WorldWideScience

Sample records for image guidance quality

  1. Image Guidance

    Science.gov (United States)

    Guidance that explains the process for getting images approved in One EPA Web microsites and resource directories. includes an appendix that shows examples of what makes some images better than others, how some images convey meaning more than others

  2. Current Brachytherapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    2008-01-01

    In the past decade, brachytherapy has shifted from the traditional surgical paradigm to more modern three-dimensional image-based planning and delivery approaches. The role of intraoperative and multimodality image-based planning is growing. Published American Association of Physicists in Medicine, American College of Radiology, European Society for Therapeutic Radiology and Oncology, and International Atomic Energy Agency quality assurance (QA) guidelines largely emphasize the QA of planning and delivery devices rather than processes. These protocols have been designed to verify compliance with major performance specifications and are not risk based. With some exceptions, complete and clinically practical guidance exists for sources, QA instrumentation, non-image-based planning systems, applicators, remote afterloading systems, dosimetry, and calibration. Updated guidance is needed for intraoperative imaging systems and image-based planning systems. For non-image-based brachytherapy, the American Association of Physicists in Medicine Task Group reports 56 and 59 provide reasonable guidance on procedure-specific process flow and QA. However, improved guidance is needed even for established procedures such as ultrasound-guided prostate implants. Adaptive replanning in brachytherapy faces unsolved problems similar to that of image-guided adaptive external beam radiotherapy

  3. Image guidance quality assurance of a G4 CyberKnife robotic stereotactic radiosurgery system

    International Nuclear Information System (INIS)

    Pantelis, E; Antypas, C; Petrokokkinos, L

    2009-01-01

    The image guidance of a CyberKnife robotic radiosurgery system was quality controlled, including the overall performance of the target locating subsystem and the performance of the x-ray generators and flat panel digital cameras subcomponents. Accuracy and precision of the kV and exposure time settings of the x-ray generators, linearity of the x-ray output, spatial resolution and geometrical distortion of the acquired x-ray images were measured. Total accuracy and precision of the target locating subsystem in defining the position of an anthropomorphic head and neck phantom placed on treatment couch was also measured. Accuracy and precision of the kV as well as exposure time settings and linearity of the x-ray output were found within the acceptance limits suggested in diagnostic radiology. The acquired x-ray images were found to depict the shapes of the imaging objects without any geometrical distortion, being able to resolve differences in the features of imaging objects with critical frequency of 1.3 lp/mm and 1.5 lp/mm for camera A and B, respectively. Total target locating system accuracy was found within 0.2 mm and 0.2 deg. in translations and rotations, respectively. Corresponding precision was found lower than 0.5%. These findings render the target locating subsystem of the CyberKnife capable of accurately registering the patient to treatment position and monitoring patient's movement during treatment delivery.

  4. Planning, guidance, and quality assurance of pelvic screw placement using deformable image registration

    Science.gov (United States)

    Goerres, J.; Uneri, A.; Jacobson, M.; Ramsay, B.; De Silva, T.; Ketcha, M.; Han, R.; Manbachi, A.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-12-01

    Percutaneous pelvic screw placement is challenging due to narrow bone corridors surrounded by vulnerable structures and difficult visual interpretation of complex anatomical shapes in 2D x-ray projection images. To address these challenges, a system for planning, guidance, and quality assurance (QA) is presented, providing functionality analogous to surgical navigation, but based on robust 3D-2D image registration techniques using fluoroscopy images already acquired in routine workflow. Two novel aspects of the system are investigated: automatic planning of pelvic screw trajectories and the ability to account for deformation of surgical devices (K-wire deflection). Atlas-based registration is used to calculate a patient-specific plan of screw trajectories in preoperative CT. 3D-2D registration aligns the patient to CT within the projective geometry of intraoperative fluoroscopy. Deformable known-component registration (dKC-Reg) localizes the surgical device, and the combination of plan and device location is used to provide guidance and QA. A leave-one-out analysis evaluated the accuracy of automatic planning, and a cadaver experiment compared the accuracy of dKC-Reg to rigid approaches (e.g. optical tracking). Surgical plans conformed within the bone cortex by 3-4 mm for the narrowest corridor (superior pubic ramus) and  >5 mm for the widest corridor (tear drop). The dKC-Reg algorithm localized the K-wire tip within 1.1 mm and 1.4° and was consistently more accurate than rigid-body tracking (errors up to 9 mm). The system was shown to automatically compute reliable screw trajectories and accurately localize deformed surgical devices (K-wires). Such capability could improve guidance and QA in orthopaedic surgery, where workflow is impeded by manual planning, conventional tool trackers add complexity and cost, rigid tool assumptions are often inaccurate, and qualitative interpretation of complex anatomy from 2D projections is prone to trial

  5. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.

    Science.gov (United States)

    Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob

    2014-06-01

    Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition

  6. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    International Nuclear Information System (INIS)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-01-01

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  7. Mobile C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation dose, and integration with interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Nithiananthan, S.; Mirota, D. J.; Uneri, A.; Stayman, J. W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Khanna, A. J.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen (Germany); Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland 21239 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2011-08-15

    Purpose: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. Methods: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic and lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. Results: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy) - each at (0.3 x 0.3 x 0.9 mm{sup 3}) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm{sup 3}) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution ({approx}2 x higher at the entrance side than at isocenter

  8. Improving CT quality with optimized image parameters for radiation treatment planning and delivery guidance

    Directory of Open Access Journals (Sweden)

    Guang-Pei Chen

    2017-10-01

    Conclusion: CT image quality can be improved with the IQE protocols created in this study, to provide better soft tissue contrast, which would be beneficial for use in radiation therapy, e.g., for planning data acquisition or for IGRT for hypo-fractionated treatments.

  9. Quality guidance and quality formation

    DEFF Research Database (Denmark)

    Poulsen, Carsten Stig; Juhl, Hans Jørn; Kristensen, Kai

    1996-01-01

    set on Danish butter cookies. Five plausible models of the relation between expectation, experience and perceived product quality are estimated. Finally one model is selected on the basis of three criteria: chi-square, RMSEA and AIC: The results show a model where expectations are indirectly related...

  10. Quality in career guidance: The Danish case

    DEFF Research Database (Denmark)

    Plant, Peter

    2011-01-01

    Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach......Quality assurance systems are introduced in career guidance to monitor, control and develop guidance interventions. The Danish case represents at centrally driven, top-down approach...

  11. Radionuclide Data Quality Evaluation Guidance

    International Nuclear Information System (INIS)

    Tucker, B.J.; Winters, M.S.; Evans, D.

    2009-01-01

    A considerable amount of radioanalytical data is generated during various phases of the characterization and remediation of radiologically-contaminated sites and properties. It is critical that data generated from the analysis of collected samples be to a level of quality usable by the project and acceptable to stakeholders. In July 2004, the final version of a multi-agency guidance manual entitled Multi-Agency Radiological Analytical Protocols Manual (MARLAP) was issued by the Environmental Protection Agency, Department of Energy, Department of Homeland Security, Nuclear Regulatory Commission, Department of Defense, National Institute of Standards and Technology, U. S. Geological Survey, Food and Drug Administration, and the States of Kentucky and California. The authors' purpose is to introduce readers to some key elements of MARLAP as it relates to radioanalytical lab quality control, and to demonstrate how these guidance elements can be effectively incorporated into mature radioanalytical lab operations and data validation regimes. Based upon the logic and statistical methodologies presented in MARLAP, the authors have revised existing project-specific Radioanalytical Data Evaluation Guidance (RadDEG) used at the FUSRAP Maywood Site in Maywood, NJ. The RadDEG allows users to qualify data in a meaningful way by tying the usability of the data to its activity and uncertainty relative to project action levels and QC results. This exercise may be useful to other projects looking to implement a MARLAP-based approach into their project/site-specific data evaluation methodologies. (authors)

  12. Survey of image quality and patient dose in simple radiographic examinations: establishing guidance levels and comparison with international standards

    International Nuclear Information System (INIS)

    Manatrakul, N.; Bunsoong, T.; Krisanachinda, A.; Suwanpradit, P.; Rungruengthanakit, P.; Kanchart, S.; Chaiwong, Rajikorn; Tsapakig, V.A.

    2008-01-01

    Purpose: To investigate image quality and patient dose for commonly radiographic examinations in Thailand, to establish national reference or guidance levels (GL) and compare with international standards, as part of an International Atomic Energy Agency (IAEA) project on Radiation Protection of Patients and Medical Exposure Control (RAS/9/034 and RAS/9/047). Materials and Methods: Film reject rate analysis, image quality and patient dose assessment before and after Quality Control (QC) implementation were investigated in 8 X-ray machines in 4 hospitals. Air kerma (in mGy) at 1 meter focus-detector-distance for different kVp settings for each X-ray machines were measured using an ionization chamber under standardized condition. The entrance skin air kerma (ESAK) for Chest PA, Lumbar spine AP, Lumbar spine LAT, Pelvis AP, Abdomen AP, Skull AP and Skull LAT were calculated for at least 10 adult patients of average body mass (60 to 80 kg) for each projection. The obtained values were compared with international standards. Results: The highest film rejection rate reduction recorded after corrective actions from 9.15% to 6.8%. Mean ESAK values were less than international standards both before and after QC implementation in all projections but Chest PA projection. Maximum ESAK in Chest PA projection before corrective action was 0.55 mGy which was higher than the IAEA GL of 0.2 mGy. However, it was reduced to 0.25 mGy after QC tests on X- ray machine and using high kilovoltage (kV) technique. Conclusion: Proposed national GL of Thailand were obtained by estimating the 3rd quartile of the whole sample: Chest PA: 0.1 mGy, Lumbar Spine AP: 2.1 mGy, Lumbar Spine LAT: 6.3 mGy, Pelvis AP: 1.8 mGy, Abdomen: 1.5 mGy, Skull PA: 1.3 mGy and Skull LAT: 0.9 mGy. (author)

  13. Quality Assurance in University Guidance Services

    Science.gov (United States)

    Simon, Alexandra

    2014-01-01

    In Europe there is no common quality assurance framework for the delivery of guidance in higher education. Using a case study approach in four university career guidance services in England, France and Spain, this article aims to study how quality is implemented in university career guidance services in terms of strategy, standards and models,…

  14. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a 60Co Magnetic Resonance Image Guidance Radiation Therapy System

    International Nuclear Information System (INIS)

    Wooten, H. Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-01-01

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating 60 Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create 60 Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The 60 Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All 60 Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for 60 Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all 60 Co plan OARs were within clinical tolerances. Conclusions: A commercial 60 Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system

  15. Deep inspiration breath-hold radiotherapy for lung cancer: impact on image quality and registration uncertainty in cone beam CT image guidance

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte F; Bangsgaard, Jens Peter

    2016-01-01

    OBJECTIVE: We investigated the impact of deep inspiration breath-hold (DIBH) and tumour baseline shifts on image quality and registration uncertainty in image-guided DIBH radiotherapy (RT) for locally advanced lung cancer. METHODS: Patients treated with daily cone beam CT (CBCT)-guided free...... for the craniocaudal direction in FB, where it was >3 mm. On the 31st fraction, the intraobserver uncertainty increased compared with the second fraction. This increase was more pronounced in FB. Image quality scores improved in DIBH compared with FB for all parameters in all patients. Simulated tumour baseline shifts...... ≤2 mm did not affect the CBCT image quality considerably. CONCLUSION: DIBH CBCT improved image quality and reduced registration uncertainty in the craniocaudal direction in image-guided RT of locally advanced lung cancer. Baseline shifts ≤2 mm in DIBH during CBCT acquisition did not affect image...

  16. Image-guidance for surgical procedures

    International Nuclear Information System (INIS)

    Peters, Terry M

    2006-01-01

    Contemporary imaging modalities can now provide the surgeon with high quality three- and four-dimensional images depicting not only normal anatomy and pathology, but also vascularity and function. A key component of image-guided surgery (IGS) is the ability to register multi-modal pre-operative images to each other and to the patient. The other important component of IGS is the ability to track instruments in real time during the procedure and to display them as part of a realistic model of the operative volume. Stereoscopic, virtual- and augmented-reality techniques have been implemented to enhance the visualization and guidance process. For the most part, IGS relies on the assumption that the pre-operatively acquired images used to guide the surgery accurately represent the morphology of the tissue during the procedure. This assumption may not necessarily be valid, and so intra-operative real-time imaging using interventional MRI, ultrasound, video and electrophysiological recordings are often employed to ameliorate this situation. Although IGS is now in extensive routine clinical use in neurosurgery and is gaining ground in other surgical disciplines, there remain many drawbacks that must be overcome before it can be employed in more general minimally-invasive procedures. This review overviews the roots of IGS in neurosurgery, provides examples of its use outside the brain, discusses the infrastructure required for successful implementation of IGS approaches and outlines the challenges that must be overcome for IGS to advance further. (topical review)

  17. Application of image guidance in pituitary surgery

    Science.gov (United States)

    de Lara, Danielle; Filho, Leo F. S. Ditzel; Prevedello, Daniel M.; Otto, Bradley A.; Carrau, Ricardo L.

    2012-01-01

    Background: Surgical treatment of pituitary pathologies has evolved along the years, adding safety and decreasing morbidity related to the procedure. Advances in the field of radiology, coupled with stereotactic technology and computer modeling, have culminated in the contemporary and widespread use of image guidance systems, as we know them today. Image guidance navigation has become a frequently used technology that provides continuous three-dimensional information for the accurate performance of neurosurgical procedures. We present a discussion about the application of image guidance in pituitary surgeries. Methods: Major indications for image guidance neuronavigation application in pituitary surgery are presented and demonstrated with illustrative cases. Limitations of this technology are also presented. Results: Patients presenting a history of previous transsphenoidal surgeries, anatomical variances of the sphenoid sinus, tumors with a close relation to the internal carotid arteries, and extrasellar tumors are the most important indications for image guidance in pituitary surgeries. The high cost of the equipment, increased time of surgery due to setup time, and registration and the need of specific training for the operating room personnel could be pointed as limitations of this technology. Conclusion: Intraoperative image guidance systems provide real-time images, increasing surgical accuracy and enabling safe, minimally invasive interventions. However, the use of intraoperative navigation is not a replacement for surgical experience and a systematic knowledge of regional anatomy. It must be recognized as a tool by which the neurosurgeon can reduce the risk associated with surgical approach and treatment of pituitary pathologies. PMID:22826819

  18. Deep inspiration breath-hold radiotherapy for lung cancer: impact on image quality and registration uncertainty in cone beam CT image guidance

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte F; Bangsgaard, Jens Peter

    2016-01-01

    OBJECTIVE: We investigated the impact of deep inspiration breath-hold (DIBH) and tumour baseline shifts on image quality and registration uncertainty in image-guided DIBH radiotherapy (RT) for locally advanced lung cancer. METHODS: Patients treated with daily cone beam CT (CBCT)-guided free...

  19. Current External Beam Radiation Therapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this 'one-size-fits-all' prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes

  20. Fusion Imaging for Procedural Guidance.

    Science.gov (United States)

    Wiley, Brandon M; Eleid, Mackram F; Thaden, Jeremy J

    2018-05-01

    The field of percutaneous structural heart interventions has grown tremendously in recent years. This growth has fueled the development of new imaging protocols and technologies in parallel to help facilitate these minimally-invasive procedures. Fusion imaging is an exciting new technology that combines the strength of 2 imaging modalities and has the potential to improve procedural planning and the safety of many commonly performed transcatheter procedures. In this review we discuss the basic concepts of fusion imaging along with the relative strengths and weaknesses of static vs dynamic fusion imaging modalities. This review will focus primarily on echocardiographic-fluoroscopic fusion imaging and its application in commonly performed transcatheter structural heart procedures. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    Science.gov (United States)

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  2. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    Science.gov (United States)

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within 20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Advances in imaging for oncology guidance

    International Nuclear Information System (INIS)

    Amies, Christopher J.

    2008-01-01

    Over the last 30 years major improvements in medical imaging have played a significant role to help advance the management of oncology diseases. These advances have covered the continuum of care from screening, diagnosis, staging, treatment planning and intervention. More recently image guided radiation therapy (IGRT) has placed sophisticated imaging closer to the treatment event. The opportunity to improve care seems obvious; however the clinical benefits of IGRT are at present not easily proven and yet contribute to the complexity of treatment and the rising costs of care. It is proposed that this is in part due to the present immaturity of IGRT technology development, which is predominantly determined by the challenge of achieving precise delivery of radiation in one or many episodes (fractions) for very different diseases. There is no single type or mode of imaging that will be suitable to address all radiotherapy guidance challenges whether defined by the general criteria identified for a specific disease or the unique characteristics encountered with an individual patient. Finally the wide adoption of this or any medical technology general requires the attainment of a sufficient degree of safety and efficiency. I present the challenges faced by industry as well as select interesting technology based solutions and concepts that may help advance the field of oncology guidance

  4. The vision guidance and image processing of AGV

    Science.gov (United States)

    Feng, Tongqing; Jiao, Bin

    2017-08-01

    Firstly, the principle of AGV vision guidance is introduced and the deviation and deflection angle are measured by image coordinate system. The visual guidance image processing platform is introduced. In view of the fact that the AGV guidance image contains more noise, the image has already been smoothed by a statistical sorting. By using AGV sampling way to obtain image guidance, because the image has the best and different threshold segmentation points. In view of this situation, the method of two-dimensional maximum entropy image segmentation is used to solve the problem. We extract the foreground image in the target band by calculating the contour area method and obtain the centre line with the least square fitting algorithm. With the help of image and physical coordinates, we can obtain the guidance information.

  5. Quality assurance and evidence in career guidance in Europe

    DEFF Research Database (Denmark)

    Plant, Peter

    2011-01-01

    Quality assurance and evidence in career guidance in Europe is based on a particular, positivtic model. Other approaches are largely neglected.......Quality assurance and evidence in career guidance in Europe is based on a particular, positivtic model. Other approaches are largely neglected....

  6. Quality assurance and quality control in mammography: a review of available guidance worldwide.

    Science.gov (United States)

    Reis, Cláudia; Pascoal, Ana; Sakellaris, Taxiarchis; Koutalonis, Manthos

    2013-10-01

    Review available guidance for quality assurance (QA) in mammography and discuss its contribution to harmonise practices worldwide. Literature search was performed on different sources to identify guidance documents for QA in mammography available worldwide in international bodies, healthcare providers, professional/scientific associations. The guidance documents identified were reviewed and a selection was compared for type of guidance (clinical/technical), technology and proposed QA methodologies focusing on dose and image quality (IQ) performance assessment. Fourteen protocols (targeted at conventional and digital mammography) were reviewed. All included recommendations for testing acquisition, processing and display systems associated with mammographic equipment. All guidance reviewed highlighted the importance of dose assessment and testing the Automatic Exposure Control (AEC) system. Recommended tests for assessment of IQ showed variations in the proposed methodologies. Recommended testing focused on assessment of low-contrast detection, spatial resolution and noise. QC of image display is recommended following the American Association of Physicists in Medicine guidelines. The existing QA guidance for mammography is derived from key documents (American College of Radiology and European Union guidelines) and proposes similar tests despite the variations in detail and methodologies. Studies reported on QA data should provide detail on experimental technique to allow robust data comparison. Countries aiming to implement a mammography/QA program may select/prioritise the tests depending on available technology and resources. •An effective QA program should be practical to implement in a clinical setting. •QA should address the various stages of the imaging chain: acquisition, processing and display. •AEC system QC testing is simple to implement and provides information on equipment performance.

  7. 78 FR 67442 - Congestion Mitigation and Air Quality Improvement Program Interim Guidance

    Science.gov (United States)

    2013-11-12

    ...] Congestion Mitigation and Air Quality Improvement Program Interim Guidance AGENCY: Federal Highway... Comment. SUMMARY: The FHWA is issuing Interim Guidance on the Congestion Mitigation and Air Quality.../environment/air_quality/cmaq/policy_and_guidance/2008_guidance/ guidance/. DATES: This Interim Guidance is...

  8. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  9. Taxonometric Guidance for Developing Quality Assurance

    International Nuclear Information System (INIS)

    Thomadsen, Bruce; Lin, She-Woei

    2008-01-01

    A taxonomy is an ordered classification system. In error reduction analysis, an examination of the human failures that lead to an event often uses a taxonomy to classify the failures according to some aspect of their characteristics. These classifications provide insights into the forces that kept the persons involved from achieving their intended actions. They also can provide guidance for changing the situation to prevent failure in the future. For example, the corrective action would be different if a therapist pressed the wrong button because several buttons looked alike or they forgot which button to press. Different types of failures lead to particular types of remediation. Taxonomies can provide guidance in selecting between possible corrective actions

  10. Direct aperture deformation: An interfraction image guidance strategy

    International Nuclear Information System (INIS)

    Feng Yuanming; Castro-Pareja, Carlos; Shekhar, Raj; Yu, Cedric

    2006-01-01

    A new scheme, called direct aperture deformation (DAD), for online correction of interfraction geometric uncertainties under volumetric imaging guidance is presented. Using deformable image registration, the three-dimensional geometric transformation matrix can be derived that associates the planning image set and the images acquired on the day of treatment. Rather than replanning or moving the patient, we use the deformation matrix to morph the treatment apertures as a potential online correction method. A proof-of-principle study using an intensity-modulated radiation therapy plan for a prostate cancer patient was conducted. The method, procedure, and algorithm of DAD are described. The dose-volume histograms from the original plan, reoptimized plan, and rigid-body translation plan are compared with the ones from the DAD plan. The study showed the feasibility of the DAD as a general method for both target dislocation and deformation. As compared with using couch translation to move the patient, DAD is capable of correcting both target dislocation and deformations. As compared with reoptimization, online correction using the DAD scheme could be completed within a few minutes rather than tens of minutes and the speed gain would be at a very small cost of plan quality

  11. Image guidance in trans-sphenoidal surgery for giant pituitary adenomas: Luxury or necessity?

    Directory of Open Access Journals (Sweden)

    Deepak Agrawal

    2012-01-01

    the visualization of sellar floor and its relation to the carotid arteries, thereby improving the safety and quality of the surgical procedure, besides being free of limitations of fluoroscopy. More importantly the trajectory can be defined for optimizing tumor removal in such patients. Image-guidance can easily replace flouroscopy for trans-sphenoidal surgeries and when available should be the first choice when operating pituitary tumors trans-sphenoidally.

  12. Image guidance improves localization of sonographically occult colorectal liver metastases

    Science.gov (United States)

    Leung, Universe; Simpson, Amber L.; Adams, Lauryn B.; Jarnagin, William R.; Miga, Michael I.; Kingham, T. Peter

    2015-03-01

    Assessing the therapeutic benefit of surgical navigation systems is a challenging problem in image-guided surgery. The exact clinical indications for patients that may benefit from these systems is not always clear, particularly for abdominal surgery where image-guidance systems have failed to take hold in the same way as orthopedic and neurosurgical applications. We report interim analysis of a prospective clinical trial for localizing small colorectal liver metastases using the Explorer system (Path Finder Technologies, Nashville, TN). Colorectal liver metastases are small lesions that can be difficult to identify with conventional intraoperative ultrasound due to echogeneity changes in the liver as a result of chemotherapy and other preoperative treatments. Interim analysis with eighteen patients shows that 9 of 15 (60%) of these occult lesions could be detected with image guidance. Image guidance changed intraoperative management in 3 (17%) cases. These results suggest that image guidance is a promising tool for localization of small occult liver metastases and that the indications for image-guided surgery are expanding.

  13. Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers

    Science.gov (United States)

    This document augments the February 2000 guidance entitled Meteorological Monitoring Guidance for Regulatory Modeling Applications and the March 2008 guidance entitled Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements Version ...

  14. TU-A-201-00: Image Guidance Technologies and Management Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Recent years have seen a widespread proliferation of available in-room image guidance systems for radiation therapy target localization with many centers having multiple in-room options. In this session, available imaging systems for in-room IGRT will be reviewed highlighting the main differences in workflow efficiency, targeting accuracy and image quality as it relates to target visualization. Decision-making strategies for integrating these tools into clinical image guidance protocols that are tailored to specific disease sites like H&N, lung, pelvis, and spine SBRT will be discussed. Learning Objectives: Major system characteristics of a wide range of available in-room imaging systems for IGRT. Advantages / disadvantages of different systems for site-specific IGRT considerations. Concepts of targeting accuracy and time efficiency in designing clinical imaging protocols.

  15. Robotic needle steering: design, modeling, planning, and image guidance

    NARCIS (Netherlands)

    Cowan, Noah J.; Goldberg, Ken; Chirikjian, Gregory S.; Fichtinger, Gabor; Alterovitz, Ron; Reed, Kyle B.; Kallem, Vinutha; Misra, Sarthak; Park, Wooram; Okamura, Allison M.; Rosen, Jacob; Hannaford, Blake; Satava, Richard M.

    2010-01-01

    This chapter describes how advances in needle design, modeling, planning, and image guidance make it possible to steer flexible needles from outside the body to reach specified anatomical targets not accessible using traditional needle insertion methods. Steering can be achieved using a variety of

  16. Imaging Food Quality

    DEFF Research Database (Denmark)

    Møller, Flemming

    Imaging and spectroscopy have long been established methods for food quality control both in the laboratories and online. An ever increasing number of analytical techniques are being developed into imaging methods and existing imaging methods to contain spectral information. Images and especially...... spectral images contain large amounts of data which should be analysed appropriately by techniques combining structure and spectral information. This dissertation deals with how different types of food quality can be measured by imaging techniques, analysed with appropriate image analysis techniques...... and finally use the image data to predict or visualise food quality. A range of different food quality parameters was addressed, i.e. water distribution in bread throughout storage, time series analysis of chocolate milk stability, yoghurt glossiness, graininess and dullness and finally structure and meat...

  17. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  18. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit.

    Science.gov (United States)

    Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David

    2013-01-01

    Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Active instrumental guidance in interventional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wildermuth, S.; Erhart, P.; Leung, D.A.; Goehde, S.; Schoenenberger, A.; Debatin, J.F.

    1998-01-01

    Purpose: An active MR-based guidance system for visualisation of invasive instruments is described. Methods: The principle of MR tracking is based on the integration of a miniaturised coil into the tip of the instrument itself. A phantom experiment was designed to demonstrate the localising accuracy of this technique. In [dition, bicompatibility and warming effects were evaluated. Preliminary intravascular applications that were performed in animal experiments under MR guidance included embolisation, vascular occlusion as well as transjugular intrahepatic punctures. Percutaneous biopsies, cholecystostomies and laparoscopic applications were also evaluated with MR tracking. Results: Phantom experiments confirmed an excellent localisation accuracy of MR tracking compared to conventional r[iography. At a field strength of 0.5 T, the temperature increase remained below 2 C. Results of phantom experiments revealed a potential of significant heating dependent on the sequence parameters employed. MR tracking allowed a robust, simultaneously biplanar visualisation of the instrument tips in real time. Based on MR 'ro[ map' images, various intravascular and percutaneous interventions were successfully performed in vivo under MR guidance. Conclusions: MR tracking is a flexible concept permitting monitoring in the guidance of instruments in an MR environment. Various preliminary in vitro and in vivo experiments demonstrate safety, localisation accuracy and feasibility of this biplanar localisation technique in real time. (orig.) [de

  20. Social image quality

    Science.gov (United States)

    Qiu, Guoping; Kheiri, Ahmed

    2011-01-01

    Current subjective image quality assessments have been developed in the laboratory environments, under controlledconditions, and are dependent on the participation of limited numbers of observers. In this research, with the help of Web 2.0 and social media technology, a new method for building a subjective image quality metric has been developed where the observers are the Internet users. A website with a simple user interface that enables Internet users from anywhere at any time to vote for a better quality version of a pair of the same image has been constructed. Users' votes are recorded and used to rank the images according to their perceived visual qualities. We have developed three rank aggregation algorithms to process the recorded pair comparison data, the first uses a naive approach, the second employs a Condorcet method, and the third uses the Dykstra's extension of Bradley-Terry method. The website has been collecting data for about three months and has accumulated over 10,000 votes at the time of writing this paper. Results show that the Internet and its allied technologies such as crowdsourcing offer a promising new paradigm for image and video quality assessment where hundreds of thousands of Internet users can contribute to building more robust image quality metrics. We have made Internet user generated social image quality (SIQ) data of a public image database available online (http://www.hdri.cs.nott.ac.uk/siq/) to provide the image quality research community with a new source of ground truth data. The website continues to collect votes and will include more public image databases and will also be extended to include videos to collect social video quality (SVQ) data. All data will be public available on the website in due course.

  1. Percutaneous Thermal Ablation with Ultrasound Guidance. Fusion Imaging Guidance to Improve Conspicuity of Liver Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Yevich, Steven; Tselikas, Lambros; Deschamps, Frederic [Gustave Roussy - Cancer Campus, Interventional Radiology Department (France); Petrover, David [Imagerie Médicale Paris Centre, IMPC (France); Baere, Thierry De [Gustave Roussy - Cancer Campus, Interventional Radiology Department (France)

    2017-05-15

    PurposeTo assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).Materials and MethodsMWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.ResultsA total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time required for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.ConclusionsFusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.

  2. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  3. International Conference on Harmonisation; guidance on Q10 Pharmaceutical Quality System; availability. Notice.

    Science.gov (United States)

    2009-04-08

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "Q10 Pharmaceutical Quality System." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance describes a model for an effective quality management system for the pharmaceutical industry, referred to as the Pharmaceutical Quality System. The guidance is intended to provide a comprehensive approach to an effective pharmaceutical quality system that is based on International Organization for Standardization (ISO) concepts, includes applicable good manufacturing practice (GMP) regulations and complements ICH guidances on "Q8 Pharmaceutical Development" and "Q9 Quality Risk Management."

  4. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    Science.gov (United States)

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  5. Image quality in mammography

    International Nuclear Information System (INIS)

    Haus, A.G.; Doi, K.; Metz, C.E.; Bernstein, J.

    1976-01-01

    In mammography, image quality is a function of the shape, size, and x-ray absorption properties of the anatomic part to be radiographed and of the lesion to be detected; it also depends on geometric unsharpness, and the resolution, characteristic curve and noise properties of the recording system. X-ray energy spectra, modulation transfer functions, Wiener spectra, characteristic and gradient curves, and radiographs of a breast phantom and of a resected breast specimen containing microcalcifications are used in a review of some current considerations of the factors, and the complex relationship among factors, that affect image quality in mammography. Image quality and patient radiation exposure in mammography are interrelated. An approach to the problem of evaluating the trade-off between diagnostic certainty and the cost or risk of performing a breast imaging procedure is discussed

  6. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  7. Producing quality radiographic images

    International Nuclear Information System (INIS)

    Cullinan, A.M.

    1987-01-01

    This book gives an overview of physics, equipment, imaging, and quality assurance in the radiology department. The chapters are laid out with generous use of subheads to allow for quick reference, Points are illustrated with clear, uncluttered line diagrams and well-produced images. The accompanying explanations are miniature lessons by themselves. Inserted at various points throughout the text are important notes that highlight key concepts. The chapter ''Image Evaluation and Application of Radiographic Principles'' present a systematic approach to evaluating radiographs and contains several sample radiographs to illustrate the points made

  8. MR imaging guidance and monitoring of focal thermotherapies. A review

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.G.; California Univ., San Francisco, CA; Heuck, A.F.

    1998-01-01

    Minimally invasive thermotherapies for focal tissue destruction on the basis of laser-, microwave-, focused ultrasound-, or cryogeninduced changes of tissue temperature represent an alternative to surgical tissue ablation, particularly in the treatment of tumors. The thermotherapy modalities listed necessitate indirect guidance and monitoring, since they often do not lend themselves to immediate visual control. In the brain, in head and neck tumors, in the liver, and in the prostate, MRI reliably and accurately delineates both the positions of interstitial thermotherapy applicators and - in contrast-enhanced, T1-weighted images - the perfusion defects in tissue necrosis induced by thermotherapy. The transfer of results of in-vitro and in-vivo model studies to assess interstitial temperature and lesion development during thermotherapy to the actual treatment of patients, however, is still in an initial phase. Further development of both rapid MRI sequences and MRI scanners suited for interventions will show how far treatment systems and guidance systems can be adapted to one another. (orig.) [de

  9. What is the value of Image guidance in external beam radiotherapy?

    International Nuclear Information System (INIS)

    Kron, Tomas

    2010-01-01

    Full text: Image guided radiation therapy (lGRT) has become available in many radiotherapy centres in Australia. It is intuitive that frequent imaging of the patient with a modality that identifies the target directly at the time of treatment delivery should benefit patients. However, TGRT is also associated with increased cost for equipment, associated training, quality assurance and imaging time. The Trans Tasman Radiation Oncology Group (TROG) has been contracted by the Australian Commonwealth Department of Health and Ageing (DoHA) to investigate a framework that could be applied to establish a cost/utility assessment of IGRT. The present work aims to develop a study that can test this for daily image guidance of prostate cancer patients. Approach Thirty intermediate risk prostate cancer patients treated at ten or more radiotherapy centres in Australia will be invited to participate. Their treatment as per local practice will not be modified; however two additional treatment plans will be created with margins that would reflect a typical margin appropriate for a treatment delivery with and without daily image guidance. Patients will be stratified for volumetric versus planar orthogonal imaging and for IMRT or conformal approaches. The outcome will be a comparison of dose volume histograms for critical structures based on equal target coverage in all plans.

  10. EPA guidance on improving the image of psychiatry.

    Science.gov (United States)

    Möller-Leimkühler, A M; Möller, H-J; Maier, W; Gaebel, W; Falkai, P

    2016-03-01

    This paper explores causes, explanations and consequences of the negative image of psychiatry and develops recommendations for improvement. It is primarily based on a WPA guidance paper on how to combat the stigmatization of psychiatry and psychiatrists and a Medline search on related publications since 2010. Furthermore, focussing on potential causes and explanations, the authors performed a selective literature search regarding additional image-related issues such as mental health literacy and diagnostic and treatment issues. Underestimation of psychiatry results from both unjustified prejudices of the general public, mass media and healthcare professionals and psychiatry's own unfavourable coping with external and internal concerns. Issues related to unjustified devaluation of psychiatry include overestimation of coercion, associative stigma, lack of public knowledge, need to simplify complex mental issues, problem of the continuum between normality and psychopathology, competition with medical and non-medical disciplines and psychopharmacological treatment. Issues related to psychiatry's own contribution to being underestimated include lack of a clear professional identity, lack of biomarkers supporting clinical diagnoses, limited consensus about best treatment options, lack of collaboration with other medical disciplines and low recruitment rates among medical students. Recommendations are proposed for creating and representing a positive self-concept with different components. The negative image of psychiatry is not only due to unfavourable communication with the media, but is basically a problem of self-conceptualization. Much can be improved. However, psychiatry will remain a profession with an exceptional position among the medical disciplines, which should be seen as its specific strength.

  11. International Conference on Harmonisation; guidance on Q9 Quality Risk Management; availability. Notice.

    Science.gov (United States)

    2006-06-02

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "Q9 Quality Risk Management."' The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance provides principles and examples of tools for quality risk management that can be applied to all aspects of pharmaceutical quality throughout the lifecycle of drug substances, drug products, and biological and biotechnological products. The guidance is intended to enable regulators and industry to make more effective and consistent risk-based decisions.

  12. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    Science.gov (United States)

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  13. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    used as fusion algorithm for position and poses estimation. Then path planning, trajectory generation and trajectory guidance alternative strategies is presented. One of the important UAV mission is target surveillance using an onboard vision system. AUS-UAV Mazari is using a gimbaled camera for target monitoring and target tracking using basic digital image processing and techniques. Successful moving target geo-location algorithms were developed and results will be presented. Future plan is to develop a cooperation strategy between several vehicles in the air and on the ground. Use of vision system to aid the vehicle in localization using ground features is also under consideration.

  14. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    Science.gov (United States)

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  15. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    International Nuclear Information System (INIS)

    Redler, G; Bernard, D; Templeton, A; Chu, J; Nair, C Kumaran; Turian, J

    2015-01-01

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  16. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  17. Quality assurance: image production and film quality

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli

    2004-01-01

    The contents of this chapter are follows - Factors Affecting Image Quality and Patient Dose: Quality Control in Diagnostic Radiology, Mechanical Safety, Electrical Safety, Radiation Protection, Performance and Safety Standard, Calibration of QC Test Tools

  18. Physics-based shape matching for intraoperative image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Suwelack, Stefan, E-mail: suwelack@kit.edu; Röhl, Sebastian; Bodenstedt, Sebastian; Reichard, Daniel; Dillmann, Rüdiger; Speidel, Stefanie [Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Adenauerring 2, Karlsruhe 76131 (Germany); Santos, Thiago dos; Maier-Hein, Lena [Computer-assisted Interventions, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Wagner, Martin; Wünscher, Josephine; Kenngott, Hannes; Müller, Beat P. [General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg 69120 (Germany)

    2014-11-01

    Purpose: Soft-tissue deformations can severely degrade the validity of preoperative planning data during computer assisted interventions. Intraoperative imaging such as stereo endoscopic, time-of-flight or, laser range scanner data can be used to compensate these movements. In this context, the intraoperative surface has to be matched to the preoperative model. The shape matching is especially challenging in the intraoperative setting due to noisy sensor data, only partially visible surfaces, ambiguous shape descriptors, and real-time requirements. Methods: A novel physics-based shape matching (PBSM) approach to register intraoperatively acquired surface meshes to preoperative planning data is proposed. The key idea of the method is to describe the nonrigid registration process as an electrostatic–elastic problem, where an elastic body (preoperative model) that is electrically charged slides into an oppositely charged rigid shape (intraoperative surface). It is shown that the corresponding energy functional can be efficiently solved using the finite element (FE) method. It is also demonstrated how PBSM can be combined with rigid registration schemes for robust nonrigid registration of arbitrarily aligned surfaces. Furthermore, it is shown how the approach can be combined with landmark based methods and outline its application to image guidance in laparoscopic interventions. Results: A profound analysis of the PBSM scheme based on in silico and phantom data is presented. Simulation studies on several liver models show that the approach is robust to the initial rigid registration and to parameter variations. The studies also reveal that the method achieves submillimeter registration accuracy (mean error between 0.32 and 0.46 mm). An unoptimized, single core implementation of the approach achieves near real-time performance (2 TPS, 7–19 s total registration time). It outperforms established methods in terms of speed and accuracy. Furthermore, it is shown that the

  19. Gynecologic radiation therapy. Novel approaches to image-guidance and management

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N. [Harvard Medical School, Boston, MA (United States). Dept. of Radiation Oncology; Kirisits, Christian; Poetter, Richard (eds.) [Vienna General Hospital Medical Univ. (Austria). Dept. of Radiotherapy; Erickson, Beth E. [Medical College of Wisconsin Clinics Froedtert Hospital, Milwaukee, WI (United States). Dept. of Radiation Oncology

    2011-07-01

    Recent advances in the treatment of gynecologic malignancies led to a new worldwide consensus to introduce image guidance to gynecologic radiation therapy, particularly to brachytherapy. The book summarizes the changed practice of management: treatment planning for cervical cancer, not modified for over 60 years, has been shifted to an image-based approach, endometrial cancer management with an increase in the use of chemotherapy and vaginal brachytherapy, and vaginal cancer therapy including image guidance and high-dose delivery with IMRT. (orig.)

