WorldWideScience

Sample records for image segmentation algorithm

  1. Medical image segmentation using genetic algorithms.

    Science.gov (United States)

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  2. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  3. NUCLEAR SEGMENTATION IN MICROSCOPE CELL IMAGES: A HAND-SEGMENTED DATASET AND COMPARISON OF ALGORITHMS

    OpenAIRE

    Coelho, Luís Pedro; Shariff, Aabid; Murphy, Robert F.

    2009-01-01

    Image segmentation is an essential step in many image analysis pipelines and many algorithms have been proposed to solve this problem. However, they are often evaluated subjectively or based on a small number of examples. To fill this gap, we hand-segmented a set of 97 fluorescence microscopy images (a total of 4009 cells) and objectively evaluated some previously proposed segmentation algorithms.

  4. COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES

    Directory of Open Access Journals (Sweden)

    A.A. Haseena Thasneem

    2015-05-01

    Full Text Available This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive, Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging, Contour models (Active Contour Model and Chan - Vese Model and Spectral Clustering. Accuracy, sensitivity, specificity, Border error, Hammoude distance, Hausdorff distance, MSE, PSNR and elapsed time metrices were used to evaluate various segmentation techniques.

  5. Improved document image segmentation algorithm using multiresolution morphology

    Science.gov (United States)

    Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.

  6. Image segmentation algorithm based on T-junctions cues

    Science.gov (United States)

    Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie

    2016-03-01

    To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.

  7. Multilevel Image Segmentation Based on an Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2016-01-01

    Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.

  8. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  9. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  10. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  11. Ant Colony Clustering Algorithm and Improved Markov Random Fusion Algorithm in Image Segmentation of Brain Images

    Directory of Open Access Journals (Sweden)

    Guohua Zou

    2016-12-01

    Full Text Available New medical imaging technology, such as Computed Tomography and Magnetic Resonance Imaging (MRI, has been widely used in all aspects of medical diagnosis. The purpose of these imaging techniques is to obtain various qualitative and quantitative data of the patient comprehensively and accurately, and provide correct digital information for diagnosis, treatment planning and evaluation after surgery. MR has a good imaging diagnostic advantage for brain diseases. However, as the requirements of the brain image definition and quantitative analysis are always increasing, it is necessary to have better segmentation of MR brain images. The FCM (Fuzzy C-means algorithm is widely applied in image segmentation, but it has some shortcomings, such as long computation time and poor anti-noise capability. In this paper, firstly, the Ant Colony algorithm is used to determine the cluster centers and the number of FCM algorithm so as to improve its running speed. Then an improved Markov random field model is used to improve the algorithm, so that its antinoise ability can be improved. Experimental results show that the algorithm put forward in this paper has obvious advantages in image segmentation speed and segmentation effect.

  12. A novel algorithm for segmentation of brain MR images

    International Nuclear Information System (INIS)

    Sial, M.Y.; Yu, L.; Chowdhry, B.S.; Rajput, A.Q.K.; Bhatti, M.I.

    2006-01-01

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  13. Comparison of segmentation algorithms for fluorescence microscopy images of cells.

    Science.gov (United States)

    Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L

    2011-07-01

    The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.

  14. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rosenberger C

    2008-01-01

    Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  15. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    H. Laurent

    2008-05-01

    Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  16. Objectness Supervised Merging Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    Haifeng Sima

    2016-01-01

    Full Text Available Ideal color image segmentation needs both low-level cues and high-level semantic features. This paper proposes a two-hierarchy segmentation model based on merging homogeneous superpixels. First, a region growing strategy is designed for producing homogenous and compact superpixels in different partitions. Total variation smoothing features are adopted in the growing procedure for locating real boundaries. Before merging, we define a combined color-texture histogram feature for superpixels description and, meanwhile, a novel objectness feature is proposed to supervise the region merging procedure for reliable segmentation. Both color-texture histograms and objectness are computed to measure regional similarities between region pairs, and the mixed standard deviation of the union features is exploited to make stop criteria for merging process. Experimental results on the popular benchmark dataset demonstrate the better segmentation performance of the proposed model compared to other well-known segmentation algorithms.

  17. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  18. Performance evaluation of image segmentation algorithms on microscopic image data

    Czech Academy of Sciences Publication Activity Database

    Beneš, Miroslav; Zitová, Barbara

    2015-01-01

    Roč. 275, č. 1 (2015), s. 65-85 ISSN 0022-2720 R&D Projects: GA ČR GAP103/12/2211 Institutional support: RVO:67985556 Keywords : image segmentation * performance evaluation * microscopic images Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.136, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/zitova-0434809-DOI.pdf

  19. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    Science.gov (United States)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  20. A segmentation algorithm based on image projection for complex text layout

    Science.gov (United States)

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  1. Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    R. V. V. Krishna

    2016-10-01

    Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.

  2. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    Science.gov (United States)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  3. A kind of color image segmentation algorithm based on super-pixel and PCNN

    Science.gov (United States)

    Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.

  4. Efficient Active Contour and K-Means Algorithms in Image Segmentation

    Directory of Open Access Journals (Sweden)

    J.R. Rommelse

    2004-01-01

    Full Text Available In this paper we discuss a classic clustering algorithm that can be used to segment images and a recently developed active contour image segmentation model. We propose integrating aspects of the classic algorithm to improve the active contour model. For the resulting CVK and B-means segmentation algorithms we examine methods to decrease the size of the image domain. The CVK method has been implemented to run on parallel and distributed computers. By changing the order of updating the pixels, it was possible to replace synchronous communication with asynchronous communication and subsequently the parallel efficiency is improved.

  5. An improved optimum-path forest clustering algorithm for remote sensing image segmentation

    Science.gov (United States)

    Chen, Siya; Sun, Tieli; Yang, Fengqin; Sun, Hongguang; Guan, Yu

    2018-03-01

    Remote sensing image segmentation is a key technology for processing remote sensing images. The image segmentation results can be used for feature extraction, target identification and object description. Thus, image segmentation directly affects the subsequent processing results. This paper proposes a novel Optimum-Path Forest (OPF) clustering algorithm that can be used for remote sensing segmentation. The method utilizes the principle that the cluster centres are characterized based on their densities and the distances between the centres and samples with higher densities. A new OPF clustering algorithm probability density function is defined based on this principle and applied to remote sensing image segmentation. Experiments are conducted using five remote sensing land cover images. The experimental results illustrate that the proposed method can outperform the original OPF approach.

  6. HARDWARE REALIZATION OF CANNY EDGE DETECTION ALGORITHM FOR UNDERWATER IMAGE SEGMENTATION USING FIELD PROGRAMMABLE GATE ARRAYS

    Directory of Open Access Journals (Sweden)

    ALEX RAJ S. M.

    2017-09-01

    Full Text Available Underwater images raise new challenges in the field of digital image processing technology in recent years because of its widespread applications. There are many tangled matters to be considered in processing of images collected from water medium due to the adverse effects imposed by the environment itself. Image segmentation is preferred as basal stage of many digital image processing techniques which distinguish multiple segments in an image and reveal the hidden crucial information required for a peculiar application. There are so many general purpose algorithms and techniques that have been developed for image segmentation. Discontinuity based segmentation are most promising approach for image segmentation, in which Canny Edge detection based segmentation is more preferred for its high level of noise immunity and ability to tackle underwater environment. Since dealing with real time underwater image segmentation algorithm, which is computationally complex enough, an efficient hardware implementation is to be considered. The FPGA based realization of the referred segmentation algorithm is presented in this paper.

  7. Snake Model Based on Improved Genetic Algorithm in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mingying Zhang

    2016-12-01

    Full Text Available Automatic fingerprint identification technology is a quite mature research field in biometric identification technology. As the preprocessing step in fingerprint identification, fingerprint segmentation can improve the accuracy of fingerprint feature extraction, and also reduce the time of fingerprint preprocessing, which has a great significance in improving the performance of the whole system. Based on the analysis of the commonly used methods of fingerprint segmentation, the existing segmentation algorithm is improved in this paper. The snake model is used to segment the fingerprint image. Additionally, it is improved by using the global optimization of the improved genetic algorithm. Experimental results show that the algorithm has obvious advantages both in the speed of image segmentation and in the segmentation effect.

  8. A Region-Based GeneSIS Segmentation Algorithm for the Classification of Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Stelios K. Mylonas

    2015-03-01

    Full Text Available This paper proposes an object-based segmentation/classification scheme for remotely sensed images, based on a novel variant of the recently proposed Genetic Sequential Image Segmentation (GeneSIS algorithm. GeneSIS segments the image in an iterative manner, whereby at each iteration a single object is extracted via a genetic-based object extraction algorithm. Contrary to the previous pixel-based GeneSIS where the candidate objects to be extracted were evaluated through the fuzzy content of their included pixels, in the newly developed region-based GeneSIS algorithm, a watershed-driven fine segmentation map is initially obtained from the original image, which serves as the basis for the forthcoming GeneSIS segmentation. Furthermore, in order to enhance the spatial search capabilities, we introduce a more descriptive encoding scheme in the object extraction algorithm, where the structural search modules are represented by polygonal shapes. Our objectives in the new framework are posed as follows: enhance the flexibility of the algorithm in extracting more flexible object shapes, assure high level classification accuracies, and reduce the execution time of the segmentation, while at the same time preserving all the inherent attributes of the GeneSIS approach. Finally, exploiting the inherent attribute of GeneSIS to produce multiple segmentations, we also propose two segmentation fusion schemes that operate on the ensemble of segmentations generated by GeneSIS. Our approaches are tested on an urban and two agricultural images. The results show that region-based GeneSIS has considerably lower computational demands compared to the pixel-based one. Furthermore, the suggested methods achieve higher classification accuracies and good segmentation maps compared to a series of existing algorithms.

  9. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    Science.gov (United States)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  10. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  11. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  12. Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm

    DEFF Research Database (Denmark)

    Letteboer, Marloes M J; Olsen, Ole F; Dam, Erik B

    2004-01-01

    RATIONALE AND OBJECTIVE: This article presents the evaluation of an interactive multiscale watershed segmentation algorithm for segmenting tumors in magnetic resonance brain images of patients scheduled for neuronavigational procedures. MATERIALS AND METHODS: The watershed method is compared...... delineation shows that the two methods are interchangeable according to the Bland and Altman criterion, and thus equally accurate. The repeatability of the watershed method and the manual method are compared by looking at the similarity of the segmented volumes. The similarity for intraobserver...

  13. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    Science.gov (United States)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  14. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    International Nuclear Information System (INIS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Vermandel, Maximilien; Baillet, Clio

    2015-01-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging.Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used.Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results.The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging. (paper)

  15. Adaptation of the Maracas algorithm for carotid artery segmentation and stenosis quantification on CT images

    International Nuclear Information System (INIS)

    Maria A Zuluaga; Maciej Orkisz; Edgar J F Delgado; Vincent Dore; Alfredo Morales Pinzon; Marcela Hernandez Hoyos

    2010-01-01

    This paper describes the adaptations of Maracas algorithm to the segmentation and quantification of vascular structures in CTA images of the carotid artery. The maracas algorithm, which is based on an elastic model and on a multi-scale Eigen-analysis of the inertia matrix, was originally designed to segment a single artery in MRA images. The modifications are primarily aimed at addressing the specificities of CT images and the bifurcations. The algorithms implemented in this new version are classified into two levels. 1. The low-level processing (filtering of noise and directional artifacts, enhancement and pre-segmentation) to improve the quality of the image and to pre-segment it. These techniques are based on a priori information about noise, artifacts and typical gray levels ranges of lumen, background and calcifications. 2. The high-level processing to extract the centerline of the artery, to segment the lumen and to quantify the stenosis. At this level, we apply a priori knowledge of shape and anatomy of vascular structures. The method was evaluated on 31 datasets from the carotid lumen segmentation and stenosis grading grand challenge 2009. The segmentation results obtained an average of 80:4% dice similarity score, compared to reference segmentation, and the mean stenosis quantification error was 14.4%.

  16. High-speed MRF-based segmentation algorithm using pixonal images

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Hassanpour, H.; Naimi, H. M.

    2013-01-01

    Segmentation is one of the most complicated procedures in the image processing that has important role in the image analysis. In this paper, an improved pixon-based method for image segmentation is proposed. In proposed algorithm, complex partial differential equations (PDEs) is used as a kernel...... function to make pixonal image. Using this kernel function causes noise on images to reduce and an image not to be over-segment when the pixon-based method is used. Utilising the PDE-based method leads to elimination of some unnecessary details and results in a fewer pixon number, faster performance...... and more robustness against unwanted environmental noises. As the next step, the appropriate pixons are extracted and eventually, we segment the image with the use of a Markov random field. The experimental results indicate that the proposed pixon-based approach has a reduced computational load...

  17. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    Science.gov (United States)

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different

  18. A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT

    Science.gov (United States)

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J.; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa

    2016-01-01

    On‐board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real‐time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image‐guided radiotherapy (MR‐IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k‐means (FKM), k‐harmonic means (KHM), and reaction‐diffusion level set evolution (RD‐LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR‐TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR‐TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD‐LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP‐TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high‐contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR‐TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and

  19. A Novel Histogram Region Merging Based Multithreshold Segmentation Algorithm for MR Brain Images

    Directory of Open Access Journals (Sweden)

    Siyan Liu

    2017-01-01

    Full Text Available Multithreshold segmentation algorithm is time-consuming, and the time complexity will increase exponentially with the increase of thresholds. In order to reduce the time complexity, a novel multithreshold segmentation algorithm is proposed in this paper. First, all gray levels are used as thresholds, so the histogram of the original image is divided into 256 small regions, and each region corresponds to one gray level. Then, two adjacent regions are merged in each iteration by a new designed scheme, and a threshold is removed each time. To improve the accuracy of the merger operation, variance and probability are used as energy. No matter how many the thresholds are, the time complexity of the algorithm is stable at O(L. Finally, the experiment is conducted on many MR brain images to verify the performance of the proposed algorithm. Experiment results show that our method can reduce the running time effectively and obtain segmentation results with high accuracy.

  20. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships.

    Science.gov (United States)

    Hatipoglu, Nuh; Bilgin, Gokhan

    2017-10-01

    In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

  1. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    Science.gov (United States)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  2. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    Science.gov (United States)

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  3. Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.

    Science.gov (United States)

    Phellan, Renzo; Forkert, Nils D

    2017-11-01

    Vessel enhancement algorithms are often used as a preprocessing step for vessel segmentation in medical images to improve the overall segmentation accuracy. Each algorithm uses different characteristics to enhance vessels, such that the most suitable algorithm may vary for different applications. This paper presents a comparative analysis of the accuracy gains in vessel segmentation generated by the use of nine vessel enhancement algorithms: Multiscale vesselness using the formulas described by Erdt (MSE), Frangi (MSF), and Sato (MSS), optimally oriented flux (OOF), ranking orientations responses path operator (RORPO), the regularized Perona-Malik approach (RPM), vessel enhanced diffusion (VED), hybrid diffusion with continuous switch (HDCS), and the white top hat algorithm (WTH). The filters were evaluated and compared based on time-of-flight MRA datasets and corresponding manual segmentations from 5 healthy subjects and 10 patients with an arteriovenous malformation. Additionally, five synthetic angiographic datasets with corresponding ground truth segmentation were generated with three different noise levels (low, medium, and high) and also used for comparison. The parameters for each algorithm and subsequent segmentation were optimized using leave-one-out cross evaluation. The Dice coefficient, Matthews correlation coefficient, area under the ROC curve, number of connected components, and true positives were used for comparison. The results of this study suggest that vessel enhancement algorithms do not always lead to more accurate segmentation results compared to segmenting nonenhanced images directly. Multiscale vesselness algorithms, such as MSE, MSF, and MSS proved to be robust to noise, while diffusion-based filters, such as RPM, VED, and HDCS ranked in the top of the list in scenarios with medium or no noise. Filters that assume tubular-shapes, such as MSE, MSF, MSS, OOF, RORPO, and VED show a decrease in accuracy when considering patients with an AVM

  4. Liver Segmentation Based on Snakes Model and Improved GrowCut Algorithm in Abdominal CT Image

    Directory of Open Access Journals (Sweden)

    Huiyan Jiang

    2013-01-01

    Full Text Available A novel method based on Snakes Model and GrowCut algorithm is proposed to segment liver region in abdominal CT images. First, according to the traditional GrowCut method, a pretreatment process using K-means algorithm is conducted to reduce the running time. Then, the segmentation result of our improved GrowCut approach is used as an initial contour for the future precise segmentation based on Snakes model. At last, several experiments are carried out to demonstrate the performance of our proposed approach and some comparisons are conducted between the traditional GrowCut algorithm. Experimental results show that the improved approach not only has a better robustness and precision but also is more efficient than the traditional GrowCut method.

  5. Improving Brain Magnetic Resonance Image (MRI Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Directory of Open Access Journals (Sweden)

    Javadpour A.

    2016-06-01

    Full Text Available Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective: This study describes a new method for brain Magnetic Resonance Image (MRI segmentation via a novel algorithm based on genetic and regional growth. Methods: Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results: By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion: The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases.

  6. An Image Segmentation Based on a Genetic Algorithm for Determining Soil Coverage by Crop Residues

    Science.gov (United States)

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P.; Pajares, Gonzalo; Sanchez del Arco, Maria J.; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain). PMID:22163966

  7. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    Directory of Open Access Journals (Sweden)

    Assaf Zaritsky

    Full Text Available Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional

  8. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    Science.gov (United States)

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single

  9. Simulating Deformations of MR Brain Images for Validation of Atlas-based Segmentation and Registration Algorithms

    OpenAIRE

    Xue, Zhong; Shen, Dinggang; Karacali, Bilge; Stern, Joshua; Rottenberg, David; Davatzikos, Christos

    2006-01-01

    Simulated deformations and images can act as the gold standard for evaluating various template-based image segmentation and registration algorithms. Traditional deformable simulation methods, such as the use of analytic deformation fields or the displacement of landmarks followed by some form of interpolation, are often unable to construct rich (complex) and/or realistic deformations of anatomical organs. This paper presents new methods aiming to automatically simulate realistic inter- and in...

  10. 2D Tsallis Entropy for Image Segmentation Based on Modified Chaotic Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2018-03-01

    Full Text Available Image segmentation is a significant step in image analysis and computer vision. Many entropy based approaches have been presented in this topic; among them, Tsallis entropy is one of the best performing methods. However, 1D Tsallis entropy does not consider make use of the spatial correlation information within the neighborhood results might be ruined by noise. Therefore, 2D Tsallis entropy is proposed to solve the problem, and results are compared with 1D Fisher, 1D maximum entropy, 1D cross entropy, 1D Tsallis entropy, fuzzy entropy, 2D Fisher, 2D maximum entropy and 2D cross entropy. On the other hand, due to the existence of huge computational costs, meta-heuristics algorithms like genetic algorithm (GA, particle swarm optimization (PSO, ant colony optimization algorithm (ACO and differential evolution algorithm (DE are used to accelerate the 2D Tsallis entropy thresholding method. In this paper, considering 2D Tsallis entropy as a constrained optimization problem, the optimal thresholds are acquired by maximizing the objective function using a modified chaotic Bat algorithm (MCBA. The proposed algorithm has been tested on some actual and infrared images. The results are compared with that of PSO, GA, ACO and DE and demonstrate that the proposed method outperforms other approaches involved in the paper, which is a feasible and effective option for image segmentation.

  11. An improved K-means clustering algorithm in agricultural image segmentation

    Science.gov (United States)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  12. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation.

    Science.gov (United States)

    Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou

    2015-01-01

    Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.

  13. CAnat: An algorithm for the automatic segmentation of anatomy of medical images

    International Nuclear Information System (INIS)

    Caon, M.; Gobert, L.; Mariusz, B.

    2011-01-01

    Full text: To develop a method to automatically categorise organs and tissues displayed in medical images. Dosimetry calculations using Monte Carlo methods require a mathematical representation of human anatomy e.g. a voxel phantom. For a whole body, their construction involves processing several hundred images to identify each organ and tissue-the process is very time-consuming. This project is developing a Computational Anatomy (CAnat) algorithm to automatically recognise and classify the different tissue in a tomographic image. Methods The algorithm utilizes the Statistical Region Merging technique (SRM). The SRM depends on one estimated parameter. The parameter is a measure of statistical complexity of the image and can be automatically adjusted to suit individual image features. This allows for automatic tuning of coarseness of the overall segmentation as well as object specific selection for further tasks. CAnat is tested on two CT images selected to represent different anatomical complexities. In the mid-thigh image, tissues/. regions of interest are air, fat, muscle, bone marrow and compact bone. In the pelvic image, fat, urinary bladder and anus/colon, muscle, cancellous bone, and compact bone. Segmentation results were evaluated using the Jaccard index which is a measure of set agreement. An index of one indicates perfect agreement between CAnat and manual segmentation. The Jaccard indices for the mid-thigh CT were 0.99, 0.89, 0.97, 0.63 and 0.88, respectively and for the pelvic CT were 0.99, 0.81, 0.77, 0.93, 0.53, 0.76, respectively. Conclusion The high accuracy preliminary segmentation results demonstrate the feasibility of the CAnat algorithm.

  14. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images.

    Science.gov (United States)

    Katouzian, Amin; Angelini, Elsa D; Carlier, Stéphane G; Suri, Jasjit S; Navab, Nassir; Laine, Andrew F

    2012-09-01

    Over the past two decades, intravascular ultrasound (IVUS) image segmentation has remained a challenge for researchers while the use of this imaging modality is rapidly growing in catheterization procedures and in research studies. IVUS provides cross-sectional grayscale images of the arterial wall and the extent of atherosclerotic plaques with high spatial resolution in real time. In this paper, we review recently developed image processing methods for the detection of media-adventitia and luminal borders in IVUS images acquired with different transducers operating at frequencies ranging from 20 to 45 MHz. We discuss methodological challenges, lack of diversity in reported datasets, and weaknesses of quantification metrics that make IVUS segmentation still an open problem despite all efforts. In conclusion, we call for a common reference database, validation metrics, and ground-truth definition with which new and existing algorithms could be benchmarked.

  15. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    Science.gov (United States)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  16. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  17. Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    Directory of Open Access Journals (Sweden)

    Yehu Shen

    2014-01-01

    Full Text Available Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying.

  18. Using neutrosophic graph cut segmentation algorithm for qualified rendering image selection in thyroid elastography video.

    Science.gov (United States)

    Guo, Yanhui; Jiang, Shuang-Quan; Sun, Baiqing; Siuly, Siuly; Şengür, Abdulkadir; Tian, Jia-Wei

    2017-12-01

    Recently, elastography has become very popular in clinical investigation for thyroid cancer detection and diagnosis. In elastogram, the stress results of the thyroid are displayed using pseudo colors. Due to variation of the rendering results in different frames, it is difficult for radiologists to manually select the qualified frame image quickly and efficiently. The purpose of this study is to find the qualified rendering result in the thyroid elastogram. This paper employs an efficient thyroid ultrasound image segmentation algorithm based on neutrosophic graph cut to find the qualified rendering images. Firstly, a thyroid ultrasound image is mapped into neutrosophic set, and an indeterminacy filter is constructed to reduce the indeterminacy of the spatial and intensity information in the image. A graph is defined on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The segmentation results are obtained using a maximum-flow algorithm on the graph. Then the anatomic structure is identified in thyroid ultrasound image. Finally the rendering colors on these anatomic regions are extracted and validated to find the frames which satisfy the selection criteria. To test the performance of the proposed method, a thyroid elastogram dataset is built and totally 33 cases were collected. An experienced radiologist manually evaluates the selection results of the proposed method. Experimental results demonstrate that the proposed method finds the qualified rendering frame with 100% accuracy. The proposed scheme assists the radiologists to diagnose the thyroid diseases using the qualified rendering images.

  19. Study of Image Analysis Algorithms for Segmentation, Feature Extraction and Classification of Cells

    Directory of Open Access Journals (Sweden)

    Margarita Gamarra

    2017-08-01

    Full Text Available Recent advances in microcopy and improvements in image processing algorithms have allowed the development of computer-assisted analytical approaches in cell identification. Several applications could be mentioned in this field: Cellular phenotype identification, disease detection and treatment, identifying virus entry in cells and virus classification; these applications could help to complement the opinion of medical experts. Although many surveys have been presented in medical image analysis, they focus mainly in tissues and organs and none of the surveys about image cells consider an analysis following the stages in the typical image processing: Segmentation, feature extraction and classification. The goal of this study is to provide comprehensive and critical analyses about the trends in each stage of cell image processing. In this paper, we present a literature survey about cell identification using different image processing techniques.

  20. New second-order difference algorithm for image segmentation based on cellular neural networks (CNNs)

    Science.gov (United States)

    Meng, Shukai; Mo, Yu L.

    2001-09-01

    Image segmentation is one of the most important operations in many image analysis problems, which is the process that subdivides an image into its constituents and extracts those parts of interest. In this paper, we present a new second order difference gray-scale image segmentation algorithm based on cellular neural networks. A 3x3 CNN cloning template is applied, which can make smooth processing and has a good ability to deal with the conflict between the capability of noise resistance and the edge detection of complex shapes. We use second order difference operator to calculate the coefficients of the control template, which are not constant but rather depend on the input gray-scale values. It is similar to Contour Extraction CNN in construction, but there are some different in algorithm. The result of experiment shows that the second order difference CNN has a good capability in edge detection. It is better than Contour Extraction CNN in detail detection and more effective than the Laplacian of Gauss (LOG) algorithm.

  1. Fully automatic algorithm for segmenting full human diaphragm in non-contrast CT Images

    Science.gov (United States)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    The diaphragm is a sheet of muscle which separates the thorax from the abdomen and it acts as the most important muscle of the respiratory system. As such, an accurate segmentation of the diaphragm, not only provides key information for functional analysis of the respiratory system, but also can be used for locating other abdominal organs such as the liver. However, diaphragm segmentation is extremely challenging in non-contrast CT images due to the diaphragm's similar appearance to other abdominal organs. In this paper, we present a fully automatic algorithm for diaphragm segmentation in non-contrast CT images. The method is mainly based on a priori knowledge about the human diaphragm anatomy. The diaphragm domes are in contact with the lungs and the heart while its circumference runs along the lumbar vertebrae of the spine as well as the inferior border of the ribs and sternum. As such, the diaphragm can be delineated by segmentation of these organs followed by connecting relevant parts of their outline properly. More specifically, the bottom surface of the lungs and heart, the spine borders and the ribs are delineated, leading to a set of scattered points which represent the diaphragm's geometry. Next, a B-spline filter is used to find the smoothest surface which pass through these points. This algorithm was tested on a noncontrast CT image of a lung cancer patient. The results indicate that there is an average Hausdorff distance of 2.96 mm between the automatic and manually segmented diaphragms which implies a favourable accuracy.

  2. Shadow Detection from Very High Resoluton Satellite Image Using Grabcut Segmentation and Ratio-Band Algorithms

    Science.gov (United States)

    Kadhim, N. M. S. M.; Mourshed, M.; Bray, M. T.

    2015-03-01

    Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of

  3. SHADOW DETECTION FROM VERY HIGH RESOLUTON SATELLITE IMAGE USING GRABCUT SEGMENTATION AND RATIO-BAND ALGORITHMS

    Directory of Open Access Journals (Sweden)

    N. M. S. M. Kadhim

    2015-03-01

    Full Text Available Very-High-Resolution (VHR satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour, the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates

  4. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    Science.gov (United States)

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  5. A Fast Global Fitting Algorithm for Fluorescence Lifetime Imaging Microscopy Based on Image Segmentation

    OpenAIRE

    Pelet, S.; Previte, M.J.R.; Laiho, L.H.; So, P.T. C.

    2004-01-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained ana...

  6. A FAST SEGMENTATION ALGORITHM FOR C-V MODEL BASED ON EXPONENTIAL IMAGE SEQUENCE GENERATION

    Directory of Open Access Journals (Sweden)

    J. Hu

    2017-09-01

    Full Text Available For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1 the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2 the initial value of SDF (Signal Distance Function and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3 the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  7. a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation

    Science.gov (United States)

    Hu, J.; Lu, L.; Xu, J.; Zhang, J.

    2017-09-01

    For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  8. Automatic segmentation of thermal images of diabetic-at-risk feet using the snakes algorithm

    Science.gov (United States)

    Etehadtavakol, Mahnaz; Ng, E. Y. K.; Kaabouch, Naima

    2017-11-01

    Diabetes is a disease with multi-systemic problems. It is a leading cause of death, medical costs, and loss of productivity. Foot ulcers are one generally known problem of uncontrolled diabetes that can lead to amputation signs of foot ulcers are not always obvious. Sometimes, symptoms won't even show up until ulcer is infected. Hence, identification of pre-ulceration of the plantar surface of the foot in diabetics is beneficial. Thermography has the potential to identify regions of the plantar with no evidence of ulcer but yet risk. Thermography is a technique that is safe, easy, non-invasive, with no contact, and repeatable. In this study, 59 thermographic images of the plantar foot of patients with diabetic neuropathy are implemented using the snakes algorithm to separate two feet from background automatically and separating the right foot from the left on each image. The snakes algorithm both separates the right and left foot into segmented different clusters according to their temperatures. The hottest regions will have the highest risk of ulceration for each foot. This algorithm also worked perfectly for all the current images.

