009-06-01

    During viewing of natural scenes, do low-level features guide attention, and if so, does this depend on higher-level features? To answer these questions, we studied the image category dependence of low-level feature modification effects. Subjects fixated contrast-modified regions often in natural scene images, while smaller but significant effects were observed for urban scenes and faces. Surprisingly, modifications in fractal images did not influence fixations. Further analysis revealed an inverse relationship between modification effects and higher-level, phase-dependent image features. We suggest that high- and mid-level features--such as edges, symmetries, and recursive patterns--guide attention if present. However, if the scene lacks such diagnostic properties, low-level features prevail. We posit a hierarchical framework, which combines aspects of bottom-up and top-down theories and is compatible with our data.

  15. The potential use of ultra-low radiation dose images in digital mammography-a clinical proof-of-concept study in craniocaudal views

    NARCIS (Netherlands)

    Bluekens, A. M. J.; Veldkamp, W. J. H.; Schuur, K. H.; Karssemeijer, N.; Broeders, M. J. M.; den Heeten, G. J.

    2015-01-01

    Objective: To estimate the potential of low-dose images in digital mammography by analysing the effect of substantial dose reduction in craniocaudal (CC) views on clinical performance. Methods: At routine mammography, additional CC views were obtained with about 10% of the standard dose. Five

  16. The potential use of ultra-low radiation dose images in digital mammography--a clinical proof-of-concept study in craniocaudal views

    NARCIS (Netherlands)

    Bluekens, A.M.; Veldkamp, W.J.H.; Schuur, K.H.; Karssemeijer, N.; Broeders, M.J.; Heeten, GJ. den

    2015-01-01

    OBJECTIVE: To estimate the potential of low-dose images in digital mammography by analysing the effect of substantial dose reduction in craniocaudal (CC) views on clinical performance. METHODS: At routine mammography, additional CC views were obtained with about 10% of the standard dose. Five

  17. The impact of insonation angle on four-chamber view image quality: an observational study on 2866 routine scans.

    Science.gov (United States)

    Jaudi, Suha; Fries, Nicolas; Tezenas du Montcel, Sophie; Dommergues, Marc

    2015-04-01

    To determine insonation angles achieved in routine screening practice and their impact on image quality. Prospective cross-sectional observational survey of 2866 four-chamber views produced by 287 senor ultrasonographers, from unselected routine second-trimester screening scans. Images were scored from 0 to 5 according to whether two atria, two ventricles, the heart crux, the apex, and the descending aorta were seen. Images were considered adequate if two atria, two ventricles, and the heart crux were seen. The insonation angle was classified as apical, basal, or lateral according to the orientation of the fetal heart to the ultrasound beam. There were 1612 (56.3%) apical, 869 (30.3%) basal, and 385 (13.4%) lateral views. The mean score and the rate of adequate images were significantly greater in the apical group (4.56 and 81.8%) than in the basal group (4.19 and 71.1 %) and were significantly greater in the basal group than in the lateral one (3.6 and 30.9%), p John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  18. ARC Code TI: BigView

    Data.gov (United States)

    National Aeronautics and Space Administration — BigView allows for interactive panning and zooming of images of arbitrary size on desktop PCs running linux. Additionally, it can work in a multi-screen environment...

  19. NetView technical research

    Science.gov (United States)

    1993-01-01

    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  20. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    Science.gov (United States)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  1. Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting

    Directory of Open Access Journals (Sweden)

    Mohiuddin Khan Shourav

    2016-07-01

    Full Text Available Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.

  2. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W [UT Southwestern Medical Center, Dallas, Texas (United States); Rozario, T; Bereg, S [University of Texas at Dallas, Richardson, Texas (United States); Klash, S [Premier Cancer Centers, Dallas, TX (United States)

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  3. MEDXVIEWER: PROVIDING A WEB-ENABLED WORKSTATION ENVIRONMENT FOR COLLABORATIVE AND REMOTE MEDICAL IMAGING VIEWING, PERCEPTION STUDIES AND READER TRAINING.

    Science.gov (United States)

    Looney, P T; Young, K C; Halling-Brown, M D

    2016-06-01

    MedXViewer (Medical eXtensible Viewer) has been developed to address the need for workstation-independent, picture archiving and communication system (PACS)-less viewing and interaction with anonymised medical images. The aim of this paper is to describe the design and features of MedXViewer as well as to introduce the new features available in the latest release (version 1.2). MedXViewer currently supports digital mammography and tomosynthesis. The flexible software design used to develop MedXViewer allows it to be easily extended to support other imaging modalities. Regions of interest can be drawn by a user, and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. Complex tree-like questions can be asked where a given answer presents the user to new questions. The hanging protocol can be specified for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled, e.g. quadrant zooming in digital mammography and tomosynthesis studies. MedXViewer can integrate with a web-based image database OPTIMAM Medical Image Database allowing results and images to be stored centrally. The software can, alternatively, run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and coordinating remote collaborative viewing sessions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Clinical Views: Object-Oriented Views for Clinical Databases

    Science.gov (United States)

    Portoni, Luisa; Combi, Carlo; Pinciroli, Francesco

    1998-01-01

    We present here a prototype of a clinical information system for the archiving and the management of multimedia and temporally-oriented clinical data related to PTCA patients. The system is based on an object-oriented DBMS and supports multiple views and view schemas on patients' data. Remote data access is supported too.

  5. Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS Sensors: Case Study for the Northern Gulf of Mexico

    OpenAIRE

    Blake A. Schaeffer; Thomas S. Bianchi; Eurico J. D'Sa; Christopher L. Osburn; Nazanin Chaichi Tehrani

    2013-01-01

    Empirical band ratio algorithms for the estimation of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) for Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS ocean color sensors were assessed and developed for the northern Gulf of Mexico. Match-ups between in situ measurements of CDOM absorption coefficients at 412 nm (aCDOM(412)) with that derived from SeaWiFS were examined using two previously reported r...

  6. Body image satisfaction and the view of active old women about the influence of physical exercise in their self-image

    Directory of Open Access Journals (Sweden)

    Josinéia Gresele Coradini

    2013-06-01

    Full Text Available The aim of this paper was to analyze the body image satisfaction with 24 active elderly women, and to understand the view of these people about the connection between physical exercise and their body image. All of them answered to the scale proposed by Stunkard, Sorenson and Schlusinger, 1983 and to a semi-structured interview. 87.50% of the women were unsatisfied about the body image. From the reading and analysis of the speeches, it was formed two major categories and four subcategories. Thus, most of the elderly women are unsatisfied about their body image, but the proportionate benefits by the exercises are recognized.

  7. Constrained Total Generalized p-Variation Minimization for Few-View X-Ray Computed Tomography Image Reconstruction.

    Science.gov (United States)

    Zhang, Hanming; Wang, Linyuan; Yan, Bin; Li, Lei; Cai, Ailong; Hu, Guoen

    2016-01-01

    Total generalized variation (TGV)-based computed tomography (CT) image reconstruction, which utilizes high-order image derivatives, is superior to total variation-based methods in terms of the preservation of edge information and the suppression of unfavorable staircase effects. However, conventional TGV regularization employs l1-based form, which is not the most direct method for maximizing sparsity prior. In this study, we propose a total generalized p-variation (TGpV) regularization model to improve the sparsity exploitation of TGV and offer efficient solutions to few-view CT image reconstruction problems. To solve the nonconvex optimization problem of the TGpV minimization model, we then present an efficient iterative algorithm based on the alternating minimization of augmented Lagrangian function. All of the resulting subproblems decoupled by variable splitting admit explicit solutions by applying alternating minimization method and generalized p-shrinkage mapping. In addition, approximate solutions that can be easily performed and quickly calculated through fast Fourier transform are derived using the proximal point method to reduce the cost of inner subproblems. The accuracy and efficiency of the simulated and real data are qualitatively and quantitatively evaluated to validate the efficiency and feasibility of the proposed method. Overall, the proposed method exhibits reasonable performance and outperforms the original TGV-based method when applied to few-view problems.

  8. Micro view system (Toshiba)

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Kimata, Shinichi; Hirosawa, Koshichiro

    1981-01-01

    Digital processing of nuclear medical images consists of inputting the image, the process of adding adjustments, processing the image to meet diagnostic purposes, and storing this information. Discussion is made on the input of analog information transferred from a gamma camera, inputting the image in numeral matrix, number and size of image elements, modification processes, processing and display of the original data thus obtained, image processing of these data for medicine and storage of the information. The digital processing of nuclear medical images could be done satisfactorily with information of 10 kCPS in 64 x 64 (or 128 x 128) image elements in 16 bit frame mode. The personal computer M223 Mark II (SORD) was selected because it satisfied these requirements, and a system allowing image display was developed. (Kaihara, S.)

  9. Critical Viewing and Participatory Democracy.

    Science.gov (United States)

    Cohen, Jodi R.

    1994-01-01

    Illustrates ways that the work of some communication scholars with resistant, oppositional, and critical audiences does not, however, endorse active public life. Attempts to realign the language of critical viewing with the goals of participatory democracy by suggesting qualities of critical viewing that are conducive to achieving and maintaining…

  10. Service outsourcing with process views

    NARCIS (Netherlands)

    Eshuis, H.; Norta, A.H.; Kopp, O.; Pitkänen, E.

    2015-01-01

    Service outsourcing is a business paradigm in which an organization has a part of its business process performed by a service provider. Process views are pivotal to support this way of working. A process view shields secret or irrelevant details from a private business process, thus allowing an

  11. Communications and Development: Two Views.

    Science.gov (United States)

    Development Communication Report, 1977

    1977-01-01

    Two views on current international communication are presented--that of an American academician, and that of an Indian journalist. John Lent traces the rise of development journalism and development communication from the point of view of those who believe that individual freedom of expression should be treated as an inviolable right. Narinder…

  12. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    Science.gov (United States)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  13. View Ahead After Spirit's Sol 1861 Drive

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images combined into this 210-degree view of the rover's surroundings during the 1,861st to 1,863rd Martian days, or sols, of Spirit's surface mission (March 28 to 30, 2009). The center of the scene is toward the south-southwest. East is on the left. West-northwest is on the right. The rover had driven 22.7 meters (74 feet) southwestward on Sol 1861 before beginning to take the frames in this view. The drive brought Spirit past the northwestern corner of Home Plate. In this view, the western edge of Home Plate is on the portion of the horizon farthest to the left. A mound in middle distance near the center of the view is called 'Tsiolkovsky' and is about 40 meters (about 130 feet) from the rover's position. This view is presented as a cylindrical projection with geometric seam correction.

  14. Evaluation of image quality with different field of view in CT scan of the body in children

    International Nuclear Information System (INIS)

    Gao Dechun; Wu Tai; Mao Dingli; Weng Zhigao

    2005-01-01

    Objective: To evaluate the relationship between field of view (FOV) and quality of CT images. Methods: Scanning of the phantoms of spatial resolution and density resolution was performed with FOVs of 25 cm x 25 cm, 35 cm x 35 cm, and 42 cm x 42 cm, respectively, and the spatial resolution and density resolution of CT images with different FOVs were measured. 20 patients underwent CT scanning using 25 cm x 25 cm and 35 cm x 35 cm FOVs, respectively. The images were evaluated by 3 qualified CT doctors by using a double-blind reading. Results: As FOVs changed, the spatial resolution and density resolution were different. The best spatial resolution and density resolution were obtained on 25 cm x 25 cm FOV images. The best spatial resolution could distinguish four 0.6 mm-diameter eyelets, and the best density resolution could distinguish five 2.5 mm-diameter eyelets. The CT images with 25 cm x 25 cm FOV were obviously better than those with 35 cm x 35 cm FOV (P<0.05). Conclusion: On the range of conventional FOV of CT, the spatial resolution and density resolution of CT images are the best when 25 cm x 25 cm FOV is used. (authors)

  15. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  16. Android and iPhone Apps for Viewing Browse Plots from the Magnetospheric Imaging Instrument (MIMI) on Cassin

    Science.gov (United States)

    Vandegriff, J. D.; Kusterer, M. B.; Byun, S.; Steele, R. J.; Mitchell, D. G.

    2017-12-01

    We present a new mobile app for Android and an existing app for iPhone, both capable of viewing the numerous browse plots available for data collected by the MIMI suite on NASA's Cassini spacecraft. Both apps allow convenient mobile access to pre-made plots of data from various instruments on the suite, including daily, and monthly plots of particle intensities (line plots and spectrograms) from LEMMS, CHEMS and INCA. Also, the apps can show short movies made from sequences of INCA neutral atom images. Browsing the plots or movies is as simple as swiping to the left or right, and the app hides all access details needed to finding the images. Note that the app requires a data connection, since it locates and downloads the plot files live from various instrument team servers. We will demonstrate the current versions of both apps, which are available in Apple's App Store and the Google Play Store.

  17. Reconstruction of tomographic images from projections of a small number of views by means of mathematical programming

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1985-01-01

    Fundamental studies have been made on the application of mathematical programming to the reconstruction of tomographic images from projections of a small number of views without requiring any circular symmetry nor periodicity. Linear programming and quadratic programming were applied to minimize the quadratic sum of the residue and to finally obtain optimized reconstruction images. The mathematical algorithms were verified by the method of computer simulation, and the relationship between the number of picture elements and the number of iterations necessary for convergence was also investigated. The methods of linear programming and quadratic programming require fairly simple mathematical procedures, and strict solutions can be obtained within a finite number of iterations. Their only draw back is the requirement of a large quantity of computer memory. But this problem will be desolved by the advent of large fast memory devices in the near future. (Aoki, K.)

  18. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    Science.gov (United States)

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  19. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view.

    Science.gov (United States)

    Lofthag-Hansen, Sara; Thilander-Klang, Anne; Gröndahl, Kerstin

    2011-11-01

    To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm×4 cm) and 3D Accuitomo FPD (FOVs 4 cm×4 cm and 6 cm×6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180° and 360° were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Intra-observer agreement was good (κw=0.76) and inter-observer agreement moderate (κw=0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm×4 cm, 6 cm×6 cm followed by 3 cm×4 cm. This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180° gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view

    International Nuclear Information System (INIS)

    Lofthag-Hansen, Sara; Thilander-Klang, Anne; Groendahl, Kerstin

    2011-01-01

    Aims: To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Materials and methods: Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm x 4 cm) and 3D Accuitomo FPD (FOVs 4 cm x 4 cm and 6 cm x 6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180 o and 360 o were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Results: Intra-observer agreement was good (κ w = 0.76) and inter-observer agreement moderate (κ w = 0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm x 4 cm, 6 cm x 6 cm followed by 3 cm x 4 cm. Conclusions: This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180 o gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information.

  1. Capturing the added value of three-dimensional television : viewing experience and naturalness of stereoscopic images

    NARCIS (Netherlands)

    Seuntiëns, P.J.H.; Heynderickx, I.E.J.; IJsselsteijn, W.A.

    2008-01-01

    The term "image quality" is often used to describe the performance of an imaging system. Recent research showed however that image quality may not be the most appropriate term to capture the evaluative processes associated with experiencing three-dimensional (3D) images. The added value of depth in

  2. The STAPL pView

    KAUST Repository

    Buss, Antal

    2011-01-01

    The Standard Template Adaptive Parallel Library (STAPL) is a C++ parallel programming library that provides a collection of distributed data structures (pContainers) and parallel algorithms (pAlgorithms) and a generic methodology for extending them to provide customized functionality. STAPL algorithms are written in terms of pViews, which provide a generic access interface to pContainer data by abstracting common data structure concepts. Briefly, pViews allow the same pContainer to present multiple interfaces, e.g., enabling the same pMatrix to be \\'viewed\\' (or used) as a row-major or column-major matrix, or even as a vector. In this paper, we describe the stapl pView concept and its properties. pViews generalize the iterator concept and enable parallelism by providing random access to, and an ADT for, collections of elements. We illustrate how pViews provide support for managing the tradeoff between expressivity and performance and examine the performance overhead incurred when using pViews. © 2011 Springer-Verlag Berlin Heidelberg.

  3. Computerized image analysis: Texture-field orientation method for pectoral muscle identification on MLO-view mammograms

    International Nuclear Information System (INIS)

    Zhou Chuan; Wei Jun; Chan, Heang-Ping; Paramagul, Chintana; Hadjiiski, Lubomir M.; Sahiner, Berkman; Douglas, Julie A.

    2010-01-01

    Purpose: To develop a new texture-field orientation (TFO) method that combines a priori knowledge, local and global information for the automated identification of pectoral muscle on mammograms. Methods: The authors designed a gradient-based directional kernel (GDK) filter to enhance the linear texture structures, and a gradient-based texture analysis to extract a texture orientation image that represented the dominant texture orientation at each pixel. The texture orientation image was enhanced by a second GDK filter for ridge point extraction. The extracted ridge points were validated and the ridges that were less likely to lie on the pectoral boundary were removed automatically. A shortest-path finding method was used to generate a probability image that represented the likelihood that each remaining ridge point lay on the true pectoral boundary. Finally, the pectoral boundary was tracked by searching for the ridge points with the highest probability lying on the pectoral boundary. A data set of 130 MLO-view digitized film mammograms (DFMs) from 65 patients was used to train the TFO algorithm. An independent data set of 637 MLO-view DFMs from 562 patients was used to evaluate its performance. Another independent data set of 92 MLO-view full field digital mammograms (FFDMs) from 92 patients was used to assess the adaptability of the TFO algorithm to FFDMs. The pectoral boundary detection accuracy of the TFO method was quantified by comparison with an experienced radiologist's manually drawn pectoral boundary using three performance metrics: The percent overlap area (POA), the Hausdorff distance (Hdist), and the average distance (AvgDist). Results: The mean and standard deviation of POA, Hdist, and AvgDist were 95.0±3.6%, 3.45±2.16 mm, and 1.12±0.82 mm, respectively. For the POA measure, 91.5%, 97.3%, and 98.9% of the computer detected pectoral muscles had POA larger than 90%, 85%, and 80%, respectively. For the distance measures, 85.4% and 98.0% of the

  4. The Current State and Path Forward For Enterprise Image Viewing: HIMSS-SIIM Collaborative White Paper.

    Science.gov (United States)

    Roth, Christopher J; Lannum, Louis M; Dennison, Donald K; Towbin, Alexander J

    2016-10-01

    Clinical specialties have widely varied needs for diagnostic image interpretation, and clinical image and video image consumption. Enterprise viewers are being deployed as part of electronic health record implementations to present the broad spectrum of clinical imaging and multimedia content created in routine medical practice today. This white paper will describe the enterprise viewer use cases, drivers of recent growth, technical considerations, functionality differences between enterprise and specialty viewers, and likely future states. This white paper is aimed at CMIOs and CIOs interested in optimizing the image-enablement of their electronic health record or those who may be struggling with the many clinical image viewers their enterprises may employ today.

  5. The forgotten view: Chest X-ray - Lateral view

    Directory of Open Access Journals (Sweden)

    Abraham M. Ittyachen

    2017-01-01

    Full Text Available With CT (computed tomography chest gaining more importance as a diagnostic tool, chest X-ray especially the lateral view is taken less commonly nowadays. Besides CT chest is also proven to be superior to chest X-ray in patients with major blunt trauma. We are presenting a 68-year old male who was partially treated from outside for a left sided pneumonia. He came to our hospital because of persisting chest pain. Chest X-ray, frontal view (postero-anterior was almost normal except for a mild opacity in the left lower zone. CT scan of the chest revealed a fluid collection posteriorly enclosed within enhancing pleura. Chest X-ray, left lateral view showed a corresponding posterior pleural based opacity. We are presenting this case to highlight the importance of the lateral view of the chest X-ray. In selected cases there is still a role for the lateral view. With the three dimensional visualization provided by the CT, the lateral view of the chest may be easier to understand. Consequent to the initial diagnosis by CT further follow up can be done with the chest X-ray. In a limited way this mitigates unnecessary expenditure and more importantly prevents the patient from exposure to harmful radiation in the form of repeated CT.

  6. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  7. Perspective View, San Andreas Fault

    Science.gov (United States)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  8. Efficient 2-D DCT Computation from an Image Representation Point of View

    OpenAIRE

    Papakostas, G.A.; Koulouriotis, D.E.; Karakasis, E.G.

    2009-01-01

    A novel methodology that ensures the computation of 2-D DCT coefficients in gray-scale images as well as in binary ones, with high computation rates, was presented in the previous sections. Through a new image representation scheme, called ISR (Image Slice Representation) the 2-D DCT coefficients can be computed in significantly reduced time, with the same accuracy.

  9. Television Images: Exploring How They Affect People's View of Self and Others

    Science.gov (United States)

    Alexandrin, Julie R.

    2009-01-01

    Through television, many different images of ethnic, cultural, and ability groups are presented. Different people perceive these images in different ways. These perceptions affect how people value themselves and judge and interact with others. This article first summaries research on TV images and people's meaning and reaction to them. Second, it…

  10. Post-human Viewing

    DEFF Research Database (Denmark)

    Blaagaard, Bolette

    2013-01-01

    to become part of a global cultural flow, thus calling into question the physical connection between viewer and image. This article analyses what happens to that connection when not only the image but also the physical body is mediated and challenged in post-human relations, and examines the ensuing ethical...... implications. The author takes photojournalism and, in particular, mobile phone footage as a starting point for an exploration of the (post-human) body as evidence and sign of authenticity in the modern age of digital communications and journalism....

  11. Remote viewing with the artist Ingo Swann: neuropsychological profile, electroencephalographic correlates, magnetic resonance imaging (MRI), and possible mechanisms.

    Science.gov (United States)

    Persinger, M A; Roll, W G; Tiller, S G; Koren, S A; Cook, C M

    2002-06-01

    In the present study, the artist Ingo Swann, who helped develop the process of remote viewing (awareness of distant objects or places without employing normal senses), was exposed during a single setting of 30 min. to specific patterns of circumcerebral magnetic fields that significantly altered his subjective experiences. Several times during subsequent days, he was asked to sit in a quiet chamber and to sketch and to describe verbally distant stimuli (pictures or places) beyond his normal senses. The proportions of unusual 7-Hz spike and slow wave activity over the occipital lobes per trial were moderately correlated (rho=.50) with the ratings of accuracy between these distal, hidden stimuli and his responses. A neuropsychological assessment and Magnetic Resonance Imaging indicated a different structural and functional organization within the parieto-occipital region of the subject's right hemisphere from organizations typically noted. The results suggest that this type of paranormal phenomenon, often dismissed as methodological artifact or accepted as proofs of spiritual existence, is correlated with neurophysiological processes and physical events. Remote viewing may be enhanced by complex experimentally generated magnetic fields designed to interact with the neuromagnetic "binding factor" of consciousness.

  12. "Private Views" Ungaris / Katrin Kivimaa

    Index Scriptorium Estoniae

    Kivimaa, Katrin, 1969-

    1999-01-01

    Inglise ja eesti kunstnike ühisprojekt 8. augustini Dunaujvarosi Kaasaegse Kunsti Instituudis Ungaris. Kuraatorid Pam Skelton, Mare Tralla. "Private Views" ülesandeks on keskenduda ruumi mõistele naiskunstniku pilgu läbi

  13. 'Private Views' Ungaris / Katrin Kivimaa

    Index Scriptorium Estoniae

    Kivimaa, Katrin, 1969-

    1999-01-01

    Inglise js eesti kunstnike ühisprojekt 8. augustini Dunaujvarosi Kaasaegse Kunsti Instituudis Ungaris. Kuraatorid Pam Skelton, Mare Tralla. 'Private Views' ülesandeks on keskenduda ruumi mõistele naiskunstniku pilgu läbi.

  14. A broader view of justice.

    Science.gov (United States)

    Jecker, Nancy S

    2008-10-01

    In this paper I argue that a narrow view of justice dominates the bioethics literature. I urge a broader view. As bioethicists, we often conceive of justice using a medical model. This model focuses attention at a particular point in time, namely, when someone who is already sick seeks access to scarce or expensive services. A medical model asks how we can fairly distribute those services. The broader view I endorse requires looking upstream, and asking how disease and suffering came about. In contrast to a medical model, a social model of justice considers how social determinants affect the health of a population. For example, social factors such as access to clean drinking water, education, safe workplaces, and police protection, profoundly affect risk for disease and early death. I examine one important social determinant of health, health care coverage, to show the limits of a medical model and the merits of a broader view.

  15. Ways of Viewing Pictorial Plasticity

    OpenAIRE

    Maarten W. A. Wijntjes

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we...

