WorldWideScience

Sample records for image alignment effects

  1. Effect of alignment angle on the alignment accuracy of a miniature rotation robot for microscopy imaging

    Directory of Open Access Journals (Sweden)

    Wenfeng Wan

    2017-05-01

    Full Text Available Most recently, a miniature rotation robot has been proposed to allow imaging samples from multidirection for the first time. However, one existing problem for that rotation robot is that the alignment efficiency and accuracy is affected greatly by the alignment angle. This article investigates the effect of alignment angle on the alignment accuracy. Alignment accuracy is measured by sample’s position shift during a 360° rotation. Firstly, the miniature robotic system and its alignment principle are introduced briefly. Then, the source of alignment error is analyzed and the error model is built. After that, simulation results are given and indicate that as alignment angle increases, alignment error first decreases, then becomes stable and finally increases. Reasons for the trend of alignment error are explained. Finally, experiment results are demonstrated and have a good agreement with theoretical analysis and simulation results. The results indicate that 90° should be chosen as the alignment angle to ensure both alignment accuracy and alignment speed.

  2. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. (NIDA Addiction Research Center, Baltimore, MD (USA))

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  3. Image denoising using local tangent space alignment

    Science.gov (United States)

    Feng, JianZhou; Song, Li; Huo, Xiaoming; Yang, XiaoKang; Zhang, Wenjun

    2010-07-01

    We propose a novel image denoising approach, which is based on exploring an underlying (nonlinear) lowdimensional manifold. Using local tangent space alignment (LTSA), we 'learn' such a manifold, which approximates the image content effectively. The denoising is performed by minimizing a newly defined objective function, which is a sum of two terms: (a) the difference between the noisy image and the denoised image, (b) the distance from the image patch to the manifold. We extend the LTSA method from manifold learning to denoising. We introduce the local dimension concept that leads to adaptivity to different kind of image patches, e.g. flat patches having lower dimension. We also plug in a basic denoising stage to estimate the local coordinate more accurately. It is found that the proposed method is competitive: its performance surpasses the K-SVD denoising method.

  4. Detection of Off-normal Images for NIF Automatic Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V; Awwal, A S; McClay, W A; Ferguson, S W; Burkhart, S C

    2005-07-11

    One of the major purposes of National Ignition Facility at Lawrence Livermore National Laboratory is to accurately focus 192 high energy laser beams on a nanoscale (mm) fusion target at the precise location and time. The automatic alignment system developed for NIF is used to align the beams in order to achieve the required focusing effect. However, if a distorted image is inadvertently created by a faulty camera shutter or some other opto-mechanical malfunction, the resulting image termed ''off-normal'' must be detected and rejected before further alignment processing occurs. Thus the off-normal processor acts as a preprocessor to automatic alignment image processing. In this work, we discuss the development of an ''off-normal'' pre-processor capable of rapidly detecting the off-normal images and performing the rejection. Wide variety of off-normal images for each loop is used to develop the criterion for rejections accurately.

  5. Image Alignment by Piecewise Planar Region Matching

    NARCIS (Netherlands)

    Lou, Z.; Gevers, T.

    2014-01-01

    Robust image registration is a challenging problem, especially when dealing with severe changes in illumination and viewpoint. Previous methods assume a global geometric model (e.g., homography) and, hence, are only able to align images under predefined constraints (e.g., planar scenes and parallax-

  6. Dynamical image-charge effect in molecular tunnel junctions: Beyond energy level alignment

    Science.gov (United States)

    Jin, Chengjun; Thygesen, Kristian S.

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z2, where Z is the quasiparticle renormalization factor, compared to the static IC approximation. We show that Z can be expressed either in terms of the plasma frequency of the electrode or as the overlap between electrode wave functions corresponding to an empty and filled level, respectively. First-principles GW calculations for benzene-diamine connected to gold electrodes show that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels.

  7. The Galaxy Alignment Effect in Abell 1689

    Science.gov (United States)

    Hung, Li-wei; Banados, E.; De Propris, R.; West, M. J.

    2011-01-01

    We examined alignments for galaxies in the galaxy cluster Abell 1689 (z = 0.18) based on archival Hubble Space Telescope WFPC2 F606W and F814W images. The sources were extracted using SExtractor. We used distance from the color-magnitud relation (defined by the bright galaxies) as a proxy to select likely cluster members. We carried out a series of simulations with artificial galaxies in order to understand the limit of our position angle measurement. Based on the cluster member selection and the result of our simulations, we isolated a sample of galaxies lying on the red sequence with I 0.2 to study the alignment effect. By applying the Kuiper test, we find evidence of alignment among faint galaxies and galaxies in the inner 500 kpc of the cluster. The best mechanism to produce this alignment result is tidal torquing. Akin to the Earth-Moon system, tidal effects would (re)create alignments between galaxies. Under the presence of the tidal field, fainter galaxies, especially in the center, will align themselves more rapidly than brighter galaxies.

  8. Molecular orbital imaging for partially aligned molecules

    Science.gov (United States)

    Qin, Meiyan; Zhu, Xiaosong

    2017-01-01

    We investigate molecular orbital reconstruction using high-order harmonic emissions from partially aligned molecular ensembles. By carrying out the reconstruction procedure using the harmonic sampling with or without the spectral minimum, the roles of the harmonic phase and amplitude modulation due to the partial alignment can be separately studied. It is found that with the prior knowledge of the orbital symmetry, the reconstructed result is very sensitive to the modulation of the harmonic phase for the πg orbital, while in the case of σg orbital, the reconstructed result is mainly determined by the harmonic amplitude. These results can provide an important reference for the future experiment of molecular orbital imaging.

  9. Aligning Projection Images from Binary Volumes

    NARCIS (Netherlands)

    Bleichrodt, F.; Beenhouwer, J. de; Sijbers, J.; Batenburg, K.J.

    2014-01-01

    In tomography, slight differences between the geometry of the scanner hardware and the geometric model used in the reconstruction lead to alignment artifacts. To exploit high-resolution detectors used in many applications of tomography, alignment of the projection data is essential. Markerless align

  10. Comparison of Two Distance Based Alignment Method in Medical Imaging

    Science.gov (United States)

    2001-10-25

    very helpful to register large datasets of contours or surfaces, commonly encountered in medical imaging . They do not require special ordering or...COMPARISON OF TWO DISTANCE BASED ALIGNMENT METHOD IN MEDICAL IMAGING G. Bulan, C. Ozturk Institute of Biomedical Engineering, Bogazici University...Two Distance Based Alignment Method in Medical Imaging Contract Number Grant Number Program Element Number Author(s) Project Number Task Number

  11. Quality measures for HRR alignment based ISAR imaging algorithms

    CSIR Research Space (South Africa)

    Janse van Rensburg, V

    2013-05-01

    Full Text Available Some Inverse Synthetic Aperture Radar (ISAR) algorithms form the image in a two-step process of range alignment and phase conjugation. This paper discusses a comprehensive set of measures used to quantify the quality of range alignment, with the aim...

  12. Feature-based Alignment of Volumetric Multi-modal Images

    Science.gov (United States)

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  13. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    Science.gov (United States)

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down.

  14. ALIGNING THE BRAND IDENTITY AND BRAND IMAGE AFTER REBRANDING

    Directory of Open Access Journals (Sweden)

    Cătălin Mihail BARBU

    2016-11-01

    Full Text Available The brand identity and brand image are two concepts used extensively in positioning. Many brands underwent a rebranding process attempting to improve their positioning. The rebranding process can bring minor changes or substantial changes. Following the substantial changes, there can appear a mismatch between the desired identity and brand image. Brand image is persistent and it takes time to change it. This paper explores the challenges involved by the calibration of the identity and of the image in the process of rebranding. The alignment process is a dynamic one, an interactive and not a normative one. The results of this study highlight the elements that support the brand identity and image alignment: marketing communication, product characteristics and internal brand strength. On the other side, the efforts to align the brand identity and brand image are negatively affected by the attitudes of the consumers and their past experience with the brand.

  15. Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images

    Science.gov (United States)

    Bos, Brent; Kubalak, David A.; Antonille, Scott; Ohl, Raymond; Hagopian, John G.

    2009-01-01

    A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.

  16. Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality.

    Science.gov (United States)

    Mega, Mor; Marom, Gil; Halevi, Rotem; Hamdan, Ashraf; Bluestein, Danny; Haj-Ali, Rami

    2016-01-01

    The cusps of native aortic valve (AV) are composed of collagen bundles embedded in soft tissue, creating a heterogenic tissue with asymmetric alignment in each cusp. This study compares native collagen fiber networks (CFNs) with a goal to better understand their influence on stress distribution and valve kinematics. Images of CFNs from five porcine tricuspid AVs are analyzed and fluid-structure interaction models are generated based on them. Although the valves had similar overall kinematics, the CFNs had distinctive influence on local mechanics. The regions with dilute CFN are more prone to damage since they are subjected to higher stress magnitudes.

  17. Fast Implementation of Matched Filter Based Automatic Alignment Image Processing

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A S; Rice, K; Taha, T

    2008-04-02

    Video images of laser beams imprinted with distinguishable features are used for alignment of 192 laser beams at the National Ignition Facility (NIF). Algorithms designed to determine the position of these beams enable the control system to perform the task of alignment. Centroiding is a common approach used for determining the position of beams. However, real world beam images suffer from intensity fluctuation or other distortions which make such an approach susceptible to higher position measurement variability. Matched filtering used for identifying the beam position results in greater stability of position measurement compared to that obtained using the centroiding technique. However, this gain is achieved at the expense of extra processing time required for each beam image. In this work we explore the possibility of using a field programmable logic array (FPGA) to speed up these computations. The results indicate a performance improvement of 20 using the FPGA relative to a 3 GHz Pentium 4 processor.

  18. Image-based temporal alignment of echocardiographic sequences

    Science.gov (United States)

    Danudibroto, Adriyana; Bersvendsen, Jørn; Mirea, Oana; Gerard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    Temporal alignment of echocardiographic sequences enables fair comparisons of multiple cardiac sequences by showing corresponding frames at given time points in the cardiac cycle. It is also essential for spatial registration of echo volumes where several acquisitions are combined for enhancement of image quality or forming larger field of view. In this study, three different image-based temporal alignment methods were investigated. First, a method based on dynamic time warping (DTW). Second, a spline-based method that optimized the similarity between temporal characteristic curves of the cardiac cycle using 1D cubic B-spline interpolation. Third, a method based on the spline-based method with piecewise modification. These methods were tested on in-vivo data sets of 19 echo sequences. For each sequence, the mitral valve opening (MVO) time was manually annotated. The results showed that the average MVO timing error for all methods are well under the time resolution of the sequences.

  19. Multimodal Integration (Image and Text Using Ontology Alignment

    Directory of Open Access Journals (Sweden)

    Ahmad A.A. Shareha

    2009-01-01

    Full Text Available Problem statement: This study proposed multimodal integration method at the concept level to investigate information from multimodalities. The multimodal data was represented as two separate lists of concepts which were extracted from images and its related text. The concepts extracted from image analysis are often ambiguous, while the concepts extracted from text processing could be sense-ambiguous. The major problems that face the integration of the underlying modalities (image and text were: The difference in the coverage and the difference in the granularity level. Approach: This study proposed a novel application using ontology alignment to unify the underlying ontologies. The said lists of concepts were represented in a structured form within the corresponding ontologies then the two structural lists are enriched and matched based on the alignment, this matching represent the final knowledge. Results: The difference in the coverage was solved in this study using the alignment process and the difference in the granularity level was solved using the enrichment process. Thus, the proposed integration produced accurate integrated results. Conclusion: Thus, integration of these concepts allows the totality of the knowledge be expressed more precisely.

  20. Alignment and Characterization of High Uniformity Imaging Spectrometers

    Science.gov (United States)

    Bender, Holly A.; Mouroulis, Pantazis; Eastwood, Michael L.; Green, Robert O.; Geier, Sven; Hochberg, Eric B.