  9. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    International Nuclear Information System (INIS)

    Feng, Y; Olsen, J.; Parikh, P.; Noel, C; Wooten, H; Du, D; Mutic, S; Hu, Y; Kawrakow, I; Dempsey, J

    2014-01-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE), along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information

  10. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y; Olsen, J.; Parikh, P.; Noel, C; Wooten, H; Du, D; Mutic, S; Hu, Y [Washington University, St. Louis, MO (United States); Kawrakow, I; Dempsey, J [Washington University, St. Louis, MO (United States); ViewRay Co., Oakwood Village, OH (United States)

    2014-06-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE), along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information

  11. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm

    International Nuclear Information System (INIS)

    Ahmadian, Alireza; Ay, Mohammad R.; Sarkar, Saeed; Bidgoli, Javad H.; Zaidi, Habib

    2008-01-01

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (μmap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated μmaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in

  12. A sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image

    Science.gov (United States)

    Li, Jing; Xie, Weixin; Pei, Jihong

    2018-03-01

    Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.

  13. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    Science.gov (United States)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  14. Metrics for image segmentation

    Science.gov (United States)

    Rees, Gareth; Greenway, Phil; Morray, Denise

    1998-07-01

    An important challenge in mapping image-processing techniques onto applications is the lack of quantitative performance measures. From a systems engineering perspective these are essential if system level requirements are to be decomposed into sub-system requirements which can be understood in terms of algorithm selection and performance optimization. Nowhere in computer vision is this more evident than in the area of image segmentation. This is a vigorous and innovative research activity, but even after nearly two decades of progress, it remains almost impossible to answer the question 'what would the performance of this segmentation algorithm be under these new conditions?' To begin to address this shortcoming, we have devised a well-principled metric for assessing the relative performance of two segmentation algorithms. This allows meaningful objective comparisons to be made between their outputs. It also estimates the absolute performance of an algorithm given ground truth. Our approach is an information theoretic one. In this paper, we describe the theory and motivation of our method, and present practical results obtained from a range of state of the art segmentation methods. We demonstrate that it is possible to measure the objective performance of these algorithms, and to use the information so gained to provide clues about how their performance might be improved.

  15. FRAMEWORK FOR COMPARING SEGMENTATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    G. Sithole

    2015-05-01

    Full Text Available The notion of a ‘Best’ segmentation does not exist. A segmentation algorithm is chosen based on the features it yields, the properties of the segments (point sets it generates, and the complexity of its algorithm. The segmentation is then assessed based on a variety of metrics such as homogeneity, heterogeneity, fragmentation, etc. Even after an algorithm is chosen its performance is still uncertain because the landscape/scenarios represented in a point cloud have a strong influence on the eventual segmentation. Thus selecting an appropriate segmentation algorithm is a process of trial and error. Automating the selection of segmentation algorithms and their parameters first requires methods to evaluate segmentations. Three common approaches for evaluating segmentation algorithms are ‘goodness methods’, ‘discrepancy methods’ and ‘benchmarks’. Benchmarks are considered the most comprehensive method of evaluation. This paper shortcomings in current benchmark methods are identified and a framework is proposed that permits both a visual and numerical evaluation of segmentations for different algorithms, algorithm parameters and evaluation metrics. The concept of the framework is demonstrated on a real point cloud. Current results are promising and suggest that it can be used to predict the performance of segmentation algorithms.

  16. Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms.

    Science.gov (United States)

    Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas

    2017-03-18

    Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.

  17. SU-C-207B-05: Tissue Segmentation of Computed Tomography Images Using a Random Forest Algorithm: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Polan, D [University of Michigan, Ann Arbor, MI (United States); Brady, S; Kaufman, R [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: Develop an automated Random Forest algorithm for tissue segmentation of CT examinations. Methods: Seven materials were classified for segmentation: background, lung/internal gas, fat, muscle, solid organ parenchyma, blood/contrast, and bone using Matlab and the Trainable Weka Segmentation (TWS) plugin of FIJI. The following classifier feature filters of TWS were investigated: minimum, maximum, mean, and variance each evaluated over a pixel radius of 2n, (n = 0–4). Also noise reduction and edge preserving filters, Gaussian, bilateral, Kuwahara, and anisotropic diffusion, were evaluated. The algorithm used 200 trees with 2 features per node. A training data set was established using an anonymized patient’s (male, 20 yr, 72 kg) chest-abdomen-pelvis CT examination. To establish segmentation ground truth, the training data were manually segmented using Eclipse planning software, and an intra-observer reproducibility test was conducted. Six additional patient data sets were segmented based on classifier data generated from the training data. Accuracy of segmentation was determined by calculating the Dice similarity coefficient (DSC) between manual and auto segmented images. Results: The optimized autosegmentation algorithm resulted in 16 features calculated using maximum, mean, variance, and Gaussian blur filters with kernel radii of 1, 2, and 4 pixels, in addition to the original CT number, and Kuwahara filter (linear kernel of 19 pixels). Ground truth had a DSC of 0.94 (range: 0.90–0.99) for adult and 0.92 (range: 0.85–0.99) for pediatric data sets across all seven segmentation classes. The automated algorithm produced segmentation with an average DSC of 0.85 ± 0.04 (range: 0.81–1.00) for the adult patients, and 0.86 ± 0.03 (range: 0.80–0.99) for the pediatric patients. Conclusion: The TWS Random Forest auto-segmentation algorithm was optimized for CT environment, and able to segment seven material classes over a range of body habitus and CT

  18. SU-C-207B-05: Tissue Segmentation of Computed Tomography Images Using a Random Forest Algorithm: A Feasibility Study

    International Nuclear Information System (INIS)

    Polan, D; Brady, S; Kaufman, R

    2016-01-01

    Purpose: Develop an automated Random Forest algorithm for tissue segmentation of CT examinations. Methods: Seven materials were classified for segmentation: background, lung/internal gas, fat, muscle, solid organ parenchyma, blood/contrast, and bone using Matlab and the Trainable Weka Segmentation (TWS) plugin of FIJI. The following classifier feature filters of TWS were investigated: minimum, maximum, mean, and variance each evaluated over a pixel radius of 2n, (n = 0–4). Also noise reduction and edge preserving filters, Gaussian, bilateral, Kuwahara, and anisotropic diffusion, were evaluated. The algorithm used 200 trees with 2 features per node. A training data set was established using an anonymized patient’s (male, 20 yr, 72 kg) chest-abdomen-pelvis CT examination. To establish segmentation ground truth, the training data were manually segmented using Eclipse planning software, and an intra-observer reproducibility test was conducted. Six additional patient data sets were segmented based on classifier data generated from the training data. Accuracy of segmentation was determined by calculating the Dice similarity coefficient (DSC) between manual and auto segmented images. Results: The optimized autosegmentation algorithm resulted in 16 features calculated using maximum, mean, variance, and Gaussian blur filters with kernel radii of 1, 2, and 4 pixels, in addition to the original CT number, and Kuwahara filter (linear kernel of 19 pixels). Ground truth had a DSC of 0.94 (range: 0.90–0.99) for adult and 0.92 (range: 0.85–0.99) for pediatric data sets across all seven segmentation classes. The automated algorithm produced segmentation with an average DSC of 0.85 ± 0.04 (range: 0.81–1.00) for the adult patients, and 0.86 ± 0.03 (range: 0.80–0.99) for the pediatric patients. Conclusion: The TWS Random Forest auto-segmentation algorithm was optimized for CT environment, and able to segment seven material classes over a range of body habitus and CT

  19. Scorpion image segmentation system

    Science.gov (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  20. New segmentation-based tone mapping algorithm for high dynamic range image

    Science.gov (United States)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  1. ADVANCED CLUSTER BASED IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    D. Kesavaraja

    2011-11-01

    Full Text Available This paper presents efficient and portable implementations of a useful image segmentation technique which makes use of the faster and a variant of the conventional connected components algorithm which we call parallel Components. In the Modern world majority of the doctors are need image segmentation as the service for various purposes and also they expect this system is run faster and secure. Usually Image segmentation Algorithms are not working faster. In spite of several ongoing researches in Conventional Segmentation and its Algorithms might not be able to run faster. So we propose a cluster computing environment for parallel image Segmentation to provide faster result. This paper is the real time implementation of Distributed Image Segmentation in Clustering of Nodes. We demonstrate the effectiveness and feasibility of our method on a set of Medical CT Scan Images. Our general framework is a single address space, distributed memory programming model. We use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. The image segmentation algorithm makes use of an efficient cluster process which uses a novel approach for parallel merging. Our experimental results are consistent with the theoretical analysis and practical results. It provides the faster execution time for segmentation, when compared with Conventional method. Our test data is different CT scan images from the Medical database. More efficient implementations of Image Segmentation will likely result in even faster execution times.

  2. Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images.

    Science.gov (United States)

    Karim, Rashed; Bhagirath, Pranav; Claus, Piet; James Housden, R; Chen, Zhong; Karimaghaloo, Zahra; Sohn, Hyon-Mok; Lara Rodríguez, Laura; Vera, Sergio; Albà, Xènia; Hennemuth, Anja; Peitgen, Heinz-Otto; Arbel, Tal; Gonzàlez Ballester, Miguel A; Frangi, Alejandro F; Götte, Marco; Razavi, Reza; Schaeffter, Tobias; Rhode, Kawal

    2016-05-01

    Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the Full-Width-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering

    Directory of Open Access Journals (Sweden)

    Li Ma

    2015-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.

  4. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    Science.gov (United States)

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright

  5. Comparison of segmentation algorithms for cow contour extraction from natural barn background in side view images

    NARCIS (Netherlands)

    Hertem, van T.; Alchanatis, V.; Antler, A.; Maltz, E.; Halachmi, I.; Schlageter Tello, A.A.; Lokhorst, C.; Viazzi, S.; Romanini, C.E.B.; Pluk, A.; Bahr, C.; Berckmans, D.

    2013-01-01

    Computer vision techniques are a means to extract individual animal information such as weight, activity and calving time in intensive farming. Automatic detection requires adequate image pre-processing such as segmentation to precisely distinguish the animal from its background. For some analyses

  6. [Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm].

    Science.gov (United States)

    Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian

    2017-06-01

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

  7. Study of system for segmentation of images and elaboration of algorithms for three dimensional scene reconstruction

    International Nuclear Information System (INIS)

    Bufacchi, A.; Tripi, A.

    1995-09-01

    The aim of this paper is the presentation of a series of methodologies to recognize and to obtain a three-dimensional reconstruction of an inner architectural scene, using a gray level image obtained using a TV camera. In the first part of the work, a series of methods used to find the edges in an effective way are critically compared, obtaining a binary image, and then the application of the Hough transform to such binary image to find the straight lines in the original image are discussed. In the second part, an algorithm is shown in order to find the vanishing points in such image

  8. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines

    Science.gov (United States)

    Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.

    2017-01-01

    Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445

  9. Parallel fuzzy connected image segmentation on GPU

    OpenAIRE

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm impleme...

  10. Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Sihem SLATNIA

    2011-01-01

    Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks,extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.

  11. Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Okba Kazar

    2011-01-01

    Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks, extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.

  12. A Semiautomatic Segmentation Algorithm for Extracting the Complete Structure of Acini from Synchrotron Micro-CT Images

    Directory of Open Access Journals (Sweden)

    Luosha Xiao

    2013-01-01

    Full Text Available Pulmonary acinus is the largest airway unit provided with alveoli where blood/gas exchange takes place. Understanding the complete structure of acinus is necessary to measure the pathway of gas exchange and to simulate various mechanical phenomena in the lungs. The usual manual segmentation of a complete acinus structure from their experimentally obtained images is difficult and extremely time-consuming, which hampers the statistical analysis. In this study, we develop a semiautomatic segmentation algorithm for extracting the complete structure of acinus from synchrotron micro-CT images of the closed chest of mouse lungs. The algorithm uses a combination of conventional binary image processing techniques based on the multiscale and hierarchical nature of lung structures. Specifically, larger structures are removed, while smaller structures are isolated from the image by repeatedly applying erosion and dilation operators in order, adjusting the parameter referencing to previously obtained morphometric data. A cluster of isolated acini belonging to the same terminal bronchiole is obtained without floating voxels. The extracted acinar models above 98% agree well with those extracted manually. The run time is drastically shortened compared with manual methods. These findings suggest that our method may be useful for taking samples used in the statistical analysis of acinus.

  13. Determining the number of clusters for kernelized fuzzy C-means algorithms for automatic medical image segmentation

    Directory of Open Access Journals (Sweden)

    E.A. Zanaty

    2012-03-01

    Full Text Available In this paper, we determine the suitable validity criterion of kernelized fuzzy C-means and kernelized fuzzy C-means with spatial constraints for automatic segmentation of magnetic resonance imaging (MRI. For that; the original Euclidean distance in the FCM is replaced by a Gaussian radial basis function classifier (GRBF and the corresponding algorithms of FCM methods are derived. The derived algorithms are called as the kernelized fuzzy C-means (KFCM and kernelized fuzzy C-means with spatial constraints (SKFCM. These methods are implemented on eighteen indexes as validation to determine whether indexes are capable to acquire the optimal clusters number. The performance of segmentation is estimated by applying these methods independently on several datasets to prove which method can give good results and with which indexes. Our test spans various indexes covering the classical and the rather more recent indexes that have enjoyed noticeable success in that field. These indexes are evaluated and compared by applying them on various test images, including synthetic images corrupted with noise of varying levels, and simulated volumetric MRI datasets. Comparative analysis is also presented to show whether the validity index indicates the optimal clustering for our datasets.

  14. Hemodynamic segmentation of brain perfusion images with delay and dispersion effects using an expectation-maximization algorithm.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Lu

    Full Text Available Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified.

  15. Algorithms for Cytoplasm Segmentation of Fluorescence Labelled Cells

    OpenAIRE

    Carolina Wählby; Joakim Lindblad; Mikael Vondrus; Ewert Bengtsson; Lennart Björkesten

    2002-01-01

    Automatic cell segmentation has various applications in cytometry, and while the nucleus is often very distinct and easy to identify, the cytoplasm provides a lot more challenge. A new combination of image analysis algorithms for segmentation of cells imaged by fluorescence microscopy is presented. The algorithm consists of an image pre?processing step, a general segmentation and merging step followed by a segmentation quality measurement. The quality measurement consists of a statistical ana...

  16. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    Directory of Open Access Journals (Sweden)

    Trong-Ngoc Le

    2016-01-01

    Full Text Available Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN, which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  17. A novel line segment detection algorithm based on graph search

    Science.gov (United States)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  18. Hierarchical image segmentation for learning object priors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  19. A modified Seeded Region Growing algorithm for vessel segmentation in breast MRI images for investigating the nature of potential lesions

    Science.gov (United States)

    Glotsos, D.; Vassiou, K.; Kostopoulos, S.; Lavdas, El; Kalatzis, I.; Asvestas, P.; Arvanitis, D. L.; Fezoulidis, I. V.; Cavouras, D.

    2014-03-01

    The role of Magnetic Resonance Imaging (MRI) as an alternative protocol for screening of breast cancer has been intensively investigated during the past decade. Preliminary research results have indicated that gadolinium-agent administrative MRI scans may reveal the nature of breast lesions by analyzing the contrast-agent's uptake time. In this study, we attempt to deduce the same conclusion, however, from a different perspective by investigating, using image processing, the vascular network of the breast at two different time intervals following the administration of gadolinium. Twenty cases obtained from a 3.0-T MRI system (SIGNA HDx; GE Healthcare) were included in the study. A new modification of the Seeded Region Growing (SRG) algorithm was used to segment vessels from surrounding background. Delineated vessels were investigated by means of their topology, morphology and texture. Results have shown that it is possible to estimate the nature of the lesions with approximately 94.4% accuracy, thus, it may be claimed that the breast vascular network does encodes useful, patterned, information, which can be used for characterizing breast lesions.

  20. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  1. Dictionary Based Image Segmentation

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  2. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula

    International Nuclear Information System (INIS)

    Mera, David; Cotos, José M.; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-01-01

    Highlights: ► We present an adaptive thresholding algorithm to segment oil spills. ► The segmentation algorithm is based on SAR images and wind field estimations. ► A Database of oil spill confirmations was used for the development of the algorithm. ► Wind field estimations have demonstrated to be useful for filtering look-alikes. ► Parallel programming has been successfully used to minimize processing time. - Abstract: Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean’s surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time.

  3. Distance measures for image segmentation evaluation

    OpenAIRE

    Monteiro, Fernando C.; Campilho, Aurélio

    2012-01-01

    In this paper we present a study of evaluation measures that enable the quantification of the quality of an image segmentation result. Despite significant advances in image segmentation techniques, evaluation of these techniques thus far has been largely subjective. Typically, the effectiveness of a new algorithm is demonstrated only by the presentation of a few segmented images and is otherwise left to subjective evaluation by the reader. Such an evaluation criterion can be useful for differ...

  4. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms.

    Science.gov (United States)

    Rashno, Abdolreza; Koozekanani, Dara D; Drayna, Paul M; Nazari, Behzad; Sadri, Saeed; Rabbani, Hossein; Parhi, Keshab K

    2018-05-01

    This paper presents a fully automated algorithm to segment fluid-associated (fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based shortest path method. In neutrosophic domain, an image is transformed into three sets: (true), (indeterminate) that represents noise, and (false). This paper makes four key contributions. First, a new method is introduced to compute the indeterminacy set , and a new -correction operation is introduced to compute the set in neutrosophic domain. Second, a graph shortest-path method is applied in neutrosophic domain to segment the inner limiting membrane and the retinal pigment epithelium as regions of interest (ROI) and outer plexiform layer and inner segment myeloid as middle layers using a novel definition of the edge weights . Third, a new cost function for cluster-based fluid/cyst segmentation in ROI is presented which also includes a novel approach in estimating the number of clusters in an automated manner. Fourth, the final fluid regions are achieved by ignoring very small regions and the regions between middle layers. The proposed method is evaluated using two publicly available datasets: Duke, Optima, and a third local dataset from the UMN clinic which is available online. The proposed algorithm outperforms the previously proposed Duke algorithm by 8% with respect to the dice coefficient and by 5% with respect to precision on the Duke dataset, while achieving about the same sensitivity. Also, the proposed algorithm outperforms a prior method for Optima dataset by 6%, 22%, and 23% with respect to the dice coefficient, sensitivity, and precision, respectively. Finally, the proposed algorithm also achieves sensitivity of 67.3%, 88.8%, and 76.7%, for the Duke, Optima, and the university of minnesota (UMN) datasets, respectively.

  5. A Hybrid Technique for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  6. Algorithms for Cytoplasm Segmentation of Fluorescence Labelled Cells

    Directory of Open Access Journals (Sweden)

    Carolina Wählby

    2002-01-01

    Full Text Available Automatic cell segmentation has various applications in cytometry, and while the nucleus is often very distinct and easy to identify, the cytoplasm provides a lot more challenge. A new combination of image analysis algorithms for segmentation of cells imaged by fluorescence microscopy is presented. The algorithm consists of an image pre‐processing step, a general segmentation and merging step followed by a segmentation quality measurement. The quality measurement consists of a statistical analysis of a number of shape descriptive features. Objects that have features that differ to that of correctly segmented single cells can be further processed by a splitting step. By statistical analysis we therefore get a feedback system for separation of clustered cells. After the segmentation is completed, the quality of the final segmentation is evaluated. By training the algorithm on a representative set of training images, the algorithm is made fully automatic for subsequent images created under similar conditions. Automatic cytoplasm segmentation was tested on CHO‐cells stained with calcein. The fully automatic method showed between 89% and 97% correct segmentation as compared to manual segmentation.

  7. Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm.

    Science.gov (United States)

    Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis

    2017-01-01

    Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.

  8. Field Sampling from a Segmented Image

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-06-01

    Full Text Available This paper presents a statistical method for deriving the optimal prospective field sampling scheme on a remote sensing image to represent different categories in the field. The iterated conditional modes algorithm (ICM) is used for segmentation...

  9. Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    Praveen Agarwal

    2017-06-01

    Full Text Available Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without texture. The final segmentation is simply achieved by a spatially color segmentation using feature vector with the set of color values contained around the pixel to be classified with some mathematical equations. The spatial constraint allows taking into account the inherent spatial relationships of any image and its color. This approach provides effective PSNR for the segmented image. These results have the better performance as the segmented images are compared with Watershed & Region Growing Algorithm and provide effective segmentation for the Spectral Images & Medical Images.

  10. A new framework for interactive images segmentation

    International Nuclear Information System (INIS)

    Ashraf, M.; Sarim, M.; Shaikh, A.B.

    2017-01-01

    Image segmentation has become a widely studied research problem in image processing. There exist different graph based solutions for interactive image segmentation but the domain of image segmentation still needs persistent improvements. The segmentation quality of existing techniques generally depends on the manual input provided in beginning, therefore, these algorithms may not produce quality segmentation with initial seed labels provided by a novice user. In this work we investigated the use of cellular automata in image segmentation and proposed a new algorithm that follows a cellular automaton in label propagation. It incorporates both the pixel's local and global information in the segmentation process. We introduced the novel global constraints in automata evolution rules; hence proposed scheme of automata evolution is more effective than the automata based earlier evolution schemes. Global constraints are also effective in deceasing the sensitivity towards small changes made in manual input; therefore proposed approach is less dependent on label seed marks. It can produce the quality segmentation with modest user efforts. Segmentation results indicate that the proposed algorithm performs better than the earlier segmentation techniques. (author)

  11. Cluster Ensemble-Based Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoru Wang

    2013-07-01

    Full Text Available Image segmentation is the foundation of computer vision applications. In this paper, we propose a new cluster ensemble-based image segmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories of images. Second, we exploit the PageRank idea from Internet applications and apply it to the image segmentation task. This can improve the final segmentation results by combining the spatial information of the image and the semantic similarity of regions. Our experiments on four public image databases validate the superiority of our algorithm over conventional single type of feature or multiple types of features-based algorithms, since our algorithm can fuse multiple types of features effectively for better segmentation results. Moreover, our method is also proved to be very competitive in comparison with other state-of-the-art segmentation algorithms.

  12. Unsupervised Image Segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2014-01-01

    Roč. 36, č. 4 (2014), s. 23-23 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : unsupervised image segmentation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2014/RO/haindl-0434412.pdf

  13. COMPARISON AND EVALUATION OF CLUSTER BASED IMAGE SEGMENTATION TECHNIQUES

    OpenAIRE

    Hetangi D. Mehta*, Daxa Vekariya, Pratixa Badelia

    2017-01-01

    Image segmentation is the classification of an image into different groups. Numerous algorithms using different approaches have been proposed for image segmentation. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity. A review is done on different types of clustering methods used for image segmentation. Also a methodology is proposed to classify and quantify different clustering algorithms based on their consistency in different...

  14. Algorithm of Defect Segmentation for AFP Based on Prepregs

    Directory of Open Access Journals (Sweden)

    CAI Zhiqiang

    2017-04-01

    Full Text Available In order to ensure the performance of the automated fiber placement forming parts, according to the homogeneity of the image of the prepreg surface along the fiber direction, a defect segmentation algorithm which was the combination of gray compensation and substraction algorithm based on image processing technology was proposed. The gray compensation matrix of image was used to compensate the gray image, and the maximum error point of the image matrix was eliminated according to the characteristics that the gray error obeys the normal distribution. The standard image was established, using the allowed deviation coefficient K as a criterion for substraction segmentation. Experiments show that the algorithm has good effect, fast speed in segmenting two kinds of typical laying defect of bubbles or foreign objects, and provides a good theoretical basis to realize automatic laying defect online monitoring.

  15. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    Science.gov (United States)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume

  16. Effect of a novel motion correction algorithm (SSF) on the image quality of coronary CTA with intermediate heart rates: Segment-based and vessel-based analyses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianwen, E-mail: qianwen18@126.com; Li, Pengyu, E-mail: lipyu818@gmail.com; Su, Zhuangzhi, E-mail: suzhuangzhi@xwh.ccmu.edu.cn; Yao, Xinyu, E-mail: 314985151@qq.com; Wang, Yan, E-mail: wy19851121@126.com; Wang, Chen, E-mail: fskwangchen@gmail.com; Du, Xiangying, E-mail: duxying_xw@163.com; Li, Kuncheng, E-mail: kuncheng.li@gmail.com

    2014-11-15

    analysis, IQS was improved in most segments (9/14). Conclusion: The SSF algorithm can provide acceptable diagnostic image quality in coronary CTA for patients with intermediate HR.

  17. DETECTION OF CANCEROUS LESION BY UTERINE CERVIX IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    P. Priya

    2014-02-01

    Full Text Available This paper works at segmentation of lesion observed in cervical cancer, which is the second most common cancer among women worldwide. The purpose of segmentation is to determine the location for a biopsy to be taken for diagnosis. Cervix cancer is a disease in which cancer cells are found in the tissues of the cervix. The acetowhite region is a major indicator of abnormality in the cervix image. This project addresses the problem of segmenting uterine cervix image into different regions. We analyze two algorithms namely Watershed, K-means clustering algorithm, Expectation Maximization (EM Image Segmentation algorithm. These segmentations methods are carried over for the colposcopic uterine cervix image.

  18. Colour application on mammography image segmentation

    Science.gov (United States)

    Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.

    2017-09-01

    The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).

  19. Region segmentation along image sequence

    International Nuclear Information System (INIS)

    Monchal, L.; Aubry, P.

    1995-01-01

    A method to extract regions in sequence of images is proposed. Regions are not matched from one image to the following one. The result of a region segmentation is used as an initialization to segment the following and image to track the region along the sequence. The image sequence is exploited as a spatio-temporal event. (authors). 12 refs., 8 figs

  20. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  1. An Algorithm to Automate Yeast Segmentation and Tracking

    Science.gov (United States)

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  2. An algorithm to automate yeast segmentation and tracking.

    Directory of Open Access Journals (Sweden)

    Andreas Doncic

    Full Text Available Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation.

  3. SALIENCY BASED SEGMENTATION OF SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2015-03-01

    Full Text Available Saliency gives the way as humans see any image and saliency based segmentation can be eventually helpful in Psychovisual image interpretation. Keeping this in view few saliency models are used along with segmentation algorithm and only the salient segments from image have been extracted. The work is carried out for terrestrial images as well as for satellite images. The methodology used in this work extracts those segments from segmented image which are having higher or equal saliency value than a threshold value. Salient and non salient regions of image become foreground and background respectively and thus image gets separated. For carrying out this work a dataset of terrestrial images and Worldview 2 satellite images (sample data are used. Results show that those saliency models which works better for terrestrial images are not good enough for satellite image in terms of foreground and background separation. Foreground and background separation in terrestrial images is based on salient objects visible on the images whereas in satellite images this separation is based on salient area rather than salient objects.

  4. Active mask segmentation of fluorescence microscope images.

    Science.gov (United States)

    Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena

    2009-08-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.

  5. Quantification of Right and Left Ventricular Function in Cardiac MR Imaging: Comparison of Semiautomatic and Manual Segmentation Algorithms

    Directory of Open Access Journals (Sweden)

    Jose Martin Carreira

    2013-04-01

    Full Text Available The purpose of this study was to evaluate the performance of a semiautomatic segmentation method for the anatomical and functional assessment of both ventricles from cardiac cine magnetic resonance (MR examinations, reducing user interaction to a “mouse-click”. Fifty-two patients with cardiovascular diseases were examined using a 1.5-T MR imaging unit. Several parameters of both ventricles, such as end-diastolic volume (EDV, end-systolic volume (ESV and ejection fraction (EF, were quantified by an experienced operator using the conventional method based on manually-defined contours, as the standard of reference; and a novel semiautomatic segmentation method based on edge detection, iterative thresholding and region growing techniques, for evaluation purposes. No statistically significant differences were found between the two measurement values obtained for each parameter (p > 0.05. Correlation to estimate right ventricular function was good (r > 0.8 and turned out to be excellent (r > 0.9 for the left ventricle (LV. Bland-Altman plots revealed acceptable limits of agreement between the two methods (95%. Our study findings indicate that the proposed technique allows a fast and accurate assessment of both ventricles. However, further improvements are needed to equal results achieved for the right ventricle (RV using the conventional methodology.

  6. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  7. SVM Pixel Classification on Colour Image Segmentation

    Science.gov (United States)

    Barui, Subhrajit; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.