  16. SU-E-J-234: Application of a Breathing Motion Model to ViewRay Cine MR Images

    International Nuclear Information System (INIS)

    O’Connell, D. P.; Thomas, D. H.; Dou, T. H.; Lamb, J. M.; Yang, L.; Low, D. A.

    2015-01-01

    Purpose: A respiratory motion model previously used to generate breathing-gated CT images was used with cine MR images. Accuracy and predictive ability of the in-plane models were evaluated. Methods: Sagittalplane cine MR images of a patient undergoing treatment on a ViewRay MRI/radiotherapy system were acquired before and during treatment. Images were acquired at 4 frames/second with 3.5 × 3.5 mm resolution and a slice thickness of 5 mm. The first cine frame was deformably registered to following frames. Superior/inferior component of the tumor centroid position was used as a breathing surrogate. Deformation vectors and surrogate measurements were used to determine motion model parameters. Model error was evaluated and subsequent treatment cines were predicted from breathing surrogate data. A simulated CT cine was created by generating breathing-gated volumetric images at 0.25 second intervals along the measured breathing trace, selecting a sagittal slice and downsampling to the resolution of the MR cines. A motion model was built using the first half of the simulated cine data. Model accuracy and error in predicting the remaining frames of the cine were evaluated. Results: Mean difference between model predicted and deformably registered lung tissue positions for the 28 second preview MR cine acquired before treatment was 0.81 +/− 0.30 mm. The model was used to predict two minutes of the subsequent treatment cine with a mean accuracy of 1.59 +/− 0.63 mm. Conclusion: Inplane motion models were built using MR cine images and evaluated for accuracy and ability to predict future respiratory motion from breathing surrogate measurements. Examination of long term predictive ability is ongoing. The technique was applied to simulated CT cines for further validation, and the authors are currently investigating use of in-plane models to update pre-existing volumetric motion models used for generation of breathing-gated CT planning images

  17. P/Halley the model comet, in view of the imaging experiment aboard the VEGA spacecraft

    International Nuclear Information System (INIS)

    Szegoe, K.

    1989-07-01

    In this paper those results of the VEGA imaging experiments are summarized which probably have general validity for any comet. Shape, size, surface structure, jet activity, rotation patterns are considered in this respect. It is pointed out that imaging data provide indispensable information to the understanding of cometary activity. (author) 27 refs

  18. Viewing sexual images is associated with reduced physiological arousal response to gambling loss.

    Science.gov (United States)

    Lui, Ming; Hsu, Ming

    2018-01-01

    Erotic imagery is one highly salient emotional signal that exists everywhere in daily life. The impact of sexual stimuli on human decision-making, however, has rarely been investigated. This study examines the impact of sexual stimuli on financial decision-making under risk. In each trial, either a sexual or neutral image was presented in a picture categorization task before a gambling task. Thirty-four men made gambling decisions while their physiological arousal, measured by skin conductance responses (SCRs), was recorded. Behaviorally, the proportion of gambling decisions did not differ between the sexual and neutral image trials. Physiologically, participants had smaller arousal differences, measured in micro-siemen per dollar, between losses and gains in the sexual rather than in the neutral image trials. Moreover, participants' SCRs to losses relative to gains predicted the proportion of gambling decisions in the neutral image trials but not in the sexual image trials. The results were consistent with the hypothesis that the presence of emotionally salient sexual images reduces attentional and arousal-related responses to gambling losses. Our results are consistent with the theory of loss attention involving increased cognitive investment in losses compared to gains. The findings also have potential practical implications for our understanding of the specific roles of sexual images in human financial decision making in everyday life, such as gambling behaviors in the casino.

  19. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera.

    Science.gov (United States)

    Jones, Elizabeth A; Phan, Trinh D; Blanchard, Deborah A; Miley, Abbe

    2009-12-01

    Breast-specific gamma-imaging (BSGI), also known as molecular breast imaging, is breast scintigraphy using a small-field-of-view gamma-camera and (99m)Tc-sestamibi. There are many different types of breast cancer, and many have characteristics making them challenging to detect by mammography and ultrasound. BSGI is a cost-effective, highly sensitive and specific technique that complements other imaging modalities currently being used to identify malignant lesions in the breast. Using the current Society of Nuclear Medicine guidelines for breast scintigraphy, Legacy Good Samaritan Hospital began conducting BSGI, breast scintigraphy with a breast-optimized gamma-camera. In our experience, optimal imaging has been conducted in the Breast Center by a nuclear medicine technologist. In addition, the breast radiologists read the BSGI images in correlation with the mammograms, ultrasounds, and other imaging studies performed. By modifying the current Society of Nuclear Medicine protocol to adapt it to the practice of breast scintigraphy with these new systems and by providing image interpretation in conjunction with the other breast imaging studies, our center has found BSGI to be a valuable adjunctive procedure in the diagnosis of breast cancer. The development of a small-field-of-view gamma-camera, designed to optimize breast imaging, has resulted in improved detection capabilities, particularly for lesions less than 1 cm. Our experience with this procedure has proven to aid in the clinical work-up of many of our breast patients. After reading this article, the reader should understand the history of breast scintigraphy, the pharmaceutical used, patient preparation and positioning, imaging protocol guidelines, clinical indications, and the role of breast scintigraphy in breast cancer diagnosis.

  20. Postencounter view of comets

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1988-01-01

    Ground-based and space observations of Comet Halley during its 1986 perihelion passage are reviewed, with an emphasis on their implications for theoretical models. Consideration is given to the shape, surface morphology, and composition of the comet nucleus; the shape, dynamics, and composition of the dust tail; neutral and ionic gas species in the head and plasma tail; and the comet/solar-wind interaction. Extensive diagrams, graphs, and sample images are provided, and the potential value of the new kinds of data to be obtained with the NASA Comet-Rendezvous/Asteroid-Flyby spacecraft is discussed. 139 references

  1. Clinical point of view, imaging and neuro physiology of the case with diagnosis of neuro fibrosarcomas sacrococcigeo

    International Nuclear Information System (INIS)

    Hernandez Hernandez, Barbara Aymee; Brown Martinez, Marta

    2004-01-01

    It was considered a case with diagnosis of neuro fibrosarcomas sacrococcigeo, which was very well studied from the clinical point of view, imaging and neuro physiology; with the objective of showing the correlation degree among these studies. He/she was carried out study of nervous conduction of nerve later, reflective tibial H, electromiografia of dependent muscles of the plexo lumbosacro, potentials evoked somatosensoriales and wave F of nerve later tibial. With this the existence of a functional dysfunction was demonstrated in the medullary segments from L4-S2 with prevalence motor. He/she was also carried out mielografia and nuclear magnetic resonance that it evidenced the existence from an expansible process to the level sacrococcigeo. The utility of the neuro physiological studies was demonstrated in the diagnosis of affections tumorales, cocktails with the imagenological studies that define the anatomical alterations and the diagnosis morfofuncional of these pathologies is completed

  2. A system dedicated to the viewing and handling of tomographic images obtained by magnetic resonance

    International Nuclear Information System (INIS)

    Slaets, Joan F.W.; Almeida, Lirio O.B.; Traina, Agma J.M.

    1992-01-01

    The present work describes the development of a dedicated system to be used in visualization and manipulation of a MR images. The graphics environment as well as the tool kit were developed for the dedicated TMS34010 based hardware. The developed software offers a compact kernel with primitives to support the creation and manipulation windows and menus directly in 'C' language. This work is fundamental for the implementation of a user friendly interface build to operate and visualize tomographic images. This tools are essential for the selection an archiving of images planes as used in clinical applications. (author)

  3. Method for producing three-dimensional real image using radiographic perspective views of an object

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Read, A.A.

    1976-01-01

    A sequence of separate radiographs may be made by indexing a radiation source along a known path relative to the object under study. Thus, each radiograph contains information from a different perspective. A holographically-recorded image is then made from each radiographic perspective by exact re-tracing of the rays through each radiographic perspective such that the re-tracing duplicates the geometry under which it was originally prepared. The holographically-stored images are simultaneously illuminated with the conjugate of the reference beam used in the original recordings. The result is the generation of a three-dimensional real image of the object such that a light-sensitive device can be moved to veiw the real image along any desired surface with the optical information in all other surfaces greatly suppressed. 4 claims, 5 drawing figures

  4. Anthropometric body measurements based on multi-view stereo image reconstruction.

    Science.gov (United States)

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of the proposed system.

  5. Femtosecond Multidimensional Imaging - Watching Chemistry from the Molecule's Point of View

    Science.gov (United States)

    Geßner, O.; Lee, A. M. D.; Chrysostom, E. t.-H.; Hayden, C. C.; Stolow, Albert

    Using Femtosecond Multidimensional Imaging we disentangle the complex neutral dissociation mechanism of the NO dimer. We characterize all electronic configurations from start to finish and directly observe the evolution of intramolecular vibrational energy redistribution (IVR).

  6. Hybrid imaging with contrast enhanced CT scan: A nuclear physician's point of view

    International Nuclear Information System (INIS)

    Houzard, C.; Tychyj-Pinel, C.; Defez, D.; Valette, P.J.; Giammarile, F.; Houzard, C.; Valette, P.J.; Giammarile, F.

    2010-01-01

    The ongoing development of hybrid imaging, with physical association of CT scan and PET or SPECT scan, allows integrating morphological and functional information on a single exam. This important technological evolution changes diagnostic and therapeutic strategy in a major manner, essentially in oncology. The possibility to inject intravenously iodinated contrast media in order to enhance CT image contrast is still a controversial question in France. We present our experience in this domain by approaching technical problems and diagnostic advantages. (authors)

  7. Informatics in radiology (infoRAD): free DICOM image viewing and processing software for the Macintosh computer: what's available and what it can do for you.

    Science.gov (United States)

    Escott, Edward J; Rubinstein, David

    2004-01-01

    It is often necessary for radiologists to use digital images in presentations and conferences. Most imaging modalities produce images in the Digital Imaging and Communications in Medicine (DICOM) format. The image files tend to be large and thus cannot be directly imported into most presentation software, such as Microsoft PowerPoint; the large files also consume storage space. There are many free programs that allow viewing and processing of these files on a personal computer, including conversion to more common file formats such as the Joint Photographic Experts Group (JPEG) format. Free DICOM image viewing and processing software for computers running on the Microsoft Windows operating system has already been evaluated. However, many people use the Macintosh (Apple Computer) platform, and a number of programs are available for these users. The World Wide Web was searched for free DICOM image viewing or processing software that was designed for the Macintosh platform or is written in Java and is therefore platform independent. The features of these programs and their usability were evaluated. There are many free programs for the Macintosh platform that enable viewing and processing of DICOM images. (c) RSNA, 2004.

  8. A journalist's view

    International Nuclear Information System (INIS)

    Fishlock, D.

    1976-01-01

    The immense cost of nuclear development and the desire of governments to preserve secrecy also severely cramped the opportunities for financial entrepreneurialism. No-one, no company, to my knowledge, has made a fortune out of nuclear energy yet. Even the biggest companies have needed generous support from government and handsome terms from electrical industries. The fate of Royal Dutch Shell, the oil major which plunged heavily in 1973 in a bid to buy its way into the nuclear business, is surely too fresh in the minds of industrialists to encourage further large scale speculative ventures. Nuclear energy is therefore left with a public image which might roughly be summarized as providing a source of immense stimulation to relatively small numbers of scientists and engineers, while remaining a heavy burden on the pockets of the public at large. Scientific advice to government was becoming an increasingly complex task, despite all the elaboration of the government's scientific machinery, said Lord Zuckerman. But this was not just because of the rate at which new knowledge is emerging, nor because the application of science now pervades every aspect of our social life. One of the major problems which governments and scientists appointed as official advisers to government faced today was how to sift responsible from irresponsible advice, how to prevent public knowledge about science from becoming overwhelmingly tinged by emotion or even from assuming some political intent

  9. Imaging in scoliosis from the orthopaedic surgeon's point of view

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Marc [Stiftung Orthopaedische Universitaetsklinik Heidelberg, Schlierbacher Landstr. 200a, 69118 Heidelberg (Germany); Abel, Rainer [Stiftung Orthopaedische Universitaetsklinik Heidelberg, Schlierbacher Landstr. 200a, 69118 Heidelberg (Germany)]. E-mail: rainer.abel@ok.uni-heidelberg.de

    2006-04-15

    For treating patients with scoliosis orthopaedic surgeons need diagnostic imaging procedures in order to provide answers about a possible underlying disease, choice of treatment, and prognosis. Once treatment is instituted, imaging is also critical for monitoring changes of the deformity so as to optimize therapy. The combined effort of orthopaedic surgeons and radiologists helps detect treatable causes of scoliosis at an early stage, define the need and timing for surgery, and ensure that every precaution is taken to minimize the risks of surgery. Neurosurgical causes, with particular reference to spinal cord tumours and syringomyelia, need to be addressed before scoliosis surgery can be contemplated.

  10. Where do neurologists look when viewing brain CT images? An eye-tracking study involving stroke cases.

    Directory of Open Access Journals (Sweden)

    Hideyuki Matsumoto

    Full Text Available The aim of this study was to investigate where neurologists look when they view brain computed tomography (CT images and to evaluate how they deploy their visual attention by comparing their gaze distribution with saliency maps. Brain CT images showing cerebrovascular accidents were presented to 12 neurologists and 12 control subjects. The subjects' ocular fixation positions were recorded using an eye-tracking device (Eyelink 1000. Heat maps were created based on the eye-fixation patterns of each group and compared between the two groups. The heat maps revealed that the areas on which control subjects frequently fixated often coincided with areas identified as outstanding in saliency maps, while the areas on which neurologists frequently fixated often did not. Dwell time in regions of interest (ROI was likewise compared between the two groups, revealing that, although dwell time on large lesions was not different between the two groups, dwell time in clinically important areas with low salience was longer in neurologists than in controls. Therefore it appears that neurologists intentionally scan clinically important areas when reading brain CT images showing cerebrovascular accidents. Both neurologists and control subjects used the "bottom-up salience" form of visual attention, although the neurologists more effectively used the "top-down instruction" form.

  11. Reconstruction of tomographic image from x-ray projections of a few views

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1982-01-01

    Computer tomographs have progressed rapidly, and in the latest high performance types, the photographing time has been shortened to less than 5 sec, but the clear images of hearts have not yet been obtained. The X-ray tomographs used so far irradiate X-ray from many directions and measure the projected data, but by limiting projection direction to a small number, it was planned to shorter the X-ray photographing time and to reduce X-ray exposure as the objective of this study. In this paper, a method is proposed, by which tomographic images are reconstructed from projected data in a small number of direction by generalized inverse matrix penalty method. This method is the calculation method newly devised by the authors for this purpose. It is a kind of the nonlinear planning method added with the restrictive condition using a generalized inverse matrix, and it is characterized by the simple calculation procedure and rapid convergence. Moreover, the effect on reconstructed images when errors are included in projected data was examined. Also, the simple computer simulation to reconstruct tomographic images using the projected data in four directions was performed, and the usefulness of this method was confirmed. It contributes to the development of superhigh speed tomographs in future. (Kako, I.)

  12. Comparison of segmentation algorithms for cow contour extraction from natural barn background in side view images

    NARCIS (Netherlands)

    Hertem, van T.; Alchanatis, V.; Antler, A.; Maltz, E.; Halachmi, I.; Schlageter Tello, A.A.; Lokhorst, C.; Viazzi, S.; Romanini, C.E.B.; Pluk, A.; Bahr, C.; Berckmans, D.

    2013-01-01

    Computer vision techniques are a means to extract individual animal information such as weight, activity and calving time in intensive farming. Automatic detection requires adequate image pre-processing such as segmentation to precisely distinguish the animal from its background. For some analyses

  13. 3D object reconstruction in image-guided interventions using multi-view X-ray

    NARCIS (Netherlands)

    Papalazarou, C.

    2012-01-01

    In the last two decades, minimally-invasive interventions have replaced traditional surgery in many clinical scenarios. In these interventions, the doctor manipulates small devices inside the patient through a small incision, while guided by live imaging. In many cases, this guidance is provided by

  14. Are there age differences in attention to emotional images following a sad mood induction? Evidence from a free-viewing eye-tracking paradigm.

    Science.gov (United States)

    Speirs, Calandra; Belchev, Zorry; Fernandez, Amanda; Korol, Stephanie; Sears, Christopher

    2017-10-30

    Two experiments examined age differences in the effect of a sad mood induction (MI) on attention to emotional images. Younger and older adults viewed sets of four images while their eye gaze was tracked throughout an 8-s presentation. Images were viewed before and after a sad MI to assess the effect of a sad mood on attention to positive and negative scenes. Younger and older adults exhibited positively biased attention after the sad MI, significantly increasing their attention to positive images, with no evidence of an age difference in either experiment. A test of participants' recognition memory for the images indicated that the sad MI reduced memory accuracy for sad images for younger and older adults. The results suggest that heightened attention to positive images following a sad MI reflects an affect regulation strategy related to mood repair. The implications for theories of the positivity effect are discussed.

  15. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    Science.gov (United States)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  16. GABA levels in the ventromedial prefrontal cortex during the viewing of appetitive and disgusting food images.

    Science.gov (United States)

    Padulo, Caterina; Delli Pizzi, Stefano; Bonanni, Laura; Edden, Richard A E; Ferretti, Antonio; Marzoli, Daniele; Franciotti, Raffaella; Manippa, Valerio; Onofrj, Marco; Sepede, Gianna; Tartaro, Armando; Tommasi, Luca; Puglisi-Allegra, Stefano; Brancucci, Alfredo

    2016-10-01

    Characterizing how the brain appraises the psychological dimensions of reward is one of the central topics of neuroscience. It has become clear that dopamine neurons are implicated in the transmission of both rewarding information and aversive and alerting events through two different neuronal populations involved in encoding the motivational value and the motivational salience of stimuli, respectively. Nonetheless, there is less agreement on the role of the ventromedial prefrontal cortex (vmPFC) and the related neurotransmitter release during the processing of biologically relevant stimuli. To address this issue, we employed magnetic resonance spectroscopy (MRS), a non-invasive methodology that allows detection of some metabolites in the human brain in vivo, in order to assess the role of the vmPFC in encoding stimulus value rather than stimulus salience. Specifically, we measured gamma-aminobutyric acid (GABA) and, with control purposes, Glx levels in healthy subjects during the observation of appetitive and disgusting food images. We observed a decrease of GABA and no changes in Glx concentration in the vmPFC in both conditions. Furthermore, a comparatively smaller GABA reduction during the observation of appetitive food images than during the observation of disgusting food images was positively correlated with the scores obtained to the body image concerns sub-scale of Body Uneasiness Test (BUT). These results are consistent with the idea that the vmPFC plays a crucial role in processing both rewarding and aversive stimuli, possibly by encoding stimulus salience through glutamatergic and/or noradrenergic projections to deeper mesencephalic and limbic areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Microstructural analysis of human white matter architecture using Polarized Light Imaging (PLI: Views from neuroanatomy

    Directory of Open Access Journals (Sweden)

    Hubertus eAxer

    2011-11-01

    Full Text Available To date, there are several methods for mapping connectivity, ranging from the macroscopic to molecular scales. However, it is difficult to integrate this multiply-scaled data into one concept. Polarized light imaging (PLI is a method to quantify fiber orientation in gross histological brain sections based on the birefringent properties of the myelin sheaths. The method is capable of imaging fiber orientation of larger-scale architectural patterns with higher detail than diffusion MRI of the human brain. PLI analyses light transmission through a gross histological section of a human brain under rotation of a polarization filter combination. Estimates of the angle of fiber direction and the angle of fiber inclination are automatically calculated at every point of the imaged section. Multiple sections can be assembled into a 3D volume. We describe the principles of PLI and present several studies of fiber anatomy in the human brain: 6 brainstems were serially sectioned, imaged with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented in the PLI datasets. PLI data from the internal capsule was related to results from confocal laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber architecture of the extreme capsule was compared to macroscopical dissection, which represents a method of larger scale anatomy. The microstructure of the anterior human cingulum bundle was analyzed in serial sections of 6 human brains. PLI can generate highly-resolved 3D datsets of fiber orientation of the human brain and has, therefore, a high comparability to diffusion MR. To get additional information regarding axon structure and density, PLI can also be combined with classical histological stains. It brings the directional aspects of diffusion MRI into the range of histology and may represent a promising tool to close the gap between larger scale diffusion orientation and microstructural histological analysis

  18. Multiband CCD Image Compression for Space Camera with Large Field of View

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Space multiband CCD camera compression encoder requires low-complexity, high-robustness, and high-performance because of its captured images information being very precious and also because it is usually working on the satellite where the resources, such as power, memory, and processing capacity, are limited. However, the traditional compression approaches, such as JPEG2000, 3D transforms, and PCA, have the high-complexity. The Consultative Committee for Space Data Systems-Image Data Compression (CCSDS-IDC algorithm decreases the average PSNR by 2 dB compared with JPEG2000. In this paper, we proposed a low-complexity compression algorithm based on deep coupling algorithm among posttransform in wavelet domain, compressive sensing, and distributed source coding. In our algorithm, we integrate three low-complexity and high-performance approaches in a deeply coupled manner to remove the spatial redundant, spectral redundant, and bit information redundancy. Experimental results on multiband CCD images show that the proposed algorithm significantly outperforms the traditional approaches.

  19. Automated bone segmentation from large field of view 3D MR images of the hip joint

    International Nuclear Information System (INIS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-01-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head–neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone–cartilage interfaces for potential cartilage segmentation. (paper)

  20. Automated bone segmentation from large field of view 3D MR images of the hip joint

    Science.gov (United States)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  1. Effects of viewing- and illumination geometry on settlement type classification of quickbird images

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2011-07-01

    Full Text Available of classifiers based on such texture features, since the illumination geometry has a direct impact on both the amount and direction of shadowing within a scene. 2. METHODOLOGY A good image feature is one that is designed to have a repre- sentation... purpose of the study, though, was to quantify the influence of spurious differences on the generalization per- formance of classifiers using texture features as input, repre- sented directly by the Ad1*) Ad2and Bd1*) Bd2classes. Here, the GLCM features...

  2. Realistic Visualization of Virtual Views

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    that can be impractical and sometime impossible. In addition, the artificial nature of data often makes visualized virtual scenarios not realistic enough. Not realistic in the sense that a synthetic scene is easy to discriminate visually from a natural scene. A new field of research has consequently...... developed and received much attention in recent years: Realistic Virtual View Synthesis. The main goal is a high fidelity representation of virtual scenarios while easing modeling and physical phenomena simulation. In particular, realism is achieved by the transfer to the novel view of all the physical...... phenomena captured in the reference photographs, (i.e. the transfer of photographic-realism). An overview of most prominent approaches in realistic virtual view synthesis will be presented and briefly discussed. Applications of proposed methods to visual survey, virtual cinematography, as well as mobile...

  3. Transient or permanent fisheye views

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2012-01-01

    Transient use of information visualization may support specific tasks without permanently changing the user interface. Transient visualizations provide immediate and transient use of information visualization close to and in the context of the user’s focus of attention. Little is known, however......, about the benefits and limitations of transient visualizations. We describe an experiment that compares the usability of a fisheye view that participants could call up temporarily, a permanent fisheye view, and a linear view: all interfaces gave access to source code in the editor of a widespread...... programming environment. Fourteen participants performed varied tasks involving navigation and understanding of source code. Participants used the three interfaces for between four and six hours in all. Time and accuracy measures were inconclusive, but subjective data showed a preference for the permanent...

  4. Eye Movements When Viewing Advertisements

    Directory of Open Access Journals (Sweden)

    Emily eHiggins

    2014-03-01

    Full Text Available In this selective review, we examine key findings on eye movements when viewing advertisements. We begin with a brief, general introduction to the properties and neural underpinnings of saccadic eye movements. Next, we provide an overview of eye movement behavior during reading, scene perception, and visual search, since each of these activities is, at various times, involved in viewing ads. We then review the literature on eye movements when viewing print ads and warning labels (of the kind that appear on alcohol and tobacco ads, before turning to a consideration of advertisements in dynamic media (television and the Internet. Finally, we propose topics and methodological approaches that may prove to be useful in future research.