    2011-01-01

    Imaging spectrometers require precise adjustments, in some cases at the sub-micrometer level, in order to achieve auniform response over both the spectral and spatial dimensions. We describe a set of measurement techniques and theircorresponding alignment adjustments to achieve the 95% or higher uniformity specifications required for Earthobservingimaging spectrometers. The methods are illustrated with measurements from the Next Generation Imaging Spectrometer system that has been built at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  1. Multi-stained whole slide image alignment in digital pathology

    Science.gov (United States)

    Déniz, Oscar; Toomey, David; Conway, Catherine; Bueno, Gloria

    2015-03-01

    In Digital Pathology, one of the most simple and yet most useful feature is the ability to view serial sections of tissue simultaneously on a computer monitor. This enables the pathologist to evaluate the histology and expression of multiple markers for a patient in a single review. However, the rate limiting step in this process is the time taken for the pathologist to open each individual image, align the sections within the viewer, with a maximum of four slides at a time, and then manually move around the section. In addition, due to tissue processing and pre-analytical steps, sections with different stains have non-linear variations between the two acquisitions, that is, they will stretch and change shape from section to section. To date, no solution has come close to a workable solution to automatically align the serial sections into one composite image. This research work address this problem to obtain an automated serial section alignment tool enabling the pathologists to simply scroll through the various sections in a single viewer. To this aim a multi-resolution intensity-based registration method using mutual information as a similarity metric, an optimizer based on an evolutionary process and a bilinear transformation has been used. To characterize the performance of the algorithm 40 cases x 5 different serial sections stained with hematoxiline-eosine (HE), estrogen receptor (ER), progesterone receptor (PR), Ki67 and human epidermal growth factor receptor 2 (Her2), have been considered. The qualitative results obtained are promising, with average computation time of 26.4s for up to 14660x5799 images running interpreted code.

  2. Effects of whole spine alignment patterns on neck responses in rear end impact.

    Science.gov (United States)

    Sato, Fusako; Odani, Mamiko; Miyazaki, Yusuke; Yamazaki, Kunio; Östh, Jonas; Svensson, Mats

    2017-02-17

    The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model. Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion. The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment. The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear

  3. Parametric image alignment using enhanced correlation coefficient maximization.

    Science.gov (United States)

    Evangelidis, Georgios D; Psarakis, Emmanouil Z

    2008-10-01

    In this work we propose the use of a modified version of the correlation coefficient as a performance criterion for the image alignment problem. The proposed modification has the desirable characteristic of being invariant with respect to photometric distortions. Since the resulting similarity measure is a nonlinear function of the warp parameters, we develop two iterative schemes for its maximization, one based on the forward additive approach and the second on the inverse compositional method. As it is customary in iterative optimization, in each iteration, the nonlinear objective function is approximated by an alternative expression for which the corresponding optimization is simple. In our case we propose an efficient approximation that leads to a closed-form solution (per iteration) which is of low computational complexity, the latter property being particularly strong in our inverse version. The proposed schemes are tested against the Forward Additive Lucas-Kanade and the Simultaneous Inverse Compositional (SIC) algorithm through simulations. Under noisy conditions and photometric distortions, our forward version achieves more accurate alignments and exhibits faster convergence whereas our inverse version has similar performance as the SIC algorithm but at a lower computational complexity.

  4. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    mostly of 3rd-order astigmatism and coma. This is because the elliptical tertiary mirror of the AOS is used off of its ideal foci locations without the compensating wavefront effects of the JWST primary and secondary mirrors. Therefore, the PSFs created are highly asymmetric with relatively complex structure and the centroid and encircled energy analyses traditionally used to locate images are not sufficient for ensuring the AOS to ISIM alignment. A novel approach combining phase retrieval and spatial metrology was developed to both locate the images with respect to the AOS and provide calibration information for eventual AOS to ISIM alignment verification. During final JWST OTE and ISIM (OTIS) testing, only a single thru-focus image will be collected by the instruments. Therefore, tools and processes were developed to perform single-image phase retrieval on these highly aberrated images such that any single image of the ASPA source can provide calibrated knowledge of the instruments' position relative to the AOS. This paper discusses the results of the methodology, hardware, and calibration performed to ensure that the AOS and ISIM are aligned within their respective tolerances at JWST OTIS testing.

  5. Robust image alignment for cryogenic transmission electron microscopy.

    Science.gov (United States)

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Alignment effect of brightest cluster galaxies in the SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rita S.J.; Annis, Jim; Strauss, Michael A.; Lupton, Robert H.; Bahcall, Neta A.; Gunn, James E.; Kepner, Jeremy V.; Postman, Marc

    2001-10-01

    One of the most vital observational clues for unraveling the origin of Brightest Cluster Galaxies (BCG) is the observed alignment of the BCGs with their host cluster and its surroundings. We have examined the BCG-cluster alignment effect, using clusters of galaxies detected from the Sloan Digital Sky Survey (SDSS). We find that the BCGs are preferentially aligned with the principal axis of their hosts, to a much higher redshift (z >~ 0.3) than probed by previous studies (z <~ 0.1). The alignment effect strongly depends on the magnitude difference of the BCG and the second and third brightest cluster members: we find a strong alignment effect for the dominant BCGs, while less dominant BCGs do not show any departure from random alignment with respect to the cluster. We therefore claim that the alignment process originates from the same process that makes the BCG grow dominant, be it direct mergers in the early stage of cluster formation, or a later process that resembles the galactic cannibalism scenario. We do not find strong evidence for (or against) redshift evolution between 0alignment with redshift, richness and morphology of both the cluster and the BCG.

  7. Aligning VLBI Images of Active Galactic Nuclei at Different Frequencies

    CERN Document Server

    Croke, S M

    2008-01-01

    Many important techniques for investigating the properties of extragalactic radio sources, such as spectral-index and rotation-measure mapping, involve the comparison of images at two or more frequencies. In the case of radio interferometric data, this can be done by comparing the CLEAN maps obtained at the different frequencies. However, intrinsic differences in images due to the frequency dependence of the radio emission can be distorted by additional differences that arise due to source variability (if the data to be compared is obtained at different times), image misalignment, and the frequency dependence of the sensitivity to weak emission and the angular resolution provided by the observations (the resolution of an interferometer depends on the lengths of its baselines in units of the observing wavelength). These effects must be corrected for as best as possible before multi-frequency data comparison techniques can be applied. We consider the origins for the afore-mentioned factors, outline the standard...

  8. Alignment of multiple-off-axis-beam imaging/interference systems.

    Science.gov (United States)

    Vadivel, Shruthi K; Leibovici, Matthieu C R; Gaylord, Thomas K

    2016-04-20

    The alignment of components in complex multibeam arrangements is typically prone to errors that limit the performance of the system. A systematic procedure for aligning such systems is presented here. The method facilitates the precision alignment of the optical elements to achieve the accurate projection of multiple on- and off-axis images and the simultaneous interference of the multiple beams. In addition to the multibeam imaging/interference system presented, the procedure can be employed in other multibeam imaging and/or interfering configurations.

  9. The Alignment Effect of Brightest Cluster Galaxies in the SDSS

    CERN Document Server

    Kim, R S J; Strauss, M A; Lupton, R H; Bahcall, Neta A; Gunn, J E; Kepner, J V; Postman, M; Kim, Rita S. J.; Annis, Jim; Strauss, Michael A.; Lupton, Robert H.; Bahcall, Neta A.; Gunn, James E.; Kepner, Jeremy V.; Postman, Marc

    2002-01-01

    One of the most vital observational clues for unraveling the origin of Brightest Cluster Galaxies (BCG) is the observed alignment of the BCGs with their host cluster and its surroundings. We have examined the BCG-cluster alignment effect, using clusters of galaxies detected from the Sloan Digital Sky Survey (SDSS). We find that the BCGs are preferentially aligned with the principal axis of their hosts, to a much higher redshift (z >~ 0.3) than probed by previous studies (z <~ 0.1). The alignment effect strongly depends on the magnitude difference of the BCG and the second and third brightest cluster members: we find a strong alignment effect for the dominant BCGs, while less dominant BCGs do not show any departure from random alignment with respect to the cluster. We therefore claim that the alignment process originates from the same process that makes the BCG grow dominant, be it direct mergers in the early stage of cluster formation, or a later process that resembles the galactic cannibalism scenario. We...

  10. Application of Image Servo Alignment Module Design to Automatic Laminating Machine for Touch Panel

    Directory of Open Access Journals (Sweden)

    Chung-Ming Yang

    2013-12-01

    Full Text Available For general add-on touch panels, a touch-sensitive layer is attached to the outside of LCD panel. As the touch panel has a sensitive layer, it must be aligned with the display panel very well, the laminating precision is also required. The integration of this kind of equipment is complex, and the research and development of the equipments covers many topics of system integration. It is difficult to customize the products for different sizes or functions. This research used key technologies, including different space alignment design and unmarked alignment method, to create an easily operated image servo alignment system. Stable and rapid alignment results were obtained by parametric optimization. Finally, this module was applied to the industrial automatic laminating machine in practice for alignment and lamination.

  11. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R R; Conder, A; Edwards, O; Kroll, J; Kozioziemski, B; Mapoles, E; McGuigan, D; Wilhelmsen, K

    2010-12-14

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  12. Effective Electrocardiogram Steganography Based on Coefficient Alignment.

    Science.gov (United States)

    Yang, Ching-Yu; Wang, Wen-Fong

    2016-03-01

    This study presents two types of data hiding methods based on coefficient alignment for electrocardiogram (ECG) signals, namely, lossy and reversible ECG steganographys. The lossy method is divided into high-quality and high-capacity ECG steganography, both of which are capable of hiding confidential patient data in ECG signals. The reversible data hiding method can not only hide secret messages but also completely restore the original ECG signal after bit extraction. Simulations confirmed that the perceived quality generated by the lossy ECG steganography methods was good, while hiding capacity was acceptable. In addition, these methods have a certain degree of robustness, which is rare in conventional ECG stegangraphy schemes. Moreover, the proposed reversible ECG steganography method can not only successfully extract hidden messages but also completely recover the original ECG data.

  13. Vision Servo Motion Control and Error Analysis of a Coplanar XXY Stage for Image Alignment Motion

    Directory of Open Access Journals (Sweden)

    Hau-Wei Lee

    2013-01-01

    Full Text Available In recent years, as there is demand for smart mobile phones with touch panels, the alignment/compensation system of alignment stage with vision servo control has also increased. Due to the fact that the traditional stacked-type XYθ stage has cumulative errors of assembly and it is heavy, it has been gradually replaced by the coplanar stage characterized by three actuators on the same plane with three degrees of freedom. The simplest image alignment mode uses two cameras as the equipments for feedback control, and the work piece is placed on the working stage. The work piece is usually engraved/marked. After the cameras capture images and when the position of the mark in the camera is obtained by image processing, the mark can be moved to the designated position in the camera by moving the stage and using alignment algorithm. This study used a coplanar XXY stage with 1 μm positioning resolution. Due to the fact that the resolution of the camera is about 3.75 μm per pixel, thus a subpixel technology is used, and the linear and angular alignment repeatability of the alignment system can achieve 1 μm and 5 arcsec, respectively. The visual servo motion control for alignment motion is completed within 1 second using the coplanar XXY stage.

  14. Influence of alignment of the pyramid on its beneficial effects.

    Science.gov (United States)

    Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2007-05-01

    The present study was aimed to find out whether a change in the alignment of the pyramid from the north-south axis causes any variation in the effects produced by it on plasma cortisol levels and markers of oxidative stress in erythrocytes of adult-female Wistar rats. Plasma cortisol and erythrocyte TBARS levels were significantly lower whereas erythrocyte GSH was significantly higher in rats kept in pyramid that was aligned on the four cardinal points--north, east, south and west, as compared to normal control rats. Although there was a significant difference in the plasma cortisol level between normal control group and the group of rats kept in randomly aligned pyramid, there was no significant difference between these two groups for the other parameters. Erythrocyte TBARS levels in the group of rats kept in the randomly aligned pyramid was significantly higher than that in the group kept in the magnetically aligned pyramid. The results suggest that the north-south alignment of the pyramid is crucial for its expected effects.