    2018-04-01

    The aim of image segmentation is to simplify the representation of an image with the help of cluster pixels into something meaningful to analyze. Segmentation is typically used to locate boundaries and curves in an image, precisely to label every pixel in an image to give each pixel an independent identity. SVM pixel classification on colour image segmentation is the topic highlighted in this paper. It holds useful application in the field of concept based image retrieval, machine vision, medical imaging and object detection. The process is accomplished step by step. At first we need to recognize the type of colour and the texture used as an input to the SVM classifier. These inputs are extracted via local spatial similarity measure model and Steerable filter also known as Gabon Filter. It is then trained by using FCM (Fuzzy C-Means). Both the pixel level information of the image and the ability of the SVM Classifier undergoes some sophisticated algorithm to form the final image. The method has a well developed segmented image and efficiency with respect to increased quality and faster processing of the segmented image compared with the other segmentation methods proposed earlier. One of the latest application result is the Light L16 camera.

  8. Interactive segmentation techniques algorithms and performance evaluation

    CERN Document Server

    He, Jia; Kuo, C-C Jay

    2013-01-01

    This book focuses on interactive segmentation techniques, which have been extensively studied in recent decades. Interactive segmentation emphasizes clear extraction of objects of interest, whose locations are roughly indicated by human interactions based on high level perception. This book will first introduce classic graph-cut segmentation algorithms and then discuss state-of-the-art techniques, including graph matching methods, region merging and label propagation, clustering methods, and segmentation methods based on edge detection. A comparative analysis of these methods will be provided

  9. Reflection symmetry-integrated image segmentation.

    Science.gov (United States)

    Sun, Yu; Bhanu, Bir

    2012-09-01

    This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.

  10. Parallel fuzzy connected image segmentation on GPU.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  11. Active Mask Segmentation of Fluorescence Microscope Images

    OpenAIRE

    Srinivasa, Gowri; Fickus, Matthew C.; Guo, Yusong; Linstedt, Adam D.; Kovačević, Jelena

    2009-01-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the “contour” to that of “inside and outside”, or, masks, allowing for easy mul...

  12. Heuristically improved Bayesian segmentation of brain MR images ...

    African Journals Online (AJOL)

    Heuristically improved Bayesian segmentation of brain MR images. ... or even the most prevalent task in medical image processing is image segmentation. Among them, brain MR images suffer ... show that our algorithm performs well in comparison with the one implemented in SPM. It can be concluded that incorporating ...

  13. A comparative study on medical image segmentation methods

    Directory of Open Access Journals (Sweden)

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  14. Video Segmentation Using Fast Marching and Region Growing Algorithms

    Directory of Open Access Journals (Sweden)

    Eftychis Sifakis

    2002-04-01

    Full Text Available The algorithm presented in this paper is comprised of three main stages: (1 classification of the image sequence and, in the case of a moving camera, parametric motion estimation, (2 change detection having as reference a fixed frame, an appropriately selected frame or a displaced frame, and (3 object localization using local colour features. The image sequence classification is based on statistical tests on the frame difference. The change detection module uses a two-label fast marching algorithm. Finally, the object localization uses a region growing algorithm based on the colour similarity. Video object segmentation results are shown using the COST 211 data set.

  15. Segmentation and Classification of Burn Color Images

    National Research Council Canada - National Science Library

    Acha, Begonya

    2001-01-01

    .... In the classification part, we take advantage of color information by clustering, with a vector quantization algorithm, the color centroids of small squares, taken from the burnt segmented part of the image, in the (V1, V2) plane into two possible groups, where V1 and V2 are the two chrominance components of the CIE Lab representation.

  16. Remote sensing image segmentation based on Hadoop cloud platform

    Science.gov (United States)

    Li, Jie; Zhu, Lingling; Cao, Fubin

    2018-01-01

    To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.

  17. The velocity of a radioactive bolus in the oesophagus evaluated by means of an image segmentation algorithm

    International Nuclear Information System (INIS)

    Miquelin, Charlie A; Dantas, Roberto O; Oliveira, Ricardo B; Braga, Francisco Jos H. N

    2002-01-01

    Classical scintigraphic evaluation of a radioactive bolus through the oesophagus is based on regions of interest and time/activity curves, which only gives information about the total time required for it to cross the organ. Instantaneous parameters can be obtained if the exact position (centroid) of the bolus is known. For that, one needs to know the co-ordinates of the centre of mass of the bolus radioactivity distribution. From this, one can obtain velocity at each time. Obtaining such a new parameter would be important, to try to determine whether the anatomical differences among the 3 thirds of the oesophagus have a functional correspondence or not. We have studied 5 normal volunteers (4 males, 1 female, 33-68 yo). Each volunteer swallowed (unique swallowing) 40 MBq of 99mTc-phytate in 10 ml water. Eighty frames (0.3 sec) were acquired in a scintillation camera. External marks were used to separate the pharynx from the oesophagus. Images were transformed into bitmap by means of a Sophy Medical processing module and analysed by means of the algorithm, which determines the co-ordinates of the centroid (horizontal and vertical) for each frame and instant velocities through the organ. Different velocities were found in typical evaluations. Curves representing the different positions of the bolus C and the correspondent different Vs were obtained. Different velocities of the bolus were detected during the pharyngeal phase, and proximal, mid and distal parts of the oesophagus. Larger studies are necessary, but it seems that the velocity of a radioactive bolus changes in the different parts of the oesophagus. It is reasonable to say that there is a functional correspondence to the anatomical differences in the organ (Au)

  18. An LG-graph-based early evaluation of segmented images

    International Nuclear Information System (INIS)

    Tsitsoulis, Athanasios; Bourbakis, Nikolaos

    2012-01-01

    Image segmentation is one of the first important parts of image analysis and understanding. Evaluation of image segmentation, however, is a very difficult task, mainly because it requires human intervention and interpretation. In this work, we propose a blind reference evaluation scheme based on regional local–global (RLG) graphs, which aims at measuring the amount and distribution of detail in images produced by segmentation algorithms. The main idea derives from the field of image understanding, where image segmentation is often used as a tool for scene interpretation and object recognition. Evaluation here derives from summarization of the structural information content and not from the assessment of performance after comparisons with a golden standard. Results show measurements for segmented images acquired from three segmentation algorithms, applied on different types of images (human faces/bodies, natural environments and structures (buildings)). (paper)

  19. Optimization of Segmentation Quality of Integrated Circuit Images

    Directory of Open Access Journals (Sweden)

    Gintautas Mušketas

    2012-04-01

    Full Text Available The paper presents investigation into the application of genetic algorithms for the segmentation of the active regions of integrated circuit images. This article is dedicated to a theoretical examination of the applied methods (morphological dilation, erosion, hit-and-miss, threshold and describes genetic algorithms, image segmentation as optimization problem. The genetic optimization of the predefined filter sequence parameters is carried out. Improvement to segmentation accuracy using a non optimized filter sequence makes 6%.Artcile in Lithuanian

  20. GPU accelerated fuzzy connected image segmentation by using CUDA.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  1. Medical image segmentation using improved FCM

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  2. Flood Water Segmentation from Crowdsourced Images

    Science.gov (United States)

    Nguyen, J. K.; Minsker, B. S.

    2017-12-01

    In the United States, 176 people were killed by flooding in 2015. Along with the loss of human lives is the economic cost which is estimated to be $4.5 billion per flood event. Urban flooding has become a recent concern due to the increase in population, urbanization, and global warming. As more and more people are moving into towns and cities with infrastructure incapable of coping with floods, there is a need for more scalable solutions for urban flood management.The proliferation of camera-equipped mobile devices have led to a new source of information for flood research. In-situ photographs captured by people provide information at the local level that remotely sensed images fail to capture. Applications of crowdsourced images to flood research required understanding the content of the image without the need for user input. This paper addresses the problem of how to automatically segment a flooded and non-flooded region in crowdsourced images. Previous works require two images taken at similar angle and perspective of the location when it is flooded and when it is not flooded. We examine three different algorithms from the computer vision literature that are able to perform segmentation using a single flood image without these assumptions. The performance of each algorithm is evaluated on a collection of labeled crowdsourced flood images. We show that it is possible to achieve a segmentation accuracy of 80% using just a single image.

  3. WATERSHED ALGORITHM BASED SEGMENTATION FOR HANDWRITTEN TEXT IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    P. Mathivanan

    2014-02-01

    Full Text Available In this paper we develop a system for writer identification which involves four processing steps like preprocessing, segmentation, feature extraction and writer identification using neural network. In the preprocessing phase the handwritten text is subjected to slant removal process for segmentation and feature extraction. After this step the text image enters into the process of noise removal and gray level conversion. The preprocessed image is further segmented by using morphological watershed algorithm, where the text lines are segmented into single words and then into single letters. The segmented image is feature extracted by Daubechies’5/3 integer wavelet transform to reduce training complexity [1, 6]. This process is lossless and reversible [10], [14]. These extracted features are given as input to our neural network for writer identification process and a target image is selected for each training process in the 2-layer neural network. With the several trained output data obtained from different target help in text identification. It is a multilingual text analysis which provides simple and efficient text segmentation.

  4. Intelligent Image Segment for Material Composition Detection

    Directory of Open Access Journals (Sweden)

    Liang Xiaodan

    2017-01-01

    Full Text Available In the process of material composition detection, the image analysis is an inevitable problem. Multilevel thresholding based OTSU method is one of the most popular image segmentation techniques. How, with the increase of the number of thresholds, the computing time increases exponentially. To overcome this problem, this paper proposed an artificial bee colony algorithm with a two-level topology. This improved artificial bee colony algorithm can quickly find out the suitable thresholds and nearly no trap into local optimal. The test results confirm it good performance.

  5. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  6. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    Directory of Open Access Journals (Sweden)

    Jiayin Liu

    2017-06-01

    Full Text Available Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC, which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF, which is estimated by Kernel Density Estimation (KDE with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  7. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    Science.gov (United States)

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  8. An unsupervised strategy for biomedical image segmentation

    Directory of Open Access Journals (Sweden)

    Roberto Rodríguez

    2010-09-01

    Full Text Available Roberto Rodríguez1, Rubén Hernández21Digital Signal Processing Group, Institute of Cybernetics, Mathematics, and Physics, Havana, Cuba; 2Interdisciplinary Professional Unit of Engineering and Advanced Technology, IPN, MexicoAbstract: Many segmentation techniques have been published, and some of them have been widely used in different application problems. Most of these segmentation techniques have been motivated by specific application purposes. Unsupervised methods, which do not assume any prior scene knowledge can be learned to help the segmentation process, and are obviously more challenging than the supervised ones. In this paper, we present an unsupervised strategy for biomedical image segmentation using an algorithm based on recursively applying mean shift filtering, where entropy is used as a stopping criterion. This strategy is proven with many real images, and a comparison is carried out with manual segmentation. With the proposed strategy, errors less than 20% for false positives and 0% for false negatives are obtained.Keywords: segmentation, mean shift, unsupervised segmentation, entropy

  9. Color Segmentation of Homogeneous Areas on Colposcopical Images

    Directory of Open Access Journals (Sweden)

    Kosteley Yana

    2016-01-01

    Full Text Available The article provides an analysis of image processing and color segmentation applied to the problem of selection of homogeneous regions in the parameters of the color model. Methods of image processing such as Gaussian filter, median filter, histogram equalization and mathematical morphology are considered. The segmentation algorithm with the parameters of color components is presented, followed by isolation of the resulting connected component of a binary segmentation mask. Analysis of methods performed on images colposcopic research.

  10. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...

  11. CLG for Automatic Image Segmentation

    OpenAIRE

    Christo Ananth; S.Santhana Priya; S.Manisha; T.Ezhil Jothi; M.S.Ramasubhaeswari

    2017-01-01

    This paper proposes an automatic segmentation method which effectively combines Active Contour Model, Live Wire method and Graph Cut approach (CLG). The aim of Live wire method is to provide control to the user on segmentation process during execution. Active Contour Model provides a statistical model of object shape and appearance to a new image which are built during a training phase. In the graph cut technique, each pixel is represented as a node and the distance between those nodes is rep...

  12. Neural network segmentation of magnetic resonance images

    International Nuclear Information System (INIS)

    Frederick, B.

    1990-01-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover, once trained, they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network; by varying imaging parameters, MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. This paper reports that a neural network classifier for image segmentation was implanted on a Sun 4/60, and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter, white matter, cerebrospinal fluid, bone, and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities, and the image was subsequently segmented by the classifier

  13. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  14. Image segmentation evaluation for very-large datasets

    Science.gov (United States)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  15. Segmentation of knee injury swelling on infrared images

    Science.gov (United States)

    Puentes, John; Langet, Hélène; Herry, Christophe; Frize, Monique

    2011-03-01

    Interpretation of medical infrared images is complex due to thermal noise, absence of texture, and small temperature differences in pathological zones. Acute inflammatory response is a characteristic symptom of some knee injuries like anterior cruciate ligament sprains, muscle or tendons strains, and meniscus tear. Whereas artificial coloring of the original grey level images may allow to visually assess the extent inflammation in the area, their automated segmentation remains a challenging problem. This paper presents a hybrid segmentation algorithm to evaluate the extent of inflammation after knee injury, in terms of temperature variations and surface shape. It is based on the intersection of rapid color segmentation and homogeneous region segmentation, to which a Laplacian of a Gaussian filter is applied. While rapid color segmentation enables to properly detect the observed core of swollen area, homogeneous region segmentation identifies possible inflammation zones, combining homogeneous grey level and hue area segmentation. The hybrid segmentation algorithm compares the potential inflammation regions partially detected by each method to identify overlapping areas. Noise filtering and edge segmentation are then applied to common zones in order to segment the swelling surfaces of the injury. Experimental results on images of a patient with anterior cruciate ligament sprain show the improved performance of the hybrid algorithm with respect to its separated components. The main contribution of this work is a meaningful automatic segmentation of abnormal skin temperature variations on infrared thermography images of knee injury swelling.

  16. Image Denoising And Segmentation Approchto Detect Tumor From BRAINMRI Images

    Directory of Open Access Journals (Sweden)

    Shanta Rangaswamy

    2018-04-01

    Full Text Available The detection of the Brain Tumor is a challenging problem, due to the structure of the Tumor cells in the brain. This project presents a systematic method that enhances the detection of brain tumor cells and to analyze functional structures by training and classification of the samples in SVM and tumor cell segmentation of the sample using DWT algorithm. From the input MRI Images collected, first noise is removed from MRI images by applying wiener filtering technique. In image enhancement phase, all the color components of MRI Images will be converted into gray scale image and make the edges clear in the image to get better identification and improvised quality of the image. In the segmentation phase, DWT on MRI Image to segment the grey-scale image is performed. During the post-processing, classification of tumor is performed by using SVM classifier. Wiener Filter, DWT, SVM Segmentation strategies were used to find and group the tumor position in the MRI filtered picture respectively. An essential perception in this work is that multi arrange approach utilizes various leveled classification strategy which supports execution altogether. This technique diminishes the computational complexity quality in time and memory. This classification strategy works accurately on all images and have achieved the accuracy of 93%.

  17. Extended-Maxima Transform Watershed Segmentation Algorithm for Touching Corn Kernels

    Directory of Open Access Journals (Sweden)

    Yibo Qin

    2013-01-01

    Full Text Available Touching corn kernels are usually oversegmented by the traditional watershed algorithm. This paper proposes a modified watershed segmentation algorithm based on the extended-maxima transform. Firstly, a distance-transformed image is processed by the extended-maxima transform in the range of the optimized threshold value. Secondly, the binary image obtained by the preceding process is run through the watershed segmentation algorithm, and watershed ridge lines are superimposed on the original image, so that touching corn kernels are separated into segments. Fifty images which all contain 400 corn kernels were tested. Experimental results showed that the effect of segmentation is satisfactory by the improved algorithm, and the accuracy of segmentation is as high as 99.87%.

  18. A new level set model for cell image segmentation

    Science.gov (United States)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  19. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  20. Cellular image segmentation using n-agent cooperative game theory

    Science.gov (United States)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  1. Active contour based segmentation of resected livers in CT images

    Science.gov (United States)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  2. An Accurate liver segmentation method using parallel computing algorithm

    International Nuclear Information System (INIS)

    Elbasher, Eiman Mohammed Khalied

    2014-12-01

    Computed Tomography (CT or CAT scan) is a noninvasive diagnostic imaging procedure that uses a combination of X-rays and computer technology to produce horizontal, or axial, images (often called slices) of the body. A CT scan shows detailed images of any part of the body, including the bones muscles, fat and organs CT scans are more detailed than standard x-rays. CT scans may be done with or without "contrast Contrast refers to a substance taken by mouth and/ or injected into an intravenous (IV) line that causes the particular organ or tissue under study to be seen more clearly. CT scan of the liver and biliary tract are used in the diagnosis of many diseases in the abdomen structures, particularly when another type of examination, such as X-rays, physical examination, and ultra sound is not conclusive. Unfortunately, the presence of noise and artifact in the edges and fine details in the CT images limit the contrast resolution and make diagnostic procedure more difficult. This experimental study was conducted at the College of Medical Radiological Science, Sudan University of Science and Technology and Fidel Specialist Hospital. The sample of study was included 50 patients. The main objective of this research was to study an accurate liver segmentation method using a parallel computing algorithm, and to segment liver and adjacent organs using image processing technique. The main technique of segmentation used in this study was watershed transform. The scope of image processing and analysis applied to medical application is to improve the quality of the acquired image and extract quantitative information from medical image data in an efficient and accurate way. The results of this technique agreed wit the results of Jarritt et al, (2010), Kratchwil et al, (2010), Jover et al, (2011), Yomamoto et al, (1996), Cai et al (1999), Saudha and Jayashree (2010) who used different segmentation filtering based on the methods of enhancing the computed tomography images. Anther

  3. Graph run-length matrices for histopathological image segmentation.

    Science.gov (United States)

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  4. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  5. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  6. Fast iterative segmentation of high resolution medical images

    International Nuclear Information System (INIS)

    Hebert, T.J.

    1996-01-01

    Various applications in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) require segmentation of 20 to 60 high resolution images of size 256x256 pixels in 3-9 seconds per image. This places particular constraints on the design of image segmentation algorithms. This paper examines the trade-offs in segmenting images based on fitting a density function to the pixel intensities using curve-fitting versus the maximum likelihood method. A quantized data representation is proposed and the EM algorithm for fitting a finite mixture density function to the quantized representation for an image is derived. A Monte Carlo evaluation of mean estimation error and classification error showed that the resulting quantized EM algorithm dramatically reduces the required computation time without loss of accuracy

  7. Segmentation of Handwritten Chinese Character Strings Based on improved Algorithm Liu

    Directory of Open Access Journals (Sweden)

    Zhihua Cai

    2014-09-01

    Full Text Available Algorithm Liu attracts high attention because of its high accuracy in segmentation of Japanese postal address. But the disadvantages, such as complexity and difficult implementation of algorithm, etc. have an adverse effect on its popularization and application. In this paper, the author applies the principles of algorithm Liu to handwritten Chinese character segmentation according to the characteristics of the handwritten Chinese characters, based on deeply study on algorithm Liu.In the same time, the author put forward the judgment criterion of Segmentation block classification and adhering mode of the handwritten Chinese characters.In the process of segmentation, text images are seen as the sequence made up of Connected Components (CCs, while the connected components are made up of several horizontal itinerary set of black pixels in image. The author determines whether these parts will be merged into segmentation through analyzing connected components. And then the author does image segmentation through adhering mode based on the analysis of outline edges. Finally cut the text images into character segmentation. Experimental results show that the improved Algorithm Liu obtains high segmentation accuracy and produces a satisfactory segmentation result.

  8. Color segmentation in the HSI color space using the K-means algorithm

    Science.gov (United States)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  9. Evaluating the impact of image preprocessing on iris segmentation

    Directory of Open Access Journals (Sweden)

    José F. Valencia-Murillo

    2014-08-01

    Full Text Available Segmentation is one of the most important stages in iris recognition systems. In this paper, image preprocessing algorithms are applied in order to evaluate their impact on successful iris segmentation. The preprocessing algorithms are based on histogram adjustment, Gaussian filters and suppression of specular reflections in human eye images. The segmentation method introduced by Masek is applied on 199 images acquired under unconstrained conditions, belonging to the CASIA-irisV3 database, before and after applying the preprocessing algorithms. Then, the impact of image preprocessing algorithms on the percentage of successful iris segmentation is evaluated by means of a visual inspection of images in order to determine if circumferences of iris and pupil were detected correctly. An increase from 59% to 73% in percentage of successful iris segmentation is obtained with an algorithm that combine elimination of specular reflections, followed by the implementation of a Gaussian filter having a 5x5 kernel. The results highlight the importance of a preprocessing stage as a previous step in order to improve the performance during the edge detection and iris segmentation processes.

  10. Automatic Vessel Segmentation on Retinal Images

    Institute of Scientific and Technical Information of China (English)

    Chun-Yuan Yu; Chia-Jen Chang; Yen-Ju Yao; Shyr-Shen Yu

    2014-01-01

    Several features of retinal vessels can be used to monitor the progression of diseases. Changes in vascular structures, for example, vessel caliber, branching angle, and tortuosity, are portents of many diseases such as diabetic retinopathy and arterial hyper-tension. This paper proposes an automatic retinal vessel segmentation method based on morphological closing and multi-scale line detection. First, an illumination correction is performed on the green band retinal image. Next, the morphological closing and subtraction processing are applied to obtain the crude retinal vessel image. Then, the multi-scale line detection is used to fine the vessel image. Finally, the binary vasculature is extracted by the Otsu algorithm. In this paper, for improving the drawbacks of multi-scale line detection, only the line detectors at 4 scales are used. The experimental results show that the accuracy is 0.939 for DRIVE (digital retinal images for vessel extraction) retinal database, which is much better than other methods.

  11. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    Science.gov (United States)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  12. AUTOMATIC MULTILEVEL IMAGE SEGMENTATION BASED ON FUZZY REASONING

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2011-05-01

    Full Text Available An automatic multilevel image segmentation method based on sup-star fuzzy reasoning (SSFR is presented. Using the well-known sup-star fuzzy reasoning technique, the proposed algorithm combines the global statistical information implied in the histogram with the local information represented by the fuzzy sets of gray-levels, and aggregates all the gray-levels into several classes characterized by the local maximum values of the histogram. The presented method has the merits of determining the number of the segmentation classes automatically, and avoiding to calculating thresholds of segmentation. Emulating and real image segmentation experiments demonstrate that the SSFR is effective.

  13. Image Segmentation and Processing for Efficient Parking Space Analysis

    OpenAIRE

    Tutika, Chetan Sai; Vallapaneni, Charan; R, Karthik; KP, Bharath; Muthu, N Ruban Rajesh Kumar

    2018-01-01

    In this paper, we develop a method to detect vacant parking spaces in an environment with unclear segments and contours with the help of MATLAB image processing capabilities. Due to the anomalies present in the parking spaces, such as uneven illumination, distorted slot lines and overlapping of cars. The present-day conventional algorithms have difficulties processing the image for accurate results. The algorithm proposed uses a combination of image pre-processing and false contour detection ...

  14. Robust generative asymmetric GMM for brain MR image segmentation.

    Science.gov (United States)

    Ji, Zexuan; Xia, Yong; Zheng, Yuhui

    2017-11-01

    Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM

  15. Microscopy image segmentation tool: Robust image data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  16. Microscopy image segmentation tool: Robust image data analysis

    Science.gov (United States)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  17. Microscopy image segmentation tool: Robust image data analysis

    International Nuclear Information System (INIS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-01-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy

  18. An Efficient Evolutionary Based Method For Image Segmentation

    OpenAIRE

    Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad

    2017-01-01

    The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...

  19. Open-source software platform for medical image segmentation applications

    Science.gov (United States)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  20. Parallel Implementation of the Recursive Approximation of an Unsupervised Hierarchical Segmentation Algorithm. Chapter 5

    Science.gov (United States)

    Tilton, James C.; Plaza, Antonio J. (Editor); Chang, Chein-I. (Editor)

    2008-01-01

    The hierarchical image segmentation algorithm (referred to as HSEG) is a hybrid of hierarchical step-wise optimization (HSWO) and constrained spectral clustering that produces a hierarchical set of image segmentations. HSWO is an iterative approach to region grooving segmentation in which the optimal image segmentation is found at N(sub R) regions, given a segmentation at N(sub R+1) regions. HSEG's addition of constrained spectral clustering makes it a computationally intensive algorithm, for all but, the smallest of images. To counteract this, a computationally efficient recursive approximation of HSEG (called RHSEG) has been devised. Further improvements in processing speed are obtained through a parallel implementation of RHSEG. This chapter describes this parallel implementation and demonstrates its computational efficiency on a Landsat Thematic Mapper test scene.

  1. An interactive medical image segmentation framework using iterative refinement.

    Science.gov (United States)

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-04-01

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Image Segmentation, Registration, Compression, and Matching

    Science.gov (United States)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  3. Improved dynamic-programming-based algorithms for segmentation of masses in mammograms

    International Nuclear Information System (INIS)

    Dominguez, Alfonso Rojas; Nandi, Asoke K.

    2007-01-01

    In this paper, two new boundary tracing algorithms for segmentation of breast masses are presented. These new algorithms are based on the dynamic programming-based boundary tracing (DPBT) algorithm proposed in Timp and Karssemeijer, [S. Timp and N. Karssemeijer, Med. Phys. 31, 958-971 (2004)] The DPBT algorithm contains two main steps: (1) construction of a local cost function, and (2) application of dynamic programming to the selection of the optimal boundary based on the local cost function. The validity of some assumptions used in the design of the DPBT algorithm is tested in this paper using a set of 349 mammographic images. Based on the results of the tests, modifications to the computation of the local cost function have been designed and have resulted in the Improved-DPBT (IDPBT) algorithm. A procedure for the dynamic selection of the strength of the components of the local cost function is presented that makes these parameters independent of the image dataset. Incorporation of this dynamic selection procedure has produced another new algorithm which we have called ID 2 PBT. Methods for the determination of some other parameters of the DPBT algorithm that were not covered in the original paper are presented as well. The merits of the new IDPBT and ID 2 PBT algorithms are demonstrated experimentally by comparison against the DPBT algorithm. The segmentation results are evaluated with base on the area overlap measure and other segmentation metrics. Both of the new algorithms outperform the original DPBT; the improvements in the algorithms performance are more noticeable around the values of the segmentation metrics corresponding to the highest segmentation accuracy, i.e., the new algorithms produce more optimally segmented regions, rather than a pronounced increase in the average quality of all the segmented regions

  4. Combining Constraint Types From Public Data in Aerial Image Segmentation

    DEFF Research Database (Denmark)

    Jacobsen, Thomas Stig; Jensen, Jacob Jon; Jensen, Daniel Rune

    2013-01-01

    We introduce a method for image segmentation that constraints the clustering with map and point data. The method is showcased by applying the spectral clustering algorithm on aerial images for building detection with constraints built from a height map and address point data. We automatically det...

  5. Image Segmentation Using Minimum Spanning Tree

    Science.gov (United States)

    Dewi, M. P.; Armiati, A.; Alvini, S.

    2018-04-01

    This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.

  6. Color image Segmentation using automatic thresholding techniques

    International Nuclear Information System (INIS)

    Harrabi, R.; Ben Braiek, E.

    2011-01-01

    In this paper, entropy and between-class variance based thresholding methods for color images segmentation are studied. The maximization of the between-class variance (MVI) and the entropy (ME) have been used as a criterion functions to determine an optimal threshold to segment images into nearly homogenous regions. Segmentation results from the two methods are validated and the segmentation sensitivity for the test data available is evaluated, and a comparative study between these methods in different color spaces is presented. The experimental results demonstrate the superiority of the MVI method for color image segmentation.

  7. Adaptive geodesic transform for segmentation of vertebrae on CT images

    Science.gov (United States)

    Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang

    2014-03-01

    Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.

  8. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  9. Unsupervised Performance Evaluation of Image Segmentation

    Directory of Open Access Journals (Sweden)

    Chabrier Sebastien

    2006-01-01

    Full Text Available We present in this paper a study of unsupervised evaluation criteria that enable the quantification of the quality of an image segmentation result. These evaluation criteria compute some statistics for each region or class in a segmentation result. Such an evaluation criterion can be useful for different applications: the comparison of segmentation results, the automatic choice of the best fitted parameters of a segmentation method for a given image, or the definition of new segmentation methods by optimization. We first present the state of art of unsupervised evaluation, and then, we compare six unsupervised evaluation criteria. For this comparative study, we use a database composed of 8400 synthetic gray-level images segmented in four different ways. Vinet's measure (correct classification rate is used as an objective criterion to compare the behavior of the different criteria. Finally, we present the experimental results on the segmentation evaluation of a few gray-level natural images.