  5. Students' Views on Contextual Vocabulary Teaching: A Constructivist View

    Science.gov (United States)

    Tosun, Bahadir Cahit

    2016-01-01

    The current study is a quantitative research that aims to throw light on the place of students' views on contextual vocabulary teaching in conformity with Constructivism (CVTC) in the field of foreign language teaching. Hence, the study investigates whether any significant correlation exists between the fourth year university students' attitudes…

  6. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    International Nuclear Information System (INIS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2015-01-01

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ B,lim ∼ 30 mag arcsec −2 and provide accurate colors (σ B−V <0.1) down to μ B ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ B = 29 and luminosities of ∼10 6 L ⊙,B . While the northeast plume may be a faint outer extension of the tidal “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system

  7. Morphological study of the axial view of the cervical spinal cord by MR images

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Shimamura, Tadashi

    1994-01-01

    To investigate the morphological changes in the cervical spinal cord in patients with cervical myelopathy, we examined the axial anatomy of the cervical spinal cord and the spinal canal using MRI and CT scans. This study involved 35 patients (mean age=56.8) with cervical myelopathy and 118 adult normal volunteers (mean age=48.1) as controls. The transverse area of the spinal cord was measured on MR images (T 1 images), while the transverse area of the spinal canal was measured on CT. In normal subjects, the transverse area, the sagittal diameter, and the coronal diameter of the spinal cord showed a significant positive correlation with body height, and a significant negative correlation with age. No significant difference was identified between males and females. The transverse area, the sagittal diameter, the coronal diameter, and the ratio of the sagittal/coronal diameter of the spinal cord and the spinal canal showed significant positive correlations among each other in normal subjects, but no significant correlation was noted in the patients with cervical myelopathy. These was no significant difference between the normal subjects and the patients in the transverse area or in the ratio of the sagittal/coronal diameter of the spinal cord at the levels without cord compression. However, the transverse area of the spinal canal in the patients with myelopathy was significantly smaller than that of normal subjects. In conclusion, a poor or no correlation between the size of the spinal cord and the spinal canal is a frequent finding in patients with myelopathy. Furthermore, this study suggests that patients with myelopathy present a narrow spinal canal more frequently than do normal subjects. (author)

  8. Role of CT in hybrid imaging. Point of view of the medical physicist

    International Nuclear Information System (INIS)

    Gardin, I.; Hapdey, S.

    2010-01-01

    The recent introduction of hybrid systems SPECT/CT and PET/CT in nuclear medicine, greatly improved the diagnostic accuracy for particular clinical indications, due to the possible attenuation correction of functional images and the availability of helpful anatomic information. The introduction of CT in the nuclear diagnostic process results in a significant increase of the patient dose. This increase should be justified and optimized considering both the clinical question and the CT settings available on these systems. The choice of CT settings directly affects the effective dose. It varies basically as the square of the tube voltage, linearly with the length of the scan and the product of the current by the rotation time of the tube. It is also inversely proportional to the pitch. For attenuation correction, the literature shows that it is possible to use a low CT tube current without significant effect on tumor FDG uptake or lesion size. Conversely low CT voltage must be used with caution, depending on the algorithm implemented in the CT hybrid device to transform CT Hounsfield units to the attenuation map at the appropriate energy. The radiation dose for anatomic correlation can be substantially lower than for diagnostic-quality CT. It is possible to reduce the patient's radiation dose by a factor of 2 or 3 by acquiring a low-dose PET/CT scan for anatomic correlation of adequate image quality if compared with diagnostic 18 FDG PET/CT. Using specific CT settings, the effective dose can range 7.3-11.3 mSv depending on the patient weight and age. (authors)

  9. Texture analysis applied to second harmonic generation image data for disease classification and development of a multi-view second harmonic generation imaging platform

    Science.gov (United States)

    Wen, Lianggong

    Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites

  10. LabVIEW A Developer's Guide to Real World Integration

    CERN Document Server

    Fairweather, Ian

    2011-01-01

    LabVIEW(t) has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEW(t): A Developer's Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies c

  11. Modified ITER In-Vessel Viewing System

    International Nuclear Information System (INIS)

    Ahola, H.; Heikkinen, V.; Keraenen, K.; Suomela, J.

    2001-01-01

    The original ITER In-Vessel Viewing System (IVVS) prototype (Proc. of the 20th SOFT, vol. 2 (1998) 1051), which demonstrates the feasibility of linear fibre arrays for ITER in-vessel viewing, has been modified. In order to reduce the viewing time and to improve the image quality the beam dispersing mirrors was replaced by a diffractive optics element (DOE), which enhanced the laser illumination considerably. The performance of the system was tested using various target surfaces: the results obtained clearly indicate its adequacy for in-vessel viewing. Mechanical damage on smooth metal surfaces (scratches etc.) can be easily distinguished and the viewing resolution at a distance of 2 m is better than 1 mm. The IVVS has been re-designed to be compatible with the new ITER-FEAT. A conceptual study which covers all the functions and subsystems required for viewing has been completed. These results will be used to further modify the prototype: items to be tested include horizontal probe operation and laser illumination with an optical fibre

  12. Young people’s own museum views

    DEFF Research Database (Denmark)

    Drotner, Kirsten; Knudsen, Line Vestergaard; Mortenesen, Christian Hviid

    2017-01-01

    Taking a mixed-methods, visitor-focused approach to views on museums, this article examines what views young Danes aged 13–23 years (n = 2,350) hold on museums and how these views can be categorized and articulated. Arguing that studying views of museums as socially situated meaning-making practi......Taking a mixed-methods, visitor-focused approach to views on museums, this article examines what views young Danes aged 13–23 years (n = 2,350) hold on museums and how these views can be categorized and articulated. Arguing that studying views of museums as socially situated meaning...

  13. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures

  14. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures

  15. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages

  16. Lighting for remote viewing systems

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  17. Lighting for remote viewing systems

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  18. View

    African Journals Online (AJOL)

    Prof.Thoithi

    Pesticides and household/industrial chemicals, the two most important poisoning agents, accounted for ... thousands of people are exposed to poisoning. ... highest death rate (52.9%) [2,3]. ... targeted at children must focus on these classes of ... Poison. Age in years. 0-5 6-13 14-20 21-30 31-40 41-50 > 50 Unspecified Total.

  19. CRISM Views Phobos and Deimos

    Science.gov (United States)

    2007-01-01

    These two images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show Mars' two small moons, Phobos and Deimos, as seen from the Mars Reconnaissance Orbiter's low orbit around Mars. Both images were taken while the spacecraft was over Mars' night side, with the spacecraft turned off its normal nadir-viewing geometry to glimpse the moons. The image of Phobos, shown at the top, was taken at 0119 UTC on October 23 (9:19 p.m. EDT on Oct. 22), and shows features as small as 400 meters (1,320 feet) across. The image of Deimos, shown at the bottom, was taken at 2016 UTC (12:16 p.m. EDT) on June 7, 2007, and shows features as small as 1.3 kilometers (0.8 miles) across. Both CRISM images were taken in 544 colors covering 0.36-3.92 micrometers, and are displayed at twice the size in the original data for viewing purposes. Phobos and Deimos are about 21 and 12 kilometers (13.0 and 7.5 miles) in diameter and orbit Mars with periods of 7 hours, 39.2 minutes and 1 day, 6 hours, 17.9 minutes respectively. Because Phobos orbits Mars in a shorter time than Mars' 24 hour, 37.4-minute rotational period, to an observer on Mars' surface it would appear to rise in the west and set in the east. From Mars' surface, Phobos appears about one-third the diameter of the Moon from Earth, whereas Deimos appears as a bright star. The moons were discovered in 1877 by the astronomer Asaph Hall, and as satellites of a planet named for the Roman god of war, they were named for Greek mythological figures that personify fear and terror. The first spacecraft measurements of Phobos and Deimos, from the Mariner 9 and Viking Orbiter spacecraft, showed that both moons have dark surfaces reflecting only 5 to 7% of the sunlight that falls on them. The first reconstruction of the moons' spectrum of reflected sunlight was a difficult compilation from three different instruments, and appeared to show a flat, grayish spectrum resembling carbonaceous chondrite meteorites. Carbonaceous

  20. Direct Viewing of Dyslexics' Compensatory Strategies in Speech in Noise Using Auditory Classification Images.

    Science.gov (United States)

    Varnet, Léo; Meunier, Fanny; Trollé, Gwendoline; Hoen, Michel

    2016-01-01

    A vast majority of dyslexic children exhibit a phonological deficit, particularly noticeable in phonemic identification or discrimination tasks. The gap in performance between dyslexic and normotypical listeners appears to decrease into adulthood, suggesting that some individuals with dyslexia develop compensatory strategies. Some dyslexic adults however remain impaired in more challenging listening situations such as in the presence of background noise. This paper addresses the question of the compensatory strategies employed, using the recently developed Auditory Classification Image (ACI) methodology. The results of 18 dyslexics taking part in a phoneme categorization task in noise were compared with those of 18 normotypical age-matched controls. By fitting a penalized Generalized Linear Model on the data of each participant, we obtained his/her ACI, a map of the time-frequency regions he/she relied on to perform the task. Even though dyslexics performed significantly less well than controls, we were unable to detect a robust difference between the mean ACIs of the two groups. This is partly due to the considerable heterogeneity in listening strategies among a subgroup of 7 low-performing dyslexics, as confirmed by a complementary analysis. When excluding these participants to restrict our comparison to the 11 dyslexics performing as well as their average-reading peers, we found a significant difference in the F3 onset of the first syllable, and a tendency of difference on the F4 onset, suggesting that these listeners can compensate for their deficit by relying upon additional allophonic cues.

  1. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  2. IBM Brazil: and environmental modern view

    Energy Technology Data Exchange (ETDEWEB)

    Cremonesi, Valter [IBM Brasil, Industria, Maquinas e Servicos Ltda., Rio de Janeiro, Rj (Brazil)

    1993-12-31

    Information of practical experiences on Environmental Affairs at IBM Brazil plant and branch offices is presented, with a modern view of the mission, resources, support, waste management, monitoring programs, recycling, energy conservation, partners programs, nature preservation 2rograms, recognitions and image. (author). 4 figs., 2 tabs.

  3. End-view of the DELPHI detector

    CERN Multimedia

    1996-01-01

    End-view of the 10-m diameter DELPHI detector at CERN's LEP electron-positron collider from 1989 to 2000. Its concentric modules, including a pioneer large-scale application of the Ring Imaging Cherenkov technique to differentiate between all the various secondary particles, ensure high precision and 'granularity'.

  4. IBM Brazil: and environmental modern view

    Energy Technology Data Exchange (ETDEWEB)

    Cremonesi, Valter [IBM Brasil, Industria, Maquinas e Servicos Ltda., Rio de Janeiro, Rj (Brazil)

    1994-12-31

    Information of practical experiences on Environmental Affairs at IBM Brazil plant and branch offices is presented, with a modern view of the mission, resources, support, waste management, monitoring programs, recycling, energy conservation, partners programs, nature preservation 2rograms, recognitions and image. (author). 4 figs., 2 tabs.

  5. Hitler's Reich Viewed from 1984

    Science.gov (United States)

    Ward, James E.

    1971-01-01

    Viewed within a context of Orwell's 1984," the author's visit to East Germany, and particularly to the Museum for German History, revealed the efforts of an authoritarian regime to manipulate the thoughts and directions of that society to its own advantage. (JB)

  6. Ways of Viewing Pictorial Plasticity

    NARCIS (Netherlands)

    Wijntjes, M.W.A.

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim

  7. COMPETITION: CLASSICAL VERSUS NEOCLASSICAL VIEW

    OpenAIRE

    Mihaela Cornelia Sandu

    2013-01-01

    Competition is an important element from economical theory. Over time it has experienced several definitions and classifications much of them being contradictory. In this paper I will make a parallel between classical and neoclassical point of view according to competition. Keywords. Competition; neoclassical theory; classical theory; monopolistic; perfect competition.

  8. Chemistry Teachers' Views of Creativity

    Science.gov (United States)

    Akkanat, Çigdem; Gökdere, Murat

    2015-01-01

    The purpose of this study was to determine chemistry teachers' views of creativity. In this study, phenomenology method, one of the qualitative research patterns, was used. The participants of this study were 13 chemistry teachers working in Amasya. A semi-structured interview form was used for data collection. By using NVivo 9 qualitative…

  9. Side-View Face Recognition

    NARCIS (Netherlands)

    Santemiz, P.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.; van den Biggelaar, Olivier

    As a widely used biometrics, face recognition has many advantages such as being non-intrusive, natural and passive. On the other hand, in real-life scenarios with uncontrolled environment, pose variation up to side-view positions makes face recognition a challenging work. In this paper we discuss

  10. Useful field of view test.

    Science.gov (United States)

    Wood, Joanne M; Owsley, Cynthia

    2014-01-01

    The useful field of view test was developed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view test (UFOV) is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers; these measure the speed of visual processing for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher-order cognitive abilities, but performance also relies on visual sensory function because in order for targets to be attended to, they must be visible. The format of the UFOV has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest version measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and can have a positive impact on health and functional well-being, with the potential to increase the mobility and hence the independence of older adults. © 2014 S. Karger AG, Basel

  11. Time dependent view factor methods

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1998-03-01

    View factors have been used for treating radiation transport between opaque surfaces bounding a transparent medium for several decades. However, in recent years they have been applied to problems involving intense bursts of radiation in enclosed volumes such as in the laser fusion hohlraums. In these problems, several aspects require treatment of time dependence

  12. Sublime Views and Beautiful Explanations

    DEFF Research Database (Denmark)

    Barry, Daved; Meisiek, Stefan; Hatch, Mary Jo

    To create a generative theory that provides beautiful explanations and sublime views requires both a crafts and an art approach to scientific theorizing. The search for generativity leads scholars to perform various theorizing moves between the confines of simple, yet eloquent beauty...

  13. View-sharing in keyhole imaging: Partially compressed central k-space acquisition in time-resolved MRA at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Hadizadeh, Dariusch R., E-mail: Dariusch.Hadizadeh@ukb.uni-bonn.de [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Gieseke, Juergen [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Philips Healthcare, Best (Netherlands); Beck, Gabriele; Geerts, Liesbeth [Philips Healthcare, Best (Netherlands); Kukuk, Guido M. [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Bostroem, Azize [Department of Neurosurgery, Sigmund-Freud-Strasse 25, 53127 Bonn, Deutschland (Germany); Urbach, Horst; Schild, Hans H.; Willinek, Winfried A. [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany)

    2011-11-15

    Introduction: Time-resolved contrast-enhanced magnetic resonance (MR) angiography (CEMRA) of the intracranial vasculature has proved its clinical value for the evaluation of cerebral vascular disease in cases where both flow hemodynamics and morphology are important. The purpose of this study was to evaluate a combination of view-sharing with keyhole imaging to increase spatial and temporal resolution of time-resolved CEMRA at 3.0 T. Methods: Alternating view-sharing was combined with randomly segmented k-space ordering, keyhole imaging, partial Fourier and parallel imaging (4DkvsMRA). 4DkvsMRA was evaluated using varying compression factors (80-100) resulting in spatial resolutions ranging from (1.1 x 1.1 x 1.4) to (0.96 x 0.96 x 0.95) mm{sup 3} and temporal resolutions ranging from 586 ms/dynamic scan - 288 ms/dynamic scan in three protocols in 10 healthy volunteers and seven patients (17 subjects). DSA correlation was available in four patients with cerebral arteriovenous malformations (cAVMs) and one patient with cerebral teleangiectasia. Results: 4DkvsMRA was successfully performed in all subjects and showed clear depiction of arterial and venous phases with diagnostic image quality. At the maximum view-sharing compression factor (=100), a 'flickering' artefact was observed. Conclusion: View-sharing in keyhole imaging allows for increased spatial and temporal resolution in time-resolved MRA.

  14. View-sharing in keyhole imaging: Partially compressed central k-space acquisition in time-resolved MRA at 3.0 T

    International Nuclear Information System (INIS)

    Hadizadeh, Dariusch R.; Gieseke, Juergen; Beck, Gabriele; Geerts, Liesbeth; Kukuk, Guido M.; Bostroem, Azize; Urbach, Horst; Schild, Hans H.; Willinek, Winfried A.

    2011-01-01

    Introduction: Time-resolved contrast-enhanced magnetic resonance (MR) angiography (CEMRA) of the intracranial vasculature has proved its clinical value for the evaluation of cerebral vascular disease in cases where both flow hemodynamics and morphology are important. The purpose of this study was to evaluate a combination of view-sharing with keyhole imaging to increase spatial and temporal resolution of time-resolved CEMRA at 3.0 T. Methods: Alternating view-sharing was combined with randomly segmented k-space ordering, keyhole imaging, partial Fourier and parallel imaging (4DkvsMRA). 4DkvsMRA was evaluated using varying compression factors (80-100) resulting in spatial resolutions ranging from (1.1 x 1.1 x 1.4) to (0.96 x 0.96 x 0.95) mm 3 and temporal resolutions ranging from 586 ms/dynamic scan - 288 ms/dynamic scan in three protocols in 10 healthy volunteers and seven patients (17 subjects). DSA correlation was available in four patients with cerebral arteriovenous malformations (cAVMs) and one patient with cerebral teleangiectasia. Results: 4DkvsMRA was successfully performed in all subjects and showed clear depiction of arterial and venous phases with diagnostic image quality. At the maximum view-sharing compression factor (=100), a 'flickering' artefact was observed. Conclusion: View-sharing in keyhole imaging allows for increased spatial and temporal resolution in time-resolved MRA.

  15. Study of two novel large-field-of-view image intensifiers versus conventional chest radiography with use of FROC methods and simulated pulmonary nodules

    International Nuclear Information System (INIS)

    Winter, L.H.L.; Chakraborty, D.P.; Van Waes, P.F.G.M.; Puylaert, C.B.A.J.

    1989-01-01

    Two novel large-field-of-view image intensifier (LFOV 1.1) tubes have been introduced whose image area makes them suitable for chest imaging. Both modalities present a 100-mm hard-copy image to the radiologist. A pulmonary nodule performance experiment was done to compare the diagnostic accuracy of these tubes with conventional full-size chest images. The data were analyzed with the maximum-likelihood FROCFIT program. The relative ranking in terms of decreasing A1 values was TLX, Siemens 43-cm mode, conventional radiography, and Siemens 57-cm mode

  16. Predicting User Views in Online News

    DEFF Research Database (Denmark)

    Hardt, Daniel; Rambow, Owen

    2017-01-01

    We analyze user viewing behavior on anonline news site. We collect data from64,000 news articles, and use text featuresto predict frequency of user views.We compare predictiveness of the headlineand “teaser” (viewed before clicking) andthe body (viewed after clicking). Both arepredictive of click...

  17. Audience Perceptions of Family Viewing Time

    Science.gov (United States)

    Fontes, Brian F.; And Others

    1977-01-01

    Discusses a survey on Family Viewing Time designed to determine audience reactions to program content including violent and sexual content, audience perceptions of the suitability of program offerings for family viewing, and audience viewing habits with respect to Family Viewing Time. (MH)

  18. Brain stem/brain stem occipital bone ratio and the four-line view in nuchal translucency images of fetuses with open spina bifida.

    Science.gov (United States)

    Iuculano, Ambra; Zoppi, Maria Angelica; Piras, Alessandra; Arras, Maurizio; Monni, Giovanni

    2014-09-10

    Abstract Objective: Brain stem depth/brain stem occipital bone distance (BS/BSOB ratio) and the four-line view, in images obtained for nuchal translucency (NT) screening in fetuses with open spina bifida (OSB). Methods: Single center, retrospective study based on the assessment of NT screening images of fetuses with OSB. A ratio between the BS depth and the BSOB distance was calculated (BS/BSOB ratio) and the four-line view observed, and the sensitivity for a BS/BSOB ratio superior/equal to 1, and for the lack of detection of the four-line view were calculated. Results: There were 17 cases of prenatal diagnosis OSB. In six cases, the suspicion on OSB was raised during NT screening, in six cases, the diagnosis was made before 20 weeks and in five cases during anomaly scan. The BS/BSOB ratio was superior/equal to 1 in all 17 cases, and three lines, were visualized in 15/17 images of the OSB cases, being the sensitivity 100% (95% CI, 81 to 100%) and 88% (95% CI, 65 to 96%). Conclusion: Assessment of BS/BSOB ratio and four-line view in NT images is feasible detecting affected by OSB with high sensitivity. The presence of associated anomalies or of an enlarged NT enhances the early detection.

  19. Multi-view collimators for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1982-01-01

    This patent specification describes a collimator for obtaining multiple images of a portion of a body with a scintillation camera comprises a body of radiation-impervious material defining two or more groups of channels each group comprising a plurality of parallel channels having axes intersecting the portion of the body being viewed on one side of the collimator and intersecting the input surface of the camera on the other side of the collimator to produce a single view of said body, a number of different such views of said body being provided by each of said groups of channels, each axis of each channel lying in a plane approximately perpendicular to the plane of the input surface of the camera and all of such planes containing said axes being approximately parallel to each other. (author)

  20. Updating Recursive XML Views of Relations

    DEFF Research Database (Denmark)

    Choi, Byron; Cong, Gao; Fan, Wenfei

    2009-01-01

    This paper investigates the view update problem for XML views published from relational data. We consider XML views defined in terms of mappings directed by possibly recursive DTDs compressed into DAGs and stored in relations. We provide new techniques to efficiently support XML view updates...... specified in terms of XPath expressions with recursion and complex filters. The interaction between XPath recursion and DAG compression of XML views makes the analysis of the XML view update problem rather intriguing. Furthermore, many issues are still open even for relational view updates, and need...... to be explored. In response to these, on the XML side, we revise the notion of side effects and update semantics based on the semantics of XML views, and present effecient algorithms to translate XML updates to relational view updates. On the relational side, we propose a mild condition on SPJ views, and show...

  1. Adaptive Scanning Optical Microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging

    NARCIS (Netherlands)

    Potsaid, B.; Bellouard, Y.J.; Wen, J.T.

    2005-01-01

    From micro-assembly to biological observation, the optical microscope remains one of the most important tools for observing below the threshold of the naked human eye. However, in its conventional form, it suffers from a trade-off between resolution and field of view. This paper presents a new

  2. QlikView Server and Publisher

    CERN Document Server

    Redmond, Stephen

    2014-01-01

    This is a comprehensive guide with a step-by-step approach that enables you to host and manage servers using QlikView Server and QlikView Publisher.If you are a server administrator wanting to learn about how to deploy QlikView Server for server management,analysis and testing, and QlikView Publisher for publishing of business content then this is the perfect book for you. No prior experience with QlikView is expected.

  3. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  4. TH-E-17A-02: High-Pitch and Sparse-View Helical 4D CT Via Iterative Image Reconstruction Method Based On Tensor Framelet

    International Nuclear Information System (INIS)

    Guo, M; Nam, H; Li, R; Xing, L; Gao, H

    2014-01-01

    Purpose: 4D CT is routinely performed during radiation therapy treatment planning of thoracic and abdominal cancers. Compared with the cine mode, the helical mode is advantageous in temporal resolution. However, a low pitch (∼0.1) for 4D CT imaging is often required instead of the standard pitch (∼1) for static imaging, since standard image reconstruction based on analytic method requires the low-pitch scanning in order to satisfy the data sufficient condition when reconstructing each temporal frame individually. In comparison, the flexible iterative method enables the reconstruction of all temporal frames simultaneously, so that the image similarity among frames can be utilized to possibly perform high-pitch and sparse-view helical 4D CT imaging. The purpose of this work is to investigate such an exciting possibility for faster imaging with lower dose. Methods: A key for highpitch and sparse-view helical 4D CT imaging is the simultaneous reconstruction of all temporal frames using the prior that temporal frames are continuous along the temporal direction. In this work, such a prior is regularized through the sparsity transform based on spatiotemporal tensor framelet (TF) as a multilevel and high-order extension of total variation transform. Moreover, GPU-based fast parallel computing of X-ray transform and its adjoint together with split Bregman method is utilized for solving the 4D image reconstruction problem efficiently and accurately. Results: The simulation studies based on 4D NCAT phantoms were performed with various pitches (i.e., 0.1, 0.2, 0.5, and 1) and sparse views (i.e., 400 views per rotation instead of standard >2000 views per rotation), using 3D iterative individual reconstruction method based on 3D TF and 4D iterative simultaneous reconstruction method based on 4D TF respectively. Conclusion: The proposed TF-based simultaneous 4D image reconstruction method enables high-pitch and sparse-view helical 4D CT with lower dose and faster speed

  5. For current viewing resistor loads

    Science.gov (United States)

    Lyons, Gregory R [Tijeras, NM; Hass, Jay B [Lee's Summit, MO

    2011-04-19

    The invention comprises a terminal unit for a flat cable comprising a BNC-PCB connector having a pin for electrically contacting one or more conducting elements of a flat cable, and a current viewing resistor having an opening through which the pin extends and having a resistor face that abuts a connector face of the BNC-PCB connector, wherein the device is a terminal unit for the flat cable.