  20. Practical guide to quality assurance in medical imaging

    International Nuclear Information System (INIS)

    Moores, M.; Watkinson, S.; Pearcy, J.; Henshaw, E.T.

    1987-01-01

    This volume forms an important part of the response to a growing need to ensure the same and cost-effective use of ionizing radiations for the benefit of both staff and patients. The authors provide guidance to implementing and running quality assurance programs in medical imaging departments. The treatment provides an overview of all the tests which need to be carried out in medical imaging, and the text contains step-by-step guidance as to how to perform and interpret the results of medical imaging

  1. Sampling quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document introduces quality assurance guidance pertaining to the design and implementation of sampling procedures and processes for collecting environmental data for DOE's Office of EM (Environmental Restoration and Waste Management)

  2. 76 FR 51993 - Draft Guidance for Industry on Standards for Clinical Trial Imaging Endpoints; Availability

    Science.gov (United States)

    2011-08-19

    ... clinical trials of therapeutic drugs and biological products. The draft guidance describes standards... important imaging endpoint is used in a clinical trial of a therapeutic drug or biological product... Services to the Chairman of [[Page 51994

  3. Quality assurance guidance for low-level radioactive waste disposal facility: Final report

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1989-01-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements for a low-level waste (LLW) disposal facility. The QC requirements are the basis for developing of a quality assurance (QA) program and for the guidance provided herein. The criteria are basic to any QA program. The document specifically establishes QA guidance for the design, construction, and operation of those structures, systems, components, as well as, for site characterization activities necessary to meet the performance objectives and to limit exposure to our release of radioactivity. 7 refs

  4. Image guidance in trans-sphenoidal surgery for giant pituitary adenomas: Luxury or necessity?

    OpenAIRE

    Deepak Agrawal

    2012-01-01

    Background: In spite of availability of image guidance (neuronavigation) at major centers around the world, most trans-sphenoidal surgeries for pituitary adenomas continue to be done under fluoroscopic control. On the other hand, the high mortality and morbidity for giant pituitary adenomas is mainly due to inadequate tumor removal. Aims and Objectives: The objective of this study was to study to utility of image guidance in trans-sphenoidal surgeries for optimizing tumor removal in giant pit...

  5. Evaluation of Image-Guidance Strategies in the Treatment of Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Lee, Choonik; Langen, Katja M.; Zeidan, Omar A.; Manon, Rafael R.; Willoughby, Twyla R.; Meeks, Sanford L.

    2008-01-01

    Purpose: To compare different image-guidance strategies in the alignment of prostate cancer patients. Using data from patients treated using daily image guidance, the remaining setup errors for several different strategies were retrospectively calculated. Methods and Materials: The alignment data from 74 patients treated with helical tomotherapy were analyzed, resulting in a data set of 2,252 fractions during which a megavoltage computed tomography image was used for image guidance with intraprostatic metallic fiducials. Given the daily positional adjustments, a variety of protocols, differing in imaging frequency and method, were retrospectively studied. The residual setup errors were determined for each protocol. Results: As expected, the systematic errors were effectively reduced with imaging. However, the random errors were unaffected. Even when image guidance was performed every other day with a running mean of the previous displacements, residual setup errors >5 mm occurred in 24% of all fractions. This frequency increased to about 40% if setup errors >3 mm were scored. Conclusion: Setup errors increased with decreasing frequency of image guidance. However, residual errors were still significant at the 5-mm level, even with imaging was performed every other day. This suggests that localizations must be performed daily in the set up of prostate cancer patients during a course of external beam radiotherapy

  6. Regulatory impact analysis of the proposed great lakes water quality guidance. Final report

    International Nuclear Information System (INIS)

    Raucher, R.; Dixon, A.; Trabka, E.

    1993-01-01

    The Regulatory Impact Analysis provides direction to the Great Lakes States and Tribes on minimum water quality standards and contains numerical water quality criteria for 32 pollutants as well as methodologies for the development of water quality criteria for additional pollutants discharged to these waters. It also provides guidance to the Great Lakes States and Tribes on antidegradation policies and standards and implementation procedures

  7. Regulation EM-GT-8. Guidance for quality control of mammography equipment

    International Nuclear Information System (INIS)

    2015-01-01

    Objective: To provide practical guidance of technical procedures for carrying out quality control in mammography equipment. Scope: This guide applies to mammography equipment. A number of methods which require the appointed instrumentation described, some of which can be implemented in radiology services own country given the low complexity of themselves and others that require specific equipment and can be performed by specialized groups external to these units. The guide does not constitute a mandatory, however, the parameters evaluated according to the tests described therein and their tolerances form the basis of regulations that establish the CCEEM about these teams. Overview: The success of mammographic studies depends on obtaining high-quality images combined with a low rate of patient dose. To ensure this objective the establishment of quality assurance programs on all aspects involving these services is necessary. This guide provides a number of quality control procedures aimed at x-ray equipment, which must be performed at least on an annual basis or when some maintenance occurs at x-ray equipment.

  8. Retinal image quality during accommodation.

    Science.gov (United States)

    López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N

    2013-07-01

    We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful

  9. The use of image-guidance during transsphenoidal pituitary surgery in the United States

    Science.gov (United States)

    Chung, Thomas K.; Riley, Kristen O.

    2015-01-01

    Background: Intraoperative image guidance is a useful modality for transsphenoidal pituitary surgery. However, the outcomes associated with this technology have not been systematically evaluated. Objective: The purpose of the study was to quantify complication rates with and without the use of image guidance during transsphenoidal pituitary surgery using a nationwide database with broadly applicable results. Methods: A retrospective analysis of the Nationwide Inpatient Sample was performed from 2007 to 2011. Transsphenoidal pituitary resections for adenomas were identified by International Classification of Diseases-9th Revision, Clinical Modification code. The effect of image guidance on cerebrospinal fluid (CSF) leak complications and cost-benefit was analyzed. Results: A total of 48,848 transsphenoidal pituitary resections were identified, of which 77.5% were partial resections and 22.5% were complete. Pathologic indications included benign (89.3%), malignant primary (0.6%), and malignant secondary (0.4%). Complications included same-stay death (0.4%), CSF leak (8.8%), postoperative CSF rhinorrhea (1.9%), diabetes insipidus (12.4%), and meningitis (0.4%). Image guidance was employed in 7% (n = 3401) of all cases. When analyzed by modality, computed tomography (CT)-assisted procedures had lower CSF rhinorrhea rates (1.1%) compared with cases with no image guidance (1.9%), whereas magnetic resonance (MR)-assisted procedures had the highest rates (2.7%, χ2 p surgery had significantly shorter length of stay (2.9 days) versus no image guidance (3.7 days, p surgery is associated with a lower rate of CSF leak, shorter length of stay, and lower cost compared with patients without image guidance. Further studies that control for severity and extent of disease are warranted to confirm this finding. PMID:25975254

  10. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here)

  11. A hybrid optical system for broadband imaging in guidance and control

    Science.gov (United States)

    Wu, Xiaofang; Jiang, Yuesong; Shen, Chunyan; Zhao, Yiming

    2006-11-01

    A binary optics method has been adopted to improve upon a conventional optical system in guidance and control, and a hybrid broadband imaging system that includes a binary surface is analyzed and evaluated by optical design software ZEMAX. The practical design shows that the introduction of binary optics can simplify the structure of the imaging system and reduce the size and weight of the broadband guidance and control system. Moreover, it can help to acquire images of radiation of different wavelengths from targets; hence it will result in improved overall performance of missiles in wars.

  12. SU-E-J-06: Additional Imaging Guidance Dose to Patient Organs Resulting From X-Ray Tubes Used in CyberKnife Image Guidance System

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A; Ding, G [Vanderbilt University, Nashville, TN (United States)

    2015-06-15

    Purpose: The use of image-guided radiation therapy (IGRT) has become increasingly common, but the additional radiation exposure resulting from repeated image guidance procedures raises concerns. Although there are many studies reporting imaging dose from different image guidance devices, imaging dose for the CyberKnife Robotic Radiosurgery System is not available. This study provides estimated organ doses resulting from image guidance procedures on the CyberKnife system. Methods: Commercially available Monte Carlo software, PCXMC, was used to calculate average organ doses resulting from x-ray tubes used in the CyberKnife system. There are seven imaging protocols with kVp ranging from 60 – 120 kV and 15 mAs for treatment sites in the Cranium, Head and Neck, Thorax, and Abdomen. The output of each image protocol was measured at treatment isocenter. For each site and protocol, Adult body sizes ranging from anorexic to extremely obese were simulated since organ dose depends on patient size. Doses for all organs within the imaging field-of-view of each site were calculated for a single image acquisition from both of the orthogonal x-ray tubes. Results: Average organ doses were <1.0 mGy for every treatment site and imaging protocol. For a given organ, dose increases as kV increases or body size decreases. Higher doses are typically reported for skeletal components, such as the skull, ribs, or clavicles, than for softtissue organs. Typical organ doses due to a single exposure are estimated as 0.23 mGy to the brain, 0.29 mGy to the heart, 0.08 mGy to the kidneys, etc., depending on the imaging protocol and site. Conclusion: The organ doses vary with treatment site, imaging protocol and patient size. Although the organ dose from a single image acquisition resulting from two orthogonal beams is generally insignificant, the sum of repeated image acquisitions (>100) could reach 10–20 cGy for a typical treatment fraction.

  13. Influence of chest compression rate guidance on the quality of cardiopulmonary resuscitation performed on manikins.

    Science.gov (United States)

    Jäntti, H; Silfvast, T; Turpeinen, A; Kiviniemi, V; Uusaro, A

    2009-04-01

    The adequate chest compression rate during CPR is associated with improved haemodynamics and primary survival. To explore whether the use of a metronome would affect also chest compression depth beside the rate, we evaluated CPR quality using a metronome in a simulated CPR scenario. Forty-four experienced intensive care unit nurses participated in two-rescuer basic life support given to manikins in 10min scenarios. The target chest compression to ventilation ratio was 30:2 performed with bag and mask ventilation. The rescuer performing the compressions was changed every 2min. CPR was performed first without and then with a metronome that beeped 100 times per minute. The quality of CPR was analysed with manikin software. The effect of rescuer fatigue on CPR quality was analysed separately. The mean compression rate between ventilation pauses was 137+/-18compressions per minute (cpm) without and 98+/-2cpm with metronome guidance (pmetronome (pmetronome guidance (p=0.09). The total number of chest compressions performed was 1022 without metronome guidance, 42% at the correct depth; and 780 with metronome guidance, 61% at the correct depth (p=0.09 for difference for percentage of compression with correct depth). Metronome guidance corrected chest compression rates for each compression cycle to within guideline recommendations, but did not affect chest compression quality or rescuer fatigue.

  14. Image quality in digital radiography

    International Nuclear Information System (INIS)

    Kuhn, H.

    1986-01-01

    The contribution deals with the potentials of digital radiography and critically evaluates the advantages of drawbacks of the image intensifier-tv-digital system; digitalisation of the X-ray film and scanning of luminescent storage foils. The evaluation is done in comparison with the image quality of the traditional, large-size X-ray picture. (orig.) [de

  15. Real-time image guidance in laparoscopic liver surgery

    DEFF Research Database (Denmark)

    Kenngott, Hannes G.; Wagner, Martin; Gondan, Matthias

    2014-01-01

    Background: Laparoscopic liver surgery is particularly challenging owing to restricted access, risk of bleeding and lack of haptic feedback. Navigation systems have the potential to improve information on the exact position of intrahepatic tumors, and thus facilitate oncological resection....... This study aims to evaluate the feasibility of a commercially available augmented reality (AR) guidance system employing intraoperative robotic C-arm cone-beam computed tomography (CBCT) for laparoscopic liver surgery. Methods: A human liver-like phantom with sixteen target fiducials was used to evaluate...... the Syngo iPilot® AR system. Subsequently, the system was used for the laparoscopic resection of a hepatocellular carcinoma in segment 7 of a 50-year-old male patient. Results: In the phantom experiment the AR system showed a mean target registration error of 0.96 mm ± 0.52 mm with a maximum error of 2...

  16. Near-infrared image guidance in cancer surgery

    NARCIS (Netherlands)

    Schaafsma, B.E.

    2017-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a fast developing imaging modality as it provides real-time visual information during surgery (Chapter 1). The ability to detect lymph nodes and tumours that need to be resected can assist the surgeon to improve surgery by reducing

  17. Guidance on assessing the methodological and reporting quality of toxicologically relevant studies: A scoping review.

    Science.gov (United States)

    Samuel, Gbeminiyi O; Hoffmann, Sebastian; Wright, Robert A; Lalu, Manoj Mathew; Patlewicz, Grace; Becker, Richard A; DeGeorge, George L; Fergusson, Dean; Hartung, Thomas; Lewis, R Jeffrey; Stephens, Martin L

    2016-01-01

    Assessments of methodological and reporting quality are critical to adequately judging the credibility of a study's conclusions and to gauging its potential reproducibility. To aid those seeking to assess the methodological or reporting quality of studies relevant to toxicology, we conducted a scoping review of the available guidance with respect to four types of studies: in vivo and in vitro, (quantitative) structure-activity relationships ([Q]SARs), physico-chemical, and human observational studies. Our aims were to identify the available guidance in this diverse literature, briefly summarize each document, and distill the common elements of these documents for each study type. In general, we found considerable guidance for in vivo and human studies, but only one paper addressed in vitro studies exclusively. The guidance for (Q)SAR studies and physico-chemical studies was scant but authoritative. There was substantial overlap across guidance documents in the proposed criteria for both methodological and reporting quality. Some guidance documents address toxicology research directly, whereas others address preclinical research generally or clinical research and therefore may not be fully applicable to the toxicology context without some translation. Another challenge is the degree to which assessments of methodological quality in toxicology should focus on risk of bias - as in clinical medicine and healthcare - or be broadened to include other quality measures, such as confirming the identity of test substances prior to exposure. Our review is intended primarily for those in toxicology and risk assessment seeking an entry point into the extensive and diverse literature on methodological and reporting quality applicable to their work. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Quality Assurance and Evidence in Career Guidance in Europe: Counting What Is Measured or Measuring What Counts?

    Science.gov (United States)

    Plant, Peter

    2012-01-01

    Quality assurance (QA) and Evidence in career guidance are increasingly seen as an indispensable part of explaining and even legitimising career guidance activities and policies. It is no longer sufficient to assume that career guidance or career education has an impact. This has to be demonstrated. This paper provides an overview of how and why…

  19. Accuracy of image guidance using free-breathing cone-beam computed tomography for stereotactic lung radiotherapy.

    Science.gov (United States)

    Kamomae, Takeshi; Monzen, Hajime; Nakayama, Shinichi; Mizote, Rika; Oonishi, Yuuichi; Kaneshige, Soichiro; Sakamoto, Takashi

    2015-01-01

    Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.

  20. Optical Coherence Tomographic Imaging and Delivery for Surgical Guidance

    National Research Council Canada - National Science Library

    Fujimoto, James G

    2004-01-01

    .... OCT can thus function as a type of "optical biopsy," enabling imaging of tissue with resolution approaching conventional biopsy and histopathology, but without the need to remove and process specimens...

  1. Prototype volumetric ultrasound tomography image guidance system for prone stereotactic partial breast irradiation: proof-of-concept

    Science.gov (United States)

    Chiu, Tsuicheng D.; Parsons, David; Zhang, Yue; Hrycushko, Brian; Zhao, Bo; Chopra, Rajiv; Kim, Nathan; Spangler, Ann; Rahimi, Asal; Timmerman, Robert; Jiang, Steve B.; Lu, Weiguo; Gu, Xuejun

    2018-03-01

    Accurate dose delivery in stereotactic partial breast irradiation (S-PBI) is challenging because of the target position uncertainty caused by breast deformation, the target volume changes caused by lumpectomy cavity shrinkage, and the target delineation uncertainty on simulation computed tomography (CT) images caused by poor soft tissue contrast. We have developed a volumetric ultrasound tomography (UST) image guidance system for prone position S-PBI. The system is composed of a novel 3D printed rotation water tank, a patient-specific resin breast immobilization cup, and a 1D array ultrasound transducer. Coronal 2D US images were acquired in 5° increments over a 360° range, and planes were acquired every 2 mm in elevation. A super-compounding technique was used to reconstruct the image volume. The image quality of UST was evaluated with a BB-1 breast phantom and BioZorb surgical marker, and the results revealed that UST offered better soft tissue contrast than CT and similar image quality to MR. In the evaluated plane, the size and location of five embedded objects were measured and compared to MR, which is considered as the ground truth. Objects’ diameters and the distances between objects in UST differ by approximately 1 to 2 mm from those in MR, which showed that UST offers the image quality required for S-PBI. In future work we will develop a robotic system that will be ultimately implemented in the clinic.

  2. Guidance and Control Software Project Data - Volume 4: Configuration Management and Quality Assurance Documents

    Science.gov (United States)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes configuration management and quality assurance documents from the GCS project. Volume 4 contains six appendices: A. Software Accomplishment Summary for the Guidance and Control Software Project; B. Software Configuration Index for the Guidance and Control Software Project; C. Configuration Management Records for the Guidance and Control Software Project; D. Software Quality Assurance Records for the Guidance and Control Software Project; E. Problem Report for the Pluto Implementation of the Guidance and Control Software Project; and F. Support Documentation Change Reports for the Guidance and Control Software Project.

  3. Guidance for Methods Descriptions Used in Preclinical Imaging Papers

    Directory of Open Access Journals (Sweden)

    David Stout

    2013-10-01

    Full Text Available Preclinical molecular imaging is a rapidly growing field, where new imaging systems, methods, and biological findings are constantly being developed or discovered. Imaging systems and the associated software usually have multiple options for generating data, which is often overlooked but is essential when reporting the methods used to create and analyze data. Similarly, the ways in which animals are housed, handled, and treated to create physiologically based data must be well described in order that the findings be relevant, useful, and reproducible. There are frequently new developments for metabolic imaging methods. Thus, specific reporting requirements are difficult to establish; however, it remains essential to adequately report how the data have been collected, processed, and analyzed. To assist with future manuscript submissions, this article aims to provide guidelines of what details to report for several of the most common imaging modalities. Examples are provided in an attempt to give comprehensive, succinct descriptions of the essential items to report about the experimental process.

  4. Quality assurance guidance for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.; Hedges, D.

    1991-04-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements of 10 CFR 61.12(j) for a low-level radioactive waste (LLRW) disposal facility. The QC requirements, plus audits and managerial controls requirements, establish the need for developing a quality assurance (QA) program and the guidance provided herein. The criteria developed for this document are similar to the criteria developed for Appendix B to Title 10 of the Code of Federal Regulations (10 CFR) Part 50. Although Appendix B is not a regulatory requirement for an LLRW disposal facility, the criteria that were developed for 10 CFR Part 50 are basic to any QA program. This document establishes QA guidance for the design, construction, and operation of those structures, engineered or natural systems, and components whose function is required to meet the performance objectives of Subpart C of 10 CFR Part 61 and to limit exposure to or release of radioactivity. 7 refs

  5. Echocardiographic and Fluoroscopic Fusion Imaging for Procedural Guidance: An Overview and Early Clinical Experience.

    Science.gov (United States)

    Thaden, Jeremy J; Sanon, Saurabh; Geske, Jeffrey B; Eleid, Mackram F; Nijhof, Niels; Malouf, Joseph F; Rihal, Charanjit S; Bruce, Charles J

    2016-06-01

    There has been significant growth in the volume and complexity of percutaneous structural heart procedures in the past decade. Increasing procedural complexity and accompanying reliance on multimodality imaging have fueled the development of fusion imaging to facilitate procedural guidance. The first clinically available system capable of echocardiographic and fluoroscopic fusion for real-time guidance of structural heart procedures was approved by the US Food and Drug Administration in 2012. Echocardiographic-fluoroscopic fusion imaging combines the precise catheter and device visualization of fluoroscopy with the soft tissue anatomy and color flow Doppler information afforded by echocardiography in a single image. This allows the interventionalist to perform precise catheter manipulations under fluoroscopy guidance while visualizing critical tissue anatomy provided by echocardiography. However, there are few data available addressing this technology's strengths and limitations in routine clinical practice. The authors provide a critical review of currently available echocardiographic-fluoroscopic fusion imaging for guidance of structural heart interventions to highlight its strengths, limitations, and potential clinical applications and to guide further research into value of this emerging technology. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  6. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    Fusion of medical images between different cross-sectional modalities is widely used, mostly where functional images are fused with anatomical data. Ultrasound has for some time now been the standard imaging technique used for treatment planning of prostate cancer cases. While this approach is laudable and has yielded some positive results, latest developments have been the integration of images from ultrasound and other modalities such as PET-CT to compliment missing properties of ultrasound images. This study has sought to enhance diagnosis and treatment of prostate cancers by developing MATLAB algorithms to fuse ultrasound and PET-CT images. The fused ultrasound-PET-CT image has shown to contain improved quality of information than the individual input images. The fused image has the property of reduced uncertainty, increased reliability, robust system performance, and compact representation of information. The objective of co-registering the ultrasound and PET-CT images was achieved by conducting performance evaluation of the ultrasound and PET-CT imaging systems, developing image contrast enhancement algorithm, developing MATLAB image fusion algorithm, and assessing accuracy of the fusion algorithm. Performance evaluation of the ultrasound brachytherapy system produced satisfactory results in accordance with set tolerances as recommended by AAPM TG 128. Using an ultrasound brachytherapy quality assurance phantom, average axial distance measurement of 10.11 ± 0.11 mm was estimated. Average lateral distance measurements of 10.08 ± 0.07 mm, 20.01 ± 0.06 mm, 29.89 ± 0.03 mm and 39.84 ± 0.37 mm were estimated for the inter-target distances corresponding to 10 mm, 20 mm, 30 mm and 40 mm respectively. Volume accuracy assessment produced measurements of 3.97 cm 3 , 8.86 cm 3 and 20.11 cm 3 for known standard volumes of 4 cm 3 , 9 cm 3 and 20 cm 3 respectively. Depth of penetration assessment of the ultrasound system produced an estimate of 5.37 ± 0.02 cm

  7. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  8. International guidance on the establishment of quality assurance programmes for radioactivity measurement in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, B.E. [Dosimetry and Medical Radiation Physics Section, Division of Human Health, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 200, A-1400 Vienna (Austria)]. E-mail: b.zimmerman@iaea.org; Herbst, C. [Department of Medical Physics, University of the Free State, Geneeskundige Fisika G 68, Bloemfontein 9300 (South Africa); Norenberg, J.P. [College of Pharmacy, 2502 Marble, NE MSC09 5360, University of New Mexico, Albuquerque 87131 (United States); Woods, M.J. [Ionizing Radiation Consultants, Ltd., 152 Broom Road, Teddington, Middlesex TW11 9PQ (United Kingdom)

    2006-10-15

    A new guidance document for the implementation of quality assurance (QA) programmes for nuclear medicine radioactivity measurement, produced by the International Atomic Energy Agency, is described. The proposed programme is based on the principles of ISO 17025 and will enable laboratories, particularly in developing countries, to provide consistent, safe and effective radioactivity measurement services to the nuclear medicine community.

  9. International guidance on the establishment of quality assurance programmes for radioactivity measurement in nuclear medicine

    International Nuclear Information System (INIS)

    Zimmerman, B.E.; Herbst, C.; Norenberg, J.P.; Woods, M.J.

    2006-01-01

    A new guidance document for the implementation of quality assurance (QA) programmes for nuclear medicine radioactivity measurement, produced by the International Atomic Energy Agency, is described. The proposed programme is based on the principles of ISO 17025 and will enable laboratories, particularly in developing countries, to provide consistent, safe and effective radioactivity measurement services to the nuclear medicine community

  10. Quality assurance guidance for laboratory assessment plates in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document is one of several guidance documents developed to support the EM (DOE Environmental Restoration and Waste Management) Analytical Services program. Its purpose is to introduce assessment plates that can be used to conduct performance assessments of an organization's or project's ability to meet quality goals for analytical laboratory activities. These assessment plates are provided as non-prescriptive guidance to EM-support organizations responsible for collection of environmental data for remediation and waste management programs at DOE facilities. The assessments evaluate objectively all components of the analytical laboratory process to determine their proper selection and use

  11. Paediatric trauma imaging: Why do we need separate guidance?

    International Nuclear Information System (INIS)

    Negus, S.; Danin, J.; Fisher, R.; Johnson, K.; Landes, C.; Somers, J.; Fitzsimmons, C.; Ashford, N.; Foster, J.

    2014-01-01

    It is often assumed that the pattern of injury in children mirrors that of the adult population, but children have different anatomical proportions and the relative elasticity of their tissues results in different injury patterns. The authors of this review are members of the British Society of Paediatric Radiologists subgroup and developed the recently published 47 paediatric trauma protocols for imaging children involved in major blunt trauma. The following article has been written to bring these guidelines to the attention of the wider community of UK radiologists, and explain the rationale behind the recommendations

  12. Three-dimensional Image Fusion Guidance for Transjugular Intrahepatic Portosystemic Shunt Placement.

    Science.gov (United States)

    Tacher, Vania; Petit, Arthur; Derbel, Haytham; Novelli, Luigi; Vitellius, Manuel; Ridouani, Fourat; Luciani, Alain; Rahmouni, Alain; Duvoux, Christophe; Salloum, Chady; Chiaradia, Mélanie; Kobeiter, Hicham

    2017-11-01

    To assess the safety, feasibility and effectiveness of image fusion guidance with pre-procedural portal phase computed tomography with intraprocedural fluoroscopy for transjugular intrahepatic portosystemic shunt (TIPS) placement. All consecutive cirrhotic patients presenting at our interventional unit for TIPS creation from January 2015 to January 2016 were prospectively enrolled. Procedures were performed under general anesthesia in an interventional suite equipped with flat panel detector, cone-beam computed tomography (CBCT) and image fusion technique. All TIPSs were placed under image fusion guidance. After hepatic vein catheterization, an unenhanced CBCT acquisition was performed and co-registered with the pre-procedural portal phase CT images. A virtual path between hepatic vein and portal branch was made using the virtual needle path trajectory software. Subsequently, the 3D virtual path was overlaid on 2D fluoroscopy for guidance during portal branch cannulation. Safety, feasibility, effectiveness and per-procedural data were evaluated. Sixteen patients (12 males; median age 56 years) were included. Procedures were technically feasible in 15 of the 16 patients (94%). One procedure was aborted due to hepatic vein catheterization failure related to severe liver distortion. No periprocedural complications occurred within 48 h of the procedure. The median dose-area product was 91 Gy cm 2 , fluoroscopy time 15 min, procedure time 40 min and contrast media consumption 65 mL. Clinical benefit of the TIPS placement was observed in nine patients (56%). This study suggests that 3D image fusion guidance for TIPS is feasible, safe and effective. By identifying virtual needle path, CBCT enables real-time multiplanar guidance and may facilitate TIPS placement.

  13. Quality of radiation field imaging

    International Nuclear Information System (INIS)

    Petr, I.

    1988-01-01

    The questions were studied of the quality of imaging the gamma radiation field and of the limits of the quality in directional detector scanning. A resolution angle was introduced to quantify the imaging quality, and its relation was sought with the detection effective half-angle of the directional detector. The resolution angle was defined for the simplest configuration of the radiation field consisting of two monoenergetic gamma beams in one plane. It was shown that the resolution angle decreases, i.e., resolution in imaging the radiation field is better, with the effective half-angle of the directional detector. It was also found that resolution of both gamma beams deteriorated when the beams were surrounded with an isotropic background field. If the beams are surrounded with a background field showing general distribution, the angle size will be affected not only by the properties of the detector but also by the distribution of the ambient radiation field and the method of its scanning. The method described can be applied in designing a directional detector necessary for imaging the presumed radiation field in the required quality. (Z.M.). 4 figs., 3 refs

  14. The semantics of image quality

    NARCIS (Netherlands)

    Janssen, T.J.W.M.; Blommaert, F.J.J.

    1996-01-01

    In this contribution we will discuss image quality in the context of the visuo-cognitive system as an information-processing system. To this end, we subdivide the information-processing as performed by the visuo-cognitive system into three distinct processes: (1) the construction of a visual

  15. Virtual and augmented medical imaging environments: enabling technology for minimally invasive cardiac interventional guidance.

    Science.gov (United States)

    Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M

    2010-01-01

    Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges.

  16. Visual tracking for multi-modality computer-assisted image guidance

    Science.gov (United States)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  17. Volumetric image-guidance: Does routine usage prompt adaptive re-planning? An institutional review

    International Nuclear Information System (INIS)

    Tanyi, James A.; Fuss, Martin H.

    2008-01-01

    Purpose. To investigate how the use of volumetric image-guidance using an on-board cone-beam computed tomography (CBCT) system impacts on the frequency of adaptive re-planning. Material and methods. Treatment courses of 146 patients who have undergone a course of external beam radiation therapy (EBRT) using volumetric CBCT image-guidance were analyzed. Target locations included the brain, head and neck, chest, abdomen, as well as prostate and non-prostate pelvis. The majority of patients (57.5%) were treated with hypo-fractionated treatment regimens (three to 15 fraction courses). The frequency of image-guidance ranged from daily (87.7%) to weekly or twice weekly. The underlying medical necessity for adaptive re-planning as well as frequency and consequences of plan adaptation to dose-volume parameters was assessed. Results. Radiation plans of 34 patients (23.3%) were adapted at least once (up to six time) during their course of EBRT as a result of image-guidance CBCT review. Most common causes for adaptive planning were: tumor change (mostly shrinkage: 10 patients; four patients more than one re-plan), change in abdominal girth (systematic change in hollow organ filling; n=7, two patients more than one re-plan), weight loss (n=5), and systematic target setup deviation from simulation (n=5). Adaptive re-plan was required mostly for conventionally fractionated courses; only 5 patient plans undergoing hypo-fractionated treatment were adjusted. In over 91% of adapted plans, the dose-volume parameters did deviate from the prescribed plan parameters by more than 5% for at least 10% of the target volume, or organs-at-risk in close proximity to the target volume. Discussion. Routine use of volumetric image-guidance has in our practice increased the demand for adaptive re-planning. Volumetric CBCT image-guidance provides sufficient imaging information to reliably predict the need for dose adjustment. In the vast majority of cases evaluated, the initial and adapted dose

  18. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  19. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  20. A universal color image quality metric

    NARCIS (Netherlands)

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated color space. The resulting color image quality index quantifies the distortion of a processed color image relative to its original version. We evaluated the new color image quality

  1. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance

    International Nuclear Information System (INIS)

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-01-01

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s -1 ) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s -1 ) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s -1 ) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm -1 of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will

  2. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance.

    Science.gov (United States)

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-12-07

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s(-1)) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s(-1)) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s(-1)) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm(-1) of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will

  3. Mathematical determination of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, H H

    1982-01-01

    The subjective term ''image quality'' is generally not easy to define and to measure. If, however, we limit ourselves, to determine certain anomalies in blurred images, then the task can be done more easily. The efficiency can in fact be measured and the results can be presented as ROC-characteristics (receiver operating characteristics). One can determine a relation between the characteristic and the noise distance of the imaging system, and this way the efficiency of an hypothetical ideal observer can be predicted. Furthermore one can compute noise distance and other statistical parameters of X-ray images distorted by quantum interference by special techniques that are founded on the so-called ''blur core''. The technique proved to be very successful in nuclear medicine, but is also valid in computerized tomography and X-ray diagnostics. The technique is explained without mathematical details. The question will be answered concerning the role mathematical analysis will play in the determination and optimization of the quality of diagnostic exposures.

  4. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  5. Quality assessment for online iris images

    CSIR Research Space (South Africa)

    Makinana, S

    2015-01-01

    Full Text Available Iris recognition systems have attracted much attention for their uniqueness, stability and reliability. However, performance of this system depends on quality of iris image. Therefore there is a need to select good quality images before features can...

  6. Tailoring four-dimensional cone-beam CT acquisition settings for fiducial marker-based image guidance in radiation therapy.

    Science.gov (United States)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja

    2018-04-01

    Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].

  7. Accuracy of Ultrasound-Based Image Guidance for Daily Positioning of the Upper Abdomen: An Online Comparison With Cone Beam CT

    International Nuclear Information System (INIS)

    Boda-Heggemann, Judit; Mennemeyer, Philipp; Wertz, Hansjoerg; Riesenacker, Nadja; Kuepper, Beate; Lohr, Frank; Wenz, Frederik

    2009-01-01

    Purpose: Image-guided intensity-modulated radiotherapy can improve protection of organs at risk when large abdominal target volumes are irradiated. We estimated the daily positioning accuracy of ultrasound-based image guidance for abdominal target volumes by a direct comparison of daily imaging obtained with cone beam computed tomography (CBCT). Methods and Materials: Daily positioning (n = 83 positionings) of 15 patients was completed by using ultrasound guidance after an initial CBCT was obtained. Residual error after ultrasound was estimated by comparison with a second CBCT. Ultrasound image quality was visually rated using a scale of 1 to 4. Results: Of 15 patients, 7 patients had good sonographic imaging quality, 5 patients had satisfactory sonographic quality, and 3 patients were excluded because of unsatisfactory sonographic quality. When image quality was good, residual errors after ultrasound were -0.1 ± 3.11 mm in the x direction (left-right; group systematic error M = -0.09 mm; standard deviation [SD] of systematic error, Σ = 1.37 mm; SD of the random error, σ = 2.99 mm), 0.93 ± 4.31 mm in the y direction (superior-inferior, M = 1.12 mm; Σ = 2.96 mm; σ = 3.39 mm), and 0.71 ± 3.15 mm in the z direction (anteroposterior; M = 1.01 mm; Σ = 2.46 mm; σ = 2.24 mm). For patients with satisfactory image quality, residual error after ultrasound was -0.6 ± 5.26 mm in the x (M = 0.07 mm; Σ = 5.67 mm; σ = 4.86 mm), 1.76 ± 4.92 mm in the y (M = 3.54 mm; Σ = 4.1 mm; σ = 5.29 mm), and 1.19 ± 4.75 mm in the z (M = 0.82 mm; Σ = 2.86 mm; σ = 3.05 mm) directions. Conclusions: In patients from whom good sonographic image quality could be obtained, ultrasound improved daily positioning accuracy. In the case of satisfactory image quality, ultrasound guidance improved accuracy compared to that of skin marks only minimally. If sonographic image quality was unsatisfactory, daily CBCT scanning improved treatment accuracy distinctly over that of ultrasound. Use of

  8. Image quality dependence on image processing software in ...

    African Journals Online (AJOL)

    Image quality dependence on image processing software in computed radiography. ... Agfa CR readers use MUSICA software, and an upgrade with significantly different image ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  9. Condylar guidance: correlation between protrusive interocclusal record and panoramic radiographic image: a pilot study.

    Science.gov (United States)

    Tannamala, Pavan Kumar; Pulagam, Mahesh; Pottem, Srinivas R; Swapna, B

    2012-04-01

    The purpose of this study was to compare the sagittal condylar angles set in the Hanau articulator by use of a method of obtaining an intraoral protrusive record to those angles found using a panoramic radiographic image. Ten patients, free of signs and symptoms of temporomandibular disorder and with intact dentition were selected. The dental stone casts of the subjects were mounted on a Hanau articulator with a springbow and poly(vinyl siloxane) interocclusal records. For all patients, the protrusive records were obtained when the mandible moved forward by approximately 6 mm. All procedures for recording, mounting, and setting were done in the same session. The condylar guidance angles obtained were tabulated. A panoramic radiographic image of each patient was made with the Frankfurt horizontal plane parallel to the floor of the mouth. Tracings of the radiographic images were made. The horizontal reference line was marked by joining the orbitale and porion. The most superior and most inferior points of the curvatures were identified. These two lines were connected by a straight line representing the mean curvature line. Angles made by the intersection of the mean curvature line and the horizontal reference line were measured. The results were subjected to statistical analysis with a significance level of p record method. The mean condylar guidance angle between the right and left side by both the methods was not statistically significant. The comparison of mean condylar guidance angles between the right side of the protrusive record method and the right side of the panoramic radiographic method and the left side of the protrusive record method and the left side of the panoramic radiographic method (p= 0.071 and p= 0.057, respectively) were not statistically significant. Within the limitations of this study, it was concluded that the protrusive condylar guidance angles obtained by panoramic radiograph may be used in programming semi-adjustable articulators. © 2012

  10. Clarification of the Use of Biological Data and Information in the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance

    Science.gov (United States)

    The memorandum modifies the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance to provide clarity and promote consistency in the manner in which states use biological data and information in developing their 2002 submissions.

  11. First use of a truly-hybrid x-ray/MR imaging system for guidance of brain biopsy

    International Nuclear Information System (INIS)

    Fahrig, R.; Daniel, B.L.; Butts, K.; Pelc, N.J.; Heit, G.; Wen, Z.

    2003-01-01

    The use of a new hybrid imaging system for guidance of a brain biopsy is described. The system combines the strengths of MRI (soft-tissue contrast, arbitrary plane selection) with those of x-ray fluoroscopy (high-resolution real-time projection images, clear portrayal of bony structures) and allows switching between the imaging modalities without moving the patient. The biopsy was carried out using x-ray guidance for direction of the needle through the foramen ovale and MR guidance to target the soft-tissue lesion. Appropriate samples were acquired. The system could be particularly effective for guidance of those cases where motion, swelling, resection and other intra-operative anatomical changes cannot be accounted for using traditional stereotactic-based imaging approaches. (author)

  12. Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients

    DEFF Research Database (Denmark)

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte Eklund

    2012-01-01

    The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population....

  13. A review of the recommendations governing quality assurance of ultrasound systems used for guidance in prostate brachytherapy.