  15. Automated Alignment and On-Sky Performance of the Gemini Planet Imager Coronagraph

    CERN Document Server

    Savransky, Dmitry; Poyneer, Lisa A; Dunn, Jennifer; Macintosh, Bruce A; Sadakuni, Naru; Dillon, Daren; Goodsell, Stephen J; Hartung, Markus; Hibon, Pascale; Rantakyrö, Fredrik; Cardwell, Andrew; Serio, Andrew

    2014-01-01

    The Gemini Planet Imager (GPI) is a next-generation, facility instrument currently being commissioned at the Gemini South observatory. GPI combines an extreme adaptive optics system and integral field spectrograph (IFS) with an apodized-pupil Lyot coronagraph (APLC) producing an unprecedented capability for directly imaging and spectroscopically characterizing extrasolar planets. GPI's operating goal of $10^{-7}$ contrast requires very precise alignments between the various elements of the coronagraph (two pupil masks and one focal plane mask) and active control of the beam path throughout the instrument. Here, we describe the techniques used to automatically align GPI and maintain the alignment throughout the course of science observations. We discuss the particular challenges of maintaining precision alignments on a Cassegrain mounted instrument and strategies that we have developed that allow GPI to achieve high contrast even in poor seeing conditions.

  16. Markov Random Field Based Automatic Image Alignment for ElectronTomography

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.; Elidan, Gal; Downing, Kenneth H.; Horowitz, Mark

    2007-11-30

    Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors. To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.

  17. The effects of alignment error and alignment filtering on the sitewise detection of positive selection.

    Science.gov (United States)

    Jordan, Gregory; Goldman, Nick

    2012-04-01

    When detecting positive selection in proteins, the prevalence of errors resulting from misalignment and the ability of alignment filters to mitigate such errors are not well understood, but filters are commonly applied to try to avoid false positive results. Focusing on the sitewise detection of positive selection across a wide range of divergence levels and indel rates, we performed simulation experiments to quantify the false positives and false negatives introduced by alignment error and the ability of alignment filters to improve performance. We found that some aligners led to many false positives, whereas others resulted in very few. False negatives were a problem for all aligners, increasing with sequence divergence. Of the aligners tested, PRANK's codon-based alignments consistently performed the best and ClustalW performed the worst. Of the filters tested, GUIDANCE performed the best and Gblocks performed the worst. Although some filters showed good ability to reduce the error rates from ClustalW and MAFFT alignments, none were found to substantially improve the performance of PRANK alignments under most conditions. Our results revealed distinct trends in error rates and power levels for aligners and filters within a biologically plausible parameter space. With the best aligner, a low false positive rate was maintained even with extremely divergent indel-prone sequences. Controls using the true alignment and an optimal filtering method suggested that performance improvements could be gained by improving aligners or filters to reduce the prevalence of false negatives, especially at higher divergence levels and indel rates.

  18. High-throughput Image Analysis of Fibrillar Materials: A Case Study on Polymer Nanofiber Packing, Alignment, and Defects in OFETs.

    Science.gov (United States)

    Persson, Nils; Rafshoon, Joshua; Naghshpour, Kaylie; Fast, Tony; Chu, Ping-Hsun; McBride, Michael; Risteen, Bailey; Grover, Martha A; Reichmanis, Elsa

    2017-09-27

    High-throughput discovery of process-structure-property relationships in materials through an informatics-enabled empirical approach is an increasingly utilized technique in materials research due to the rapidly expanding availability of data. Here, process-structure-property relationships are extracted for the nucleation, growth and deposition of semiconducting poly(3-hexylthiophene) (P3HT) nanofibers used in organic field effect transistors, via high-throughput image analysis. This study is performed using an automated image analysis pipeline combining existing open-source software and new algorithms, enabling the rapid evaluation of structural metrics for images of fibrillar materials, including local orientational order, fiber length density, and fiber length distributions. We observe that microfluidic processing leads to fibers that pack with unusually high density, while sonication yields fibers that pack sparsely with low alignment. The is attributed to differences in their crystallization mechanisms. P3HT nanofiber packing during thin film deposition exhibits behavior suggesting that fibers are confined to packing in two-dimensional layers. We find that fiber alignment, a feature correlated with charge carrier mobility, is driven by increasing fiber length, and that shorter fibers tend to segregate to the buried dielectric interface during deposition, creating potentially performance-limiting defects in alignment. Another barrier to perfect alignment is the curvature of P3HT fibers; we propose a mechanistic simulation of fiber growth that reconciles both this curvature and the log-normal distribution of fiber lengths inherent to the fiber populations under consideration.

  19. ARE TIDAL EFFECTS RESPONSIBLE FOR EXOPLANETARY SPIN–ORBIT ALIGNMENT?

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Winn, Joshua N., E-mail: gli@cfa.harvard.edu [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-02-10

    The obliquities of planet-hosting stars are clues about the formation of planetary systems. Previous observations led to the hypothesis that for close-in giant planets, spin–orbit alignment is enforced by tidal interactions. Here, we examine two problems with this hypothesis. First, Mazeh and coworkers recently used a new technique—based on the amplitude of starspot-induced photometric variability—to conclude that spin–orbit alignment is common even for relatively long-period planets, which would not be expected if tides were responsible. We re-examine the data and find a statistically significant correlation between photometric variability and planetary orbital period that is qualitatively consistent with tidal interactions. However it is still difficult to explain quantitatively, as it would require tides to be effective for periods as long as tens of days. Second, Rogers and Lin argued against a particular theory for tidal re-alignment by showing that initially retrograde systems would fail to be re-aligned, in contradiction with the observed prevalence of prograde systems. We investigate a simple model that overcomes this problem by taking into account the dissipation of inertial waves and the equilibrium tide, as well as magnetic braking. We identify a region of parameter space where re-alignment can be achieved, but it only works for close-in giant planets, and requires some fine tuning. Thus, while we find both problems to be more nuanced than they first appeared, the tidal model still has serious shortcomings.

  20. Image-based overlay (IBO) target segment design on self-aligned patterning process

    Science.gov (United States)

    Ye, Lei; Hu, Huayong; He, Weiming

    2016-03-01

    Self-Aligned Double Patterning (SADP) is widely applied in advanced sub-4X patterning technology, especially for the 1D resolution shrinkage of memory technology. As the application of SADP makes lithography minimum pitch down to half of design pitch with the remaining spacer aside core, its alignment mark and overlay (OVL) mark have to be well-segmented to ensure enough mark contrast. In this paper, we designed two types of image-based overlay (IBO) bar in bar (BIB) OVL target: bar-segmentation and background-segmentation with different duty ratio. Based on these two designed types of marks, we focus on the OVL of 2nd photo layer to 1st SADP layer with the core removed (which means spacer grating structure remained). We studied the effect of the overlay target segmentation on the precision and robustness of wafer-level overlay performance. Different lithography processes were also studied, including single layer lithography and tri-layer lithography with planarized spacer grating structures. We found there are strong correlations between overlay measurement accuracy and background segmentation rules. The results of our study will be presented and discussed in this paper.

  1. Alignment of the SPHERE-ZIMPOL imaging polarimeter

    NARCIS (Netherlands)

    Pragt, J.; Roelfsema, R.; Gisler, D.; Wildi, F.; Schmid, H.M.; Rigal, F.; Elswijk, E.; de Haan, M.; Bazzon, A.; Dohlen, K.; Costille, A.; Dominik, C.

    2012-01-01

    ZIMPOL is the high contrast imaging polarimeter subsystem of the ESO SPHERE instrument. ZIMPOL is dedicated to detect the very faint reflected and hence polarized visible light from extrasolar planets. ZIMPOL is located behind an extreme AO system (SAXO) and a stellar coronagraph. SPHERE is foreseen

  2. RGB imaging volumes alignment method for color holographic displays

    Science.gov (United States)

    Zaperty, Weronika; Kozacki, Tomasz; Gierwiało, Radosław; Kujawińska, Małgorzata

    2016-09-01

    Recent advances in holographic displays include increased interest in multiplexing techniques, which allow for extension of viewing angle, hologram resolution increase, or color imaging. In each of these situations, the image is obtained by a composition of a several light wavefronts and therefore some wavefront misalignment occurs. In this work we present a calibration method, that allows for correction of these misalignments by a suitable numerical manipulation of holographic data. For this purpose, we have developed an automated procedure that is based on a measurement of positions of reconstructed synthetic hologram of a target object with focus at two different reconstruction distances. In view of relatively long reconstruction distances in holographic displays, we focus on angular deviations of light beams, which result in a noticeable mutual lateral shift and inclination of the component images in space. A method proposed in this work is implemented in a color holographic display unit (single Spatial Light Modulator - SLM) utilizing Space- Division Method (SDM). In this technique, also referred as Aperture Field Division (AFD) method, a significant wavefront inclination is introduced by a color filter glass mosaic plate (mask) placed in front of the SLM. It is verified that an accuracy of the calibration method, obtained for reconstruction distance 700mm, is 34.5 μm and 0.02°, for the lateral shift and for the angular compensation, respectively. In the final experiment the presented method is verified through real-world object color image reconstruction.

  3. Circular dichroism in photoelectron images from aligned nitric oxide molecules

    Science.gov (United States)

    Sen, Ananya; Pratt, S. T.; Reid, K. L.

    2017-07-01

    We have used velocity map photoelectron imaging to study circular dichroism of the photoelectron angular distributions (PADs) of nitric oxide following two-color resonance-enhanced two-photon ionization via selected rotational levels of the A 2Σ+, v'=0 state. By using a circularly polarized pump beam and a counter-propagating, circularly polarized probe beam, cylindrical symmetry is preserved in the ionization process, and the images can be reconstructed using standard algorithms. The velocity map imaging set up enables individual ion rotational states to be resolved with excellent collection efficiency, rendering the measurements considerably simpler to perform than previous measurements conducted with a conventional photoelectron spectrometer. The results demonstrate that circular dichroism is observed even when cylindrical symmetry is maintained, and serve as a reminder that dichroism is a general feature of the multiphoton ionization of atoms and molecules. The observed PADs are in good agreement with calculations based on parameters extracted from previous experimental results obtained by using a time-of-flight electron spectrometer.

  4. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy.

    Science.gov (United States)

    Fee, Timothy; Downs, Crawford; Eberhardt, Alan; Zhou, Yong; Berry, Joel

    2016-07-01

    It is well documented that electrospun tissue engineering scaffolds can be fabricated with variable degrees of fiber alignment to produce scaffolds with anisotropic mechanical properties. Several attempts have been made to quantify the degree of fiber alignment within an electrospun scaffold using image-based methods. However, these methods are limited by the inability to produce a quantitative measure of alignment that can be used to make comparisons across publications. Therefore, we have developed a new approach to quantifying the alignment present within a scaffold from scanning electron microscopic (SEM) images. The alignment is determined by using the Sobel approximation of the image gradient to determine the distribution of gradient angles with an image. This data was fit to a Von Mises distribution to find the dispersion parameter κ, which was used as a quantitative measure of fiber alignment. We fabricated four groups of electrospun polycaprolactone (PCL) + Gelatin scaffolds with alignments ranging from κ = 1.9 (aligned) to κ = 0.25 (random) and tested our alignment quantification method on these scaffolds. It was found that our alignment quantification method could distinguish between scaffolds of different alignments more accurately than two other published methods. Additionally, the alignment parameter κ was found to be a good predictor the mechanical anisotropy of our electrospun scaffolds. The ability to quantify fiber alignment within and make direct comparisons of scaffold fiber alignment across publications can reduce ambiguity between published results where cells are cultured on "highly aligned" fibrous scaffolds. This could have important implications for characterizing mechanics and cellular behavior on aligned tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1680-1686, 2016.