  6. World View in Economic Science

    Directory of Open Access Journals (Sweden)

    Kyzym Mykola O.

    2017-09-01

    Full Text Available In the process of updating the economic model of society there arose the problem of eliminating contradictions in the development of economic science that do not allow us to solve problems of practice in proven ways. Although these contradictions and methods for their resolving are partially reflected in many scientific publications, methodological and practical justifications for a comprehensive study of the reserves of the economic science development by combining the provisions of philosophy and disciplines of the humanities are still relevant. The solution of the problem of unpredictability of functioning and development of the economy using such a combination of scientific disciplines can be ensured by applying the world view models that enable justifying the vector of attention of scientists in the subject area of the problem. The constructiveness of the interaction of scientists representing different ontological views of the world depends on improving of the conceptual and categorical support of their dialogue. A scientific world view in such a composition creates a basis, firstly, for a fruitful discussion of representatives of various disciplines having a common subject of research, and, secondly, for overcoming the institutional and cognitive barriers to professional mobility of scientists. It can also serve to develop the mobility of representatives of professional communities of researchers.

  7. Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging

    International Nuclear Information System (INIS)

    Blumhagen, Jan O.; Ladebeck, Ralf; Fenchel, Matthias; Braun, Harald; Quick, Harald H.; Faul, David; Scheffler, Klaus

    2014-01-01

    Purpose: In quantitative PET imaging, it is critical to accurately measure and compensate for the attenuation of the photons absorbed in the tissue. While in PET/CT the linear attenuation coefficients can be easily determined from a low-dose CT-based transmission scan, in whole-body MR/PET the computation of the linear attenuation coefficients is based on the MR data. However, a constraint of the MR-based attenuation correction (AC) is the MR-inherent field-of-view (FoV) limitation due to static magnetic field (B 0 ) inhomogeneities and gradient nonlinearities. Therefore, the MR-based human AC map may be truncated or geometrically distorted toward the edges of the FoV and, consequently, the PET reconstruction with MR-based AC may be biased. This is especially of impact laterally where the patient arms rest beside the body and are not fully considered. Methods: A method is proposed to extend the MR FoV by determining an optimal readout gradient field which locally compensates B 0 inhomogeneities and gradient nonlinearities. This technique was used to reduce truncation in AC maps of 12 patients, and the impact on the PET quantification was analyzed and compared to truncated data without applying the FoV extension and additionally to an established approach of PET-based FoV extension. Results: The truncation artifacts in the MR-based AC maps were successfully reduced in all patients, and the mean body volume was thereby increased by 5.4%. In some cases large patient-dependent changes in SUV of up to 30% were observed in individual lesions when compared to the standard truncated attenuation map. Conclusions: The proposed technique successfully extends the MR FoV in MR-based attenuation correction and shows an improvement of PET quantification in whole-body MR/PET hybrid imaging. In comparison to the PET-based completion of the truncated body contour, the proposed method is also applicable to specialized PET tracers with little uptake in the arms and might reduce the

  8. Can the synthetic C view images be used in isolation for diagnosing breast malignancy without reviewing the entire digital breast tomosynthesis data set?

    Science.gov (United States)

    Murphy, Mark C; Coffey, Louise; O'Neill, Ailbhe C; Quinn, Cecily; Prichard, Ruth; McNally, Sorcha

    2018-02-09

    The aim of this study was to determine if the synthetic C view acquired at digital breast tomosynthesis (DBT) would give adequate information to confirm a malignancy and could obviate the need to review all the tomosynthesis image data set. All patients with biopsy-proven breast cancer recalled from screening mammograms between May and September 2016 were included for review. For each patient, the screening 2D mammogram, the synthetic C view, and the DBT images were reviewed by three breast radiologists and each assigned a BIRADS code. Any discrepancies were reviewed and resolved by consensus. A total of 92 patients were diagnosed with breast cancer in this time period. Fourteen were excluded because they did not have DBT performed. Five women were recalled for evaluation of two lesions. In total, 83 lesions were assessed. In 27 cases, the BIRADS code remained unchanged in the three modalities. In 16 cases, the lesions appeared more concerning on C view and DBT that on the original mammogram but were not definitive for malignancy (BIRADS 4). In 29 cases, a BIRADS 5 code was assigned on C view and tomosynthesis but not on 2D. For 11 lesions, a BIRADS 5 code was assigned only on DBT. Four women had BIRADS 5 lesions seen on both the C view and DBT that were not seen on the screening 2D mammogram. One was multifocal. While the synthetic C view gives additional information when compared to a screening 2D mammogram, the full DBT tomosynthesis data set needs to be reviewed to diagnose a breast malignancy.

  9. Introduction of hind foot coronal alignment view

    International Nuclear Information System (INIS)

    Moon, Il Bong; Jeon, Ju Seob; Yoon, Kang Cheol; Choi, Nam Kil; Kim, Seung Kook

    2006-01-01

    Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hind foot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hind foot coronal alignment view. Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. Both feet stood on a radiolucent platform with equal weight on both feet. Both feet are located foot axis longitudinal perpendicular to the platform. Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. The x-ray beam is angled down approximately 15 .deg. to 20 .deg. This image described tibial axis and medial, lateral tuberosity of calcaneus. Calcaneus do not rotated. The view is showed by talotibial joint space. Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hind foot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hind foot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hind foot and varus, valgus deformity of calcaneus

  10. THE WORLD VIEW, IDENTITY AND SOCIOCULTUR HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova

    2016-02-01

    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  11. MISR Views the Middle East

    Science.gov (United States)

    2000-01-01

    This image, generated using 16 orbits of MISR data collected between August 16 and August 30, 2000, takes us to the cradle of many civilizations. The data are from the 60-degree aftward-viewing camera. Because the individual orbit swaths are only 400 kilometers wide, they were 'mosaiced' together to form this composite picture, which covers about 2700 kilometers from west to east and 1750 kilometers from north to south. A few discontinuities are present in the mosaic, particularly near clouds, due to changes in the scene which occurred between dates when the individual orbit data were acquired.At the northern tip of the Red Sea, the Gulf of Suez and the Gulf of Aqaba frame the sandy deserts and spectacular mountains of the Sinai Peninsula. The highest peaks are Gebel Katherina (Mountain of St. Catherine, 2637 meters) and Gebel Musa (Mountain of Moses, also known as Mount Sinai, 2285 meters). To the northeast, Israel and Jordan flank the Dead Sea, one of the saltiest inland water bodies in the world. At its northern edge is Qumran, where the ancient Scrolls were discovered; the city of Jerusalem lies about 30 kilometers to the west.Several large rivers are prominent. Flowing southeastward through Iraq are the Tigris and Euphrates. The dark area between the two rivers, northwest of the Persian Gulf, is a very fertile region where fishing and farming are prevalent. Wending its way through eastern Egypt is the Nile. In the south is Lake Nasser and the Aswan Dam; continuing northward the Nile passes the Temple of Luxor as it sharply loops to the east. It then turns west and northward, eventually passing the capital city of Cairo, and finally spreading into a prominent delta as it empties into the Mediterranean Sea. The bright dot just west of the apex of the delta marks the location of the great Pyramids and Sphinx complexes on the Giza Plateau. On the coast, west of the delta, is the ancient city of Alexandria, Egypt's main seaport.'MISR', as it turns out, is the

  12. Stakeholder views on pharmacogenomic testing.

    Science.gov (United States)

    Patel, Haridarshan N; Ursan, Iulia D; Zueger, Patrick M; Cavallari, Larisa H; Pickard, A Simon

    2014-02-01

    Pharmacogenomics has an important role in the evolution of personalized medicine, and its widespread uptake may ultimately depend on the interests and perspectives of key players in health care. Our aim was to summarize studies on stakeholder perspectives and attitudes toward pharmacogenomic testing. Thus, we conducted a review of original research studies that reported stakeholder views on pharmacogenomic testing using a structured approach in PubMed, International Pharmaceutical Abstracts, Cumulative Index to Nursing and Allied Health Literature, and EMBASE. A standardized data abstraction form was developed that included stakeholder group of interest-patients, general public, providers, and payers. Stakeholder views regarding barriers to pharmacogenetic implementation were organized into the following themes: ancillary information-related, clinical, economic, educational, ethical or legal, medical mistrust, and practicality. Of 34 studies that met our inclusion criteria, 37 perspectives were reported (15 on providers, 9 on the general public, 9 on patients, and 4 on payers). The most common topics that arose in studies of providers related to clinical usefulness of genetic data (n=11) and educational needs (n=11). Among the general public, the most common concerns were medical mistrust (n=5), insufficient education (n=5), and practicality (n=5). The most prevalent issues from the patient perspective were ethical or legal (n=6) and economic (n=5) issues. Among payers, leading issues were practicality (n=4) and clinical usefulness (n=3). There was overlap in the topics and concerns across stakeholder perspectives, including lack of knowledge about pharmacogenomic testing. Views on issues related to privacy, cost, and test result dissemination varied by stakeholder perspective. Limited research had been conducted in underrepresented groups. Efforts to address the issues raised by stakeholders may facilitate the implementation of pharmacogenomic testing into

  13. New views of the solar system

    CERN Document Server

    2010-01-01

    Are you up to date on the solar system? When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  14. New views of the solar system

    CERN Document Server

    2013-01-01

    Are you up to date on the solar system?  When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System 2013 looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets, new missions, updates for ongoing missions, newly-discovered moons, and updated tables. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  15. Viewing Chinese art on an interactive tabletop.

    Science.gov (United States)

    Hsieh, Chun-ko; Hung, Yi-Ping; Ben-Ezra, Moshe; Hsieh, Hsin-Fang

    2013-01-01

    To protect fragile paintings and calligraphy, Taiwan's National Palace Museum (NPM) has policies controlling the frequency and duration of their exposure. So, visitors might not see the works they planned to see. To address this problem, the NPM installed an interactive tabletop for viewing the works. This tabletop, the first to feature multiresolution and gigapixel photography technology, displays extremely high-quality images revealing brushwork-level detail. A user study at the NPM examined the tabletop's performance and collected visitor feedback.

  16. New views of the solar system

    CERN Document Server

    2009-01-01

    Is your library up to date on the Solar System? When the International Astronomical Union redefined the term "planet," Pluto was stripped of its designation as the solar system''s ninth planet. New Views of the Solar System looks at scientists'' changing perspectives on the solar system, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid and detailed images of the solar system.

  17. Automatic Texture and Orthophoto Generation from Registered Panoramic Views

    DEFF Research Database (Denmark)

    Krispel, Ulrich; Evers, Henrik Leander; Tamke, Martin

    2015-01-01

    are automatically identified from the geometry and an image per view is created via projection. We combine methods of computer vision to train a classifier to detect the objects of interest from these orthographic views. Furthermore, these views can be used for automatic texturing of the proxy geometry....... from range data only. In order to detect these elements, we developed a method that utilizes range data and color information from high-resolution panoramic images of indoor scenes, taken at the scanners position. A proxy geometry is derived from the point clouds; orthographic views of the scene...

  18. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol.

    Science.gov (United States)

    Gao, Yang; Bian, Zhaoying; Huang, Jing; Zhang, Yunwan; Niu, Shanzhou; Feng, Qianjin; Chen, Wufan; Liang, Zhengrong; Ma, Jianhua

    2014-06-16

    To realize low-dose imaging in X-ray computed tomography (CT) examination, lowering milliampere-seconds (low-mAs) or reducing the required number of projection views (sparse-view) per rotation around the body has been widely studied as an easy and effective approach. In this study, we are focusing on low-dose CT image reconstruction from the sinograms acquired with a combined low-mAs and sparse-view protocol and propose a two-step image reconstruction strategy. Specifically, to suppress significant statistical noise in the noisy and insufficient sinograms, an adaptive sinogram restoration (ASR) method is first proposed with consideration of the statistical property of sinogram data, and then to further acquire a high-quality image, a total variation based projection onto convex sets (TV-POCS) method is adopted with a slight modification. For simplicity, the present reconstruction strategy was termed as "ASR-TV-POCS." To evaluate the present ASR-TV-POCS method, both qualitative and quantitative studies were performed on a physical phantom. Experimental results have demonstrated that the present ASR-TV-POCS method can achieve promising gains over other existing methods in terms of the noise reduction, contrast-to-noise ratio, and edge detail preservation.

  19. An Examination of Television Viewing Motivations.

    Science.gov (United States)

    Rubin, Alan M.

    1981-01-01

    Identifies nine motivations for television viewing and relates these to age, viewing levels, television attitudes of attachment and reality, and program preferences. Implications of the results are discussed in terms of uses and gratifications research perspectives. (JMF)

  20. Formalizing correspondence rules for automotive architectural views

    NARCIS (Netherlands)

    Dajsuren, Y.; Gerpheide, C.M.; Serebrenik, A.; Wijs, A.J.; Vasilescu, B.N.; Brand, van den M.G.J.; Seinturier, L.; Bures, T.; McGregor, J.D.

    2014-01-01

    Architecture views have long been used in software industry to systematically model complex systems by representing them from the perspective of related stakeholder concerns. However, consensus has not been reached for the architecture views between automotive architecture description languages and

  1. Popperian and Inductivist Views of Science

    Science.gov (United States)

    Fraser, Barry J.

    1977-01-01

    Illustrates that a view of the nature of science is dependent upon underlying assumptions concerning scientific proof. Compares the inductive view of science with the non-inductive viewpoint of Karl Popper. (CP)

  2. Learning QlikView data visualization

    CERN Document Server

    Pover, Karl

    2013-01-01

    A practical and fast-paced guide that gives you all the information you need to start developing charts from your data.Learning QlikView Data Visualization is for anybody interested in performing powerful data analysis and crafting insightful data visualization, independent of any previous knowledge of QlikView. Experience with spreadsheet software will help you understand QlikView functions.

  3. Adolescents' Motivations for Viewing Graphic Horror.

    Science.gov (United States)

    Johnston, Deirdre D.

    1995-01-01

    Identifies four motivations adolescents report for viewing graphic horror films: gore watching, thrill watching, independent watching, and problem watching. Argues that viewing motivations are predictors of responses to graphic horror. Finds that viewing motivations were related to viewers' cognitive and affective responses and a tendency to…

  4. Views of Dr. Martin Luther King, Jr.

    Science.gov (United States)

    Davis, Alan H.

    1990-01-01

    Discusses views of Martin Luther King, Jr., including concepts of human rights, related counseling approaches, and ethics. Claims King's views provide helpful insights for counselors and clients. Concludes King invited individuals to view challenging life situations as moral opportunities. (Author/ABL)

  5. Usability of stereoscopic view in teleoperation

    Science.gov (United States)

    Boonsuk, Wutthigrai

    2015-03-01

    Recently, there are tremendous growths in the area of 3D stereoscopic visualization. The 3D stereoscopic visualization technology has been used in a growing number of consumer products such as the 3D televisions and the 3D glasses for gaming systems. This technology refers to the idea that human brain develops depth of perception by retrieving information from the two eyes. Our brain combines the left and right images on the retinas and extracts depth information. Therefore, viewing two video images taken at slightly distance apart as shown in Figure 1 can create illusion of depth [8]. Proponents of this technology argue that the stereo view of 3D visualization increases user immersion and performance as more information is gained through the 3D vision as compare to the 2D view. However, it is still uncertain if additional information gained from the 3D stereoscopic visualization can actually improve user performance in real world situations such as in the case of teleoperation.

  6. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite

    Science.gov (United States)

    Miecznik, Grzegorz; Shafer, Jeff; Baugh, William M.; Bader, Brett; Karspeck, Milan; Pacifici, Fabio

    2017-05-01

    WorldView-3 (WV-3) is a DigitalGlobe commercial, high resolution, push-broom imaging satellite with three instruments: visible and near-infrared VNIR consisting of panchromatic (0.3m nadir GSD) plus multi-spectral (1.2m), short-wave infrared SWIR (3.7m), and multi-spectral CAVIS (30m). Nine VNIR bands, which are on one instrument, are nearly perfectly registered to each other, whereas eight SWIR bands, belonging to the second instrument, are misaligned with respect to VNIR and to each other. Geometric calibration and ortho-rectification results in a VNIR/SWIR alignment which is accurate to approximately 0.75 SWIR pixel at 3.7m GSD, whereas inter-SWIR, band to band registration is 0.3 SWIR pixel. Numerous high resolution, spectral applications, such as object classification and material identification, require more accurate registration, which can be achieved by utilizing image processing algorithms, for example Mutual Information (MI). Although MI-based co-registration algorithms are highly accurate, implementation details for automated processing can be challenging. One particular challenge is how to compute bin widths of intensity histograms, which are fundamental building blocks of MI. We solve this problem by making the bin widths proportional to instrument shot noise. Next, we show how to take advantage of multiple VNIR bands, and improve registration sensitivity to image alignment. To meet this goal, we employ Canonical Correlation Analysis, which maximizes VNIR/SWIR correlation through an optimal linear combination of VNIR bands. Finally we explore how to register images corresponding to different spatial resolutions. We show that MI computed at a low-resolution grid is more sensitive to alignment parameters than MI computed at a high-resolution grid. The proposed modifications allow us to improve VNIR/SWIR registration to better than ¼ of a SWIR pixel, as long as terrain elevation is properly accounted for, and clouds and water are masked out.

  7. Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS, Moderate Resolution Imaging Spectroradiometer (MODIS and MERIS Sensors: Case Study for the Northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Blake A. Schaeffer

    2013-03-01

    Full Text Available Empirical band ratio algorithms for the estimation of colored dissolved organic matter (CDOM and dissolved organic carbon (DOC for Sea-viewing Wide Field-of-view Sensor (SeaWiFS, Moderate Resolution Imaging Spectroradiometer (MODIS and MERIS ocean color sensors were assessed and developed for the northern Gulf of Mexico. Match-ups between in situ measurements of CDOM absorption coefficients at 412 nm (aCDOM(412 with that derived from SeaWiFS were examined using two previously reported reflectance band ratio algorithms. Results indicate better performance using the Rrs(510/Rrs(555 (Bias = −0.045; RMSE = 0.23; SI = 0.49, and R2 = 0.66 than the Rrs(490/Rrs(555 reflectance band ratio algorithm. Further, a comparison of aCDOM(412 retrievals using the Rrs(488/Rrs(555 for MODIS and Rrs(510/Rrs(560 for MERIS reflectance band ratios revealed better CDOM retrievals with MERIS data. Since DOC cannot be measured directly by remote sensors, CDOM as the colored component of DOC is utilized as a proxy to estimate DOC remotely. A seasonal relationship between CDOM and DOC was established for the summer and spring-winter with high correlation for both periods (R2~0.9. Seasonal band ratio empirical algorithms to estimate DOC were thus developed using the relationships between CDOM-Rrs and seasonal CDOM-DOC for SeaWiFS, MODIS and MERIS. Results of match-up comparisons revealed DOC estimates by both MODIS and MERIS to be relatively more accurate during summer time, while both of them underestimated DOC during spring-winter time. A better DOC estimate from MERIS in comparison to MODIS in spring-winter could be attributed to its similarity with the SeaWiFS band ratio CDOM algorithm.

  8. Perspective View with Landsat Overlay, Costa Rica

    Science.gov (United States)

    2002-01-01

    This perspective view shows the Caribbean coastal plain of Costa Rica, with the Cordillera Central rising in the background and the Pacific Ocean in the distance. The prominent river in the center of the image is the Rio Sucio, which merges with the Rio Sarapiqui at the bottom of the image and eventually joins with Rio San Juan on the Nicaragua border.Like much of Central America, Costa Rica is generally cloud covered so very little satellite imagery is available. The ability of the Shuttle Radar Topography Mission (SRTM) instrument to penetrate clouds and make three-dimensional measurements will allow generation of the first complete high-resolution topographic map of the entire region. These data were used to generate the image.This three-dimensional perspective view was generated using elevation data from SRTM and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices

  9. Geophysicists' views about public engagement

    Science.gov (United States)

    Besley, J. C.; Dudo, A.; Yuan, S.

    2016-12-01

    The proposed talk would present the results of 2016 survey of American Geophysical Union members (n = 2040) about public engagement. This survey took place as part of a broader, NSF funded, study of engagement views across eight different U.S.-based scientific societies. The presentation would include data about geophysicists' past engagement behavior and willingness to engage alongside data about engagement attitudes, perceived norms (i.e. beliefs about whether peers engage and value engagement), and perceived efficacy (i.e., scientists' beliefs about their own communication skills and the impact of engagement). The presentation would also include results that describe scientists' overall goals for engagement (e.g., increasing support for specific policy positions, changing citizen behavior, etc.), as well as their communication-specific objectives (e.g., increasing knowledge, increase excitement, etc.). All of the results would be put in the context of equivalent results from scientists from seven other societies across a variety of fields, including chemistry, biology, and the social sciences. Three themes that would be emphasized in the presentation include (1) the fact that there are substantial commonalities in engagement views across scientific fields, (2) the important role that perceived engagement skill (efficacy) appears to play in predicting engagement willingness, and (3) a lack of evidence that scientists are thinking about engagement in strategic ways. Strategic engagement, in this regard, would involve setting clear goals and then choosing activities that the social science of science communication suggests might allow one to achieve those goals. The presentation would conclude with thoughts about what might be done to improve the effectiveness of science communication training.

  10. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging

    Directory of Open Access Journals (Sweden)

    Bernhard Ströbel

    2018-05-01

    Full Text Available Digitization of natural history collections is a major challenge in archiving biodiversity. In recent years, several approaches have emerged, allowing either automated digitization, extended depth of field (EDOF or multi-view imaging of insects. Here, we present DISC3D: a new digitization device for pinned insects and other small objects that combines all these aspects. A PC and a microcontroller board control the device. It features a sample holder on a motorized two-axis gimbal, allowing the specimens to be imaged from virtually any view. Ambient, mostly reflection-free illumination is ascertained by two LED-stripes circularly installed in two hemispherical white-coated domes (front-light and back-light. The device is equipped with an industrial camera and a compact macro lens, mounted on a motorized macro rail. EDOF images are calculated from an image stack using a novel calibrated scaling algorithm that meets the requirements of the pinhole camera model (a unique central perspective. The images can be used to generate a calibrated and real color texturized 3Dmodel by ‘structure from motion’ with a visibility consistent mesh generation. Such models are ideal for obtaining morphometric measurement data in 1D, 2D and 3D, thereby opening new opportunities for trait-based research in taxonomy, phylogeny, eco-physiology, and functional ecology.

  11. Accuracy of x-ray image-based 3D localization from two C-arm views: a comparison between an ideal system and a real device

    Science.gov (United States)

    Brost, Alexander; Strobel, Norbert; Yatziv, Liron; Gilson, Wesley; Meyer, Bernhard; Hornegger, Joachim; Lewin, Jonathan; Wacker, Frank

    2009-02-01

    arm X-ray imaging devices are commonly used for minimally invasive cardiovascular or other interventional procedures. Calibrated state-of-the-art systems can, however, not only be used for 2D imaging but also for three-dimensional reconstruction either using tomographic techniques or even stereotactic approaches. To evaluate the accuracy of X-ray object localization from two views, a simulation study assuming an ideal imaging geometry was carried out first. This was backed up with a phantom experiment involving a real C-arm angiography system. Both studies were based on a phantom comprising five point objects. These point objects were projected onto a flat-panel detector under different C-arm view positions. The resulting 2D positions were perturbed by adding Gaussian noise to simulate 2D point localization errors. In the next step, 3D point positions were triangulated from two views. A 3D error was computed by taking differences between the reconstructed 3D positions using the perturbed 2D positions and the initial 3D positions of the five points. This experiment was repeated for various C-arm angulations involving angular differences ranging from 15° to 165°. The smallest 3D reconstruction error was achieved, as expected, by views that were 90° degrees apart. In this case, the simulation study yielded a 3D error of 0.82 mm +/- 0.24 mm (mean +/- standard deviation) for 2D noise with a standard deviation of 1.232 mm (4 detector pixels). The experimental result for this view configuration obtained on an AXIOM Artis C-arm (Siemens AG, Healthcare Sector, Forchheim, Germany) system was 0.98 mm +/- 0.29 mm, respectively. These results show that state-of-the-art C-arm systems can localize instruments with millimeter accuracy, and that they can accomplish this almost as well as an idealized theoretical counterpart. High stereotactic localization accuracy, good patient access, and CT-like 3D imaging capabilities render state-of-the-art C-arm systems ideal devices for X

  12. View Ahead After Spirit's Sol 1861 Drive (Stereo)

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11977 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11977 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images combined into this stereo, 210-degree view of the rover's surroundings during the 1,861st to 1,863rd Martian days, or sols, of Spirit's surface mission (March 28 to 30, 2009). This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The center of the scene is toward the south-southwest. East is on the left. West-northwest is on the right. The rover had driven 22.7 meters (74 feet) southwestward on Sol 1861 before beginning to take the frames in this view. The drive brought Spirit past the northwestern corner of Home Plate. In this view, the western edge of Home Plate is on the portion of the horizon farthest to the left. A mound in middle distance near the center of the view is called 'Tsiolkovsky' and is about 40 meters (about 130 feet) from the rover's position. This view is presented as a cylindrical-perspective projection with geometric seam correction.