    Science.gov (United States)

    Doyle, Andrea Jane; King, Deirdre M; Browne, Jacinta E

    2017-12-01

    Ultrasound guided brachytherapy for the treatment of prostate cancer has become a routine treatment option, due to many benefits including patient recovery and dose localisation [1]; however it is not clear whether the standards which govern the image quality for these systems are adequate. Upon review of the recommended standards for ultrasound systems used in prostate brachytherapy procedures, the recommended tests do not appear to be specific to the clinical application of ultrasound guided prostate brachytherapy. Rather they are generic and similar to those recommended for other clinical applications such as general abdominal scanning [2]. Furthermore, there is growing evidence that these tests should be specific to the clinical application [3,4] in order to gain meaningful data about the performance of the system for the application, and also to detect clinically relevant changes in quality control results. An additional problem is that there are no clinically relevant test phantom recommended for the quality assurance of ultrasound systems used in prostate brachytherapy. The image quality for this application of ultrasound needs to be monitored to ensure consistent levels of confidence in the procedure. This paper reviews the currently recommended test guidelines and test phantoms for ultrasound systems used in prostate brachytherapy from the different standard bodies and professional organisations. A critical analysis of those tests which are most reflective of the imaging and guidance tasks undertaken in an ultrasound guided prostate brachytherapy procedure will also be presented to inform the design of a TRUS quality assurance protocol. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

    1990-10-01

    This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab

  15. Volume of interest CBCT and tube current modulation for image guidance using dynamic kV collimation

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca [Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada); Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-04-15

    Purpose: The focus of this work is the development of a novel blade collimation system enabling volume of interest (VOI) CBCT with tube current modulation using the kV image guidance source on a linear accelerator. Advantages of the system are assessed, particularly with regard to reduction and localization of dose and improvement of image quality. Methods: A four blade dynamic kV collimator was developed to track a VOI during a CBCT acquisition. The current prototype is capable of tracking an arbitrary volume defined by the treatment planner for subsequent CBCT guidance. During gantry rotation, the collimator tracks the VOI with adjustment of position and dimension. CBCT image quality was investigated as a function of collimator dimension, while maintaining the same dose to the VOI, for a 22.2 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Dose distributions were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field CBCT distributions to quantify dose reduction and localization to the target volume. A novel method of optimizing x-ray tube current during CBCT acquisition was developed and assessed with regard to contrast-to-noise ratio (CNR) and imaging dose. Results: Measurements show that the VOI CBCT method using the dynamic blade system yields an increase in contrast-to-noise ratio by a factor of approximately 2.2. Depending upon the anatomical site, dose was reduced to 15%–80% of the full-field CBCT value along the central axis plane and down to less than 1% out of plane. The use of tube current modulation allowed for specification of a desired SNR within projection data. For approximately the same dose to the VOI, CNR was further increased by a factor of 1.2 for modulated VOI CBCT, giving a combined improvement of 2.6 compared to full-field CBCT. Conclusions: The present dynamic blade system provides significant improvements in CNR for the same

  16. Assessing product image quality for online shopping

    Science.gov (United States)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  17. Evaluation of image-guidance protocols in the treatment of head and neck cancers

    International Nuclear Information System (INIS)

    Zeidan, Omar A.; Langen, Katja M.; Meeks, Sanford L.; Manon, Rafael R.; Wagner, Thomas H.; Willoughby, Twyla R.; Jenkins, D. Wayne; Kupelian, Patrick A.

    2007-01-01

    Purpose: The aim of this study was to assess the residual setup error of different image-guidance (IG) protocols in the alignment of patients with head and neck cancer. The protocols differ in the percentage of treatment fractions that are associated with image guidance. Using data from patients who were treated with daily IG, the residual setup errors for several different protocols are retrospectively calculated. Methods and Materials: Alignment data from 24 patients (802 fractions) treated with daily IG on a helical tomotherapy unit were analyzed. The difference between the daily setup correction and the setup correction that would have been made according to a specific protocol was used to calculate the residual setup errors for each protocol. Results: The different protocols are generally effective in reducing systematic setup errors. Random setup errors are generally not reduced for fractions that are not image guided. As a consequence, if every other treatment is image guided, still about 11% of all treatments (IG and not IG) are subject to three-dimensional setup errors of at least 5 mm. This frequency increases to about 29% if setup errors >3 mm are scored. For various protocols that require 15% to 31% of the treatments to be image guided, from 50% to 60% and from 26% to 31% of all fractions are subject to setup errors >3 mm and >5 mm, respectively. Conclusion: Residual setup errors reduce with increasing frequency of IG during the course of external-beam radiotherapy for head-and-neck cancer patients. The inability to reduce random setup errors for fractions that are not image guided results in notable residual setup errors

  18. The establishment of enteral nutrition with minimally-invasive interventional procedure under endoscopic or imaging guidance

    International Nuclear Information System (INIS)

    Li Feng; Cheng Yingsheng

    2010-01-01

    For patients unable to get the necessary nutrition orally, a variety of techniques,including surgical way, to make gastrostomy with tube placement have been employed. For recent years, gastrostomy and tube placement with the help of endoscopic guidance or percutaneous interventional management has been developed, which is superior to surgical procedure in minimizing injuries, decreasing cost and reducing complications. In certain clinical situations, both endoscopic method and interventional method can be employed. This paper aims to make a comprehensive review of the indications, techniques and skills, advantages and disadvantages of both the endoscopy-guided and the imaging-guided percutaneous gastrojejunostomy for the establishment of enteral nutrition. (authors)

  19. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  20. Image quality analysis of digital mammographic equipments

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, P.; Pascual, A.; Verdu, G. [Valencia Univ. Politecnica, Chemical and Nuclear Engineering Dept. (Spain); Rodenas, F. [Valencia Univ. Politecnica, Applied Mathematical Dept. (Spain); Campayo, J.M. [Valencia Univ. Hospital Clinico, Servicio de Radiofisica y Proteccion Radiologica (Spain); Villaescusa, J.I. [Hospital Clinico La Fe, Servicio de Proteccion Radiologica, Valencia (Spain)

    2006-07-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  1. Image quality analysis of digital mammographic equipments

    International Nuclear Information System (INIS)

    Mayo, P.; Pascual, A.; Verdu, G.; Rodenas, F.; Campayo, J.M.; Villaescusa, J.I.

    2006-01-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  2. Quality assurance for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Marinello, Ginette

    2008-01-01

    The topics discussed include, among others, the following: Quality assurance program; Image guided radiotherapy; Commissioning and quality assurance; Check of agreement between visual and displayed scales; quality controls: electronic portal imaging device (EPID), MV-kV and kV-kV, cone-beam CT (CBCT), patient doses. (P.A.)

  3. PET/CT Atlas on Quality Control and Image Artefacts

    International Nuclear Information System (INIS)

    2014-01-01

    Combined positron emission tomography (PET)/computed tomography (CT) imaging has become a routine procedure in diagnostic radiology and nuclear medicine. The clinical review of both PET and PET/CT images requires a thorough understanding of the basics of image formation as well as an appreciation of variations of inter-patient and intra-patient image appearance. Such variations may be caused by variations in tracer accumulation and metabolism, and, perhaps more importantly, by image artefacts related to methodological pitfalls of the two modalities. This atlas on quality control (QC) and PET/CT artefacts provides guidance on typical image distortions in clinical PET/CT usage scenarios. A number of cases are presented to provide nuclear medicine and radiology professionals with an assortment of examples of possible image distortions and errors in order to support the correct interpretation of images. About 70 typical PET and PET/CT cases, comprised of image sets and cases, have been collected in this book, and all have been catalogued and have explanations as to the causes of and solutions to each individual image problem. This atlas is intended to be used as a guide on how to take proper QC measures, on performing situation and problem analysis, and on problem prevention. This book will be especially useful to medical physicists, physicians, technologists and service engineers in the clinical field

  4. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Eccles, Cynthia; Bissonnette, Jean-Pierre; Brock, Kristy K.

    2005-01-01

    Purpose: A six-fraction, high-precision radiotherapy protocol for unresectable liver cancer has been developed in which active breathing control (ABC) is used to immobilize the liver and daily megavoltage (MV) imaging and repositioning is used to decrease geometric uncertainties. We report the accuracy of setup in the first 20 patients consecutively treated using this approach. Methods and materials: After setup using conventional skin marks and lasers, orthogonal MV images were acquired with the liver immobilized using ABC. The images were aligned to reference digitally reconstructed radiographs using the diaphragm for craniocaudal (CC) alignment and the vertebral bodies for anterior-posterior (AP) and mediolateral (ML) alignment. Adjustments were made for positioning errors >3 mm. Verification imaging was repeated after repositioning to assess for residual positioning error. Offline image matching was conducted to determine the setup accuracy using this approach compared with the initial setup error before repositioning. Real-time beam's-eye-view MV movies containing an air-diaphragm interface were also evaluated. Results: A total of 405 images were evaluated from 20 patients. Repositioning occurred in 109 of 120 fractions because of offsets >3 mm. Three to eight beam angles, with up to four segments per field, were used for each isocenter. Breath holds of up to 27 s were used for imaging and treatment. The average time from the initial verification image to the last treatment beam was 21 min. Image guidance and repositioning reduced the population random setup errors (σ) from 6.5 mm (CC), 4.2 mm (ML), and 4.7 mm (AP) to 2.5 mm (CC), 2.8 mm (ML), and 2.9 mm (AP). The average individual random setup errors (σ) were reduced from 4.5 mm (CC), 3.2 mm (AP), and 2.5 mm (ML) to 2.2 mm (CC), 2.0 mm (AP), and 2.0 mm (ML). The standard deviation of the distribution of systematic deviations (Σ) was also reduced from 5.1 mm (CC), 3.4 mm (ML), and 3.1 mm (AP) to 1.4 mm (CC

  5. Improving image quality in portal venography with spectral CT imaging

    International Nuclear Information System (INIS)

    Zhao, Li-qin; He, Wen; Li, Jian-ying; Chen, Jiang-hong; Wang, Ke-yang; Tan, Li

    2012-01-01

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  6. Improving image quality in portal venography with spectral CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-qin, E-mail: zhaolqzr@sohu.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); He, Wen, E-mail: hewen1724@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Li, Jian-ying, E-mail: jianying.li@med.ge.com [CT Advanced Application and Research, GE Healthcare, 100176 China (China); Chen, Jiang-hong, E-mail: chenjianghong1973@hotmail.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Wang, Ke-yang, E-mail: ke7ke@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Tan, Li, E-mail: Litan@ge.com [CT product, GE Healthcare, 100176 China (China)

    2012-08-15

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  7. Process perspective on image quality evaluation

    Science.gov (United States)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  8. Balancing patient dose and image quality

    International Nuclear Information System (INIS)

    Martin, C.J.; Sutton, D.G.; Sharp, P.F.

    1999-01-01

    The formation of images in diagnostic radiology involves a complex interdependence of many factors. The ideal balance is to obtain an image which is adequate for the clinical purpose with the minimum radiation dose. Factors which affect radiation dose and image quality can be grouped under three headings; radiation quality, photon fluence and removal of scattered radiation. If optimal performance is to be achieved, it is necessary to understand how these factors influence image formation and affect radiation dose, and apply methodology for image quality and dose analysis at each stage in the development and use of X-ray equipment

  9. Assessment of compliance costs resulting from implementation of the proposed Great Lakes water quality guidance

    International Nuclear Information System (INIS)

    Fenner, K.; Podar, M.; Snyder, B.

    1993-01-01

    The primary purpose of the study was to develop an estimate of the incremental cost to direct dischargers resulting from the implementation of the proposed Great Lakes Water Quality Guidance (GLWQG). This estimate reflects the incremental cost of complying with permit requirements developed using the Implementation Procedures and water quality criteria proposed in the GLWQG versus permit requirements based on existing State water quality standards. Two secondary analyses were also performed, one to develop a preliminary estimate of the costs that would be incurred by indirect dischargers to publicly owned treatment works (POTWs), and another to evaluate the cost-effectiveness of the GLWQG. Finally, several sensitivity analyses were performed to evaluate the impact of several major assumptions on the estimated compliance costs. To estimate compliance costs, permit limitations and conditions based on existing State water quality standards were compared to water quality-based limitations and conditions based on the proposed GLWQG criteria and Implementation Procedures for a sample of plants. The control measures needed to comply with the proposed GLWQG-based effluent limitations were evaluated. Individual plant compliance costs were estimated for these control measures based on information on treatment technology and cost analyses available in the literature. An overall compliance cost was projected from the sample based on statistical methods

  10. Image quality assessment using deep convolutional networks

    Science.gov (United States)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  11. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  12. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  13. Hyperspectral Image Analysis of Food Quality

    DEFF Research Database (Denmark)

    Arngren, Morten

    inspection.Near-infrared spectroscopy can address these issues by offering a fast and objectiveanalysis of the food quality. A natural extension to these single spectrumNIR systems is to include image information such that each pixel holds a NIRspectrum. This augmented image information offers several......Assessing the quality of food is a vital step in any food processing line to ensurethe best food quality and maximum profit for the farmer and food manufacturer.Traditional quality evaluation methods are often destructive and labourintensive procedures relying on wet chemistry or subjective human...... extensions to the analysis offood quality. This dissertation is concerned with hyperspectral image analysisused to assess the quality of single grain kernels. The focus is to highlight thebenefits and challenges of using hyperspectral imaging for food quality presentedin two research directions. Initially...

  14. Image quality at synthetic brain magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cho, Seung Hyun; Kim, Won Hwa; Kim, Hye Jung [Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Choi, Young Hun; Cheon, Jung-Eun; Kim, In-One [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun-Hae [Ewha Womans University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun-Kyoung [Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of); Park, Sook-Hyun [Kyungpook National University Hospital, Department of Pediatrics, Daegu (Korea, Republic of); Hwang, Moon Jung [GE Healthcare, MR Applications and Workflow, Seoul (Korea, Republic of)

    2017-11-15

    The clinical application of the multi-echo, multi-delay technique of synthetic magnetic resonance imaging (MRI) generates multiple sequences in a single acquisition but has mainly been used in adults. To evaluate the image quality of synthetic brain MR in children compared with that of conventional images. Twenty-nine children (median age: 6 years, range: 0-16 years) underwent synthetic and conventional imaging. Synthetic (T2-weighted, T1-weighted and fluid-attenuated inversion recovery [FLAIR]) images with settings matching those of the conventional images were generated. The overall image quality, gray/white matter differentiation, lesion conspicuity and image degradations were rated on a 5-point scale. The relative contrasts were assessed quantitatively and acquisition times for the two imaging techniques were compared. Synthetic images were inferior due to more pronounced image degradations; however, there were no significant differences for T1- and T2-weighted images in children <2 years old. The quality of T1- and T2-weighted images were within the diagnostically acceptable range. FLAIR images showed greatly reduced quality. Gray/white matter differentiation was comparable or better in synthetic T1- and T2-weighted images, but poorer in FLAIR images. There was no effect on lesion conspicuity. Synthetic images had equal or greater relative contrast. Acquisition time was approximately two-thirds of that for conventional sequences. Synthetic T1- and T2-weighted images were diagnostically acceptable, but synthetic FLAIR images were not. Lesion conspicuity and gray/white matter differentiation were comparable to conventional MRI. (orig.)

  15. A multimodal imaging framework for enhanced robot-assisted partial nephrectomy guidance

    Science.gov (United States)

    Halter, Ryan J.; Wu, Xiaotian; Hartov, Alex; Seigne, John; Khan, Shadab

    2015-03-01

    Robot-assisted laparoscopic partial nephrectomies (RALPN) are performed to treat patients with locally confined renal carcinoma. There are well-documented benefits to performing partial (opposed to radical) kidney resections and to using robot-assisted laparoscopic (opposed to open) approaches. However, there are challenges in identifying tumor margins and critical benign structures including blood vessels and collecting systems during current RALPN procedures. The primary objective of this effort is to couple multiple image and data streams together to augment visual information currently provided to surgeons performing RALPN and ultimately ensure complete tumor resection and minimal damage to functional structures (i.e. renal vasculature and collecting systems). To meet this challenge we have developed a framework and performed initial feasibility experiments to couple pre-operative high-resolution anatomic images with intraoperative MRI, ultrasound (US) and optical-based surface mapping and kidney tracking. With these registered images and data streams, we aim to overlay the high-resolution contrast-enhanced anatomic (CT or MR) images onto the surgeon's view screen for enhanced guidance. To date we have integrated the following components of our framework: 1) a method for tracking an intraoperative US probe to extract the kidney surface and a set of embedded kidney markers, 2) a method for co-registering intraoperative US scans with pre-operative MR scans, and 3) a method for deforming pre-op scans to match intraoperative scans. These components have been evaluated through phantom studies to demonstrate protocol feasibility.

  16. IMAGE QUALITY FORECASTING FOR SPACE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2013-05-01

    Full Text Available The article deals with an approach to quality predicting of the space objects images, which can be used to plan optoelectronic systems of remote sensing satellites work programs. The proposed approach is based on evaluation of the optoelectronic equipment transfer properties and calculation of indexes images quality considering the influence of the orbital shooting conditions.

  17. Image quality and dose in computed tomography

    International Nuclear Information System (INIS)

    Jurik, A.G.; Jessen, K.A.; Hansen, J.

    1997-01-01

    Radiation exposure to the patient during CT is relatively high, and it is therefore important to optimize the dose so that it is as low as possible but still consistent with required diagnostic image quality. There is no established method for measuring diagnostic image quality; therefore, a set of image quality criteria which must be fulfilled for optimal image quality was defined for the retroperitoneal space and the mediastinum. The use of these criteria for assessment of image quality was tested based on 113 retroperitoneal and 68 mediastinal examinations performed in seven different CT units. All the criteria, except one, were found to be usable for measuring diagnostic image quality. The fulfilment of criteria was related to the radiation dose given in the different departments. By examination of the retroperitoneal space the effective dose varied between 5.1 and 20.0 mSv (milli Sievert), and there was a slight correlation between dose and high percent of ''yes'' score for the image quality criteria. For examination of the mediastinum the dose range was 4.4-26.5 mSv, and there was no significant increment of image quality at high doses. The great variation of dose at different CT units was due partly to differences regarding the examination procedure, especially the number of slices and the mAs (milli ampere second), but inherent dose variation between different scanners also played a part. (orig.). With 6 figs., 6 tabs

  18. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    International Nuclear Information System (INIS)

    Sweeney, Reinhart A; Seubert, Benedikt; Stark, Silke; Homann, Vanessa; Müller, Gerd; Flentje, Michael; Guckenberger, Matthias

    2012-01-01

    To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors. Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs) and three radiotherapy technicians (RTTs). Image-guidance using respiration correlated 4D-CBCT (IG-4D) with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1) manual registration of the planning internal target volume (ITV) contour and the motion blurred tumor in the 3D-CBCT (IG-ITV); 2) automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D). Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector) on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was significantly larger in IG using 3D-CBCT compared to 4D-CBCT: 0.6 mm versus 1.5 mm

  19. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  20. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  1. Quality Control in Mammography: Image Quality and Patient Doses

    International Nuclear Information System (INIS)

    Ciraj Bjelac, O.; Arandjic, D.; Boris Loncar, B.; Kosutic, D.

    2008-01-01

    Mammography is method of choice for early detection of breast cancer. The purpose of this paper is preliminary evaluation the mammography practice in Serbia, in terms of both quality control indicators, i.e. image quality and patient doses. The survey demonstrated considerable variations in technical parameters that affect image quality and patients doses. Mean glandular doses ranged from 0.12 to 2.8 mGy, while reference optical density ranged from 1.2 to 2.8. Correlation between image contrast and mean glandular doses was demonstrated. Systematic implementation of quality control protocol should provide satisfactory performance of mammography units and maintain satisfactory image quality and keep patient doses as low as reasonably practicable. (author)

  2. An image guidance system for positioning robotic cochlear implant insertion tools

    Science.gov (United States)

    Bruns, Trevor L.; Webster, Robert J.

    2017-03-01

    Cochlear implants must be inserted carefully to avoid damaging the delicate anatomical structures of the inner ear. This has motivated several approaches to improve the safety and efficacy of electrode array insertion by automating the process with specialized robotic or manual insertion tools. When such tools are used, they must be positioned at the entry point to the cochlea and aligned with the desired entry vector. This paper presents an image guidance system capable of accurately positioning a cochlear implant insertion tool. An optical tracking system localizes the insertion tool in physical space while a graphical user interface incorporates this with patient- specific anatomical data to provide error information to the surgeon in real-time. Guided by this interface, novice users successfully aligned the tool with an mean accuracy of 0.31 mm.

  3. Impact of Image Guidance on Outcomes After External Beam Radiotherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Reddy, Chandana A.; Klein, Eric A.; Mahadevan, Arul

    2008-01-01

    Purpose: To verify whether rectal distention at the time of planning impacts outcomes in patients with localized prostate cancer treated with daily image guidance. Methods and Materials: Between 1998 and 2002, a total of 488 prostate cancer patients were treated with intensity-modulated radiotherapy. The radiation dose was 70 Gy delivered at 2.5 Gy per fraction in all cases. All cases were treated with a 4-mm margin posteriorly. In all cases the total rectal volume documented on the CT scan was used for treatment planning. No special bowel preparation instructions were given, either for the simulation or the daily treatments. Before each daily treatment, alignment of the prostate was performed with the B-mode acquisition and targeting (BAT) transabdominal ultrasound system. The median follow-up for all 488 patients was 60 months (range, 24-96 months). Results: For all patients the biochemical relapse-free survival (bRFS) rate at 5 years was 86%. The 5-year bRFS rate for the rectal distention 3 , 50 to 3 , and ≥100 cm 3 groups was 90%, 83%, and 85%, respectively (p = 0.18). To adjust for other potential variables affecting bRFS rates, a multivariate time-to-failure analysis using the Cox proportional hazards model was performed. Rectal distention was not an independent predictor of biochemical failure on multivariate analysis (p = 0.80). Rectal distention was not a predictor of rectal or urinary toxicity. Conclusion: The use of daily image guidance eliminates errors such as rectal distention at the initial planning stage that can affect outcomes after radiotherapy for localized prostate cancer

  4. Analog and digital image quality:

    OpenAIRE

    Sardo, Alberto

    2004-01-01

    Background. Lastly the X ray facilities are moving to a slow, but continuous process of digitalization. The dry laser printers allow hardcopy images with optimum resolution and contrast for all the modalities. In breast imaging, thedelay of digitalization depends to the high cost of digital systems and, attimes, to the doubts of the diagnostic accuracy of reading the breast digital images. Conclusions. The Screen film mammography (SFM) is the most efficient diagnostic modality to detect the b...

  5. MRI quality control: six imagers studied using eleven unified image quality parameters

    International Nuclear Information System (INIS)

    Ihalainen, T.; Sipilae, O.; Savolainen, S.

    2004-01-01

    Quality control of the magnetic resonance imagers of different vendors in the clinical environment is non-harmonised, and comparing the performance is difficult. The purpose of this study was to develop and apply a harmonised long-term quality control protocol for the six imagers in our organisation in order to assure that they fulfil the same basic image quality requirements. The same Eurospin phantom set and identical imaging parameters were used with each imager. Values of 11 comparable parameters describing the image quality were measured. Automatic image analysis software was developed to objectively analyse the images. The results proved that the imagers were operating at a performance level adequate for clinical imaging. Some deficiencies were detected in image uniformity and geometry. The automated analysis of the Eurospin phantom images was successful. The measurements were successfully repeated after 2 weeks on one imager and after half a year on all imagers. As an objective way of examining the image quality, this kind of comparable and objective quality control of different imagers is considered as an essential step towards harmonisation of the clinical MRI studies through a large hospital organisation. (orig.)

  6. Continuous monitoring of prostate position using stereoscopic and monoscopic kV image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. Tynan R.; Parsons, Dave D.; Robar, James L. [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada and Nova Scotia Cancer Centre, QEII Health Science Centre, Halifax, Nova Scotia B3H 2Y9 (Canada)

    2016-05-15

    Purpose: To demonstrate continuous kV x-ray monitoring of prostate motion using both stereoscopic and monoscopic localizations, assess the spatial accuracy of these techniques, and evaluate the dose delivered from the added image guidance. Methods: The authors implemented both stereoscopic and monoscopic fiducial localizations using a room-mounted dual oblique x-ray system. Recently developed monoscopic 3D position estimation techniques potentially overcome the issue of treatment head interference with stereoscopic imaging at certain gantry angles. To demonstrate continuous position monitoring, a gold fiducial marker was placed in an anthropomorphic phantom and placed on the Linac couch. The couch was used as a programmable translation stage. The couch was programmed with a series of patient prostate motion trajectories exemplifying five distinct categories: stable prostate, slow drift, persistent excursion, transient excursion, and high frequency excursions. The phantom and fiducial were imaged using 140 kVp, 0.63 mAs per image at 1 Hz for a 60 s monitoring period. Both stereoscopic and monoscopic 3D localization accuracies were assessed by comparison to the ground-truth obtained from the Linac log file. Imaging dose was also assessed, using optically stimulated luminescence dosimeter inserts in the phantom. Results: Stereoscopic localization accuracy varied between 0.13 ± 0.05 and 0.33 ± 0.30 mm, depending on the motion trajectory. Monoscopic localization accuracy varied from 0.2 ± 0.1 to 1.1 ± 0.7 mm. The largest localization errors were typically observed in the left–right direction. There were significant differences in accuracy between the two monoscopic views, but which view was better varied from trajectory to trajectory. The imaging dose was measured to be between 2 and 15 μGy/mAs, depending on location in the phantom. Conclusions: The authors have demonstrated the first use of monoscopic localization for a room-mounted dual x-ray system. Three

  7. PLEIADES-HR IMAGE QUALITY COMMISSIONING

    Directory of Open Access Journals (Sweden)

    L. Lebègue

    2012-07-01

    Full Text Available PLEIADES is the highest resolution civilian earth observing system ever developed in Europe. This imagery program is conducted by the French National Space Agency, CNES. It operates since 2012 a first satellite PLEIADES-HR launched on 2011 December 17th, a second one should be launched by the end of the year. Each satellite is designed to provide optical 70 cm resolution coloured images to civilian and defence users. The Image Quality requirements were defined from users studies from the different spatial imaging applications, taking into account the trade-off between on-board technological complexity and ground processing capacity. The assessment of the image quality and the calibration operation have been performed by CNES Image Quality team during the 6 month commissioning phase that followed the satellite launch. These activities cover many topics gathered in two families : radiometric and geometric image quality. The new capabilities offered by PLEIADES-HR agility allowed to imagine new methods of image calibration and performance assessment. Starting from an overview of the satellite characteristics, this paper presents all the calibration operations that were conducted during the commissioning phase and also gives the main results for every image quality performance.

  8. Paediatric x-ray radiation dose reduction and image quality analysis.

    Science.gov (United States)

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  9. Paediatric x-ray radiation dose reduction and image quality analysis

    International Nuclear Information System (INIS)

    Martin, L; Ruddlesden, R; Mistry, T; Starritt, H; Makepeace, C; Robinson, L

    2013-01-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%–55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children. (paper)

  10. Image quality in coronary computed tomography angiography

    DEFF Research Database (Denmark)

    Precht, Helle; Gerke, Oke; Thygesen, Jesper

    2018-01-01

    Background Computed tomography (CT) technology is rapidly evolving and software solution developed to optimize image quality and/or lower radiation dose. Purpose To investigate the influence of adaptive statistical iterative reconstruction (ASIR) at different radiation doses in coronary CT...

  11. Quality control of imaging devices

    International Nuclear Information System (INIS)

    Soni, P.S.

    1992-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine service. It would include patient scheduling, radiopharmaceutical preparation and dispensing, radiation protection of patients, staff and general public, preventive maintenance and the care of instruments, methodology, data interpretation and records keeping, and many other small things which contribute directly or indirectly to the overall quality of a nuclear medicine service in a hospital. Quality Control, on the other hand, refers to a signal component of the system and is usually applied in relation to a specific instrument and its performance

  12. Quality measures in applications of image restoration.

    Science.gov (United States)

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.

  13. High-quality compressive ghost imaging

    Science.gov (United States)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  14. Tradeoffs between image quality and dose

    International Nuclear Information System (INIS)

    Seibert, J.A.

    2004-01-01

    Image quality takes on different perspectives and meanings when associated with the concept of as low as reasonably achievable (ALARA), which is chiefly focused on radiation dose delivered as a result of a medical imaging procedure. ALARA is important because of the increased radiosensitivity of children to ionizing radiation and the desire to keep the radiation dose low. By the same token, however, image quality is also important because of the need to provide the necessary information in a radiograph in order to make an accurate diagnosis. Thus, there are tradeoffs to be considered between image quality and radiation dose, which is the main topic of this article. ALARA does not necessarily mean the lowest radiation dose, nor, when implemented, does it result in the least desirable radiographic images. With the recent widespread implementation of digital radiographic detectors and displays, a new level of flexibility and complexity confronts the technologist, physicist, and radiologist in optimizing the pediatric radiography exam. This is due to the separation of the acquisition, display, and archiving events that were previously combined by the screen-film detector, which allows for compensation for under- and overexposures, image processing, and on-line image manipulation. As explained in the article, different concepts must be introduced for a better understanding of the tradeoffs encountered when dealing with digital radiography and ALARA. In addition, there are many instances during the image acquisition/display/interpretation process in which image quality and associated dose can be compromised. This requires continuous diligence to quality control and feedback mechanisms to verify that the goals of image quality, dose and ALARA are achieved. (orig.)

  15. Psychophysical evaluation of image quality : from judgment to impression

    NARCIS (Netherlands)

    Ridder, de H.; Rogowitz, B.E.; Pappas, T.N.

    1998-01-01

    Designs of imaging systems, image processing algorithms etc. usually take for granted that methods for assessing perceived image quality produce unbiased estimates of the viewers' quality impression. Quality judgments, however, are affected by the judgment strategies induced by the experimental

  16. Image Quality Assessment via Quality-aware Group Sparse Coding

    Directory of Open Access Journals (Sweden)

    Minglei Tong

    2014-12-01

    Full Text Available Image quality assessment has been attracting growing attention at an accelerated pace over the past decade, in the fields of image processing, vision and machine learning. In particular, general purpose blind image quality assessment is technically challenging and lots of state-of-the-art approaches have been developed to solve this problem, most under the supervised learning framework where the human scored samples are needed for training a regression model. In this paper, we propose an unsupervised learning approach that work without the human label. In the off-line stage, our method trains a dictionary covering different levels of image quality patch atoms across the training samples without knowing the human score, where each atom is associated with a quality score induced from the reference image; at the on-line stage, given each image patch, our method performs group sparse coding to encode the sample, such that the sample quality can be estimated from the few labeled atoms whose encoding coefficients are nonzero. Experimental results on the public dataset show the promising performance of our approach and future research direction is also discussed.

  17. Quality assurance in diagnostic radiology - assessing the fluoroscopic image quality

    International Nuclear Information System (INIS)

    Tabakov, S.

    1995-01-01

    The X-ray fluoroscopic image has a considerably lower resolution than the radiographic one. This requires a careful quality control aiming at optimal use of the fluoroscopic equipment. The basic procedures for image quality assessment of Image Intensifier/TV image are described. Test objects from Leeds University (UK) are used as prototypes. The results from examining 50 various fluoroscopic devices are shown. Their limiting spatial resolution varies between 0.8 lp/mm (at maximum II field size) and 2.24 lp/mm (at minimum field size). The mean value of the limiting spatial resolution for a 23 cm Image Intensifier is about 1.24 lp/mm. The mean limits of variation of the contrast/detail diagram for various fluoroscopic equipment are graphically expressed. 14 refs., 1 fig. (author)

  18. Improving Access to Quality Care in Family Planning: WHO's Four Cornerstones of Evidence-based Guidance

    Institute of Scientific and Technical Information of China (English)

    Shang-chun WU; Yan ZOU; K Church; O Meirik

    2007-01-01

    The four cornerstones of guidance in technique service of family planning are established by WHO based on high quality evidences. They have been updated according to the appearing new evidences, and the consensuses were reached by the international experts in this field. The four documents include Medical Eligibility Criteria for Contraceptive Use, Selected Practice Recommendations for Contraceptive Use, Decision-making Tool for Family Planning Clients and Providers and The Global Handbook for Family Planning Providers. The first two documents mainlyface to the policy-makers and programme managers and were treated as the important references for creating the local guideline. The other two documents were developed for the front-line health-care and family planning providers at different levels, which include plenty of essential technical information to help providers improve their ability in service delivery and counselling. China paid great attention to the introduction and application of WHO guidelines. As soon as the newer editions of these documents were available, the Chinese version would be followed. WHO guidelines have been primarily adapted with the newly issued national guideline, The Clinical Practical Skill Guidelines- Family Planning Part, which was established by China Medical Association. At the same time, the WHO guidelines have been introduced to some of the linicians and family planning providers at different levels. In the future, more special training courses will be introduced to the township level based on the needs of grassroot providers.

  19. Retinal image quality assessment based on image clarity and content

    Science.gov (United States)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  20. The specific effect of metronome guidance on the quality of one-person cardiopulmonary resuscitation and rescuer fatigue.

    Science.gov (United States)

    Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Cho, Young Soon; Chung, Sung Phil; Park, Incheol; Kim, Seung Ho

    2012-12-01

    Metronome guidance is a simple and economic feedback method of guiding cardiopulmonary resuscitation (CPR). It has been proven for its usefulness in regulating the rate of chest compression and ventilation, but it is not yet clear how metronome use may affect compression depth or rescuer fatigue. The aim of this study was to assess the specific effect that metronome guidance has on the quality of CPR and rescuer fatigue. One-person CPRs were performed by senior medical students on Resusci Anne® manikins (Laerdal, Stavanger, Norway) with personal-computer skill-reporting systems. Half of the students performed CPR with metronome guidance and the other half without. CPR performance data, duration, and before-after trial differences in mean arterial pressure (MAP) and heart rate (HR) were compared between groups. Average compression depth (ACD) of the first five cycles, compression rate, no-flow fraction, and ventilation count were significantly lower in the metronome group (p=0.028, Metronome guidance is associated with lower chest compression depth of the first five cycles, while shortening the no-flow fraction and the ventilation count in a simulated one-person CPR model. Metronome guidance does not have an obvious effect of intensifying rescuer fatigue. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Image quality evaluation of full reference algorithm

    Science.gov (United States)

    He, Nannan; Xie, Kai; Li, Tong; Ye, Yushan

    2018-03-01

    Image quality evaluation is a classic research topic, the goal is to design the algorithm, given the subjective feelings consistent with the evaluation value. This paper mainly introduces several typical reference methods of Mean Squared Error(MSE), Peak Signal to Noise Rate(PSNR), Structural Similarity Image Metric(SSIM) and feature similarity(FSIM) of objective evaluation methods. The different evaluation methods are tested by Matlab, and the advantages and disadvantages of these methods are obtained by analyzing and comparing them.MSE and PSNR are simple, but they are not considered to introduce HVS characteristics into image quality evaluation. The evaluation result is not ideal. SSIM has a good correlation and simple calculation ,because it is considered to the human visual effect into image quality evaluation,However the SSIM method is based on a hypothesis,The evaluation result is limited. The FSIM method can be used for test of gray image and color image test, and the result is better. Experimental results show that the new image quality evaluation algorithm based on FSIM is more accurate.

  2. Quality assurance for electronic portal imaging devices

    International Nuclear Information System (INIS)

    Shalev, S.; Rajapakshe, R.; Gluhchev, G.; Luchka, K.

    1997-01-01

    Electronic portal imaging devices (EPIDS) are assuming an ever-increasing role in the verification of radiation treatment accuracy. They are used both in a passive capacity, for the determination of field displacement distributions (''setup errors''), and also in an active role whereby the patient setup is corrected on the basis of electronic portal images. In spite of their potential impact on the precision of patient treatment, there are few quality assurance procedures available, and most of the EPIDS in clinical use are subject, at best, to only perfunctory quality assurance. The goals of this work are (a) to develop an objective and reproducible test for EPID image quality on the factory floor and during installation of the EPID on site; (b) to provide the user with a simple and accurate tool for acceptance, commissioning, and routine quality control; and (c) to initiate regional, national and international collaboration in the implementation of standardized, objective, and automated quality assurance procedures. To this end we have developed an automated test in which a simple test object is imaged daily, and the spatial and contrast resolution of the EPID are automatically evaluated in terms of ''acceptable'', ''warning'' and ''stop'' criteria. Our experience over two years shows the test to be highly sensitive, reproducible, and inexpensive in time and effort. Inter-institutional trials are under way in Canada, US and Europe which indicate large variations in EPID image quality from one EPID to another, and from one center to another. We expect the new standardized quality assurance procedure to lead to improved, and consistent image quality, increased operator acceptance of the technology, and agreement on uniform standards by equipment suppliers and health care agencies. (author)

  3. Accuracy of cranial coplanar beam therapy using an oblique, stereoscopic x-ray image guidance system

    International Nuclear Information System (INIS)

    Vinci, Justin P.; Hogstrom, Kenneth R.; Neck, Daniel W.

    2008-01-01

    A system for measuring two-dimensional (2D) dose distributions in orthogonal anatomical planes in the cranium was developed and used to evaluate the accuracy of coplanar conformal therapy using ExacTrac image guidance. Dose distributions were measured in the axial, sagittal, and coronal planes using a CIRS (Computerized Imaging Reference Systems, Inc.) anthropomorphic head phantom with a custom internal film cassette. Sections of radiographic Kodak EDR2 film were cut, processed, and digitized using custom templates. Spatial and dosimetric accuracy and precision of the film system were assessed. BrainScan planned a coplanar-beam treatment to conformally irradiate a 2-cm-diameterx2-cm-long cylindrical planning target volume. Prior to delivery, phantom misalignments were imposed in combinations of ±8 mm offsets in each of the principal directions. ExacTrac x-ray correction was applied until the phantom was within an acceptance criteria of 1 mm/1 deg. (first two measurement sets) or 0.4 mm/0.4 deg. (last two measurement sets). Measured dose distributions from film were registered to the treatment plan dose calculations and compared. Alignment errors, displacement between midpoints of planned and measured 70% isodose contours (Δc), and positional errors of the 80% isodose line were evaluated using 49 2D film measurements (98 profiles). Comparison of common, but independent measurements of Δc showed that systematic errors in the measurement technique were 0.2 mm or less along all three anatomical axes and that random error averaged (σ±σ σ ) 0.29±0.06 mm for the acceptance criteria of 1 mm/1 deg. and 0.15±0.02 mm for the acceptance criteria of 0.4 mm/0.4 deg. . The latter was consistent with independent estimates that showed the precision of the measurement system was 0.3 mm (2σ). Values of Δc were as great as 0.9, 0.3, and 1.0 mm along the P-A, R-L, and I-S axes, respectively. Variations in Δc along the P-A axis were correlated to misalignments between laser

  4. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180.

    Science.gov (United States)

    Ding, George X; Alaei, Parham; Curran, Bruce; Flynn, Ryan; Gossman, Michael; Mackie, T Rock; Miften, Moyed; Morin, Richard; Xu, X George; Zhu, Timothy C

    2018-05-01

    With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient. © 2018 American Association of Physicists in Medicine.