  5. Prosthetic alignment effects on gait symmetry: a case study.

    Science.gov (United States)

    Andres, R O; Stimmel, S K

    1990-05-01

    The loss of a significant portion of a lower extremity causes changes in the usual pattern of human ambulation. These changes have been documented kinematically, kinetically and metabolically, giving insight into the costs of limb amputation relative to ambulatory efforts. The role of the prosthetist is to provide a limb substitute to achieve the best gait performance, while assuring maximum comfort for the patient. This case study examined the effects of antero-posterior alignment of a below-knee prosthesis on sagittal plane gait kinematics by comparing the anatomical side with the prosthetic side. The greatest changes due to variations of alignment were found during the prosthetic stance phase; knee angles showed the greatest asymmetry between anatomical and prosthetic sides. The stance phase on the prosthetic side was reduced with anterior socket displacement due to early knee flexion and toe-off. Posterior socket displacement caused a greater maximum centre of gravity height, but anterior socket displacement caused greater knee flexion which decreased the maximum centre of gravity height. Asymmetries in temporal and other kinematic parameters were not always minimal at the optimal alignment subjectively selected by a certified prosthetist. Comparisons of asymmetry ratios with prosthetic side data revealed the subclinical sensitivity of this amputee to antero-posterior alignment discrepancies.

  6. Effect of substrate composition and alignment on corneal cell phenotype.

    Science.gov (United States)

    Phu, Donna; Wray, Lindsay S; Warren, Robert V; Haskell, Richard C; Orwin, Elizabeth J

    2011-03-01

    Corneal blindness is a significant problem treated primarily by corneal transplants. Donor tissue supply is low, creating a growing need for an alternative. A tissue-engineered cornea made from patient-derived cells and biopolymer scaffold materials would be widely accessible to all patients and would alleviate the need for donor sources. Previous work in this lab led to a method for electrospinning type I collagen scaffolds for culturing corneal fibroblasts ex vivo that mimics the microenvironment in the native cornea. This electrospun scaffold is composed of small-diameter, aligned collagen fibers. In this study, we investigate the effect of scaffold nanostructure and composition on the phenotype of corneal stromal cells. Rabbit-derived corneal fibroblasts were cultured on aligned and unaligned collagen type I fibers ranging from 50 to 300 nm in diameter and assessed for expression of α-smooth muscle actin, a protein marker upregulated in hazy corneas. In addition, the optical properties of the cell-matrix constructs were assessed using optical coherence microscopy. Cells grown on collagen scaffolds had reduced myofibroblast phenotype expression compared to cells grown on tissue culture plates. Cells grown on aligned collagen type I fibers downregulated α-smooth muscle actin protein expression significantly more than unaligned collagen scaffolds, and also exhibited reduced overall light scattering by the tissue construct. These results suggest that aligned collagen type I fibrous scaffolds are viable platforms for engineering corneal replacement tissue.

  7. A combined alignment and registration scheme of psoriasis lesion |images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    A two-stage registration scheme of psoriasis lesion patterns is proposed. In the first stage, global rotation and translation effects of assumed equally scaled psoriasis lesion patterns are removed. In the second stage, only local translation effects are removed. In both stages a novel algorithm...

  8. Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect.

    Science.gov (United States)

    Xu, Ming; Futaba, Don N; Yumura, Motoo; Hata, Kenji

    2012-07-24

    Alignment represents an important structural parameter of carbon nanotubes (CNTs) owing to their exceptionally high aspect ratio, one-dimensional property. In this paper, we demonstrate a general approach to control the alignment of few-walled CNT forests from nearly random to nearly ideally aligned by tailoring the density of active catalysts at the catalyst formation stage, which can be experimentally achieved by controlling the CNT forest mass density. Experimentally, we found that the catalyst density and the degree of alignment were inseparably linked because of a crowding effect from neighboring CNTs, that is, the increasing confinement of CNTs with increased density. Therefore, the CNT density governed the degree of alignment, which increased monotonically with the density. This relationship, in turn, allowed the precise control of the alignment through control of the mass density. To understand this behavior further, we developed a simple, first-order model based on the flexural modulus of the CNTs that could quantitatively describe the relationship between the degree of alignment (HOF) and carbon nanotube spacing (crowding effect) of any type of CNTs.

  9. Sensorimotor alignment effects in the learning environment and in novel environments.

    Science.gov (United States)

    Kelly, Jonathan W; Avraamides, Marios N; Loomis, Jack M

    2007-11-01

    Four experiments investigated the conditions contributing to sensorimotor alignment effects (i.e., the advantage for spatial judgments from imagined perspectives aligned with the body). Through virtual reality technology, participants learned object locations around a room (learning room) and made spatial judgments from imagined perspectives aligned or misaligned with their actual facing direction. Sensorimotor alignment effects were found when testing occurred in the learning room but not after walking 3 m into a neighboring (novel) room. Sensorimotor alignment effects returned after returning to the learning room or after providing participants with egocentric imagery instructions in the novel room. Additionally, visual and spatial similarities between the test and learning environments were independently sufficient to cause sensorimotor alignment effects. Memory alignment effects, independent from sensorimotor alignment effects, occurred in all testing conditions. Results are interpreted in the context of two-system spatial memory theories positing separate representations to account for sensorimotor and memory alignment effects.

  10. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Directory of Open Access Journals (Sweden)

    Jose Emilio Vargas-Soto

    2013-10-01

    Full Text Available The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  11. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Science.gov (United States)

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  12. Field Aligned Currents Derived from Pressure Profiles Obtained from TWINS ENA Images

    Science.gov (United States)

    Wood, K.; Perez, J. D.; McComas, D. J.; Goldstein, J.; Valek, P. W.

    2015-12-01

    Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere. Assuming pressure balance along with charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies can be obtained. Following the formulations in Heineman [1990] and using results from TWINS observations, we calculate the distribution of field aligned currents for the 17-18 March 2015 geomagnetic storm in which extended ionospheric precipitation was observed. Initial results for the field aligned currents will be generated assuming an isotropic pitch angle distribution. Global maps of field aligned currents during the main and recovery phase of the storm will be presented. Heinemann, H. (1990), Representations of Currents and Magnetic Fields in Anisotropic Magnetohydrostatic Plasma, J. Geophys. Res., 95, 7789.

  13. Monitoring the effect of magnetically aligned collagen scaffolds on tendon tissue engineering by PSOCT

    Science.gov (United States)

    Yang, Ying; Ahearne, Mark; Wimpenny, Ian; Torbet, Jim

    2009-02-01

    As the repair of injured or degenerated tendon is often compromised by the shortage of suitable donor tissue, other procedures need to be developed. The application of a functional tissue engineered tendon could prove to be a promising alternative therapy. Due to their good biocompatibility, collagen hydrogel based scaffolds have been considered to be potentially suitable for engineering tendon tissue in vitro. One of the major limitations of collagen hydrogels for engineering tissues is the difficulty in controlling their architecture and collagen concentration which results in poor mechanical strength. This study aims to overcome these limitations by creating a highly biocompatible scaffold that is both mechanically robust and aligned. Collagen fibers were pre-aligned under a high magnetic field then concentrated using plastic compression. Primary tenocytes cultured from rats were seeded on the aligned scaffolds. Following a protocol in public domain, thick cultured collagen constructs were rolled up into a spiral after undergoing plastic compressed. Both a light microscopy and a polarization sensitive optical coherence tomography (PSOCT) with central beam at 1300 nm were used to monitor the birefringence in the constructs. Conventional light microscopy showed that the tenocytes aligned along the pre-organized collagen bundles in contrast to the random distributed observed on unaligned scaffolds. PSOCT only revealed weak birefringence from aligned but uncompressed constructs. However, PSOCT images showed contrast band structures in the spiral constructs which suggests that the birefringence signal depends on the density of aligned collagen fibers. The effect of aligned cells, neo-formed matrix and the plastic compression on the birefringence signals are discussed in this paper briefly.

  14. Alignment method for parabolic trough solar concentrators

    Science.gov (United States)

    Diver, Richard B [Albuquerque, NM

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  15. Implementation of large area CMOS image sensor module using the precision align inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Wook; Kim, Toung Ju; Ryu, Cheol Woo [Radiation Imaging Technology Center, JBTP, Iksan (Korea, Republic of); Lee, Kyung Yong; Kim, Jin Soo [Nano Sol-Tech INC., Iksan (Korea, Republic of); Kim, Myung Soo; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2014-12-15

    This paper describes a large area CMOS image sensor module Implementation using the precision align inspection program. This work is needed because wafer cutting system does not always have high precision. The program check more than 8 point of sensor edges and align sensors with moving table. The size of a 2×1 butted CMOS image sensor module which except for the size of PCB is 170 mm×170 mm. And the pixel size is 55 μm×55 μm and the number of pixels is 3,072×3,072. The gap between the two CMOS image sensor module was arranged in less than one pixel size.

  16. Quadrupole lens alignment with improved STIM and secondary electron imaging for Proton Beam Writing

    Science.gov (United States)

    Qureshi, Sarfraz; Raman, P. Santhana; Stegmaier, Alrik; van Kan, Jeroen A.

    2017-08-01

    Minimal proximity effect coupled with uniform energy deposition in thin polymer layers make Proton Beam Writing (PBW) an intuitive direct-write lithographic technique. Feature sizes matching the focused beam spot size have been fabricated in photoresists down to 19 nm. Reproducible sub-10 nm beam focusing will make PBW a promising contender for sub-10 nm lithography. In this paper, we present beam size characterization by imaging a PBW resolution standard using transmitted/scattered ions and secondary electrons. Using Scanning Transmission Ion Microscopy (STIM) spectra for 1 and 2 MeV H2+ beams, we experimentally measure the thickness of the resolution standard to be 0.9 ± 0.1 μm, applying two independent calibration methods, which match the original intended thickness during fabrication. Through bias optimization of a Micro-Channel Plate (MCP), we show a tuneable secondary electron detection per proton for imaging with a maximum of 75% e/p for a beam of 1 MeV H2+. Based on STIM mode beam size measurement, we discuss considerations for quadrupole system alignment in order to remove higher order translational and rotational misalignments critical to achieve sub-40 nm spot sizes. A spot size of 13 × 32 nm2 (STIM) was achieved using a newly developed interface, capable of autofocusing ion beams and performing PBW.

  17. Vertically aligned ZnO nanorods on porous silicon substrates:Effect of growth time

    Institute of Scientific and Technical Information of China (English)

    R. Shabannian

    2015-01-01

    Vertically aligned ZnO nanorods were successfully grown on porous silicon (PS) substrates by chemical bath deposition at a low temperature. X-ray diffraction, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration (2 h to 8 h) on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO (0 0 2) peaks of the ZnO nanorods proved that the aligned ZnO nanorods were preferentially fabricated along the c-axis of the hexagonal wurtzite structure. FESEM images demonstrated that the ZnO nanorod arrays were well aligned along the c-axis and perpendicular to the PS substrates regardless of the growth duration. The TEM image showed that the top surfaces of the ZnO nanorods were round with a smooth curvature. PL spectra demonstrated that the ZnO nanorods grown for 5 h exhibited the sharpest and most intense PL peaks within the ultraviolet range among all samples.

  18. Alignments of radio galaxies in deep radio imaging of ELAIS N1

    Science.gov (United States)

    Taylor, A. R.; Jagannathan, P.

    2016-06-01

    We present a study of the distribution of radio jet position angles of radio galaxies over an area of 1 square degree in the ELAIS N1 field. ELAIS N1 was observed with the Giant Metrewave Radio Telescope at 612 MHz to an rms noise level of 10 μJy and angular resolution of 6 arcsec × 5 arcsec. The image contains 65 resolved radio galaxy jets. The spatial distribution reveals a prominent alignment of jet position angles along a `filament' of about 1°. We examine the possibility that the apparent alignment arises from an underlying random distribution and find that the probability of chance alignment is less than 0.1 per cent. An angular covariance analysis of the data indicates the presence of spatially coherence in position angles on scales >0 .^{circ}5. This angular scales translates to a comoving scale of >20 Mpc at a redshift of 1. The implied alignment of the spin axes of massive black holes that give rise to the radio jets suggest the presence of large-scale spatial coherence in angular momentum. Our results reinforce prior evidence for large-scale spatial alignments of quasar optical polarization position angles.