  13. Combined large field-of-view MRA and time-resolved MRA of the lower extremities: Impact of acquisition order on image quality

    International Nuclear Information System (INIS)

    Riffel, Philipp; Haneder, Stefan; Attenberger, Ulrike I.; Brade, Joachim; Schoenberg, Stefan O.; Michaely, Henrik J.

    2012-01-01

    Purpose: Different approaches exist for hybrid MRA of the calf station. So far, the order of the acquisition of the focused calf MRA and the large field-of-view MRA has not been scientifically evaluated. Therefore the aim of this study was to evaluate if the quality of the combined large field-of-view MRA (CTM MR angiography) and time-resolved MRA with stochastic interleaved trajectories (TWIST MRA) depends on the order of acquisition of the two contrast-enhanced studies. Methods: In this retrospective study, 40 consecutive patients (mean age 68.1 ± 8.7 years, 29 male/11 female) who had undergone an MR angiographic protocol that consisted of CTM-MRA (TR/TE, 2.4/1.0 ms; 21° flip angle; isotropic resolution 1.2 mm; gadolinium dose, 0.07 mmol/kg) and TWIST-MRA (TR/TE 2.8/1.1; 20° flip angle; isotropic resolution 1.1 mm; temporal resolution 5.5 s, gadolinium dose, 0.03 mmol/kg), were included. In the first group (group 1) TWIST-MRA of the calf station was performed 1–2 min after CTM-MRA. In the second group (group 2) CTM-MRA was performed 1–2 min after TWIST-MRA of the calf station. The image quality of CTM-MRA and TWIST-MRA were evaluated by 2 two independent radiologists in consensus according to a 4-point Likert-like rating scale assessing overall image quality on a segmental basis. Venous overlay was assessed per examination. Results: In the CTM-MRA, 1360 segments were included in the assessment of image quality. CTM-MRA was diagnostic in 95% (1289/1360) of segments. There was a significant difference (p < 0.0001) between both groups with regard to the number of segments rated as excellent and moderate. The image quality was rated as excellent in group 1 in 80% (514/640 segments) and in group 2 in 67% (432/649), respectively (p < 0.0001). In contrast, the image quality was rated as moderate in the first group in 5% (33/640) and in the second group in 19% (121/649) respectively (p < 0.0001). The venous overlay was disturbing in 10% in group 1 and 20% in group

  14. Viewing angle switching of patterned vertical alignment liquid crystal display

    International Nuclear Information System (INIS)

    Lim, Young Jin; Jeong, Eun; Chin, Mi Hyung; Lee, Seung Hee; Ji, Seunghoon; Lee, Gi-Dong

    2008-01-01

    Viewing angle control of a patterned vertical alignment (PVA) liquid crystal display using only one panel is investigated. In conventional PVA modes, a vertically aligned liquid crystal (LC) director tilts down in four directions making 45 deg. with respect to crossed polarizers to exhibit a wide viewing angle. In the viewing angle control device, one pixel was divided into two sub-pixels such that the LC director in the main pixel is controlled to be tilted down in multiple directions making an angle with the polarizer, playing the role of main display with the wide viewing angle, while the LC director in the sub-pixel is controlled to be tilted down to the polarizer axis, playing the role of sub-pixel to the viewing angle control for the narrow viewing angle. Using sub-pixel control, light leakage or any type of information such as characters and image can be generated in oblique viewing directions without distorting the image quality in the normal direction, which will prevent others from peeping at the displayed image by overlapping the displayed image with the made image

  15. School violence: an insider view.

    Science.gov (United States)

    Johnson, Shelley A; Fisher, Kathleen

    2003-01-01

    To discover what teachers perceive to be contributing factors to violence in schools. Open-ended questions were asked of a convenience sample of teachers ( = 396) during an in-service education program on school violence. The teachers were in a semi-rural school district in a Mid-Atlantic state. Answers were analyzed using content analysis; all responses were reviewed and important themes were extracted. Identified themes were then placed into suitable categories and studied to determine relationships. Of the surveys analyzed ( = 239), 13 themes were identified. The three categories which then identified probable causes of school violence were (1) lack of knowledge, (2) lack of support, and (3) inadequate safety measures. Nurses can use the results of this study in multiple ways. One is to help parents understand their role in preventing school violence. Because violence in the home and violence in the media seem to foster violent acting-out behavior, nurses can teach parents about these correlations and seek solutions such as the elimination of family violence, and monitoring television viewing and video games. Nursing assessments of school-aged children and their families can include these elements. School nurses in particular can use these study results as an opportunity to develop interventions for students, teachers, and families that stress knowledge building about impulse control, anger management, appropriate parenting, and early intervention for at-risk children.

  16. Swine Flu -A Comprehensive View

    Science.gov (United States)

    Singh, Vandana; Sood, Meenakshi

    2012-07-01

    The present article is aimed on comprehensive view of Swine flu. It was first isolated from pigs in 1930 in USA. Pandemic caused by H1N1 in 2009 brought it in limelight. Itís a viral respiratory disease caused by viruses that infects pigs, resulting in nasal secretions, barking cough, decreased appetite, and listless behavior. Swine virus consist of eight RNA strands, one strand derived from human flu strains, two from avian (bird) strains, and five from swine strains. Swine flu spreads from infected person to healthy person by inhalation or ingestion of droplets contaminated with virus while sneezing or coughing. Two antiviral agents have been reported to help prevent or reduce the effects of swine flu, flu shot and nasal spray. WHO recommended for pandemic period to prevent its future outbreaks through vaccines or non-vaccines means. Antiviral drugs effective against this virus are Tamiflu and Relenza. Rapid antigen testing (RIDT), DFA testing, viral culture, and molecular testing (RT-PCR) are used for its diagnosis in laboratory

  17. Career development: graduate nurse views.

    Science.gov (United States)

    Cleary, Michelle; Horsfall, Jan; Muthulakshmi, Paulpandi; Happell, Brenda; Hunt, Glenn E

    2013-09-01

    To explore recent Singapore nursing graduates' experience of and views about their career development and progress. The recruitment and retention of an adequate number of registered nurses is a continuing workforce issue in Singapore and other major cities. Survey of recent nursing graduates. Recent nursing graduates from the Bachelor programme (n = 147) were sent an individual survey; a response rate of 54% was achieved. Findings show that nurses rated their self-concept in a positive manner and were most satisfied (moderately to very) with helping patients and providing effective care, and the level of patient involvement. They were least satisfied (moderately to only a little) with prestige among the general medical community and the general public, hours of work, lifestyle factors and research opportunities. The following four factors were identified as significant impediments to career development; lack of support in the work place; perceived insufficient clinical career development opportunities; excessive work hours; and limited access to merit-based places in further education. Suggestions made to overcome perceived career development barriers are as follows: broad multifactorial healthcare system changes; decreased and more flexible working hours; and fairer access to further clinical and higher education. Results highlight the value clinical nurses place on having access to career development opportunities, merit-based further education and work place supports. These factors also have the potential to influence patient care and impact on the retention of nurses in their present job and satisfaction with their nursing career. © 2013 Blackwell Publishing Ltd.

  18. Cosmological Views of Anania Shirakatsi

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2017-12-01

    Since the ancient times the usage of cosmological ideas in mythology and poetry has contributed to the formation and development of human's philosophical thought. It is believed that before the M. Mashtots's alphabet, ancient Armenians have expressed their astronomical knowledge through stone structures and rock art.In the Armenian reality, the cosmological views, the idea of the spherical shape of the Earth and information of other celestial bodies more vividly were manifested in the works of Movses Khorenatsi, David Anhaght (5th century) and Anania Shirakatsi (7th century).Anania Shirakatsi is an Armenian Astronomer, Mathematician, Philosopher, Geographer and Alchemist.The importance of his work is also noted by foreign authors and he was called 7th century Cosmologist, First Scientist of Armenia and Middival Astronomer. Shirakatsi's works are united in his comprehensive knowledge, his insight of the mind, the ability of combining and analyzing facts and his literature talent.His works have simultaneous historical, cosmic, geographical, religious, literary and mystical significance. In the present study we will show Anania Shirakatsi's cosmological ideas and observations.

  19. Contemporary views on selective mutism

    Directory of Open Access Journals (Sweden)

    Dimoski Sanja

    2016-01-01

    Full Text Available The aim of this paper is to review contemporary literature on selective mutism (SM, available in our language. The paper includes a contemporary definition of the disorder, previous studies of selective mutism, theories about its origin, and treatment. SM is a disorder that occurs in childhood, when a child's speech is selectively lacking in certain social situations. School is the context in which the disorder is typically manifested, which is why SM is often diagnosed only after children start school. The paper gives a historical account of changes in views on this disorder. Modern conceptions emphasize selective inability of children to spontaneously and successfully express themselves verbally. In researching SM, case studies on children who have selective mutism are most commonly published. Etiological factors are not precisely defined, and different conceptions give their interpretations depending on various theoretical frameworks. Some studies consistently indicate a relation between SM and social anxiety, and some with opposing behavior and delays in language development. Based on theoretical explanations of SM, psychological interventions (behavioral and cognitive-behavioral, psychodynamic and projective techniques, counseling and family therapy are created. Modern treatment of selective mutism includes an eclectic approach and emphasizes the role of teachers and school in general. Future studies should deepen the knowledge about selective mutism, specify the methodological procedure and stimulate the individualized treatment of children with SM.

  20. Intermediate view synthesis for eye-gazing

    Science.gov (United States)

    Baek, Eu-Ttuem; Ho, Yo-Sung

    2015-01-01

    Nonverbal communication, also known as body language, is an important form of communication. Nonverbal behaviors such as posture, eye contact, and gestures send strong messages. In regard to nonverbal communication, eye contact is one of the most important forms that an individual can use. However, lack of eye contact occurs when we use video conferencing system. The disparity between locations of the eyes and a camera gets in the way of eye contact. The lock of eye gazing can give unapproachable and unpleasant feeling. In this paper, we proposed an eye gazing correction for video conferencing. We use two cameras installed at the top and the bottom of the television. The captured two images are rendered with 2D warping at virtual position. We implement view morphing to the detected face, and synthesize the face and the warped image. Experimental results verify that the proposed system is effective in generating natural gaze-corrected images.

  1. Development in distributed beam-view

    International Nuclear Information System (INIS)

    Bhole, R.B.; Pal, Satbajit; Dasgupta, S.

    2003-01-01

    A computerized distributed beam-viewer has been developed using PC-add on image digitizer card plugged into a Pentium PC running Windows NT. Image Acquisition card (IMAQ-1408) from National Instruments is driven to digitise inputs from CCD cameras placed along the beam transport lines. The multiple clients situated across a switched Ethernet LAN, collects the data and displays beam-views on a desirable Window size. Only one privilege client at the control room has the selection facility of the channel (camera), whereas image display processing and storing facility are provided at all other clients end. The client server S/W written on Window SDK is implemented using Window Socket ver 2.0 library functions. (author)

  2. Remote viewing system development in BNFL

    International Nuclear Information System (INIS)

    Case, D.R.; Garlick, D.R.; Crawford, G.; Montgomerie, J.

    1996-01-01

    The application of imaging systems to BNFL's plants is primarily provided by the Company's Engineering Group. Many systems have been developed for active service and several new developments are currently in an advanced stage of implementation. BNFL has acquired extensive experience of remote viewing from a series of projects undertaken for the Sellafield site in West Cumbria. Applications vary in size and complexity, from simple identification of bar-codes to more complex schemes for remotely storing UO 3 drums. Some are high speed and highly repetitive, whereas others are low speed but require high precision. In this paper the authors outline a selection of current applications. (UK)

  3. Remote viewing system development in BNFL

    International Nuclear Information System (INIS)

    Case, D.R.; Garlick, D.R.; Crawford, G.; Montgomerie, J.

    1996-01-01

    The application of imaging systems to BNFL's plants is primarily provided by the Company's Engineering Group. Many systems have been developed for active service and several new developments are currently in an advanced stage of implementation. BNFL has acquired extensive experience of remote viewing from a series of projects undertaken for the Sellafield site in West Cumbria. Applications vary in size and complexity, from simple identification of bar-codes to more complex schemes for remotely storing UO 3 drums. Some are high speed and highly repetitive, whereas others are low speed but require high precision. In this paper the authors shall outline a selection of current applications. (Author)

  4. Rhenium-188-Lipiodol therapy of liver cancer: Optimization of conjugate-view imaging of 188Re for patient-specific dosimetry

    International Nuclear Information System (INIS)

    Chaudakshetrin, P.; Osorio, M.; Padhy, A.K.; Divgi, C.; Zanzonico, P.

    2004-01-01

    Full text: Intrahepatic artery Lipiodol labeled with generator-produced, β-emitting 188Re (17 hr; Eβ=0.53-0.70 MeV; Range=4 mm) localizes in and may effectively treat inoperable liver tumors. Although 188Re emits an imageable 155-keV γ ray (15%), its 478- and 633-keV β rays (2.3%) complicate imaging. Our objective was to optimize 188Re image quality and conjugate-view accuracy for quantitative imaging-based patient-specific dosimetry for 188Re-Lipiodol. Using an ADAC dual-EpicO-circumflex-detector gamma camera, 188Re intrinsic and extrinsic (with LEGP, MEGP, and HEGP collimation) uniformities using either 99mTc intrinsic or 188Re extrinsic flood corrections were evaluated. 188Re conjugate view count rate vs. activity concentration linearity as a function of scattering/attenuating medium thickness was then evaluated with and without corrections for attenuation (a 188Re transmission image) and for scatter and septal penetration, subtracting a fraction of counts in a lower-energy (109-140 keV)- and a higher-energy (170-201 keV)-window image, respectively, from the 20% (140-171 keV) photopeak image. Our phantom consisted of 5 10-ml vials containing 25 to 400 μCi/ml of 188Re with 0 to 6 cm at different positions (∼5 cm apart) between the detectors (60 cm apart) and with a 0- to 6-cm thickness of non-radioactive water between the vials and each detector. With a 99mTc intrinsic correction, 188Re intrinsic uniformity was excellent ( 10% and 'tubey'), and was poorer the lower the energy rating of the collimation. Uniformity with HEGP collimation and an extrinsic 188Re correction was acceptable ( 0.95) and the slope (cps/pixel/μCi/ml) was constant +25% (vs +10% for 99mTc) for 0- to 6-cm thicknesses of water. Regardless of the fraction of counts subtracted, neither scatter nor septal-penetration correction improved the slope constancy. Conclusion: Downscatter/septal penetration of the 478- and 633-keV 188Re γ-rays complicates imaging of its 155-keV γ-ray. Using HEGP

  5. Effects of affective picture viewing on postural control

    NARCIS (Netherlands)

    Stins, J.F.; Beek, P.J.

    2007-01-01

    Background: Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of

  6. Stereo Viewing System. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The Stereo Viewing System provides stereoscopic viewing of Light Duty Utility Arm activities. Stereoscopic viewing allows operators to see the depth of objects. This capability improves the control of the Light Duty Utility Arm performed in DOE's underground radioactive waste storage tanks and allows operators to evaluate the depth of pits, seams, and other anomalies. Potential applications include Light Duty Utility Arm deployment operations at the Oak Ridge Reservation, Hanford Site, and the Idaho National Engineering and Environmental Laboratory

  7. The equine flexed lateral fetlock radiographic view

    International Nuclear Information System (INIS)

    Dyer, L.L.

    1993-01-01

    Recommendations for obtaining the flexed lateral radiographic view of the equine fetlock are provided. By tilting the X-ray tube in a 10-degrees dorsal direction, the angle of the flexed lateral fetlock joint is matched. While this view will not be effective on all horses, utilizing the flexed view aids in evaluating those horses that present an abnormal conformation when the fetlock joint is flexed

  8. MedXViewer: providing a web-enabled workstation environment for collaborative and remote medical imaging viewing, perception studies and reader training

    International Nuclear Information System (INIS)

    Looney, P.T.; Young, K.C.; Halling-Brown, M.D.

    2016-01-01

    MedXViewer (Medical extensible Viewer) has been developed to address the need for workstation-independent, picture archiving and communication system (PACS)-less viewing and interaction with anonymised medical images. The aim of this paper is to describe the design and features of MedXViewer as well as to introduce the new features available in the latest release (version 1.2). MedXViewer currently supports digital mammography and tomosynthesis. The flexible software design used to develop MedXViewer allows it to be easily extended to support other imaging modalities. Regions of interest can be drawn by a user, and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. Complex tree-like questions can be asked where a given answer presents the user to new questions. The hanging protocol can be specified for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled, e.g. quadrant zooming in digital mammography and tomosynthesis studies. MedXViewer can integrate with a web-based image database OPTIMAM Medical Image Database allowing results and images to be stored centrally. The software can, alternatively, run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and coordinating remote collaborative viewing sessions. (authors)

  9. The Views of `Volunteer' of Japanese University Students

    OpenAIRE

    Arakawa, Yumiko; Yoshida, Hiroko; Hozumi, Yoshimi

    2007-01-01

    A questionnaire survey was given to Japanese undergraduate students to determine their personal experiences of `volunteer activities'. And their views and images of `volunteer' in Japan. The results showed that almost 80% experienced `volunteer activities' in schools before entering university. The details of their experiences did not relate to their views and images of `volunteer' and the `volunteer activities' at schools did not seem to play an important role in developing the concept of `v...

  10. A prospective view of radioprotection

    International Nuclear Information System (INIS)

    Barescut, Jean C.

    2008-01-01

    Full text: If we exclude the specific case of medical radioprotection and workers radioprotection, the main challenge of tomorrow radioprotection is the protection of usual people faced to a possible increase of ambient contamination, either as a consequence of usual releases of industry or as a consequence of sporadic accidents. From the view points of regulators and practitioners of radioprotection, we have to optimize today researches and studies, to optimize protection investments and to prepare future rules according to what could be the possible concerns of radioprotection in a near future. Clearly, when dealing with nuclear energy, a perspective of 30 years is not a very far one. A nuclear plant built today will still be in operation 30 years from now. But 30 years is a fairly long time compared to evolutions of science. For example, DNA was discovered in 1953 and gene engineering began seriously in the years 70s. There is no doubt that the evolution speed will not decrease and that the scientific situation will be quite different within 30 years. This could have many practical consequences. One is that the risk associated to radioactive stress could be better estimated, another is that precursors of a disease attributable to radioactivity will certainly be detected earlier and will allow cure to begin earlier. It is quite likely also that our ability to stimulate the natural defenses of organisms will improve. In an even more futuristic approach, the use of nanoengines or the use of highly selective killer processes at the cell level seems quite possible. Radioprotection will not only be influenced by science but also by the level of environmental threats. We have already a pretty good backward knowledge but, if we consider that the real beginning of industrial nuclear age was in the seventies, within 30 years, we will have more than 70 years of retrospective view. That should be enough to determine if our exposure to radioactivity is really increasing

  11. Physics and our View of the World

    Science.gov (United States)

    Hilgevoord, Jan

    1994-11-01

    Foreword; 1. Introduction JAN HILGEVOORD; 2. Questioning the answers GERARD T. HOOFT; 3. Theories of everything JOHN BARROW; 4. The scientific view of the world DENNIS DIEKS; 5. Enlarging the world ERNAN McMULLIN; 6. The world of empiricism BAS VAN FRAASSEN; 7. Has the scientific view of the world a special status compared with other views? PAUL FEYERABEND; 8. Quantum theory and our view of the world PAUL FEYERABEND; 9. Interpretation of science - science as interpretation BAS VAN FRAASSEN; 10. Problems in debates about physics and religion WILLEM DREES; 11. The mind of God PAUL DAVIES; 12. The sources of models for God: metaphysics or metaphor? MARY HESSE; 13. Discussion.

  12. FACET, Radiation View Factor with Shadowing

    International Nuclear Information System (INIS)

    Shapiro, A.B.

    1988-01-01

    1 - Description of program or function: FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors as input data to finite element heat transfer analysis codes. 2 - Method of solution: Three algorithms are incorporated to integrate the view factor equation for three dimensional geometries. The algorithm used for any two surfaces depends on their geometric relationship and whether third surface obstructions exist. The three algorithms are the area integration (AI) method, the line integration method (LI), and the Mitalas and Stephenson (MS) method. The LI method is used to calculate the view factor between two disjoint surfaces. If the two surfaces have an adjoint edge, the MS method is used. The AI method is used if there is self or third surface shadowing. In two-dimensional planar geometries, the view factor between two surfaces is calculated using Hottel's cross string method. For axisymmetric geometries in the absence of shadowing, the view factor between two surfaces is calculated by view factor algebra using the view factors between parallel coaxial discs. In the presence of self or third surface shadowing, the geometry is represented in three dimensions before calculating the view factors

  13. Views on information literacy / Sichten auf Informationskompetenz

    OpenAIRE

    Hapke, Thomas

    2017-01-01

    Poster (in English and German language) illustrating different views on information literacy. Poster in deutscher und englischer Sprache zur Veranschaulichung verschiedener Sichten auf Informationskompetenz.

  14. Symbol in View of Ambiguity

    Directory of Open Access Journals (Sweden)

    Mohamad reza Yousefi

    2013-11-01

    Full Text Available Abstract Symbol from the perspective of rhetorical word, is phrase or sentence that apparent meaning, also inspires to reader a wide range of semantic.Since exploring the complex social and political ideas in the most mysticalway and indirectreflectionsocial and political thoughts symbolically is easier, so the symbol and symbolism especially in Persian literatureespeciallyin the realm of Persian poetry, has a special appearance.In addition to the factors mentioned in the contemporary literature, according familiar in literature and the emergence of particular schools interest toambiguoussymbolization has spreadfurther, especially the symbol has all the features of art ambiguity in the poem and it isone the major factors causing uncertainty.Thus, the precise definitions and symbols of contemporary poetry could be dominant in the unwinding ambiguous symbol detection of cryptic allusions and metaphors that matches the cursor symbol to help readers.  In the literature, especially language poetry, the inability of language toreflecting obscure mystical ideas, avoid to directexpression of political and social concerns of the reader in the course of participate to creation ambiguous literary works is the main motivation towards symbol and symbolization.According widespread use of symbol and its different of species can be viewed from different perspectives.The creation of ambiguity is the main purposes of using symbols (especially in poetry, so many poets have tried to achieve this goal have to formation of similar symbols and the explanation and resolution of this issue can open new window for understanding the poetry in front of an audience.  In this paper examines the ambiguity of symbols in terms of its precise boundaries are reviewed. Ambiguity is one of the important processes and also is the key Iranian poetry its means is today poetry. In such poetry ambiguity is a need to explore the new world from a different perspective, or explore this

  15. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images.

    Science.gov (United States)

    Guo, Le-Hang; Wang, Dan; Qian, Yi-Yi; Zheng, Xiao; Zhao, Chong-Ke; Li, Xiao-Long; Bo, Xiao-Wan; Yue, Wen-Wen; Zhang, Qi; Shi, Jun; Xu, Hui-Xiong

    2018-04-04

    With the fast development of artificial intelligence techniques, we proposed a novel two-stage multi-view learning framework for the contrast-enhanced ultrasound (CEUS) based computer-aided diagnosis for liver tumors, which adopted only three typical CEUS images selected from the arterial phase, portal venous phase and late phase. In the first stage, the deep canonical correlation analysis (DCCA) was performed on three image pairs between the arterial and portal venous phases, arterial and delayed phases, and portal venous and delayed phases respectively, which then generated total six-view features. While in the second stage, these multi-view features were then fed to a multiple kernel learning (MKL) based classifier to further promote the diagnosis result. Two MKL classification algorithms were evaluated in this MKL-based classification framework. We evaluated proposed DCCA-MKL framework on 93 lesions (47 malignant cancers vs. 46 benign tumors). The proposed DCCA-MKL framework achieved the mean classification accuracy, sensitivity, specificity, Youden index, false positive rate, and false negative rate of 90.41 ± 5.80%, 93.56 ± 5.90%, 86.89 ± 9.38%, 79.44 ± 11.83%, 13.11 ± 9.38% and 6.44 ± 5.90%, respectively, by soft margin MKL classifier. The experimental results indicate that the proposed DCCA-MKL framework achieves best performance for discriminating benign liver tumors from malignant liver cancers. Moreover, it is also proved that the three-phase CEUS image based CAD is feasible for liver tumors with the proposed DCCA-MKL framework.