  5. Cone-Beam Computed Tomographic Image Guidance for Lung Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Bissonnette, Jean-Pierre; Purdie, Thomas G.; Higgins, Jane A.; Li, Winnie; Bezjak, Andrea

    2009-01-01

    Purpose: To determine the geometric accuracy of lung cancer radiotherapy using daily volumetric, cone-beam CT (CBCT) image guidance and online couch position adjustment. Methods and Materials: Initial setup accuracy using localization CBCT was analyzed in three lung cancer patient cohorts. The first (n = 19) involved patients with early-stage non-small-cell lung cancer (NSCLC) treated using stereotactic body radiotherapy (SBRT). The second (n = 48) and third groups (n = 20) involved patients with locally advanced NSCLC adjusted with manual and remote-controlled couch adjustment, respectively. For each group, the couch position was adjusted when positional discrepancies exceeded ±3 mm in any direction, with the remote-controlled couch correcting all three directions simultaneously. Adjustment accuracy was verified with a second CBCT. Population-based setup margins were derived from systematic (Σ) and random (σ) positional errors for each group. Results: Localization imaging demonstrates that 3D positioning errors exceeding 5 mm occur in 54.5% of all delivered fractions. CBCT reduces these errors; post-correction Σ and σ ranged from 1.2 to 1.9 mm for Group 1, with 82% of all fractions within ±3 mm. For Group 2, Σ and σ ranged between 0.8 and 1.8 mm, with 76% of all treatment fractions within ±3 mm. For Group 3, the remote-controlled couch raised this to 84%, and Σ and σ were reduced to 0.4 to 1.7 mm. For each group, the postcorrection setup margins were 4 to 6 mm, 3 to 4 mm, and 2 to 3 mm, respectively. Conclusions: Using IGRT, high geometric accuracy is achievable for NSCLC patients, potentially leading to reduced PTV margins, improved outcomes and empowering adaptive radiation therapy for lung cancer

  6. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  7. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    International Nuclear Information System (INIS)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre; Le, Lisa W.; Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John; Bezjak, Andrea

    2012-01-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors ≥5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  8. On-line cone beam CT image guidance for vocal cord tumor targeting

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Boer, Hans C.J. de; Astreinidou, Eleftheria; Gangsaas, Anne; Heijmen, Ben J.M.; Levendag, Peter C.

    2009-01-01

    Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation.

  9. Added Value of Contrast-Enhanced Ultrasound on Biopsies of Focal Hepatic Lesions Invisible on Fusion Imaging Guidance.

    Science.gov (United States)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun

    2017-01-01

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5-1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.

  10. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    DEFF Research Database (Denmark)

    Keall, Paul J.; Aun Ng, Jin; O'Brien, Ricky

    2015-01-01

    on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging...... system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal......, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After...

  11. OPP Guidance for Submission of State and Tribal Water Quality Monitoring Data

    Science.gov (United States)

    This guidance describes the process to submit state and tribal surface and groundwater monitoring data for consideration in exposure characterizations for ecological and and human health risk assessments and in risk management decisions for pesticides.

  12. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    International Nuclear Information System (INIS)

    Liu, Y; Campbell, J

    2015-01-01

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  13. Measures of Image Quality. Chapter 4

    Energy Technology Data Exchange (ETDEWEB)

    Maidment, A. D.A. [University of Pennsylvania, Philadelphia (United States)

    2014-09-15

    A medical image is a pictorial representation of a measurement of an object or function of the body. This information can be acquired in one to three spatial dimensions. It can be static or dynamic, meaning that it can also be measured as a function of time. Certain fundamental properties can be associated with all of these data. Firstly, no image can exactly represent the object or function; at best, one has a measurement with an associated error equal to the difference between the true object and the measured image. Secondly, no two images will be identical, even if acquired with the same imaging system of the same anatomic region; this variability is generally referred to as noise. There are many different ways to acquire medical image data; the various mechanisms of acquisition are described in detail in the subsequent chapters. However, regardless of the method of image formation, one must be able to judge the fidelity of the image in an attempt to answer the question “How accurately does the image portray the body or the bodily function?” This judgement falls under the rubric of ‘image quality’. In this chapter, methods of quantifying image quality are described.

  14. Subjective matters: from image quality to image psychology

    Science.gov (United States)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  15. The integrated performance evaluation program quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    EM's (DOE's Environmental Restoration and Waste Management) Integrated Performance Evaluation Program (IPEP) has the purpose of integrating information from existing PE programs with expanded QA activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting EM programs. The guidance addresses the goals of identifying specific PE sample programs and contacts, identifying specific requirements for participation in DOE's internal and external (regulatory) programs, identifying key issues relating to application and interpretation of PE materials for EM headquarters and field office managers, and providing technical guidance covering PE materials for site-specific activities. (PE) Performance Evaluation materials or samples are necessary for the quality assurance/control programs covering environmental data collection

  16. Stereotactic Ablative Radiation Therapy for Subcentimeter Lung Tumors: Clinical, Dosimetric, and Image Guidance Considerations

    International Nuclear Information System (INIS)

    Louie, Alexander V.; Senan, Suresh; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2014-01-01

    tumors with image guidance, and excellent local control

  17. Quality criteria for cardiac images: An update

    International Nuclear Information System (INIS)

    Bernardi, G.; Bar, O.; Jezewski, T.; Vano, E.; Maccia, C.; Trianni, A.; Padovani, R.

    2008-01-01

    The DIMOND II and III Cardiology Groups have agreed on quality criteria for cardiac images and developed a scoring system, to provide a tool to test quality of coronary angiograms, which was demonstrated to be of value in clinical practice. In the last years, digital flat panel technology has been introduced in cardiac angiographic systems and the radiological technique may have been influenced by the better performance of these new detectors. This advance in digital imaging, together with the lesson learned from previous studies, warranted the revision of the quality criteria for cardiac angiographic images as formerly defined. DIMOND criteria were reassessed to allow a simpler evaluation of angiograms. Clinical criteria were simplified and separated from technical criteria. Furthermore, the characteristics of an optimised angiographic technique have been outlined. (authors)

  18. Image Quality in Vascular Radiology

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.

    2005-01-01

    In vascular radiology, the radiologists use the radiological image to diagnose or treat a specific vascular structure. From literature, we know that related doses are high and that large dose variability exists between different hospitals. The application of the optimization principle is therefore necessary and is obliged by the new legislation. So far, very little fieldwork has been performed and no practical instructions are available to do the necessary work. It's indisputable that obtaining quantitative data is of great interest for optimization purposes. In order to gain insight into these doses and the possible measures for dose reduction, we performed a comparative study in 7 hospitals. Patient doses will be measured and calculated for specific procedures in vascular radiology and evaluated against their most influencing parameters. In view of optimization purposes, a protocol for dose audit will be set-up. From the results and conclusions in this study, experimentally based guidelines will be proposed, in order to improve clinical practice in vascular radiology

  19. Image Acquisition and Quality in Digital Radiography.

    Science.gov (United States)

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.

  20. Ultrasound Image Quality Assessment: A framework for evaluation of clinical image quality

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Pedersen, Mads Møller; Nikolov, Svetoslav Ivanov

    2010-01-01

    Improvement of ultrasound images should be guided by their diagnostic value. Evaluation of clinical image quality is generally performed subjectively, because objective criteria have not yet been fully developed and accepted for the evaluation of clinical image quality. Based on recommendation 50...... information, which is fast enough to get sufficient number of scans under realistic operating conditions, so that statistical evaluation is valid and reliable....

  1. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  2. Image Guidance Based on Prostate Position for Prostate Cancer Proton Therapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Wagner, Marcus; Indelicato, Daniel; Fryer, Amber; Horne, David; Chellini, Angela; McKenzie, Craig; Lawlor, Paula; Mahajan, Chaitali; Li Zuofeng; Lin Liyong; Keole, Sameer

    2008-01-01

    Purpose: To determine the target coverage for proton therapy with and without image guidance and daily prebeam reorientation. Methods and Materials: A total of 207 prostate positions were analyzed for 9 prostate cancer patients treated using our low-risk prostate proton therapy protocol (University of Florida Proton Therapy Institute 001). The planning target volume was defined as the prostate plus a 5-mm axial and 8-mm superoinferior extension. The prostate was repositioned using 5- and 10-mm shifts (anteriorly, inferiorly, posteriorly, and superiorly) and for Points A-D using a combination of 10-mm multidimensional movements (anteriorly or inferiorly; posteriorly or superiorly; and left or right). The beams were then realigned using the new prostate position. The prescription dose was 78 Gray equivalent (GE) to 95% of the planning target volume. Results: For small movements in the anterior, inferior, and posterior directions within the planning target volume (≤5 mm), treatment realignment demonstrated small, but significant, improvements in the clinical target volume (CTV) coverage to the prescribed dose (78 GE). The anterior and posterior shifts also significantly increased the minimal CTV dose (Δ +1.59 GE). For prostate 10-mm movements in the inferior, posterior, and superior directions, the beam realignment produced larger and significant improvements for both the CTV V 78 (Δ +6.4%) and the CTV minimal dose (Δ +8.22 GE). For the compounded 10-mm multidimensional shifts, realignment significantly improved the CTV V 78 (Δ +11.8%) and CTV minimal dose (Δ +23.6 GE). After realignment, the CTV minimal dose was >76.6 GE (>98%) for all points (A-D). Conclusion: Proton beam realignment after target shift will enhance CTV coverage for different prostate positions

  3. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  4. Saliency image of feature building for image quality assessment

    Science.gov (United States)

    Ju, Xinuo; Sun, Jiyin; Wang, Peng

    2011-11-01

    The purpose and method of image quality assessment are quite different for automatic target recognition (ATR) and traditional application. Local invariant feature detectors, mainly including corner detectors, blob detectors and region detectors etc., are widely applied for ATR. A saliency model of feature was proposed to evaluate feasibility of ATR in this paper. The first step consisted of computing the first-order derivatives on horizontal orientation and vertical orientation, and computing DoG maps in different scales respectively. Next, saliency images of feature were built based auto-correlation matrix in different scale. Then, saliency images of feature of different scales amalgamated. Experiment were performed on a large test set, including infrared images and optical images, and the result showed that the salient regions computed by this model were consistent with real feature regions computed by mostly local invariant feature extraction algorithms.

  5. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    International Nuclear Information System (INIS)

    Kenton, O; Valdes, G; Yin, L; Teo, B; Brousmiche, S; Wikler, D

    2015-01-01

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality

  6. Image quality in digital radiographic systems

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2003-01-01

    Full Text Available The aim of the present study was to evaluate the image quality of four direct digital radiographic systems. Radiographs were made of the maxillary central incisor and mandibular left molar regions of a dry skull, and an aluminum step-wedge. The X-ray generator operated at 10 mA, 60 and 70 kVp, and images were acquired with 3, 5, 8, 12, 24 and 48 exposure pulses. Six well-trained observers classified the images by means of scores from 1 to 3. Collected data were submitted to nonparametric statistical analysis using Fisher's exact test. Statistical analysis showed significant differences (p<0.01 in image quality with the four systems. Based on the results, it was possible to conclude that: 1 all of the digital systems presented good performance in producing acceptable images for diagnosis, if the exposures of the step-wedge and the maxillary central incisor region were made at 5 pulses, as well as at 8 pulses for the mandibular left molar region, selecting 60 or 70kVp; 2 higher percentages of acceptable images were obtained with the administration of lower radiation doses in CCD-sensors (charge-coupled device; 3 the Storage Phosphor systems produced acceptable images at a large range of exposure settings, that included low, intermediate and high radiation doses.

  7. Comparison of the guidance documents in support of EU risk assessments with those for the derivation of EU water quality standards

    NARCIS (Netherlands)

    Vos JH; Janssen MPM; SEC

    2005-01-01

    Risks of both new and existing substances and of biocides in Europe are being evaluated using the Technical Guidance Document (TGD). The European Water Framework Directive refers to this document for establishing Environmental Quality Standards (EQSs) for water. Another guidance document for the

  8. Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

    Science.gov (United States)

    Gu, Ke; Tao, Dacheng; Qiao, Jun-Fei; Lin, Weisi

    2018-04-01

    In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

  9. Review of Image Quality Measures for Solar Imaging

    Science.gov (United States)

    Popowicz, Adam; Radlak, Krystian; Bernacki, Krzysztof; Orlov, Valeri

    2017-12-01

    Observations of the solar photosphere from the ground encounter significant problems caused by Earth's turbulent atmosphere. Before image reconstruction techniques can be applied, the frames obtained in the most favorable atmospheric conditions (the so-called lucky frames) have to be carefully selected. However, estimating the quality of images containing complex photospheric structures is not a trivial task, and the standard routines applied in nighttime lucky imaging observations are not applicable. In this paper we evaluate 36 methods dedicated to the assessment of image quality, which were presented in the literature over the past 40 years. We compare their effectiveness on simulated solar observations of both active regions and granulation patches, using reference data obtained by the Solar Optical Telescope on the Hinode satellite. To create images that are affected by a known degree of atmospheric degradation, we employed the random wave vector method, which faithfully models all the seeing characteristics. The results provide useful information about the method performances, depending on the average seeing conditions expressed by the ratio of the telescope's aperture to the Fried parameter, D/r0. The comparison identifies three methods for consideration by observers: Helmli and Scherer's mean, the median filter gradient similarity, and the discrete cosine transform energy ratio. While the first method requires less computational effort and can be used effectively in virtually any atmospheric conditions, the second method shows its superiority at good seeing (D/r0<4). The third method should mainly be considered for the post-processing of strongly blurred images.

  10. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    International Nuclear Information System (INIS)

    Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia

    2015-01-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)

  11. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    Science.gov (United States)

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  12. The effective quality assurance for image guided device using the AMC G-Box

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chong Mi [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    According to the rapid increase recently in image-guided radiation therapy, It is necessary to control of the image guidance system completely. In particular for the main subject to the accuracy of image guided radiation therapy device to be done essentially the quality assurance. We made efficient phantom in AMC for the management of the accurate and efficient. By setting up of five very important as a quality assurance inventory of the Image guidance system, we made (AMC G-Box) phantom for quality assurance efficient and accurate. Quality assurance list were the Iso-center align, the real measurement, the center align of four direction, the accuracy of table movement and the reproducibility of Hounsfield Unit. The rectangular phantom; acrylic with a thickness of 1 cm to 10 cm × 10 cm × 10 cm was inserted the three materials with different densities respectively for measure the CBCT HU. The phantom was to perform a check of consistency centered by creating a marker that indicates the position of the center fixed. By performing the quality assurance using the phantom of existing, comparing the resulting value to the different resulting value using the AMC G-Box, experiment was analyzed time and problems. Therapy equipment was used Varian device. It was measured twice at 1-week intervals. When implemented quality assurance of an image guidance system using AMC G-Box and a phantom existing has been completed, the quality assurance result is similar in 0.2 mm ± 0.1. In the case of the conventional method, it was 45 minutes at 30 minutes. When using AMC G-Box, it takes 20 minutes 15 minutes, and declined to 50% of the time. The consistency and accurate of image guidance system tend to decline using device. Therefore, We need to perform thoroughly on the quality assurance related. It needs to be checked daily to consistency check especially. When using the AMC G-Box, It is possible to enhance the accuracy of the patient care and equipment efficiently performing

  13. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    International Nuclear Information System (INIS)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-01-01

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 μm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 μm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154±113 μm. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  14. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  15. Fourier transform based scalable image quality measure.

    Science.gov (United States)

    Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien

    2012-08-01

    We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

  16. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    Directory of Open Access Journals (Sweden)

    Sweeney Reinhart A

    2012-06-01

    Full Text Available Abstract Background To analyze the accuracy and inter-observer variability of image-guidance (IG using 3D or 4D cone-beam CT (CBCT technology in stereotactic body radiotherapy (SBRT for lung tumors. Materials and methods Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs and three radiotherapy technicians (RTTs. Image-guidance using respiration correlated 4D-CBCT (IG-4D with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1 manual registration of the planning internal target volume (ITV contour and the motion blurred tumor in the 3D-CBCT (IG-ITV; 2 automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D. Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was

  17. REMOTE SENSING IMAGE QUALITY ASSESSMENT EXPERIMENT WITH POST-PROCESSING

    Directory of Open Access Journals (Sweden)

    W. Jiang

    2018-04-01

    Full Text Available This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  18. WE-E-BRF-01: The ESTRO-AAPM Joint Symposium On Imaging for Proton Treatment Planning and Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, K [Ludwig-Maximilians-University Munich, Garching, Bavaria (Germany); Dauvergne, D [Institut de Physique Nucleaire de Lyon, Lyon (France); Kruse, J [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    beam scale for active proton beam delivery in homogenous targets. The development of gamma cameras, that has been studied by several groups worldwide over the last years, now reaches - for some of them - the stage of being applicable in clinical conditions, with real size prototypes and count rate capability matching the therapeutic beam intensities. We will review the different concepts of gamma cameras, the advantages and limitations of this method, and the main challenges that should still be overcome before the widespread of prompt gamma quality assurance for proton and hadrontherapy. Jon Kruse (Mayo Clinic, Rochester, MN, USA) Treatment simulation images for proton therapy are used to determine proton stopping power and range in the patient. This talk will discuss the careful control of CT numbers and conversion of CT number to stopping power required in proton therapy. Imaging for treatment guidance of proton therapy also presents unique challenges which will be addressed. Among them are the enhanced relationship between internal anatomy changes and dosimetry, the need for imaging to support adaptive planning protocols, and high operational efficiency. Learning Objectives: To learn about the possibilities of using activation products to determine the range of particle beams in a patient treatment setting To be informed on an alternative methodology using prompt gamma detectors To understand the impact of the accuracy of the knowledge of the patient information with respect to the delivered treatment.

  19. Added value of contrast-enhanced ultrasound on biopsies of focal hepatic lesions invisible on fusion imaging guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.

  20. Added value of contrast-enhanced ultrasound on biopsies of focal hepatic lesions invisible on fusion imaging guidance

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun

    2017-01-01

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making

  1. Objective assessment of image quality VI: imaging in radiation therapy

    International Nuclear Information System (INIS)

    Barrett, Harrison H; Kupinski, Matthew A; Müeller, Stefan; Halpern, Howard J; Morris, John C III; Dwyer, Roisin

    2013-01-01

    Earlier work on objective assessment of image quality (OAIQ) focused largely on estimation or classification tasks in which the desired outcome of imaging is accurate diagnosis. This paper develops a general framework for assessing imaging quality on the basis of therapeutic outcomes rather than diagnostic performance. By analogy to receiver operating characteristic (ROC) curves and their variants as used in diagnostic OAIQ, the method proposed here utilizes the therapy operating characteristic or TOC curves, which are plots of the probability of tumor control versus the probability of normal-tissue complications as the overall dose level of a radiotherapy treatment is varied. The proposed figure of merit is the area under the TOC curve, denoted AUTOC. This paper reviews an earlier exposition of the theory of TOC and AUTOC, which was specific to the assessment of image-segmentation algorithms, and extends it to other applications of imaging in external-beam radiation treatment as well as in treatment with internal radioactive sources. For each application, a methodology for computing the TOC is presented. A key difference between ROC and TOC is that the latter can be defined for a single patient rather than a population of patients. (paper)

  2. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  3. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T; Yue, N; Jabbour, S; Zhang, M [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  4. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    International Nuclear Information System (INIS)

    Chen, T; Yue, N; Jabbour, S; Zhang, M

    2016-01-01

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components that were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  5. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  6. Dried fruits quality assessment by hyperspectral imaging

    Science.gov (United States)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  7. Fundamental factors influencing portal image quality

    International Nuclear Information System (INIS)

    Jaffray, D.A.

    1995-01-01

    It has been recognized that improved methods of verifying radiation field placement in external beam radiotherapy are required in order to make frequent checks of field placement feasible. As a result, a large number of electronic portal imaging systems have been developed as possible replacements for film. These developments have produced digital systems with faster acquisition and improved display contrast, however, the quality of the images acquired with such systems is still disappointing. This presentation examines many of the fundamental factors which limit the quality of radiographs obtained with a megavoltage radiotherapy beam. The size and shape of the radiation sources (focal and extra-focal) in radiotherapy machines and their influence on the spatial resolution of portal images are examined. Monte Carlo simulations of x-ray interactions within the patient determined that a significant fraction of the x-ray scatter generated in the patient is due to bremsstrahlung and positron annihilation. Depending on the detector, the scatter signal can reduce the differential signal-to-noise by 20%. Furthermore, a Monte Carlo study of the interaction of x-rays within typical fluoroscopic imaging detectors (metal plate/phosphor screen) demonstrates the degrading effect of energy absorption noise on the detective quantum efficiency of fluoroscopic based imaging systems. Finally, the spatial frequency content in the x-ray shadowgram is demonstrated to change with x-ray energy, resulting in images that appear to have reduced spatial resolution at megavoltage energies. The relative magnitude of each of these factors will be presented and recommendations for the next generation of portal imaging systems will be made

  8. Automated Quality Assurance Applied to Mammographic Imaging

    Directory of Open Access Journals (Sweden)

    Anne Davis

    2002-07-01

    Full Text Available Quality control in mammography is based upon subjective interpretation of the image quality of a test phantom. In order to suppress subjectivity due to the human observer, automated computer analysis of the Leeds TOR(MAM test phantom is investigated. Texture analysis via grey-level co-occurrence matrices is used to detect structures in the test object. Scoring of the substructures in the phantom is based on grey-level differences between regions and information from grey-level co-occurrence matrices. The results from scoring groups of particles within the phantom are presented.

  9. Cone beam computed tomography and its image guidance technology during percutaneous nucleoplasty procedures at L5/S1 lumbar level

    Energy Technology Data Exchange (ETDEWEB)

    Ierardi, Anna Maria; Piacentino, Filippo; Giorlando, Francesca [University of Insubria, Unit of Interventional Radiology, Department of Radiology, Varese (Italy); Magenta Biasina, Alberto; Carrafiello, Gianpaolo [University of Milan, San Paolo Hospital, Department of Diagnostic and Interventional Radiology, Milan (Italy); Bacuzzi, Alessandro [University of Insubria, Anaesthesia and Palliative Care, Varese (Italy); Novario, Raffaele [University of Insubria, Medical Physics Department, Varese (Italy)

    2016-12-15

    To demonstrate the feasibility of percutaneous nucleoplasty procedures at L5/S1 level using cone beam CT (CBCT) and its associated image guidance technology for the treatment of lumbar disc herniation (LDH). We retrospectively reviewed 25 cases (20 men, 5 women) of LDH at L5/S1 levels. CBCT as guidance imaging was chosen after a first unsuccessful fluoroscopy attempt that was related to complex anatomy (n = 15), rapid pathological changes due to degenerative diseases (n = 7) or both (n = 3). Technical success, defined as correct needle positioning in the target LDH, and safety were evaluated; overall procedure time and radiation dose were registered. A visual analog scale (VAS) was used to evaluate pain and discomfort pre-intervention after 1 week and 1, 3, and 6 months after the procedure. Technical success was 100 %; using CBCT as guidance imaging the needle was correctly positioned at the first attempt in 20 out of 25 patients. Neither major nor minor complications were registered during or after the procedure. The average procedure time was 11 min and 56 s (range, 9-15 min), whereas mean procedural radiation dose was 46.25 Gy.cm{sup 2} (range 38.10-52.84 Gy.cm{sup 2}), and mean fluoroscopy time was 5 min 34 s (range 3 min 40 s to 6 min 55 s). The VAS pain score decreased significantly from 7.6 preoperatively to 3.9 at 1 week, 2.8 at 1 month, 2.1 at 3 months, and 1.6 at 6 months postoperatively. CBCT-guided percutaneous nucleoplasty is a highly effective technique for LDH with acceptable procedure time and radiation dose. (orig.)

  10. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs

    International Nuclear Information System (INIS)

    Sensakovic, William F.; O'Dell, M.C.; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-01-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA"2 by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing

  11. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Sensakovic, William F.; O' Dell, M.C.; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura [Florida Hospital, Imaging Administration, Orlando, FL (United States)

    2016-10-15

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA{sup 2} by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  12. Using a web-based image quality assurance reporting system to improve image quality.

    Science.gov (United States)

    Czuczman, Gregory J; Pomerantz, Stuart R; Alkasab, Tarik K; Huang, Ambrose J

    2013-08-01

    The purpose of this study is to show the impact of a web-based image quality assurance reporting system on the rates of three common image quality errors at our institution. A web-based image quality assurance reporting system was developed and used beginning in April 2009. Image quality endpoints were assessed immediately before deployment (period 1), approximately 18 months after deployment of a prototype reporting system (period 2), and approximately 12 months after deployment of a subsequent upgraded department-wide reporting system (period 3). A total of 3067 axillary shoulder radiographs were reviewed for correct orientation, 355 shoulder CT scans were reviewed for correct reformatting of coronal and sagittal images, and 346 sacral MRI scans were reviewed for correct acquisition plane of axial images. Error rates for each review period were calculated and compared using the Fisher exact test. Error rates of axillary shoulder radiograph orientation were 35.9%, 7.2%, and 10.0%, respectively, for the three review periods. The decrease in error rate between periods 1 and 2 was statistically significant (p < 0.0001). Error rates of shoulder CT reformats were 9.8%, 2.7%, and 5.8%, respectively, for the three review periods. The decrease in error rate between periods 1 and 2 was statistically significant (p = 0.03). Error rates for sacral MRI axial sequences were 96.5%, 32.5%, and 3.4%, respectively, for the three review periods. The decrease in error rates between periods 1 and 2 and between periods 2 and 3 was statistically significant (p < 0.0001). A web-based system for reporting image quality errors may be effective for improving image quality.

  13. A fourier transform quality measure for iris images

    CSIR Research Space (South Africa)

    Makinana, S

    2014-08-01

    Full Text Available to ensure that good quality images are selected for feature extraction, in order to improve iris recognition system. In addition, this research proposes a measure of iris image quality using a Fourier Transform. The experimental results demonstrate...

  14. Effect of Professionalism, Competence, Knowledge of Financial Management, and Intensity Guidance Apparatus Inspectorate for Quality of Financial Statements (Study on Inspectorate Regencies/Cities in Aceh

    Directory of Open Access Journals (Sweden)

    Darwanis Darwanis

    2016-04-01

    Full Text Available This research aims to: 1. Examine the influence of professionalism, competence, knowledge of financial management and intensity guidance apparatus Inspectorate together to the quality of the financial statements of Regions; 2. Examine the effect of professionalism partially on the quality of the financial statements of Regions; 3. Test the effect of partial competencies to the quality of the financial statements of Regions; 4. Examine the effect of knowledge of financial management partially on the quality of the financial statements of Regions; 5. The authorities test the effects of intensity guidance apparatus partially on the quality of the financial statements of Regions. The object of this research is the Government Internal Supervisory Apparatus (APIP working in the Inspectorate districts/cities in Aceh amounted to 23 people who perform inspection tasks.  The source of data in this study uses primary data which is the result of the acquisition of questionnaires from survey respondent, while research data collection techniques are done with documentation techniques. The analytical method used is Multiple Linear Regression Analysis. The results showed that: 1. Professionalism, competence, knowledge of financial management and intensity guidance apparatus jointly affect the quality of financial reporting area. 2. Professionalism partially affects the quality of financial reporting area. 3. Competence partially affects the quality of financial reporting area. 4. Knowledge of financial management partially affects the quality of financial reporting area. 5. The intensity guidance apparatus partially affects the quality of financial reporting area.

  15. Respiration-Correlated Image Guidance Is the Most Important Radiotherapy Motion Management Strategy for Most Lung Cancer Patients

    International Nuclear Information System (INIS)

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte; Brink, Carsten; Juhler-Nøttrup, Trine

    2012-01-01

    Purpose: The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population. Materials and Methods: Images were acquired from 46 lung cancer patients participating in four separate protocols at three institutions in Europe and the United States. Seven patients were imaged using fluoroscopy, and 39 patients were imaged using 4DCT. The magnitude of respiratory tumor motion was measured. The required treatment field margins were calculated using a statistical recipe (van Herk M, et al. Int J Radiat Oncol Biol Phys 2000;474:1121–1135), with magnitudes of all uncertainties, except respiratory peak-to-peak displacement, the same for all patients, taken from literature. Required margins for respiratory motion management were calculated using the residual respiratory tumor motion for each patient for various motion management strategies. Margin reductions for respiration management were calculated using 4DCT, 4D-IG, and gated beam delivery. Results: The median tumor motion magnitude was 4.4 mm for the 46 patients (range 0–29.3 mm). This value corresponded to required treatment field margins of 13.7 to 36.3 mm (median 14.4 mm). The use of 4DCT, 4D-IG, and beam gating required margins that were reduced by 0 to 13.9 mm (median 0.5 mm), 3 to 5.2 mm (median 5.1 mm), and 0 to 7 mm (median 0.2 mm), respectively, to a total of 8.5 to 12.4 mm (median 8.6 mm). Conclusion: A respiratory management strategy for lung cancer radiotherapy including planning on 4DCT scans and daily image guidance provides a potential reduction of 37% to 47% in treatment field margins. The 4D image guidance strategy was the most effective strategy for >85% of the patients.

  16. The mobile image quality survey game

    Science.gov (United States)

    Rasmussen, D. René

    2012-01-01

    In this paper we discuss human assessment of the quality of photographic still images, that are degraded in various manners relative to an original, for example due to compression or noise. In particular, we examine and present results from a technique where observers view images on a mobile device, perform pairwise comparisons, identify defects in the images, and interact with the display to indicate the location of the defects. The technique measures the response time and accuracy of the responses. By posing the survey in a form similar to a game, providing performance feedback to the observer, the technique attempts to increase the engagement of the observers, and to avoid exhausting observers, a factor that is often a problem for subjective surveys. The results are compared with the known physical magnitudes of the defects and with results from similar web-based surveys. The strengths and weaknesses of the technique are discussed. Possible extensions of the technique to video quality assessment are also discussed.

  17. Clinical efficiency, image quality and dosimetric considerations

    Energy Technology Data Exchange (ETDEWEB)

    Arreola, M. [Director of Clinical Radiological Physics, Shands Hospital at the University of Florida College of Medicine, Gainesville, FL (United States)

    2000-07-01

    Three decades have passed since the first clinical use of the famous EMI Computed Axial Tomography (Cat) scanner. At the time, the prospects for clinical success of this innovative idea were not very good. Time, however, has proven otherwise as what is now simply known as Computed tomography (CT) has been boosted in each one of these decades for different reasons. In the 1970s, technological progress augmented by the realization of the importance of tomographic imaging got everything started; in the 1980s, the boom in health care demand in the US solidified its position and in the 1990s the technological explosion in computers and the imperative need to lower costs in the health care industry have prompted the most dramatic changes in the wy CT is utilized in the year 2000. Thus, different motivations have led the way of progress in CT at various times, and in spite of amazing developments in other crucial imaging modalities, such as ultrasound, Doppler ultrasound, digital subtraction angiography and magnetic resonance imaging, CT maintains its rightful place as the premiere imaging modality in the modern radiology department. This work covers the basic principles of tomographic image reconstruction, and how axial CT scanners progressed historically in the first two decades. Developments in X-ray tubes, and detection systems are highlighted, as well as the impact of clinical efficiency, image quality and patient doses. The basic construction of translate-rotate (1st and 2nd generation), rotate-rotate (3rd generation) and detector ring (4th generation) scanners are described. The so-called 5th generation scanner, the electron beam scanner, is also described, with its clinical and technical advantages and its inherent financial and maintenance disadvantages, which brought the advent of spiral and multi-slice scanners. These most recent developments in CT technology have opened a new era in the clinical use of CT; and although image quality has reached an expected

  18. Clinical efficiency, image quality and dosimetric considerations

    International Nuclear Information System (INIS)

    Arreola, M.

    2000-01-01

    Three decades have passed since the first clinical use of the famous EMI Computed Axial Tomography (Cat) scanner. At the time, the prospects for clinical success of this innovative idea were not very good. Time, however, has proven otherwise as what is now simply known as Computed tomography (CT) has been boosted in each one of these decades for different reasons. In the 1970s, technological progress augmented by the realization of the importance of tomographic imaging got everything started; in the 1980s, the boom in health care demand in the US solidified its position and in the 1990s the technological explosion in computers and the imperative need to lower costs in the health care industry have prompted the most dramatic changes in the wy CT is utilized in the year 2000. Thus, different motivations have led the way of progress in CT at various times, and in spite of amazing developments in other crucial imaging modalities, such as ultrasound, Doppler ultrasound, digital subtraction angiography and magnetic resonance imaging, CT maintains its rightful place as the premiere imaging modality in the modern radiology department. This work covers the basic principles of tomographic image reconstruction, and how axial CT scanners progressed historically in the first two decades. Developments in X-ray tubes, and detection systems are highlighted, as well as the impact of clinical efficiency, image quality and patient doses. The basic construction of translate-rotate (1st and 2nd generation, rotate-rotate (3rd generation) and detector ring (4th generation) scanners are described. The so-called 5th generation scanner, the electron beam scanner, is also described, with its clinical and technical advantages and its inherent financial and maintenance disadvantages, which brought the advent of spiral and multi-slice scanners. These most recent developments in CT technology have opened a new era in the clinical use of CT; and although image quality has reached an expected

  19. Influence of radiation dose on image quality

    Energy Technology Data Exchange (ETDEWEB)

    Reichmann, S; Aastrand, K [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1979-01-01

    When the speed of a recording medium is doubled the background quantum mottle is increased by a factor ..sqrt..2. However, the signal/noise ratio is changed not in proportion to the square root of the exposure, but in a linear fashion, i.e. by a factor 2. The change in the depiction of objects with a very high attenuation difference in relation to its surroundings appears not to be linear, but proportional to the square root of the exposure. Such objects (metal wire meshes, lead bar grids) should thus be avoided in routine evaluation of image quality since they give incomplete information as to image impairment when high-speed recording media are used.

  20. Influence of radiation dose on image quality

    International Nuclear Information System (INIS)

    Reichmann, S.; Aastrand, K.

    1979-01-01

    When the speed of a recording medium is doubled the background quantum mottle is increased by a factor √2. However, the signal/noise ratio is changed not in proportion to the square root of the exposure, but in a linear fashion, i.e. by a factor 2. The change in the depiction of objects with a very high attenuation difference in relation to its surroundings appears not to be linear, but proportional to the square root of the exposure. Such objects (metal wire meshes, lead bar grids) should thus be avoided in routine evaluation of image quality since they give incomplete information as to image impairment when high-speed recording media are used. (Auth.)

  1. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    International Nuclear Information System (INIS)

    Sveistrup, Joen; Rosenschöld, Per Munck af; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-01-01

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction

  2. Image Quality in Screening Mammography in Croatia

    International Nuclear Information System (INIS)

    Brnic, Z.; Klasic, B.; Popic-Ramac, J.; Ljevar, A.

    2011-01-01

    Mortality reduction through screening mammography (SMG) is possible only with examination of high image quality (IQ), which should be performed with acceptable patient breast radiation dose (BRD). Besides film processing control, equipment assessment with breast phantom and dosimetry, periodical external mammographic IQ assessment (MIQA) is needed, including image labelling (L), breast positioning (BP), exposure (EX) and artefacts (AR) assessment. The nationwide breast cancer screening program (NBSP) has been introduced in Croatia in 2006, and the MIQA is initiated as the first step in establishing quality assurance/quality control (QA/QC) framework in breast imaging in Croatia. The current study was aimed: (1) to provide objective evidence about the technical MIQ in NBSP in Croatia, (2) to compare MIQ between different types of mammographic units (MUs), (3) to identify the common deficiencies, and (4) to propose corrective activities. Mammograms (MGs) for IQA were collected from a total of 84 MUs which participate in NBSP, which represents 70 % of all MUs nationwide: A total of 420 MG examinations were reviewed. Each MU was requested to submit ''what they consider to be their five best representative MGs, each one performed in one of five consecutive workdays''. Mean age of MG machines was 7.76 years (range 2 - 21), with no difference between four MU types. This very first study of MIQ in Croatia corroborated our intuitive impression of inadequate IQ, staff training and equipment in many MUs nationwide. As MIQ strongly influences BC detection rate, suboptimal QA/QC always carries a risk to compromise the success of NBSP. Deficiencies in SMG, especially in ID and BP reflect different level of competency of radiological staff in Croatia. Differences in MIQ in various MU types are determined by their organization, equipment, education, working habits and motivation. More efforts are needed to train both RTs and radiologists to implement and maintain QA/QC in their

  3. Quality of intensive care chest imaging

    International Nuclear Information System (INIS)

    Adam, G.; Wein, B.; Keulers, P.; Stargardt, A.; Guenther, R.W.

    1989-01-01

    The authors have evaluated the image quality of a stimulable phosphorous plate system in intensive care chest radiography. Four radiologists examined 308 chest radiographs (200 conventional, 108 digital) according to the following criteria: visibility of catheters, tubes (artificial objects), bronchi, central and peripheral vessels, diaphragm, trachea, and retrocardial lung parenchyma. Detectability of these structures was classified as good, poor, or impossible to see. In addition, optical density was measured in the region of liver, heart, and lung. Results were evaluated by Student and υ test

  4. SU-C-207B-07: Deep Convolutional Neural Network Image Matching for Ultrasound Guidance in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Najafi, M; Hancock, S; Hristov, D [Stanford University Cancer Center, Palo Alto, CA (United States)

    2016-06-15

    Purpose: Robust matching of ultrasound images is a challenging problem as images of the same anatomy often present non-trivial differences. This poses an obstacle for ultrasound guidance in radiotherapy. Thus our objective is to overcome this obstacle by designing and evaluating an image blocks matching framework based on a two channel deep convolutional neural network. Methods: We extend to 3D an algorithmic structure previously introduced for 2D image feature learning [1]. To obtain the similarity between two 3D image blocks A and B, the 3D image blocks are divided into 2D patches Ai and Bi. The similarity is then calculated as the average similarity score of Ai and Bi. The neural network was then trained with public non-medical image pairs, and subsequently evaluated on ultrasound image blocks for the following scenarios: (S1) same image blocks with/without shifts (A and A-shift-x); (S2) non-related random block pairs; (S3) ground truth registration matched pairs of different ultrasound images with/without shifts (A-i and A-reg-i-shift-x). Results: For S1 the similarity scores of A and A-shift-x were 32.63, 18.38, 12.95, 9.23, 2.15 and 0.43 for x=ranging from 0 mm to 10 mm in 2 mm increments. For S2 the average similarity score for non-related block pairs was −1.15. For S3 the average similarity score of ground truth registration matched blocks A-i and A-reg-i-shift-0 (1≤i≤5) was 12.37. After translating A-reg-i-shift-0 by 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm, the average similarity scores of A-i and A-reg-i-shift-x were 11.04, 8.42, 4.56, 2.27, and 0.29 respectively. Conclusion: The proposed method correctly assigns highest similarity to corresponding 3D ultrasound image blocks despite differences in image content and thus can form the basis for ultrasound image registration and tracking.[1] Zagoruyko, Komodakis, “Learning to compare image patches via convolutional neural networks', IEEE CVPR 2015,pp.4353–4361.