  10. An Interval Type-2 Fuzzy C-Means algorithm for image segmentation%区间二型模糊C均值聚类在图像分割中的应用

    Institute of Scientific and Technical Information of China (English)

    邱存勇; 肖建

    2011-01-01

    Cluster analysis is an important branch of non-supervision pattern recognition, and Fuzzy C-Means(FCM) algorithm is a classic algorithm in cluster analysis. However, FCM is founded with Type-1 fuzzy sets, which can not handle the uncertainties existing in data and algorithm itself. This paper introduces the Interval Type-2 Fuzzy C-Means(IT2FCM) algorithm, whose core is type-2 fuzzy set that has better performance on handling uncertainties than Type-1 fuzzy set. IT2FCM and FCM are used for image segmentation to compare their segmentation results. The experiment shows that IT2FCM has better performance on suppressing noise and better effects on segmenting images compared with FCM.%聚类分析是非监督模式识别的重要分支,模糊C均值聚类算法(FCM)是其中的一类经典算法,然而该算法以一型模糊集为基础,无法处理数据集以及算法中的不确定性,为此引入区间二型模糊C均值聚类算法(IT2FCM).二型模糊集处理不确定性的能力强于一型模糊集,基于二型模糊集的IT2FCM在处理不确定性时效果优于FCM算法.文章以图像分割为应用对象,比较IT2FCM和FCM算法的分割效果,实验证明IT2FCM较传统FCM有更好的抗噪性.

  11. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  12. Efficient Algorithms for Segmentation of Item-Set Time Series

    Science.gov (United States)

    Chundi, Parvathi; Rosenkrantz, Daniel J.

    We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.

  13. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    International Nuclear Information System (INIS)

    Jha, Abhinav K; Kupinski, Matthew A; Rodríguez, Jeffrey J; Stephen, Renu M; Stopeck, Alison T

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both the ensemble mean square error and precision. We also propose consistency checks for this evaluation technique. (paper)

  14. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  15. Automated segmentation of pigmented skin lesions in multispectral imaging

    International Nuclear Information System (INIS)

    Carrara, Mauro; Tomatis, Stefano; Bono, Aldo; Bartoli, Cesare; Moglia, Daniele; Lualdi, Manuela; Colombo, Ambrogio; Santinami, Mario; Marchesini, Renato

    2005-01-01

    The aim of this study was to develop an algorithm for the automatic segmentation of multispectral images of pigmented skin lesions. The study involved 1700 patients with 1856 cutaneous pigmented lesions, which were analysed in vivo by a novel spectrophotometric system, before excision. The system is able to acquire a set of 15 different multispectral images at equally spaced wavelengths between 483 and 951 nm. An original segmentation algorithm was developed and applied to the whole set of lesions and was able to automatically contour them all. The obtained lesion boundaries were shown to two expert clinicians, who, independently, rejected 54 of them. The 97.1% contour accuracy indicates that the developed algorithm could be a helpful and effective instrument for the automatic segmentation of skin pigmented lesions. (note)

  16. Segmentation of Mushroom and Cap width Measurement using Modified K-Means Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Eser Sert

    2014-01-01

    Full Text Available Mushroom is one of the commonly consumed foods. Image processing is one of the effective way for examination of visual features and detecting the size of a mushroom. We developed software for segmentation of a mushroom in a picture and also to measure the cap width of the mushroom. K-Means clustering method is used for the process. K-Means is one of the most successful clustering methods. In our study we customized the algorithm to get the best result and tested the algorithm. In the system, at first mushroom picture is filtered, histograms are balanced and after that segmentation is performed. Results provided that customized algorithm performed better segmentation than classical K-Means algorithm. Tests performed on the designed software showed that segmentation on complex background pictures is performed with high accuracy, and 20 mushrooms caps are measured with 2.281 % relative error.

  17. Probabilistic segmentation of remotely sensed images

    NARCIS (Netherlands)

    Gorte, B.

    1998-01-01

    For information extraction from image data to create or update geographic information systems, objects are identified and labeled using an integration of segmentation and classification. This yields geometric and thematic information, respectively.

    Bayesian image

  18. Optimized Audio Classification and Segmentation Algorithm by Using Ensemble Methods

    Directory of Open Access Journals (Sweden)

    Saadia Zahid

    2015-01-01

    Full Text Available Audio segmentation is a basis for multimedia content analysis which is the most important and widely used application nowadays. An optimized audio classification and segmentation algorithm is presented in this paper that segments a superimposed audio stream on the basis of its content into four main audio types: pure-speech, music, environment sound, and silence. An algorithm is proposed that preserves important audio content and reduces the misclassification rate without using large amount of training data, which handles noise and is suitable for use for real-time applications. Noise in an audio stream is segmented out as environment sound. A hybrid classification approach is used, bagged support vector machines (SVMs with artificial neural networks (ANNs. Audio stream is classified, firstly, into speech and nonspeech segment by using bagged support vector machines; nonspeech segment is further classified into music and environment sound by using artificial neural networks and lastly, speech segment is classified into silence and pure-speech segments on the basis of rule-based classifier. Minimum data is used for training classifier; ensemble methods are used for minimizing misclassification rate and approximately 98% accurate segments are obtained. A fast and efficient algorithm is designed that can be used with real-time multimedia applications.

  19. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    Science.gov (United States)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  20. Novel medical image enhancement algorithms

    Science.gov (United States)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  1. Metric Learning for Hyperspectral Image Segmentation

    Science.gov (United States)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  2. Hybrid of Fuzzy Logic and Random Walker Method for Medical Image Segmentation

    OpenAIRE

    Jasdeep Kaur; Manish Mahajan

    2015-01-01

    The procedure of partitioning an image into various segments to reform an image into somewhat that is more significant and easier to analyze, defined as image segmentation. In real world applications, noisy images exits and there could be some measurement errors too. These factors affect the quality of segmentation, which is of major concern in medical fields where decisions about patients’ treatment are based on information extracted from radiological images. Several algorithms and technique...

  3. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    Science.gov (United States)

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  4. Automatic Image Segmentation Using Active Contours with Univariate Marginal Distribution

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies between the control points on different active contours. These contours have been generated through an alignment process of reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers and it is also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy and stability.

  5. Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms : VISCERAL Anatomy Benchmarks

    OpenAIRE

    Jimenez-del-Toro, Oscar; Muller, Henning; Krenn, Markus; Gruenberg, Katharina; Taha, Abdel Aziz; Winterstein, Marianne; Eggel, Ivan; Foncubierta-Rodriguez, Antonio; Goksel, Orcun; Jakab, Andres; Kontokotsios, Georgios; Langs, Georg; Menze, Bjoern H.; Fernandez, Tomas Salas; Schaer, Roger

    2016-01-01

    Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the ...

  6. The speech signal segmentation algorithm using pitch synchronous analysis

    Directory of Open Access Journals (Sweden)

    Amirgaliyev Yedilkhan

    2017-03-01

    Full Text Available Parameterization of the speech signal using the algorithms of analysis synchronized with the pitch frequency is discussed. Speech parameterization is performed by the average number of zero transitions function and the signal energy function. Parameterization results are used to segment the speech signal and to isolate the segments with stable spectral characteristics. Segmentation results can be used to generate a digital voice pattern of a person or be applied in the automatic speech recognition. Stages needed for continuous speech segmentation are described.

  7. GPU-based relative fuzzy connectedness image segmentation

    International Nuclear Information System (INIS)

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ ∞ -based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  8. GPU-based relative fuzzy connectedness image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W. [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506 (United States) and Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2013-01-15

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an Script-Small-L {sub {infinity}}-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8 Multiplication-Sign , 22.9 Multiplication-Sign , 20.9 Multiplication-Sign , and 17.5 Multiplication-Sign , correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  9. GPU-based relative fuzzy connectedness image segmentation.

    Science.gov (United States)

    Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W

    2013-01-01

    Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  10. GPU-based relative fuzzy connectedness image segmentation

    Science.gov (United States)

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  11. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  12. Superiority Of Graph-Based Visual Saliency GVS Over Other Image Segmentation Methods

    Directory of Open Access Journals (Sweden)

    Umu Lamboi

    2017-02-01

    Full Text Available Although inherently tedious the segmentation of images and the evaluation of segmented images are critical in computer vision processes. One of the main challenges in image segmentation evaluation arises from the basic conflict between generality and objectivity. For general segmentation purposes the lack of well-defined ground-truth and segmentation accuracy limits the evaluation of specific applications. Subjectivity is the most common method of evaluation of segmentation quality where segmented images are visually compared. This is daunting task however limits the scope of segmentation evaluation to a few predetermined sets of images. As an alternative supervised evaluation compares segmented images against manually-segmented or pre-processed benchmark images. Not only good evaluation methods allow for different comparisons but also for integration with target recognition systems for adaptive selection of appropriate segmentation granularity with improved recognition accuracy. Most of the current segmentation methods still lack satisfactory measures of effectiveness. Thus this study proposed a supervised framework which uses visual saliency detection to quantitatively evaluate image segmentation quality. The new benchmark evaluator uses Graph-based Visual Saliency GVS to compare boundary outputs for manually segmented images. Using the Berkeley Segmentation Database the proposed algorithm was tested against 4 other quantitative evaluation methods Probabilistic Rand Index PRI Variation of Information VOI Global Consistency Error GSE and Boundary Detection Error BDE. Based on the results the GVS approach outperformed any of the other 4 independent standard methods in terms of visual saliency detection of images.

  13. Automatic segmentation of cerebral MR images using artificial neural networks

    International Nuclear Information System (INIS)

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-01-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem

  14. Segmentation of liver tumors on CT images

    International Nuclear Information System (INIS)

    Pescia, D.

    2011-01-01

    This thesis is dedicated to 3D segmentation of liver tumors in CT images. This is a task of great clinical interest since it allows physicians benefiting from reproducible and reliable methods for segmenting such lesions. Accurate segmentation would indeed help them during the evaluation of the lesions, the choice of treatment and treatment planning. Such a complex segmentation task should cope with three main scientific challenges: (i) the highly variable shape of the structures being sought, (ii) their similarity of appearance compared with their surrounding medium and finally (iii) the low signal to noise ratio being observed in these images. This problem is addressed in a clinical context through a two step approach, consisting of the segmentation of the entire liver envelope, before segmenting the tumors which are present within the envelope. We begin by proposing an atlas-based approach for computing pathological liver envelopes. Initially images are pre-processed to compute the envelopes that wrap around binary masks in an attempt to obtain liver envelopes from estimated segmentation of healthy liver parenchyma. A new statistical atlas is then introduced and used to segmentation through its diffeomorphic registration to the new image. This segmentation is achieved through the combination of image matching costs as well as spatial and appearance prior using a multi-scale approach with MRF. The second step of our approach is dedicated to lesions segmentation contained within the envelopes using a combination of machine learning techniques and graph based methods. First, an appropriate feature space is considered that involves texture descriptors being determined through filtering using various scales and orientations. Then, state of the art machine learning techniques are used to determine the most relevant features, as well as the hyper plane that separates the feature space of tumoral voxels to the ones corresponding to healthy tissues. Segmentation is then

  15. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    International Nuclear Information System (INIS)

    Neubert, A.; Yang, Z.; Engstrom, C.; Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S.; Fripp, J.

    2016-01-01

    and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). Conclusions: This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.

  16. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, A., E-mail: ales.neubert@csiro.au [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane 4029 (Australia); Yang, Z. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China); Engstrom, C. [School of Human Movement Studies, University of Queensland, Brisbane 4072 (Australia); Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072 (Australia); Fripp, J. [The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, 4029 (Australia)

    2016-10-15

    and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). Conclusions: This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.

  17. Automated breast segmentation in ultrasound computer tomography SAFT images

    Science.gov (United States)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  18. Speckle imaging algorithms for planetary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    I will discuss the speckle imaging algorithms used to process images of the impact sites of the collision of comet Shoemaker-Levy 9 with Jupiter. The algorithms use a phase retrieval process based on the average bispectrum of the speckle image data. High resolution images are produced by estimating the Fourier magnitude and Fourier phase of the image separately, then combining them and inverse transforming to achieve the final result. I will show raw speckle image data and high-resolution image reconstructions from our recent experiment at Lick Observatory.

  19. Fast and Accurate Ground Truth Generation for Skew-Tolerance Evaluation of Page Segmentation Algorithms

    Directory of Open Access Journals (Sweden)

    Okun Oleg

    2006-01-01

    Full Text Available Many image segmentation algorithms are known, but often there is an inherent obstacle in the unbiased evaluation of segmentation quality: the absence or lack of a common objective representation for segmentation results. Such a representation, known as the ground truth, is a description of what one should obtain as the result of ideal segmentation, independently of the segmentation algorithm used. The creation of ground truth is a laborious process and therefore any degree of automation is always welcome. Document image analysis is one of the areas where ground truths are employed. In this paper, we describe an automated tool called GROTTO intended to generate ground truths for skewed document images, which can be used for the performance evaluation of page segmentation algorithms. Some of these algorithms are claimed to be insensitive to skew (tilt of text lines. However, this fact is usually supported only by a visual comparison of what one obtains and what one should obtain since ground truths are mostly available for upright images, that is, those without skew. As a result, the evaluation is both subjective; that is, prone to errors, and tedious. Our tool allows users to quickly and easily produce many sufficiently accurate ground truths that can be employed in practice and therefore it facilitates automatic performance evaluation. The main idea is to utilize the ground truths available for upright images and the concept of the representative square [9] in order to produce the ground truths for skewed images. The usefulness of our tool is demonstrated through a number of experiments with real-document images of complex layout.

  20. A New Wavelet-Based Document Image Segmentation Scheme

    Institute of Scientific and Technical Information of China (English)

    赵健; 李道京; 俞卞章; 耿军平

    2002-01-01

    The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogram distribution pattern of different image classes. The important attribute of the algorithm is using wavelet correlation image to enhance raw image's pattern, so the classification accuracy is improved. In this paper document image is divided into four types: background, photo, text and graph. Firstly, the document image background has been distingusished easily by former normally method; secondly, three image types will be distinguished by their typical histograms, in order to make histograms feature clearer, each resolution' s HH wavelet subimage is used to add to the raw image at their resolution. At last, the photo, text and praph have been devided according to how the feature fit to the Laplacian distrbution by -X2 and L. Simulations show that classification accuracy is significantly improved. The comparison with related shows that our algorithm provides both lower classification error rates and better visual results.

  1. Algorithms for contrast enhancement of electronic portal images

    International Nuclear Information System (INIS)

    Díez, S.; Sánchez, S.

    2015-01-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results. - Highlights: • Two Algorithms are implemented to improve the contrast of Electronic Portal Images. • The multi-leaf and conformed beam are automatically segmented into Portal Images. • Hidden anatomical and bony structures in portal images are revealed. • The task related to the patient setup verification is facilitated by the contrast enhancement then achieved.

  2. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Science.gov (United States)

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  3. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Directory of Open Access Journals (Sweden)

    Maqlin Paramanandam

    Full Text Available The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP algorithm on a Markov Random Field (MRF. The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012 and Veta et al. (2013, which were tested using their own datasets.

  4. Compound image segmentation of published biomedical figures.

    Science.gov (United States)

    Li, Pengyuan; Jiang, Xiangying; Kambhamettu, Chandra; Shatkay, Hagit

    2018-04-01

    Images convey essential information in biomedical publications. As such, there is a growing interest within the bio-curation and the bio-databases communities, to store images within publications as evidence for biomedical processes and for experimental results. However, many of the images in biomedical publications are compound images consisting of multiple panels, where each individual panel potentially conveys a different type of information. Segmenting such images into constituent panels is an essential first step toward utilizing images. In this article, we develop a new compound image segmentation system, FigSplit, which is based on Connected Component Analysis. To overcome shortcomings typically manifested by existing methods, we develop a quality assessment step for evaluating and modifying segmentations. Two methods are proposed to re-segment the images if the initial segmentation is inaccurate. Experimental results show the effectiveness of our method compared with other methods. The system is publicly available for use at: https://www.eecis.udel.edu/~compbio/FigSplit. The code is available upon request. shatkay@udel.edu. Supplementary data are available online at Bioinformatics.

  5. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    Science.gov (United States)

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  6. Muscles of mastication model-based MR image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Ong, S.H. [National Univ. of Singapore (Singapore). Dept. of Electrical and Computer Engineering; National Univ. of Singapore (Singapore). Div. of Bioengineering; Hu, Q.; Nowinski, W.L. [Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); National Univ. of Singapore (Singapore). Dept. of Preventive Dentistry; Goh, P.S. [National Univ. of Singapore (Singapore). Dept. of Diagnostic Radiology

    2006-11-15

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  7. Muscles of mastication model-based MR image segmentation

    International Nuclear Information System (INIS)

    Ng, H.P.; Agency for Science Technology and Research, Singapore; Ong, S.H.; National Univ. of Singapore; Hu, Q.; Nowinski, W.L.; Foong, K.W.C.; National Univ. of Singapore; Goh, P.S.

    2006-01-01

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  8. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    Directory of Open Access Journals (Sweden)

    Adis Alihodzic

    2014-01-01

    Full Text Available Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed.

  9. Image Segmentation of Historical Handwriting from Palm Leaf Manuscripts

    Science.gov (United States)

    Surinta, Olarik; Chamchong, Rapeeporn

    Palm leaf manuscripts were one of the earliest forms of written media and were used in Southeast Asia to store early written knowledge about subjects such as medicine, Buddhist doctrine and astrology. Therefore, historical handwritten palm leaf manuscripts are important for people who like to learn about historical documents, because we can learn more experience from them. This paper presents an image segmentation of historical handwriting from palm leaf manuscripts. The process is composed of three steps: 1) background elimination to separate text and background by Otsu's algorithm 2) line segmentation and 3) character segmentation by histogram of image. The end result is the character's image. The results from this research may be applied to optical character recognition (OCR) in the future.

  10. A transfer-learning approach to image segmentation across scanners by maximizing distribution similarity

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2013-01-01

    Many successful methods for biomedical image segmentation are based on supervised learning, where a segmentation algorithm is trained based on manually labeled training data. For supervised-learning algorithms to perform well, this training data has to be representative for the target data. In pr...

  11. Review methods for image segmentation from computed tomography images

    International Nuclear Information System (INIS)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-01-01

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan

  12. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  13. On the importance of FIB-SEM specific segmentation algorithms for porous media

    Energy Technology Data Exchange (ETDEWEB)

    Salzer, Martin, E-mail: martin.salzer@uni-ulm.de [Institute of Stochastics, Faculty of Mathematics and Economics, Ulm University, D-89069 Ulm (Germany); Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de [Laboratory for MEMS Applications, IMTEK, Department of Microsystems Engineering, University of Freiburg, D-79110 Freiburg (Germany); Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de [Laboratory for MEMS Applications, IMTEK, Department of Microsystems Engineering, University of Freiburg, D-79110 Freiburg (Germany); Schmidt, Volker, E-mail: volker.schmidt@uni-ulm.de [Institute of Stochastics, Faculty of Mathematics and Economics, Ulm University, D-89069 Ulm (Germany)

    2014-09-15

    A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin, is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.

  14. Natural color image segmentation using integrated mechanism

    Institute of Scientific and Technical Information of China (English)

    Jie Xu (徐杰); Pengfei Shi (施鹏飞)

    2003-01-01

    A new method for natural color image segmentation using integrated mechanism is proposed in this paper.Edges are first detected in term of the high phase congruency in the gray-level image. K-mean cluster is used to label long edge lines based on the global color information to estimate roughly the distribution of objects in the image, while short ones are merged based on their positions and local color differences to eliminate the negative affection caused by texture or other trivial features in image. Region growing technique is employed to achieve final segmentation results. The proposed method unifies edges, whole and local color distributions, as well as spatial information to solve the natural image segmentation problem.The feasibility and effectiveness of this method have been demonstrated by various experiments.

  15. Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2015-01-01

    Full Text Available As an alternative to classical techniques, the problem of image segmentation has also been handled through evolutionary methods. Recently, several algorithms based on evolutionary principles have been successfully applied to image segmentation with interesting performances. However, most of them maintain two important limitations: (1 they frequently obtain suboptimal results (misclassifications as a consequence of an inappropriate balance between exploration and exploitation in their search strategies; (2 the number of classes is fixed and known in advance. This paper presents an algorithm for the automatic selection of pixel classes for image segmentation. The proposed method combines a novel evolutionary method with the definition of a new objective function that appropriately evaluates the segmentation quality with respect to the number of classes. The new evolutionary algorithm, called Locust Search (LS, is based on the behavior of swarms of locusts. Different to the most of existent evolutionary algorithms, it explicitly avoids the concentration of individuals in the best positions, avoiding critical flaws such as the premature convergence to suboptimal solutions and the limited exploration-exploitation balance. Experimental tests over several benchmark functions and images validate the efficiency of the proposed technique with regard to accuracy and robustness.

  16. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson A.M. [Federal University of Western Para (Brazil); Physics Institute, Rio de Janeiro State University (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Almeida, Andre P. de, E-mail: apalmeid@gmail.com [Physics Institute, Rio de Janeiro State University (Brazil); Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Almeida, Carlos E. de [Radiological Sciences Laboratory, Rio de Janeiro State University (Brazil); Barroso, Regina C. [Physics Institute, Rio de Janeiro State University (Brazil)

    2012-07-15

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-{mu}CT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-{mu}CT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: Black-Right-Pointing-Pointer Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation {mu}CT imaging. Black-Right-Pointing-Pointer The present work is part of a research on the effects of radiotherapy on the thoracic region. Black-Right-Pointing-Pointer Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  17. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    International Nuclear Information System (INIS)

    Meneses, Anderson A.M.; Giusti, Alessandro; Almeida, André P. de; Nogueira, Liebert; Braz, Delson; Almeida, Carlos E. de; Barroso, Regina C.

    2012-01-01

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-μCT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-μCT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: ► Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation μCT imaging. ► The present work is part of a research on the effects of radiotherapy on the thoracic region. ► Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  18. Retinal Image Preprocessing: Background and Noise Segmentation

    Directory of Open Access Journals (Sweden)

    Usman Akram

    2012-09-01

    Full Text Available Retinal images are used for the automated screening and diagnosis of diabetic retinopathy. The retinal image quality must be improved for the detection of features and abnormalities and for this purpose preprocessing of retinal images is vital. In this paper, we present a novel automated approach for preprocessing of colored retinal images. The proposed technique improves the quality of input retinal image by separating the background and noisy area from the overall image. It contains coarse segmentation and fine segmentation. Standard retinal images databases Diaretdb0, Diaretdb1, DRIVE and STARE are used to test the validation of our preprocessing technique. The experimental results show the validity of proposed preprocessing technique.

  19. Constrained Deep Weak Supervision for Histopathology Image Segmentation.

    Science.gov (United States)

    Jia, Zhipeng; Huang, Xingyi; Chang, Eric I-Chao; Xu, Yan

    2017-11-01

    In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.

  20. Segmentation of elongated structures in medical images

    NARCIS (Netherlands)

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  1. Image segmentation-based robust feature extraction for color image watermarking

    Science.gov (United States)

    Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen

    2018-04-01

    This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.

  2. Semiautomatic segmentation of liver metastases on volumetric CT images

    International Nuclear Information System (INIS)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-01-01

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  3. Superpixel-based segmentation of glottal area from videolaryngoscopy images

    Science.gov (United States)

    Turkmen, H. Irem; Albayrak, Abdulkadir; Karsligil, M. Elif; Kocak, Ismail

    2017-11-01

    Segmentation of the glottal area with high accuracy is one of the major challenges for the development of systems for computer-aided diagnosis of vocal-fold disorders. We propose a hybrid model combining conventional methods with a superpixel-based segmentation approach. We first employed a superpixel algorithm to reveal the glottal area by eliminating the local variances of pixels caused by bleedings, blood vessels, and light reflections from mucosa. Then, the glottal area was detected by exploiting a seeded region-growing algorithm in a fully automatic manner. The experiments were conducted on videolaryngoscopy images obtained from both patients having pathologic vocal folds as well as healthy subjects. Finally, the proposed hybrid approach was compared with conventional region-growing and active-contour model-based glottal area segmentation algorithms. The performance of the proposed method was evaluated in terms of segmentation accuracy and elapsed time. The F-measure, true negative rate, and dice coefficients of the hybrid method were calculated as 82%, 93%, and 82%, respectively, which are superior to the state-of-art glottal-area segmentation methods. The proposed hybrid model achieved high success rates and robustness, making it suitable for developing a computer-aided diagnosis system that can be used in clinical routines.

  4. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  5. Region-based Image Segmentation by Watershed Partition and DCT Energy Compaction

    Directory of Open Access Journals (Sweden)

    Chi-Man Pun

    2012-02-01

    Full Text Available An image segmentation approach by improved watershed partition and DCT energy compaction has been proposed in this paper. The proposed energy compaction, which expresses the local texture of an image area, is derived by exploiting the discrete cosine transform. The algorithm is a hybrid segmentation technique which is composed of three stages. First, the watershed transform is utilized by preprocessing techniques: edge detection and marker in order to partition the image in to several small disjoint patches, while the region size, mean and variance features are used to calculate region cost for combination. Then in the second merging stage the DCT transform is used for energy compaction which is a criterion for texture comparison and region merging. Finally the image can be segmented into several partitions. The experimental results show that the proposed approach achieved very good segmentation robustness and efficiency, when compared to other state of the art image segmentation algorithms and human segmentation results.

  6. A competition in unsupervised color image segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2016-01-01

    Roč. 57, č. 9 (2016), s. 136-151 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : Unsupervised image segmentation * Segmentation contest * Texture analysis Subject RIV: BD - Theory of Information Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2016/RO/haindl-0459179.pdf

  7. Video-based noncooperative iris image segmentation.

    Science.gov (United States)

    Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig

    2011-02-01

    In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.

  8. A locally adaptive algorithm for shadow correction in color images

    Science.gov (United States)

    Karnaukhov, Victor; Kober, Vitaly

    2017-09-01

    The paper deals with correction of color images distorted by spatially nonuniform illumination. A serious distortion occurs in real conditions when a part of the scene containing 3D objects close to a directed light source is illuminated much brighter than the rest of the scene. A locally-adaptive algorithm for correction of shadow regions in color images is proposed. The algorithm consists of segmentation of shadow areas with rank-order statistics followed by correction of nonuniform illumination with human visual perception approach. The performance of the proposed algorithm is compared to that of common algorithms for correction of color images containing shadow regions.

  9. Interactive segmentation for geographic atrophy in retinal fundus images.

    Science.gov (United States)

    Lee, Noah; Smith, R Theodore; Laine, Andrew F

    2008-10-01

    Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12-21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of pathological images still remains an unsolved problem. In this paper we leverage the watershed transform and generalized non-linear gradient operators for interactive segmentation and present an intuitive and simple approach for geographic atrophy segmentation. We compare our approach with the state of the art random walker [5] algorithm for interactive segmentation using ROC statistics. Quantitative evaluation experiments on 100 FAF images show a mean sensitivity/specificity of 98.3/97.7% for our approach and a mean sensitivity/specificity of 88.2/96.6% for the random walker algorithm.

  10. Transfer learning improves supervised image segmentation across imaging protocols

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2015-01-01

    with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two MRI brain-segmentation tasks with multi-site data: white matter, gray matter, and CSF segmentation; and white-matter- /MS-lesion segmentation......The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform...... well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore...

  11. An embedded system for image segmentation and multimodal registration in noninvasive skin cancer screening.

    Science.gov (United States)

    Diaz, Silvana; Soto, Javier E; Inostroza, Fabian; Godoy, Sebastian E; Figueroa, Miguel

    2017-07-01

    We present a heterogeneous architecture for image registration and multimodal segmentation on an embedded system for noninvasive skin cancer screening. The architecture combines Otsu thresholding and the random walker algorithm to perform image segmentation, and features a hardware implementation of the Harris corner detection algorithm to perform region-of-interest detection and image registration. Running on a Xilinx XC7Z020 reconfigurable system-on-a-chip, our prototype computes the initial segmentation of a 400×400-pixel region of interest in the visible spectrum in 12.1 seconds, and registers infrared images against this region at 540 frames per second, while consuming 1.9W.

  12. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Science.gov (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  13. A Review of Algorithms for Retinal Vessel Segmentation

    Directory of Open Access Journals (Sweden)

    Monserrate Intriago Pazmiño

    2014-10-01

    Full Text Available This paper presents a review of algorithms for extracting blood vessels network from retinal images. Since retina is a complex and delicate ocular structure, a huge effort in computer vision is devoted to study blood vessels network for helping the diagnosis of pathologies like diabetic retinopathy, hypertension retinopathy, retinopathy of prematurity or glaucoma. To carry out this process many works for normal and abnormal images have been proposed recently. These methods include combinations of algorithms like Gaussian and Gabor filters, histogram equalization, clustering, binarization, motion contrast, matched filters, combined corner/edge detectors, multi-scale line operators, neural networks, ants, genetic algorithms, morphological operators. To apply these algorithms pre-processing tasks are needed. Most of these algorithms have been tested on publicly retinal databases. We have include a table summarizing algorithms and results of their assessment.

  14. Coupled dictionary learning for joint MR image restoration and segmentation

    Science.gov (United States)

    Yang, Xuesong; Fan, Yong

    2018-03-01

    To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.

  15. Hyperspectral image segmentation using a cooperative nonparametric approach

    Science.gov (United States)

    Taher, Akar; Chehdi, Kacem; Cariou, Claude

    2013-10-01

    In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.

  16. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  17. Segmentation of isolated MR images: development and comparison of neuronal networks

    International Nuclear Information System (INIS)

    Paredes, R.; Robles, M.; Marti-Bonmati, L.; Masia, L.