  16. Web Based Rapid Mapping of Disaster Areas using Satellite Images, Web Processing Service, Web Mapping Service, Frequency Based Change Detection Algorithm and J-iView

    Science.gov (United States)

    Bandibas, J. C.; Takarada, S.

    2013-12-01

    Timely identification of areas affected by natural disasters is very important for a successful rescue and effective emergency relief efforts. This research focuses on the development of a cost effective and efficient system of identifying areas affected by natural disasters, and the efficient distribution of the information. The developed system is composed of 3 modules which are the Web Processing Service (WPS), Web Map Service (WMS) and the user interface provided by J-iView (fig. 1). WPS is an online system that provides computation, storage and data access services. In this study, the WPS module provides online access of the software implementing the developed frequency based change detection algorithm for the identification of areas affected by natural disasters. It also sends requests to WMS servers to get the remotely sensed data to be used in the computation. WMS is a standard protocol that provides a simple HTTP interface for requesting geo-registered map images from one or more geospatial databases. In this research, the WMS component provides remote access of the satellite images which are used as inputs for land cover change detection. The user interface in this system is provided by J-iView, which is an online mapping system developed at the Geological Survey of Japan (GSJ). The 3 modules are seamlessly integrated into a single package using J-iView, which could rapidly generate a map of disaster areas that is instantaneously viewable online. The developed system was tested using ASTER images covering the areas damaged by the March 11, 2011 tsunami in northeastern Japan. The developed system efficiently generated a map showing areas devastated by the tsunami. Based on the initial results of the study, the developed system proved to be a useful tool for emergency workers to quickly identify areas affected by natural disasters.

  17. Three-dimensional views of the nucleus of Comet 67P/Churyumov-Gerasimenko: an atlas of stereo anaglyphs from OSIRIS-NAC images

    Science.gov (United States)

    Lamy, Philippe L.; Romeuf, David; Faury, Guillaume; Durand, Joelle; Beigbeder, Laurent; Groussin, Olivier

    2017-10-01

    The Narrow Angle Camera (NAC) of the OSIRIS imaging system aboard ESA’s Rosetta spacecraft has acquired approximately 25000 images of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko at various spatial scales down to centimeters per pixel. The bulk of these images have been obtained in sequences and the combined displacement of the Rosetta orbiter along its trajectory and the rotation of the nucleus allow associating many pairs of images appropriate to stereoscopic viewing. This is achieved by constructing anaglyphs after rotating the images so that the relative shift appears horizontal. The shift is set to limit the parallax to approximately 2° (with a maximum value of 4°) for the foreground (to avoid image deformation) and the scene is placed behind the screen for optimal visual comfort. The rotation of the nucleus may have the adverse effect of introducing temporal incoherence, prominently from the variation of the cast shadows. Various solutions are implemented to circumvent this problem, usually by cropping the maximum extent of the shadows. A time of writing, approximately 900 anaglyphs have been produced and we expect to reach several thousand once the systematic search of suitable pairs will be completed. We will present examples of anaglyphs. They will be searchable thanks to a dedicated data base that will document each one including its location on a 3D numerical model of the nucleus. Many possibilities of querying the parameters will be offered. It is anticipated that this atlas available online in the near future will be a valuable tool for fostering our understanding of the complex morphology of the cometary surface and of the processes at work , as well as offering spectacular stereoscopic views of the nucleus enjoyable by a general public.

  18. 3D View of Grand Canyon, Arizona

    Science.gov (United States)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as

  19. Light Pollution: The Global View

    Science.gov (United States)

    Schwarz, H. E.

    2003-04-01

    al.), an overview of the work on radio frequency protection of sites (Cohen et al.) and the excellent introduction to the topic from the Chilean point of view (Daud). Related topics in the book are light pollution education, aircraft contrails, space advertising (with an added document provided by the relevant UN commission), and an experiment on involving the population of an entire country in measuring sky brightness, by using the internet and the media. The text is aimed at professionals from a wide range of disciplines related to lighting and its effects on the night-time environment in the broadest sense of the word. Lay persons interested in this emerging multi-disciplinary field can also find much of interest in this book. Link: http://www.wkap.nl/prod/b/1-4020-1174-1

  20. Initial experience with a nuclear medicine viewing workstation

    Science.gov (United States)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  1. Searching for the value of a view

    Science.gov (United States)

    Arthur W. Magill; Charles F. Schwan

    1989-01-01

    Assessing the trade-offs between market and nonmarket products of wildlands poses a major problem fornatural resource planners and managers. Scenic quality is a resource that is not quantifiable in monetary terms. To determine if market values of real estate offering views could define relative dollar values for physical dimensions and objects in views, they were...

  2. Programming Arduino with LabVIEW

    CERN Document Server

    Schwartz, Marco

    2015-01-01

    If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

  3. Developing a Teachable Point of View

    Science.gov (United States)

    Cameron, Kim

    2007-01-01

    As professors of management and organizational behavior mature in their teaching, they should begin to develop a teachable point of view. In this article, the author describes several attributes of a teachable point of view. Based on his own teaching experience, the author outlines five criteria for the content of the material taught--the what of…

  4. World View: The Second Hidden Dimension.

    Science.gov (United States)

    Skow, Lisa; And Others

    Proposing that world view is a dimension of culture which lies below the surface of human behavior at the level of the subconscious, this paper argues that this often ignored dimension of culture profoundly influences human communication. The paper is divided into two sections. First, world view is defined and its importance in explaining how…

  5. Consumer Views: Importance of Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on the importance of fuel economy amongst other vehicle attributes and views on which alternative fuel types would be the best and worst replacements for gasoline.

  6. How Justice System Officials View Wrongful Convictions

    Science.gov (United States)

    Smith, Brad; Zalman, Marvin; Kiger, Angie

    2011-01-01

    The wrongful conviction of factually innocent people is a growing concern within the United States. Reforms generated by this concern are predicated in part on the views of justice system participants. The authors surveyed judges, police officials, prosecutors, and defense lawyers in Michigan regarding their views of why wrongful convictions…

  7. Students' Views of Learning in Vocational Education.

    Science.gov (United States)

    Eklund-Myrskog, Gunilla

    1997-01-01

    Conceptions of learning and approaches to learning within vocational education were studied with 30 Finnish students of automotive mechanics. About half the students took a quantitative view of learning and favored a surface approach. Encouraging a qualitative view of learning and deeper approaches in vocational education is discussed. (SLD)

  8. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  9. Development and validation of a novel large field of view phantom and a software module for the quality assurance of geometric distortion in magnetic resonance imaging.

    Science.gov (United States)

    Torfeh, Tarraf; Hammoud, Rabih; McGarry, Maeve; Al-Hammadi, Noora; Perkins, Gregory

    2015-09-01

    To develop and validate a large field of view phantom and quality assurance software tool for the assessment and characterization of geometric distortion in MRI scanners commissioned for radiation therapy planning. A purpose built phantom was developed consisting of 357 rods (6mm in diameter) of polymethyl-methacrylat separated by 20mm intervals, providing a three dimensional array of control points at known spatial locations covering a large field of view up to a diameter of 420mm. An in-house software module was developed to allow automatic geometric distortion assessment. This software module was validated against a virtual dataset of the phantom that reproduced the exact geometry of the physical phantom, but with known translational and rotational displacements and warping. For validation experiments, clinical MRI sequences were acquired with and without the application of a commercial 3D distortion correction algorithm (Gradwarp™). The software module was used to characterize and assess system-related geometric distortion in the sequences relative to a benchmark CT dataset, and the efficacy of the vendor geometric distortion correction algorithms (GDC) was also assessed. Results issued from the validation of the software against virtual images demonstrate the algorithm's ability to accurately calculate geometric distortion with sub-pixel precision by the extraction of rods and quantization of displacements. Geometric distortion was assessed for the typical sequences used in radiotherapy applications and over a clinically relevant 420mm field of view (FOV). As expected and towards the edges of the field of view (FOV), distortion increased with increasing FOV. For all assessed sequences, the vendor GDC was able to reduce the mean distortion to below 1mm over a field of view of 5, 10, 15 and 20cm radius respectively. Results issued from the application of the developed phantoms and algorithms demonstrate a high level of precision. The results indicate that this

  10. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    Science.gov (United States)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  11. Clinical step onward with X-ray dark-field imaging and perspective view of medical applications of synchrotron radiation in Japan

    International Nuclear Information System (INIS)

    Ando, M.; Hashimoto, E.; Hashizume, H.; Hyodo, K.; Inoue, H.; Kunisada, T.; Maksimenko, A.; Mori, K.; Rubenstein, E.; Roberson, J.; Shimao, D.; Sugiyama, H.; Takeda, K.; Toyofuku, F.; Ueno, E.; Umetani, K.; Wada, H.; Pattanasiriwisawa, W.

    2005-01-01

    This paper reports, the application of synchrotron radiation to basic medicine at SPring-8 involving instrumentation and medical application of imaging and scattering. Emphasis should be laid on X-ray dark-field imaging (DFI) whose goal is clinical diagnosis of organs that have been invisible by ordinary techniques. Development of this technique is under way both at SPring-8 and KEK. The X-ray optics of DFI comprises a Bragg asymmetric monochro-collimator and a Laue case analyzer with a diffraction index of 440 using the X-ray energy of 35keV (λ=0.0354nm) in a parallel position. This analyzer that can provide with 80mmx80mm view size has 2.15mm thickness. At present the spatial resolution is around 5-10μm. Visibility of some organs such as soft bone tissue at excised human femoral head and breast cancer tissue is under test. This preliminary test shows that the DFI seems feasible in clinical diagnosis. Furthermore, a perspective view of application of synchrotron radiation to clinical medicine in Japan will be given

  12. A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction.

    Science.gov (United States)

    Chen, Bo; Bian, Zhaoying; Zhou, Xiaohui; Chen, Wensheng; Ma, Jianhua; Liang, Zhengrong

    2018-04-12

    Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction has been widely explored to reduce radiation dose. However, due to the piecewise constant assumption for the TV model, the reconstructed images often suffer from over-smoothness on the image edges. To mitigate this drawback of TV minimization, we present a Mumford-Shah total variation (MSTV) minimization algorithm in this paper. The presented MSTV model is derived by integrating TV minimization and Mumford-Shah segmentation. Subsequently, a penalized weighted least-squares (PWLS) scheme with MSTV is developed for the sparse-view CT reconstruction. For simplicity, the proposed algorithm is named as 'PWLS-MSTV.' To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quantitative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in terms of noise reduction, contrast-to-ratio measure and edge-preservation.

  13. First 3D view of solar eruptions

    Science.gov (United States)

    2004-07-01

    CME as seen by LASCO Figure 1. A classical three-part CME inside the LASCO C3 field of view, showing a bright frontal loop (shaped like a lightbulb)surrounding a dark cavity with a bright core. This CME is headed roughly 90 degrees away from Earth. The uniform disk in the centre of the image is where the occulter is placed, blocking out all direct sunlight. The approximate size of the Sun is indicated by the white circle in the middle. Click here CME as seen by LASCO Figure 2. A similar CME heading almost directly towards Earth, observed by LASCO C2 which has a smaller field of view than C3. The size of the Sun is indicated by the larger circle, and the x-marked circle on the Sun shows the origin of the CME. Panel a shows the total intensity (darker means more intensity) as imaged directly by LASCO. Only the narrow lower end of the 'lightbulb' shape is visible - the widest portion has expanded beyond the field of view, whereas the front part and the core are too dim to be seen or hidden behind the occulter. Panel d is a topographic map of the material shown in panel a. The distance from the plane of the Sun to the material is colour coded - the scale in units of solar radii is shown on the side. Panels b and c show the intensity as it would have appeared to an observer positioned to the side of the Sun or directly above it, respectively. Click here CMEs are the most powerful eruptions in the Solar System, with thousands of millions of tonnes of electrified gas being blasted from the Sun's atmosphere into space at millions of kilometres per hour. Researchers believe that CMEs are launched when solar magnetic fields become strained and suddenly 'snap' to a new configuration, like a rubber band that has been twisted to the breaking point. To fully understand the origin of these powerful blasts and the process that launches them from the Sun, scientists need to see the structure of CMEs in three dimensions. "Views in three dimensions will help us to better predict CME

  14. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  15. In vivo microvascular imaging of human oral and nasal cavities using swept-source optical coherence tomography with a single forward/side viewing probe

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-03-01

    We report three-dimensional (3D) imaging of microcirculation within human cavity tissues in vivo using a high-speed swept-source optical coherence tomography (SS-OCT) at 1.3 μm with a modified probe interface. Volumetric structural OCT images of the inner tissues of oral and nasal cavities are acquired with a field of view of 2 mm x 2 mm. Two types of disposable and detachable probe attachments are devised and applied to the port of the imaging probe of OCT system, enabling forward and side imaging scans for selective and easy access to specific cavity tissue sites. Blood perfusion is mapped with OCT-based microangiography from 3D structural OCT images, in which a novel vessel extraction algorithm is used to decouple dynamic light scattering signals, due to moving blood cells, from the background scattering signals due to static tissue elements. Characteristic tissue anatomy and microvessel architectures of various cavity tissue regions of a healthy human volunteer are identified with the 3D OCT images and the corresponding 3D vascular perfusion maps at a level approaching capillary resolution. The initial finding suggests that the proposed method may be engineered into a promising tool for evaluating and monitoring tissue microcirculation and its alteration within a wide-range of cavity tissues in the patients with various pathological conditions.

  16. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  17. Integrating multi-view transmission system into MPEG-21 stereoscopic and multi-view DIA (digital item adaptation)

    Science.gov (United States)

    Lee, Seungwon; Park, Ilkwon; Kim, Manbae; Byun, Hyeran

    2006-10-01

    As digital broadcasting technologies have been rapidly progressed, users' expectations for realistic and interactive broadcasting services also have been increased. As one of such services, 3D multi-view broadcasting has received much attention recently. In general, all the view sequences acquired at the server are transmitted to the client. Then, the user can select a part of views or all the views according to display capabilities. However, this kind of system requires high processing power of the server as well as the client, thus posing a difficulty in practical applications. To overcome this problem, a relatively simple method is to transmit only two view-sequences requested by the client in order to deliver a stereoscopic video. In this system, effective communication between the server and the client is one of important aspects. In this paper, we propose an efficient multi-view system that transmits two view-sequences and their depth maps according to user's request. The view selection process is integrated into MPEG-21 DIA (Digital Item Adaptation) so that our system is compatible to MPEG-21 multimedia framework. DIA is generally composed of resource adaptation and descriptor adaptation. It is one of merits that SVA (stereoscopic video adaptation) descriptors defined in DIA standard are used to deliver users' preferences and device capabilities. Furthermore, multi-view descriptions related to multi-view camera and system are newly introduced. The syntax of the descriptions and their elements is represented in XML (eXtensible Markup Language) schema. If the client requests an adapted descriptor (e.g., view numbers) to the server, then the server sends its associated view sequences. Finally, we present a method which can reduce user's visual discomfort that might occur while viewing stereoscopic video. This phenomenon happens when view changes as well as when a stereoscopic image produces excessive disparity caused by a large baseline between two cameras. To

  18. View subspaces for indexing and retrieval of 3D models

    Science.gov (United States)

    Dutagaci, Helin; Godil, Afzal; Sankur, Bülent; Yemez, Yücel

    2010-02-01

    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithms.

  19. Incidental abdominopelvic findings on expanded field-of-view lumbar spinal MRI: frequency, clinical importance, and concordance in interpretation by neuroimaging and body imaging radiologists

    International Nuclear Information System (INIS)

    Maxwell, A.W.P.; Keating, D.P.; Nickerson, J.P.

    2015-01-01

    Aim: To characterize the frequency of identification, clinical importance, and concordance in interpretation of incidental abdominopelvic findings identified on routine lumbar spinal MRI using supplemental expanded field-of-view (FOV) coronal imaging. Materials and methods: All lumbar spinal MRI reports over a 12-month period were retrospectively reviewed for the presence of incidental abdominopelvic findings identified using expanded FOV coronal imaging. Medical records were used to identify those findings that received follow-up, which were then categorized according to final diagnosis and classified as “indeterminate,” “likely clinically unimportant,” and “likely clinically important”. All cases that received follow-up were blindly and independently re-reviewed by a neuroimaging radiologist and body-imaging radiologist, and reviewer performances were compared to assess for agreement with regard to lesion significance, need for follow-up, and other parameters. Results: In total, 2067 reports were reviewed: 687 (33.2%) featured one or more incidental abdominopelvic findings, and 102 (4.9%) findings received further evaluation. Of these, 11 (10.9%) were classified as “indeterminate,” 50 (49%) as “likely clinically unimportant,” and 41 (40.1%) were classified as “likely clinically important.” Excellent agreement was observed between the reviewing radiologists for all evaluated parameters. Conclusion: The addition of an expanded FOV coronal sequence to the standard lumbar spinal MRI protocol was associated with the identification of a large number of incidental abdominopelvic findings, the minority of which represent likely clinically important findings. Most incidental findings were confidently dismissed by a neuroimaging radiologist as likely clinically unimportant without utilization of additional clinical or radiographic resources. - Highlights: • Expanded field-of-view (FOV) MRI improves detection of important incidental findings.

  20. Opportunity's View After Drive on Sol 1806

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a cylindrical projection with geometric seam correction.

  1. Effects of affective picture viewing on postural control

    Directory of Open Access Journals (Sweden)

    Beek Peter J

    2007-10-01

    Full Text Available Abstract Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS. We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. Results The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Conclusion Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the

  2. Effects of affective picture viewing on postural control.

    Science.gov (United States)

    Stins, John F; Beek, Peter J

    2007-10-04

    Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and

  3. Nasoduodenal tube placement: Are two views necessary to confirm position?

    International Nuclear Information System (INIS)

    Ngo, Anh-Vu; Done, Stephen; Otto, Randolph; Friedman, Seth; Stanescu, A.L.

    2017-01-01

    Nasoduodenal tube (NDT) placement is typically performed at the bedside and two-view abdominal radiographs are usually used to confirm tube position. Anecdotally, in most instances the lateral view is unnecessary and utilizes more than twice the radiation than an anteroposterior (AP) view alone. We hypothesize that NDT location can be determined using only the AP view, with the NDT position determined on two views utilized as the gold standard. A search was performed for all two- or three-view abdominal radiographs from September 2012 to September 2013 with the phrase ''ND tube'' in the reason field of the requisition. These studies were independently reviewed by two radiologists and scored for anatomical tube position in three different scenarios: AP view alone, the lateral view alone, and both views together, with the latter serving as the gold standard. The anatomical scores were subsequently grouped to reflect clinically significant scenarios. Comparative analysis was performed with the original and clinically grouped scores. A total of 102 patients and 306 separate two-view exams were evaluated. Of the 102 patients, 55 had at least two separate exams. Across raters, concordances of AP and lateral scores relative to the gold standard assessment were 88% and 73% for anatomical scores, and 91.5% and 86.4% for clinically grouped data. Trend differences for fewer errors were found with the AP compared to the lateral view. There were statistically significant group differences with a greater number of false-negative errors in the lateral data set. No clear differences were found when comparing AP and lateral ratings for false-positive errors. Upon review of the common errors, we determined a few imaging findings on AP radiographs that can help assess the need for an additional lateral view. A single AP view is sufficient to determine the NDT position in most cases. Two views should be reserved for cases where the NDT position cannot be

  4. Nasoduodenal tube placement: Are two views necessary to confirm position?

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Anh-Vu; Done, Stephen; Otto, Randolph; Friedman, Seth; Stanescu, A.L. [Seattle Children' s Hospital, Department of Radiology, Seattle, WA (United States)

    2017-09-15

    Nasoduodenal tube (NDT) placement is typically performed at the bedside and two-view abdominal radiographs are usually used to confirm tube position. Anecdotally, in most instances the lateral view is unnecessary and utilizes more than twice the radiation than an anteroposterior (AP) view alone. We hypothesize that NDT location can be determined using only the AP view, with the NDT position determined on two views utilized as the gold standard. A search was performed for all two- or three-view abdominal radiographs from September 2012 to September 2013 with the phrase ''ND tube'' in the reason field of the requisition. These studies were independently reviewed by two radiologists and scored for anatomical tube position in three different scenarios: AP view alone, the lateral view alone, and both views together, with the latter serving as the gold standard. The anatomical scores were subsequently grouped to reflect clinically significant scenarios. Comparative analysis was performed with the original and clinically grouped scores. A total of 102 patients and 306 separate two-view exams were evaluated. Of the 102 patients, 55 had at least two separate exams. Across raters, concordances of AP and lateral scores relative to the gold standard assessment were 88% and 73% for anatomical scores, and 91.5% and 86.4% for clinically grouped data. Trend differences for fewer errors were found with the AP compared to the lateral view. There were statistically significant group differences with a greater number of false-negative errors in the lateral data set. No clear differences were found when comparing AP and lateral ratings for false-positive errors. Upon review of the common errors, we determined a few imaging findings on AP radiographs that can help assess the need for an additional lateral view. A single AP view is sufficient to determine the NDT position in most cases. Two views should be reserved for cases where the NDT position cannot be

  5. Language, Thought, and Culture: Views and Arguments

    Directory of Open Access Journals (Sweden)

    Keyvan Zahedi

    2009-07-01

    Full Text Available This study follows two aims: one to review some late views on the relations among language, thought, and culture; and the other, to offer a new strategy, in a novel model, based on last achievements in the minimalist approach. Studying views and arguments, three dichotomies are discussed: 1 the views which confirm the relation between culture and language in opposition to the views that deny this; 2 distinguishing the symmetry-procedural view and the transforming views of language; and 3 distinction among the social-communicational, and the biological-genetic motivations of language. The hypothesis for the novel strategy is that considering what the minimalist program has offered, especially from 2000 onwards, it is possible that language affects thought, while coding the and that culture affects language (which is called ethno-grammar . This is in addition to the biological-genetic base. From this point of view, language’s main function is neither to provide communication, nor to express thought, but to connect cognitive and socio-cultural terminals together.

  6. The activity view of inner speech

    Directory of Open Access Journals (Sweden)

    Fernando eMartínez-Manrique

    2015-03-01

    Full Text Available We distinguish two general approaches to inner speech (IS –the ‘format’ and the ‘activity’ views–, and defend the activity view. The format view grounds the utility of IS on features of the representational format of language, and is related to the thesis that the proper function of IS is to make conscious thinking possible. IS appears typically as a product constituted by representations of phonological features. The view also has implications for the idea that passivity phenomena in cognition may be misattributed IS. The activity view sees IS as a speaking activity that does not have a proper function in cognition. It simply inherits the array of functions of outer speech. We argue that it is methodologically advisable to start from this variety of uses, which suggests commonalities between internal and external activities. The format view has several problems; it has to deny unsymbolized thinking; it cannot easily explain how IS makes thoughts available to consciousness, and it cannot explain those uses of IS where its format features apparently play no role. The activity view not only lacks these problems but also has explanatory advantages: construing IS as an activity allows it to be integrally constituted by its content; the view is able to construe unsymbolized thinking as part of a continuum of phenomena that exploit the same mechanisms, and it offers a simple explanation for the variety of uses of IS.