  19. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    Science.gov (United States)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  20. Are Tidal Effects Responsible for Exoplanetary Spin-Orbit Alignment?

    CERN Document Server

    Li, Gongjie

    2015-01-01

    The obliquities of planet-hosting stars are clues about the formation of planetary systems. Previous observations led to the hypothesis that for close-in giant planets, spin-orbit alignment is enforced by tidal interactions. Here, we examine two problems with this hypothesis. First, Mazeh and coworkers recently used a new technique -- based on the amplitude of starspot-induced photometric variability -- to conclude that spin-orbit alignment is common even for relatively long-period planets, which would not be expected if tides were responsible. We re-examine the data and find a statistically significant correlation between photometric variability and planetary orbital period that is qualitatively consistent with tidal interactions. However it is still difficult to explain quantitatively, as it would require tides to be effective for periods as long as tens of days. Second, Rogers and Lin argued against a particular theory for tidal re-alignment by showing that initially retrograde systems would fail to be re-...

  1. Predicting three-dimensional patellofemoral kinematics from static imaging-based alignment measures.

    Science.gov (United States)

    Freedman, Benjamin R; Sheehan, Frances T

    2013-03-01

    Patellofemoral pain syndrome causes significant discomfort and disability among much of the general population. Despite recent breakthroughs in dynamic three-dimensional imaging technologies to assess pathological patellofemoral motion, such tools remain costly for clinical diagnostics applications. Thus, this study investigated whether three-dimensional patellofemoral kinematics could be predicted from routine two-dimensional static measures of patellofemoral joint alignment quantified from magnetic resonance imaging (MRI) data acquired in full knee extension. Twenty-six volunteers clinically diagnosed with patellofemoral pain (19 F/7 M, 25.9 ± 11.1 years) and 26 control subjects (19 F/7 M, 25.3 ± 7.7 years) were included in this IRB-approved study. Static three-dimensional sagittal T1-weighted gradient recall echo and dynamic MRI scans were acquired. For the dynamic image acquisition, subjects cyclically flexed and extended their knee (at 30 cycles/min) while a full cine-phase contrast MRI set (24 time frames of anatomic images and x-, y-, and z-velocity images) was acquired. From these data, static measures of patellofemoral alignment and three-dimensional patellofemoral kinematics were derived. Single and multiple regressions between static and kinematic variables were evaluated. Although shown reliable, the static MRI measures could only partially predict patellofemoral kinematics, with r(2) -values ranging from 16% to 77%. This makes it imperitave that the current precise, accurate, 3D, dynamic imaging techniques be translated into clinical tools.

  2. Image Quality of the Evryscope: Method for On-Site Optical Alignment

    Science.gov (United States)

    Wulfken, Philip J.; Law, Nicholas M.; Ratzloff, Jeffrey; Fors, Octavi

    2015-01-01

    Previous wide field surveys have been conducted by taking many images each night to cover thousands of square degrees. The Evryscope is a new type of system designed to search for transiting exoplanets around nearby bright stars, M-dwarfs, white dwarfs, and other transients. The Evryscope is an array of 70 mm telescopes that will continuously image 10200 square degrees of the night sky at once. One of the image quality requirements is for the PSFs to be well-sampled at two pixels across and it was found that tilt caused by slight misalignment between the optics and the CCD increased the size of the FWHM towards the edges and corners of the image. Here we describe the image quality of the Evryscope cameras and the alignment procedure to achieve the required 2 pixel FWHM.

  3. Subinteger Range-Bin Alignment Method for ISAR Imaging of Noncooperative Targets

    Directory of Open Access Journals (Sweden)

    Pérez-Martínez F

    2010-01-01

    Full Text Available Inverse Synthetic Aperture Radar (ISAR is a coherent radar technique capable of generating images of noncooperative targets. ISAR may have better performance in adverse meteorological conditions than traditional imaging sensors. Unfortunately, ISAR images are usually blurred because of the relative motion between radar and target. To improve the quality of ISAR products, motion compensation is necessary. In this context, range-bin alignment is the first step for translational motion compensation. In this paper, we propose a subinteger range-bin alignment method based on envelope correlation and reference profiles. The technique, which makes use of a carefully designed optimization stage, is robust against noise, clutter, target scintillation, and error accumulation. It provides us with very fine translational motion compensation. Comparisons with state-of-the-art range-bin alignment methods are included and advantages of the proposal are highlighted. Simulated and live data from a high-resolution linear-frequency-modulated continuous-wave radar are included to perform the pertinent comparisons.

  4. Field application of moment-based wavefront sensing to in-situ alignment and image quality assessment of astronomical spectrographs: results and analysis of aligning VIRUS unit spectrographs

    Science.gov (United States)

    Lee, Hanshin; Hill, Gary J.; Tuttle, Sarah E.; Noyola, Eva; Peterson, Trent; Vattiat, Brian L.

    2014-07-01

    Teague introduced a phase retrieval method that uses the image shape moments. More recently, an independent study arrived at a similar technique, which was then applied to in-situ full-field image-quality evaluation of spectroscopic systems. This moment-based wavefront sensing (MWFS) method relies on the geometric relation between the image shape moments and the geometric wavefront modal coefficients. The MWFS method allows a non-iterative determination of the modal coefficients from focus-modulated images at arbitrary spatial resolutions. The determination of image moments is a direct extension of routine centroid and image size calculation, making its implementation easy. Previous studies showed that the MWFS works well in capturing large low-order modes, and is quite suitable for in-situ alignment diagnostics. At the Astronomical Instrumentation conference in 2012, we presented initial results of the application of the moment-based wavefront sensing to a fiber-fed astronomical spectrograph, called VIRUS (a set of replicated 150 identical integral-field unit spectrographs contained in 75 unit pairs). This initial result shows that the MWFS can provide accurate full-field image-quality assessment for efficiently aligning these 150 spectrographs. Since then, we have assembled more than 24 unit pairs using this technique. In this paper, we detail the technical update/progress made so far for the moment-based wavefront sensing method and the statistical estimates of the before/after alignment aberrations, image-quality, and various efficiency indicators of the unit spectrograph alignment process.

  5. Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.

    Science.gov (United States)

    Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme

    2014-03-01

    Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.

  6. Alignments of Radio Galaxies in Deep Radio Imaging of ELAIS N1

    CERN Document Server

    Taylor, A R

    2016-01-01

    We present a study of the distribution of radio jet position angles of radio galaxies over an area of 1 square degree in the ELAIS N1 field. ELAIS N1 was observed with the Giant Metrewave Radio Telescope at 612 MHz to an rms noise level of 10 $\\mu$Jy and angular resolution of $6"\\times 5"$. The image contains 65 resolved radio galaxy jets. The spatial distribution reveals a prominent alignment of jet position angles along a "filament" of about 1$^{\\circ}$. We examine the possibility that the apparent alignment arises from an underlying random distribution and find that the probability of chance alignment is less than 0.1%. An angular covariance analysis of the data indicates the presence of spatially coherence in position angles on scales $>0.5^{\\circ}$. This angular scales translates to a co-moving scale of $>20h^{-1}$Mpc at a redshift of 1. The implied alignment of the spin axes of massive black holes that give rise the radio jets suggest the presence of large-scale spatial coherence in angular momentum. Ou...

  7. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    Science.gov (United States)

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-07-08

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons

  8. Simulation of beamline alignment operations

    Energy Technology Data Exchange (ETDEWEB)

    Annese, C; Miller, M G

    1999-02-02

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control systems. The simulator project used a three-prong approach that studied object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. The National Ignition Facility's (NIF) optical alignment system was modeled to study control system operations. The alignment of NIF's 192 beamlines is a large complex operation involving more than 100 computer systems and 8000 mechanized devices. The alignment process is defined by a detailed set of procedures; however, many of the steps are deterministic. The alignment steps for a poorly aligned component are similar to that of a nearly aligned component; however, additional operations/iterations are required to complete the process. Thus, the same alignment operations will require variable amounts of time to perform depending on the current alignment condition as well as other factors. Simulation of the alignment process is necessary to understand beamline alignment time requirements and how shared resources such as the Output Sensor and Target Alignment Sensor effect alignment efficiency. The simulation has provided alignment time estimates and other results based on documented alignment procedures and alignment experience gained in the laboratory. Computer communication time, mechanical hardware actuation times, image processing algorithm execution times, etc. have been experimentally determined and incorporated into the model. Previous analysis of alignment operations utilized average implementation times for all alignment operations. Resource sharing becomes rather simple to model when only average values are used. The time required to actually implement the many individual alignment operations will be quite dynamic. The simulation model estimates the time to complete an operation using

  9. Design of an Image-Servo Mask Alignment System Using Dual CCDs with an XXY Stage

    Directory of Open Access Journals (Sweden)

    Chih-Jer Lin

    2016-02-01

    Full Text Available Mask alignment of photolithography technology is used in many applications, such as micro electro mechanical systems’ semiconductor process, printed circuits board, and flat panel display. As the dimensions of the product are getting smaller and smaller, the automatic mask alignment of photolithography is becoming more and more important. The traditional stacked XY-Θz stage is heavy and it has cumulative flatness errors due to its stacked assembly mechanism. The XXY stage has smaller cumulative error due to its coplanar design and it can move faster than the traditional XY-Θz stage. However, the relationship between the XXY stage’s movement and the commands of the three motors is difficult to compute, because the movements of the three motors on the same plane are coupling. Therefore, an artificial neural network is studied to establish a nonlinear mapping from the desired position and orientation of the stage to three motors’ commands. Further, this paper proposes an image-servo automatic mask alignment system, which consists of a coplanar XXY stage, dual GIGA-E CCDs with lens and a programmable automatic controller (PAC. Before preforming the compensation, a self-developed visual-servo provides the positioning information which is obtained from the image processing and pattern recognition according to the specified fiducial marks. To obtain better precision, two methods including the center of gravity method and the generalize Hough Transformation are studied to correct the shift positioning error.

  10. Tunka-Rex. Event reconstruction and effect of antenna alignment

    Energy Technology Data Exchange (ETDEWEB)

    Kazarina, Yulia [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (KIT) (Germany); Irkutsk State University (ISU) (Russian Federation)

    2015-07-01

    The Tunka-Rex experiment (Tunka Radio Extension) has been deployed in autumn 2012 at the territory of the Tunka-133 experiment (Tunka Valley, Republic of Buryatia, Russia), covering an area of approximately 1 km{sup 2}. Tunka-133 detects the Cherenkov radiation from air showers of cosmic rays at energies E >or similar 10{sup 16.5}-10{sup 18} eV, and 25 antennas of Tunka-Rex measure the radio emission of the same air showers. Unlike most radio experiments the Tunka-Rex antennas are not aligned along the north-south and east-west axis, but rotated by 45 {sup circle} with respect to the geomagnetic north-south axis. Using CoREAS simulations, we studied the effect of the antenna alignment on the efficiency of Tunka-Rex in the presence of noise. This report presents the results of this study as well as methods for the reconstruction of measured air shower events.

  11. A LabVIEW based user-friendly nano-CT image alignment and 3D reconstruction platform

    CERN Document Server

    Wang, Shenghao; Wang, Zhili; Gao, Kun; Wu, Zhao; Zhu, Peiping; Wu, Ziyu

    2014-01-01

    X-ray nanometer computed tomography (nano-CT) offers applications and opportunities in many scientific researches and industrial areas. Here we present a user-friendly and fast LabVIEW based package running, after acquisition of the raw projection images, a procedure to obtain the inner structure of the sample under analysis. At first, a reliable image alignment procedure fixes possible misalignments among image series due to mechanical errors, thermal expansion and other external contributions, then a novel fast parallel beam 3D reconstruction performs the tomographic reconstruction. The remarkable improved reconstruction after the image calibration confirms the fundamental role of the image alignment procedure. It minimizes blurring and additional streaking artifacts present in a reconstructed slice that cause loss of information and faked structures in the observed material. The nano-CT image alignment and 3D reconstruction LabVIEW package significantly reducing the data process, makes faster and easier th...