    1998-01-01

    Segmentation defines the capacity to differentiate among types of tissues. In MR. it is frequently applied to volumetric determinations. Digital images can be segmented in a number of ways; neuronal networks (NN) can be employed for this purpose. Our objective was to develop algorithms for automatic segmentation using NN and apply them to central nervous system MR images. The segmentation obtained with NN was compared with that resulting from other procedures (region-growing and K means). Each NN consisted of two layers: one based on unsupervised training, which was utilized for image segmentation in sets of K, and a second layer associating each set obtained by the preceding layer with the real set corresponding to the previously segmented objective image. This NN was trained with previously segmented images with supervised regions-growing algorithms and automatic K means. Thus, 4 different segmentation were obtained: region-growing, K means, NN with region-growing and NN with K means. The tissue volumes corresponding to cerebrospinal fluid, gray matter and white matter obtained with the 4 techniques were compared and the most representative segmented image was selected qualitatively by averaging the visual perception of 3 radiologists. The segmentation that best corresponded to the visual perception of the radiologists was that consisting of trained NN with region-growing. In comparison, the other 3 algorithms presented low percentage differences (mean, 3.44%). The mean percentage error for the 3 tissues from these algorithms was lower for region-growing segmentation (2.34%) than for trained NN with K means (3.31%) and for automatic K-means segmentation (4.66%). Thus, NN are reliable in the automation of isolated MR image segmentation. (Author) 12 refs

  18. A Gaussian process and derivative spectral-based algorithm for red blood cell segmentation

    Science.gov (United States)

    Xue, Yingying; Wang, Jianbiao; Zhou, Mei; Hou, Xiyue; Li, Qingli; Liu, Hongying; Wang, Yiting

    2017-07-01

    As an imaging technology used in remote sensing, hyperspectral imaging can provide more information than traditional optical imaging of blood cells. In this paper, an AOTF based microscopic hyperspectral imaging system is used to capture hyperspectral images of blood cells. In order to achieve the segmentation of red blood cells, Gaussian process using squared exponential kernel function is applied first after the data preprocessing to make the preliminary segmentation. The derivative spectrum with spectral angle mapping algorithm is then applied to the original image to segment the boundary of cells, and using the boundary to cut out cells obtained from the Gaussian process to separated adjacent cells. Then the morphological processing method including closing, erosion and dilation is applied so as to keep adjacent cells apart, and by applying median filtering to remove noise points and filling holes inside the cell, the final segmentation result can be obtained. The experimental results show that this method appears better segmentation effect on human red blood cells.

  19. An Alternative to Chaid Segmentation Algorithm Based on Entropy.

    Directory of Open Access Journals (Sweden)

    María Purificación Galindo Villardón

    2010-07-01

    Full Text Available The CHAID (Chi-Squared Automatic Interaction Detection treebased segmentation technique has been found to be an effective approach for obtaining meaningful segments that are predictive of a K-category (nominal or ordinal criterion variable. CHAID was designed to detect, in an automatic way, the  nteraction between several categorical or ordinal predictors in explaining a categorical response, but, this may not be true when Simpson’s paradox is present. This is due to the fact that CHAID is a forward selection algorithm based on the marginal counts. In this paper we propose a backwards elimination algorithm that starts with the full set of predictors (or full tree and eliminates predictors progressively. The elimination procedure is based on Conditional Independence contrasts using the concept of entropy. The proposed procedure is compared to CHAID.

  20. Autonomous algorithms for image restoration

    OpenAIRE

    Griniasty , Meir

    1994-01-01

    We describe a general theoretical framework for algorithms that adaptively tune all their parameters during the restoration of a noisy image. The adaptation procedure is based on a mean field approach which is known as ``Deterministic Annealing'', and is reminiscent of the ``Deterministic Bolzmann Machiné'. The algorithm is less time consuming in comparison with its simulated annealing alternative. We apply the theory to several architectures and compare their performances.

  1. Semi-automatic watershed medical image segmentation methods for customized cancer radiation treatment planning simulation

    International Nuclear Information System (INIS)

    Kum Oyeon; Kim Hye Kyung; Max, N.

    2007-01-01

    A cancer radiation treatment planning simulation requires image segmentation to define the gross tumor volume, clinical target volume, and planning target volume. Manual segmentation, which is usual in clinical settings, depends on the operator's experience and may, in addition, change for every trial by the same operator. To overcome this difficulty, we developed semi-automatic watershed medical image segmentation tools using both the top-down watershed algorithm in the insight segmentation and registration toolkit (ITK) and Vincent-Soille's bottom-up watershed algorithm with region merging. We applied our algorithms to segment two- and three-dimensional head phantom CT data and to find pixel (or voxel) numbers for each segmented area, which are needed for radiation treatment optimization. A semi-automatic method is useful to avoid errors incurred by both human and machine sources, and provide clear and visible information for pedagogical purpose. (orig.)

  2. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  3. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Science.gov (United States)

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  4. Segmentation and Classification of Burn Color Images

    Science.gov (United States)

    2001-10-25

    SEGMENTATION AND CLASSIFICATION OF BURN COLOR IMAGES Begoña Acha1, Carmen Serrano1, Laura Roa2 1Área de Teoría de la Señal y Comunicaciones ...2000, Las Vegas (USA), pp. 411-415. [21] G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (New

  5. The semiotics of medical image Segmentation.

    Science.gov (United States)

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Algorithms for automatic segmentation of bovine embryos produced in vitro

    International Nuclear Information System (INIS)

    Melo, D H; Oliveira, D L; Nascimento, M Z; Neves, L A; Annes, K

    2014-01-01

    In vitro production has been employed in bovine embryos and quantification of lipids is fundamental to understand the metabolism of these embryos. This paper presents a unsupervised segmentation method for histological images of bovine embryos. In this method, the anisotropic filter was used in the differents RGB components. After pre-processing step, the thresholding technique based on maximum entropy was applied to separate lipid droplets in the histological slides in different stages: early cleavage, morula and blastocyst. In the postprocessing step, false positives are removed using the connected components technique that identify regions with excess of dye near pellucid zone. The proposed segmentation method was applied in 30 histological images of bovine embryos. Experiments were performed with the images and statistical measures of sensitivity, specificity and accuracy were calculated based on reference images (gold standard). The value of accuracy of the proposed method was 96% with standard deviation of 3%

  7. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This

  8. Recognition of Wheat Spike from Field Based Phenotype Platform Using Multi-Sensor Fusion and Improved Maximum Entropy Segmentation Algorithms

    Directory of Open Access Journals (Sweden)

    Chengquan Zhou

    2018-02-01

    Full Text Available To obtain an accurate count of wheat spikes, which is crucial for estimating yield, this paper proposes a new algorithm that uses computer vision to achieve this goal from an image. First, a home-built semi-autonomous multi-sensor field-based phenotype platform (FPP is used to obtain orthographic images of wheat plots at the filling stage. The data acquisition system of the FPP provides high-definition RGB images and multispectral images of the corresponding quadrats. Then, the high-definition panchromatic images are obtained by fusion of three channels of RGB. The Gram–Schmidt fusion algorithm is then used to fuse these multispectral and panchromatic images, thereby improving the color identification degree of the targets. Next, the maximum entropy segmentation method is used to do the coarse-segmentation. The threshold of this method is determined by a firefly algorithm based on chaos theory (FACT, and then a morphological filter is used to de-noise the coarse-segmentation results. Finally, morphological reconstruction theory is applied to segment the adhesive part of the de-noised image and realize the fine-segmentation of the image. The computer-generated counting results for the wheat plots, using independent regional statistical function in Matlab R2017b software, are then compared with field measurements which indicate that the proposed method provides a more accurate count of wheat spikes when compared with other traditional fusion and segmentation methods mentioned in this paper.

  9. A spectral k-means approach to bright-field cell image segmentation.

    Science.gov (United States)

    Bradbury, Laura; Wan, Justin W L

    2010-01-01

    Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.

  10. A Novel Approach of Cardiac Segmentation In CT Image Based On Spline Interpolation

    International Nuclear Information System (INIS)

    Gao Yuan; Ma Pengcheng

    2011-01-01

    Organ segmentation in CT images is the basis of organ model reconstruction, thus precisely detecting and extracting the organ boundary are keys for reconstruction. In CT image the cardiac are often adjacent to the surrounding tissues and gray gradient between them is too slight, which cause the difficulty of applying classical segmentation method. We proposed a novel algorithm for cardiac segmentation in CT images in this paper, which combines the gray gradient methods and the B-spline interpolation. This algorithm can perfectly detect the boundaries of cardiac, at the same time it could well keep the timeliness because of the automatic processing.

  11. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  12. A Novel Approach for Bi-Level Segmentation of Tuberculosis Bacilli Based on Meta-Heuristic Algorithms

    Directory of Open Access Journals (Sweden)

    AYAS, S.

    2018-02-01

    Full Text Available Image thresholding is the most crucial step in microscopic image analysis to distinguish bacilli objects causing of tuberculosis disease. Therefore, several bi-level thresholding algorithms are widely used to increase the bacilli segmentation accuracy. However, bi-level microscopic image thresholding problem has not been solved using optimization algorithms. This paper introduces a novel approach for the segmentation problem using heuristic algorithms and presents visual and quantitative comparisons of heuristic and state-of-art thresholding algorithms. In this study, well-known heuristic algorithms such as Firefly Algorithm, Particle Swarm Optimization, Cuckoo Search, Flower Pollination are used to solve bi-level microscopic image thresholding problem, and the results are compared with the state-of-art thresholding algorithms such as K-Means, Fuzzy C-Means, Fast Marching. Kapur's entropy is chosen as the entropy measure to be maximized. Experiments are performed to make comparisons in terms of evaluation metrics and execution time. The quantitative results are calculated based on ground truth segmentation. According to the visual results, heuristic algorithms have better performance and the quantitative results are in accord with the visual results. Furthermore, experimental time comparisons show the superiority and effectiveness of the heuristic algorithms over traditional thresholding algorithms.

  13. Automated choroid segmentation based on gradual intensity distance in HD-OCT images.

    Science.gov (United States)

    Chen, Qiang; Fan, Wen; Niu, Sijie; Shi, Jiajia; Shen, Honglie; Yuan, Songtao

    2015-04-06

    The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch's membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is used to obtain the CSI segmentation. Experimental results with 212 HD-OCT images from 110 eyes in 66 patients demonstrate that the proposed method can achieve high segmentation accuracy. The mean choroid thickness difference and overlap ratio between our proposed method and outlines drawn by experts was 6.72µm and 85.04%, respectively.

  14. Segmentation of multiple sclerosis lesions in MR images: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Daryoush; Kouzani, Abbas Z. [Deakin University, School of Engineering, Geelong, Victoria (Australia); Soltanian-Zadeh, Hamid [Henry Ford Health System, Image Analysis Laboratory, Radiology Department, Detroit, MI (United States); University of Tehran, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, Tehran (Iran, Islamic Republic of); School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2012-04-15

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  15. Segmentation of multiple sclerosis lesions in MR images: a review

    International Nuclear Information System (INIS)

    Mortazavi, Daryoush; Kouzani, Abbas Z.; Soltanian-Zadeh, Hamid

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  16. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.

    Science.gov (United States)

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Hariri, Amirhossein; Wu, Xiaodong; Sadda, Srinivas R

    2013-12-30

    Geographic atrophy (GA) is the atrophic late-stage manifestation of age-related macular degeneration (AMD), which may result in severe vision loss and blindness. The purpose of this study was to develop a reliable, effective approach for GA segmentation in both spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) images using a level set-based approach and to compare the segmentation performance in the two modalities. To identify GA regions in SD-OCT images, three retinal surfaces were first segmented in volumetric SD-OCT images using a double-surface graph search scheme. A two-dimensional (2-D) partial OCT projection image was created from the segmented choroid layer. A level set approach was applied to segment the GA in the partial OCT projection image. In addition, the algorithm was applied to FAF images for the GA segmentation. Twenty randomly chosen macular SD-OCT (Zeiss Cirrus) volumes and 20 corresponding FAF (Heidelberg Spectralis) images were obtained from 20 subjects with GA. The algorithm-defined GA region was compared with consensus manual delineation performed by certified graders. The mean Dice similarity coefficients (DSC) between the algorithm- and manually defined GA regions were 0.87 ± 0.09 in partial OCT projection images and 0.89 ± 0.07 in registered FAF images. The area correlations between them were 0.93 (P segment GA regions in both SD-OCT and FAF images. This approach demonstrated good agreement between the algorithm- and manually defined GA regions within each single modality. The GA segmentation in FAF images performed better than in partial OCT projection images. Across the two modalities, the GA segmentation presented reasonable agreement.

  17. US-Cut: interactive algorithm for rapid detection and segmentation of liver tumors in ultrasound acquisitions

    Science.gov (United States)

    Egger, Jan; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Chen, Xiaojun; Zoller, Wolfram G.; Schmalstieg, Dieter; Hann, Alexander

    2016-04-01

    Ultrasound (US) is the most commonly used liver imaging modality worldwide. It plays an important role in follow-up of cancer patients with liver metastases. We present an interactive segmentation approach for liver tumors in US acquisitions. Due to the low image quality and the low contrast between the tumors and the surrounding tissue in US images, the segmentation is very challenging. Thus, the clinical practice still relies on manual measurement and outlining of the tumors in the US images. We target this problem by applying an interactive segmentation algorithm to the US data, allowing the user to get real-time feedback of the segmentation results. The algorithm has been developed and tested hand-in-hand by physicians and computer scientists to make sure a future practical usage in a clinical setting is feasible. To cover typical acquisitions from the clinical routine, the approach has been evaluated with dozens of datasets where the tumors are hyperechoic (brighter), hypoechoic (darker) or isoechoic (similar) in comparison to the surrounding liver tissue. Due to the interactive real-time behavior of the approach, it was possible even in difficult cases to find satisfying segmentations of the tumors within seconds and without parameter settings, and the average tumor deviation was only 1.4mm compared with manual measurements. However, the long term goal is to ease the volumetric acquisition of liver tumors in order to evaluate for treatment response. Additional aim is the registration of intraoperative US images via the interactive segmentations to the patient's pre-interventional CT acquisitions.

  18. Transfer learning improves supervised image segmentation across imaging protocols.

    Science.gov (United States)

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  19. A Variational Approach to Simultaneous Image Segmentation and Bias Correction.

    Science.gov (United States)

    Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong

    2015-08-01

    This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.

  20. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  1. Retinal Vessels Segmentation Techniques and Algorithms: A Survey

    Directory of Open Access Journals (Sweden)

    Jasem Almotiri

    2018-01-01

    Full Text Available Retinal vessels identification and localization aim to separate the different retinal vasculature structure tissues, either wide or narrow ones, from the fundus image background and other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels identification studies are attracting more and more attention in recent years due to non-invasive fundus imaging and the crucial information contained in vasculature structure which is helpful for the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic Retinopathy (DR, glaucoma, hypertension, and Age-related Macular Degeneration (AMD. With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting retinal vessels are becoming more and more crucial and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for retinal vessels identification techniques.

  2. Plantar fascia segmentation and thickness estimation in ultrasound images.

    Science.gov (United States)

    Boussouar, Abdelhafid; Meziane, Farid; Crofts, Gillian

    2017-03-01

    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. 3D Segmentations of Neuronal Nuclei from Confocal Microscope Image Stacks

    Directory of Open Access Journals (Sweden)

    Antonio eLaTorre

    2013-12-01

    Full Text Available In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells. We have tested our algorithm in a real scenario --- the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

  4. Pomegranate MR images analysis using ACM and FCM algorithms

    Science.gov (United States)

    Morad, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation of an image plays an important role in image processing applications. In this paper segmentation of pomegranate magnetic resonance (MR) images has been explored. Pomegranate has healthy nutritional and medicinal properties for which the maturity indices and quality of internal tissues play an important role in the sorting process in which the admissible determination of features mentioned above cannot be easily achieved by human operator. Seeds and soft tissues are the main internal components of pomegranate. For research purposes, such as non-destructive investigation, in order to determine the ripening index and the percentage of seeds in growth period, segmentation of the internal structures should be performed as exactly as possible. In this paper, we present an automatic algorithm to segment the internal structure of pomegranate. Since its intensity of stem and calyx is close to the internal tissues, the stem and calyx pixels are usually labeled to the internal tissues by segmentation algorithm. To solve this problem, first, the fruit shape is extracted from its background using active contour model (ACM). Then stem and calyx are removed using morphological filters. Finally the image is segmented by fuzzy c-means (FCM). The experimental results represent an accuracy of 95.91% in the presence of stem and calyx, while the accuracy of segmentation increases to 97.53% when stem and calyx are first removed by morphological filters.

  5. Hierarchical layered and semantic-based image segmentation using ergodicity map

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects

  6. Optical coherence tomography in anterior segment imaging

    Science.gov (United States)

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  7. Segmenting overlapping nano-objects in atomic force microscopy image

    Science.gov (United States)

    Wang, Qian; Han, Yuexing; Li, Qing; Wang, Bing; Konagaya, Akihiko

    2018-01-01

    Recently, techniques for nanoparticles have rapidly been developed for various fields, such as material science, medical, and biology. In particular, methods of image processing have widely been used to automatically analyze nanoparticles. A technique to automatically segment overlapping nanoparticles with image processing and machine learning is proposed. Here, two tasks are necessary: elimination of image noises and action of the overlapping shapes. For the first task, mean square error and the seed fill algorithm are adopted to remove noises and improve the quality of the original image. For the second task, four steps are needed to segment the overlapping nanoparticles. First, possibility split lines are obtained by connecting the high curvature pixels on the contours. Second, the candidate split lines are classified with a machine learning algorithm. Third, the overlapping regions are detected with the method of density-based spatial clustering of applications with noise (DBSCAN). Finally, the best split lines are selected with a constrained minimum value. We give some experimental examples and compare our technique with two other methods. The results can show the effectiveness of the proposed technique.

  8. Placental fetal stem segmentation in a sequence of histology images

    Science.gov (United States)

    Athavale, Prashant; Vese, Luminita A.

    2012-02-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an

  9. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    International Nuclear Information System (INIS)

    Prieto, Elena; Peñuelas, Iván; Martí-Climent, Josep M; Lecumberri, Pablo; Gómez, Marisol; Pagola, Miguel; Bilbao, Izaskun; Ecay, Margarita

    2012-01-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18 F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools. (paper)

  10. Fast Graph Partitioning Active Contours for Image Segmentation Using Histograms

    Directory of Open Access Journals (Sweden)

    Nath SumitK

    2009-01-01

    Full Text Available Abstract We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the recently proposed Graph Partitioning Active Contours (GPACs algorithm for image segmentation in the work of Sumengen and Manjunath (2006. Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, , for a 2D image of size and regular image tiles of size , we use fixed length histograms and an intensity-based symmetric-centrosymmetric extensor matrix to jointly compute terms associated with the complete dissimilarity matrix. This computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to multidimensional images.

  11. Segmentation Toolbox for Tomographic Image Data

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur

    , techniques to automatically analyze such data becomes ever more important. Most segmentation methods for large datasets, such as CT images, deal with simple thresholding techniques, where intensity values cut offs are predetermined and hard coded. For data where the intensity difference is not sufficient......Motivation: Image acquisition has vastly improved over the past years, introducing techniques such as X-ray computed tomography (CT). CT images provide the means to probe a sample non-invasively to investigate its inner structure. Given the wide usage of this technique and massive data amounts......, and partial volume voxels occur frequently, thresholding methods do not suffice and more advanced methods are required. Contribution: To meet these requirements a toolbox has been developed, combining well known methods within the image analysis field. The toolbox includes cluster-based methods...

  12. heuristically improved bayesian segmentation of brain mr images

    African Journals Online (AJOL)

    Brainweb as a simulated brain MRI dataset is used in evaluating the proposed algorithm. ..... neighboring system can improve the segmentation power of the algorithm. ... tuning and learning of fuzzy knowledge bases, World Scientific. Pub Co ...

  13. Concealed object segmentation and three-dimensional localization with passive millimeter-wave imaging

    Science.gov (United States)

    Yeom, Seokwon

    2013-05-01

    Millimeter waves imaging draws increasing attention in security applications for weapon detection under clothing. In this paper, concealed object segmentation and three-dimensional localization schemes are reviewed. A concealed object is segmented by the k-means algorithm. A feature-based stereo-matching method estimates the longitudinal distance of the concealed object. The distance is estimated by the discrepancy between the corresponding centers of the segmented objects. Experimental results are provided with the analysis of the depth resolution.

  14. Principle and realization of segmenting contour series algorithm in reverse engineering based on X-ray computerized tomography

    International Nuclear Information System (INIS)

    Wang Yanfang; Liu Li; Yan Yonglian; Shan Baoci; Tang Xiaowei

    2007-01-01

    A new algorithm of segmenting contour series of images is presented, which can achieve three dimension reconstruction with parametric recognition in Reverse Engineering based on X-ray CT. First, in order to get the nested relationship between contours, a method of a certain angle ray is used. Second, for realizing the contour location in one slice, another approach is presented to generate the contour tree by scanning the relevant vector only once. Last, a judge algorithm is put forward to accomplish the contour match between slices by adopting the qualitative and quantitative properties. The example shows that this algorithm can segment contour series of CT parts rapidly and precisely. (authors)

  15. Text segmentation in degraded historical document images

    Directory of Open Access Journals (Sweden)

    A.S. Kavitha

    2016-07-01

    Full Text Available Text segmentation from degraded Historical Indus script images helps Optical Character Recognizer (OCR to achieve good recognition rates for Hindus scripts; however, it is challenging due to complex background in such images. In this paper, we present a new method for segmenting text and non-text in Indus documents based on the fact that text components are less cursive compared to non-text ones. To achieve this, we propose a new combination of Sobel and Laplacian for enhancing degraded low contrast pixels. Then the proposed method generates skeletons for text components in enhanced images to reduce computational burdens, which in turn helps in studying component structures efficiently. We propose to study the cursiveness of components based on branch information to remove false text components. The proposed method introduces the nearest neighbor criterion for grouping components in the same line, which results in clusters. Furthermore, the proposed method classifies these clusters into text and non-text cluster based on characteristics of text components. We evaluate the proposed method on a large dataset containing varieties of images. The results are compared with the existing methods to show that the proposed method is effective in terms of recall and precision.

  16. Upper airway segmentation and dimensions estimation from cone-beam CT image datasets

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongjian; Scarfe, W.C. [Louisville Univ., KY (United States). School of Dentistry; Farman, A.G. [Louisville Univ., KY (United States). School of Dentistry; Louisville Univ., KY (United States). Div. of Radiology and Imaging Science

    2006-11-15

    Objective: To segment and measure the upper airway using cone-beam computed tomography (CBCT). This information may be useful as an imaging biomarker in the diagnostic assessment of patients with obstructive sleep apnea and in the planning of any necessary therapy. Methods: With Institutional Review Board Approval, anonymous CBCT datasets from subjects who had been imaged for a variety of conditions unrelated to the airway were evaluated. DICOM images were available. A segmentation algorithm was developed to separate the bounded upper airway and measurements were performed manually to determine the smallest cross-sectional area and the anteriorposterior distance of the retropalatal space (RP-SCA and RP-AP, respectively) and retroglossal space (RG-SCA and RG-AP, respectively). A segmentation algorithm was developed to separate the bounded upper airway and it was applied to determine RP-AP, RG-AP, the smallest transaxial-sectional area (TSCA) and largest sagittal view airway area (LCSA). A second algorithm was created to evaluate the airway volume within this bounded upper airway. Results: Measurements of the airway segmented automatically by the developed algorithm agreed with those obtained using manual segmentation. The corresponding volumes showed only very small differences considered clinically insignificant. Conclusion: Automatic segmentation of the airway imaged using CBCT is feasible and this method can be used to evaluate airway cross-section and volume comparable to measurements extracted using manual segmentation. (orig.)

  17. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    Science.gov (United States)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  18. A general system for automatic biomedical image segmentation using intensity neighborhoods.

    Science.gov (United States)

    Chen, Cheng; Ozolek, John A; Wang, Wei; Rohde, Gustavo K

    2011-01-01

    Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.

  19. A General System for Automatic Biomedical Image Segmentation Using Intensity Neighborhoods

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2011-01-01

    Full Text Available Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.

  20. Automated image segmentation using information theory

    International Nuclear Information System (INIS)

    Hibbard, L.S.

    2001-01-01

    Full text: Our development of automated contouring of CT images for RT planning is based on maximum a posteriori (MAP) analyses of region textures, edges, and prior shapes, and assumes stationary Gaussian distributions for voxel textures and contour shapes. Since models may not accurately represent image data, it would be advantageous to compute inferences without relying on models. The relative entropy (RE) from information theory can generate inferences based solely on the similarity of probability distributions. The entropy of a distribution of a random variable X is defined as -Σ x p(x)log 2 p(x) for all the values x which X may assume. The RE (Kullback-Liebler divergence) of two distributions p(X), q(X), over X is Σ x p(x)log 2 {p(x)/q(x)}. The RE is a kind of 'distance' between p,q, equaling zero when p=q and increasing as p,q are more different. Minimum-error MAP and likelihood ratio decision rules have RE equivalents: minimum error decisions obtain with functions of the differences between REs of compared distributions. One applied result is the contour ideally separating two regions is that which maximizes the relative entropy of the two regions' intensities. A program was developed that automatically contours the outlines of patients in stereotactic headframes, a situation most often requiring manual drawing. The relative entropy of intensities inside the contour (patient) versus outside (background) was maximized by conjugate gradient descent over the space of parameters of a deformable contour. shows the computed segmentation of a patient from headframe backgrounds. This program is particularly useful for preparing images for multimodal image fusion. Relative entropy and allied measures of distribution similarity provide automated contouring criteria that do not depend on statistical models of image data. This approach should have wide utility in medical image segmentation applications. Copyright (2001) Australasian College of Physical Scientists and

  1. Segmentation and registration duality from echographic images by use of physiological and morphological knowledge; Segmentation et recalage d`images echographiques par utilisation de connaissances physiologiques et morphologiques

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, G

    1998-12-04

    Echographic imaging could potentially play a major role in the field of Computer Assisted Surgery (CAS). For doctors and surgeons to make full use of tool in planning and executing surgical operations, they also need user-friendly automatic software based on fast, precise and reliable algorithms. The main goal of this thesis is to take advantage of the segmentation/registration duality to extract the relevant information from echo graphical images. This information will allow the precise and automatic registration both of anatomical structures contained in the pre-operative model and of per-operative data contained in echographic images. The result of registration will be further to guide a computer-assisted tool. In the first part we propose different methods for filtering, segmentation and calibration of echographic images. The development of fast, precise and reliable algorithms is emphasized. The second part concerns the segmentation-registration duality and the corrections of elastic deformations of soft tissues. High-level segmentation algorithms for echographic images were developed. They are based on results of low -level segmentation, a priori anatomical knowledge as well as on information provided by the pre-operative model. The third part deals with detailed descriptions of applications and interpretation of results. The cases studied include: screwing inside the vertebral pedicles, ilio-sacral screwing, prostatic radiotherapy and puncture of pericardial effusion. Future developments for this approach are discussed. (author)

  2. Concrete Image Segmentation Based on Multiscale Mathematic Morphology Operators and Otsu Method

    Directory of Open Access Journals (Sweden)

    Sheng-Bo Zhou

    2015-01-01

    Full Text Available The aim of the current study lies in the development of a reformative technique of image segmentation for Computed Tomography (CT concrete images with the strength grades of C30 and C40. The results, through the comparison of the traditional threshold algorithms, indicate that three threshold algorithms and five edge detectors fail to meet the demand of segmentation for Computed Tomography concrete images. The paper proposes a new segmentation method, by combining multiscale noise suppression morphology edge detector with Otsu method, which is more appropriate for the segmentation of Computed Tomography concrete images with low contrast. This method cannot only locate the boundaries between objects and background with high accuracy, but also obtain a complete edge and eliminate noise.