  5. SU-C-207B-07: Deep Convolutional Neural Network Image Matching for Ultrasound Guidance in Radiotherapy

    International Nuclear Information System (INIS)

    Zhu, N; Najafi, M; Hancock, S; Hristov, D

    2016-01-01

    Purpose: Robust matching of ultrasound images is a challenging problem as images of the same anatomy often present non-trivial differences. This poses an obstacle for ultrasound guidance in radiotherapy. Thus our objective is to overcome this obstacle by designing and evaluating an image blocks matching framework based on a two channel deep convolutional neural network. Methods: We extend to 3D an algorithmic structure previously introduced for 2D image feature learning [1]. To obtain the similarity between two 3D image blocks A and B, the 3D image blocks are divided into 2D patches Ai and Bi. The similarity is then calculated as the average similarity score of Ai and Bi. The neural network was then trained with public non-medical image pairs, and subsequently evaluated on ultrasound image blocks for the following scenarios: (S1) same image blocks with/without shifts (A and A-shift-x); (S2) non-related random block pairs; (S3) ground truth registration matched pairs of different ultrasound images with/without shifts (A-i and A-reg-i-shift-x). Results: For S1 the similarity scores of A and A-shift-x were 32.63, 18.38, 12.95, 9.23, 2.15 and 0.43 for x=ranging from 0 mm to 10 mm in 2 mm increments. For S2 the average similarity score for non-related block pairs was −1.15. For S3 the average similarity score of ground truth registration matched blocks A-i and A-reg-i-shift-0 (1≤i≤5) was 12.37. After translating A-reg-i-shift-0 by 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm, the average similarity scores of A-i and A-reg-i-shift-x were 11.04, 8.42, 4.56, 2.27, and 0.29 respectively. Conclusion: The proposed method correctly assigns highest similarity to corresponding 3D ultrasound image blocks despite differences in image content and thus can form the basis for ultrasound image registration and tracking.[1] Zagoruyko, Komodakis, “Learning to compare image patches via convolutional neural networks', IEEE CVPR 2015,pp.4353–4361.

  6. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  7. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  8. Image quality preferences among radiographers and radiologists. A conjoint analysis

    International Nuclear Information System (INIS)

    Ween, Borgny; Kristoffersen, Doris Tove; Hamilton, Glenys A.; Olsen, Dag Rune

    2005-01-01

    Purpose: The aim of this study was to investigate the image quality preferences among radiographers and radiologists. The radiographers' preferences are mainly related to technical parameters, whereas radiologists assess image quality based on diagnostic value. Methods: A conjoint analysis was undertaken to survey image quality preferences; the study included 37 respondents: 19 radiographers and 18 radiologists. Digital urograms were post-processed into 8 images with different properties of image quality for 3 different patients. The respondents were asked to rank the images according to their personally perceived subjective image quality. Results: Nearly half of the radiographers and radiologists were consistent in their ranking of the image characterised as 'very best image quality'. The analysis showed, moreover, that chosen filtration level and image intensity were responsible for 72% and 28% of the preferences, respectively. The corresponding figures for each of the two professions were 76% and 24% for the radiographers, and 68% and 32% for the radiologists. In addition, there were larger variations in image preferences among the radiologists, as compared to the radiographers. Conclusions: Radiographers revealed a more consistent preference than the radiologists with respect to image quality. There is a potential for image quality improvement by developing sets of image property criteria

  9. Fingerprint matching algorithm for poor quality images

    Directory of Open Access Journals (Sweden)

    Vedpal Singh

    2015-04-01

    Full Text Available The main aim of this study is to establish an efficient platform for fingerprint matching for low-quality images. Generally, fingerprint matching approaches use the minutiae points for authentication. However, it is not such a reliable authentication method for low-quality images. To overcome this problem, the current study proposes a fingerprint matching methodology based on normalised cross-correlation, which would improve the performance and reduce the miscalculations during authentication. It would decrease the computational complexities. The error rate of the proposed method is 5.4%, which is less than the two-dimensional (2D dynamic programming (DP error rate of 5.6%, while Lee's method produces 5.9% and the combined method has 6.1% error rate. Genuine accept rate at 1% false accept rate is 89.3% but at 0.1% value it is 96.7%, which is higher. The outcome of this study suggests that the proposed methodology has a low error rate with minimum computational effort as compared with existing methods such as Lee's method and 2D DP and the combined method.

  10. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Science.gov (United States)

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  11. Practical evaluation of clinical image quality (4). Determination of image quality in digital radiography system

    International Nuclear Information System (INIS)

    Katayama, Reiji

    2016-01-01

    Recently, for medical imaging, digital radiography systems are widely used in clinical practices. However, a study in the past reported that a patient radiation exposure level by digital radiography is in fact not lower than that by analog radiography system. High level of attention needs to be paid for over-exposure when using the conventional analog radiography with a screen and a film, as it results in high density of the film. However, for digital radiography systems, since the automatic adjusting function of image density is equipped with them, no attention for radiation dose need to be paid. Thus technologists tend to be careless and results in higher chance for over-exposure. Current digital radiography systems are high-performance in the image properties and capable of patient dose reduction. Especially, the image quality of the flat panel detector system is recognized, higher than that of the computed radiography system by imaging plates, in both objective and subjective evaluations. Therefore, we technologists are responsible for optimizing the balance between the image quality of the digital radiogram and the radiation dose required for each case. Moreover, it is also required for us as medical technologists to make effective use of such evaluation result of medical images for patients. (author)

  12. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  13. Implementation of dictionary pair learning algorithm for image quality improvement

    Science.gov (United States)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    This paper proposes an image denoising on dictionary pair learning algorithm. Visual information is transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmissions is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image.

  14. Developing and validating a psychometric scale for image quality assessment

    International Nuclear Information System (INIS)

    Mraity, H.; England, A.; Hogg, P.

    2014-01-01

    Purpose: Using AP pelvis as a catalyst, this paper explains how a psychometric scale for image quality assessment can be created using Bandura's theory for self-efficacy. Background: Establishing an accurate diagnosis is highly dependent upon the quality of the radiographic image. Image quality, as a construct (i.e. set of attributes that makes up the image quality), continues to play an essential role in the field of diagnostic radiography. The process of assessing image quality can be facilitated by using criteria, such as the European Commission (EC) guidelines for quality criteria as published in 1996. However, with the advent of new technology (Computed Radiography and Digital Radiography), some of the EC criteria may no longer be suitable for assessing the visual quality of a digital radiographic image. Moreover, a lack of validated visual image quality scales in the literature can also lead to significant variations in image quality evaluation. Creating and validating visual image quality scales, using a robust methodology, could reduce variability and improve the validity and reliability of perceptual image quality evaluations

  15. Remotely supported prehospital ultrasound: A feasibility study of real-time image transmission and expert guidance to aid diagnosis in remote and rural communities.

    Science.gov (United States)

    Eadie, Leila; Mulhern, John; Regan, Luke; Mort, Alasdair; Shannon, Helen; Macaden, Ashish; Wilson, Philip

    2017-01-01

    Introduction Our aim is to expedite prehospital assessment of remote and rural patients using remotely-supported ultrasound and satellite/cellular communications. In this paradigm, paramedics are remotely-supported ultrasound operators, guided by hospital-based specialists, to record images before receiving diagnostic advice. Technology can support users in areas with little access to medical imaging and suboptimal communications coverage by connecting to multiple cellular networks and/or satellites to stream live ultrasound and audio-video. Methods An ambulance-based demonstrator system captured standard trauma and novel transcranial ultrasound scans from 10 healthy volunteers at 16 locations across the Scottish Highlands. Volunteers underwent brief scanning training before receiving expert guidance via the communications link. Ultrasound images were streamed with an audio/video feed to reviewers for interpretation. Two sessions were transmitted via satellite and 21 used cellular networks. Reviewers rated image and communication quality, and their utility for diagnosis. Transmission latency and bandwidth were recorded, and effects of scanner and reviewer experience were assessed. Results Appropriate views were provided in 94% of the simulated trauma scans. The mean upload rate was 835/150 kbps and mean latency was 114/2072 ms for cellular and satellite networks, respectively. Scanning experience had a significant impact on time to achieve a diagnostic image, and review of offline scans required significantly less time than live-streamed scans. Discussion This prehospital ultrasound system could facilitate early diagnosis and streamlining of treatment pathways for remote emergency patients, being particularly applicable in rural areas worldwide with poor communications infrastructure and extensive transport times.

  16. Effect of quality control implementation on image quality of radiographic films and irradiation doses to patients

    International Nuclear Information System (INIS)

    Cheng Yuxi; Zhou Qipu; Ge Lijuan; Hou Changsong; Qi Xuesong; Yue Baorong; Wang Zuoling; Wei Kedao

    1999-01-01

    Objective: To study the changes in the image quality of radiographic films and the irradiation doses to patients after quality control (QC) implementation. Methods: The entrance surface doses (ESD) to patients measured with TLD and the image quality of radiographic films were evaluated on the basis of CEC image quality criteria. Results: The ESD to patients were significantly reduced after QC implementation (P 0.05), but the post-QC image quality was significantly improved in chest PA, lumbar spine AP and pelvis AP(P0.01 or P<0.05). Conclusion: Significantly reduced irradiation dose with improved image quality can be obtained by QC implementation

  17. EMMC guidance on quality assurance for academic materials modelling software engineering

    OpenAIRE

    European Materials Modelling Council

    2015-01-01

    Proposed recommendations for software development in LEIT projects. This document presents the advice of software owners, commercial and academic, on what academic software could do to generate better quality software, ready to be used by third parties.

  18. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  19. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    Science.gov (United States)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  20. Image quality transfer and applications in diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata

    2017-01-01

    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure u...

  1. Tips and Tricks of Percutaneous Gastrostomy Under Image Guidance in Patients with Limited Access

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, Pierre-Yves; Figl, Andrea; Thariat, Juliette [Sophia Antipolis University, Nice cedex (France); Lacout, Alexis [Centre Me' dico-Chirurgical, Aurillac (France)

    2011-10-15

    We read with great interest the article by Chan et al. (1) in the March issue of Korean Journal of Radiology on their experience of modified radiology-guided percutaneous gastrostomy (MRPG). The authors proposed a technique to access the stomach in patients with upper digestive tract obstruction (UDTO). Following marking a patient's left liver inferior margin and room air-colonography, the authors punctured the gastric area using a 21G fine needle under X-ray guidance and withdrew their syringe gradually while injecting contrast medium. We noted that the gastrostomy may be performed using a 0.0035-inch hydrophilic guide wire and a 6.5-Fr angled catheter in almost 100% of patients contraindicated for endoscopy gastrostomy, including those with tortuous or tight cervical stenosis (2). In patients with a collapsed stomach, orally administered effervescent sodium bicarbonate powder can produce sufficient gas in the stomach to allow for a percutaneous needle puncture. In UDTO patients, diatrizoate meglumine can be directly injected into the gastric lumen under ultrasound (US) guidance, as reported by Pugash et al. (3) in 1995. Since the stomach appears collapsed with apposed multi-layer walls and virtual lumen on US, the needle tip is hardly seen. In such circumstances, after having transfixed the stomach with a 21G Chiba needle, further gradual needle withdrawing is performed under fluoroscopic guidance while injecting small amounts of diatrizoate meglumine until a ruga pattern is seen. Moreover, a cancer patient's subcutaneous fat is often absent and the anterior gastric wall is close to the abdominal wall. High frequency US monitoring does improve needle visualization in such a circumstance. Conversely, in obese patients, back- and forth motions of the needle stylet under Doppler color US guidance clearly improves needle visualization. We noted that by using this technique we successfully performed percutaneous fluoroscopy gastrostomy (PFG) in two partially

  2. Tips and Tricks of Percutaneous Gastrostomy Under Image Guidance in Patients with Limited Access

    International Nuclear Information System (INIS)

    Marcy, Pierre-Yves; Figl, Andrea; Thariat, Juliette; Lacout, Alexis

    2011-01-01

    We read with great interest the article by Chan et al. (1) in the March issue of Korean Journal of Radiology on their experience of modified radiology-guided percutaneous gastrostomy (MRPG). The authors proposed a technique to access the stomach in patients with upper digestive tract obstruction (UDTO). Following marking a patient's left liver inferior margin and room air-colonography, the authors punctured the gastric area using a 21G fine needle under X-ray guidance and withdrew their syringe gradually while injecting contrast medium. We noted that the gastrostomy may be performed using a 0.0035-inch hydrophilic guide wire and a 6.5-Fr angled catheter in almost 100% of patients contraindicated for endoscopy gastrostomy, including those with tortuous or tight cervical stenosis (2). In patients with a collapsed stomach, orally administered effervescent sodium bicarbonate powder can produce sufficient gas in the stomach to allow for a percutaneous needle puncture. In UDTO patients, diatrizoate meglumine can be directly injected into the gastric lumen under ultrasound (US) guidance, as reported by Pugash et al. (3) in 1995. Since the stomach appears collapsed with apposed multi-layer walls and virtual lumen on US, the needle tip is hardly seen. In such circumstances, after having transfixed the stomach with a 21G Chiba needle, further gradual needle withdrawing is performed under fluoroscopic guidance while injecting small amounts of diatrizoate meglumine until a ruga pattern is seen. Moreover, a cancer patient's subcutaneous fat is often absent and the anterior gastric wall is close to the abdominal wall. High frequency US monitoring does improve needle visualization in such a circumstance. Conversely, in obese patients, back- and forth motions of the needle stylet under Doppler color US guidance clearly improves needle visualization. We noted that by using this technique we successfully performed percutaneous fluoroscopy gastrostomy (PFG) in two partially

  3. How the task of evaluating image quality influences viewing behavior

    NARCIS (Netherlands)

    Alers, H.; Bos, Lennart; Heynderickx, I.E.J.

    2011-01-01

    Image quality scores collected in subjective experiments are widely used in image quality research, particularly in the design of objective quality assessment algorithms. It is therefore of vital importance to make sure that the collected scores reflect viewers' opinions in real-life situations.

  4. DMPTool: New Guidance, Resources, and Outreach for Quality Data Management Plans

    Science.gov (United States)

    Cruse, P.; Sallans, A.

    2013-12-01

    A growing number of US federal funding agencies require data management plans (DMP) as part of new research grant proposals. To help researchers with this requirement, several organizations (the California Digital Library, University of Illinois, University of Virginia, Smithsonian Institution, the DataONE consortium and the (UK) Digital Curation Centre) came together to develop the DMPTool in 2011. The goal of the DMPTool is to provide researchers with guidance, links to resources and help with writing data management plans. Thanks to a grant from the Alfred P. Sloan Foundation, these organizations have been able to develop DMPTool2, adding new features and functionality, while aiming to grow the number of users and funding requirements and build a community around DMP best practices. Researchers create plans in the tool by selecting their desired funding agency. The tool provides specific requirements from the selected agency as well as detailed help with each area of the plan. Users have access to complete DMP life cycle management, tracking changes through creation, editing, submission, evaluation, and publication. They may also perform enhanced keyword searches and view publicly available plans. With role-based user authorization, users may hold various roles within the interface: creators, collaborators, institutional administrators, and tool administrators. Furthermore, partner institutions can add significant value to the process with several special tool features. Along with institutional branding in the interface, they can provide links to resources they provide to users, such as to preservation repositories, consultation services, or news and event items. In addition, partner institutions can provide help with specific plan questions, and even suggest responses. Institutional administrators can also mine data on plans in order to better support researchers. Institutions may be represented in different roles: as a funder, a researcher's affiliate, or as

  5. Investigation of variability in image acquisition and contouring during 3D ultrasound guidance for partial breast irradiation

    International Nuclear Information System (INIS)

    Landry, Anthony; Olivotto, Ivo; Beckham, Wayne; Berrang, Tanya; Gagne, Isabelle; Popescu, Carmen; Mitchell, Tracy; Vey, Hazel; Sand, Letricia; Soh, Siew Yan; Wark, Jill

    2014-01-01

    Three-dimensional ultrasound (3DUS) at simulation compared to 3DUS at treatment is an image guidance option for partial breast irradiation (PBI). This study assessed if user dependence in acquiring and contouring 3DUS (operator variability) contributed to variation in seroma shifts calculated for breast IGRT. Eligible patients met breast criteria for current randomized PBI studies. 5 Operators participated in this study. For each patient, 3 operators were involved in scan acquisitions and 5 were involved in contouring. At CT simulation (CT1), a 3DUS (US1) was performed by a single radiation therapist (RT). 7 to 14 days after CT1 a second CT (CT2) and 3 sequential 3DUS scans (US2a,b,c) were acquired by each of 3 RTs. Seroma shifts, between US1 and US2 scans were calculated by comparing geometric centers of the seromas (centroids). Operator contouring variability was determined by comparing 5 RT’s contours for a single image set. Scanning variability was assessed by comparing shifts between multiple scans acquired at the same time point (US1-US2a,b,c). Shifts in seromas contoured on CT (CT1-CT2) were compared to US data. From an initial 28 patients, 15 had CT visible seromas, met PBI dosimetric constraints, had complete US data, and were analyzed. Operator variability contributed more to the overall variability in seroma localization than the variability associated with multiple scan acquisitions (95% confidence mean uncertainty of 6.2 mm vs. 1.1 mm). The mean standard deviation in seroma shift was user dependent and ranged from 1.7 to 2.9 mm. Mean seroma shifts from simulation to treatment were comparable to CT. Variability in shifts due to different users acquiring and contouring 3DUS for PBI guidance were comparable to CT shifts. Substantial inter-observer effect needs to be considered during clinical implementation of 3DUS IGRT

  6. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    Science.gov (United States)

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  7. Digital Tomosynthesis for Respiratory Gated Liver Treatment: Clinical Feasibility for Daily Image Guidance

    International Nuclear Information System (INIS)

    Wu, Q. Jackie; Meyer, Jeffrey; Fuller, Jessica; Godfrey, Devon; Wang Zhiheng; Zhang Junan; Yin Fangfang

    2011-01-01

    Purpose: Breath-hold (BH) treatment minimizes internal target volumes (ITV) when treating sites prone to motion. Digital tomosynthesis (DTS) imaging has advantages over cone-beam CT (CBCT) for BH imaging: BH-DTS scan can be completed during a single breath-hold, whereas BH-CBCT is usually acquired by parsing the gantry rotation into multiple BH segments. This study evaluates the localization accuracy of DTS for BH treatment of liver tumors. Methods: Both planning CT and on-board DTS/CBCT images were acquired under BH, using the planning CT BH window as reference. Onboard imaging data sets included two independent DTS orientations (coronal and sagittal), and CBCT images. Soft tissue target positioning was measured by each imaging modality and translated into couch shifts. Performance of the two DTS orientations was evaluated by comparing target positioning with the CBCT benchmark, determined by two observers. Results: Image data sets were collected from thirty-eight treatment fractions (14 patients). Mean differences between the two DTS methods and the CBCT method were <1 mm in all directions (except the lateral direction with sagittal-DTS: 1.2 mm); the standard deviation was in the range of 2.1-3.5 mm for all techniques. The Pearson correlation showed good interobserver agreement for the coronal-DTS (0.72-0.78). The interobserver agreement for the sagittal-DTS was good for the in-plane directions (0.70-0.82), but poor in the out-of-plane direction (lateral, 0.26). Conclusions: BH-DTS may be a simpler alternative to BH-CBCT for onboard soft tissue localization of the liver, although the precision of DTS localization appears to be somewhat lower because of the presence of subtle out-of-plane blur.

  8. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Qin, An; Sun, Ying; Liang, Jian; Yan, Di

    2015-01-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  9. Intraoperative Image Guidance in Neurosurgery: Development, Current Indications, and Future Trends

    International Nuclear Information System (INIS)

    Schulz, Ch.; Mauer, U.M.; Waldeck, S.

    2012-01-01

    Introduction. As minimally invasive surgery becomes the standard of care in neurosurgery, it is imperative that surgeons become skilled in the use of image-guided techniques. The development of image-guided neurosurgery represents a substantial improvement in the microsurgical treatment of tumors, vascular malformations, and other intracranial lesions. Objective. There have been numerous advances in neurosurgery which have aided the neurosurgeon to achieve accurate removal of pathological tissue with minimal disruption of surrounding healthy neuronal matter including the development of microsurgical, endoscopic, and endovascular techniques. Neuro navigation systems and intraoperative imaging should improve success in cranial neurosurgery. Additional functional imaging modalities such as PET, SPECT, DTI (for fiber tracking), and fMRI can now be used in order to reduce neurological deficits resulting from surgery; however the positive long-term effect remains questionable for many indications. Method. Pub Med database search using the search term “image guided neurosurgery.” More than 1400 articles were published during the last 25 years. The abstracts were scanned for prospective comparative trials. Results and Conclusion. 14 comparative trials are published. To date significant data amount show advantages in intraoperative accuracy influencing the perioperative morbidity and long-term outcome only for cerebral glioma surgery.

  10. Technical guidance for the development of a solid state image sensor for human low vision image warping

    Science.gov (United States)

    Vanderspiegel, Jan

    1994-01-01

    This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.

  11. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model.

    Science.gov (United States)

    Debie, Pieterjan; Vanhoeij, Marian; Poortmans, Natalie; Puttemans, Janik; Gillis, Kris; Devoogdt, Nick; Lahoutte, Tony; Hernot, Sophie

    2017-10-31

    Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. 0.5 × 10 6 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.

  12. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Zhang, Xingming; Le, Tuan-Anh; Yoon, Jungwon

    2017-01-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  13. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xingming [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai, Shandong (China); School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Le, Tuan-Anh [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Yoon, Jungwon, E-mail: jwyoon@gnu.ac.kr [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2017-04-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  14. Image quality of cone beam CT on respiratory motion

    International Nuclear Information System (INIS)

    Zhang Ke; Li Minghui; Dai Jianrong; Wang Shi

    2011-01-01

    In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform, an image quality phantom, and a kV X-ray CBCT. A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction, separately or together, was simulated by considering different respiration amplitudes, periods and hysteresis. The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility, geometric accuracy, spatial resolution and uniformity of CT values. The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction, and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis. The CBCT image quality and its characteristics influenced by the respiration motion, and may be exploited in finding solutions. (authors)

  15. RADARSAT-1 Image Quality Excellence in the Extended Mission

    National Research Council Canada - National Science Library

    Srivastava, S. K; Cote, S; Le Dantec, P; Hawkins, R. K

    2005-01-01

    ... after its launch on November 4, 1995. Both single beams and ScanSAR imagery are still monitored routinely for radiometric calibration performance based on images of the Amazon Rainforest, and for image quality performance using imagery...

  16. Image quality influences the assessment of left ventricular function

    DEFF Research Database (Denmark)

    Grossgasteiger, Manuel; Hien, Maximilian D; Graser, Bastian

    2014-01-01

    divided by the total endocardial border. These ratings were used to generate groups of poor (0%-40%), fair (41%-70%), and good (71%-100%) image quality. The ejection fraction (EF), end-diastolic volume, and end-systolic volume were analyzed by the Simpson method of disks (biplane and monoplane), eyeball...... method yield better correlations with poor image quality. The eyeball method was unaffected by image quality....

  17. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    Science.gov (United States)

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  18. Integration of image guidance and rapid prototyping technology in craniofacial surgery.

    Science.gov (United States)

    Bullock, P; Dunaway, D; McGurk, L; Richards, R

    2013-08-01

    This technical note demonstrates the benefits of preoperative planning, involving the use of rapid prototype models and rehearsal of the surgical procedure, using image-guided navigational surgery. Optimum reconstruction of large defects can be achieved with this technique. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  20. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    Science.gov (United States)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  1. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    Science.gov (United States)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  2. Quality assurance guidance for TRUPACT-II [Transuranic Package Transporter-II] payload control

    International Nuclear Information System (INIS)

    1989-10-01

    The Transuranic Package Transporter-II (TRUPACT-II) Safety Analysis Report for Packaging (SARP) approved by the Nuclear Regulatory Commission (NRC), discusses authorized methods for payload control in Appendix 1.3.7 and the Quality Assurance (QA) requirements in Section 9.3. Subsection 9.3.2.1 covers maintenance and use of the TRUPACT-II and the specific QA requirements are given in DOE/WIPP 89-012. Subsection 9.3.2.2 covers payload compliance, for which this document was written. 6 refs

  3. Objective and Subjective Assessment of Digital Pathology Image Quality

    Directory of Open Access Journals (Sweden)

    Prarthana Shrestha

    2015-03-01

    Full Text Available The quality of an image produced by the Whole Slide Imaging (WSI scanners is of critical importance for using the image in clinical diagnosis. Therefore, it is very important to monitor and ensure the quality of images. Since subjective image quality assessments by pathologists are very time-consuming, expensive and difficult to reproduce, we propose a method for objective assessment based on clinically relevant and perceptual image parameters: sharpness, contrast, brightness, uniform illumination and color separation; derived from a survey of pathologists. We developed techniques to quantify the parameters based on content-dependent absolute pixel performance and to manipulate the parameters in a predefined range resulting in images with content-independent relative quality measures. The method does not require a prior reference model. A subjective assessment of the image quality is performed involving 69 pathologists and 372 images (including 12 optimal quality images and their distorted versions per parameter at 6 different levels. To address the inter-reader variability, a representative rating is determined as a one-tailed 95% confidence interval of the mean rating. The results of the subjective assessment support the validity of the proposed objective image quality assessment method to model the readers’ perception of image quality. The subjective assessment also provides thresholds for determining the acceptable level of objective quality per parameter. The images for both the subjective and objective quality assessment are based on the HercepTestTM slides scanned by the Philips Ultra Fast Scanners, developed at Philips Digital Pathology Solutions. However, the method is applicable also to other types of slides and scanners.

  4. Organizational coherence in health care organizations: conceptual guidance to facilitate quality improvement and organizational change.

    Science.gov (United States)

    McAlearney, Ann Scheck; Terris, Darcey; Hardacre, Jeanne; Spurgeon, Peter; Brown, Claire; Baumgart, Andre; Nyström, Monica E

    2014-01-01

    We sought to improve our understanding of how health care quality improvement (QI) methods and innovations could be efficiently and effectively translated between settings to reduce persistent gaps in health care quality both within and across countries. We aimed to examine whether we could identify a core set of organizational cultural attributes, independent of context and setting, which might be associated with success in implementing and sustaining QI systems in health care organizations. We convened an international group of investigators to explore the issues of organizational culture and QI in different health care contexts and settings. This group met in person 3 times and held a series of conference calls to discuss emerging ideas over 2 years. Investigators also conducted pilot studies in their home countries to examine the applicability of our conceptual model. We suggest that organizational coherence may be a critical element of QI efforts in health care organizations and propose that there are 3 key components of organizational coherence: (1) people, (2) processes, and (3) perspectives. Our work suggests that the concept of organizational coherence embraces both culture and context and can thus help guide both researchers and practitioners in efforts to enhance health care QI efforts, regardless of organizational type, location, or context.

  5. The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance

    Directory of Open Access Journals (Sweden)

    Schreiner L

    2009-01-01

    Full Text Available The advances in modern radiation therapy with techniques such as intensity-modulated radiation therapy and image-guid-ed radiation therapy (IMRT and IGRT have been limited almost exclusively to linear accel-erators. Investigations of modern Cobalt-60 (Co-60 radiation delivery in the context of IMRT and IGRT have been very sparse, and have been limited mainly to computer-modeling and treatment-planning exercises. In this paper, we report on the results of experiments using a tomotherapy benchtop apparatus attached to a conventional Co-60 unit. We show that conformal dose delivery is possible and also that Co-60 can be used as the radiation source in megavoltage computed tomography imaging. These results complement our modeling studies of Co-60 tomotherapy and provide a strong motivation for continuing development of modern Cobalt-60 treatment devices.

  6. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  7. Image Processing in Optical Guidance for Autonomous Landing of Lunar Probe

    OpenAIRE

    Meng, Ding; Yun-feng, Cao; Qing-xian, Wu; Zhen, Zhang

    2008-01-01

    Because of the communication delay between earth and moon, the GNC technology of lunar probe is becoming more important than ever. Current navigation technology is not able to provide precise motion estimation for probe landing control system Computer vision offers a new approach to solve this problem. In this paper, author introduces an image process algorithm of computer vision navigation for autonomous landing of lunar probe. The purpose of the algorithm is to detect and track feature poin...

  8. Proton therapy for prostate cancer treatment employing online image guidance and an action level threshold.

    Science.gov (United States)

    Vargas, Carlos; Falchook, Aaron; Indelicato, Daniel; Yeung, Anamaria; Henderson, Randall; Olivier, Kenneth; Keole, Sameer; Williams, Christopher; Li, Zuofeng; Palta, Jatinder

    2009-04-01

    The ability to determine the accuracy of the final prostate position within a determined action level threshold for image-guided proton therapy is unclear. Three thousand one hundred ten images for 20 consecutive patients treated in 1 of our 3 proton prostate protocols from February to May of 2007 were analyzed. Daily kV images and patient repositioning were performed employing an action-level threshold (ALT) of > or = 2.5 mm for each beam. Isocentric orthogonal x-rays were obtained, and prostate position was defined via 3 gold markers for each patient in the 3 axes. To achieve and confirm our action level threshold, an average of 2 x-rays sets (median 2; range, 0-4) was taken daily for each patient. Based on our ALT, we made no corrections in 8.7% (range, 0%-54%), 1 correction in 82% (41%-98%), and 2 to 3 corrections in 9% (0-27%). No patient needed 4 or more corrections. All patients were treated with a confirmed error of < 2.5 mm for every beam delivered. After all corrections, the mean and standard deviations were: anterior-posterior (z): 0.003 +/- 0.094 cm; superior-inferior (y): 0.028 +/- 0.073 cm; and right-left (x) -0.013 +/- 0.08 cm. It is feasible to limit all final prostate positions to less than 2.5 mm employing an action level image-guided radiation therapy (IGRT) process. The residual errors after corrections were very small.

  9. Improving the Image Quality of Synthetic Transmit Aperture Ultrasound Images - Achieving Real-Time In-Vivo Imaging

    DEFF Research Database (Denmark)

    Gammelmark, Kim

    in-vivo experiments, showed, that TMS imaging can increase the SNR by as much as 17 dB compared to the traditional imaging techniques, which improves the in-vivo image quality to a highly competitive level. An in-vivo evaluation of convex array TMS imaging for abdominal imaging applications......-vivo imaging, and that the obtained image quality is highly competitive with the techniques applied in current medical ultrasound scanners. Hereby, the goals of the PhD have been successfully achieved.......Synthetic transmit aperture (STA) imaging has the potential to increase the image quality of medical ultrasound images beyond the levels obtained by conventional imaging techniques (linear, phased, and convex array imaging). Currently, however, in-vivo applications of STA imaging is limited...

  10. The benefit of image guidance for the contralateral interhemispheric approach to the lateral ventricle.

    Science.gov (United States)

    Fronda, Chiara; Miller, Dorothea; Kappus, Christoph; Bertalanffy, Helmut; Sure, Ulrich

    2008-06-01

    Recently, neurosurgeons have increasingly faced small intracerebral lesions in asymptomatic or minimally symptomatic patients. Here, we evaluated a series of four patients with nearly asymptomatic intraventricular tumors close to the corpus callosum that had been treated with the aid of an image-guided transcallosal approach. Four consecutive patients suffering from left intra- and paraventricular tumors were operated on via a contralateral interhemispheric transcallosal approach with the aid of neuronavigation. Our image-guided system directed: (1) the skin incision, (2) the interhemispheric dissection, and (3) the incision of the corpus callosum. Using the image-guided contralateral interhemispheric transcallosal approach to the left ventricle all lesions have been completely resected without the risk of damage to the dominant hemisphere. The callosal incision was kept as limited as possible (1.2-2.1cm) depending on the size of the tumor. No postoperative neurological or neuropsychological deficit was observed in our series. Neuronavigation facilitates a safe and targeted contralateral interhemispheric transcallosal approach to the dominant hemisphere's lateral ventricle. Our technique minimizes the risk of damage to the dominant hemisphere and requires only a limited opening of the corpus callosum, which might decrease the risk of neuropsychological morbidity.

  11. TU-EF-210-00: Therapeutic Strategies and Image Guidance

    International Nuclear Information System (INIS)

    2015-01-01

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare

  12. TU-EF-210-00: Therapeutic Strategies and Image Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  13. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    Science.gov (United States)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  14. Effects on MR images compression in tissue classification quality

    International Nuclear Information System (INIS)

    Santalla, H; Meschino, G; Ballarin, V

    2007-01-01

    It is known that image compression is required to optimize the storage in memory. Moreover, transmission speed can be significantly improved. Lossless compression is used without controversy in medicine, though benefits are limited. If we compress images lossy, where image can not be totally recovered; we can only recover an approximation. In this point definition of 'quality' is essential. What we understand for 'quality'? How can we evaluate a compressed image? Quality in images is an attribute whit several definitions and interpretations, which actually depend on the posterior use we want to give them. This work proposes a quantitative analysis of quality for lossy compressed Magnetic Resonance (MR) images, and their influence in automatic tissue classification, accomplished with these images

  15. The influence of environment temperature on SEM image quality

    International Nuclear Information System (INIS)

    Chen, Li; Liu, Junshan

    2015-01-01

    As the structure dimension goes down to the nano-scale, it often requires a scanning electron microscope (SEM) to provide image magnification up to 100 000  ×. However, SEM images at such a high magnification usually suffer from high resolution value and low signal-to-noise ratio, which results in low quality of the SEM image. In this paper, the quality of the SEM image is improved by optimizing the environment temperature. The experimental results indicate that at 100 000  ×, the quality of the SEM image is influenced by the environment temperature, whereas at 50 000  × it is not. At 100 000  × the best SEM image quality can be achieved from the environment temperature ranging 292 from 294 K, and the SEM image quality evaluated by the double stimulus continuous quality scale method can increase from grade 1 to grade 5. It is expected that this image quality improving method can be used in routine measurements with ordinary SEMs to get high quality images by optimizing the environment temperature. (paper)

  16. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    International Nuclear Information System (INIS)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-01-01

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within ∼200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  17. Quality of consumer-targeted internet guidance on home firearm and ammunition storage.

    Science.gov (United States)

    Freundlich, Katherine L; Skoczylas, Maria Shakour; Schmidt, John P; Keshavarzi, Nahid R; Mohr, Bethany Anne

    2016-10-01

    Four storage practices protect against unintentional and/or self-inflicted firearm injury among children and adolescents: keeping guns locked (1) and unloaded (2) and keeping ammunition locked up (3) and in a separate location from the guns (4). Our aim was to mimic common Google search strategies on firearm/ammunition storage and assess whether the resulting web pages provided recommendations consistent with those supported by the literature. We identified 87 web pages by Google search of the 10 most commonly used search terms in the USA related to firearm/ammunition storage. Two non-blinded independent reviewers analysed web page technical quality according to a 17-item checklist derived from previous studies. A single reviewer analysed readability by US grade level assigned by Flesch-Kincaid Grade Level Index. Two separate, blinded, independent reviewers analysed deidentified web page content for accuracy and completeness describing the four accepted storage practices. Reviewers resolved disagreements by consensus. The web pages described, on average, less than one of four accepted storage practices (mean 0.2 (95% CL 0.1 to 0.4)). Only two web pages (2%) identified all four practices. Two web pages (2%) made assertions inconsistent with recommendations; both implied that loaded firearms could be stored safely. Flesch-Kincaid Grade Level Index averaged 8.0 (95% CL 7.3 to 8.7). The average technical quality score was 7.1 (95% CL 6.8 to 7.4) out of an available score of 17. There was a high degree of agreement between reviewers regarding completeness (weighted κ 0.78 (95% CL 0.61 to 0.97)). The internet currently provides incomplete information about safe firearm storage. Understanding existing deficiencies may inform future strategies for improvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Quality assurance in digital dental imaging: a systematic review.

    Science.gov (United States)

    Metsälä, Eija; Henner, Anja; Ekholm, Marja

    2014-07-01

    Doses induced by individual dental examinations are low. However, dental radiography accounts for nearly one third of the total number of radiological examinations in the European Union. Therefore, special attention is needed with regard to radiation protection. In order to lower patient doses, the staff performing dental examinations must have competence in imaging as well as in radiation protection issues. This paper presents a systematic review about the core competencies needed by the healthcare staff in performing digital dental radiological imaging quality assurance. The following databases were searched: Pubmed, Cinahl, Pro Quest and IEEXplore digital library. Also volumes of some dental imaging journals and doctoral theses of the Finnish universities educating dentists were searched. The search was performed using both MeSH terms and keywords using the option 'search all text'. The original keywords were: dental imaging, digital, x-ray, panoramic, quality, assurance, competence, competency, skills, knowledge, radiographer, radiologist technician, dentist, oral hygienist, radiation protection and their Finnish synonyms. Core competencies needed by the healthcare staff performing digital dental radiological imaging quality assurance described in the selected studies were: management of dental imaging equipment, competence in image quality and factors associated with it, dose optimization and quality assurance. In the future there will be higher doses in dental imaging due to increasing use of CBCT and digital imaging. The staff performing dental imaging must have competence in dental imaging quality assurance issues found in this review. They also have to practice ethical radiation safety culture in clinical practice.

  19. Image quality and doses on selected studies of conventional radiology in designed hospitals

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Martinez Gonzalez, Alina; Machado Tejeda, Adalberto; Mora Machado, Roxana de la; Pedroso, Luis; Martinez Acosta, Ubaldo; Fiqueroa Garcia, Luisa M.

    2008-01-01

    The medical exposures have a significant contribution to the doses received by the population, although it has been given minor attention than to other exposure forms, despite of existing potentialities of reducing doses to the patients as consequence of these applications. In the last years the scientific community and international organizations have defined requirements to contribute to that the doses to the patients are the minimum ones necessary to achieve their diagnostic objective. The present work gives the results obtained in the evaluation of the image quality and doses for exams of thorax PA, lumbar spine AP and lumbar spine lateral, carried out in 2 university hospitals of Havana, as well as the contribution on this investigation to the establishment of the guidance levels in the country. During the investigation it took as reference for the reference for the evaluation of the image quality of the radiological studies the emitted criteria by European Union. The behavior of these approaches for the case of the thorax studies presented its biggest difficulties with the achievement of the approaches related with the visualization of breathing structures, being the execution percentages lower than the remaining countries of the region. In general the behaviour of the approaches of quality image in the ARCAL project. The behaviour of the image quality approaches are associated to different technical factors. The obtained results of doses for thorax PA are bigger than the recommended International Standards Basics in both hospitals. (author)

  20. Manifold Embedding and Semantic Segmentation for Intraoperative Guidance With Hyperspectral Brain Imaging.

    Science.gov (United States)

    Ravi, Daniele; Fabelo, Himar; Callic, Gustavo Marrero; Yang, Guang-Zhong

    2017-09-01

    Recent advances in hyperspectral imaging have made it a promising solution for intra-operative tissue characterization, with the advantages of being non-contact, non-ionizing, and non-invasive. Working with hyperspectral images in vivo, however, is not straightforward as the high dimensionality of the data makes real-time processing challenging. In this paper, a novel dimensionality reduction scheme and a new processing pipeline are introduced to obtain a detailed tumor classification map for intra-operative margin definition during brain surgery. However, existing approaches to dimensionality reduction based on manifold embedding can be time consuming and may not guarantee a consistent result, thus hindering final tissue classification. The proposed framework aims to overcome these problems through a process divided into two steps: dimensionality reduction based on an extension of the T-distributed stochastic neighbor approach is first performed and then a semantic segmentation technique is applied to the embedded results by using a Semantic Texton Forest for tissue classification. Detailed in vivo validation of the proposed method has been performed to demonstrate the potential clinical value of the system.

  1. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies.