  12. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  13. Imaging an aligned polyatomic molecule with laser-induced electron diffraction

    CERN Document Server

    Pullen, Michael; Le, Anh-Thu; Baudisch, Matthias; Hemmer, Michaël; Senftleben, Arne; Schröter, Claus Dieter; Ullrich, Joachim; Moshammer, Robert; Lin, Chii-Dong; Biegert, Jens

    2015-01-01

    Laser-induced electron diffraction is an evolving tabletop method, which aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-{\\AA}ngstr\\"om spatial and femtosecond temporal resolution. Here, we provide the general foundation for the retrieval of multiple bond lengths from a polyatomic molecule by simultaneously measuring the C-C and C-H bond lengths in aligned acetylene. Our approach takes the method beyond the hitherto achieved imaging of simple diatomic molecules and is based upon the combination of a 160 kHz mid-IR few-cycle laser source with full three-dimensional electron-ion coincidence detection. Our technique provides an accessible and robust route towards imaging ultrafast processes in complex gas phase molecules with atto- to femto-second temporal resolution.

  14. Intraocular lens alignment from an en face optical coherence tomography image Purkinje-like method

    Science.gov (United States)

    Sun, Mengchan; de Castro, Alberto; Ortiz, Sergio; Perez-Merino, Pablo; Birkenfeld, Judith; Marcos, Susana

    2014-06-01

    Measurement of intraocular lens (IOL) alignment implanted in patients in cataract surgery is important to understand their optical performance. We present a method to estimate tilt and decentration of IOLs based on optical coherence tomography (OCT) images. En face OCT images show Purkinje-like images that correspond to the specular reflections from the corneal and IOL surfaces. Unlike in standard Purkinje-imaging, the tomographic nature of OCT allows unequivocal association of the reflection with the corresponding surface. The locations of the Purkinje-like images are linear combinations of IOL tilt, IOL decentration, and eye rotation. The weighting coefficients depend on the individual anterior segment geometry, obtained from the same OCT datasets. The methodology was demonstrated on an artificial model eye with set amounts of lens tilt and decentration and five pseudophakic eyes. Measured tilt and decentration in the artificial eye differed by 3.7% and 0.9%, respectively, from nominal values. In patients, average IOL tilt and decentration from Purkinje were 3.30±4.68 deg and 0.16±0.16 mm, respectively, and differed on average by 0.5 deg and 0.09 mm, respectively, from direct measurements on distortion-corrected OCT images. Purkinje-based methodology from anterior segment en face OCT imaging provided, therefore, reliable measurements of IOL tilt and decentration.

  15. Optical derotator alignment using image-processing algorithm for tracking laser vibrometer measurements of rotating objects

    Science.gov (United States)

    Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan

    2017-06-01

    An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.

  16. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    CERN Document Server

    Kim, Lee Yeong; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-01-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. However, in previous experimental studies, the effects of state-dependent alignment have never been included in estimates of the optical dipole force acting on the molecules while previous theoretical investigations took the state-dependent molecular alignment into account only implicitly. Herein, we consider the effects of molecular alignment explicitly and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear mo...

  17. Assessment of acetabulum anteversion aligned with the transverse acetabulum ligament: cadaveric study using image-free navigation system

    Directory of Open Access Journals (Sweden)

    Tomokazu Fukui

    2013-02-01

    Full Text Available The transverse acetabulum ligament (TAL has been used as an intraoperative anatomical landmark to position the acetabulum cup in total hip arthroplasty (THA. However, the validity of the use of TAL has not been clarified. The purpose of this study was to examine the orientation of the cup component aligned with the TAL in cadaveric study. The 31 hips in 25 whole-body embalmed cadavers were examined. The donors were 12 men and 13 women. Simulated THA procedure using image-free navigation system was performed and a trial cup with a diameter of approximately 2 mm less than the size of the acetabulum were inserted and snugly fitted on the TAL through the posterior wall of acetabulum. The orientation of the cup component was measured using an image-free THA navigation system. The measured radiographic anteversion and inclination angles averaged 18.2±7.2° (range: 2.0-33.2° and 43.5±4.2° (range: 33.1-51.0° respectively. Based on the Lewinnek’s safe zone criteria, 26 hips (80.6% were judged to be within the. Moreover, in the analysis of the gender difference of TAL angles, the average anteversion angle was shown to be significant larger in female than male population. The TAL can be effectively used an intraoperative landmark to align the acetabulum component helping reduce the risk of dislocation after surgery. In the intraoperative judgment, a gender difference in the alignment of the TAL should be taken into consideration.

  18. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  19. Automated alignment system for optical wireless communication systems using image recognition.

    Science.gov (United States)

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

  20. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    Science.gov (United States)

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment.

  1. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)

    Science.gov (United States)

    Malone, Robert M.; Celeste, John R.; Celliers, Peter M.; Frogget, Brent C.; Guyton, Robert L.; Kaufman, Morris I.; Lee, Tony L.; MacGowan, Brian J.; Ng, Edmund W.; Reinbachs, Imants P.; Robinson, Ronald B.; Tunnell, Thomas W.; Watts, Phillip W.

    2007-09-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator-friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities and shock breakout times of 1- to 5-mm targets at a location remote to the NIF target chamber. A third imaging system measures self-emission of the targets. These three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be systematically checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Floating apertures, placed before and after lens groups, display misalignment by showing the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beam splitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment is achieved before each shot.

  2. Design and application of a laser beam alignment system based on the imaging properties of a multi-pass amplifier

    Institute of Scientific and Technical Information of China (English)

    Daizhong Liu; Fengnian Lü; Jinzhou Cao; Renfang Xu; Jianqiang Zhu; Dianyuan Fan; Jianbo Xiao; Xiaojun Zhou

    2006-01-01

    Image relaying is presented as a technique for aligning beams onto mm-sized target of high power laser. On the basis of summarizing the preceeding work on the near-field image relaying of multiple spatial filters,the far-filed image relaying is suggested firstly. The near-field and far-field image relaying properties of multiple spatial filters in laser beams automatic alignment system are analyzed. A geometrical optics approach and an ABCD ray matrix theory are used throughout. The reasonable and optimum scheme for automatically aligning multi-pass beam paths is presented and demonstrated on the multi-pass amplifier system of the SG-Ⅲ prototype.

  3. Comparing the Zeiss Callisto Eye and the Alcon Verion Image Guided System Toric Lens Alignment Technologies.

    Science.gov (United States)

    Hura, Arjan S; Osher, Robert H

    2017-07-01

    To compare the alignment meridian generated by the Zeiss Callisto Eye (Carl Zeiss AG, Dublin, CA) and the Alcon Verion Image Guided System (Alcon Laboratories, Inc., Fort Worth, TX). In this retrospective comparative evaluation of technology, intraoperative images were captured at different steps in the same surgery, allowing the comparison of the guidance lines generated by the Verion system to the parallel guidance lines generated by the Callisto Eye system. Measurements of each hemi-meridian were quantified using Adobe Photoshop 2015 CC software (Adobe Systems, San Jose, CA). The numbers of degrees separating these alignment meridians were calculated, entered into a database, and analyzed. The authors found that of 98 captured images of 16 eyes, the two technologies were identical in 0 eyes (θ1 = θ2 = 0), similar by 3° in 52 (53%) captured images (θ1 ≠ θ2 ≠ 0), and different by at least 3° in 46 (47%) captured images (θ1 ≠ θ2 ≠ 0). The target meridians were superimposed, the target lines were minimally separated, and the target lines were dissimilar. It was noted that some intraoperative variation occurred from measurement to measurement. Within the small group of 16 cases of routine toric lens implantation in this study, the absolute average number of degrees of misalignment between the Verion and Callisto Eye systems was 3.355 for θ1 and 3.838 for θ2. On average, the intraoperative variation termed "drift" was noted to be 3.963° for θ1, and 4.557° for θ2. The authors found that small deviations were frequent when comparing two sophisticated technologies. Although deviations greater than 3° occurred in less than 47% of captured images from 16 eyes, smaller but significant variations of less than 3° occurred in 53% of captured images from 16 eyes. It was rare to identify a large deviation. However, the authors identified "drift" in the same eye when measurements were taken at different times. The results indicate that the two systems are

  4. Polarizing effect of aligned nanoparticles in terahertz frequency region.

    Science.gov (United States)

    Polley, Debanjan; Ganguly, Arnab; Barman, Anjan; Mitra, Rajib Kumar

    2013-08-01

    We report the polarizing behavior of aligned Ni nanoparticles (NPs) having average diameter of 165±15 nm in ~210 μm thick polyvinyl alcohol (PVA) matrix in the frequency range of 0.2-1.6 THz. The NPs have been prepared via a wet chemical route and then aligned in PVA film by using an external magnetic field. When the polarization of THz electric field is parallel to the NPs alignment direction, a strong THz absorption is observed whereas a minimum THz absorption is noticed for the corresponding perpendicular configuration. Degree of polarization is calculated to be 0.9±0.08. Considering the good polarizing performance, ease of preparation, durability, and low maintenance, this aligned NP system is a perfect candidate to emerge as a potential THz polarizer.

  5. Effective lordosis: analysis of sagittal spinal canal alignment in cervical spondylotic myelopathy.

    Science.gov (United States)

    Gwinn, David E; Iannotti, Christopher A; Benzel, Edward C; Steinmetz, Michael P

    2009-12-01

    Analysis of cervical sagittal deformity in patients with cervical spondylotic myelopathy (CSM) requires a thorough clinical and radiographic evaluation to select the most appropriate surgical approach. Angular radiographic measurements, which are commonly used to define sagittal deformity, may not be the most appropriate to use for surgical planning. The authors present a simple straight-line method to measure effective spinal canal lordosis and analyze its reliability. Furthermore, comparisons of this measurement to traditional angular measurements of sagittal cervical alignment are made in regards to surgical planning in patients with CSM. Twenty preoperative lateral cervical digital radiographs of patients with CSM were analyzed by 3 independent observers on 3 separate occasions using a software measurement program. Sagittal measurements included C2-7 angles utilizing the Cobb and posterior tangent methods, as well as a straight-line method to measure effective spinal canal lordosis from the dorsal-caudal aspect of the C2-7 vertebral bodies. Analysis of variance for repeated measures or Cohen 3-way (kappa) correlation coefficient analysis was performed as appropriate to calculate the intra- and interobserver reliability for each parameter. Discrepancies in angular and effective lordosis measurements were analyzed. Intra- and interobserver reliability was excellent (intraclass coefficient > 0.75, kappa > 0.90) utilizing all 3 techniques. Four discrepancies between angular and effective lordotic measurements occurred in which images with a lordotic angular measurement did not have lordosis within the ventral spinal canal. These discrepancies were caused by either spondylolisthesis or dorsally projecting osteophytes in all cases. Although they are reliable, traditional methods used to make angular measurements of sagittal cervical spine alignment do not take into account ventral obstructions to the spinal cord. The effective lordosis measurement method provides a

  6. Alignment Effectiveness for Value Creation with Information Systems

    Directory of Open Access Journals (Sweden)

    Martina MITAMBO

    2014-08-01

    Full Text Available Enterprises often face problems while executing business strategies to exploit opportunities or solve problems. Within enterprises, strategy blindness could be affected by mistranslation of strategic intent, flexibility of the information system, or cognitive entrenchment. The alignment between business strategy and business processes is a critical factor in the ability of enterprises to overcome the phenomenon. Opportunities for value creation include magnifying the positive spread in cash flow or pursuing growth opportunities. Information systems could greatly simplify the processes involved in business strategy by integrating process-related decision-making with the business strategy. Decision support tools such as knowledge management, decision strategy, decision content, and expert groups, customised for organisational information systems can help enterprises optimise operations in a variety of ways such as becoming more responsive to changing market conditions in hypercompetitive markets. Greatest opportunities for decision support are incorporating external sources of data such as economic data and user behaviour analytics. Benefits are more effective utilisation of resources, larger product portfolio, better product or service quality, and shorter delivery times.