  3. 3D segmentation of scintigraphic images with validation on realistic GATE simulations

    International Nuclear Information System (INIS)

    Burg, Samuel

    2011-01-01

    The objective of this thesis was to propose a new 3D segmentation method for scintigraphic imaging. The first part of the work was to simulate 3D volumes with known ground truth in order to validate a segmentation method over other. Monte-Carlo simulations were performed using the GATE software (Geant4 Application for Emission Tomography). For this, we characterized and modeled the gamma camera 'γ Imager' Biospace"T"M by comparing each measurement from a simulated acquisition to his real equivalent. The 'low level' segmentation tool that we have developed is based on a modeling of the levels of the image by probabilistic mixtures. Parameters estimation is done by an SEM algorithm (Stochastic Expectation Maximization). The 3D volume segmentation is achieved by an ICM algorithm (Iterative Conditional Mode). We compared the segmentation based on Gaussian and Poisson mixtures to segmentation by thresholding on the simulated volumes. This showed the relevance of the segmentations obtained using probabilistic mixtures, especially those obtained with Poisson mixtures. Those one has been used to segment real "1"8FDG PET images of the brain and to compute descriptive statistics of the different tissues. In order to obtain a 'high level' segmentation method and find anatomical structures (necrotic part or active part of a tumor, for example), we proposed a process based on the point processes formalism. A feasibility study has yielded very encouraging results. (author) [fr

  4. Color Image Segmentation Based on Statistics of Location and Feature Similarity

    Science.gov (United States)

    Mori, Fumihiko; Yamada, Hiromitsu; Mizuno, Makoto; Sugano, Naotoshi

    The process of “image segmentation and extracting remarkable regions” is an important research subject for the image understanding. However, an algorithm based on the global features is hardly found. The requisite of such an image segmentation algorism is to reduce as much as possible the over segmentation and over unification. We developed an algorithm using the multidimensional convex hull based on the density as the global feature. In the concrete, we propose a new algorithm in which regions are expanded according to the statistics of the region such as the mean value, standard deviation, maximum value and minimum value of pixel location, brightness and color elements and the statistics are updated. We also introduced a new concept of conspicuity degree and applied it to the various 21 images to examine the effectiveness. The remarkable object regions, which were extracted by the presented system, highly coincided with those which were pointed by the sixty four subjects who attended the psychological experiment.

  5. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    Science.gov (United States)

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  6. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    OpenAIRE

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two...

  7. Semi-automatic geographic atrophy segmentation for SD-OCT images

    OpenAIRE

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L.

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in wh...

  8. The implement of Talmud property allocation algorithm based on graphic point-segment way

    Science.gov (United States)

    Cen, Haifeng

    2017-04-01

    Under the guidance of the Talmud allocation scheme's theory, the paper analyzes the algorithm implemented process via the perspective of graphic point-segment way, and designs the point-segment way's Talmud property allocation algorithm. Then it uses Java language to implement the core of allocation algorithm, by using Android programming to build a visual interface.

  9. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  10. FUSION SEGMENTATION METHOD BASED ON FUZZY THEORY FOR COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2017-09-01

    Full Text Available The image segmentation method based on two-dimensional histogram segments the image according to the thresholds of the intensity of the target pixel and the average intensity of its neighborhood. This method is essentially a hard-decision method. Due to the uncertainties when labeling the pixels around the threshold, the hard-decision method can easily get the wrong segmentation result. Therefore, a fusion segmentation method based on fuzzy theory is proposed in this paper. We use membership function to model the uncertainties on each color channel of the color image. Then, we segment the color image according to the fuzzy reasoning. The experiment results show that our proposed method can get better segmentation results both on the natural scene images and optical remote sensing images compared with the traditional thresholding method. The fusion method in this paper can provide new ideas for the information extraction of optical remote sensing images and polarization SAR images.

  11. Segmentation of deformable organs from medical images using particle swarm optimization and nonlinear shape priors

    Science.gov (United States)

    Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi

    2010-03-01

    In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.

  12. Graph-based surface reconstruction from stereo pairs using image segmentation

    Science.gov (United States)

    Bleyer, Michael; Gelautz, Margrit

    2005-01-01

    This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.

  13. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    Science.gov (United States)

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  14. Artificial immune kernel clustering network for unsupervised image segmentation

    Institute of Scientific and Technical Information of China (English)

    Wenlong Huang; Licheng Jiao

    2008-01-01

    An immune kernel clustering network (IKCN) is proposed based on the combination of the artificial immune network and the support vector domain description (SVDD) for the unsupervised image segmentation. In the network, a new antibody neighborhood and an adaptive learning coefficient, which is inspired by the long-term memory in cerebral cortices are presented. Starting from IKCN algorithm, we divide the image feature sets into subsets by the antibodies, and then map each subset into a high dimensional feature space by a mercer kernel, where each antibody neighborhood is represented as a support vector hypersphere. The clustering results of the local support vector hyperspheres are combined to yield a global clustering solution by the minimal spanning tree (MST), where a predefined number of clustering is not needed. We compare the proposed methods with two common clustering algorithms for the artificial synthetic data set and several image data sets, including the synthetic texture images and the SAR images, and encouraging experimental results are obtained.

  15. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  16. Méthodes de graphe pour la segmentation d'images et le suivi d'objets dynamiques

    OpenAIRE

    Wang , Xiaofang

    2015-01-01

    Image segmentation is a fundamental problem in computer vision. In particular, unsupervised image segmentation is an important component in many high-level algorithms and practical vision systems. In this dissertation, we propose three methods that approach image segmentation from different angles of graph based methods and are proved powerful to address these problems. Our first method develops an original graph construction method. We also analyze different types of graph construction metho...

  17. From Pixels to Region: A Salient Region Detection Algorithm for Location-Quantification Image

    Directory of Open Access Journals (Sweden)

    Mengmeng Zhang

    2014-01-01

    Full Text Available Image saliency detection has become increasingly important with the development of intelligent identification and machine vision technology. This process is essential for many image processing algorithms such as image retrieval, image segmentation, image recognition, and adaptive image compression. We propose a salient region detection algorithm for full-resolution images. This algorithm analyzes the randomness and correlation of image pixels and pixel-to-region saliency computation mechanism. The algorithm first obtains points with more saliency probability by using the improved smallest univalue segment assimilating nucleus operator. It then reconstructs the entire saliency region detection by taking these points as reference and combining them with image spatial color distribution, as well as regional and global contrasts. The results for subjective and objective image saliency detection show that the proposed algorithm exhibits outstanding performance in terms of technology indices such as precision and recall rates.

  18. A martian case study of segmenting images automatically for granulometry and sedimentology, Part 2: Assessment

    Science.gov (United States)

    Karunatillake, Suniti; McLennan, Scott M.; Herkenhoff, Kenneth E.; Husch, Jonathan M.; Hardgrove, Craig; Skok, J. R.

    2014-02-01

    In a companion work, we bridge the gap between mature segmentation software used in terrestrial sedimentology and emergent planetary segmentation with an original algorithm optimized to segment whole images from the Microscopic Imager (MI) of the Mars Exploration Rovers (MER). In this work, we compare its semi-automated outcome with manual photoanalyses using unconsolidated sediment at Gusev and Meridiani Planum sites for geologic context. On average, our code and manual segmentation converge to within ∼10% in the number and total area of identified grains in a pseudo-random, single blind comparison of 50 samples. Unlike manual segmentation, it also locates finer grains in an image with internal consistency, enabling robust comparisons across geologic contexts. When implemented in Mathematica-8, the algorithm segments an entire MI image within minutes, surpassing the extent and speed possible with manual segmentation by about a factor of ten. These results indicate that our algorithm enables not only new sedimentological insight from the MER MI data, but also detailed sedimentology with the Mars Science Laboratory’s Mars Hand Lens Instrument.

  19. Brain MR image segmentation using NAMS in pseudo-color.

    Science.gov (United States)

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  20. Automated intraretinal layer segmentation of optical coherence tomography images using graph-theoretical methods

    Science.gov (United States)

    Roy, Priyanka; Gholami, Peyman; Kuppuswamy Parthasarathy, Mohana; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. However, manual segmentation is subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. Efforts are therefore being made to implement active-contours, artificial intelligence, and graph-search to automatically segment retinal layers with accuracy comparable to that of manual segmentation, to ease clinical decision-making. Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to automated segmentation. Graph-based image segmentation approach stands out from the rest because of its ability to minimize the cost function while maximising the flow. This study has developed and implemented a shortest-path based graph-search algorithm for automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the minimal-weight path between two graph-nodes based on their gradients. Boundary position indices (BPI) are computed from the transition between pixel intensities. The mean difference between BPIs of two consecutive layers quantify individual layer thicknesses, which shows statistically insignificant differences when compared to a previous study [for overall retina: p = 0.17, for individual layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean computation time of 0.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-reliant for denoising, the algorithm is further computationally optimized to restrict segmentation within the user defined region-of-interest. The efficiency and reliability of this algorithm, even in noisy image conditions, makes it clinically applicable.

  1. Linear segmentation algorithm for detecting layer boundary with lidar.

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  2. User-guided segmentation for volumetric retinal optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  3. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    Science.gov (United States)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  4. Novel algorithm by low complexity filter on retinal vessel segmentation

    Science.gov (United States)

    Rostampour, Samad

    2011-10-01

    This article shows a new method to detect blood vessels in the retina by digital images. Retinal vessel segmentation is important for detection of side effect of diabetic disease, because diabetes can form new capillaries which are very brittle. The research has been done in two phases: preprocessing and processing. Preprocessing phase consists to apply a new filter that produces a suitable output. It shows vessels in dark color on white background and make a good difference between vessels and background. The complexity is very low and extra images are eliminated. The second phase is processing and used the method is called Bayesian. It is a built-in in supervision classification method. This method uses of mean and variance of intensity of pixels for calculate of probability. Finally Pixels of image are divided into two classes: vessels and background. Used images are related to the DRIVE database. After performing this operation, the calculation gives 95 percent of efficiency average. The method also was performed from an external sample DRIVE database which has retinopathy, and perfect result was obtained

  5. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  6. A Real-Time Solution to the Image Segmentation Problem: CNN-Movels

    OpenAIRE

    Iannizzotto, Giancarlo; Lanzafame, Pietro; Rosa, Francesco La

    2007-01-01

    In this work we have described a re-formulation of a 2D still-image segmentation algorithm, implemented on a single-layer CNN, previously proposed (Iannizzotto, 2003). This algorithm is able to step-over limitation inherent to the class of active contours: sensitivity to insignificant false edges or "edge fragmentation". The approach features an iterative process of uniform shrinking and deformation of the active contour. Guided by statistical properties of edgeness of the image pixels, the c...

  7. Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation

    Science.gov (United States)

    Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting

    2014-12-01

    This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.

  8. Robust iris segmentation through parameterization of the Chan-Vese algorithm

    CSIR Research Space (South Africa)

    Mabuza-Hocquet, G

    2015-06-01

    Full Text Available The performance of an iris recognition system relies on automated processes from the segmentation stage to the matching stage. Each stage has traditional algorithms used successfully over the years. The drawback is that these algorithms assume...

  9. Automatic 2D segmentation of airways in thorax computed tomography images

    International Nuclear Information System (INIS)

    Cavalcante, Tarique da Silveira; Cortez, Paulo Cesar; Almeida, Thomaz Maia de; Felix, John Hebert da Silva; Holanda, Marcelo Alcantara

    2013-01-01

    Introduction: much of the world population is affected by pulmonary diseases, such as the bronchial asthma, bronchitis and bronchiectasis. The bronchial diagnosis is based on the airways state. In this sense, the automatic segmentation of the airways in Computed Tomography (CT) scans is a critical step in the aid to diagnosis of these diseases. Methods: this paper evaluates algorithms for airway automatic segmentation, using Neural Network Multilayer Perceptron (MLP) and Lung Densities Analysis (LDA) for detecting airways, along with Region Growing (RG), Active Contour Method (ACM) Balloon and Topology Adaptive to segment them. Results: we obtained results in three stages: comparative analysis of the detection algorithms MLP and LDA, with a gold standard acquired by three physicians with expertise in CT imaging of the chest; comparative analysis of segmentation algorithms ACM Balloon, ACM Topology Adaptive, MLP and RG; and evaluation of possible combinations between segmentation and detection algorithms, resulting in the complete method for automatic segmentation of the airways in 2D. Conclusion: the low incidence of false negative and the significant reduction of false positive, results in similarity coefficient and sensitivity exceeding 91% and 87% respectively, for a combination of algorithms with satisfactory segmentation quality. (author)

  10. A Novel Segmentation Approach Combining Region- and Edge-Based Information for Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Yaozhong Luo

    2017-01-01

    Full Text Available Ultrasound imaging has become one of the most popular medical imaging modalities with numerous diagnostic applications. However, ultrasound (US image segmentation, which is the essential process for further analysis, is a challenging task due to the poor image quality. In this paper, we propose a new segmentation scheme to combine both region- and edge-based information into the robust graph-based (RGB segmentation method. The only interaction required is to select two diagonal points to determine a region of interest (ROI on the original image. The ROI image is smoothed by a bilateral filter and then contrast-enhanced by histogram equalization. Then, the enhanced image is filtered by pyramid mean shift to improve homogeneity. With the optimization of particle swarm optimization (PSO algorithm, the RGB segmentation method is performed to segment the filtered image. The segmentation results of our method have been compared with the corresponding results obtained by three existing approaches, and four metrics have been used to measure the segmentation performance. The experimental results show that the method achieves the best overall performance and gets the lowest ARE (10.77%, the second highest TPVF (85.34%, and the second lowest FPVF (4.48%.

  11. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    Directory of Open Access Journals (Sweden)

    Zhang Zewei

    2014-01-01

    Full Text Available In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  12. An interactive method based on the live wire for segmentation of the breast in mammography images.

    Science.gov (United States)

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  13. Label fusion based brain MR image segmentation via a latent selective model

    Science.gov (United States)

    Liu, Gang; Guo, Xiantang; Zhu, Kai; Liao, Hengxu

    2018-04-01

    Multi-atlas segmentation is an effective approach and increasingly popular for automatically labeling objects of interest in medical images. Recently, segmentation methods based on generative models and patch-based techniques have become the two principal branches of label fusion. However, these generative models and patch-based techniques are only loosely related, and the requirement for higher accuracy, faster segmentation, and robustness is always a great challenge. In this paper, we propose novel algorithm that combines the two branches using global weighted fusion strategy based on a patch latent selective model to perform segmentation of specific anatomical structures for human brain magnetic resonance (MR) images. In establishing this probabilistic model of label fusion between the target patch and patch dictionary, we explored the Kronecker delta function in the label prior, which is more suitable than other models, and designed a latent selective model as a membership prior to determine from which training patch the intensity and label of the target patch are generated at each spatial location. Because the image background is an equally important factor for segmentation, it is analyzed in label fusion procedure and we regard it as an isolated label to keep the same privilege between the background and the regions of interest. During label fusion with the global weighted fusion scheme, we use Bayesian inference and expectation maximization algorithm to estimate the labels of the target scan to produce the segmentation map. Experimental results indicate that the proposed algorithm is more accurate and robust than the other segmentation methods.

  14. A New Segment Building Algorithm for the Cathode Strip Chambers in the CMS Experiment

    Directory of Open Access Journals (Sweden)

    Golutvin I.

    2016-01-01

    Full Text Available A new segment building algorithm for the Cathode Strip Chambers in the CMS experiment is presented. A detailed description of the new algorithm is given along with a comparison with the algorithm used in the CMS software. The new segment builder was tested with different Monte-Carlo data samples. The new algorithm is meant to be robust and effective for hard muons and the higher luminosity that is expected in the future at the LHC.

  15. Energy functionals for medical image segmentation: choices and consequences

    OpenAIRE

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  16. Segmentation of neuroanatomy in magnetic resonance images

    Science.gov (United States)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  17. Categorizing segmentation quality using a quantitative quality assurance algorithm

    International Nuclear Information System (INIS)

    Rodrigues, George; Louie, Alexander; Best, Lara

    2012-01-01

    Obtaining high levels of contouring consistency is a major limiting step in optimizing the radiotherapeutic ratio. We describe a novel quantitative methodology for the quality assurance (QA) of contour compliance referenced against a community set of contouring experts. Two clinical tumour site scenarios (10 lung cases and one prostate case) were used with QA algorithm. For each case, multiple physicians (lung: n = 6, prostate: n = 25) segmented various target/organ at risk (OAR) structures to define a set of community reference contours. For each set of community contours, a consensus contour (Simultaneous Truth and Performance Level Estimation (STAPLE)) was created. Differences between each individual community contour versus the group consensus contour were quantified by consensus-based contouring penalty metric (PM) scores. New observers segmented these same cases to calculate individual PM scores (for each unique target/OAR) for each new observer–STAPLE pair for comparison against the community and consensus contours. Four physicians contoured the 10 lung cases for a total of 72 contours for quality assurance evaluation against the previously derived community consensus contours. A total of 16 outlier contours were identified by the QA system of which 11 outliers were due to over-contouring discrepancies, three were due to over-/under-contouring discrepancies, and two were due to missing/incorrect nodal contours. In the prostate scenario involving six physicians, the QA system detected a missing penile bulb contour, systematic inner-bladder contouring, and under-contouring of the upper/anterior rectum. A practical methodology for QA has been demonstrated with future clinical trial credentialing, medical education and auto-contouring assessment applications.

  18. Mean curvature and texture constrained composite weighted random walk algorithm for optic disc segmentation towards glaucoma screening.

    Science.gov (United States)

    Panda, Rashmi; Puhan, N B; Panda, Ganapati

    2018-02-01

    Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the proposed algorithm in handling the complex challenges in OD segmentation.

  19. Functional segmentation of dynamic PET studies: Open source implementation and validation of a leader-follower-based algorithm.

    Science.gov (United States)

    Mateos-Pérez, José María; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Vaquero, Juan José

    2016-02-01

    We present a novel segmentation algorithm for dynamic PET studies that groups pixels according to the similarity of their time-activity curves. Sixteen mice bearing a human tumor cell line xenograft (CH-157MN) were imaged with three different (68)Ga-DOTA-peptides (DOTANOC, DOTATATE, DOTATOC) using a small animal PET-CT scanner. Regional activities (input function and tumor) were obtained after manual delineation of regions of interest over the image. The algorithm was implemented under the jClustering framework and used to extract the same regional activities as in the manual approach. The volume of distribution in the tumor was computed using the Logan linear method. A Kruskal-Wallis test was used to investigate significant differences between the manually and automatically obtained volumes of distribution. The algorithm successfully segmented all the studies. No significant differences were found for the same tracer across different segmentation methods. Manual delineation revealed significant differences between DOTANOC and the other two tracers (DOTANOC - DOTATATE, p=0.020; DOTANOC - DOTATOC, p=0.033). Similar differences were found using the leader-follower algorithm. An open implementation of a novel segmentation method for dynamic PET studies is presented and validated in rodent studies. It successfully replicated the manual results obtained in small-animal studies, thus making it a reliable substitute for this task and, potentially, for other dynamic segmentation procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Information Extraction of High-Resolution Remotely Sensed Image Based on Multiresolution Segmentation

    Directory of Open Access Journals (Sweden)

    Peng Shao

    2014-08-01

    Full Text Available The principle of multiresolution segmentation was represented in detail in this study, and the canny algorithm was applied for edge-detection of a remotely sensed image based on this principle. The target image was divided into regions based on object-oriented multiresolution segmentation and edge-detection. Furthermore, object hierarchy was created, and a series of features (water bodies, vegetation, roads, residential areas, bare land and other information were extracted by the spectral and geometrical features. The results indicate that the edge-detection has a positive effect on multiresolution segmentation, and overall accuracy of information extraction reaches to 94.6% by the confusion matrix.

  1. Applications of magnetic resonance image segmentation in neurology

    Science.gov (United States)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  2. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    Science.gov (United States)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  3. Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling.

    Science.gov (United States)

    de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano

    2015-06-01

    Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.

  4. Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching

    Directory of Open Access Journals (Sweden)

    Ward Kevin R

    2009-11-01

    Full Text Available Abstract Background Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI. Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information. Methods First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM and Maximum A Posteriori Spatial Probability (MASP are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases. Results Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images. Conclusion The experiments show the reliability of the proposed algorithms. The

  5. Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning

    Science.gov (United States)

    Sharma, Manu; Bhatt, Jignesh S.; Joshi, Manjunath V.

    2018-04-01

    Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.

  6. SEGMENTATION AND QUALITY ANALYSIS OF LONG RANGE CAPTURED IRIS IMAGE

    Directory of Open Access Journals (Sweden)

    Anand Deshpande

    2016-05-01

    Full Text Available The iris segmentation plays a major role in an iris recognition system to increase the performance of the system. This paper proposes a novel method for segmentation of iris images to extract the iris part of long range captured eye image and an approach to select best iris frame from the iris polar image sequences by analyzing the quality of iris polar images. The quality of iris image is determined by the frequency components present in the iris polar images. The experiments are carried out on CASIA-long range captured iris image sequences. The proposed segmentation method is compared with Hough transform based segmentation and it has been determined that the proposed method gives higher accuracy for segmentation than Hough transform.

  7. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel .... Retinal blood vessel segmentation was also attempted through multi-scale operators. A few works in this ... fundus camera at 35 degrees field of view. The image ... vessel segmentation is available from two human observers.

  8. Automatic segmentation and disease classification using cardiac cine MR images

    NARCIS (Netherlands)

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Išgum, Ivana

    2018-01-01

    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle

  9. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  10. Visual Sensor Based Image Segmentation by Fuzzy Classification and Subregion Merge

    Directory of Open Access Journals (Sweden)

    Huidong He

    2017-01-01

    Full Text Available The extraction and tracking of targets in an image shot by visual sensors have been studied extensively. The technology of image segmentation plays an important role in such tracking systems. This paper presents a new approach to color image segmentation based on fuzzy color extractor (FCE. Different from many existing methods, the proposed approach provides a new classification of pixels in a source color image which usually classifies an individual pixel into several subimages by fuzzy sets. This approach shows two unique features: the spatial proximity and color similarity, and it mainly consists of two algorithms: CreateSubImage and MergeSubImage. We apply the FCE to segment colors of the test images from the database at UC Berkeley in the RGB, HSV, and YUV, the three different color spaces. The comparative studies show that the FCE applied in the RGB space is superior to the HSV and YUV spaces. Finally, we compare the segmentation effect with Canny edge detection and Log edge detection algorithms. The results show that the FCE-based approach performs best in the color image segmentation.

  11. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    Science.gov (United States)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  12. Adaptive Binary Arithmetic Coder-Based Image Feature and Segmentation in the Compressed Domain

    Directory of Open Access Journals (Sweden)

    Hsi-Chin Hsin

    2012-01-01

    Full Text Available Image compression is necessary in various applications, especially for efficient transmission over a band-limited channel. It is thus desirable to be able to segment an image in the compressed domain directly such that the burden of decompressing computation can be avoided. Motivated by the adaptive binary arithmetic coder (MQ coder of JPEG2000, we propose an efficient scheme to segment the feature vectors that are extracted from the code stream of an image. We modify the Compression-based Texture Merging (CTM algorithm to alleviate the influence of overmerging problem by making use of the rate distortion information. Experimental results show that the MQ coder-based image segmentation is preferable in terms of the boundary displacement error (BDE measure. It has the advantage of saving computational cost as the segmentation results even at low rates of bits per pixel (bpp are satisfactory.

  13. Motion based segmentation for robot vision using adapted EM algorithm

    NARCIS (Netherlands)

    Zhao, Wei; Roos, Nico

    2016-01-01

    Robots operate in a dynamic world in which objects are often moving. The movement of objects may help the robot to segment the objects from the background. The result of the segmentation can subsequently be used to identify the objects. This paper investigates the possibility of segmenting objects

  14. Segmentation and registration duality from echographic images by use of physiological and morphological knowledge

    International Nuclear Information System (INIS)

    Ionescu, G.

    1998-01-01

    Echographic imaging could potentially play a major role in the field of Computer Assisted Surgery (CAS). For doctors and surgeons to make full use of tool in planning and executing surgical operations, they also need user-friendly automatic software based on fast, precise and reliable algorithms. The main goal of this thesis is to take advantage of the segmentation/registration duality to extract the relevant information from echo graphical images. This information will allow the precise and automatic registration both of anatomical structures contained in the pre-operative model and of per-operative data contained in echographic images. The result of registration will be further to guide a computer-assisted tool. In the first part we propose different methods for filtering, segmentation and calibration of echographic images. The development of fast, precise and reliable algorithms is emphasized. The second part concerns the segmentation-registration duality and the corrections of elastic deformations of soft tissues. High-level segmentation algorithms for echographic images were developed. They are based on results of low -level segmentation, a priori anatomical knowledge as well as on information provided by the pre-operative model. The third part deals with detailed descriptions of applications and interpretation of results. The cases studied include: screwing inside the vertebral pedicles, ilio-sacral screwing, prostatic radiotherapy and puncture of pericardial effusion. Future developments for this approach are discussed. (author)

  15. Hyperspectral image segmentation of the common bile duct

    Science.gov (United States)

    Samarov, Daniel; Wehner, Eleanor; Schwarz, Roderich; Zuzak, Karel; Livingston, Edward

    2013-03-01

    Over the course of the last several years hyperspectral imaging (HSI) has seen increased usage in biomedicine. Within the medical field in particular HSI has been recognized as having the potential to make an immediate impact by reducing the risks and complications associated with laparotomies (surgical procedures involving large incisions into the abdominal wall) and related procedures. There are several ongoing studies focused on such applications. Hyperspectral images were acquired during pancreatoduodenectomies (commonly referred to as Whipple procedures), a surgical procedure done to remove cancerous tumors involving the pancreas and gallbladder. As a result of the complexity of the local anatomy, identifying where the common bile duct (CBD) is can be difficult, resulting in comparatively high incidents of injury to the CBD and associated complications. It is here that HSI has the potential to help reduce the risk of such events from happening. Because the bile contained within the CBD exhibits a unique spectral signature, we are able to utilize HSI segmentation algorithms to help in identifying where the CBD is. In the work presented here we discuss approaches to this segmentation problem and present the results.

  16. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  17. Segmentation of Concealed Objects in Passive Millimeter-Wave Images Based on the Gaussian Mixture Model

    Science.gov (United States)

    Yu, Wangyang; Chen, Xiangguang; Wu, Lei

    2015-04-01

    Passive millimeter wave (PMMW) imaging has become one of the most effective means to detect the objects concealed under clothing. Due to the limitations of the available hardware and the inherent physical properties of PMMW imaging systems, images often exhibit poor contrast and low signal-to-noise ratios. Thus, it is difficult to achieve ideal results by using a general segmentation algorithm. In this paper, an advanced Gaussian Mixture Model (GMM) algorithm for the segmentation of concealed objects in PMMW images is presented. Our work is concerned with the fact that the GMM is a parametric statistical model, which is often used to characterize the statistical behavior of images. Our approach is three-fold: First, we remove the noise from the image using both a notch reject filter and a total variation filter. Next, we use an adaptive parameter initialization GMM algorithm (APIGMM) for simulating the histogram of images. The APIGMM provides an initial number of Gaussian components and start with more appropriate parameter. Bayesian decision is employed to separate the pixels of concealed objects from other areas. At last, the confidence interval (CI) method, alongside local gradient information, is used to extract the concealed objects. The proposed hybrid segmentation approach detects the concealed objects more accurately, even compared to two other state-of-the-art segmentation methods.

  18. Deploying swarm intelligence in medical imaging identifying metastasis, micro-calcifications and brain image segmentation.

    Science.gov (United States)

    al-Rifaie, Mohammad Majid; Aber, Ahmed; Hemanth, Duraiswamy Jude

    2015-12-01

    This study proposes an umbrella deployment of swarm intelligence algorithm, such as stochastic diffusion search for medical imaging applications. After summarising the results of some previous works which shows how the algorithm assists in the identification of metastasis in bone scans and microcalcifications on mammographs, for the first time, the use of the algorithm in assessing the CT images of the aorta is demonstrated along with its performance in detecting the nasogastric tube in chest X-ray. The swarm intelligence algorithm presented in this study is adapted to address these particular tasks and its functionality is investigated by running the swarms on sample CT images and X-rays whose status have been determined by senior radiologists. In addition, a hybrid swarm intelligence-learning vector quantisation (LVQ) approach is proposed in the context of magnetic resonance (MR) brain image segmentation. The particle swarm optimisation is used to train the LVQ which eliminates the iteration-dependent nature of LVQ. The proposed methodology is used to detect the tumour regions in the abnormal MR brain images.

  19. Iris recognition using image moments and k-means algorithm.

    Science.gov (United States)

    Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed

    2014-01-01

    This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.

  20. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    Science.gov (United States)

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  1. Image segmentation with a novel regularized composite shape prior based on surrogate study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

  2. Image segmentation with a novel regularized composite shape prior based on surrogate study

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2016-01-01

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

  3. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    Science.gov (United States)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  4. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    Science.gov (United States)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.

  5. A Hybrid Approach for Improving Image Segmentation: Application to Phenotyping of Wheat Leaves.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available In this article we propose a novel tool that takes an initial segmented image and returns a more accurate segmentation that accurately captures sharp features such as leaf tips, twists and axils. Our algorithm utilizes basic a-priori information about the shape of plant leaves and local image orientations to fit active contour models to important plant features that have been missed during the initial segmentation. We compare the performance of our approach with three state-of-the-art segmentation techniques, using three error metrics. The results show that leaf tips are detected with roughly one half of the original error, segmentation accuracy is almost always improved and more than half of the leaf breakages are corrected.

  6. Robust segmentation of medical images using competitive hop field neural network as a clustering tool

    International Nuclear Information System (INIS)

    Golparvar Roozbahani, R.; Ghassemian, M. H.; Sharafat, A. R.