  7. Reduced field-of -view diffusion-weighted magnetic resonance imaging of the pancreas: Comparison with conventional single-shot echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jin; Lee, Jeong Min; Yoon, Jeong Hee; Jang, Jin Young; Kim, Sun Whe; Ryu, Ji Kon; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of); Kannengiesser, Stephan [Siemens Healthcare, Erlangen (Germany)

    2015-12-15

    To investigate the image quality (IQ) and apparent diffusion coefficient (ADC) of reduced field-of-view (FOV) diffusion-weighted imaging (DWI) of pancreas in comparison with full FOV DWI. In this retrospective study, 2 readers independently performed qualitative analysis of full FOV DWI (FOV, 38 × 38 cm; b-value, 0 and 500 s/mm{sup 2}) and reduced FOV DWI (FOV, 28 × 8.5 cm; b-value, 0 and 400 s/mm{sup 2}). Both procedures were conducted with a two-dimensional spatially selective radiofrequency excitation pulse, in 102 patients with benign or malignant pancreatic diseases (mean size, 27.5 ± 14.4 mm). The study parameters included 1) anatomic structure visualization, 2) lesion conspicuity, 3) artifacts, 4) IQ score, and 5) subjective clinical utility for confirming or excluding initially considered differential diagnosis on conventional imaging. Another reader performed quantitative ADC measurements of focal pancreatic lesions and parenchyma. Wilcoxon signed-rank test was used to compare qualitative scores and ADCs between DWI sequences. Mann Whitney U-test was used to compare ADCs between the lesions and parenchyma. On qualitative analysis, reduced FOV DWI showed better anatomic structure visualization (2.76 ± 0.79 at b = 0 s/mm{sup 2} and 2.81 ± 0.64 at b = 400 s/mm{sup 2}), lesion conspicuity (3.11 ± 0.99 at b = 0 s/mm{sup 2} and 3.15 ± 0.79 at b = 400 s/mm{sup 2}), IQ score (8.51 ± 2.05 at b = 0 s/mm{sup 2} and 8.79 ± 1.60 at b = 400 s/mm{sup 2}), and higher clinical utility (3.41 ± 0.64), as compared to full FOV DWI (anatomic structure, 2.18 ± 0.59 at b = 0 s/mm{sup 2} and 2.56 ± 0.47 at b = 500 s/mm{sup 2}; lesion conspicuity, 2.55 ± 1.07 at b = 0 s/mm{sup 2} and 2.89 ± 0.86 at b = 500 s/mm{sup 2}; IQ score, 7.13 ± 1.83 at b = 0 s/mm{sup 2} and 8.17 ± 1.31 at b = 500 s/mm{sup 2}; clinical utility, 3.14 ± 0.70) (p < 0.05). Artifacts were significantly improved on reduced FOV DWI (2.65 ± 0.68) at b = 0 s/mm{sup 2} (full FOV DWI, 2.41 ± 0.63) (p

  8. Volumetric fluorescence retinal imaging in vivo over a 30-degree field of view by oblique scanning laser ophthalmoscopy (oSLO).

    Science.gov (United States)

    Zhang, Lei; Song, Weiye; Shao, Di; Zhang, Sui; Desai, Manishi; Ness, Steven; Roy, Sayon; Yi, Ji

    2018-01-01

    While fluorescent contrast is widely used in ophthalmology, three-dimensional (3D) fluorescence retinal imaging over a large field of view (FOV) has been challenging. In this paper, we describe a novel oblique scanning laser ophthalmoscopy (oSLO) technique that provides 3D volumetric fluorescence retinal imaging with only one raster scan. The technique utilizes scanned oblique illumination and angled detection to obtain fluorescent cross-sectional images, analogous to optical coherence tomography (OCT) line scans (or B-scans). By breaking the coaxial optical alignment used in conventional retinal imaging modalities, depth resolution is drastically improved. To demonstrate the capability of oSLO, we have performed in vivo volumetric fluorescein angiography (FA) of the rat retina with ~25μm depth resolution and over a 30° FOV. Using depth segmentation, oSLO can obtain high contrast images of the microvasculature down to single capillaries in 3D. The multi-modal nature of oSLO also allows for seamless combination with simultaneous OCT angiography.

  9. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images.

    Science.gov (United States)

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-05-22

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.

  10. New Views of a Familiar Beauty

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5 This image composite compares the well-known visible-light picture of the glowing Trifid Nebula (left panel) with infrared views from NASA's Spitzer Space Telescope (remaining three panels). The Trifid Nebula is a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. The false-color Spitzer images reveal a different side of the Trifid Nebula. Where dark lanes of dust are visible trisecting the nebula in the visible-light picture, bright regions of star-forming activity are seen in the Spitzer pictures. All together, Spitzer uncovered 30 massive embryonic stars and 120 smaller newborn stars throughout the Trifid Nebula, in both its dark lanes and luminous clouds. These stars are visible in all the Spitzer images, mainly as yellow or red spots. Embryonic stars are developing stars about to burst into existence. Ten of the 30 massive embryos discovered by Spitzer were found in four dark cores, or stellar 'incubators,' where stars are born. Astronomers using data from the Institute of Radioastronomy millimeter telescope in Spain had previously identified these cores but thought they were not quite ripe for stars. Spitzer's highly sensitive infrared eyes were able to penetrate all four cores to reveal rapidly growing embryos. Astronomers can actually count the individual embryos tucked inside the cores by looking closely at the Spitzer image taken by its infrared array camera (figure 4). This instrument has the highest spatial resolution of Spitzer's imaging cameras. The Spitzer image from the multiband imaging photometer (figure 5), on the other hand, specializes in detecting cooler materials. Its view highlights the relatively cool core material falling onto the Trifid's growing embryos. The middle panel is a combination of Spitzer

  11. Development of a dual-modality, dual-view smartphone-based imaging system for oral cancer detection

    Science.gov (United States)

    Uthoff, Ross D.; Song, Bofan; Birur, Praveen; Kuriakose, Moni Abraham; Sunny, Sumsum; Suresh, Amritha; Patrick, Sanjana; Anbarani, Afarin; Spires, Oliver; Wilder-Smith, Petra; Liang, Rongguang

    2018-02-01

    Oral cancer is a rising health issue in many low and middle income countries (LMIC). Proposed is an implementation of autofluorescence imaging (AFI) and white light imaging (WLI) on a smartphone platform providing inexpensive early detection of cancerous conditions in the oral cavity. Interchangeable modules allow both whole mouth imaging for an overview of the patients' oral health and an intraoral imaging probe for localized information. Custom electronics synchronize image capture and external LED operation for the excitation of tissue fluorescence. A custom Android application captures images and an image processing algorithm provides likelihood estimates of cancerous conditions. Finally, all data can be uploaded to a cloud server where a convolutional neural network classifies the images and a remote specialist can provide diagnosis and triage instructions.

  12. Trust-based collective view prediction

    CERN Document Server

    Luo, Tiejian; Xu, Guandong; Zhou, Jia

    2013-01-01

    Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users' past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View

  13. Implementing VMware Horizon View 5.2

    CERN Document Server

    Ventresco, Jason

    2013-01-01

    A step-by-step tutorial covering all components of the View Horizon suite in detail, to ensure that you can utilize all features of the platform, and discover all of the possible ways that it can be used within your own environment.If you are a newcomer in system administration, and you wish to implement a small to midsized Horizon View environment, then this book is for you. It will also benefit individuals who wish to administrate and manage Horizon View more efficiently or are studying for the VCP5-DT.

  14. Application of DICOM Standard in LabVIEW Environment

    Directory of Open Access Journals (Sweden)

    Dušan KONIAR

    2008-01-01

    Full Text Available DICOM is the world standard for picture archiving and communication in medicine. Development system LabVIEW based on graphical programming is primary designed for virtual instrumentation, it offers many tools and operators for image processing and analysis, but it does not directly support the work with DICOM standard. The article deals with possibility of importing native DICOM files to LabVIEW and work with them.

  15. Window view of the renal areas in infants and children

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, A [Hospital for Sick Children, London (UK)

    1979-10-01

    A technique has been developed to use the renal window view for imaging the kidneys through the homogeneous tissues of the liver, the lower part of the heart and the upper part of the stomach. The projection is obtained by directing the X-ray beam obliquely through the infant or child so that the view of the kidneys is not obscured by any overlying bowel gas which would have created problems in conventional intravenous urography. (UK).

  16. Effects of affective picture viewing on postural control

    OpenAIRE

    Stins, John F; Beek, Peter J

    2007-01-01

    Abstract Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis t...

  17. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  18. Multi-view L2-SVM and its multi-view core vector machine.

    Science.gov (United States)

    Huang, Chengquan; Chung, Fu-lai; Wang, Shitong

    2016-03-01

    In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Optimized image processing with modified preprocessing of image data sets of a transparent imaging plate by way of the lateral view of the cervical spine

    International Nuclear Information System (INIS)

    Reissberg, S.; Hoeschen, C.; Redlich, U.; Scherlach, C.; Preuss, H.; Kaestner, A.; Doehring, W.; Woischneck, D.; Schuetze, M.; Reichardt, K.; Firsching, R.

    2002-01-01

    Purpose: To improve the diagnostic quality of lateral radiographs of the cervical spine by pre-processing the image data sets produced by a transparent imaging plate with both-side reading and to evaluate any possible impact on minimizing the number of additional radiographs and supplementary investigations. Material and Methods: One hundred lateral digital radiographs of the cervical spine were processed with two different methods: processing of each data set using the system-imminent parameters and using the manual model. The difference between the two types of processing is the level of the latitude value. Hard copies of the processed images were judged by five radiologists and three neurosurgeons. The evaluation applied the image criteria score (ICS) without conventional reference images. Results: In 99% of the lateral radiographs of the cervical spine, all vertebral bodies could be completed delineated using the manual mode, but only 76% of the images processed by the system-imminent parameters showed all vertebral bodies. Thus, the manual mode enabled the evaluation of up to two additional more caudal vertebral bodies. The manual mode processing was significantly better concerning object size and processing artifacts. This optimized image processing and the resultant minimization of supplementary investigations was calculated to correspond to a theoretical dose reduction of about 50%. (orig.) [de

  20. View-invariant object recognition ability develops after discrimination, not mere exposure, at several viewing angles.

    Science.gov (United States)

    Yamashita, Wakayo; Wang, Gang; Tanaka, Keiji

    2010-01-01

    One usually fails to recognize an unfamiliar object across changes in viewing angle when it has to be discriminated from similar distractor objects. Previous work has demonstrated that after long-term experience in discriminating among a set of objects seen from the same viewing angle, immediate recognition of the objects across 30-60 degrees changes in viewing angle becomes possible. The capability for view-invariant object recognition should develop during the within-viewing-angle discrimination, which includes two kinds of experience: seeing individual views and discriminating among the objects. The aim of the present study was to determine the relative contribution of each factor to the development of view-invariant object recognition capability. Monkeys were first extensively trained in a task that required view-invariant object recognition (Object task) with several sets of objects. The animals were then exposed to a new set of objects over 26 days in one of two preparatory tasks: one in which each object view was seen individually, and a second that required discrimination among the objects at each of four viewing angles. After the preparatory period, we measured the monkeys' ability to recognize the objects across changes in viewing angle, by introducing the object set to the Object task. Results indicated significant view-invariant recognition after the second but not first preparatory task. These results suggest that discrimination of objects from distractors at each of several viewing angles is required for the development of view-invariant recognition of the objects when the distractors are similar to the objects.

  1. Co-Labeling for Multi-View Weakly Labeled Learning.

    Science.gov (United States)

    Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W

    2016-06-01

    It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi-view

  2. Orthogonal Views of Coronary Vessels: A Method for Imaging the Delivery of Blood Cardioplegia Using Transesophageal Echocardiography.

    Science.gov (United States)

    Maracaja Neto, Luiz F; Modak, Raj; Schonberger, Robert B

    2017-04-01

    Coronary blood flow can be disrupted during cardiac interventions such as mitral valve surgeries, left atrial appendage ligation, transcatheter aortic valve implantation, and aortic procedures involving reimplantation of coronary buttons. Although difficult to accomplish, coronary imaging using transesophageal echocardiography can be performed by the use of orthogonal imaging with the ability for real-time tilt for angle adjustment. The technique described herein allows imaging of the right coronary artery, left main coronary artery bifurcation, left anterior descending, and circumflex coronary arteries. The imaging is facilitated by acquisition during the delivery of blood cardioplegia. Coronary sinus and great cardiac vein imaging also can be obtained during the delivery of retrograde cardioplegia. Although further studies are needed, this imaging technique may prove useful in procedures where coronary flow disruption is suspected or as an additional parameter to confirm delivery of cardioplegia.

  3. Exploded view diagrams of mathematical surfaces

    KAUST Repository

    Karpenko, Olga A.; Li, Wilmot; Mitra, Niloy J.; Agrawala, Maneesh

    2010-01-01

    We present a technique for visualizing complicated mathematical surfaces that is inspired by hand-designed topological illustrations. Our approach generates exploded views that expose the internal structure of such a surface by partitioning

  4. Variable acuity remote viewing system flight demonstration

    Science.gov (United States)

    Fisher, R. W.

    1983-01-01

    The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.

  5. Physics at hadron colliders: Experimental view

    International Nuclear Information System (INIS)

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs

  6. Received View of Addiction, Relapse and Treatment.

    Science.gov (United States)

    Ndasauka, Yamikani; Wei, Zhengde; Zhang, Xiaochu

    2017-01-01

    It is important to highlight that attempts at understanding and explaining addiction have been made for centuries. It is, however, just five decades ago, with the growth of science and technology that more interest has been observed in this field. This chapter examines different views and theories that have been posited to understand and explain addiction. More attention will be given to prominent views that seem to draw consensus among researchers and medical practitioners. The first section of the chapter introduces the addiction debate, the different theories that have been provided to explain it from different perspectives and disciplines such as neurosciences, philosophy and psychology. Then, the chapter discusses different views on the role of relapse and what it entails in understanding addiction. The second section discusses different proposed and used forms of treating addiction. Thus, the chapter discusses the received view of addiction, the understanding of relapse as a critical element in addiction and treatments.

  7. Selecting materialized views in a data warehouse

    Science.gov (United States)

    Zhou, Lijuan; Liu, Chi; Liu, Daxin

    2003-01-01

    A Data Warehouse contains lots of materialized views over the data provided by the distributed heterogeneous databases for the purpose of efficiently implementing decision-support or OLAP queries. It is important to select the right view to materialize that answer a given set of queries. In this paper, we have addressed and designed algorithm to select a set of views to materialize in order to answer the most queries under the constraint of a given space. The algorithm presented in this paper aim at making out a minimum set of views, by which we can directly respond to as many as possible user"s query requests. We use experiments to demonstrate our approach. The results show that our algorithm works better. We implemented our algorithms and a performance study of the algorithm shows that the proposed algorithm gives a less complexity and higher speeds and feasible expandability.

  8. Mormon and Jewish views of the afterlife.

    Science.gov (United States)

    Lester, David; Portner, Jodi; Sierra, Duvan

    2004-12-01

    In their responses to a questionnaire, undergraduates, 60 Mormons, viewed the afterlife as less pleasant than did the 37 Jews, while the Jews were more concerned with sin and judgment and more often believed in reincarnation.

  9. CURRICULUM MATTERS: Physics 2000: a personal view

    Science.gov (United States)

    Field, R. J.

    1997-03-01

    The author expresses his personal views of how Physics for A-level should develop towards the year 2000. These cover: the historical treatment of core topics, syllabus structure and the relevance of practical physics.

  10. Color View 'Dodo' and 'Baby Bear' Trenches

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 14 (June 8, 2008), the 14th Martian day after landing. It shows two trenches dug by Phoenix's Robotic Arm. Soil from the right trench, informally called 'Baby Bear,' was delivered to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, on Sol 12 (June 6). The following several sols included repeated attempts to shake the screen over TEGA's oven number 4 to get fine soil particles through the screen and into the oven for analysis. The trench on the left is informally called 'Dodo' and was dug as a test. Each of the trenches is about 9 centimeters (3 inches) wide. This view is presented in approximately true color by combining separate exposures taken through different filters of the Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. VMware Horizon View 6 desktop virtualization cookbook

    CERN Document Server

    Ventresco, Jason

    2014-01-01

    If you want a more detailed explanation concerning the implementation of several different core features of VMware Horizon View, this is the book for you. Whether you are new to VMware Horizon View or an existing user, this book will provide you with the knowledge you need to successfully deploy several core features and get introduced to the latest features of version 6.0 as well.

  12. Instant VMware view virtualization how-to

    CERN Document Server

    Geddam, Ramesh

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks.This is a Packt Instant How-to guide, which provides concise and clear recipes for getting started with setting up the VDI in different environments.Instant VMware View 5 Virtualization How-to is for architects, solution providers, consultants, engineers, and anyone planning to design and implement a solution based on VMware View 5.

  13. Spatially selective 2D RF inner field of view (iFOV diffusion kurtosis imaging (DKI of the pediatric spinal cord

    Directory of Open Access Journals (Sweden)

    Chris J. Conklin

    2016-01-01

    Full Text Available Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS; namely in the form of Diffusion Weighted Imaging (DWI and Diffusion Tensor Imaging (DTI. While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI:5. Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01 and radial kurtosis (p < 0.01 between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation

  14. Determination of some radiative view factors

    International Nuclear Information System (INIS)

    Ghosh, B.; Mukhopadhyay, D.; Lele, H.G.; Fichot, F.; Guillard, G.

    2011-01-01

    View factors are essential components for analysis for of radiative heat transfer through enclosure methods like radiosity approach, direct/total exchange area approach etc. View factor is defined as the integral over the interacting surface. View factor integral can be calculated by following various approaches, such as: view factor algebra, direction analytical approach, contour integration method, Monte Carlo method, numerical methods based of FDM or FEM, Hottle's string method etc. The present module of work on determination of view factor is aimed for use in ASTEC code system for severe accident analysis. There exist many routines (RADB, RADC, GRADEB, RADR, RADL) in the ICARE module of ASTEC code system to model radiative heat transfer from different types of assemblies of interacting surfaces of different nature. The present work is specially targeted for radiative heat transfer model for lower plenum (RADILOWE) and for extension of ICARE module for IPHWR. In interacting surfaces within the lower plenum comprises of different types of circular, cylindrical and conical surface. In the work completed so far, view factor relations have been derived/compiled based on exact/approximate analytical and numerical approaches. (author)

  15. TFTR vertically viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) Michelson interferometer has a spectral coverage of 75--540 GHz, allowing measurement of the first four electron cyclotron harmonics. Until recently the instrument has been configured to view the TFTR plasma on the horizontal midplane, primarily in order to measure the electron temperature profile. Electron cyclotron emission (ECE) extraordinary mode spectra from TFTR Supershot plasmas exhibit a pronounced, spectrally narrow feature below the second harmonic. A similar feature is seen with the ECE radiometer diagnostic below the electron cyclotron fundamental frequency in the ordinary mode. Analysis of the ECE spectra indicates the possibility of a non-Maxwellian 40--80 keV tail on the electron distribution in or near the core. During 1990 three vertical views with silicon carbide viewing targets will be installed to provide a direct measurement of the electron energy distribution at major radii of 2.54, 2.78, and 3.09 m with an energy resolution of approximately 20% at 100 keV. To provide the maximum flexibility, the optical components for the vertical views will be remotely controlled to allow the Michelson interferometer to be reconfigured to either the midplane horizontal view or one of the three vertical views between plasma shots

  16. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  17. Semi-Supervised Multi-View Ensemble Learning Based On Extracting Cross-View Correlation

    Directory of Open Access Journals (Sweden)

    ZALL, R.

    2016-05-01

    Full Text Available Correlated information between different views incorporate useful for learning in multi view data. Canonical correlation analysis (CCA plays important role to extract these information. However, CCA only extracts the correlated information between paired data and cannot preserve correlated information between within-class samples. In this paper, we propose a two-view semi-supervised learning method called semi-supervised random correlation ensemble base on spectral clustering (SS_RCE. SS_RCE uses a multi-view method based on spectral clustering which takes advantage of discriminative information in multiple views to estimate labeling information of unlabeled samples. In order to enhance discriminative power of CCA features, we incorporate the labeling information of both unlabeled and labeled samples into CCA. Then, we use random correlation between within-class samples from cross view to extract diverse correlated features for training component classifiers. Furthermore, we extend a general model namely SSMV_RCE to construct ensemble method to tackle semi-supervised learning in the presence of multiple views. Finally, we compare the proposed methods with existing multi-view feature extraction methods using multi-view semi-supervised ensembles. Experimental results on various multi-view data sets are presented to demonstrate the effectiveness of the proposed methods.

  18. An investigation of head movement with a view to minimising motion artefact during SPECT and PET imaging of the brain

    International Nuclear Information System (INIS)

    Patterson, H.; Clarke, G.H.; Guy, R.; McKay, W.J.

    1998-01-01

    Full text: Motion artefact has long been recognised as a major cause of image degradation. Single Photon Emission Computerised Tomography (SPECT) and Positron Emission Tomography (PET) of the brain are playing an important role in the diagnosis and management of several neurological disorders. If these imaging modalities are to contribute fully to medical imaging it is essential that the improved spatial resolution of these systems is not compromised by patient movement. Thirty volunteer subjects have been examined using a simple video technique and the video images were used to classify and measure head movements which may occur during brain imaging. All subjects demonstrated angular movement within the transverse plane or rotation of the head. Angular movement within the sagittal plane or flexion/extension of the neck occurred in 69% of subjects and 72% of subjects exhibited translational movement of the sagittal plane. There was no movement of the coronal plane; nor was there any translational movement of the sagittal plane. These results suggest that when positioning the patient's head for brain imaging a system of head restraint which minimises rotation of the head should be used if image quality is to be maintained

  19. An optical imaging chamber for viewing living plant cells and tissues at high resolution for extended periods.

    Science.gov (United States)

    Calder, Grant; Hindle, Chris; Chan, Jordi; Shaw, Peter

    2015-01-01

    Recent developments in both microscopy and fluorescent protein technologies have made live imaging a powerful tool for the study of plant cells. However, the complications of keeping plant material alive during a long duration experiment while maintaining maximum resolution has limited the use of these methods. Here, we describe an imaging chamber designed to overcome these limitations, which is flexible enough to support a range of sizes of plant materials. We were able use confocal microscopy to follow growth and development of plant cells and tissues over several days. The chamber design is based on a perfusion system, so that the addition of drugs and other experimental treatments are also possible. In this article we present a design of imaging chamber that makes it possible to image plant material with high resolution for extended periods of time.

  20. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    International Nuclear Information System (INIS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami

    2015-01-01

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality

  1. Template match using local feature with view invariance

    Science.gov (United States)

    Lu, Cen; Zhou, Gang

    2013-10-01

    Matching the template image in the target image is the fundamental task in the field of computer vision. Aiming at the deficiency in the traditional image matching methods and inaccurate matching in scene image with rotation, illumination and view changing, a novel matching algorithm using local features are proposed in this paper. The local histograms of the edge pixels (LHoE) are extracted as the invariable feature to resist view and brightness changing. The merits of the LHoE is that the edge points have been little affected with view changing, and the LHoE can resist not only illumination variance but also the polution of noise. For the process of matching are excuded only on the edge points, the computation burden are highly reduced. Additionally, our approach is conceptually simple, easy to implement and do not need the training phase. The view changing can be considered as the combination of rotation, illumination and shear transformation. Experimental results on simulated and real data demonstrated that the proposed approach is superior to NCC(Normalized cross-correlation) and Histogram-based methods with view changing.

  2. Dust Devil in Spirit's View Ahead on Sol 1854 (Stereo)

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11960 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11960 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009). This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854. West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.' This view is presented as a cylindrical-perspective projection with geometric seam correction.

  3. Time for a Change; Spirit's View on Sol 1843 (Stereo)

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11973 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11973 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, full-circle view of the rover's surroundings during the 1,843rd Martian day, or sol, of Spirit's surface mission (March 10, 2009). South is in the middle. North is at both ends. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 36 centimeters downhill earlier on Sol 1854, but had not been able to get free of ruts in soft material that had become an obstacle to getting around the northeastern corner of the low plateau called 'Home Plate.' The Sol 1854 drive, following two others in the preceding four sols that also achieved little progress in the soft ground, prompted the rover team to switch to a plan of getting around Home Plate counterclockwise, instead of clockwise. The drive direction in subsequent sols was westward past the northern edge of Home Plate. This view is presented as a cylindrical-perspective projection with geometric seam correction.

  4. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    Science.gov (United States)

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  5. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  6. Perspective view over the Grand Canyon, Arizona

    Science.gov (United States)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  7. Why the Marketer's View Matters as Much as the Message: speaking down to the consumer speaks badly to a brand's image

    NARCIS (Netherlands)

    Dahlen, M.; Rosengren, S.; Smit, E.

    2014-01-01

    This research explored whether advertisements can insult consumers by underestimating their intelligence. It also posed the question whether advertising that underestimates consumers' intelligence signals that the advertiser has a prejudiced view of its consumers - a perception that, then, impacts

  8. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye.

    Science.gov (United States)

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-04-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.