  7. Optical Alignment Techniques for Line-Imaging Velocity Interferometry and Line-Imaging Self-Emission of Targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R M; Celeste, J R; Celliers, P M; Frogget, B .; Guyton, R L; Kaufman, M I; Lee, T L; MacGowan, B J; Ng, E W; Reinbachs, I P; Robinson, R B; Tunnell, T W; Watts, P W

    2007-07-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 meters. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  8. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Robert; Celeste, John; Celliers, Peter; Frogget, Brent; Robert Guyton,,; Kaufman, Morris; Lee, Tony; MacGowan, Brian; Ng, Edmend; Reinbachs, Imants; Robinson, Ronald; Tunnell, Thomas; Watts, Phillip

    2007-08-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  9. Integrated Alignment and Inspection Platform for High Precision Optical Continuous Images

    Directory of Open Access Journals (Sweden)

    Chuen-Horng Lin

    2014-11-01

    Full Text Available This platform is mainly intended to be used as a facility for high precision optical continuous images. Then, with a fixed pattern being selected, this platform can quickly search, with resistance to variation, the mark that corresponds to the pattern in order to achieve the alignment and inspection target. Since the pattern is a minute component with multiple shapes and unstable features, this platform can automatically acquire it through the system or select it by user. The targets searched by the mark include light, intensity, occlusion and rotation. It then, calculates the variances of light, intensity, occlusion and rotation individually with the mark under detection, search and pattern to achieve the inspection function. Therefore, combined with a quick and accurate mark detection and the search method, this platform builds an interface integrated platform that is easy to operate and user-friendly.

  10. Evaluation of an image-based tracking workflow with Kalman filtering for automatic image plane alignment in interventional MRI.

    Science.gov (United States)

    Neumann, M; Cuvillon, L; Breton, E; de Matheli, M

    2013-01-01

    Recently, a workflow for magnetic resonance (MR) image plane alignment based on tracking in real-time MR images was introduced. The workflow is based on a tracking device composed of 2 resonant micro-coils and a passive marker, and allows for tracking of the passive marker in clinical real-time images and automatic (re-)initialization using the microcoils. As the Kalman filter has proven its benefit as an estimator and predictor, it is well suited for use in tracking applications. In this paper, a Kalman filter is integrated in the previously developed workflow in order to predict position and orientation of the tracking device. Measurement noise covariances of the Kalman filter are dynamically changed in order to take into account that, according to the image plane orientation, only a subset of the 3D pose components is available. The improved tracking performance of the Kalman extended workflow could be quantified in simulation results. Also, a first experiment in the MRI scanner was performed but without quantitative results yet.

  11. Subtalar arthrodesis alignment: the effect on ankle biomechanics.

    Science.gov (United States)

    Jastifer, James R; Gustafson, Peter A; Gorman, Robert R

    2013-02-01

    The position, axis, and control of each lower extremity joint intimately affect adjacent joint function as well as whole-limb performance. A review of the literature finds little describing the biomechanics of subtalar arthrodesis and the effect on ankle biomechanics. The purpose of the current study was to establish this effect on sagittal plane ankle biomechanics. A study was performed using a 3-dimensional, validated, computational model of the lower extremity. A subtalar arthrodesis was simulated from 20 degrees of varus to 20 degrees of valgus. At each arthrodesis position, the ankle dorsiflexor and plantarflexor muscles' fiber force, moment arm, and moments were calculated throughout a physiologic range of motion. Throughout ankle range of motion, plantarflexion and dorsiflexion strength varied with subtalar arthrodesis position. When the ankle joint was in neutral sagittal alignment, plantarflexion strength was maximized in 10 degrees of subtalar valgus, and strength varied by a maximum of 2.6% from the peak 221 Nm. In a similar manner, with the ankle joint in neutral position, dorsiflexion strength was maximized with a subtalar joint arthrodesis in 5 degrees of valgus, and strength varied by a maximum of 7.5% from the peak 46.8 Nm. The change in strength was due to affected muscle fiber force generating capacities and muscle moment arms. The significance of this study is that subtalar arthrodesis in a position of 5 to 10 degrees of subtalar valgus has a biomechanical advantage. This supports previous clinical outcome studies and offers a biomechanical rationale for their generally favorable outcomes.

  12. Phase-aligned multiple spin-echo averaging: a simple way to improve signal-to-noise ratio of in vivo mouse spinal cord diffusion tensor image.

    Science.gov (United States)

    Tu, Tsang-Wei; Budde, Matthew D; Xie, Mingqiang; Chen, Ying-Jr; Wang, Qing; Quirk, James D; Song, Sheng-Kwei

    2014-12-01

    To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique. In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen's d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology. Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly

  13. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system

    CERN Document Server

    Baumann, Michael; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space a...

  14. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.

    Science.gov (United States)

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-06-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment.

  15. Mutual Understanding Determinants for Effective Communication in Business and IT Strategic Alignment Planning

    Directory of Open Access Journals (Sweden)

    Nurul `Izzati Mohmad Adnan

    2016-12-01

    Full Text Available Business and IT strategic alignment is continuously explored from different facets motivated by the demands for organisation to be well aligned in its business and IT strategies for business continuity. The management aspect rather than technological issues often causes misalignment in business and IT strategies more significantly. One of the issues is the communication ineffectiveness between business and IT people involved in planning the business and IT strategic alignment. Difficulty to achieve mutual understanding between these two teams is a critical problem in communication and hinders the successful alignment. Therefore, a set of determinants for mutual understanding is proposed. Extensive analysis on literature has been carried out to identify and define the determining factors. The review can serve as a reference for business and IT executives to improve in their communication effectiveness towards achieving well aligned business and IT strategic alignment.

  16. MR Imaging and Radiographic Imaging of Degenerative Spine Disorders and Spine Alignment.

    Science.gov (United States)

    Galbusera, Fabio; Lovi, Alessio; Bassani, Tito; Brayda-Bruno, Marco

    2016-08-01

    Advances in MR imaging technologies, as well as the widening of their availability, boosted their use in the diagnosis of spinal disorders and in the preoperative planning of spine surgeries. However, the most consolidated approach to the assessment of adult patients with spinal disorders is based on the analysis of full standing radiographs (posteroanterior and laterolateral views). In this article, the radiographic spinal and pelvic parameters, which have relevance in the clinical management of adults with spinal disorders, are summarized.

  17. Focus conditioning effects on molecular field-free alignment observed with high-order harmonic generation

    Institute of Scientific and Technical Information of China (English)

    吴家骏; 尉鹏飞

    2012-01-01

    We investigate the focus conditioning effects on molecular field-free alignment observed with high-order harmonic generation (HHG) from CO2 molecules.We also experimentally demonstrate that both the spectral shape and alignment signal of HHG significantly vary with changing focus position.A maximal alignment signal is achieved at a given focus position because of the optimal intensity of the driving laser.This intensity is related to the ionization potential of the molecules.These results indicate that a unique focus position provides an optimal alignment signal for practical applications.

  18. Constructive Alignment in Economics Teaching: A Reflection on Effective Implementation

    Science.gov (United States)

    McCann, Michael

    2017-01-01

    The typical approach to student-centred learning in Economics has focused on innovation within the classroom, with little thought given to how this complements teaching and learning and, crucially, assessment. This paper reflects on the implementation of constructive alignment in a final year managerial economics course. It demonstrates how it is…

  19. Constructive Alignment in Economics Teaching: A Reflection on Effective Implementation

    Science.gov (United States)

    McCann, Michael

    2017-01-01

    The typical approach to student-centred learning in Economics has focused on innovation within the classroom, with little thought given to how this complements teaching and learning and, crucially, assessment. This paper reflects on the implementation of constructive alignment in a final year managerial economics course. It demonstrates how it is…

  20. Effect of panel alignment and surface finish on bond strength

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J. [Los Alamos National Lab., NM (United States); Baker, W.E. [New Mexico Univ., Albuquerque, NM (United States)

    1991-10-01

    The flexural strength of bonded acrylic is tested as a function of panel alignment and bond surface finish. Bond strength was shown to be highly dependent on both parameters with only a narrow range of values yielding a high strength bond. This study was performed for the heavy water-containing acrylic vessel for the Sudbury Neutrino Observatory detector.

  1. Effect of Alignment on L2 Written Production

    Science.gov (United States)

    Wang, Chuming; Wang, Min

    2015-01-01

    This article aims to uncover how L2 writing is affected by alignment, a socio-cognitive process involving dynamic coordination and adaptation. For this, two studies were conducted. Study 1 required two groups of 24 learners of English as a foreign language (EFL) to continue in English two stories with their endings removed, both of which had a…

  2. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System

    Science.gov (United States)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.

    2016-10-01

    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  3. Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses.

    Science.gov (United States)

    Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A

    2013-04-26

    Alignment is important for comfortable and stable gait of lower-limb prosthesis users. The magnitude of socket reaction moments in the multiple planes acting simultaneously upon the residual limb may be related to perception of comfort in individuals using prostheses through socket interface pressures. The aim of this study was to investigate the effect of prosthetic alignment changes on sagittal and coronal socket reaction moment interactions (moment-moment curves) and to characterize the curves in 11 individuals with transtibial amputation using novel moment-moment interaction parameters measured by plotting sagittal socket reaction moments versus coronal ones under various alignment conditions. A custom instrumented prosthesis alignment component was used to measure socket reaction moments during walking. Prosthetic alignment was tuned to a nominally aligned condition by a prosthetist, and from this position, angular (3° and 6° of flexion, extension, abduction or adduction of the socket) and translational (5mm and 10mm of anterior, posterior, medial or lateral translation of the socket) alignment changes were performed in either the sagittal or the coronal plane in a randomized manner. A total of 17 alignment conditions were tested. Coronal angulation and translation alignment changes demonstrated similar consistent changes in the moment-moment curves. Sagittal alignment changes demonstrated more complex changes compared to the coronal alignment changes. Effect of sagittal angulations and translations on the moment-moment curves was different during 2nd rocker (mid-stance) with extension malalignment appearing to cause medio-lateral instability. Presentation of coronal and sagittal socket reaction moment interactions may provide useful visual information for prosthetists to understand the biomechanical effects of malalignment of transtibial prostheses.

  4. Effects of aligning pulse duration on the degree and the slope of nitrogen field-free alignment

    Institute of Scientific and Technical Information of China (English)

    Wang Fei; Jiang Hong-Bing; Gong Qi-Huang

    2012-01-01

    Through theoretical analysis,we show how aligning pulse durations affect the degree and the time-rate slope of nitrogen field-free alignment at a fixed pulse intensity.It is found that both the degree and the slope first increase,then saturate,and finally decrease with the increasing pump duration.The optimal durations for the maximum degree and the maximum slope of the alignment are found to be different.Additionally,they are found to mainly depend on the molecular rotational period,and are affected by the temperature and the aligning pump intensities.The mechanism of molecular alignment is also discussed.