    2001-01-01

    This paper presents the application of competitive Hop field neural network for medical images segmentation. Our proposed approach consists of Two steps: 1) translating segmentation of the given medical image into an optimization problem, and 2) solving this problem by a version of Hop field network known as competitive Hop field neural network. Segmentation is considered as a clustering problem and its validity criterion is based on both intra set distance and inter set distance. The algorithm proposed in this paper is based on gray level features only. This leads to near optimal solutions if both intra set distance and inter set distance are considered at the same time. If only one of these distances is considered, the result of segmentation process by competitive Hop field neural network will be far from optimal solution and incorrect even for very simple cases. Furthermore, sometimes the algorithm receives at unacceptable states. Both these problems may be solved by contributing both in tera distance and inter distances in the segmentation (optimization) process. The performance of the proposed algorithm is tested on both phantom and real medical images. The promising results and the robustness of algorithm to system noises show near optimal solutions

  7. Integration of speckle de-noising and image segmentation using ...

    Indian Academy of Sciences (India)

    2Department of Electronics and Communication Engineering, National Institute of Technology Karnataka,. Surathkal, Mangalore 575 025, India. ... cal images obtained from the satellites are often prone to bad climatic conditions and hence ... (2009) for satellite image segmentation. Mean shift segmentation (MSS) is a non-.

  8. High intensity region segmentation in MR imaging of multiple sclerosis

    International Nuclear Information System (INIS)

    Rodrigo, F; Filipuzzi, M; Graffigna, J P; Isoardi, R; Noceti, M

    2013-01-01

    Numerous pathologies are often manifest in Magnetic Resonance Imaging (MRI) as hyperintense or bright regions as compared to normal tissue. It is of particular interest to develop an algorithm to detect, identify and define those Regions of Interest (ROI) when analyzing MRI studies, particularly for lesions of Multiple Sclerosis (MS). The objective of this study is to analyze those parameters which optimize segmentation of the areas of interest. To establish which areas should be considered as hyperintense regions, we developed a database (DB), with studies of patients diagnosed with MS. This disease causes axonal demyelination and it is expressed as bright regions in PD, T2 and FLAIR MRI sequences. Thus, with more than 4300 hyperintense regions validated by an expert physician, an algorithm was developed to detect such spots, approximating the results the expert obtained. Alongside these hyperintense lesion regions, it also detected bone regions with high intensity levels, similar to the intensity of the lesions, but with other features that allow a good differentiation.The algorithm will then detect ROIs with similar intensity levels and performs classification through data mining techniques

  9. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    Science.gov (United States)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell

  10. Segmentation Technique for Image Indexing and Retrieval on Discrete Cosines Domain

    Directory of Open Access Journals (Sweden)

    Suhendro Yusuf Irianto

    2013-03-01

    Full Text Available This paper uses region growing segmentation technique to segment the Discrete Cosines (DC  image. The problem of content Based image retrieval (CBIR is the luck of accuracy in matching between image query and image in the database as it matches object and background in the same time.   This the reason previous CBIR techniques inaccurate and time consuming. The CBIR   based on the segmented region proposed in this work  separates object from background as CBIR need only match the object not the background.  By using region growing technique on DC image, it reduces the number of image       regions.    The proposed of recursive region growing is not new technique but its application on DC images to build    indexing keys is quite new and not yet presented by many     authors. The experimental results show  that the proposed methods on   segmented images present good precision which are higher than 0.60 on all classes . It can be concluded that  region growing segmented based CBIR more efficient    compare to DC images  in term of their precision 0.59 and 0.75, respectively. Moreover,  DC based CBIR  can save time and simplify algorithm compare to DCT images.

  11. Algorithms for boundary detection in radiographic images

    International Nuclear Information System (INIS)

    Gonzaga, Adilson; Franca, Celso Aparecido de

    1996-01-01

    Edge detecting techniques applied to radiographic digital images are discussed. Some algorithms have been implemented and the results are displayed to enhance boundary or hide details. An algorithm applied in a pre processed image with contrast enhanced is proposed and the results are discussed

  12. An Improved Random Walker with Bayes Model for Volumetric Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Chunhua Dong

    2017-01-01

    Full Text Available Random walk (RW method has been widely used to segment the organ in the volumetric medical image. However, it leads to a very large-scale graph due to a number of nodes equal to a voxel number and inaccurate segmentation because of the unavailability of appropriate initial seed point setting. In addition, the classical RW algorithm was designed for a user to mark a few pixels with an arbitrary number of labels, regardless of the intensity and shape information of the organ. Hence, we propose a prior knowledge-based Bayes random walk framework to segment the volumetric medical image in a slice-by-slice manner. Our strategy is to employ the previous segmented slice to obtain the shape and intensity knowledge of the target organ for the adjacent slice. According to the prior knowledge, the object/background seed points can be dynamically updated for the adjacent slice by combining the narrow band threshold (NBT method and the organ model with a Gaussian process. Finally, a high-quality image segmentation result can be automatically achieved using Bayes RW algorithm. Comparing our method with conventional RW and state-of-the-art interactive segmentation methods, our results show an improvement in the accuracy for liver segmentation (p<0.001.

  13. Segmentation of medical images using explicit anatomical knowledge

    Science.gov (United States)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  14. Segmentation of radiographic images under topological constraints: application to the femur.

    Science.gov (United States)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  15. Segmentation of radiographic images under topological constraints: application to the femur

    International Nuclear Information System (INIS)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-01-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  16. Segmentation of radiographic images under topological constraints: application to the femur

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, Pavan; Xie, Sheng Quan [University of Auckland, Department of Mechanical Engineering (Mechatronics), Auckland (New Zealand); Delmas, Patrice [University of Auckland, Department of Computer Science, Auckland (New Zealand); Xu, Wei Liang [Massey University, School of Engineering and Advanced Technology, Auckland (New Zealand)

    2010-09-15

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  17. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    Science.gov (United States)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic

  18. FACT. New image parameters based on the watershed-algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Linhoff, Lena; Bruegge, Kai Arno; Buss, Jens [TU Dortmund (Germany). Experimentelle Physik 5b; Collaboration: FACT-Collaboration

    2016-07-01

    FACT, the First G-APD Cherenkov Telescope, is the first imaging atmospheric Cherenkov telescope that is using Geiger-mode avalanche photodiodes (G-APDs) as photo sensors. The raw data produced by this telescope are processed in an analysis chain, which leads to a classification of the primary particle that induce a shower and to an estimation of its energy. One important step in this analysis chain is the parameter extraction from shower images. By the application of a watershed algorithm to the camera image, new parameters are computed. Perceiving the brightness of a pixel as height, a set of pixels can be seen as 'landscape' with hills and valleys. A watershed algorithm groups all pixels to a cluster that belongs to the same hill. From the emerging segmented image, one can find new parameters for later analysis steps, e.g. number of clusters, their shape and containing photon charge. For FACT data, the FellWalker algorithm was chosen from the class of watershed algorithms, because it was designed to work on discrete distributions, in this case the pixels of a camera image. The FellWalker algorithm is implemented in FACT-tools, which provides the low level analysis framework for FACT. This talk will focus on the computation of new, FellWalker based, image parameters, which can be used for the gamma-hadron separation. Additionally, their distributions concerning real and Monte Carlo Data are compared.

  19. Dental x-ray image segmentation

    Science.gov (United States)

    Said, Eyad; Fahmy, Gamal F.; Nassar, Diaa; Ammar, Hany

    2004-08-01

    Law enforcement agencies have been exploiting biometric identifiers for decades as key tools in forensic identification. With the evolution in information technology and the huge volume of cases that need to be investigated by forensic specialists, it has become important to automate forensic identification systems. While, ante mortem (AM) identification, that is identification prior to death, is usually possible through comparison of many biometric identifiers, postmortem (PM) identification, that is identification after death, is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashers) or if identification is being attempted more than a couple of weeks postmortem, under such circumstances, most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Therefore, a postmortem biometric identifier has to resist the early decay that affects body tissues. Because of their survivability and diversity, the best candidates for postmortem biometric identification are the dental features. In this paper we present an over view about an automated dental identification system for Missing and Unidentified Persons. This dental identification system can be used by both law enforcement and security agencies in both forensic and biometric identification. We will also present techniques for dental segmentation of X-ray images. These techniques address the problem of identifying each individual tooth and how the contours of each tooth are extracted.

  20. Multifractal-based nuclei segmentation in fish images.

    Science.gov (United States)

    Reljin, Nikola; Slavkovic-Ilic, Marijeta; Tapia, Coya; Cihoric, Nikola; Stankovic, Srdjan

    2017-09-01

    The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.

  1. Semi-automatic geographic atrophy segmentation for SD-OCT images.

    Science.gov (United States)

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.

  2. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    Science.gov (United States)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  3. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    Science.gov (United States)

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  4. A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE

    Directory of Open Access Journals (Sweden)

    Yang Fan

    2012-10-01

    Full Text Available Abstract Background Computer-assisted surgical navigation aims to provide surgeons with anatomical target localization and critical structure observation, where medical image processing methods such as segmentation, registration and visualization play a critical role. Percutaneous renal intervention plays an important role in several minimally-invasive surgeries of kidney, such as Percutaneous Nephrolithotomy (PCNL and Radio-Frequency Ablation (RFA of kidney tumors, which refers to a surgical procedure where access to a target inside the kidney by a needle puncture of the skin. Thus, kidney segmentation is a key step in developing any ultrasound-based computer-aided diagnosis systems for percutaneous renal intervention. Methods In this paper, we proposed a novel framework for kidney segmentation of ultrasound (US images combined with nonlocal total variation (NLTV image denoising, distance regularized level set evolution (DRLSE and shape prior. Firstly, a denoised US image was obtained by NLTV image denoising. Secondly, DRLSE was applied in the kidney segmentation to get binary image. In this case, black and white region represented the kidney and the background respectively. The last stage is that the shape prior was applied to get a shape with the smooth boundary from the kidney shape space, which was used to optimize the segmentation result of the second step. The alignment model was used occasionally to enlarge the shape space in order to increase segmentation accuracy. Experimental results on both synthetic images and US data are given to demonstrate the effectiveness and accuracy of the proposed algorithm. Results We applied our segmentation framework on synthetic and real US images to demonstrate the better segmentation results of our method. From the qualitative results, the experiment results show that the segmentation results are much closer to the manual segmentations. The sensitivity (SN, specificity (SP and positive predictive value

  5. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images.

    Science.gov (United States)

    Gao, Han; Tang, Yunwei; Jing, Linhai; Li, Hui; Ding, Haifeng

    2017-10-24

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  6. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Han Gao

    2017-10-01

    Full Text Available The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA. Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  7. Scale-space for empty catheter segmentation in PCI fluoroscopic images.

    Science.gov (United States)

    Bacchuwar, Ketan; Cousty, Jean; Vaillant, Régis; Najman, Laurent

    2017-07-01

    In this article, we present a method for empty guiding catheter segmentation in fluoroscopic X-ray images. The guiding catheter, being a commonly visible landmark, its segmentation is an important and a difficult brick for Percutaneous Coronary Intervention (PCI) procedure modeling. In number of clinical situations, the catheter is empty and appears as a low contrasted structure with two parallel and partially disconnected edges. To segment it, we work on the level-set scale-space of image, the min tree, to extract curve blobs. We then propose a novel structural scale-space, a hierarchy built on these curve blobs. The deep connected component, i.e. the cluster of curve blobs on this hierarchy, that maximizes the likelihood to be an empty catheter is retained as final segmentation. We evaluate the performance of the algorithm on a database of 1250 fluoroscopic images from 6 patients. As a result, we obtain very good qualitative and quantitative segmentation performance, with mean precision and recall of 80.48 and 63.04% respectively. We develop a novel structural scale-space to segment a structured object, the empty catheter, in challenging situations where the information content is very sparse in the images. Fully-automatic empty catheter segmentation in X-ray fluoroscopic images is an important and preliminary step in PCI procedure modeling, as it aids in tagging the arrival and removal location of other interventional tools.

  8. Compositional-prior-guided image reconstruction algorithm for multi-modality imaging

    Science.gov (United States)

    Fang, Qianqian; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2010-01-01

    The development of effective multi-modality imaging methods typically requires an efficient information fusion model, particularly when combining structural images with a complementary imaging modality that provides functional information. We propose a composition-based image segmentation method for X-ray digital breast tomosynthesis (DBT) and a structural-prior-guided image reconstruction for a combined DBT and diffuse optical tomography (DOT) breast imaging system. Using the 3D DBT images from 31 clinically measured healthy breasts, we create an empirical relationship between the X-ray intensities for adipose and fibroglandular tissue. We use this relationship to then segment another 58 healthy breast DBT images from 29 subjects into compositional maps of different tissue types. For each breast, we build a weighted-graph in the compositional space and construct a regularization matrix to incorporate the structural priors into a finite-element-based DOT image reconstruction. Use of the compositional priors enables us to fuse tissue anatomy into optical images with less restriction than when using a binary segmentation. This allows us to recover the image contrast captured by DOT but not by DBT. We show that it is possible to fine-tune the strength of the structural priors by changing a single regularization parameter. By estimating the optical properties for adipose and fibroglandular tissue using the proposed algorithm, we found the results are comparable or superior to those estimated with expert-segmentations, but does not involve the time-consuming manual selection of regions-of-interest. PMID:21258460

  9. Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

    Science.gov (United States)

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B

    2015-10-06

    Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.

  10. Scale selection for supervised image segmentation

    DEFF Research Database (Denmark)

    Li, Yan; Tax, David M J; Loog, Marco

    2012-01-01

    schemes are usually unsupervised, as they do not take into account the actual segmentation problem at hand. In this paper, we consider the problem of selecting scales, which aims at an optimal discrimination between user-defined classes in the segmentation. We show the deficiency of the classical...

  11. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    Science.gov (United States)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  12. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  13. Automatic Semiconductor Wafer Image Segmentation for Defect Detection Using Multilevel Thresholding

    Directory of Open Access Journals (Sweden)

    Saad N.H.

    2016-01-01

    Full Text Available Quality control is one of important process in semiconductor manufacturing. A lot of issues trying to be solved in semiconductor manufacturing industry regarding the rate of production with respect to time. In most semiconductor assemblies, a lot of wafers from various processes in semiconductor wafer manufacturing need to be inspected manually using human experts and this process required full concentration of the operators. This human inspection procedure, however, is time consuming and highly subjective. In order to overcome this problem, implementation of machine vision will be the best solution. This paper presents automatic defect segmentation of semiconductor wafer image based on multilevel thresholding algorithm which can be further adopted in machine vision system. In this work, the defect image which is in RGB image at first is converted to the gray scale image. Median filtering then is implemented to enhance the gray scale image. Then the modified multilevel thresholding algorithm is performed to the enhanced image. The algorithm worked in three main stages which are determination of the peak location of the histogram, segmentation the histogram between the peak and determination of first global minimum of histogram that correspond to the threshold value of the image. The proposed approach is being evaluated using defected wafer images. The experimental results shown that it can be used to segment the defect correctly and outperformed other thresholding technique such as Otsu and iterative thresholding.

  14. A new chaotic algorithm for image encryption

    International Nuclear Information System (INIS)

    Gao Haojiang; Zhang Yisheng; Liang Shuyun; Li Dequn

    2006-01-01

    Recent researches of image encryption algorithms have been increasingly based on chaotic systems, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper presents a new nonlinear chaotic algorithm (NCA) which uses power function and tangent function instead of linear function. Its structural parameters are obtained by experimental analysis. And an image encryption algorithm in a one-time-one-password system is designed. The experimental results demonstrate that the image encryption algorithm based on NCA shows advantages of large key space and high-level security, while maintaining acceptable efficiency. Compared with some general encryption algorithms such as DES, the encryption algorithm is more secure

  15. Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure

    Science.gov (United States)

    Schreur, Julian J.

    1999-01-01

    In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.

  16. Spot detection and image segmentation in DNA microarray data.

    Science.gov (United States)

    Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune

    2005-01-01

    Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.

  17. A combinational fast algorithm for image reconstruction

    International Nuclear Information System (INIS)

    Wu Zhongquan

    1987-01-01

    A combinational fast algorithm has been developed in order to increase the speed of reconstruction. First, an interpolation method based on B-spline functions is used in image reconstruction. Next, the influence of the boundary conditions assumed here on the interpolation of filtered projections and on the image reconstruction is discussed. It is shown that this boundary condition has almost no influence on the image in the central region of the image space, because the error of interpolation rapidly decreases by a factor of ten in shifting two pixels from the edge toward the center. In addition, a fast algorithm for computing the detecting angle has been used with the mentioned interpolation algorithm, and the cost for detecting angle computaton is reduced by a factor of two. The implementation results show that in the same subjective and objective fidelity, the computational cost for the interpolation using this algorithm is about one-twelfth of the conventional algorithm

  18. Three Dimensional Fluorescence Microscopy Image Synthesis and Segmentation

    OpenAIRE

    Fu, Chichen; Lee, Soonam; Ho, David Joon; Han, Shuo; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2018-01-01

    Advances in fluorescence microscopy enable acquisition of 3D image volumes with better image quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images and recent 3D segmentation using deep learning has achieved promising results. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for large 3D microscopy volumes. This paper describes a 3D d...

  19. Semi-supervised learning of hyperspectral image segmentation applied to vine tomatoes and table grapes

    Directory of Open Access Journals (Sweden)

    Jeroen van Roy

    2018-03-01

    Full Text Available Nowadays, quality inspection of fruit and vegetables is typically accomplished through visual inspection. Automation of this inspection is desirable to make it more objective. For this, hyperspectral imaging has been identified as a promising technique. When the field of view includes multiple objects, hypercubes should be segmented to assign individual pixels to different objects. Unsupervised and supervised methods have been proposed. While the latter are labour intensive as they require masking of the training images, the former are too computationally intensive for in-line use and may provide different results for different hypercubes. Therefore, a semi-supervised method is proposed to train a computationally efficient segmentation algorithm with minimal human interaction. As a first step, an unsupervised classification model is used to cluster spectra in similar groups. In the second step, a pixel selection algorithm applied to the output of the unsupervised classification is used to build a supervised model which is fast enough for in-line use. To evaluate this approach, it is applied to hypercubes of vine tomatoes and table grapes. After first derivative spectral preprocessing to remove intensity variation due to curvature and gloss effects, the unsupervised models segmented 86.11% of the vine tomato images correctly. Considering overall accuracy, sensitivity, specificity and time needed to segment one hypercube, partial least squares discriminant analysis (PLS-DA was found to be the best choice for in-line use, when using one training image. By adding a second image, the segmentation results improved considerably, yielding an overall accuracy of 96.95% for segmentation of vine tomatoes and 98.52% for segmentation of table grapes, demonstrating the added value of the learning phase in the algorithm.

  20. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

    Directory of Open Access Journals (Sweden)

    Linguo Li

    2017-01-01

    Full Text Available The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO, which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO, the differential evolution (DE, the Artifical Bee Colony (ABC, and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.

  1. Supervised variational model with statistical inference and its application in medical image segmentation.

    Science.gov (United States)

    Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David

    2015-01-01

    Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.

  2. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    International Nuclear Information System (INIS)

    Duan, Jinming; Bai, Li; Tench, Christopher; Gottlob, Irene; Proudlock, Frank

    2015-01-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation. (paper)

  3. Fast segmentation of industrial quality pavement images using Laws texture energy measures and k -means clustering

    Science.gov (United States)

    Mathavan, Senthan; Kumar, Akash; Kamal, Khurram; Nieminen, Michael; Shah, Hitesh; Rahman, Mujib

    2016-09-01

    Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture nonuniformities that make their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough, and expedited health monitoring of roads. In the pavement monitoring area, well-known texture descriptors, such as gray-level co-occurrence matrices and local binary patterns, are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB® and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV-based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature.

  4. Multi-object segmentation framework using deformable models for medical imaging analysis.

    Science.gov (United States)

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  5. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ahmed Elazab

    2015-01-01

    Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

  6. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    Science.gov (United States)

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    Science.gov (United States)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  8. Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm

    International Nuclear Information System (INIS)

    Muehlenbruch, Georg; Das, Marco; Hohl, Christian; Wildberger, Joachim E.; Guenther, Rolf W.; Mahnken, Andreas H.; Rinck, Daniel; Flohr, Thomas G.; Koos, Ralf; Knackstedt, Christian

    2006-01-01

    The purpose was to evaluate a new semi-automated 3D region-growing segmentation algorithm for functional analysis of the left ventricle in multislice CT (MSCT) of the heart. Twenty patients underwent contrast-enhanced MSCT of the heart (collimation 16 x 0.75 mm; 120 kV; 550 mAseff). Multiphase image reconstructions with 1-mm axial slices and 8-mm short-axis slices were performed. Left ventricular volume measurements (end-diastolic volume, end-systolic volume, ejection fraction and stroke volume) from manually drawn endocardial contours in the short axis slices were compared to semi-automated region-growing segmentation of the left ventricle from the 1-mm axial slices. The post-processing-time for both methods was recorded. Applying the new region-growing algorithm in 13/20 patients (65%), proper segmentation of the left ventricle was feasible. In these patients, the signal-to-noise ratio was higher than in the remaining patients (3.2±1.0 vs. 2.6±0.6). Volume measurements of both segmentation algorithms showed an excellent correlation (all P≤0.0001); the limits of agreement for the ejection fraction were 2.3±8.3 ml. In the patients with proper segmentation the mean post-processing time using the region-growing algorithm was diminished by 44.2%. On the basis of a good contrast-enhanced data set, a left ventricular volume analysis using the new semi-automated region-growing segmentation algorithm is technically feasible, accurate and more time-effective. (orig.)

  9. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    Science.gov (United States)

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  10. Hepatic vessel segmentation for 3D planning of liver surgery experimental evaluation of a new fully automatic algorithm.

    Science.gov (United States)

    Conversano, Francesco; Franchini, Roberto; Demitri, Christian; Massoptier, Laurent; Montagna, Francesco; Maffezzoli, Alfonso; Malvasi, Antonio; Casciaro, Sergio

    2011-04-01

    The aim of this study was to identify the optimal parameter configuration of a new algorithm for fully automatic segmentation of hepatic vessels, evaluating its accuracy in view of its use in a computer system for three-dimensional (3D) planning of liver surgery. A phantom reproduction of a human liver with vessels up to the fourth subsegment order, corresponding to a minimum diameter of 0.2 mm, was realized through stereolithography, exploiting a 3D model derived from a real human computed tomographic data set. Algorithm parameter configuration was experimentally optimized, and the maximum achievable segmentation accuracy was quantified for both single two-dimensional slices and 3D reconstruction of the vessel network, through an analytic comparison of the automatic segmentation performed on contrast-enhanced computed tomographic phantom images with actual model features. The optimal algorithm configuration resulted in a vessel detection sensitivity of 100% for vessels > 1 mm in diameter, 50% in the range 0.5 to 1 mm, and 14% in the range 0.2 to 0.5 mm. An average area overlap of 94.9% was obtained between automatically and manually segmented vessel sections, with an average difference of 0.06 mm(2). The average values of corresponding false-positive and false-negative ratios were 7.7% and 2.3%, respectively. A robust and accurate algorithm for automatic extraction of the hepatic vessel tree from contrast-enhanced computed tomographic volume images was proposed and experimentally assessed on a liver model, showing unprecedented sensitivity in vessel delineation. This automatic segmentation algorithm is promising for supporting liver surgery planning and for guiding intraoperative resections. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  11. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J; Nishikawa, R [University of Pittsburgh, Pittsburgh, PA (United States); Reiser, I [The University of Chicago, Chicago, IL (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benign or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification

  12. Segmentation of Clinical Endoscopic Images Based on the Classification of Topological Vector Features

    Directory of Open Access Journals (Sweden)

    O. A. Dunaeva

    2013-01-01

    Full Text Available In this work, we describe a prototype of an automatic segmentation system and annotation of endoscopy images. The used algorithm is based on the classification of vectors of the topological features of the original image. We use the image processing scheme which includes image preprocessing, calculation of vector descriptors defined for every point of the source image and the subsequent classification of descriptors. Image preprocessing includes finding and selecting artifacts and equalizating the image brightness. In this work, we give the detailed algorithm of the construction of topological descriptors and the classifier creating procedure based on mutual sharing the AdaBoost scheme and a naive Bayes classifier. In the final section, we show the results of the classification of real endoscopic images.

  13. Marker-controlled watershed for lymphoma segmentation in sequential CT images

    International Nuclear Information System (INIS)

    Yan Jiayong; Zhao Binsheng; Wang, Liang; Zelenetz, Andrew; Schwartz, Lawrence H.

    2006-01-01

    Segmentation of lymphoma containing lymph nodes is a difficult task because of multiple variables associated with the tumor's location, intensity distribution, and contrast to its surrounding tissues. In this paper, we present a reliable and practical marker-controlled watershed algorithm for semi-automated segmentation of lymphoma in sequential CT images. Robust determination of internal and external markers is the key to successful use of the marker-controlled watershed transform in the segmentation of lymphoma and is the focus of this work. The external marker in our algorithm is the circle enclosing the lymphoma in a single slice. The internal marker, however, is determined automatically by combining techniques including Canny edge detection, thresholding, morphological operation, and distance map estimation. To obtain tumor volume, the segmented lymphoma in the current slice needs to be propagated to the adjacent slice to help determine the external and internal markers for delineation of the lymphoma in that slice. The algorithm was applied to 29 lymphomas (size range, 9-53 mm in diameter; mean, 23 mm) in nine patients. A blinded radiologist manually delineated all lymphomas on all slices. The manual result served as the ''gold standard'' for comparison. Several quantitative methods were applied to objectively evaluate the performance of the segmentation algorithm. The algorithm received a mean overlap, overestimation, and underestimation ratios of 83.2%, 13.5%, and 5.5%, respectively. The mean average boundary distance and Hausdorff boundary distance were 0.7 and 3.7 mm. Preliminary results have shown the potential of this computer algorithm to allow reliable segmentation and quantification of lymphomas on sequential CT images

  14. Advances and applications of optimised algorithms in image processing

    CERN Document Server

    Oliva, Diego

    2017-01-01

    This book presents a study of the use of optimization algorithms in complex image processing problems. The problems selected explore areas ranging from the theory of image segmentation to the detection of complex objects in medical images. Furthermore, the concepts of machine learning and optimization are analyzed to provide an overview of the application of these tools in image processing. The material has been compiled from a teaching perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics, and can be used for courses on Artificial Intelligence, Advanced Image Processing, Computational Intelligence, etc. Likewise, the material can be useful for research from the evolutionary computation, artificial intelligence and image processing co.

  15. Multilevel segmentation of intracranial aneurysms in CT angiography images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94122 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Zhang, Yue, E-mail: y.zhang525@gmail.com [Veterans Affairs Medical Center, San Francisco, California 94121 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Navarro, Laurent [Ecole Nationale Superieure des Mines de Saint-Etienne, Saint-Etienne 42015 (France); Eker, Omer Faruk [CHU Montpellier, Neuroradiologie, Montpellier 34000 (France); Corredor Jerez, Ricardo A. [Ecole Polytechnique Federale de Lausanne, Lausanne 1015 (Switzerland); Chen, Yu; Zhu, Yuemin; Courbebaisse, Guy [University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France)

    2016-04-15

    Purpose: Segmentation of aneurysms plays an important role in interventional planning. Yet, the segmentation of both the lumen and the thrombus of an intracranial aneurysm in computed tomography angiography (CTA) remains a challenge. This paper proposes a multilevel segmentation methodology for efficiently segmenting intracranial aneurysms in CTA images. Methods: The proposed methodology first uses the lattice Boltzmann method (LBM) to extract the lumen part directly from the original image. Then, the LBM is applied again on an intermediate image whose lumen part is filled by the mean gray-level value outside the lumen, to yield an image region containing part of the aneurysm boundary. After that, an expanding disk is introduced to estimate the complete contour of the aneurysm. Finally, the contour detected is used as the initial contour of the level set with ellipse to refine the aneurysm. Results: The results obtained on 11 patients from different hospitals showed that the proposed segmentation was comparable with manual segmentation, and that quantitatively, the average segmentation matching factor (SMF) reached 86.99%, demonstrating good segmentation accuracy. Chan–Vese method, Sen’s model, and Luca’s model were used to compare the proposed method and their average SMF values were 39.98%, 40.76%, and 77.11%, respectively. Conclusions: The authors have presented a multilevel segmentation method based on the LBM and level set with ellipse for accurate segmentation of intracranial aneurysms. Compared to three existing methods, for all eleven patients, the proposed method can successfully segment the lumen with the highest SMF values for nine patients and second highest SMF values for the two. It also segments the entire aneurysm with the highest SMF values for ten patients and second highest SMF value for the one. This makes it potential for clinical assessment of the volume and aspect ratio of the intracranial aneurysms.