    Science.gov (United States)

    Lin, Jonathan S; Hwang, Ken-Pin; Jackson, Edward F; Hazle, John D; Stafford, R Jason; Taylor, Brian A

    2013-10-01

    A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0

  2. QUALITY AWARDS: AN IMAGE OF BUSINESS EXCELLENCE

    Directory of Open Access Journals (Sweden)

    Ilies Liviu

    2015-07-01

    Full Text Available Across the world, increasingly more governmental organizations and industrial are doing everything possible to promote quality and to survive, the basic principle remains customer satisfaction and even more than that, it speaks of the principle of customer delight. In this sense, quality has become the source of sustained competitive advantage that provides organizations the supremacy of the global markets characterized by competition which becoming more and more intensified. Juran, one of the highest quality gurus say that “just as the twentieth century was the century of productivity, the twenty-first century will be the quality century” which is a very relevant and comprehensive statement of the economic reality of the past and a profound forecast for future business of the twenty-first century. In this regard, in order to achieve this competitive advantage, quality must be managed and this is accomplished through Total Quality Management (TQM. Quality awards models are instruments of total quality management through which quality can be assessed and improved, thus, knowing the quality awards models is critical for findings the new ways to improve the quality and performance of the organizations. The present paper aims to illustrate the best practices on quality improvement in this respect we intend to present the general framework of the quality awards for business excellence. In this sense we present the most important international quality awards, namely: "Malcolm Baldrige National Quality Award", "European Quality Award" and “Romanian Quality Award J. M. Juran". For this purpose we used as main sources of analyzing the structure and the operation mode of these three important quality awards, Juran's work (which is probably the most important work in the field of quality and other relevant sources in total quality management which treats issues related to quality awards and also we used as sources of updated information the official

  3. The relationship between compression force, image quality and ...

    African Journals Online (AJOL)

    Theoretically, an increase in breast compression gives a reduction in thickness without changing the density, resulting in improved image quality and reduced radiation dose. Aim. This study investigates the relationship between compression force, phantom thickness, image quality and radiation dose. The existence of a ...

  4. A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Lei Yu; Wu Qiuwen

    2010-01-01

    Offline adaptive radiotherapy (ART) has been used to effectively correct and compensate for prostate motion and reduce the required margin. The efficacy depends on the characteristics of the patient setup error and interfraction motion through the whole treatment; specifically, systematic errors are corrected and random errors are compensated for through the margins. In online image-guided radiation therapy (IGRT) of prostate cancer, the translational setup error and inter-fractional prostate motion are corrected through pre-treatment imaging and couch correction at each fraction. However, the rotation and deformation of the target are not corrected and only accounted for with margins in treatment planning. The purpose of this study was to investigate whether the offline ART strategy is necessary for an online IGRT protocol and to evaluate the benefit of the hybrid strategy. First, to investigate the rationale of the hybrid strategy, 592 cone-beam-computed tomography (CBCT) images taken before and after each fraction for an online IGRT protocol from 16 patients were analyzed. Specifically, the characteristics of prostate rotation were analyzed. It was found that there exist systematic inter-fractional prostate rotations, and they are patient specific. These rotations, if not corrected, are persistent through the treatment fraction, and rotations detected in early fractions are representative of those in later fractions. These findings suggest that the offline adaptive replanning strategy is beneficial to the online IGRT protocol with further margin reductions. Second, to quantitatively evaluate the benefit of the hybrid strategy, 412 repeated helical CT scans from 25 patients during the course of treatment were included in the replanning study. Both low-risk patients (LRP, clinical target volume, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles) were included in the simulation. The contours of prostate and seminal vesicles were

  5. Comparison of quality of ultrasonographic image of the pancreas: Tissue harmonic image vs. Fundamental image

    International Nuclear Information System (INIS)

    Seo, Young Lan; Choi, Chul Soon; Kim, Ho Chul; Yoon, Dae Young; Han, Dae Hee; Bae, Sang Hoon

    2002-01-01

    To compare the quality of ultrasonographic (US) images, tissue harmonic image (THI) versus fundamental image (FI), of the pancreas. During a recent 2 month period, forty one patients with the normal pancreas on US were included. All of them were free of abnormal clinical and laboratory findings suggestive of pancreatic disease, US was performed by an abdominal radiologist with a 2.5-5 MHz convex-array transducer (Sequoia 512: Acuson, Mountain View, Calif.U.S.A.). Comparison of THI and FI of the pancreas was done for the following parameters:conspicuity, intermal architecture, and delineation range. Grading was made by the consensus of two abdominal radiologist witha three-point scale. Statistical analysis was done using Wilcox signed rank sum test. For the evaluation of the US image quality of the pancreas THI showed better conspicuity (p=0.0130), clearer internal architecture (p=0.0029) and superior delineation range (p=0.0191) than those of FI. THI appears to show a superior image quality than FI in evaluation of the pancreas.

  6. Using image quality measures and features to choose good images for classification of ISAR imagery

    CSIR Research Space (South Africa)

    Steyn, JM

    2014-10-01

    Full Text Available the quality measures and to determine the minimum dwell-time for ISAR image formation. Keywords—ISAR (inverse synthetic aperture radar), Dwell-time, Quality Measure, Image Contrast, Image Entropy, SNR (signal-to-noise ratio), Maritime Vessels ...

  7. The study of surgical image quality evaluation system by subjective quality factor method

    Science.gov (United States)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  8. Image quality assessment for CT used on small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  9. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    Science.gov (United States)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  10. Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy.

    Science.gov (United States)

    Kim, Jung-In; Lee, Hanyoung; Wu, Hong-Gyun; Chie, Eui Kyu; Kang, Hyun-Cheol; Park, Jong Min

    2017-09-01

    The aim of this study is to develop a visual guidance patient-controlled (VG-PC) respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy (MR-IGRT) and to evaluate the performance of the developed system. The near-real-time cine planar MR image of a patient acquired during treatment was transmitted to a beam projector in the treatment room through an optical fiber cable. The beam projector projected the cine MR images inside the bore of the ViewRay system in order to be visible to a patient during treatment. With this visual information, patients voluntarily controlled their respiration to put the target volume into the gating boundary (gating window). The effect of the presence of the beam projector in the treatment room on the image quality of the MRI was investigated by evaluating the signal-to-noise ratio (SNR), uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity with the VG-PC gating system. To evaluate the performance of the developed system, we applied the VG-PC gating system to a total of seven patients; six patients received stereotactic ablative radiotherapy (SABR) and one patient received conventional fractionated radiation therapy. The projected cine MR images were visible even when the room light was on. No image data loss or additional time delay during delivery of image data were observed. Every indicator representing MRI quality, including SNR, uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity exhibited values higher than the tolerance levels of the manufacturer with the VG-PC gating system; therefore, the presence of the VG-PC gating system in the treatment room did not degrade the MR image quality. The average beam-off times due to respiratory gating with and without the VG-PC gating system were 830.3 ± 278.2 s and 1264.2 ± 302.1 s respectively (P = 0.005). Consequently, the total treatment times excluding

  11. Effect of image quality on calcification detection in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C. [National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Jarvis Breast Screening and Diagnostic Centre, Guildford GU1 1LJ (United Kingdom); Department of Radiology, St. George' s Healthcare NHS Trust, Tooting, London SW17 0QT (United Kingdom); Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ (United Kingdom); Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15210 (United States); National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-06-15

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  12. Alignment Focus of Daily Image Guidance for Concurrent Treatment of Prostate and Pelvic Lymph Nodes

    International Nuclear Information System (INIS)

    Ferjani, Samah; Huang, Guangshun; Shang, Qingyang; Stephans, Kevin L.; Zhong, Yahua; Qi, Peng; Tendulkar, Rahul D.; Xia, Ping

    2013-01-01

    Purpose: To determine the dosimetric impact of daily imaging alignment focus on the prostate soft tissue versus the pelvic bones for the concurrent treatment of the prostate and pelvic lymph nodes (PLN) and to assess whether multileaf collimator (MLC) tracking or adaptive planning (ART) is necessary with the current clinical planning margins of 8 mm/6 mm posterior to the prostate and 5 mm to the PLN. Methods and Materials: A total of 124 kilovoltage cone-beam computed tomography (kV-CBCT) images from 6 patients were studied. For each KV-CBCT, 4 plans were retrospectively created using an isocenter shifting method with 2 different alignment focuses (prostate, PLN), an MLC shifting method, and the ART method. The selected dosimetric endpoints were compared among these plans. Results: For the isoshift contour, isoshift bone, MLC shift, and ART plans, D99 of the prostate was ≥97% of the prescription dose in 97.6%, 73.4%, 98.4%, and 96.8% of 124 fractions, respectively. Accordingly, D99 of the PLN was ≥97% of the prescription dose in 98.4%, 98.4%, 98.4%, and 100% of 124 fractions, respectively. For the rectum, D5 exceeded 105% of the planned D5 (and D5 of ART plans) in 11% (4%), 10% (2%), and 13% (5%) of 124 fractions, respectively. For the bladder, D5 exceeded 105% of the planned D5 (and D5 of ART) plans in 0% (2%), 0% (2%), and 0% (1%) of 124 fractions, respectively. Conclusion: For concurrent treatment of the prostate and PLN, with a planning margin to the prostate of 8 mm/6 mm posterior and a planning margin of 5 mm to the PLN, aligning to the prostate soft tissue can achieve adequate dose coverage to the both target volumes; aligning to the pelvic bone would result in underdosing to the prostate in one-third of fractions. With these planning margins, MLC tracking and ART methods have no dosimetric advantages

  13. Alignment focus of daily image guidance for concurrent treatment of prostate and pelvic lymph nodes.

    Science.gov (United States)

    Ferjani, Samah; Huang, Guangshun; Shang, Qingyang; Stephans, Kevin L; Zhong, Yahua; Qi, Peng; Tendulkar, Rahul D; Xia, Ping

    2013-10-01

    To determine the dosimetric impact of daily imaging alignment focus on the prostate soft tissue versus the pelvic bones for the concurrent treatment of the prostate and pelvic lymph nodes (PLN) and to assess whether multileaf collimator (MLC) tracking or adaptive planning (ART) is necessary with the current clinical planning margins of 8 mm/6 mm posterior to the prostate and 5 mm to the PLN. A total of 124 kilovoltage cone-beam computed tomography (kV-CBCT) images from 6 patients were studied. For each KV-CBCT, 4 plans were retrospectively created using an isocenter shifting method with 2 different alignment focuses (prostate, PLN), an MLC shifting method, and the ART method. The selected dosimetric endpoints were compared among these plans. For the isoshift contour, isoshift bone, MLC shift, and ART plans, D99 of the prostate was ≥97% of the prescription dose in 97.6%, 73.4%, 98.4%, and 96.8% of 124 fractions, respectively. Accordingly, D99 of the PLN was ≥97% of the prescription dose in 98.4%, 98.4%, 98.4%, and 100% of 124 fractions, respectively. For the rectum, D5 exceeded 105% of the planned D5 (and D5 of ART plans) in 11% (4%), 10% (2%), and 13% (5%) of 124 fractions, respectively. For the bladder, D5 exceeded 105% of the planned D5 (and D5 of ART) plans in 0% (2%), 0% (2%), and 0% (1%) of 124 fractions, respectively. For concurrent treatment of the prostate and PLN, with a planning margin to the prostate of 8 mm/6 mm posterior and a planning margin of 5 mm to the PLN, aligning to the prostate soft tissue can achieve adequate dose coverage to the both target volumes; aligning to the pelvic bone would result in underdosing to the prostate in one-third of fractions. With these planning margins, MLC tracking and ART methods have no dosimetric advantages. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Intraprostatic fiducials for image guidance: Workflow implications in a single linac department

    International Nuclear Information System (INIS)

    Middleton, Mark; See, Andrew; Rolfo, Aldo; Medwell, Steve; Joon, Michael Lim; Joon, Daryl Lim; Martin, Jarad; Khoo, Vincent

    2008-01-01

    Purpose: To assess the accuracy and implications on workflow of an online correction electronic portal imaging (EPI) protocol utilising bony anatomy in the online environment and an assessment of three implanted gold seed fiducial markers in the offline environment. This paper summarises an initial trial to establish the range of systematic and random errors present in patient set-up for both bony anatomy and fiducial markers, and to calculate optimal clinical target volume (CTV) to planning target volume (PTV) margins. The impact of the introduction of such a technique was also assessed in terms of impact on workflow and resource management in a single machine unit (SMU). Methods and materials: Pre treatment electronic portal images (EPIs) were acquired and bony anatomy was matched with CT derived digitally reconstructed radiographs (DRRs). Intervention in field placement was made if field placement fell outside the range of 4 mm on any of the orthogonal axes. In the offline environment the position of the implanted gold seed fiducials was aligned with that of the DRRs. An analysis of set-up error, total error and internal organ motion was then undertaken, with full statistical analysis of systematic and random errors. Results: Eleven patients completed treatment as specified, with 1006 EPIs available for analysis. Treatment times were in the order of 10.4 min. Set-up errors were in the order of 2.7 mm right-left, 2.4 mm sup-inf and 1.6 mm ant-pst. These were reduced to 1.2 mm, 0.7 mm and 0.9 mm respectively utilising an online correction protocol. However there was minimal impact on total error and internal organ motion. Using the data obtained in both the online and offline environments optimal CTV-PTV margins were calculated for correcting to bone, correcting to gold seed fiducials and also the possibility of EPI malfunction. Conclusions: Daily targeting of the prostate is both technically feasible and can be carried out in an efficient and accurate manner. An

  15. Effect of image quality on calcification detection in digital mammography.

    Science.gov (United States)

    Warren, Lucy M; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M; Wallis, Matthew G; Chakraborty, Dev P; Dance, David R; Bosmans, Hilde; Young, Kenneth C

    2012-06-01

    This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from

  16. Effect of image quality on calcification detection in digital mammography

    International Nuclear Information System (INIS)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  17. STANDARDIZING QUALITY ASSESSMENT OF FUSED REMOTELY SENSED IMAGES

    Directory of Open Access Journals (Sweden)

    C. Pohl

    2017-09-01

    Full Text Available The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  18. Standardizing Quality Assessment of Fused Remotely Sensed Images

    Science.gov (United States)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  19. Evaluation of image quality of lumbar spine images: A comparison between FFE and VGA

    International Nuclear Information System (INIS)

    Tingberg, A.; Baath, M.; Haakansson, M.; Medin, J.; Besjakov, J.; Sandborg, M.; Alm-Carlsson, G.; Mattsson, S.; Maansson, L. G.

    2005-01-01

    Purpose: The aim of the present study is to compare two different methods for evaluation of the quality of clinical X-ray images. Methods: Based on fifteen lumbar spine radiographs, two new sets of images were created. A hybrid image set was created by adding two distributions of artificial lesions to each original image. The image quality parameters spatial resolution and noise were manipulated and a total of 210 hybrid images were created. A set of 105 disease-free images was created by applying the same combinations of spatial resolution and noise to the original images. The hybrid images were evaluated with the free-response forced error experiment (FFE) and the normal images with visual grading analysis (VGA) by nine experienced radiologists. Results: In the VGA study, images with low noise were preferred over images with higher noise levels. The alteration of the MTF had a limited influence on the VGA score. For the FFE study, the visibility of the lesions was independent of the sharpness and the noise level. No correlation was found between the two image quality measures. Conclusions: FFE is a precise method for evaluation of image quality, but the results are only valid for the type of lesion used in the study, whereas VGA is a more general method for clinical image quality assessment. The results of the FFE study indicate that there might be a potential to lower the dose levels in lumbar spine radiography without losing important diagnostic information. (authors)

  20. External quality assurance for image grading in the Scottish Diabetic Retinopathy Screening Programme.

    Science.gov (United States)

    Goatman, K A; Philip, S; Fleming, A D; Harvey, R D; Swa, K K; Styles, C; Black, M; Sell, G; Lee, N; Sharp, P F; Olson, J A

    2012-06-01

    To develop and evaluate an image grading external quality assurance system for the Scottish Diabetic Retinopathy Screening Programme. A web-based image grading system was developed which closely matches the current Scottish national screening software. Two rounds of external quality assurance were run in autumn 2008 and spring 2010, each time using the same 100 images. Graders were compared with a consensus standard derived from the top-level graders' results. After the first round, the centre lead clinicians and top-level graders reviewed the results and drew up guidance notes for the second round. Grader sensitivities ranged from 60.0 to 100% (median 92.5%) in 2008, and from 62.5 to 100% (median 92.5%) in 2010. Specificities ranged from 34.0 to 98.0% (median 86%) in 2008, and 54.0 to 100% (median 88%) in 2010. There was no difference in sensitivity between grader levels, but first-level graders had a significantly lower specificity than level-two and level-three graders. In 2008, one centre had a lower sensitivity but higher specificity than the majority of centres. Following the feedback from the first round, overall agreement improved in 2010 and there were no longer any significant differences between centres. A useful educational tool has been developed for image grading external quality assurance. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  1. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    International Nuclear Information System (INIS)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade; Laufer, Ilya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  2. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Taunk, Neil Kanth; Yamada, Yoshiya [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Laufer, Ilya, E-mail: fymoraes@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Neurosurgery, New York, NY (United States)

    2016-02-15

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  3. Image processing system performance prediction and product quality evaluation

    Science.gov (United States)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  4. Performance comparison of different graylevel image fusion schemes through a universal image quality index

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.

    2003-01-01

    We applied a recently introduced universal image quality index Q that quantifies the distortion of a processed image relative to its original version, to assess the performance of different graylevel image fusion schemes. The method is as follows. First, we adopt an original test image as the

  5. Improving the quality of brain CT image from Wavelet filters

    International Nuclear Information System (INIS)

    Pita Machado, Reinaldo; Perez Diaz, Marlen; Bravo Pino, Rolando

    2012-01-01

    An algorithm to reduce Poisson noise is described using Wavelet filters. Five tomographic images of patients and a head anthropomorphic phantom were used. They were acquired with two different CT machines. Due to the original images contain the acquisition noise; some simulated free noise lesions were added to the images and after that the whole images were contaminated with noise. Contaminated images were filtered with 9 Wavelet filters at different decomposition levels and thresholds. Image quality of filtered and unfiltered images was graded using the Signal to Noise ratio, Normalized Mean Square Error and the Structural Similarity Index, as well as, by the subjective JAFROC methods with 5 observers. Some filters as Bior 3.7 and dB45 improved in a significant way head CT image quality (p<0.05) producing an increment in SNR without visible structural distortions

  6. A study of the x-ray image quality improvement in the examination of the respiratory system based on the new image processing technique

    Science.gov (United States)

    Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio

    2014-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.

  7. Objective analysis of image quality of video image capture systems

    Science.gov (United States)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give

  8. SU-F-J-71: Improving CT Quality for Radiation Therapy Planning and Delivery Guidance Using a Non-Linear Contrast Enhancement Technique

    Energy Technology Data Exchange (ETDEWEB)

    Noid, G; Tai, A; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: Advanced image post-processing techniques which enhance soft-tissue contrast in CT have not been widely employed for RT planning or delivery guidance. The purpose of this work is to assess the soft-tissue contrast enhancement from non-linear contrast enhancing filters and its impact in RT. The contrast enhancement reduces patient alignment uncertainties. Methods: Non-linear contrast enhancing methods, such as Best Contrast (Siemens), amplify small differences in X-ray attenuation between two adjacent structure without significantly increasing noise. Best Contrast (BC) separates a CT into two frequency bands. The low frequency band is modified by a non-linear scaling function before recombination with the high frequency band. CT data collected using a CT-on-rails (Definition AS Open, Siemens) during daily CT-guided RT for 6 prostate cancer patients and an image quality phantom (The Phantom Laboratory) were analyzed. Images acquired with a standard protocol (120 kVp, 0.6 pitch, 18 mGy CTDIvol) were processed before comparison to the unaltered images. Contrast and noise were measured in the the phantom. Inter-observer variation was assessed by placing prostate contours on the 12 CT study sets, 6 enhanced and 6 unaltered, in a blinded study involving 8 observers. Results: The phantom data demonstrate that BC increased the contrast between the 1.0% supra-slice element and the background substrate by 46.5 HU while noise increased by only 2.3 HU. Thus the contrast to noise ratio increased from 1.28 to 6.71. Furthermore, the variation in centroid position of the prostate contours was decreased from 1.3±0.4 mm to 0.8±0.3 mm. Thus the CTV-to-PTV margin was reduced by 1.1 mm. The uncertainty in delineation of the prostate/rectum edge decreased by 0.5 mm. Conclusion: As demonstrated in phantom and patient scans the BC filter accentuates soft-tissue contrast. This enhancement leads to reduced inter-observer variation, which should improve RT planning and delivery

  9. No-reference visual quality assessment for image inpainting

    Science.gov (United States)

    Voronin, V. V.; Frantc, V. A.; Marchuk, V. I.; Sherstobitov, A. I.; Egiazarian, K.

    2015-03-01

    Inpainting has received a lot of attention in recent years and quality assessment is an important task to evaluate different image reconstruction approaches. In many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely on a reference image, which is often not available in inpainting applications. Usually researchers use subjective quality assessment by human observers. It is difficult and time consuming procedure. This paper focuses on a machine learning approach for no-reference visual quality assessment for image inpainting based on the human visual property. Our method is based on observation that Local Binary Patterns well describe local structural information of the image. We use a support vector regression learned on assessed by human images to predict perceived quality of inpainted images. We demonstrate how our predicted quality value correlates with qualitative opinion in a human observer study. Results are shown on a human-scored dataset for different inpainting methods.

  10. The art of assessing quality for images and video

    International Nuclear Information System (INIS)

    Deriche, M.

    2011-01-01

    The early years of this century have witnessed a tremendous growth in the use of digital multimedia data for di?erent communication applications. Researchers from around the world are spending substantial research efforts in developing techniques for improving the appearance of images/video. However, as we know, preserving high quality is a challenging task. Images are subject to distortions during acquisition, compression, transmission, analysis, and reconstruction. For this reason, the research area focusing on image and video quality assessment has attracted a lot of attention in recent years. In particular, compression applications and other multimedia applications need powerful techniques for evaluating quality objectively without human interference. This tutorial will cover the di?erent faces of image quality assessment. We will motivate the need for robust image quality assessment techniques, then discuss the main algorithms found in the literature with a critical perspective. We will present the di?erent metrics used for full reference, reduced reference and no reference applications. We will then discuss the difference between image and video quality assessment. In all of the above, we will take a critical approach to explain which metric can be used for which application. Finally we will discuss the different approaches to analyze the performance of image/video quality metrics, and end the tutorial with some perspectives on newly introduced metrics and their potential applications.

  11. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  12. Modified-BRISQUE as no reference image quality assessment for structural MR images.

    Science.gov (United States)

    Chow, Li Sze; Rajagopal, Heshalini

    2017-11-01

    An effective and practical Image Quality Assessment (IQA) model is needed to assess the image quality produced from any new hardware or software in MRI. A highly competitive No Reference - IQA (NR - IQA) model called Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) initially designed for natural images were modified to evaluate structural MR images. The BRISQUE model measures the image quality by using the locally normalized luminance coefficients, which were used to calculate the image features. The modified-BRISQUE model trained a new regression model using MR image features and Difference Mean Opinion Score (DMOS) from 775 MR images. Two types of benchmarks: objective and subjective assessments were used as performance evaluators for both original and modified-BRISQUE models. There was a high correlation between the modified-BRISQUE with both benchmarks, and they were higher than those for the original BRISQUE. There was a significant percentage improvement in their correlation values. The modified-BRISQUE was statistically better than the original BRISQUE. The modified-BRISQUE model can accurately measure the image quality of MR images. It is a practical NR-IQA model for MR images without using reference images. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sensitometric properties and image quality of radiographic film and paper

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1985-01-01

    When using X-ray film or radiographic paper for industrial applications one is interested in knowing not only their sensitometric properties (such as speed and contrast) but also the image quality obtainable with a particular brand of film or paper. Although standard methods for testing sensitometric properties and image quality separately are available, it is desirable to find a method by the use of which all the relevant properties could be tested together. The sensitometric properties are usually determined at constant kilovoltage and filtration at the X-ray tube, whereas the radiographic image quality is tested at different kilovoltages and for different material thicknesses

  14. Image quality control in radiodiagnostic in an University Hospital

    International Nuclear Information System (INIS)

    Almeida, Claudio Domingues de; Mota, Helvecio C.; Almeida, Carlos Eduardo de

    1996-01-01

    The image quality criteria proposed for European Union (UE) has been used to evaluate the chest x-ray examinations in a typical Department of Radiology of an University Hospital in Rio de Janeiro. The study includes information on x-ray beam parameters, film-screen combination, doses to the patients, film processing and image quality. Lateral and PA chest examinations of 63 patients were investigated. Only 10% of the patients presented entrance doses greater than the reference level proposed for UE and adopted by International Atomic Energy Agency and World Health Organization. The image quality has been approved for 87% of the examinations. (author)

  15. Brain imaging with synthetic MR in children: clinical quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Aaron M.; Serai, Suraj [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Leach, James L.; Jones, Blaise V. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2016-10-15

    Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging has been described in adult populations. However, use of synthetic MR imaging has not been previously reported in children. The purpose of this study is to report our assessment of diagnostic image quality using synthetic MR imaging in children. Synthetic MR acquisition was obtained in a sample of children undergoing brain MR imaging. Image quality assessments were performed on conventional and synthetic T1-weighted, T2-weighted, and FLAIR images. Standardized linear measurements were performed on conventional and synthetic T2 images. Estimates of patient age based upon myelination patterns were also performed. Conventional and synthetic MR images were evaluated on 30 children. Using a 4-point assessment scale, conventional imaging performed better than synthetic imaging for T1-weighted, T2-weighted, and FLAIR images. When the assessment was simplified to a dichotomized scale, the conventional and synthetic T1-weighted and T2-weighted images performed similarly. However, the superiority of conventional FLAIR images persisted in the dichotomized assessment. There were no statistically significant differences between linear measurements made on T2-weighted images. Estimates of patient age based upon pattern of myelination were also similar between conventional and synthetic techniques. Synthetic MR imaging may be acceptable for clinical use in children. However, users should be aware of current limitations that could impact clinical utility in the software version used in this study. (orig.)

  16. SEGMENTATION AND QUALITY ANALYSIS OF LONG RANGE CAPTURED IRIS IMAGE

    Directory of Open Access Journals (Sweden)

    Anand Deshpande

    2016-05-01

    Full Text Available The iris segmentation plays a major role in an iris recognition system to increase the performance of the system. This paper proposes a novel method for segmentation of iris images to extract the iris part of long range captured eye image and an approach to select best iris frame from the iris polar image sequences by analyzing the quality of iris polar images. The quality of iris image is determined by the frequency components present in the iris polar images. The experiments are carried out on CASIA-long range captured iris image sequences. The proposed segmentation method is compared with Hough transform based segmentation and it has been determined that the proposed method gives higher accuracy for segmentation than Hough transform.

  17. Evaluating Picture Quality of Image Plates in Digital CR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Joon [Dept. of Radiological Tecnology, Choonhae College of Health Science, Ulsan (Korea, Republic of); Ji Tae Jeong [Dept. of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2011-12-15

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  18. Evaluating Picture Quality of Image Plates in Digital CR Systems

    International Nuclear Information System (INIS)

    Kwak, Byung Joon; Ji Tae Jeong

    2011-01-01

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  19. The use of the general image quality equation in the design and evaluation of imaging systems

    Science.gov (United States)

    Cota, Steve A.; Florio, Christopher J.; Duvall, David J.; Leon, Michael A.

    2009-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. The National Imagery Interpretability Rating Scale (NIIRS) is a useful measure of image quality, because, by characterizing the overall interpretability of an image, it combines into one metric those contributors to image quality to which a human interpreter is most sensitive. The main drawback to using a NIIRS rating as a measure of image quality in engineering trade studies is the fact that it is tied to the human observer and cannot be predicted from physical principles and engineering parameters alone. The General Image Quality Equation (GIQE) of Leachtenauer et al. 1997 [Appl. Opt. 36, 8322-8328 (1997)] is a regression of actual image analyst NIIRS ratings vs. readily calculable engineering metrics, and provides a mechanism for using the expected NIIRS rating of an imaging system in the design and evaluation process. In this paper, we will discuss how we use the GIQE in conjunction with The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) to evaluate imager designs, taking a hypothetical high resolution commercial imaging system as an example.

  20. Quality assessment in radiological imaging methods

    International Nuclear Information System (INIS)

    Herstel, W.

    1985-01-01

    The equipment used in diagnostic radiology is becoming more and more complicated. In the imaging process four components are distinguished, each of which can introduce loss in essential information: the X-ray source, the human body, the imaging system and the observer. In nearly all imaging methods the X-ray quantum fluctuations are a limitation to observation. But there are also technical factors. As an illustration it is shown how in a television scanning process the resolution is restricted by the system parameters. A short review is given of test devices and the results are given of an image comparison based on regular bar patterns. Although this method has the disadvantage of measuring mainly the limiting resolution, the results of the test correlate reasonably well with the subjective appreciations of radiographs of bony structures made by a group of trained radiologists. Fluoroscopic systems should preferably be tested using moving structures under dynamic conditions. (author)

  1. Optimization of shearography image quality analysis

    International Nuclear Information System (INIS)

    Rafhayudi Jamro

    2005-01-01

    Shearography is an optical technique based on speckle pattern to measure the deformation of the object surface in which the fringe pattern is obtained through the correlation analysis from the speckle pattern. Analysis of fringe pattern for engineering application is limited for qualitative measurement. Therefore, for further analysis that lead to qualitative data, series of image processing mechanism are involved. In this paper, the fringe pattern for qualitative analysis is discussed. In principal field of applications is qualitative non-destructive testing such as detecting discontinuity, defect in the material structure, locating fatigue zones and etc and all these required image processing application. In order to performed image optimisation successfully, the noise in the fringe pattern must be minimised and the fringe pattern itself must be maximise. This can be achieved by applying a filtering method with a kernel size ranging from 2 X 2 to 7 X 7 pixels size and also applying equalizer in the image processing. (Author)

  2. Assessing microscope image focus quality with deep learning.

    Science.gov (United States)

    Yang, Samuel J; Berndl, Marc; Michael Ando, D; Barch, Mariya; Narayanaswamy, Arunachalam; Christiansen, Eric; Hoyer, Stephan; Roat, Chris; Hung, Jane; Rueden, Curtis T; Shankar, Asim; Finkbeiner, Steven; Nelson, Philip

    2018-03-15

    Large image datasets acquired on automated microscopes typically have some fraction of low quality, out-of-focus images, despite the use of hardware autofocus systems. Identification of these images using automated image analysis with high accuracy is important for obtaining a clean, unbiased image dataset. Complicating this task is the fact that image focus quality is only well-defined in foreground regions of images, and as a result, most previous approaches only enable a computation of the relative difference in quality between two or more images, rather than an absolute measure of quality. We present a deep neural network model capable of predicting an absolute measure of image focus on a single image in isolation, without any user-specified parameters. The model operates at the image-patch level, and also outputs a measure of prediction certainty, enabling interpretable predictions. The model was trained on only 384 in-focus Hoechst (nuclei) stain images of U2OS cells, which were synthetically defocused to one of 11 absolute defocus levels during training. The trained model can generalize on previously unseen real Hoechst stain images, identifying the absolute image focus to within one defocus level (approximately 3 pixel blur diameter difference) with 95% accuracy. On a simpler binary in/out-of-focus classification task, the trained model outperforms previous approaches on both Hoechst and Phalloidin (actin) stain images (F-scores of 0.89 and 0.86, respectively over 0.84 and 0.83), despite only having been presented Hoechst stain images during training. Lastly, we observe qualitatively that the model generalizes to two additional stains, Hoechst and Tubulin, of an unseen cell type (Human MCF-7) acquired on a different instrument. Our deep neural network enables classification of out-of-focus microscope images with both higher accuracy and greater precision than previous approaches via interpretable patch-level focus and certainty predictions. The use of

  3. X-ray Computed Tomography Image Quality Indicator (IQI) Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase one of the program is to identify suitable x-ray Computed Tomography (CT) Image Quality Indicator (IQI) design(s) that can be used to adequately capture CT...

  4. Image quality measurements for X-ray television chains

    International Nuclear Information System (INIS)

    Mohr, M.

    1986-01-01

    Image quality measurements were carried out for 36 television chains during 3 years. For the parameters sensitivity, resolution, contrast-detail diagram, minimal contrast and dose rate average values and experiences on their long-term stability are reported. (author)

  5. TH-B-207B-00: Pediatric Image Quality Optimization

    International Nuclear Information System (INIS)

    2016-01-01

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children

  6. Dosimetry and image quality assessment in a direct radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno Beraldo; Paixao, Lucas; Nogueira, Maria do Socorro, E-mail: boliveira.mg@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Marcio Alves de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Dept. de Anatomia e Imagem; Teixeira, Maria Helena Araujo [Clinica Dra. Maria Helena Araujo Teixeira, Belo Horizonte, MG (Brazil)

    2014-11-15

    Objective: to evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and methods: Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results: considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion: the present study contributes to verify the equipment conformity as regards dose values and image quality. (author)

  7. TH-B-207B-00: Pediatric Image Quality Optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.

  8. The dilemma of parotid gland and pharyngeal constrictor muscles preservation—Is daily online image guidance required? A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Olivia; Forde, Elizabeth; Leech, Michelle, E-mail: leechm@tcd.ie

    2017-04-01

    With margin reduction common in head and neck radiotherapy, it is critical that the dosimetric effects of setup deviations are quantified. With past studies focusing on the quantification of positional and volumetric changes of organs at risk (OARs), this study aimed to measure the dose delivered to these the parotid gland (PG) and pharyngeal constrictor muscles (PCMs) using cone beam computed tomography (CBCT). Furthermore, this investigation sought to establish a potential time trend of change in dose delivered to target volumes secondary to ascertaining the need for daily image guidance (IG) to reduce the dose burden to these important OARs. Intensity modulated radiotherapy (IMRT) plans for 5 locally advanced head and neck patients' plans were created and mapped to weekly CBCTs. Each plan was recalculated without heterogeneity correction allowing for dosimetric comparison. Dosimetric endpoints recorded to assess the effect of positional variation were as per ICRU 83 and included D{sub 95} and D{sub 98} for the target volumes, mean dose (MD) and V{sub 30} {sub Gy} for the PGs, and V{sub 50} {sub Gy} and MD for the PCMs. Results were deemed statistically significant if p < 0.05. No significant time trends were established for these OARs. A significant decrease in V{sub 50} {sub Gy} was observed for all PCMs (p < 0.001) on all CBCTs relative to the original plan. Regarding target volumes, a highly significant decrease in MD (MD = 20 Gy, CI: −20.310 to −19.820) in D{sub 98} of the high-dose planning target volume (PTV [70 Gy]; PTVD{sub 98%} = 70 Gy) for case 3 was found (p ≤ 0.001). A nonpredictable, yet significant dosimetric effect was found. A clinically acceptable balance must be achieved between OAR dosimetry and target coverage as can be achieved by frequent IG.

  9. Naturalness and image quality : saturation and lightness variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.

    1996-01-01

    The relation between perceived image quality and naturalness was investigated by varying the colorfulness of natural images at various lightness levels. At each lightness level, subjects assessed perceived colorfulness, naturalness, and quality as a function of average saturation by means of direct

  10. MATLAB-based Applications for Image Processing and Image Quality Assessment – Part II: Experimental Results

    Directory of Open Access Journals (Sweden)

    L. Krasula

    2012-04-01

    Full Text Available The paper provides an overview of some possible usage of the software described in the Part I. It contains the real examples of image quality improvement, distortion simulations, objective and subjective quality assessment and other ways of image processing that can be obtained by the individual applications.

  11. Parameters related to the image quality in computed tomography -CT

    International Nuclear Information System (INIS)

    Alonso, T.C.; Silva, T.A.; Mourão, A.P.; Silva, T.A.

    2015-01-01

    Quality control programs in computed tomography, CT, should be continuously reviewed to always ensure the best image quality with the lowest possible dose for the patient in the diagnostic process. The quality control in CT aims to design and implement a set of procedures that allows the verification of their operating conditions within the specified requirements for its use. In Brazil, the Ministry of Health (MOH), the Technical Rules (Resolution NE in 1016.) - Radiology Medical - 'Equipment and Safety Performance' establishes a reference to the analysis of tests on TC. A large number of factors such as image noise, slice thickness (resolution of the Z axis), low contrast resolution and high contrast resolution and the radiation dose can be affected by the selection of technical parameters in exams. The purpose of this study was to investigate how changes in image acquisition protocols modify its quality and determine the advantages and disadvantages between the different aspects of image quality, especially the reduction of patient radiation dose. A preliminary procedure is to check the operating conditions of the CT measurements were performed on a scanner with 64-MDCT scanner (GE Healthcare, BrightSpeed) in the service of the Molecular Imaging Center (Cimol) of the Federal University of Minas Gerais (UFMG). When performing the image quality tests we used a simulator, Catphan-600, this device has five modules, and in each you can perform a series of tests. Different medical imaging practices have different requirements for acceptable image quality. The results of quality control tests showed that the analyzed equipment is in accordance with the requirements established by current regulations. [pt

  12. Laparoscopic Heller Myotomy for Non-Dilated Esophageal Achalasia in Children with Intraoperative Stepped Dilation Under Image Guidance: Attempting Complete Myotomy.

    Science.gov (United States)

    Miyano, Go; Miyake, Hiromu; Koyama, Mariko; Morita, Keiichi; Kaneshiro, Masakatsu; Nouso, Hiroshi; Yamoto, Masaya; Fukumoto, Koji; Urushihara, Naoto

    2016-05-01

    This study presents a modified surgical approach to laparoscopic myotomy for achalasia using stepped dilation with a Rigiflex balloon and contrast medium under image guidance. A 10-year-old boy with persistent dysphagia and vomiting had ingested only liquids for 3 months, losing >10 kg in body weight. Barium swallow and esophageal manometry diagnosed esophageal achalasia with mild esophageal dilatation. After failed pneumatic dilatation, laparoscopic Heller myotomy with Dor fundoplication was performed. Prior to surgery, a Rigiflex balloon dilator was placed within the esophagus near the diaphragmatic hiatus. A four-port technique was used, and mobilization of the esophagus was limited to the anterior aspect. A 5-cm Heller myotomy was performed, extending another 2 cm onto the anterior gastric wall. During myotomy, the Rigiflex balloon was serially dilated from 30 to 50 mL, and filled with contrast medium under fluoroscopic image guidance in order to maintain appropriate tension on the esophagus to facilitate myotomy, and to confirm adequate myotomy with sufficient release of lower esophageal sphincter by resecting residual circular muscle fibers. Residual circular muscle fibers can be simultaneously visualized under both fluoroscopic image guidance and direct observation through the laparoscope, and they were cut precisely until the residual notch fully disappeared. Dor fundoplication was completed. The operative time was 180 minutes, and oral intake was started after esophagography on postoperative day 1. As of the 12-month follow-up, the patient has not shown any symptoms, and his postoperative course appeared satisfactory.

  13. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  14. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  15. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  16. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    International Nuclear Information System (INIS)

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  17. Applying image quality in cell phone cameras: lens distortion

    Science.gov (United States)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  18. CD-ROM training course in quality assurance in diagnostic imaging

    International Nuclear Information System (INIS)

    Khoury, H.J.; Machado, P.; Drexler, G.