  9. New perspective in high tech radiotherapy planning using PET/CT images (Radiation oncologist's view on PET/CT usage)

    International Nuclear Information System (INIS)

    Hadjieva, T.; Bildirev, N.; Koleva, I.; Zahariev, Z.; Vasileva, V.; Encheva, E.; Sultanov, B.

    2010-01-01

    Biological images provided by 18F-FDG PET in combination with structural X ray picture currently offer the most accurate available information on tumour staging, curative antitumour effect for prognosis, impairment of organ function after treatment, as well as primary tumour detection in unknown primary metastatic disease. The authors as radiation oncologists critically have analyzed numerous clinical trials and two guidelines to prove PET/ CT benefit in radiotherapy practice. At present they found lack of scientific evidence to confirm that patient outcomes are superior as a result of the use of PET in RT planning. PET/CT offers a best image for tumour delineation only in some cases of lung cancer, mediastinal lymph nodes and malignant lymphomas. 11C methionin PET adds additional information on postoperative MRI image for brain tumours. Inflammation as postradiation phenomenon, as well as physiological organ movements leads to false-positive PET signal. High tech radiotherapy methods require delineation on precise images given after multidisciplinary team expertise - a practice that is possible only in clinical trials, These unsolved problems have raised many ethical challenges in medical, scientific and social aspect, if wide and routine use of FDG-PET u PET/CT is advocated. (authors)

  10. Exploring the Hidden Structure of Astronomical Images: A "Pixelated" View of Solar System and Deep Space Features!

    Science.gov (United States)

    Ward, R. Bruce; Sienkiewicz, Frank; Sadler, Philip; Antonucci, Paul; Miller, Jaimie

    2013-01-01

    We describe activities created to help student participants in Project ITEAMS (Innovative Technology-Enabled Astronomy for Middle Schools) develop a deeper understanding of picture elements (pixels), image creation, and analysis of the recorded data. ITEAMS is an out-of-school time (OST) program funded by the National Science Foundation (NSF) with…

  11. Creating a Magnetic Imaging System for Diagnosing Infant Brain Activity Based on NI PXI and LabVIEW

    Directory of Open Access Journals (Sweden)

    Christopher G. Atwood

    2006-11-01

    Full Text Available Developing a noninvasive magnetic imaging system to spatially and temporally map the magnetic fields generated by brain activity in infants at severe risk of developing cerebral palsy and epilepsy, so that medical doctors can intervene at an early stage.

  12. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.

    Science.gov (United States)

    Liu, Shu-Sheng; Takayama, Akiko; Matsumura, Syo; Koyama, Michihisa

    2016-03-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) is a widely used and easily operational equipment for three-dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB-SEM with In-Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In-Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  13. DEM RECONSTRUCTION USING LIGHT FIELD AND BIDIRECTIONAL REFLECTANCE FUNCTION FROM MULTI-VIEW HIGH RESOLUTION SPATIAL IMAGES

    Directory of Open Access Journals (Sweden)

    F. de Vieilleville

    2016-06-01

    Full Text Available This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.

  14. Interactive computer enhanced remote viewing system

    International Nuclear Information System (INIS)

    Smith, D.A.; Tourtellott, J.A.

    1994-01-01

    The Interactive, Computer Enhanced, Remote Viewing System (ICERVSA) is a volumetric data system designed to help the Department of Energy (DOE) improve remote operations in hazardous sites by providing reliable and accurate maps of task spaces where robots will clean up nuclear wastes. The ICERVS mission is to acquire, store, integrate and manage all the sensor data for a site and to provide the necessary tools to facilitate its visualization and interpretation. Empirical sensor data enters through the Common Interface for Sensors and after initial processing, is stored in the Volumetric Database. The data can be analyzed and displayed via a Graphic User Interface with a variety of visualization tools. Other tools permit the construction of geometric objects, such as wire frame models, to represent objects which the operator may recognize in the live TV image. A computer image can be generated that matches the viewpoint of the live TV camera at the remote site, facilitating access to site data. Lastly, the data can be gathered, processed, and transmitted in acceptable form to a robotic controller. Descriptions are given of all these components. The final phase of the ICERVS project, which has just begun, will produce a full scale system and demonstrate it at a DOE site to be selected. A task added to this Phase will adapt the ICERVS to meet the needs of the Dismantlement and Decommissioning (D and D) work at the Oak Ridge National Laboratory (ORNL)

  15. Mothers’ views of their preschool child’s screen-viewing behaviour:a qualitative study

    OpenAIRE

    Bentley, Georgina F; Turner, Katrina M; Jago, Russ

    2016-01-01

    BackgroundResearch on screen-viewing in preschool children has predominantly focused on television viewing. The rapid development of mobile devices (e.g. tablets, smart phones and e-readers) and the increase in their use by preschool children means there is a need to understand how and why these devices are used by this age group. The aim of this study was to explore mothers’ views of their preschool children’s screen viewing behaviour (including mobile devices) and investigate how preschool ...

  16. Vibration-dependent angular anisotropy in the photodetachment of O{sub 2}{sup -}, viewed with velocity-map imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S T; Cavanagh, S J; Lewis, B R [Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Gascooke, J R [School of Chemistry, Physics and Earth Sciences, Flinders University, SA 5001 (Australia); Mabbs, R [Department of Chemistry, Washington University, St Louis MO 63930-4899 (United States); Sanov, A, E-mail: Stephen.Gibson@anu.edu.a, E-mail: Steven.Cavanagh@anu.edu.a [Department of Chemistry, University of Arizona, Tucson AZ 85721-0041 (United States)

    2009-11-01

    The photodetachment spectrum of O{sub 2}{sup -} has been measured at a number of wavelengths using velocity-map imaging. The electron kinetic-energy resolution (< 5 meV) is sufficient to resolve the anion fine-structure splitting, vibrational and electronic structure. The electron angular distribution varies with the electron kinetic-energy, with a different behaviour for each vibronic band.

  17. Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)--a neurological view.

    Science.gov (United States)

    Schneider, Marc; Retz, Wolfgang; Coogan, Andrew; Thome, Johannes; Rösler, Michael

    2006-09-01

    In this review, we discuss current structural and functional imaging data on ADHD in a neurological and neuroanatomical framework. At present, the literature on adult ADHD is somewhat sparse, and so results from imaging have to therefore be considered mainly from the childhood or adolescence perspective. Most work has considered the impairment of executive functions (motor execution, inhibition, working memory), and as such a number of attention networks and their anatomical correlates are discussed in this review (e.g. the cerebello-(thalamo-)-striato-cortical network seems to play a pivotal role in ADHD pathology from childhood to adulthood). The core findings in ADHD imaging are alterations in the architecture and function of prefrontal cortex and cerebellum. The dorsal part of anterior cingulated cortex (dACC) is an important region for decision making, and executive control is impaired in adult ADHD. Finally, dysfunction of basal ganglia is a consistent finding in childhood and adulthood ADHD, reflecting dysregulation of fronto-striatal circuitry. The cerebellum, and its role in affect and cognition, is also persistently implicated in the pathology of ADHD.

  18. Public foetal images and the regulation of middle-class pregnancy in the online media: a view from South Africa.

    Science.gov (United States)

    Macleod, Catriona; Howell, Simon

    2015-01-01

    Ultrasonography images and their derivatives have been taken up in a range of 'public' spaces, including medical textbooks, the media, anti-abortion material, advertising, the Internet and public health facilities. Feminists have critiqued the personification of the foetus, the bifurcation of the woman's body and the reduction of the pregnant woman to a disembodied womb. What has received less attention is how these images frequently intersect with race, class, gender and heteronormativity in the creation of idealised and normative understandings of pregnancy. This paper focuses on the discursive positioning of pregnant women as 'mothers' and foetuses as 'babies' in online media targeted at a South African audience, where race and class continue to intersect in complex ways. We show how the ontologically specific understandings of 'mummies' and 'babies' emerge through the use of foetal images to construct specific understandings of the 'ideal' pregnancy. In the process, pregnant women are made responsible for ensuring that their pregnancy conforms to these ideals, which includes the purchasing of the various goods advertised by the websites. Not only does this point to a commodification of pregnancy, but also serves to reinforce a cultural understanding of White, middle-class pregnancy as constituting the normative 'correct' form of pregnancy.

  19. Library of Congress Model, Perspective View

    Science.gov (United States)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets. The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest. The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the mountains, leaving little rainfall for areas further inland, thus creating the deserts. Topography also controls the land use pattern. The mountains are mostly very rugged, which greatly

  20. View Estimation Based on Value System

    Science.gov (United States)

    Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru

    Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.

  1. View Synthesis for Advanced 3D Video Systems

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Interest in 3D video applications and systems is growing rapidly and technology is maturating. It is expected that multiview autostereoscopic displays will play an important role in home user environments, since they support multiuser 3D sensation and motion parallax impression. The tremendous data rate cannot be handled efficiently by representation and coding formats such as MVC or MPEG-C Part 3. Multiview video plus depth (MVD is a new format that efficiently supports such advanced 3DV systems, but this requires high-quality intermediate view synthesis. For this, a new approach is presented that separates unreliable image regions along depth discontinuities from reliable image regions, which are treated separately and fused to the final interpolated view. In contrast to previous layered approaches, our algorithm uses two boundary layers and one reliable layer, performs image-based 3D warping only, and was generically implemented, that is, does not necessarily rely on 3D graphics support. Furthermore, different hole-filling and filtering methods are added to provide high-quality intermediate views. As a result, high-quality intermediate views for an existing 9-view auto-stereoscopic display as well as other stereo- and multiscopic displays are presented, which prove the suitability of our approach for advanced 3DV systems.

  2. View Synthesis for Advanced 3D Video Systems

    Directory of Open Access Journals (Sweden)

    Müller Karsten

    2008-01-01

    Full Text Available Abstract Interest in 3D video applications and systems is growing rapidly and technology is maturating. It is expected that multiview autostereoscopic displays will play an important role in home user environments, since they support multiuser 3D sensation and motion parallax impression. The tremendous data rate cannot be handled efficiently by representation and coding formats such as MVC or MPEG-C Part 3. Multiview video plus depth (MVD is a new format that efficiently supports such advanced 3DV systems, but this requires high-quality intermediate view synthesis. For this, a new approach is presented that separates unreliable image regions along depth discontinuities from reliable image regions, which are treated separately and fused to the final interpolated view. In contrast to previous layered approaches, our algorithm uses two boundary layers and one reliable layer, performs image-based 3D warping only, and was generically implemented, that is, does not necessarily rely on 3D graphics support. Furthermore, different hole-filling and filtering methods are added to provide high-quality intermediate views. As a result, high-quality intermediate views for an existing 9-view auto-stereoscopic display as well as other stereo- and multiscopic displays are presented, which prove the suitability of our approach for advanced 3DV systems.

  3. Spirit's View Beside 'Home Plate' on Sol 1823 (Stereo)

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11971 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11971 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,823rd Martian day, or sol, of Spirit's surface mission (Feb. 17, 2009). This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The center of the view is toward the south-southwest. The rover had driven 7 meters (23 feet) eastward earlier on Sol 1823, part of maneuvering to get Spirit into a favorable position for climbing onto the low plateau called 'Home Plate.' However, after two driving attempts with negligible progress during the following three sols, the rover team changed its strategy for getting to destinations south of Home Plate. The team decided to drive Spirit at least partway around Home Plate, instead of ascending the northern edge and taking a shorter route across the top of the plateau. Layered rocks forming part of the northern edge of Home Plate can be seen near the center of the image. Rover wheel tracks are visible at the lower edge. This view is presented as a cylindrical-perspective projection with geometric seam correction.

  4. STUDY OF BIREFRINGENCE INFLUENCE ON IMAGE QUALITY OF PHOTOLITHOGRAPHY SYSTEMS IN VIEW OF PARTIALLY-COHERENT LIGHT SOURCE

    Directory of Open Access Journals (Sweden)

    E. A. Nikulina

    2015-03-01

    Full Text Available Subject of study. A vector model for conversion of electromagnetic radiation in optical systems is considered, taking into account the influence of birefringence, as well as partially coherent illumination. Model. The proposed model is based on the representation of the complex amplitude of the monochromatic field through thesuperposition of basic plane waves. Transmitted light image with partially coherent illumination is performed by the sourceintegration method. Main results. The results of simulation for the point spread function are demonstrating the level of the birefringence influence on the image quality. In the presence of the wave aberration about 0.098 of the wavelength, the wave energy loss in the center of the Airy disk with an average birefringence of 4 nm/cm was 8%, and at 16 nm/cm it reached 30%. The calculation of the point spread function for a real sample of fluorite is given. The central peak of the PSF without birefringence was 0.722, with regard to birefringence it was equal to 0.701. Practical significance. The findings can be used in the development of photolithographic lenses, as well as for the manufacturing of any other optical systems that require consideration of the polarization properties of the materials.

  5. The Image of Transylvania in the Works of Two Contemporary Romanian Historians. Translation and Related Views on History

    Directory of Open Access Journals (Sweden)

    Lajos Katalin

    2017-09-01

    Full Text Available “As every inhabited area, culturally Transylvania can also be conceived of mainly as a symbolic space. Starting from its physical, material reality, our perceptions are made up into a subjective image of the area in question. This is the real Transylvania, or rather, the place in connection with which we formulate our ideas and to which we adjust our deeds. This image may seem so real also because it is equally shared by many, occasionally several millions. If many see things in the same way, we could say, this means that they are so in reality, though most of the time we only share prejudices, clichés and misunderstandings” - Sorin Mitu writes. Comparative imagology examines the formation of these collective ideas as well as the issues of identity and attitude to the Other. As a member of the imagology research group at the Department of Humanities of Sapientia Hungarian University of Transylvania, Miercurea Ciuc, Romania, I translated one chapter of Sorin Mitu’s volume entitled Transilvania mea [My Transylvania]. During the translation process it became obvious to me that if translation is not only linguistic but also cultural transmission, it is especially true for the translation of historical works and that it would be worth examining whether some kind of rapprochement could be detected between the Romanian and Hungarian historical research of the past decades; if yes, whether this is reflected in the mutual translation of the respective works

  6. Dichoptic movie viewing treats childhood amblyopia.

    Science.gov (United States)

    Li, Simone L; Reynaud, Alexandre; Hess, Robert F; Wang, Yi-Zhong; Jost, Reed M; Morale, Sarah E; De La Cruz, Angie; Dao, Lori; Stager, David; Birch, Eileen E

    2015-10-01

    Contrast-balanced dichoptic experience with perceptual-learning tasks or simple games has been shown to improve visual acuity significantly in amblyopia. However, these tasks are intensive and repetitive, and up to 40% of unsupervised patients are noncompliant. We investigated the efficacy of a potentially more engaging movie method to provide contrast-balanced binocular experience via complementary dichoptic stimulation. Eight amblyopic children 4-10 years of age were enrolled in a prospective cohort study to watch 3 dichoptic movies per week for 2 weeks on a passive 3D display. Dichoptic versions of 18 popular animated feature films were created. A patterned image mask of irregularly shaped blobs was multiplied with the movie images seen by the amblyopic eye and an inverse mask was multiplied with the images seen by the fellow eye. Fellow-eye contrast was initially set at a reduced level that allowed binocular vision and was then incremented by 10% at each visit. Best-corrected visual acuity, random dot stereoacuity, and interocular suppression were measured at baseline and 2 weeks. Mean amblyopic eye visual acuity (with standard error of the mean) improved from a logarithm of minimum angle of resolution of 0.72 ± 0.08 at baseline to 0.52 ± 0.09 (P = 0.003); that is, 2.0 lines of improvement at the 2-week outcome visit. No significant change in interocular suppression or stereoacuity was found. Passive viewing of dichoptic feature films is feasible and could be a promising new treatment for childhood amblyopia. The maximum improvement that may be achieved by watching dichoptic movies remains to be determined. No known side effects are associated with this new treatment. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  7. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    Science.gov (United States)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  8. En face view of the mitral valve: definition and acquisition.

    Science.gov (United States)

    Mahmood, Feroze; Warraich, Haider Javed; Shahul, Sajid; Qazi, Aisha; Swaminathan, Madhav; Mackensen, G Burkhard; Panzica, Peter; Maslow, Andrew

    2012-10-01

    A 3-dimensional echocardiographic view of the mitral valve, called the "en face" or "surgical view," presents a view of the mitral valve similar to that seen by the surgeon from a left atrial perspective. Although the anatomical landmarks of this view are well defined, no comprehensive echocardiographic definition has been presented. After reviewing the literature, we provide a definition of the left atrial and left ventricular en face views of the mitral valve. Techniques used to acquire this view are also discussed.

  9. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  10. - LAA Occluder View for post-implantation Evaluation (LOVE) - standardized imaging proposal evaluating implanted left atrial appendage occlusion devices by cardiac computed tomography

    International Nuclear Information System (INIS)

    Behnes, Michael; Akin, Ibrahim; Sartorius, Benjamin; Fastner, Christian; El-Battrawy, Ibrahim; Borggrefe, Martin; Haubenreisser, Holger; Meyer, Mathias; Schoenberg, Stefan O.; Henzler, Thomas

    2016-01-01

    A standardized imaging proposal evaluating implanted left atrial appendage (LAA) occlusion devices by cardiac computed tomography angiography (cCTA) has never been investigated. cCTA datasets were acquired on a 3 rd generation dual-source CT system and reconstructed with a slice thickness of 0.5 mm. An interdisciplinary evaluation was performed by two interventional cardiologists and one radiologist on a 3D multi-planar workstation. A standardized multi-planar reconstruction algorithm was developed in order to assess relevant clinical aspects of implanted LAA occlusion devices being outlined within a pictorial essay. The following clinical aspects of implanted LAA occlusion devices were evaluated within the most appropriate cCTA multi-planar reconstruction: (1) topography to neighboring structures, (2) peri-device leaks, (3) coverage of LAA lobes, (4) indirect signs of neo-endothelialization. These are illustrated within concise CT imaging examples emphasizing the potential value of the proposed cCTA imaging algorithm: Starting from anatomical cCTA planes and stepwise angulation planes perpendicular to the base of the LAA devices generates an optimal LAA Occluder View for post-implantation Evaluation (LOVE). Aligned true axial, sagittal and coronal LOVE planes offer a standardized and detailed evaluation of LAA occlusion devices after percutaneous implantation. This pictorial essay presents a standardized imaging proposal by cCTA using multi-planar reconstructions that enables systematical follow-up and comparison of patients after LAA occlusion device implantation. The online version of this article (doi:10.1186/s12880-016-0127-y) contains supplementary material, which is available to authorized users

  11. Palliative care nurses' views on euthanasia.

    Science.gov (United States)

    Verpoort, Charlotte; Gastmans, Chris; Dierckx de Casterlé, Bernadette

    2004-09-01

    In debates on euthanasia legalization in Belgium, the voices of nurses were scarcely heard. Yet studies have shown that nurses are involved in the caring process surrounding euthanasia. Consequently, they are in a position to offer valuable ideas about this problem. For this reason, the views of these nurses are important because of their palliative expertise and their daily confrontation with dying patients. The aim of this paper is to report a study of the views of palliative care nurses about euthanasia. A grounded theory approach was chosen, and interviews were carried out with a convenience sample of 12 palliative care nurses in Flanders (Belgium). The data were collected between December 2001 and April 2002. The majority of the nurses were not a priori for or against euthanasia, and their views were largely dependent on the situation. What counted was the degree of suffering and available palliative options. Depending on the situation, we noted both resistance and acceptance towards euthanasia. The underlying arguments for resistance included respect for life and belief in the capabilities of palliative care; arguments underlying acceptance included the quality of life and respect for patient autonomy. The nurses commented that working in palliative care had a considerable influence on one's opinion about euthanasia. In light of the worldwide debate on euthanasia, it is essential to know how nurses, who are confronted with terminally ill patients every day, think about it. Knowledge of these views can also contribute to a realistic and qualified view on euthanasia itself. This can be enlightening to the personal views of caregivers working in a diverse range of care settings.

  12. Web-based CERES Clouds QC Property Viewing Tool

    Science.gov (United States)

    Smith, R. A.; Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Minnis, P.

    2014-12-01

    This presentation will display the capabilities of a web-based CERES cloud property viewer. Terra data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool. A laptop will hopefully be available to allow conference attendees to try navigating the tool.

  13. Evaluation of ITER MSE Viewing Optics

    International Nuclear Information System (INIS)

    Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R

    2007-01-01

    The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on the design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate

  14. Digital Mammography in Young Women: Is a Single View Sufficient?

    Science.gov (United States)

    Gossner, Johannes

    2016-03-01

    Single view mammography may be a less time consuming, more comfortable and radiation reduced alternative for young women, but there are no studies examining this approach after the implementation of digital mammography into clinical practice. Retrospective analysis of all mammographies performed in women younger than 40 years during a 24 month period. The sample consisted of 109 women with 212 examined breasts. All patients initially received standard two- view mammography. In the study setting the MLO- views were read by a single viewer and compared to a composite reference standard. In this sample 7 malignant findings were present and the review of the MLO-view detected 6 of them (85%). In patients with dense breasts 4 out of 5 malignant findings were found on the single-view (sensitivity 80%) and all 2 malignant findings were detected in patients with low breast density (sensitivity 100%). There were 7 false positive findings (3.3%). i.e. in total 8 out of 212 examined breasts were therefore misinterpreted (3.8%). Single view digital mammography detects the vast majority of malignant findings, especially in low density breast tissue and the rate of false-positive findings is within acceptable limits. Therefore this approach may be used in different scenarios (for example in increasing patient throughout in resource poor settings, reducing radiation burden in the young or in combination with ultrasound to use the strengths of both methods). More research on this topic is needed to establish its potential role in breast imaging.

  15. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  16. Depth Perception In Remote Stereoscopic Viewing Systems

    Science.gov (United States)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  17. Collective Attitudes and the Anthropocentric View

    Directory of Open Access Journals (Sweden)

    Gallotti Mattia

    2016-03-01

    Full Text Available The anthropocentric view holds that the social world is a projection of mental states and attitudes onto the real world. However, there is more to a society of individuals than their psychological make up. In The Ant Trap, Epstein hints at the possibility that collective intentionality can, and should, be discarded as a pillar of social ontology. In this commentary I argue that this claim is motivated by an outdated view of the nature and structure of collective attitudes. If we aim at a good theory of social ontology, we need a good theory of collective intentionality.

  18. Labour in Capitalist Society : Marx's View

    OpenAIRE

    Tsuto, Masahiro

    2007-01-01

    Marx's view on labour is many-sided. I will argue the multiple character of labour in five aspects, based on his 1857-58 note. We can grasp his view in following five phases. Namely, (1) material metabolism between man and Nature, (2) abstract human labour, (3) labour and free time, (4) active and creative labour, and (5) painful labour. In general, Marx's statements on (3), (4) and (5) phases of labour are less in his "Capital" than in his 1857-58 note. This is the reason why we often deal w...

  19. Multi-view collimator for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1979-01-01

    A collimator comprises a block or blocks of radiation-impervious material which defines a first plurality of parallel channels, each channel defining a direction of acceptance of radiation from a body. The axes of a second plurality channels define another direction of acceptance of radiation from the body and intersect the same portion of the body as the axes of the first plurality of channels thus producing a second view of the body. Where the collimator is built up as a stack of blocks, each pair of adjacent blocks defines a slice of the body which is viewed from two angles defined by the channels. (UK)

  20. A procedure for generating quantitative 3-D camera views of tokamak divertors

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Medley, S.S.

    1996-05-01

    A procedure is described for precision modeling of the views for imaging diagnostics monitoring tokamak internal components, particularly high heat flux divertor components. These models are required to enable predictions of resolution and viewing angle for the available viewing locations. Because of the oblique views expected for slot divertors, fully 3-D perspective imaging is required. A suite of matched 3-D CAD, graphics and animation applications are used to provide a fast and flexible technique for reproducing these views. An analytic calculation of the resolution and viewing incidence angle is developed to validate the results of the modeling procedures. The calculation is applicable to any viewed surface describable with a coordinate array. The Tokamak Physics Experiment (TPX) diagnostics for infrared viewing are used as an example to demonstrate the implementation of the tools. For the TPX experiment the available locations are severely constrained by access limitations at the end resulting images are marginal in both resolution and viewing incidence angle. Full coverage of the divertor is possible if an array of cameras is installed at 45 degree toroidal intervals. Two poloidal locations are required in order to view both the upper and lower divertors. The procedures described here provide a complete design tool for in-vessel viewing, both for camera location and for identification of viewed surfaces. Additionally these same tools can be used for the interpretation of the actual images obtained by the actual diagnostic