  16. A comparative study of image low level feature extraction algorithms

    Directory of Open Access Journals (Sweden)

    M.M. El-gayar

    2013-07-01

    Full Text Available Feature extraction and matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods for assessing the performance of popular image matching algorithms are presented and rely on costly descriptors for detection and matching. Specifically, the method assesses the type of images under which each of the algorithms reviewed herein perform to its maximum or highest efficiency. The efficiency is measured in terms of the number of matches founds by the algorithm and the number of type I and type II errors encountered when the algorithm is tested against a specific pair of images. Current comparative studies asses the performance of the algorithms based on the results obtained in different criteria such as speed, sensitivity, occlusion, and others. This study addresses the limitations of the existing comparative tools and delivers a generalized criterion to determine beforehand the level of efficiency expected from a matching algorithm given the type of images evaluated. The algorithms and the respective images used within this work are divided into two groups: feature-based and texture-based. And from this broad classification only three of the most widely used algorithms are assessed: color histogram, FAST (Features from Accelerated Segment Test, SIFT (Scale Invariant Feature Transform, PCA-SIFT (Principal Component Analysis-SIFT, F-SIFT (fast-SIFT and SURF (speeded up robust features. The performance of the Fast-SIFT (F-SIFT feature detection methods are compared for scale changes, rotation, blur, illumination changes and affine transformations. All the experiments use repeatability measurement and the number of correct matches for the evaluation measurements. SIFT presents its stability in most situations although its slow. F-SIFT is the fastest one with good performance as the same as SURF, SIFT, PCA-SIFT show its advantages in rotation and illumination changes.

  17. An improved K-means clustering method for cDNA microarray image segmentation.

    Science.gov (United States)

    Wang, T N; Li, T J; Shao, G F; Wu, S X

    2015-07-14

    Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.

  18. A methodology for texture feature-based quality assessment in nucleus segmentation of histopathology image

    Directory of Open Access Journals (Sweden)

    Si Wen

    2017-01-01

    Full Text Available Context: Image segmentation pipelines often are sensitive to algorithm input parameters. Algorithm parameters optimized for a set of images do not necessarily produce good-quality-segmentation results for other images. Even within an image, some regions may not be well segmented due to a number of factors, including multiple pieces of tissue with distinct characteristics, differences in staining of the tissue, normal versus tumor regions, and tumor heterogeneity. Evaluation of quality of segmentation results is an important step in image analysis. It is very labor intensive to do quality assessment manually with large image datasets because a whole-slide tissue image may have hundreds of thousands of nuclei. Semi-automatic mechanisms are needed to assist researchers and application developers to detect image regions with bad segmentations efficiently. Aims: Our goal is to develop and evaluate a machine-learning-based semi-automated workflow to assess quality of nucleus segmentation results in a large set of whole-slide tissue images. Methods: We propose a quality control methodology, in which machine-learning algorithms are trained with image intensity and texture features to produce a classification model. This model is applied to image patches in a whole-slide tissue image to predict the quality of nucleus segmentation in each patch. The training step of our methodology involves the selection and labeling of regions by a pathologist in a set of images to create the training dataset. The image regions are partitioned into patches. A set of intensity and texture features is computed for each patch. A classifier is trained with the features and the labels assigned by the pathologist. At the end of this process, a classification model is generated. The classification step applies the classification model to unlabeled test images. Each test image is partitioned into patches. The classification model is applied to each patch to predict the patch

  19. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    Science.gov (United States)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  20. Segmenting texts from outdoor images taken by mobile phones using color features

    Science.gov (United States)

    Liu, Zongyi; Zhou, Hanning

    2011-01-01

    Recognizing texts from images taken by mobile phones with low resolution has wide applications. It has been shown that a good image binarization can substantially improve the performances of OCR engines. In this paper, we present a framework to segment texts from outdoor images taken by mobile phones using color features. The framework consists of three steps: (i) the initial process including image enhancement, binarization and noise filtering, where we binarize the input images in each RGB channel, and apply component level noise filtering; (ii) grouping components into blocks using color features, where we compute the component similarities by dynamically adjusting the weights of RGB channels, and merge groups hierachically, and (iii) blocks selection, where we use the run-length features and choose the Support Vector Machine (SVM) as the classifier. We tested the algorithm using 13 outdoor images taken by an old-style LG-64693 mobile phone with 640x480 resolution. We compared the segmentation results with Tsar's algorithm, a state-of-the-art camera text detection algorithm, and show that our algorithm is more robust, particularly in terms of the false alarm rates. In addition, we also evaluated the impacts of our algorithm on the Abbyy's FineReader, one of the most popular commercial OCR engines in the market.

  1. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    Science.gov (United States)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  2. Remote Sensing Image Registration with Line Segments and Their Intersections

    Directory of Open Access Journals (Sweden)

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  3. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features

    Science.gov (United States)

    Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei

    2018-06-01

    Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.

  4. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.

    Directory of Open Access Journals (Sweden)

    Johannes Stegmaier

    Full Text Available Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.

  5. Algorithms for reconstructing images for industrial applications

    International Nuclear Information System (INIS)

    Lopes, R.T.; Crispim, V.R.

    1986-01-01

    Several algorithms for reconstructing objects from their projections are being studied in our Laboratory, for industrial applications. Such algorithms are useful locating the position and shape of different composition of materials in the object. A Comparative study of two algorithms is made. The two investigated algorithsm are: The MART (Multiplicative - Algebraic Reconstruction Technique) and the Convolution Method. The comparison are carried out from the point view of the quality of the image reconstructed, number of views and cost. (Author) [pt

  6. Active contour modes Crisp: new technique for segmentation of the lungs in CT images

    International Nuclear Information System (INIS)

    Reboucas Filho, Pedro Pedrosa; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2011-01-01

    This paper proposes a new active contour model (ACM), called ACM Crisp, and evaluates the segmentation of lungs in computed tomography (CT) images. An ACM draws a curve around or within the object of interest. This curve changes its shape, when some energy acts on it and moves towards the edges of the object. This process is performed by successive iterations of minimization of a given energy, associated with the curve. The ACMs described in the literature have limitations when used for segmentations of CT lung images. The ACM Crisp model overcomes these limitations, since it proposes automatic initiation and new external energy based on rules and radiological pulmonary densities. The paper compares other ACMs with the proposed method, which is shown to be superior. In order to validate the algorithm a medical expert in the field of Pulmonology of the Walter Cantidio University Hospital from the Federal University of Ceara carried out a qualitative analysis. In these analyses 100 CT lung images were used. The segmentation efficiency was evaluated into 5 categories with the following results for the ACM Crisp: 73% excellent, without errors, 20% acceptable, with small errors, and 7% reasonable, with large errors, 0% poor, covering only a small part of the lung, and 0% very bad, making a totally incorrect segmentation. In conclusion the ACM Crisp is considered a useful algorithm to segment CT lung images, and with potential to integrate medical diagnosis systems. (author)

  7. Determining the number of clusters for nuclei segmentation in breast cancer image

    Science.gov (United States)

    Fatichah, Chastine; Navastara, Dini Adni; Suciati, Nanik; Nuraini, Lubna

    2017-02-01

    Clustering is commonly technique for image segmentation, however determining an appropriate number of clusters is still challenging. Due to nuclei variation of size and shape in breast cancer image, an automatic determining number of clusters for segmenting the nuclei breast cancer is proposed. The phase of nuclei segmentation in breast cancer image are nuclei detection, touched nuclei detection, and touched nuclei separation. We use the Gram-Schmidt for nuclei cell detection, the geometry feature for touched nuclei detection, and combining of watershed and spatial k-Means clustering for separating the touched nuclei in breast cancer image. The spatial k-Means clustering is employed for separating the touched nuclei, however automatically determine the number of clusters is difficult due to the variation of size and shape of single cell breast cancer. To overcome this problem, first we apply watershed algorithm to separate the touched nuclei and then we calculate the distance among centroids in order to solve the over-segmentation. We merge two centroids that have the distance below threshold. And the new of number centroid as input to segment the nuclei cell using spatial k- Means algorithm. Experiment show that, the proposed scheme can improve the accuracy of nuclei cell counting.

  8. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    Directory of Open Access Journals (Sweden)

    Yaser Afshar

    Full Text Available Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10 pixels, but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  9. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  10. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  11. Comparison and Supervised Learning of Segmentation Methods Dedicated to Specular Microscope Images of Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2014-01-01

    Full Text Available The cornea is the front of the eye. Its inner cell layer, called the endothelium, is important because it is closely related to the light transparency of the cornea. An in vivo observation of this layer is performed by using specular microscopy to evaluate the health of the cells: a high spatial density will result in a good transparency. Thus, the main criterion required by ophthalmologists is the cell density of the cornea endothelium, mainly obtained by an image segmentation process. Different methods can perform the image segmentation of these cells, and the three most performing methods are studied here. The question for the ophthalmologists is how to choose the best algorithm and to obtain the best possible results with it. This paper presents a methodology to compare these algorithms together. Moreover, by the way of geometric dissimilarity criteria, the algorithms are tuned up, and the best parameter values are thus proposed to the expert ophthalmologists.

  12. Categorization and Searching of Color Images Using Mean Shift Algorithm

    Directory of Open Access Journals (Sweden)

    Prakash PANDEY

    2009-07-01

    Full Text Available Now a day’s Image Searching is still a challenging problem in content based image retrieval (CBIR system. Most CBIR system operates on all images without pre-sorting the images. The image search result contains many unrelated image. The aim of this research is to propose a new object based indexing system Based on extracting salient region representative from the image, categorizing the image into different types and search images that are similar to given query images.In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique, Dominant objects are obtained by performing region grouping of segmented thumbnails. The category for an image is generated automatically by analyzing the image for the presence of a dominant object. The images in the database are clustered based on region feature similarity using Euclidian distance. Placing an image into a category can help the user to navigate retrieval results more effectively. Extensive experimental results illustrate excellent performance.

  13. PRESEE: an MDL/MML algorithm to time-series stream segmenting.

    Science.gov (United States)

    Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.

  14. PREPAID TELECOM CUSTOMERS SEGMENTATION USING THE K-MEAN ALGORITHM

    Directory of Open Access Journals (Sweden)

    Marar Liviu Ioan

    2012-07-01

    Full Text Available The scope of relationship marketing is to retain customers and win their loyalty. This can be achieved if the companies’ products and services are developed and sold considering customers’ demands. Fulfilling customers’ demands, taken as the starting point of relationship marketing, can be obtained by acknowledging that the customers’ needs and wishes are heterogeneous. The segmentation of the customers’ base allows operators to overcome this because it illustrates the whole heterogeneous market as the sum of smaller homogeneous markets. The concept of segmentation relies on the high probability of persons grouped into segments based on common demands and behaviours to have a similar response to marketing strategies. This article focuses on the segmentation of a telecom customer base according to specific and noticeable criteria of a certain service. Although the segmentation concept is widely approached in professional literature, articles on the segmentation of a telecom customer base are very scarce, due to the strategic nature of this information. Market segmentation is carried out based on how customers spent their money on credit recharging, on making calls, on sending SMS and on Internet navigation. The method used for customer segmentation is the K-mean cluster analysis. To assess the internal cohesion of the clusters we employed the average sum of squares error indicator, and to determine the differences among the clusters we used the ANOVA and the post-hoc Tukey tests. The analyses revealed seven customer segments with different features and behaviours. The results enable the telecom company to conceive marketing strategies and planning which lead to better understanding of its customers’ needs and ultimately to a more efficient relationship with the subscribers and enhanced customer satisfaction. At the same time, the results enable the description and characterization of expenditure patterns

  15. Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation

    Directory of Open Access Journals (Sweden)

    Shuiping Gou, PhD

    2016-07-01

    Conclusions: Our study demonstrated potential feasibility of automated segmentation of the pancreas on MRI scans with minimal human supervision at the beginning of imaging acquisition. The achieved accuracy is promising for organ localization.

  16. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  17. Spectral segmentation of polygonized images with normalized cuts

    Energy Technology Data Exchange (ETDEWEB)

    Matsekh, Anna [Los Alamos National Laboratory; Skurikhin, Alexei [Los Alamos National Laboratory; Rosten, Edward [UNIV OF CAMBRIDGE

    2009-01-01

    We analyze numerical behavior of the eigenvectors corresponding to the lowest eigenvalues of the generalized graph Laplacians arising in the Normalized Cuts formulations of the image segmentation problem on coarse polygonal grids.

  18. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    Science.gov (United States)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  19. Design and validation of Segment - freely available software for cardiovascular image analysis

    International Nuclear Information System (INIS)

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-01

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page (http://segment.heiberg.se). Segment

  20. Fuzzy segmentation of cerebral tissues in a 3-D MR image: a possibilistic approach versus other methods

    International Nuclear Information System (INIS)

    Barra, V.; Boire, J.Y.

    1999-01-01

    An algorithm for the segmentation of a single sequence of 3-D magnetic resonance images into cerebrospinal Fluid (CSF), Grey (GM) and White Matter (WM) classes is proposed. The method is a possibilistic clustering algorithm on the wavelet coefficients of the voxels. Possibilistic logic allows for modeling the uncertainty and the impreciseness inherent in MR images of the brain, while the wavelet representation allows to take into account both spatial and textural information. The procedure is fast, unsupervised and totally independent of statistical assumptions. In method is validated on a phantom, and then compared with other very used brain tissues segmentation algorithms. (authors)

  1. An Algorithm for Morphological Segmentation of Esperanto Words

    Directory of Open Access Journals (Sweden)

    Guinard Theresa

    2016-04-01

    Full Text Available Morphological analysis (finding the component morphemes of a word and tagging morphemes with part-of-speech information is a useful preprocessing step in many natural language processing applications, especially for synthetic languages. Compound words from the constructed language Esperanto are formed by straightforward agglutination, but for many words, there is more than one possible sequence of component morphemes. However, one segmentation is usually more semantically probable than the others. This paper presents a modified n-gram Markov model that finds the most probable segmentation of any Esperanto word, where the model’s states represent morpheme part-of-speech and semantic classes. The overall segmentation accuracy was over 98% for a set of presegmented dictionary words.

  2. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    International Nuclear Information System (INIS)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-01-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback–Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data. (paper)

  3. Learning normalized inputs for iterative estimation in medical image segmentation.

    Science.gov (United States)

    Drozdzal, Michal; Chartrand, Gabriel; Vorontsov, Eugene; Shakeri, Mahsa; Di Jorio, Lisa; Tang, An; Romero, Adriana; Bengio, Yoshua; Pal, Chris; Kadoury, Samuel

    2018-02-01

    In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importance of a trainable pre-processing when using FC-ResNets and we show that a low-capacity FCN model can serve as a pre-processor to normalize medical input data. In our image segmentation pipeline, we use FCNs to obtain normalized images, which are then iteratively refined by means of a FC-ResNet to generate a segmentation prediction. As in other fully convolutional approaches, our pipeline can be used off-the-shelf on different image modalities. We show that using this pipeline, we exhibit state-of-the-art performance on the challenging Electron Microscopy benchmark, when compared to other 2D methods. We improve segmentation results on CT images of liver lesions, when contrasting with standard FCN methods. Moreover, when applying our 2D pipeline on a challenging 3D MRI prostate segmentation challenge we reach results that are competitive even when compared to 3D methods. The obtained results illustrate the strong potential and versatility of the pipeline by achieving accurate segmentations on a variety of image modalities and different anatomical regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Variational segmentation problems using prior knowledge in imaging and vision

    DEFF Research Database (Denmark)

    Fundana, Ketut

    This dissertation addresses variational formulation of segmentation problems using prior knowledge. Variational models are among the most successful approaches for solving many Computer Vision and Image Processing problems. The models aim at finding the solution to a given energy functional defined......, prior knowledge is needed to obtain the desired solution. The introduction of shape priors in particular, has proven to be an effective way to segment objects of interests. Firstly, we propose a prior-based variational segmentation model to segment objects of interest in image sequences, that can deal....... Many objects have high variability in shape and orientation. This often leads to unsatisfactory results, when using a segmentation model with single shape template. One way to solve this is by using more sophisticated shape models. We propose to incorporate shape priors from a shape sub...

  5. A density-based segmentation for 3D images, an application for X-ray micro-tomography

    International Nuclear Information System (INIS)

    Tran, Thanh N.; Nguyen, Thanh T.; Willemsz, Tofan A.; Kessel, Gijs van; Frijlink, Henderik W.; Voort Maarschalk, Kees van der

    2012-01-01

    Highlights: ► We revised the DBSCAN algorithm for segmentation and clustering of large 3D image dataset and classified multivariate image. ► The algorithm takes into account the coordinate system of the image data to improve the computational performance. ► The algorithm solved the instability problem in boundaries detection of the original DBSCAN. ► The segmentation results were successfully validated with synthetic 3D image and 3D XMT image of a pharmaceutical powder. - Abstract: Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image.

  6. Channeler Ant Model: 3 D segmentation of medical images through ant colonies

    International Nuclear Information System (INIS)

    Fiorina, E.; Valzano, S.; Arteche Diaz, R.; Bosco, P.; Gargano, G.; Megna, R.; Oppedisano, C.; Massafra, A.

    2011-01-01

    In this paper the Channeler Ant Model (CAM) and some results of its application to the analysis of medical images are described. The CAM is an algorithm able to segment 3 D structures with different shapes, intensity and background. It makes use of virtual and colonies and exploits their natural capabilities to modify the environment and communicate with each other by pheromone deposition. Its performance has been validated with the segmentation of 3 D artificial objects and it has been already used successfully in lung nodules detection on Computer Tomography images. This work tries to evaluate the CAM as a candidate to solve the quantitative segmentation problem in Magnetic Resonance brain images: to evaluate the percentage of white matter, gray matter and cerebrospinal fluid in each voxel.

  7. A robust pointer segmentation in biomedical images toward building a visual ontology for biomedical article retrieval

    Science.gov (United States)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.

  8. Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mostafa Charmi

    2010-06-01

    Full Text Available Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this paper is to assess the possible substitution of the geodesic metric with the Log-Euclidean one to reduce the computational cost of a statistical surface evolution algorithm. Materials and Methods: We incorporated the Log-Euclidean metric in the statistical surface evolution algorithm framework. To achieve this goal, the statistics and gradients of diffusion tensor images were defined using the Log-Euclidean metric. Numerical implementation of the segmentation algorithm was performed in the MATLAB software using the finite difference techniques. Results: In the statistical surface evolution framework, the Log-Euclidean metric was able to discriminate the torus and helix patterns in synthesis datasets and rat spinal cords in biological phantom datasets from the background better than the Euclidean and J-divergence metrics. In addition, similar results were obtained with the geodesic metric. However, the main advantage of the Log-Euclidean metric over the geodesic metric was the dramatic reduction of computational cost of the segmentation algorithm, at least by 70 times. Discussion and Conclusion: The qualitative and quantitative results have shown that the Log-Euclidean metric is a good substitute for the geodesic metric when using a statistical surface evolution algorithm in DTIs segmentation.

  9. Multidimensional segmentation of coronary intravascular ultrasound images using knowledge-based methods

    Science.gov (United States)

    Olszewski, Mark E.; Wahle, Andreas; Vigmostad, Sarah C.; Sonka, Milan

    2005-04-01

    In vivo studies of the relationships that exist among vascular geometry, plaque morphology, and hemodynamics have recently been made possible through the development of a system that accurately reconstructs coronary arteries imaged by x-ray angiography and intravascular ultrasound (IVUS) in three dimensions. Currently, the bottleneck of the system is the segmentation of the IVUS images. It is well known that IVUS images contain numerous artifacts from various sources. Previous attempts to create automated IVUS segmentation systems have suffered from either a cost function that does not include enough information, or from a non-optimal segmentation algorithm. The approach presented in this paper seeks to strengthen both of those weaknesses -- first by building a robust, knowledge-based cost function, and then by using a fully optimal, three-dimensional segmentation algorithm. The cost function contains three categories of information: a compendium of learned border patterns, information theoretic and statistical properties related to the imaging physics, and local image features. By combining these criteria in an optimal way, weaknesses associated with cost functions that only try to optimize a single criterion are minimized. This cost function is then used as the input to a fully optimal, three-dimensional, graph search-based segmentation algorithm. The resulting system has been validated against a set of manually traced IVUS image sets. Results did not show any bias, with a mean unsigned luminal border positioning error of 0.180 +/- 0.027 mm and an adventitial border positioning error of 0.200 +/- 0.069 mm.

  10. Joint Segmentation and Shape Regularization with a Generalized Forward Backward Algorithm.

    Science.gov (United States)

    Stefanoiu, Anca; Weinmann, Andreas; Storath, Martin; Navab, Nassir; Baust, Maximilian

    2016-05-11

    This paper presents a method for the simultaneous segmentation and regularization of a series of shapes from a corresponding sequence of images. Such series arise as time series of 2D images when considering video data, or as stacks of 2D images obtained by slicewise tomographic reconstruction. We first derive a model where the regularization of the shape signal is achieved by a total variation prior on the shape manifold. The method employs a modified Kendall shape space to facilitate explicit computations together with the concept of Sobolev gradients. For the proposed model, we derive an efficient and computationally accessible splitting scheme. Using a generalized forward-backward approach, our algorithm treats the total variation atoms of the splitting via proximal mappings, whereas the data terms are dealt with by gradient descent. The potential of the proposed method is demonstrated on various application examples dealing with 3D data. We explain how to extend the proposed combined approach to shape fields which, for instance, arise in the context of 3D+t imaging modalities, and show an application in this setup as well.

  11. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  12. Image Mosaic Method Based on SIFT Features of Line Segment

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2014-01-01

    Full Text Available This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.

  13. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  14. Algorithms for image processing and computer vision

    CERN Document Server

    Parker, J R

    2010-01-01

    A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It's an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists wh

  15. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Abdoli, Mehrsima [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Fuentes, Carolina Llina [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Naqa, Issam M.El [McGill University, Department of Medical Physics, Montreal (Canada)

    2012-05-15

    Several methods have been proposed for the segmentation of {sup 18}F-FDG uptake in PET. In this study, we assessed the performance of four categories of {sup 18}F-FDG PET image segmentation techniques in pharyngolaryngeal squamous cell carcinoma using clinical studies where the surgical specimen served as the benchmark. Nine PET image segmentation techniques were compared including: five thresholding methods; the level set technique (active contour); the stochastic expectation-maximization approach; fuzzy clustering-based segmentation (FCM); and a variant of FCM, the spatial wavelet-based algorithm (FCM-SW) which incorporates spatial information during the segmentation process, thus allowing the handling of uptake in heterogeneous lesions. These algorithms were evaluated using clinical studies in which the segmentation results were compared to the 3-D biological tumour volume (BTV) defined by histology in PET images of seven patients with T3-T4 laryngeal squamous cell carcinoma who underwent a total laryngectomy. The macroscopic tumour specimens were collected ''en bloc'', frozen and cut into 1.7- to 2-mm thick slices, then digitized for use as reference. The clinical results suggested that four of the thresholding methods and expectation-maximization overestimated the average tumour volume, while a contrast-oriented thresholding method, the level set technique and the FCM-SW algorithm underestimated it, with the FCM-SW algorithm providing relatively the highest accuracy in terms of volume determination (-5.9 {+-} 11.9%) and overlap index. The mean overlap index varied between 0.27 and 0.54 for the different image segmentation techniques. The FCM-SW segmentation technique showed the best compromise in terms of 3-D overlap index and statistical analysis results with values of 0.54 (0.26-0.72) for the overlap index. The BTVs delineated using the FCM-SW segmentation technique were seemingly the most accurate and approximated closely the 3-D BTVs

  16. Segmentation of the tissues from MR images using basic anatomical information

    International Nuclear Information System (INIS)

    Yamazaki, Nobutoshi; Notoya, Yoshiaki; Nakamura, Toshiyasu; Mochimaru, Masaaki.

    1994-01-01

    Automatic segmentation methods of MR images have been developed for the cardiac surgery and the brain surgery. In these fields, Region Growing method has been used mainly. In this method, the core was inserted manually, and the pixel adjoining the core was judged whether it was homogeneous or not from its features based on image information. The core grew adding the homogeneous pixels, and the region of interest was obtained as the grown core. It is available for orthopedic surgery and biomechanics to obtain the location and the orientation of bones and soft tissues in vivo. However, MR images including them could not be segmented by the former region growing method based on only image information. This is because those tissues had fuzzy boundaries on the image. Thus, we used not only intensity and spatial gradient as image information but also location, size and complexity of the tissue to segment the MR images. The pixel adjoining the core was judged from three local features of the pixel ; its intensity, gradient and location, and two global features of the core region ; its size and complexity. Judgment was performed by Fuzzy Reasoning to allow their fuzzy boundaries. The homogeneous pixel was added into the core region. It grew into normal size and smooth shape under constraint of global anatomical features. Using the present method, as an example, radius, ulna and interosseous membrane were segmented from the multi-sliced MR images of forearm. Segmented tissues agreed with the shape inserted manually by a medical doctor. As s result, three tissues containing different features on the MR image could be segmented by a single algorithm. It takes about 10 sec per slice by using an engineering workstation. (author)

  17. Segmentation of the tissues from MR images using basic anatomical information

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Nobutoshi; Notoya, Yoshiaki [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Nakamura, Toshiyasu; Mochimaru, Masaaki

    1994-11-01

    Automatic segmentation methods of MR images have been developed for the cardiac surgery and the brain surgery. In these fields, Region Growing method has been used mainly. In this method, the core was inserted manually, and the pixel adjoining the core was judged whether it was homogeneous or not from its features based on image information. The core grew adding the homogeneous pixels, and the region of interest was obtained as the grown core. It is available for orthopedic surgery and biomechanics to obtain the location and the orientation of bones and soft tissues in vivo. However, MR images including them could not be segmented by the former region growing method based on only image information. This is because those tissues had fuzzy boundaries on the image. Thus, we used not only intensity and spatial gradient as image information but also location, size and complexity of the tissue to segment the MR images. The pixel adjoining the core was judged from three local features of the pixel ; its intensity, gradient and location, and two global features of the core region ; its size and complexity. Judgment was performed by Fuzzy Reasoning to allow their fuzzy boundaries. The homogeneous pixel was added into the core region. It grew into normal size and smooth shape under constraint of global anatomical features. Using the present method, as an example, radius, ulna and interosseous membrane were segmented from the multi-sliced MR images of forearm. Segmented tissues agreed with the shape inserted manually by a medical doctor. As s result, three tissues containing different features on the MR image could be segmented by a single algorithm. It takes about 10 sec per slice by using an engineering workstation. (author).

  18. Research on segmentation based on multi-atlas in brain MR image

    Science.gov (United States)

    Qian, Yuejing

    2018-03-01

    Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.

  19. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    Science.gov (United States)

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  20. Parallel asynchronous systems and image processing algorithms

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  1. Evaluation of prognostic models developed using standardised image features from different PET automated segmentation methods.

    Science.gov (United States)

    Parkinson, Craig; Foley, Kieran; Whybra, Philip; Hills, Robert; Roberts, Ashley; Marshall, Chris; Staffurth, John; Spezi, Emiliano

    2018-04-11

    Prognosis in oesophageal cancer (OC) is poor. The 5-year overall survival (OS) rate is approximately 15%. Personalised medicine is hoped to increase the 5- and 10-year OS rates. Quantitative analysis of PET is gaining substantial interest in prognostic research but requires the accurate definition of the metabolic tumour volume. This study compares prognostic models developed in the same patient cohort using individual PET segmentation algorithms and assesses the impact on patient risk stratification. Consecutive patients (n = 427) with biopsy-proven OC were included in final analysis. All patients were staged with PET/CT between September 2010 and July 2016. Nine automatic PET segmentation methods were studied. All tumour contours were subjectively analysed for accuracy, and segmentation methods with segmentation methods studied, clustering means (KM2), general clustering means (GCM3), adaptive thresholding (AT) and watershed thresholding (WT) methods were included for analysis. Known clinical prognostic factors (age, treatment and staging) were significant in all of the developed prognostic models. AT and KM2 segmentation methods developed identical prognostic models. Patient risk stratification was dependent on the segmentation method used to develop the prognostic model with up to 73 patients (17.1%) changing risk stratification group. Prognostic models incorporating quantitative image features are dependent on the method used to delineate the primary tumour. This has a subsequent effect on risk stratification, with patients changing groups depending on the image segmentation method used.

  2. Image Segmentation Based on Constrained Spectral Variance Difference and Edge Penalty

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2015-05-01

    Full Text Available Segmentation, which is usually the first step in object-based image analysis (OBIA, greatly influences the quality of final OBIA results. In many existing multi-scale segmentation algorithms, a common problem is that under-segmentation and over-segmentation always coexist at any scale. To address this issue, we propose a new method that integrates the newly developed constrained spectral variance difference (CSVD and the edge penalty (EP. First, initial segments are produced by a fast scan. Second, the generated segments are merged via a global mutual best-fitting strategy using the CSVD and EP as merging criteria. Finally, very small objects are merged with their nearest neighbors to eliminate the remaining noise. A series of experiments based on three sets of remote sensing images, each with different spatial resolutions, were conducted to evaluate the effectiveness of the proposed method. Both visual and quantitative assessments were performed, and the results show that large objects were better preserved as integral entities while small objects were also still effectively delineated