    2001-01-01

    This paper discusses the CD-ROM elaborated to provide a continuous professional formation and a practical guidance on the implementation and operation of routine quality assurance (QA) programme for medical physicists, regulator authorities and for those personnel concerned with the daily provision of diagnostic radiology services. The CD-ROM contains topics on the basic concepts of QA in radiodiagnostic, and it also allows the user to visualise effects on the variation of technical parameters (tube potential (kV) and current (mA), filtration) in the quality of the image. This possibility will contribute to the better understanding of the phenomena associated with the quality of the image. Besides, the program contains the procedures for the execution of the tests of the equipment and the route of implantation of program of quality assurance. It is interactive with the user, it fills a gap in the medical physics area and it allows the student's continuous formation because it assists the beginner, with the basic concepts, and the professional, with the aid in the implantation of the program of QA. The presentation is in the Portuguese language. (author)

  19. Blind image quality assessment based on aesthetic and statistical quality-aware features

    Science.gov (United States)

    Jenadeleh, Mohsen; Masaeli, Mohammad Masood; Moghaddam, Mohsen Ebrahimi

    2017-07-01

    The main goal of image quality assessment (IQA) methods is the emulation of human perceptual image quality judgments. Therefore, the correlation between objective scores of these methods with human perceptual scores is considered as their performance metric. Human judgment of the image quality implicitly includes many factors when assessing perceptual image qualities such as aesthetics, semantics, context, and various types of visual distortions. The main idea of this paper is to use a host of features that are commonly employed in image aesthetics assessment in order to improve blind image quality assessment (BIQA) methods accuracy. We propose an approach that enriches the features of BIQA methods by integrating a host of aesthetics image features with the features of natural image statistics derived from multiple domains. The proposed features have been used for augmenting five different state-of-the-art BIQA methods, which use statistical natural scene statistics features. Experiments were performed on seven benchmark image quality databases. The experimental results showed significant improvement of the accuracy of the methods.

  20. HDR Image Quality Enhancement Based on Spatially Variant Retinal Response

    Directory of Open Access Journals (Sweden)

    Horiuchi Takahiko

    2010-01-01

    Full Text Available There is a growing demand for being able to display high dynamic range (HDR images on low dynamic range (LDR devices. Tone mapping is a process for enhancing HDR image quality on an LDR device by converting the tonal values of the original image from HDR to LDR. This paper proposes a new tone mapping algorithm for enhancing image quality by deriving a spatially-variant operator for imitating S-potential response in human retina, which efficiently improves local contrasts while conserving good global appearance. The proposed tone mapping operator is studied from a system construction point of view. It is found that the operator is regarded as a natural extension of the Retinex algorithm by adding a global adaptation process to the local adaptation. The feasibility of the proposed algorithm is examined in detail on experiments using standard HDR images and real HDR scene images, comparing with conventional tone mapping algorithms.

  1. Decision theory on the quality evaluation of medical images

    International Nuclear Information System (INIS)

    Lessa, Patricia Silva

    2001-10-01

    The problem of quality has been a constant issue in every organization.One is always seeking to produce more, to do it at a lower cost, and to do it with better quality. However, in this country, there is no radiographic film quality control system for radiographic services. The tittle that actually gets done is essentially ad hoc and superficial. The implications of this gap, along with some other shortcomings that exist in process as a whole (the state of the x-ray equipment, the adequate to use in order to obtain a radiography, the quality of the film, the processing of the film, the brightness and homogeneity of the viewing boxes, the ability of the radiologist), have a very negative impact on the quality of the medical image, and, as result, to the quality of the medical diagnosis and therapy. It frequently happens that many radiographs have to be repeated, which leads to an increase of the patient's exposure to radiation, as well as of the cost of the procedure for the patient. Low quality radiographs that are not repeated greatly increase the probability of a wrong diagnosis, and consequently, of inadequate therapeutical procedures, thus producing increased incidence of bad outcomes and higher costs. The paradigm proposed in order to establish a system for the measurement of the image's quality is Decision Theory. The problem of the assessment of the image is studied by proposing a Decision Theory approach. The review of the literature reveals a great concern with the quality of the image, along with an absence of an adequate paradigm and several essentially empirical procedures. Image parameters are developed in order to formalize the problem in terms of Decision Theory, and various aspects of image digitalisation are exposed. Finally, a solution is presented, including a protocol for quality control. (author)

  2. SU-E-T-406: Online Image-Guidance for Prostate SBRT: Dosimetric Benefits and Margin Analysis.

    Science.gov (United States)

    Li, T; Yuan, L; Lee, W; Yin, F; Wu, Q J

    2012-06-01

    To evaluate the dosimetric benefits of online image guidance during prostate stereotactic body radiotherapy (SBRT) and the potential on margin reduction. 28 prostate SBRT patients were retrospectively studied, each treated with 37Gy in 5 fractions. RTOG recently opened a similar protocol (0938). During treatments, per-beam couch corrections were made based on the actual target motion provided by dynamic tracking with either Calypso or per-beam OBI imaging. Dosimetric benefits of online correction were evaluated by comparing delivered dose distributions with and without such correction. The dose distribution without correction was generated in the same treatment planning system by accumulating doses without online correction from the each beam and each fraction. Quantitative analyses include the dosimetric difference between delivered doses with and without correction; the correction magnitude and frequency; and the potential on margin reduction based on the margin recipe by Van Herk et al. (1) Delivery without online correction results in small reduction on target mean dose (0.03±0.05Gy), maximal dose (0.01±0.06Gy), and conformity index (<0.06). (2) Delivery without online correction has small impact on OAR dose: 26 out of 28 patients have <1%/1.5cc differences in V18.5Gy/V24Gy/V28Gy/V33Gy/V37Gy for both the bladder and the rectum. Maximal differences are 4cc of the bladder and 1.6cc of the rectum in mid-dose regions (V18.5Gy). (3) For femoral heads, <1cc/1Gy differences are observed in V20Gy/Dmean/D1cc.(4) Average number of couch corrections per fraction is 0.49. The magnitudes are: (-0.2±2)mm vertically, (-0.1±2.1)mm longitudinally, and (-0.2±1.4)mm laterally. (5) Margin determined by actual target motion in this patient population is 2.5mm isotropic. For both target coverage and OAR sparing, overall small benefit is seen from per-beam couch correction under dynamic tracking. The target motion between beams is small and random, and indicates a population

  3. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  4. Quality control in diagnostic mammography: myths, realities and their importance in the final image quality

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia

    2011-01-01

    Mammography is the most used tool for early detection of breast cancer and reduce mortality from this cause. Studies with ionizing radiation it is important that be justified and provide a quality image to make the diagnosis, to get more benefits and fewer risks. The problem is the difficult to obtain an image of the breast. Therefore, the commitment to quality mammography is to maximize the contrast, definition, resolution and reliability, thus minimizing noise and dose. A mammogram performed without quality don't detect early breast cancer and the study doesn't have sense. Quality mammography requires trained and experienced staff, modern equipment and in good conditions, correct positioning, right technical factors and appropriate viewing conditions. In addition, quality programs are required to reach to ensure quality, control in testing techniques and image quality. (author) [es

  5. The Image Quality Translator – A Way to Support Specification of Imaging Requirements

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad; Bech, Mogens

    2015-01-01

    Archives, libraries, and museums run numerous imaging projects to digitize physical works and collections of cultural heritage. This study presents a tool called the 'Image Quality Translator' that is being designed at the Royal Library to support the planning of digitization projects and to make...... the process of specifying and controlling imaging requirements more efficient. The tool seeks to translate between the language used by collection managers and curators to express needs for image quality, and the more technical terms and metrics used by imaging experts and photographers to express...

  6. Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging

    NARCIS (Netherlands)

    Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.

    2011-01-01

    The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the

  7. Naturalness and image quality : chroma and hue variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Rogowitz, B.E.; Allebach, J.P.

    1995-01-01

    The relation between perceptual image quality and naturalness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and finally

  8. Naturalness and image quality: Chroma and hue variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Eschbach, R.; Braun, K.

    1997-01-01

    The relation between perceptual image quality and natural ness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and

  9. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  10. Deep learning for objective quality assessment of 3D images

    NARCIS (Netherlands)

    Mocanu, D.C.; Exarchakos, G.; Liotta, A.

    2014-01-01

    Improving the users' Quality of Experience (QoE) in modern 3D Multimedia Systems is a challenging proposition, mainly due to our limited knowledge of 3D image Quality Assessment algorithms. While subjective QoE methods would better reflect the nature of human perception, these are not suitable in

  11. Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery

    International Nuclear Information System (INIS)

    Bachar, G.; Siewerdsen, J. H.; Daly, M. J.; Jaffray, D. A.; Irish, J. C.

    2007-01-01

    The image quality and localization accuracy for C-arm tomosynthesis and cone-beam computed tomography (CBCT) guidance of head and neck surgery were investigated. A continuum in image acquisition was explored, ranging from a single exposure (radiograph) to multiple projections acquired over a limited arc (tomosynthesis) to a full semicircular trajectory (CBCT). Experiments were performed using a prototype mobile C-arm modified to perform 3D image acquisition (a modified Siemens PowerMobil). The tradeoffs in image quality associated with the extent of the source-detector arc (θ tot ), the number of projection views, and the total imaging dose were evaluated in phantom and cadaver studies. Surgical localization performance was evaluated using three cadaver heads imaged as a function of θ tot . Six localization tasks were considered, ranging from high-contrast feature identification (e.g., tip of a K-wire pointer) to more challenging soft-tissue delineation (e.g., junction of the hard and soft palate). Five head and neck surgeons and one radiologist participated as observers. For each localization task, the 3D coordinates of landmarks pinpointed by each observer were analyzed as a function of θ tot . For all tomosynthesis angles, image quality was highest in the coronal plane, whereas sagittal and axial planes exhibited a substantial decrease in spatial resolution associated with out-of-plane blur and distortion. Tasks involving complex, lower-contrast features demonstrated steeper degradation with smaller tomosynthetic arc. Localization accuracy in the coronal plane was correspondingly high, maintained to tot ∼30 deg. , whereas sagittal and axial localization degraded rapidly below θ tot ∼60 deg. . Similarly, localization precision was better than ∼1 mm within the coronal plane, compared to ∼2-3 mm out-of-plane for tomosynthesis angles below θ tot ∼45 deg. . An overall 3D localization accuracy of ∼2.5 mm was achieved with θ tot ∼ 90 deg. for most

  12. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    International Nuclear Information System (INIS)

    Lee, D; Keall, P; Kim, T; Greer, P B; Arm, J

    2014-01-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  13. Pre-analytic process control: projecting a quality image.

    Science.gov (United States)

    Serafin, Mark D

    2006-09-26

    Within the health-care system, the term "ancillary department" often describes the laboratory. Thus, laboratories may find it difficult to define their image and with it, customer perception of department quality. Regulatory requirements give laboratories who so desire an elegant way to address image and perception issues--a comprehensive pre-analytic system solution. Since large laboratories use such systems--laboratory service manuals--I describe and illustrate the process for the benefit of smaller facilities. There exist resources to help even small laboratories produce a professional service manual--an elegant solution to image and customer perception of quality.

  14. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  15. Toward optimal color image quality of television display

    Science.gov (United States)

    MacDonald, Lindsay W.; Endrikhovski, Sergej N.; Bech, Soren; Jensen, Kaj

    1999-12-01

    A general framework and first experimental results are presented for the `OPTimal IMage Appearance' (OPTIMA) project, which aims to develop a computational model for achieving optimal color appearance of natural images on adaptive CRT television displays. To achieve this goal we considered the perceptual constraints determining quality of displayed images and how they could be quantified. The practical value of the notion of optimal image appearance was translated from the high level of the perceptual constraints into a method for setting the display's parameters at the physical level. In general, the whole framework of quality determination includes: (1) evaluation of perceived quality; (2) evaluation of the individual perceptual attributes; and (3) correlation between the physical measurements, psychometric parameters and the subjective responses. We performed a series of psychophysical experiments, with observers viewing a series of color images on a high-end consumer television display, to investigate the relationships between Overall Image Quality and four quality-related attributes: Brightness Rendering, Chromatic Rendering, Visibility of Details and Overall Naturalness. The results of the experiments presented in this paper suggest that these attributes are highly inter-correlated.

  16. Quality control of the interpretation monitors of digital radiological images

    International Nuclear Information System (INIS)

    Favero, Mariana S.; Goulart, Adriano Oliveira S.

    2016-01-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  17. Standardization of Image Quality Analysis – ISO 19264

    DEFF Research Database (Denmark)

    Wüller, Dietmar; Kejser, Ulla Bøgvad

    2016-01-01

    There are a variety of image quality analysis tools available for the archiving world, which are based on different test charts and analysis algorithms. ISO has formed a working group in 2012 to harmonize these approaches and create a standard way of analyzing the image quality for archiving...... systems. This has resulted in three documents that have been or are going to be published soon. ISO 19262 defines the terms used in the area of image capture to unify the language. ISO 19263 describes the workflow issues and provides detailed information on how the measurements are done. Last...... but not least ISO 19264 describes the measurements in detail and provides aims and tolerance levels for the different aspects. This paper will present the new ISO 19264 technical specification to analyze image quality based on a single capture of a multi-pattern test chart, and discuss the reasoning behind its...

  18. MYTHS vesus reality in computed radiography image quality

    International Nuclear Information System (INIS)

    Mango, Steve; Castro, Luiz

    2009-01-01

    As NDE operation - particularly radiographic testing - ransition form analog to digital technologies such as computed radiography (CR), users are learning that there's more to digital image quality than meets the eye. In fact, there are ultiple factors that determine the final perceived image quality of a computed radiograph. Many of these factors are misunderstood, and some are touted as the ''key parameter'' or ''magic bullet'' in producing optiumum image quality, In reality, such claims are oversimplified, and are more marketing hype than reality. The truth?. Perceived image quality results form the cascaded effects of many factor - such as sharpness, system noise, spot size and pixel size, subject contrast, bit depth, radiographic technique, and so on. Many of these factors are within the control of rdiographers or designers of equipment and media. This paper will explain some of these key factors, dispel some of the myths surrounding them, and will show that qualities such as bigger, smaller, more, or less are not always better when it comes to CR image quality. (authors)

  19. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    Science.gov (United States)

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Investigation of Photographic Image Quality Estimators

    Science.gov (United States)

    1980-04-01

    Bibeman (1973) describes acutance as being "expressed in terms of the mean square of the gradient of . . . density (in a photographic image) with...the density difference AD. for each interval from the (smoothed) microdensitometer trace (calibrated in density units). 4. Compute the gradient -77...resolution." Rotacion Effects: The conditions were: Target: Shutter Speed: I- requency: Arplitude: Medium contrast, variable aspect 250 milliseconds

  1. The influence of software filtering in digital mammography image quality

    Science.gov (United States)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  2. The influence of software filtering in digital mammography image quality

    International Nuclear Information System (INIS)

    Michail, C; Spyropoulou, V; Valais, I; Panayiotakis, G; Kalyvas, N; Fountos, G; Kandarakis, I; Dimitropoulos, N

    2009-01-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  3. Image Quality Assessment of JPEG Compressed Mars Science Laboratory Mastcam Images using Convolutional Neural Networks

    Science.gov (United States)

    Kerner, H. R.; Bell, J. F., III; Ben Amor, H.

    2017-12-01

    The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.

  4. Image quality and dose in mammographic images obtained in Mexico City hospitals

    International Nuclear Information System (INIS)

    Ruiz-Trejo, C.; Brandan, M.-E.; Verdejo, M.; Flores, A.; Guevara, M.; Martin, J.; Madero-Preciado, L.

    2001-01-01

    The performance of three mammographic systems in large Mexican hospitals has been evaluated, as well as the image quality and associated dose. Quality control tests include examination of X-ray equipment, darkroom conditions, film processor, and viewboxes. Systems referred to as '1', '2', and '3' passed 50%, 75% and 75% of these tests, respectively. Quality image is assessed using five images obtained under similar nominal conditions in each X-ray equipment. System 1 generates no image of acceptable quality, while equipment 2 and 3 produce one and two, respectively. The mean glandular dose for the best images obtained in each service with an accreditation phantom has been measured, and the values are 1.4 mGy, 1.6 mGy, and 1.0 mGy, respectively. (author)

  5. Physical image quality of computed radiography in mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Muhammad Jamal Isa; Wan Muhamad Saridan Wan Hassan; Fatimah Othman

    2013-01-01

    Full-text: Mammography is a screening procedure that mostly used for early detection of breast cancer. In digital imaging system, Computed Radiography is a cost-effective technology that applied indirect conversion detector. The paper presents physical image quality parameter measurements namely modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of Computed Radiography in mammography system. MTF was calculated from two different orientations of slanted images of an edge test device and NNPS was estimated using flat-field image. Both images were acquired using a standard mammography beam quality. DQE was determined by applying the MTF and NNPS values into our developed software program. Both orientations have similar DQE characteristics. (author)

  6. Evaluation of the quality of CR mammography images in Chugoku Rosai Hospital. Visual evaluation and digital evaluation

    International Nuclear Information System (INIS)

    Makihata, Hiroshi; Fukuda, Tomoya; Aomori, Masaji; Hara, Shinji

    2005-01-01

    New mammography system (50-micrometer system) composed of Fuji computed tomography (FCR) both sides IP, 5000MA and dry imager was introduced in the Department of Physical Checkup of Chugoku Rosai Hospital in 2003. We performed visual evaluation and digital evaluation using 50-micrometer system in accordance with (the quality control guidance of) Non-Profit Organization the Central Committee on Quality Control of Mammographic Screening. In visual evaluation using RMI156 phantom the system cleared the quality control guidance about a fiber, calcification, and masses. On step phantom, it passed about 10 steps, masses, and calcifications. Since a success standard was not announced officially, the performance in digital evaluation cannot be judged and only the result is presented. In digital evaluation, signal-to-noise ratio (SNR) is 14.9, root of mean squares (RMS) is 32.9, SNRC is 16.4, SNRT is 3.65. This system image has high sharpness and is considered from the result in visual evaluation to have the ability of offering images with a high degree of information. (author)

  7. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm

    2017-01-01

    are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer......This paper discusses methods for assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology...... to properly reveal the clinical value. The paper exemplifies the methodology using recent studies of Synthetic Aperture Sequential Beamforming tissue harmonic imaging....

  8. Dual in vivo Photoacoustic and Fluorescence Imaging of HER2 Expression in Breast Tumors for Diagnosis, Margin Assessment, and Surgical Guidance

    Directory of Open Access Journals (Sweden)

    Azusa Maeda

    2015-01-01

    Full Text Available Biomarker-specific imaging probes offer ways to improve molecular diagnosis, intraoperative margin assessment, and tumor resection. Fluorescence and photoacoustic imaging probes are of particular interest for clinical applications because the combination enables deeper tissue penetration for tumor detection while maintaining imaging sensitivity compared to a single optical imaging modality. Here we describe the development of a human epidermal growth factor receptor 2 (HER2-targeting imaging probe to visualize differential levels of HER2 expression in a breast cancer model. Specifically, we labeled trastuzumab with Black Hole Quencher 3 (BHQ3 and fluorescein for photoacoustic and fluorescence imaging of HER2 overexpression, respectively. The dual-labeled trastuzumab was tested for its ability to detect HER2 overexpression in vitro and in vivo. We demonstrated an over twofold increase in the signal intensity for HER2-overexpressing tumors in vivo, compared to low–HER2-expressing tumors, using photoacoustic imaging. Furthermore, we demonstrated the feasibility of detecting tumors and positive surgical margins by fluorescence imaging. These results suggest that multimodal HER2-specific imaging of breast cancer using the BHQ3-fluorescein trastuzumab enables molecular-level detection and surgical margin assessment of breast tumors in vivo. This technique may have future clinical impact for primary lesion detection, as well as intraoperative molecular-level surgical guidance in breast cancer.

  9. Real-time computer treatment of THz passive device images with the high image quality

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  10. Image Quality Improvement after Implementation of a CT Accreditation Program

    International Nuclear Information System (INIS)

    Kim, You Sung; Jung, Seung Eun; Choi, Byung Gil; Shin, Yu Ri; Hwang, Seong Su; Ku, Young Mi; Lim, Yeon Soo; Lee, Jae Mun

    2010-01-01

    The purpose of this study was to evaluate any improvement in the quality of abdominal CTs after the utilization of the nationally based accreditation program. Approval was obtained from the Institutional Review Board, and informed consent was waived. We retrospectively analyzed 1,011 outside abdominal CTs, from 2003 to 2007. We evaluated images using a fill-up sheet form of the national accreditation program, and subjectively by grading for the overall CT image quality. CT scans were divided into two categories according to time periods; before and after the implementation of the accreditation program. We compared CT scans between two periods according to parameters pertaining to the evaluation of images. We determined whether there was a correlation between the results of a subjective assessment of the image quality and the evaluation scores of the clinical image. The following parameters were significantly different after the implementation of the accreditation program: identifying data, display parameters, scan length, spatial and contrast resolution, window width and level, optimal contrast enhancement, slice thickness, and total score. The remaining parameters were not significantly different between scans obtained from the two different periods: scan parameters, film quality, and artifacts. After performing the CT accreditation program, the quality of the outside abdominal CTs show marked improvement, especially for the parameters related to the scanning protocol

  11. Virtual Ultrasound Guidance for Inexperienced Operators

    Science.gov (United States)

    Caine, Timothy; Martin, David

    2012-01-01

    Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit in which the time delay inherent with communication will make remote guidance impractical. The Virtual Ultrasound Guidance system is a combination of hardware and software. The hardware portion includes, but is not limited to, video glasses that allow hands-free, full-screen viewing. The glasses also allow the operator a substantial field of view below the glasses to view and operate the ultrasound system. The software is a comprehensive video program designed to guide an inexperienced operator through a detailed ultrasound or echocardiographic study without extensive training or guidance from the ground. The program contains a detailed description using video and audio to demonstrate equipment controls, ergonomics of scanning, study protocol, and scanning guidance, including recovery from sub-optimal images. The components used in the initial validation of the system include an Apple iPod Classic third-generation as the video source, and Myvue video glasses. Initially, the program prompts the operator to power-up the ultrasound and position the patient. The operator would put on the video glasses and attach them to the video source. After turning on both devices and the ultrasound system, the audio-video guidance would then instruct on patient positioning and scanning techniques. A detailed scanning protocol follows with descriptions and reference video of each view along with

  12. Body image and quality of life in a Spanish population

    Directory of Open Access Journals (Sweden)

    Ignacio Jáuregui Lobera

    2011-01-01

    Full Text Available Ignacio Jáuregui Lobera1, Patricia Bolaños Ríos21Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain; 2Behavior Science Institute, Seville, SpainPurpose: The aim of the current study was to analyze the psychometric properties, factor structure, and internal consistency of the Spanish version of the Body Image Quality of Life Inventory (BIQLI-SP as well as its test–retest reliability. Further objectives were to analyze different relationships with key dimensions of psychosocial functioning (ie, self-esteem, presence of psychopathological symptoms, eating and body image-related problems, and perceived stress and to evaluate differences in body image quality of life due to gender.Patients and methods: The sample comprised 417 students without any psychiatric history, recruited from the Pablo de Olavide University and the University of Seville. There were 140 men (33.57% and 277 women (66.43%, and the mean age was 21.62 years (standard deviation = 5.12. After obtaining informed consent from all participants, the following questionnaires were administered: BIQLI, Eating Disorder Inventory-2 (EDI-2, Perceived Stress Questionnaire (PSQ, Self-Esteem Scale (SES, and Symptom Checklist-90-Revised (SCL-90-R.Results: The BIQLI-SP shows adequate psychometric properties, and it may be useful to determine the body image quality of life in different physical conditions. A more positive body image quality of life is associated with better self-esteem, better psychological wellbeing, and fewer eating-related dysfunctional attitudes, this being more evident among women.Conclusion: The BIQLI-SP may be useful to determine the body image quality of life in different contexts with regard to dermatology, cosmetic and reconstructive surgery, and endocrinology, among others. In these fields of study, a new trend has emerged to assess body image-related quality of life.Keywords: body appreciation, wellbeing, self-esteem, social

  13. Analysis of an image quality assurance program

    International Nuclear Information System (INIS)

    Goethlin, J.H.; Alders, B.

    1985-01-01

    Reject film analysis before and after the introduction of a quality assurance program showed a 45% decrease in rejected films. The main changes in equipment and routines were: 1. Increased control of film processors and X-ray generators. 2. New film casettes and screens. 3. Decreased number of film sizes. 4. Information to and supervision of radiographing personnel. Savings in costs and increased income from an increased amount of out-patients corresponded to about 4.5% of the total cost of operating and maintaining the department. (orig.)

  14. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    Science.gov (United States)

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  15. SU-D-BRF-05: A Novel System to Provide Real-Time Image-Guidance for Intrauterine Tandem Insertion and Placement

    Energy Technology Data Exchange (ETDEWEB)

    Price, M; Fontenot, J [pF Biomedical Solutions LLC, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To develop a system that provides real-time image-guidance for intrauterine tandem insertion and placement for brachytherapy. Methods: The conceptualized system consists of an intrauterine tandem with a transparent, lensed tip, a flexible miniature fiber optic scope, light source and interface for CCD coupling. The tandem tip was designed to act as a lens providing a wide field-of-view (FOV) with minimal image distortion and focus length appropriate for the application. The system is designed so that once inserted, the image-guidance component of the system can be removed and brachytherapy can be administered without interfering with source transport or disturbing tandem placement. Proof-of-principle studies were conducted to assess the conceptualized system's (1) lens functionality (clarity, focus and FOV) (2) and ability to visualize the cervical os of a female placed in the lithotomy position. Results: A prototype of this device was constructed using a commercial tandem modified to incorporate a transparent tip that internally coupled with a 1.9mm diameter fiber optic cable. The 900mm-long cable terminated at an interface that provided illumination as well as facilitated visualization of patient anatomy on a computer. The system provided a 23mm FOV with a focal length of 1cm and provided clear visualization of the cervix, cervical fornix and cervical os. The optical components of the system are easily removed without perturbing the position of a tandem placed in a common fixation clamp. Conclusion: Clinicians frequently encounter difficulty inserting an intrauterine tandem through the cervical os, circumventing fibrotic tissue or masses within the uterus, and positioning the tandem without perforating the uterus. To mitigate these challenges, we have designed and conducted proof-of- principle studies to discern the utility of a prototype device that provides real-time image-guidance for intrauterine tandem placement using fiber optic components.

  16. No-reference image quality assessment for horizontal-path imaging scenarios

    Science.gov (United States)

    Rios, Carlos; Gladysz, Szymon

    2013-05-01

    There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.

  17. Image and dose quality in selected studies of conventional radiology in designed hospitals

    International Nuclear Information System (INIS)

    Cardenas H, J.; Martinez G, A.; Machado T, A.; Mora M, R. de la; Pedroso, L.; Villa Z, R.; Sotolongo C, J.A.; Rodriguez S, R.M.; Martinez A, U.; Figueroa G, L.M.

    2006-01-01

    The medical exposures have a significant contribution to the received doses by the population. As they generally contribute to the patient's direct benefit during a lot of time has been paid smaller attention that to other exposure forms, in spite of existing potentialities of reducing dose to the patients as consequence of these applications. In such sense in the last years the scientific community and international organizations have defined requirements to contribute to that the doses to the patients are the minimum ones necessary to achieve its diagnostic objective. The work exposes the results obtained in the evaluation of the image quality and dose in studies of radiology of thorax posteroanterior and of lumbosacral column anteroposterior and lateral, carried out in 2 university hospitals of La Havana, as well as the contribution of this investigation to the establishment of guidance levels in our country. (Author)

  18. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  19. Optimage central organised image quality control including statistics and reporting

    International Nuclear Information System (INIS)

    Jahnen, A.; Schilz, C.; Shannoun, F.; Schreiner, A.; Hermen, J.; Moll, C.

    2008-01-01

    Quality control of medical imaging systems is performed using dedicated phantoms. As the imaging systems are more and more digital, adequate image processing methods might help to save evaluation time and to receive objective results. The developed software package OPTIMAGE is focusing on this with a central approach: On one hand, OPTIMAGE provides a framework, which includes functions like database integration, DICOM data sources, multilingual user interface and image processing functionality. On the other hand, the test methods are implemented using modules which are able to process the images automatically for the common imaging systems. The integration of statistics and reporting into this environment is paramount: This is the only way to provide these functions in an interactive, user-friendly way. These features enable the users to discover degradation in performance quickly and document performed measurements easily. (authors)

  20. Body image quality of life in eating disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Jáuregui Lobera

    2011-03-01

    Full Text Available Ignacio Jáuregui Lobera1, Patricia Bolaños Ríos21Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain; 2Behavior Sciences Institute, Seville, SpainPurpose: The objective was to examine how body image affects quality of life in an eating-disorder (ED clinical sample, a non-ED clinical sample, and a nonclinical sample. We hypothesized that ED patients would show the worst body image quality of life. We also hypothesized that body image quality of life would have a stronger negative association with specific ED-related variables than with other psychological and psychopathological variables, mainly among ED patients. On the basis of previous studies, the influence of gender on the results was explored, too.Patients and methods: The final sample comprised 70 ED patients (mean age 22.65 ± 7.76 years; 59 women and 11 men; 106 were patients with other psychiatric disorders (mean age 28.20 ± 6.52; 67 women and 39 men, and 135 were university students (mean age 21.57 ± 2.58; 81 women and 54 men, with no psychiatric history. After having obtained informed consent, the following questionnaires were administered: Body Image Quality of Life Inventory-Spanish version (BIQLI-SP, Eating Disorders Inventory-2 (EDI-2, Perceived Stress Questionnaire (PSQ, Self-Esteem Scale (SES, and Symptom Checklist-90-Revised (SCL-90-R.Results: The ED patients' ratings on the BIQLI-SP were the lowest and negatively scored (BIQLI-SP means: +20.18, +5.14, and —6.18, in the student group, the non-ED patient group, and the ED group, respectively. The effect of body image on quality of life was more negative in the ED group in all items of the BIQLI-SP. Body image quality of life was negatively associated with specific ED-related variables, more than with other psychological and psychopathological variables, but not especially among ED patients.Conclusion: Body image quality of life was affected not only by specific pathologies related to body

  1. Indicators of image quality and doses in mammography

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2007-01-01

    Full text: The purpose of the study was to determine the values of the image quality indicators and their relationship with the dose in mammography of screen-film that they allowed the detection of a bigger number of objects in the images obtained with the mannequin (phantom) authorized of the ACR/FDA. The study was carried out in four mammography services in a period of 12 months. The indicators of the image quality are the half optic density (DOM), contrast (differences of densities), the number of observed objects in the images and the dose for image. The minimum acceptable values by the ACR/FDA are a half optical density of 1.4, contrast of 0.4 and the one numbers minimum of objects observed in the image of the mannequin of mammography of 10 (4 fibers, 3 groups of calcifications and 3 masses), with a maximum dose by image of 3 mGy. The found results are half optical density of 1.9, contrast of 0.56 and the average number of objects observed in the images of 12, with a dose in the interval of 1.6 mGy to 2.4 mGy. The doses were measured by thermoluminescent dosimetry and ionization chamber. Once carried out the analysis of the tendencies of the indicators of image quality and their distributions is found that for a p < 0.05, the bigger number of objects observed in the images is in the interval from 1.8 to 1.9 of DOM. When comparing both mammography system, the system screen-film has a lower variability in the distribution of objects associated to a DOM. (Author)

  2. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    Science.gov (United States)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  3. Image quality enhancement for skin cancer optical diagnostics

    Science.gov (United States)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  4. IMPROVING THE QUALITY OF NEAR-INFRARED IMAGING OF IN VIVOBLOOD VESSELS USING IMAGE FUSION METHODS

    DEFF Research Database (Denmark)

    Jensen, Andreas Kryger; Savarimuthu, Thiusius Rajeeth; Sørensen, Anders Stengaard

    2009-01-01

    We investigate methods for improving the visual quality of in vivo images of blood vessels in the human forearm. Using a near-infrared light source and a dual CCD chip camera system capable of capturing images at visual and nearinfrared spectra, we evaluate three fusion methods in terms...... of their capability of enhancing the blood vessels while preserving the spectral signature of the original color image. Furthermore, we investigate a possibility of removing hair in the images using a fusion rule based on the "a trous" stationary wavelet decomposition. The method with the best overall performance...... with both speed and quality in mind is the Intensity Injection method. Using the developed system and the methods presented in this article, it is possible to create images of high visual quality with highly emphasized blood vessels....

  5. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  6. Radiation dose and image quality for paediatric interventional cardiology

    Science.gov (United States)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  7. Structural similarity image quality reliability: Determining parameters and window size

    OpenAIRE

    Silvestre-Blanes, Javier

    2011-01-01

    The need to obtain objective values of the quality of distorted images with respect to the original is fundamental in multimedia and image processing applications. It is generally required that this value correlates well with the human vision system (HVS). In spite of the properties and the general use of the mean square error (MSE) measurement, this has a poor correlation with HSV, which has led to the development of methods such as structural similarity (SSIM). This metric improves the corr...

  8. Developing 3D Imaging Programmes-Workflow and Quality Control

    OpenAIRE

    Hess, M.; Robson, S.; Serpico, M.; Amati, G.; Pridden, I.; Nelson, T.

    2016-01-01

    This article reports on a successful project for 3D imaging research, digital applications, and use of new technologies in the museum. The article will focus on the development and implementation of a viable workflow for the production of high-quality 3D models of museum objects, based on the 3D laser scanning and photogrammetry of selected ancient Egyptian artefacts. The development of a robust protocol for the complete process chain for imaging cultural heritage artefacts, from the acquisit...

  9. Radiation dose and image quality for paediatric interventional cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E [Radiology Department, Medicine School, Complutense University and San Carlos University Hospital, 28040 Madrid (Spain); Ubeda, C [Clinical Sciences Department, Faculty of the Science of Health, Tarapaca University, 18 de Septiembre 2222, Arica (Chile); Leyton, F [Institute of Public Health of Chile, Marathon 1000, Nunoa, Santiago (Chile); Miranda, P [Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Avenida Antonio Varas 360, Providencia, Santiago (Chile)], E-mail: eliseov@med.ucm.es

    2008-08-07

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 {mu}Gy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 {mu}Gy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  10. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    Gaona, E.; Rivera, T.; Arreola, M.; Franco, J.; Molina, N.; Alvarez, B.; Azorín, C.G.; Casian, G.

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  11. A factorial experiment on image quality and radiation dose

    International Nuclear Information System (INIS)

    Norrman, E.; Persliden, J.

    2005-01-01

    To find if factorial experiments can be used in the optimisation of diagnostic imaging, a factorial experiment was performed to investigate some of the factors that influence image quality, kerma area product (KAP) and effective dose (E). In a factorial experiment the factors are varied together instead of one at a time, making it possible to discover interactions between the factors as well as major effects. The factors studied were tube potential, tube loading, focus size and filtration. Each factor was set to two levels (low and high). The influence of the factors on the response variables (image quality, KAP and E) was studied using a direct digital detector. The major effects of each factor on the response variables were estimated as well as the interaction effects between factors. The image quality, KAP and E were mainly influenced by tube loading, tube potential and filtration. There were some active interactions, for example, between tube potential and filtration and between tube loading and filtration. The study shows that factorial experiments can be used to predict the influence of various parameters on image quality and radiation dose. (authors)

  12. Self-Organizing Maps for Fingerprint Image Quality Assessment

    DEFF Research Database (Denmark)

    Olsen, Martin Aastrup; Tabassi, Elham; Makarov, Anton

    2013-01-01

    Fingerprint quality assessment is a crucial task which needs to be conducted accurately in various phases in the biometric enrolment and recognition processes. Neglecting quality measurement will adversely impact accuracy and efficiency of biometric recognition systems (e.g. verification and iden......Fingerprint quality assessment is a crucial task which needs to be conducted accurately in various phases in the biometric enrolment and recognition processes. Neglecting quality measurement will adversely impact accuracy and efficiency of biometric recognition systems (e.g. verification...... machine learning techniques. We train a self-organizing map (SOM) to cluster blocks of fingerprint images based on their spatial information content. The output of the SOM is a high-level representation of the finger image, which forms the input to a Random Forest trained to learn the relationship between...

  13. The dose and image quality in mammography in Macedonia

    International Nuclear Information System (INIS)

    Gershan, V.

    2007-01-01

    Complete test of publication follows. Mean Glandular Dose (MGD), dose distribution, phantom and quality of the real mammogram were studied for the first time in Macedonia. The study was conducted to review the condition of mammography equipment, to access the dose and image quality in mammography practices in Macedonia.. The purpose was to find out the weak points in the mammography practices in order to suggest improvements in the practices and establish quality control procedures. Under evaluation were 12 monographic machines. MGD was estimated using Entrance Surface Air KERMA at the breast surface K f measured free in air and appropriate conversion factors. Dose survey was curried by measurement and calculated of the HVLs and radiation output for 25-32 kVp and keeping record of the clinical parameters (breast thickness, kVp, mAs). Image quality was evaluated using the Mammographic Accreditation Phantom Gammex 156, PMMA plates and test tool for film processing.

  14. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

    International Nuclear Information System (INIS)

    Bastarrika, Gorka; Arraiza, Maria; Pueyo, Jesus C.; Cecco, Carlo N. de; Ubilla, Matias; Mastrobuoni, Stefano; Rabago, Gregorio

    2008-01-01

    The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1±10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4=excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1±10.4 bpm. At the best reconstruction interval, diagnostic image quality (score ≥2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04± 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03±1.06 and 2.73±1.11, respectively; P<0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P=0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography. (orig.)

  15. Optimization of image quality and patient dose in mammography

    International Nuclear Information System (INIS)

    Shafqat Faaruq; Jaferi, R.A.; Nafeesa Nazlee

    2007-01-01

    Complete test of publication follows. Optimization of patient dose and image quality can be defined as to get the best image quality with minimum possible radiation dose to the patient by setting various parameters and modes of operation available in mammography machines. The optimization procedures were performed on two mammography units from M/S GE and Metaltronica, available at NORI, using standard mammographic accreditation phantom (Model: BR-156) and acrylic sheets of variable thicknesses. Quality assurance and quality control (QC) tests being the essential part of optimization. The QC tests as recommended by American College of Radiology, were first performed on both machines as well as X-ray film processor. In the second step, different affecting the image quality and radiation dose to patient, like film screen combination (FSC), phantom optical density (PD), kVp, mAs etc, were adjusted for various phantom thicknesses ranging from 3 cm to 6.5 cm in various modes of operation in the machines (semi-auto- and manual in GE, Auto-, semi-auto- and manual mode in Metaltronica). The image quality was studied for these optimized parameters on the basis of the number of test objects of the phantom visible in these images. Finally the linear relationship between mAs and skin entrance dose (mGy) was verified using ionization chamber with the phantom and the actual patients. Despite some practical limitations, the results of the quality assurance tests were within acceptable limits defined by ACR. The dose factor for GE was 68.0 y/mAs, while 76.0 mGy/mAs for Metaltronica at 25 kVp. Before the start of this study the only one mammography unit GE, was routinely used at NORI and normal mode of operation of this unit was semi-auto mode with fixed kVp independent of compressed breast thickness, but in this study it was concluded that selecting kVp according to beast thickness result in an appreciable dose reduction (4-5 times less) without any compromise in image quality. The

  16. British Association for the Study of Community Dentistry (BASCD) guidance on sampling for surveys of child dental health. A BASCD coordinated dental epidemiology programme quality standard.

    Science.gov (United States)

    Pine, C M; Pitts, N B; Nugent, Z J

    1997-03-01

    The British Association for the Study of Community Dentistry (BASCD) is responsible for the coordination of locally based surveys of child dental health which permit local and national comparisons between health authorities and regions. These surveys began in 1985/86 in England and Wales, 1987/88 in Scotland and 1993/94 in Northern Ireland. BASCD has taken an increasing lead in setting quality standards in discussion with the NHS Epidemiology Coordinators of the Dental Epidemiology Programme. This paper comprises guidance on the sampling for these surveys.

  17. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  18. Target volume geometric change and/or deviation from the cranium during fractionated stereotactic radiotherapy for brain metastases: potential pitfalls in image guidance based on bony anatomy alignment.

    Science.gov (United States)

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2014-12-01

    This study sought to evaluate the potential geometrical change and/or displacement of the target relative to the cranium during fractionated stereotactic radiotherapy (FSRT) for treating newly developed brain metastases. For 16 patients with 21 lesions treated with image-guided frameless FSRT in 5 or 10 fractions using a 6-degree-of-freedom image guidance system-integrated platform, the unenhanced computed tomography or T2-weighted magnetic resonance images acquired until the completion of FSRT were fused to the planning image datasets for comparison. Significant change was defined as ≥3-mm change in the tumour diameter or displacement of the tumour centroid. FSRT was started 1 day after planning image acquisition. Tumour shrinkage, deviation and both were observed in 2, 1 and 1 of the 21 lesions, respectively, over a period of 7-13 days. Tumour shrinkage or deviation resulted in an increase or decrease in the marginal dose to the tumour, respectively, and a substantial increase in the irradiated volume for the surrounding tissue irrespective of the pattern of alteration. No obvious differences in the clinical and treatment characteristics were noted among the populations with or without significant changes in tumour volume or position. Target deformity and/or deviation can unexpectedly occur even during relatively short-course FSRT, inevitably leading to a gradual discrepancy between the planned and actually delivered doses to the tumour and surrounding tissue. To appropriately weigh the treatment outcome against the planned dose distribution, target deformity and/or deviation should also be considered in addition to the immobilisation accuracy, as image guidance with bony anatomy alignment does not necessarily guarantee accurate target localisation until completion of FSRT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  19. Quality assurance of imaging instruments for nuclear medicine

    International Nuclear Information System (INIS)

    Sera, T.; Csernay, L.

    1993-01-01

    Advanced quality control and assurance techniques for imaging instrumentation used in medical diagnosis are overviewed. The measurement systems for the homogeneity, linearity, geometrical resolution, energy resolution, sensitivity and pulse yield output of gamma camera detectors are presented in detail. The two most important quality control standards, the National Electrical Manufacturers' Association (NEMA) and the International Atomic Energy Agency standards and tests are described. Their use in gamma camera calibration is proposed. (R.P.) 22 refs.; 1 tabs

  20. Analysis and Comparison of Objective Methods for Image Quality Assessment

    Directory of Open Access Journals (Sweden)

    P. S. Babkin

    2014-01-01

    Full Text Available The purpose of this work is research and modification of the reference objective methods for image quality assessment. The ultimate goal is to obtain a modification of formal assessments that more closely corresponds to the subjective expert estimates (MOS.In considering the formal reference objective methods for image quality assessment we used the results of other authors, which offer results and comparative analyzes of the most effective algorithms. Based on these investigations we have chosen two of the most successful algorithm for which was made a further analysis in the MATLAB 7.8 R 2009 a (PQS and MSSSIM. The publication focuses on the features of the algorithms, which have great importance in practical implementation, but are insufficiently covered in the publications by other authors.In the implemented modification of the algorithm PQS boundary detector Kirsch was replaced by the boundary detector Canny. Further experiments were carried out according to the method of the ITU-R VT.500-13 (01/2012 using monochrome images treated with different types of filters (should be emphasized that an objective assessment of image quality PQS is applicable only to monochrome images. Images were obtained with a thermal imaging surveillance system. The experimental results proved the effectiveness of this modification.In the specialized literature in the field of formal to evaluation methods pictures, this type of modification was not mentioned.The method described in the publication can be applied to various practical implementations of digital image processing.Advisability and effectiveness of using the modified method of PQS to assess the structural differences between the images are shown in the article and this will be used in solving the problems of identification and automatic control.

  1. Presence capture cameras - a new challenge to the image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  2. Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging

    Science.gov (United States)

    Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.

    2018-03-01

    The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).

  3. Early experience with multiparametric magnetic resonance imaging-targeted biopsies under visual transrectal ultrasound guidance in patients suspicious for prostate cancer undergoing repeated biopsy

    DEFF Research Database (Denmark)

    Boesen, Lars; Noergaard, Nis; Chabanova, Elizaveta

    2015-01-01

    OBJECTIVES: The purpose of this study was to investigate the detection rate of prostate cancer (PCa) by multiparametric magnetic resonance imaging-targeted biopsies (mp-MRI-bx) in patients with prior negative transrectal ultrasound biopsy (TRUS-bx) sessions without previous experience of this......-RADS) and Likert classification. All underwent repeated TRUS-bx (10 cores) and mp-MRI-bx under visual TRUS guidance of any mp-MRI-suspicious lesion not targeted by systematic TRUS-bx. RESULTS: PCa was found in 39 out of 83 patients (47%) and mp-MRI identified at least one lesion with some degree of suspicion...

  4. Registration accuracy and quality of real-life images.

    Directory of Open Access Journals (Sweden)

    Wei-Yen Hsu

    Full Text Available BACKGROUND: A common registration problem for the application of consumer device is to align all the acquired image sequences into a complete scene. Image alignment requires a registration algorithm that will compensate as much as possible for geometric variability among images. However, images captured views from a real scene usually produce different distortions. Some are derived from the optic characteristics of image sensors, and others are caused by the specific scenes and objects. METHODOLOGY/PRINCIPAL FINDINGS: An image registration algorithm considering the perspective projection is proposed for the application of consumer devices in this study. It exploits a multiresolution wavelet-based method to extract significant features. An analytic differential approach is then proposed to achieve fast convergence of point matching. Finally, the registration accuracy is further refined to obtain subpixel precision by a feature-based modified Levenberg-Marquardt method. Due to its feature-based and nonlinear characteristic, it converges considerably faster than most other methods. In addition, vignette compensation and color difference adjustment are also performed to further improve the quality of registration results. CONCLUSIONS/SIGNIFICANCE: The performance of the proposed method is evaluated by testing the synthetic and real images acquired by a hand-held digital still camera and in comparison with two registration techniques in terms of the squared sum of intensity differences (SSD and correlation coefficient (CC. The results indicate that the proposed method is promising in registration accuracy and quality, which are statistically significantly better than other two approaches.

  5. Developing optimized CT scan protocols: Phantom measurements of image quality

    International Nuclear Information System (INIS)

    Zarb, Francis; Rainford, Louise; McEntee, Mark F.

    2011-01-01

    Purpose: The increasing frequency of computerized tomography (CT) examinations is well documented, leading to concern about potential radiation risks for patients. However, the consequences of not performing the CT examination and missing injuries and disease are potentially serious, impacting upon correct patient management. The ALARA principle of dose optimization must be employed for all justified CT examinations. Dose indicators displayed on the CT console as either CT dose index (CTDI) and/or dose length product (DLP), are used to indicate dose and can quantify improvements achieved through optimization. Key scan parameters contributing to dose have been identified in previous literature and in previous work by our group. The aim of this study was to optimize the scan parameters of mA; kV and pitch, whilst maintaining image quality and reducing dose. This research was conducted using psychophysical image quality measurements on a CT quality assurance (QA) phantom establishing the impact of dose optimization on image quality parameters. Method: Current CT scan parameters for head (posterior fossa and cerebrum), abdomen and chest examinations were collected from 57% of CT suites available nationally in Malta (n = 4). Current scan protocols were used to image a Catphan 600 CT QA phantom whereby image quality was assessed. Each scan parameter: mA; kV and pitch were systematically reduced until the contrast resolution (CR), spatial resolution (SR) and noise were significantly lowered. The Catphan 600 images, produced by the range of protocols, were evaluated by 2 expert observers assessing CR, SR and noise. The protocol considered as the optimization threshold was just above the setting that resulted in a significant reduction in CR and noise but not affecting SR at the 95% confidence interval. Results: The limit of optimization threshold was determined for each CT suite. Employing optimized parameters, CTDI and DLP were both significantly reduced (p ≤ 0.001) by

  6. DIANE stationary neutron radiography system image quality and industrial applications

    International Nuclear Information System (INIS)

    Cluzeau, S.; Huet, J.; Tourneur, P. le

    1994-01-01

    The SODERN neutron radiography laboratory has operated since February 1993 using a sealed tube generator (GENIE 46). An experimental programme of characterization (dosimetry, spectroscopy) has confirmed the expected performances concerning: neutron flux intensity, neutron energy range, residual gamma flux. Results are given in a specific report [2]. This paper is devoted to the image performance reporting. ASTM and specific indicators have been used to test the image quality with various converters and films. The corresponding modulation transfer functions are to be determined from image processing. Some industrial applications have demonstrated the capabilities of the system: corrosion detection in aircraft parts, ammunitions filling testing, detection of polymer lacks in sandwich steel sheets, detection of moisture in a probe for geophysics, residual ceramic cores imaging in turbine blades. Various computerized electronic imaging systems will be tested to improve the industrial capabilities. (orig.)

  7. Image quality testing of assembled IR camera modules

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  8. Performance evaluation of no-reference image quality metrics for face biometric images

    Science.gov (United States)

    Liu, Xinwei; Pedersen, Marius; Charrier, Christophe; Bours, Patrick

    2018-03-01

    The accuracy of face recognition systems is significantly affected by the quality of face sample images. The recent established standardization proposed several important aspects for the assessment of face sample quality. There are many existing no-reference image quality metrics (IQMs) that are able to assess natural image quality by taking into account similar image-based quality attributes as introduced in the standardization. However, whether such metrics can assess face sample quality is rarely considered. We evaluate the performance of 13 selected no-reference IQMs on face biometrics. The experimental results show that several of them can assess face sample quality according to the system performance. We also analyze the strengths and weaknesses of different IQMs as well as why some of them failed to assess face sample quality. Retraining an original IQM by using face database can improve the performance of such a metric. In addition, the contribution of this paper can be used for the evaluation of IQMs on other biometric modalities; furthermore, it can be used for the development of multimodality biometric IQMs.

  9. Adapting protocols of CT imaging in a pediatric emergency department. Evaluation of image quality and dose

    International Nuclear Information System (INIS)

    Batista Arce, A.; Gonzalez Lopez, S.; Catalan Acosta, A.; Casares Magaz, O.; Hernandez Armas, O.; Hernandez Armas, J.

    2011-01-01

    The purpose of this study was to assess qualitatively the picture quality in relation to the radiation dose delivered in CT studies of computer tomograph Pediatric Emergency Department of Hospital Universitario de Canarias (HUC) in order to optimize the technical parameters used these radiological examinations so as to obtain optimal image quality at the lowest possible dose.

  10. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    International Nuclear Information System (INIS)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc

    2017-01-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  11. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany).

    2017-10-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  12. Quality control: comparison of images quality with screen film system and digital mammography CR

    International Nuclear Information System (INIS)

    Alvarenga, Frederico L.; Nogueira, Maria do Socorro

    2008-01-01

    The mammography screen film system should be used as part of processing chemicals, revelation process, equipment and this system has have a progressive replacing by the digital technology Full Field Digital Mammography FFDM, Computed Radiography (CR) Mammography and hardcopy. This new acquisition process of medical images has improved radiology section; however it is necessary efficient means for evaluating of the quality parameters. It should be considered taking into account the adaptation of the existent equipment and that procedures adopted for the exam, as well the adaptation of the new mammography films, the radiologist view box constitutes a part of the quality control program. This program aims at obtaining radiography with good quality that allows obtaining more information for the diagnosis and decreases the patient dose. For evaluation the quality image, this article is focused on presenting the differences regarding the acquired images through simulator mammography radiographic PMMA (Poly methyl methacrylate) in CR Mammography system and screen film system. The tests were accomplished at the same equipment of Mammography with the Automatic Exposure Control using a tension of 28 kV for both systems. The quality tests evaluated the spatial resolution, the own structures of the phantom, artifacts, optical density and contrast with conventional and laser films by mammography system. The installation for the accomplishment of the test has a quality control program. The evaluation was based on the pattern developed by the competent organ of the State of Minas Gerais. In this study, it was verified that the suitable Phantom Mama used by the Brazilian School of Radiology for conventional mammography did not obtain satisfactory result for Spatial Resolution in the digital mammography system CR. The final aim of this work is to obtain parameters to characterize the reference phantom quality image in an objective way. These parameters will be used to compare

  13. SU-E-J-24: Image-Guidance Using Cone-Beam CT for Stereotactic Body Radiotherapy (SBRT) of Lung Cancer Patients: Bony Alignment or Soft Tissue Alignment?

    Science.gov (United States)

    Wang, L; Turaka, A; Meyer, J; Spoka, D; Jin, L; Fan, J; Ma, C

    2012-06-01

    To assess the reliability of soft tissue alignment by comparing pre- and post-treatment cone-beam CT (CBCT) for image guidance in stereotactic body radiotherapy (SBRT) of lung cancers. Our lung SBRT procedures require all patients undergo 4D CT scan in order to obtain patient-specific target motion information through reconstructed 4D data using the maximum-intensity projection (MIP) algorithm. The internal target volume (ITV) was outlined directly from the MIP images and a 3-5 mm margin expansion was then applied to the ITV to create the PTV. Conformal treatment planning was performed on the helical images, to which the MIP images were fused. Prior to each treatment, CBCT was used for image guidance by comparing with the simulation CT and for patient relocalization based on the bony anatomy. Any displacement of the patient bony structure would be considered as setup errors and would be corrected by couch shifts. Theoretically, as the PTV definition included target internal motion, no further shifts other than setup corrections should be made. However, it is our practice to have treating physicians further check target localization within the PTV. Whenever the shifts based on the soft-tissue alignment (that is, target alignment) exceeded a certain value (e.g. 5 mm), a post-treatment CBCT was carried out to ensure that the tissue alignment is reliable by comparing between pre- and post-treatment CBCT. Pre- and post-CBCT has been performed for 7 patients so far who had shifts beyond 5 mm despite bony alignment. For all patients, post CBCT confirmed that the visualized target position was kept in the same position as before treatment after adjusting for soft-tissue alignment. For the patient population studied, it is shown that soft-tissue alignment is necessary and reliable in the lung SBRT for individual cases. © 2012 American Association of Physicists in Medicine.

  14. Mammography in Norway: Image quality and total performance

    International Nuclear Information System (INIS)

    Olsen, J.B.; Skretting, A.; Widmark, A.

    1997-04-01

    This report describes a method for assessing the total performance in mammography based on Receiver Operating Characteristic (ROC) analysis. In the time period from December 1993 to March 1994 the method was applied to assess the total performance of all the 45 Norwegian mammography laboratories operative at that time. Image quality characteristics in each laboratory was established by use of well-known phantoms

  15. New Image Qualities in Education: A Comparative Study

    Science.gov (United States)

    Çankaya, Ibrahim

    2018-01-01

    The aim of this study is to compare Turkish and European Union Countries Educations in terms of the new image qualities such as data like access to online education, digital access, foreign languages learnt per pupil, research & development investments, human resources employed in science and technology, the study opportunities offered to…

  16. Beyond image quality : designing engaging interactions with digital products

    NARCIS (Netherlands)

    Ridder, de H.; Rozendaal, M.C.

    2008-01-01

    Ubiquitous computing (or Ambient Intelligence) promises a world in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. In such world, perceptual image quality remains an important criterion since most information will be displayed

  17. Beyond image quality : Designing engaging interactions with digital products

    NARCIS (Netherlands)

    De Ridder, H.; Rozendaal, M.C.

    2008-01-01

    Ubiquitous computing (or Ambient Intelligence) promises a world in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. In such world, perceptual image quality remains an important criterion since most information will be displayed

  18. Quality measures for HRR alignment based ISAR imaging algorithms

    CSIR Research Space (South Africa)

    Janse van Rensburg, V

    2013-05-01

    Full Text Available Some Inverse Synthetic Aperture Radar (ISAR) algorithms form the image in a two-step process of range alignment and phase conjugation. This paper discusses a comprehensive set of measures used to quantify the quality of range alignment, with the aim...

  19. A Reduction in Radiographic Exposure and Image Quality in Film ...

    African Journals Online (AJOL)

    Purpose: To develop a protocol for the optimization of diagnostic chest radiography examination, the effect of radiographic exposure reduction on image quality is investigated. Procedure: Fourty-eight adult patients presenting for posterior-anterior (PA) chest radiography in a tertiary health care centre were categorized into 3 ...

  20. Determining storage related egg quality changes via digital image ...

    African Journals Online (AJOL)

    Area and length measurements related to exterior and interior egg quality were determined by digital image analysis. In general, excluding the outer thin albumen area, all of the area measurements such as total egg content area and inner thick albumen area were larger in stored eggs than in fresh eggs (52.28 vs.

  1. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [UAM-Xochimilco, 04960 Mexico D.F. (Mexico); Azorin N, J. [UAM-Iztapalapa, 09340 Mexico D.F. (Mexico); Diaz G, J.A.I. [CICATA, Unidad Legaria, Av. Legaria 694, 11599 mexico D.F. (Mexico); Arreola, M. [Department of Radiology, Shands Hospital at UF, PO Box 100374, Gainesville, FL 32610-0374 (United States)

    2006-07-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  2. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2006-01-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  3. Comparison of quality control software tools for diffusion tensor imaging.

    Science.gov (United States)

    Liu, Bilan; Zhu, Tong; Zhong, Jianhui

    2015-04-01

    Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Reducing the absorbed dose in analogue radiography of infant chest images by improving the image quality, using image processing techniques

    International Nuclear Information System (INIS)

    Karimian, A.; Yazdani, S.; Askari, M. A.

    2011-01-01

    Radiographic inspection is one of the most widely employed techniques for medical testing methods. Because of poor contrast and high un-sharpness of radiographic image quality in films, converting radiographs to a digital format and using further digital image processing is the best method of enhancing the image quality and assisting the interpreter in their evaluation. In this research work, radiographic films of 70 infant chest images with different sizes of defects were selected. To digitise the chest images and employ image processing the two algorithms (i) spatial domain and (ii) frequency domain techniques were used. The MATLAB environment was selected for processing in the digital format. Our results showed that by using these two techniques, the defects with small dimensions are detectable. Therefore, these suggested techniques may help medical specialists to diagnose the defects in the primary stages and help to prevent more repeat X-ray examination of paediatric patients. (authors)

  5. Physics-based optimization of image quality in 3D X-ray flat-panel cone-beam imaging

    NARCIS (Netherlands)

    Snoeren, R.M.

    2012-01-01

    This thesis describes the techniques for modeling and control of 3D X-ray cardiovascular systems in terms of Image Quality and patient dose, aiming at optimizing the diagnostic quality. When aiming at maximum Image Quality (IQ), a cascaded system constituted from inter-dependent imaging components,

  6. Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description.

    Science.gov (United States)

    Gu, Ke; Jakhetiya, Vinit; Qiao, Jun-Fei; Li, Xiaoli; Lin, Weisi; Thalmann, Daniel

    2017-07-28

    New challenges have been brought out along with the emerging of 3D-related technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR). Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, etc, based on the flexible selection of direction and viewpoint, has been perceived as the development direction of next-generation video technologies and has drawn a wide range of researchers' attention. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a reliable real-time blind quality evaluation and monitoring system is urgently required. But existing assessment metrics do not render human judgments faithfully mainly because geometric distortions are generated by DIBR. To this end, this paper proposes a novel referenceless quality metric of DIBR-synthesized images using the autoregression (AR)-based local image description. It was found that, after the AR prediction, the reconstructed error between a DIBR-synthesized image and its AR-predicted image can accurately capture the geometry distortion. The visual saliency is then leveraged to modify the proposed blind quality metric to a sizable margin. Experiments validate the superiority of our no-reference quality method as compared with prevailing full-, reduced- and no-reference models.

  7. Latin American image quality survey in digital mammography studies

    International Nuclear Information System (INIS)

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Garcia Aguilar, Juan; Gamarra, Mirtha; Ubeda, Carlos

    2017-01-01

    Under International Atomic Energy Agency regional programme TSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs. (authors)

  8. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  9. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Carolyn B Lauzon

    Full Text Available Diffusion tensor imaging (DTI enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio. However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70% while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA

  10. Fundamental image quality limits for microcomputed tomography in small animals

    International Nuclear Information System (INIS)

    Ford, N.L.; Thornton, M.M.; Holdsworth, D.W.

    2003-01-01

    resolution to improve, by decreasing the detector element size to tens of microns or less, high quality images will be limited by the x-ray dose administered. For the highest quality images, these doses will approach the lethal dose or LD50 for the animals. Approaching the lethal dose will affect the way experiments are planned, and may reduce opportunities for experiments involving imaging the same animal over time. Dose considerations will become much more important for live small-animal imaging as the limits of resolution are tested

  11. Quality Assurance Needs for Modern Image-Based Radiotherapy: Recommendations From 2007 Interorganizational Symposium on 'Quality Assurance of Radiation Therapy: Challenges of Advanced Technology'

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.; Dunscombe, Peter B.; Sharpe, Michael B.; Thomadsen, Bruce R.; Purdy, James A.; Deye, James A.

    2008-01-01

    This report summarizes the consensus findings and recommendations emerging from 2007 Symposium, 'Quality Assurance of Radiation Therapy: Challenges of Advanced Technology.' The Symposium was held in Dallas February 20-22, 2007. The 3-day program, which was sponsored jointly by the American Society for Therapeutic Radiology and Oncology (ASTRO), American Association of Physicists in Medicine (AAPM), and National Cancer Institute (NCI), included >40 invited speakers from the radiation oncology and industrial engineering/human factor communities and attracted nearly 350 attendees, mostly medical physicists. A summary of the major findings follows. The current process of developing consensus recommendations for prescriptive quality assurance (QA) tests remains valid for many of the devices and software systems used in modern radiotherapy (RT), although for some technologies, QA guidance is incomplete or out of date. The current approach to QA does not seem feasible for image-based planning, image-guided therapies, or computer-controlled therapy. In these areas, additional scientific investigation and innovative approaches are needed to manage risk and mitigate errors, including a better balance between mitigating the risk of catastrophic error and maintaining treatment quality, complimenting the current device-centered QA perspective by a more process-centered approach, and broadening community participation in QA guidance formulation and implementation. Industrial engineers and human factor experts can make significant contributions toward advancing a broader, more process-oriented, risk-based formulation of RT QA. Healthcare administrators need to appropriately increase personnel and ancillary equipment resources, as well as capital resources, when new advanced technology RT modalities are implemented. The pace of formalizing clinical physics training must rapidly increase to provide an adequately trained physics workforce for advanced technology RT. The specific

  12. Quality assurance needs for modern image-based radiotherapy: recommendations from 2007 interorganizational symposium on "quality assurance of radiation therapy: challenges of advanced technology".

    Science.gov (United States)

    Williamson, Jeffrey F; Dunscombe, Peter B; Sharpe, Michael B; Thomadsen, Bruce R; Purdy, James A; Deye, James A

    2008-01-01

    This report summarizes the consensus findings and recommendations emerging from 2007 Symposium, "Quality Assurance of Radiation Therapy: Challenges of Advanced Technology." The Symposium was held in Dallas February 20-22, 2007. The 3-day program, which was sponsored jointly by the American Society for Therapeutic Radiology and Oncology (ASTRO), American Association of Physicists in Medicine (AAPM), and National Cancer Institute (NCI), included >40 invited speakers from the radiation oncology and industrial engineering/human factor communities and attracted nearly 350 attendees, mostly medical physicists. A summary of the major findings follows. The current process of developing consensus recommendations for prescriptive quality assurance (QA) tests remains valid for many of the devices and software systems used in modern radiotherapy (RT), although for some technologies, QA guidance is incomplete or out of date. The current approach to QA does not seem feasible for image-based planning, image-guided therapies, or computer-controlled therapy. In these areas, additional scientific investigation and innovative approaches are needed to manage risk and mitigate errors, including a better balance between mitigating the risk of catastrophic error and maintaining treatment quality, complimenting the current device-centered QA perspective by a more process-centered approach, and broadening community participation in QA guidance formulation and implementation. Industrial engineers and human factor experts can make significant contributions toward advancing a broader, more process-oriented, risk-based formulation of RT QA. Healthcare administrators need to appropriately increase personnel and ancillary equipment resources, as well as capital resources, when new advanced technology RT modalities are implemented. The pace of formalizing clinical physics training must rapidly increase to provide an adequately trained physics workforce for advanced technology RT. The specific

  13. A quality-refinement process for medical imaging applications.

    Science.gov (United States)

    Neuhaus, J; Maleike, D; Nolden, M; Kenngott, H-G; Meinzer, H-P; Wolf, I

    2009-01-01

    To introduce and evaluate a process for refinement of software quality that is suitable to research groups. In order to avoid constraining researchers too much, the quality improvement process has to be designed carefully. The scope of this paper is to present and evaluate a process to advance quality aspects of existing research prototypes in order to make them ready for initial clinical studies. The proposed process is tailored for research environments and therefore more lightweight than traditional quality management processes. Focus on quality criteria that are important at the given stage of the software life cycle. Usage of tools that automate aspects of the process is emphasized. To evaluate the additional effort that comes along with the process, it was exemplarily applied for eight prototypical software modules for medical image processing. The introduced process has been applied to improve the quality of all prototypes so that they could be successfully used in clinical studies. The quality refinement yielded an average of 13 person days of additional effort per project. Overall, 107 bugs were found and resolved by applying the process. Careful selection of quality criteria and the usage of automated process tools lead to a lightweight quality refinement process suitable for scientific research groups that can be applied to ensure a successful transfer of technical software prototypes into clinical research workflows.

  14. Effects of task and image properties on visual-attention deployment in image-quality assessment

    Science.gov (United States)

    Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid

    2015-03-01

    It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.

  15. Investigation of grid performance using simple image quality tests

    Directory of Open Access Journals (Sweden)

    Dogan Bor

    2016-01-01

    Full Text Available Antiscatter grids improve the X-ray image contrast at a cost of patient radiation doses. The choice of appropriate grid or its removal requires a good knowledge of grid characteristics, especially for pediatric digital imaging. The aim of this work is to understand the relation between grid performance parameters and some numerical image quality metrics for digital radiological examinations. The grid parameters such as bucky factor (BF, selectivity (Σ, Contrast improvement factor (CIF, and signal-to-noise improvement factor (SIF were determined following the measurements of primary, scatter, and total radiations with a digital fluoroscopic system for the thicknesses of 5, 10, 15, 20, and 25 cm polymethyl methacrylate blocks at the tube voltages of 70, 90, and 120 kVp. Image contrast for low- and high-contrast objects and high-contrast spatial resolution were measured with simple phantoms using the same scatter thicknesses and tube voltages. BF and SIF values were also calculated from the images obtained with and without grids. The correlation coefficients between BF values obtained using two approaches (grid parameters and image quality metrics were in good agreement. Proposed approach provides a quick and practical way of estimating grid performance for different digital fluoroscopic examinations.

  16. Objective masurement of image quality in fluoroscopic x-ray equipment FluoroQuality

    CERN Document Server

    Tapiovaara, M

    2003-01-01

    The report describes FluoroQuality, a computer program that is developed in STUK and used for measuring the image quality in medical fluoroscopic equipment. The method is based on the statistical decision theory (SDT) and the main measurement result is given in terms of the accumulation rate of the signal-to-noise ratio squared (SNR sup 2 sub r sub a sub t sub e). In addition to this quantity several other quantities are measured. These quantities include the SNR of single image frames, the spatio-temporal noise power spectrum and the temporal lag. The measurement method can be used, for example, for specifying the image quality in fluoroscopic images, for optimising the image quality and dose rate in fluoroscopy and for quality control of fluoroscopic equipment. The theory behind the measurement method is reviewed and the measurement of the various quantities is explained. An example of using the method for optimising a specified fluoroscopic procedure is given. The User's Manual of the program is included a...

  17. Online hyperspectral imaging system for evaluating quality of agricultural products

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk

    2017-06-01

    The consumption of fresh-cut agricultural produce in Korea has been growing. The browning of fresh-cut vegetables that occurs during storage and foreign substances such as worms and slugs are some of the main causes of consumers' concerns with respect to safety and hygiene. The purpose of this study is to develop an on-line system for evaluating quality of agricultural products using hyperspectral imaging technology. The online evaluation system with single visible-near infrared hyperspectral camera in the range of 400 nm to 1000 nm that can assess quality of both surfaces of agricultural products such as fresh-cut lettuce was designed. Algorithms to detect browning surface were developed for this system. The optimal wavebands for discriminating between browning and sound lettuce as well as between browning lettuce and the conveyor belt were investigated using the correlation analysis and the one-way analysis of variance method. The imaging algorithms to discriminate the browning lettuces were developed using the optimal wavebands. The ratio image (RI) algorithm of the 533 nm and 697 nm images (RI533/697) for abaxial surface lettuce and the ratio image algorithm (RI533/697) and subtraction image (SI) algorithm (SI538-697) for adaxial surface lettuce had the highest classification accuracies. The classification accuracy of browning and sound lettuce was 100.0% and above 96.0%, respectively, for the both surfaces. The overall results show that the online hyperspectral imaging system could potentially be used to assess quality of agricultural products.

  18. Quality Control of Mega Voltage Portal Imaging System

    International Nuclear Information System (INIS)

    Diklic, A.; Dundara Debeljuh, D.; Jurkovic, S.; Smilovic Radojcic, D.; Svabic Kolacio; Kasabasic, M.; Faj, D.

    2013-01-01

    The Electronic Portal Imaging Device (EPID) is a system used to verify either the correct positioning of the patient during radiotherapy treatment or the linear accelerator beam parameters. The correct position of the patient corresponds to the position at which the patient was scanned at the CT simulator and according to which the therapy plan was made and optimized. Regarding this, besides the advanced treatment planning system and optimized treatment planning techniques, the day-to-day reproduction of simulated conditions is of great importance for the treatment outcome. Therefore, to verify the patient set-up portal imaging should be applied prior to the first treatment session and repeated according to treatment prescriptions during the treatment. In order to achieve full functionality and precision of the EPID, it must be included in radiotherapy Quality Control (QC) programme. The QC of the Mega Voltage portal imaging system was separated in two parts. In the first, the QC of the detector parameters should be performed. For this purpose, the FC2 and QC3 phantoms should be used, along with the Portal Image Processing System program (PIPSpro) package for data analysis. The second part of the QC of the linear accelerator's portal imaging system should include the QC of the CBCT. In this part a set of predefined manufacturer's tests using two different phantoms, one for the geometry calibration and the other for the image quality evaluation, should be performed. Also, the treatment conditions should be simulated using anthropomorphic phantoms and dose distributions for particular EPID protocols should be measured. Procedures for quality control of the portal imaging system developed and implemented at University Hospital Rijeka are presented in this paper.(author)

  19. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.; Jo, B.D.; Jeon, P.-H.; Kim, H.; Kim, D.

    2016-01-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  20. Image quality assessment based on multiscale geometric analysis.

    Science.gov (United States)

    Gao, Xinbo; Lu, Wen; Tao, Dacheng; Li, Xuelong

    2009-07-01

    Reduced-reference (RR) image quality assessment (IQA) has been recognized as an effective and efficient way to predict the visual quality of distorted images. The current standard is the wavelet-domain natural image statistics model (WNISM), which applies the Kullback-Leibler divergence between the marginal distributions of wavelet coefficients of the reference and distorted images to measure the image distortion. However, WNISM fails to consider the statistical correlations of wavelet coefficients in different subbands and the visual response characteristics of the mammalian cortical simple cells. In addition, wavelet transforms are optimal greedy approximations to extract singularity structures, so they fail to explicitly extract the image geometric information, e.g., lines and curves. Finally, wavelet coefficients are dense for smooth image edge contours. In this paper, to target the aforementioned problems in IQA, we develop a novel framework for IQA to mimic the human visual system (HVS) by incorporating the merits from multiscale geometric analysis (MGA), contrast sensitivity function (CSF), and the Weber's law of just noticeable difference (JND). In the proposed framework, MGA is utilized to decompose images and then extract features to mimic the multichannel structure of HVS. Additionally, MGA offers a series of transforms including wavelet, curvelet, bandelet, contourlet, wavelet-based contourlet transform (WBCT), and hybrid wavelets and directional filter banks (HWD), and different transforms capture different types of image geometric information. CSF is applied to weight coefficients obtained by MGA to simulate the appearance of images to observers by taking into account many of the nonlinearities inherent in HVS. JND is finally introduced to produce a noticeable variation in sensory experience. Thorough empirical studies are carried out upon the LIVE database against subjective mean opinion score (MOS) and demonstrate that 1) the proposed framework has

  1. MO-DE-209-03: Assessing Image Quality

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Stony Brook Medicine (United States)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  2. MO-DE-209-03: Assessing Image Quality

    International Nuclear Information System (INIS)

    Zhao, W.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  3. Quality assurance for MR stereotactic imaging for three Siemens scanners

    International Nuclear Information System (INIS)

    Kozubikova, P.; Novotny, J. Jr.; Kulhova, K.; Mihalova, P.; Tamasova, J.; Veselsk, T.

    2014-01-01

    Quality assurance of stereotactic imaging, especially with MRI (magnetic resonance imaging), is a complex issue. It can be divided in the basic verification and commissioning of a particular new scanner or a new scanning MRI protocol that is being implemented into a clinical practice and the routine quality assurance performed for each single radiosurgical case. The aim of this study was geometric distortion assessment in MRI with a special PTGR (Physikalisch-Technische Gesellschaft fuer Radiologie - GmbH, Tuebingen, Germany) target phantom. PTGR phantom consists of 21 three-dimensional cross-hairs filled with contrast medium. Cross hairs are positioned at known Leksell coordinates with a precision of better than 0.1 mm and covering the whole stereotactic space. The phantom can be fixed in the Leksell stereotactic frame and thus stereotactic imaging procedures can be reproduced following exactly the same steps as for a real patient, including also the stereotactic image definition in the Leksell GammaPlan. Since the geometric position (stereotactic coordinates) of each cross-hair is known based on the construction of the phantom, it can be compared with the actual measured Leksell coordinates based on the stereotactic MRI. Deviations between expected and actual coordinates provide information about the level of distortion. The measured distortions proved satisfactory accuracy precision for stereotactic localization at 1.5 T Siemens Magnetom Avanto scanner, Siemens Magnetom Symphony scanner and 3T Siemens Magnetom Skyra scanner (Na Homolce Hospital, Prague). The mean distortion for these MR scanners for standard imaging protocol (T1 weighted 3D images) were 0.8 mm, 1.1 mm and 1.1 mm and maximum distortions were 1.3 mm, 1.9 mm and 2.2 mm, respectively.There was detected dependence of the distortions on the slice orientation and the type of imaging protocol. Image distortions are also property of each particular scanner, the worst distortion were observed for 3T

  4. Correlation of bone quality in radiographic images with clinical bone quality classification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Woo; Huh, Kyung Hoe; Kim, Jeong Hwa; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [Seoul National University, Seoul (Korea, Republic of); Park, Kwan Soo [Inje University, Seoul (Korea, Republic of)

    2006-03-15

    To investigate the validity of digital image processing on panoramic radiographs in estimating bone quality before endosseous dental implant installation by correlating bone quality in radiographic images with clinical bone quality classification. An experienced surgeon assessed and classified bone quality for implant sites with tactile sensation at the time of implant placement. Including fractal dimension eighteen morphologic features of trabecular pattern were examined in each anatomical sites on panoramic radiographs. Finally bone quality of 67 implant sites were evaluated in 42 patients. Pearson correlation analysis showed that three morphologic parameters had weak linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.276, -0.280, and -0.289, respectively (p<0.05). And other three morphologic parameters had obvious linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.346, -0.488, and -0.343 respectively (p<0.05). Fractal dimension also had a linear correlating with clinical bone quality classification with correlation coefficients -0.506 significantly (P<0.05). This study suggests that fractal and morphometric analysis using digital panoramic radiographs can be used to evaluate bone quality for implant recipient sites.

  5. Sensitometric properties and image quality of radiographic film and paper

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1985-09-01

    When using X-ray film or radiographic paper for industrial applications one is interested in knowing not only their sensitometric properties (such as speed and contrast) but also the image quality obtainable with a particular brand of film or paper. Although standard methods for testing both properties separately are available it is desirable that the method permits the assessment of all the relevant properties together. The sensitometric properties are usually determined at constant kilovoltage and filtration at the X-ray tube, whereas radiographic image thicknesses. The use of the constant exposure technique could be used to compare both the sensitometric properties as well as the image quality for different radiographic materials. It consist of exposing different film or paper brands at a chosen, constant mAmin exposure when testing radiographic image quality for different thicknesses of a given material. From the results obtained with the constant exposure technique conclusions are drawn about its applicability as a standard method for assessing radiographic film and paper. (author)

  6. Effect of exercise supplementation on dipyridamole thallium-201 image quality

    International Nuclear Information System (INIS)

    Stern, S.; Greenberg, I.D.; Corne, R.

    1991-01-01

    To determine the effect of different types of exercise supplementation on dipyridamole thallium image quality, 78 patients were prospectively randomized to one of three protocols: dipyridamole infusion alone, dipyridamole supplemented with isometric handgrip, and dipyridamole with low-level treadmill exercise. Heart-to-lung, heart-to-liver, and heart-to-adjacent infradiaphragmatic activity ratios were generated from anterior images acquired immediately following the test. Additionally, heart-to-total infradiaphragmatic activity was graded semiquantitatively. Results showed a significantly higher ratio of heart to subdiaphragmatic activity in the treadmill group as compared with dipyridamole alone (p less than 0.001) and dipyridamole supplemented with isometric handgrip exercise (p less than 0.001). No significant difference was observed between patients receiving the dipyridamole infusion, and dipyridamole supplemented with isometric handgrip exercise. The authors conclude that low-level treadmill exercise supplementation of dipyridamole infusion is an effective means of improving image quality. Supplementation with isometric handgrip does not improve image quality over dipyridamole alone

  7. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-01-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within ±1%). For single beam geometry, errors in phantom placemen