  5. Effect of Femoral Resection on Coronal Overall Alignment after Conventional Total Knee Arthroplasty

    Institute of Scientific and Technical Information of China (English)

    Min-Wei Zhao; Lu Wang; Lin Zeng; Yu-Qing Hu; Jin-Xin Hu; Hua Tian

    2016-01-01

    Background:A good postoperative alignment in total knee arthroplasty (TKA) is the key to achieving satisfactory results.We assessed the effect of femoral and tibial resection on the overall alignment after conventional TKA.Methods:We conducted a retrospective analysis of 212 primary TKAs in 188 patients.Intramedullary (IM)-guided resection was applied on the femoral side while extramedullary (EM)-guided resection was used on the tibial side.Using full-length X-ray,the preoperative femoral valgus angle and lower extremity alignment,as well as 2-week postoperative femoral and tibial prosthetic coronal alignment and overall lower extremity alignment,were measured.Results:Postoperatively,good prosthetic alignment was achieved in 191 cases (90.1%) on the tibial side and in 144 cases (67.9%) on the femoral side (x2 =5.441,P =0.02).Multiple linear regression analysis was used to assess the effect of different alignment sides on the overall alignment in the coronal plane.Data were divided into five subgroups based on the valgus or varus status of the prostheses.The standardized regression coefficients of the femoral and tibial prosthetic alignment on the overall alignment were 0.666 and 0.414,respectively;in varus on both sides were 0.658 and 0.377,respectively;in valgus,0.555 and 0.030;femoral side varus and tibial side valgus,0.702 and 0.211;femoral side valgus and tibial side varus,-0.416 and 0.287.The study showed that the overall low extremity alignment was statistically influenced by the prosthetic alignment,except for the tibial prosthetic alignment when femoral prosthesis was in valgus (P =0.153).Conclusions:In conventional TKA,tibial side EM-guided resection may offer satisfactory postoperative alignment,and femoral resection relying on IM guide may lead to more undesirable results.Postoperative coronal alignment is mainly affected by the femoral resection.Therefore,femoral side operation should receive adequate attention from the surgeons.

  6. A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW

    Science.gov (United States)

    Wang, Sheng-Hao; Zhang, Kai; Wang, Zhi-Li; Gao, Kun; Wu, Zhao; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-01-01

    X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs.

  7. EFFECT OF REINFORCEMENT ALIGNMENT ON THE PROPERTIES OF POLYMER MATRIX COMPOSITE

    Directory of Open Access Journals (Sweden)

    M. R. Aeyzarq Muhammad Hadzreel

    2013-06-01

    Full Text Available EFFECT OF REINFORCEMENT ALIGNMENT ON THE PROPERTIES OF POLYMER MATRIX COMPOSITE M. R. Aeyzarq Muhammad Hadzreel1,a and I. Siti Rabiatull Aisha1,b 1Faculty of Mechanical Engineering, University Malaysia Pahang, 26600 Pekan, Pahang MalaysiaEmail: aaeyzarq89@gmail.com, brabiatull@ump.edu.myABSTRACTNumerous applications have been proposed and demonstrated for aligned-fiber composites. However, none had stated a correct procedure for aligning the fibers to optimize the properties of the polymer matrix composite (PMC, such as its strength and water absorption properties. Therefore, the aim of this study is to determine the best alignment of reinforcement material in order to optimize the properties of PMC. Woven roving fiberglass was used as the fiber and unsaturated polyester resin as its matrix material. A hand lay-up process was used to fabricate the laminated composite. The specimens were divided into four major categories with different alignments and thicknesses of fiber and matrix, which were five-layer bidirectional, five-layer multidirectional, seven-layer bidirectional, and seven-layer multidirectional. Tensile tests showed that bidirectional alignment offered better mechanical properties compared with the multidirectional alignment. The five-layer bidirectional arrangement has a higher tensile strength compared with five-layer multidirectional arrangement. The seven-layer bidirectional arrangement has higher tensile strength compared with the seven-layer multidirectional arrangement. The modulus of elasticity of the bidirectional alignment was higher than that of the multidirectional alignment. Bidirectional alignment was better because the external tensile load was distributed equally on all the fibers and transmitted along the axes of the fibers. Whereas in the case of multidirectional alignment, the fiber axes were non-parallel to the load axis, resulting in off-axis pulling on the fibers and increased stress concentration, which caused

  8. The Wendelstein three channel imager (3KK): alignment, commissioning, and first results

    Science.gov (United States)

    Lang-Bardl, F.; Bender, R.; Goessl, C.; Grupp, F.; Hess, H.-J.; Kaminski, J.; Hodapp, K.; Hopp, U.; Jacobson, S.; Kravcar, H.; Monna, A.; Mitsch, W.; Schlichter, J.; Wegner, M.

    2016-08-01

    The Ludwig-Maximilians-Universität München operates an astrophysical observatory on the summit of Mt. Wendelstein which was equipped with a modern 2m-class robotic telescope in 20111-3. One of the two Nasmyth ports is designed to deliver the excellent (efficiently support observations of targets of opportunities like Gamma-Ray-bursts or efficient photometric redshift determination of sources identified by surveys like PanSTARS, Planck (SZ) or eROSITA. The covered wavelength range is 340 nm to 2.3 microns. The camera provides standard broadband filters (Sloan, Y, J, H, Ks) and 5 narrowband filters (OI, Hα, SII, H2, Brλ). The narrowband filters will enable deep studies of star forming regions. We present the final design of the camera, the assembly and alignment procedure performed in the laboratory before we transported the instrument to the observatory. We also show first results of the achieved on sky performance concerning image quality and efficiency of the camera in the different filter passbands.

  9. Read the Cursor Image Method Align Scale%图像法读取游标对齐刻度

    Institute of Scientific and Technical Information of China (English)

    李杰; 蒋跃武; 蒋庆

    2012-01-01

    利用摄像头前后两次采集的图像,通过对图像进行霍夫变换、滑动平均、拟合等处理得到主尺和游标的刻度位置,再对游标和主尺的刻度位置进行比较找到对齐的游标刻度,并能在像素大小与游标卡尺精度相近的情况下.可以有效地减少误差。%The use of the two images collected before and after the camera image, the Hough transform, mov- ing average, fitting handle the main scale and scale position the cursor, scale position of the cursor and the main scale comparative find alignment vernier scale, and in the ease of close to a pixel size with a vernier caliper accura- cy, can reduce the error effectively.

  10. Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging.

    Science.gov (United States)

    Tsai, Arthur C; Jung, Tzyy-Ping; Chien, Vincent S C; Savostyanov, Alexander N; Makeig, Scott

    2014-02-15

    Brain responses to stimulus presentations may vary widely across subjects in both time course and spatial origins. Multi-subject EEG source imaging studies that apply Independent Component Analysis (ICA) to data concatenated across subjects have overlooked the fact that projections to the scalp sensors from functionally equivalent cortical sources vary from subject to subject. This study demonstrates an approach to spatiotemporal independent component decomposition and alignment that spatially co-registers the MR-derived cortical topographies of individual subjects to a well-defined, shared spherical topology (Fischl et al., 1999). Its efficacy for identifying functionally equivalent EEG sources in multi-subject analysis is demonstrated by analyzing EEG and behavioral data from a stop-signal paradigm using two source-imaging approaches, both based on individual subject independent source decompositions. The first, two-stage approach uses temporal infomax ICA to separate each subject's data into temporally independent components (ICs), then estimates the source density distribution of each IC process from its scalp map and clusters similar sources across subjects (Makeig et al., 2002). The second approach, Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA), combines ICA decomposition and source current density estimation of the artifact-rejected data into a single spatiotemporal ICA decomposition for each subject (Tsai et al., 2006), concurrently identifying both the spatial source distribution of each cortical source and its event-related dynamics. Applied to the stop-signal task data, both approaches gave IC clusters that separately accounted for EEG processes expected in stop-signal tasks, including pre/postcentral mu rhythms, anterior-cingulate theta rhythm, and right-inferior frontal responses, the EMSICA clusters exhibiting more tightly correlated source areas and time-frequency features.

  11. Learning from text: The effect of adjunct questions and alignment on text comprehension

    NARCIS (Netherlands)

    Reijners, Pauline; Kester, Liesbeth; Wetzels, Sandra; Kirschner, Paul A.

    2012-01-01

    Reijners, P. B. G., Kester, L., Wetzels, S. A. J., & Kirschner, P. A. (2012, November). Learning from text: The effect of adjunct questions and alignment on text comprehension. Poster presented at the ICO International Fall School, Girona, Spain.

  12. Alignment and temperature effects in liquid-crystal-based active polarimetry.

    Science.gov (United States)

    Gladish, James C; Duncan, Donald D

    2014-06-20

    It is well known that in liquid crystal (LC)-based active polarimetry, alignment and temperature effects impact polarimeter performance. Practically speaking, when constructing a polarimetric measurement system from LC variable retarders (LCVRs), unavoidable alignment and temperature uncertainties will occur, leading to systematic error that propagates to the Mueller matrix. Typical calibration methods use only a single metric to assess polarimeter performance (the condition number) and often ignore the relationship between systematic error and specific Mueller matrix elements. Here we explore alignment and temperature effects in a Stokes generator and polarimeter, each consisting of two LCVRs, through a series of simulations to calibrate the polarimeter and measure the Mueller matrix of air. We achieve this by modifying an existing LCVR model to incorporate alignment and temperature effects. This new approach offers insight into employing LCVRs individually and associating particular Mueller matrix element error with specific LCVR effects.

  13. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees.

    Science.gov (United States)

    Kobayashi, Toshiki; Orendurff, Michael S; Arabian, Adam K; Rosenbaum-Chou, Teri G; Boone, David A

    2014-04-11

    The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment-time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health.

  14. Effect of Particle Density on the Aligned Growth of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng-gao; WANG Jian-hua; HAN Jian-jun

    2004-01-01

    Aligned carbon nanotubes (CNTs) were prepared on Ni-coated Ni substrate by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at temperature of 550℃.The experimental results show a direct correlation between the alignment of CNTs and the density of the catalyst particles at low temperature.When the particle density is high enough,among CNTs there are strong interactions that can inhibit CNTs from growing randomly.The crowding effect among dense CNTs results in the aligned growth of CNTs at low temperature.

  15. An Examination of the Correlative Effects of IT Outsourcing with IT Agility, IT Strategic Alignment and IT Effectiveness

    Science.gov (United States)

    Eichman, Bruce W.

    2013-01-01

    Organizational executives are concerned with the insufficient alignment of Information Technology (IT) investments to achieve computed based information systems effectiveness. Survey results of senior executives determined that in spite of applying enormous amounts of resources and energy attempting to prioritize and effectively align these…

  16. An Examination of the Correlative Effects of IT Outsourcing with IT Agility, IT Strategic Alignment and IT Effectiveness

    Science.gov (United States)

    Eichman, Bruce W.

    2013-01-01

    Organizational executives are concerned with the insufficient alignment of Information Technology (IT) investments to achieve computed based information systems effectiveness. Survey results of senior executives determined that in spite of applying enormous amounts of resources and energy attempting to prioritize and effectively align these…

  17. A Novel Image Alignment Algorithm Based on Rotation-Discriminating Ring-Shifted Projection for Automatic Optical Inspection

    Directory of Open Access Journals (Sweden)

    Chin-Sheng Chen

    2016-05-01

    Full Text Available This paper proposes a novel image alignment algorithm based on rotation-discriminating ring-shifted projection for automatic optical inspection. This new algorithm not only identifies the location of the template image within an inspection image but also provides precise rotation information during the template-matching process by using a novel rotation estimation scheme, the so-called ring-shifted technique. We use a two stage framework with an image pyramid searching technique for realizing the proposed image alignment algorithm; in the first stage, the similarity based on hybrid projection transformation with the image pyramid searching technique is employed for quick selection and location of the candidates in the inspection image. In the second stage, the rotation angle of the object is estimated by a novel ring-shifted technique. The estimation is performed only for the most likely candidate which is the one having the highest similarity in the first stage. The experimental results show that the proposed method provides accurate estimation for template matching with arbitrary rotations and is applicable in various environmental conditions.

  18. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    Science.gov (United States)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  19. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Malone, Brent C. Frogget, Morris I. Kaufman, Thomas W. Tunnell, Robert L. Guyton, Imants P. Reinbachs, Phillip W. Watts, et al.

    2007-08-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  20. The Impact of Organisational Alignment on the Effectiveness of Firms' Sustainability Strategic Performance Measurement Systems

    DEFF Research Database (Denmark)

    Parisi, Cristiana

    2013-01-01

    concerns. This paper contributes to the research on integrating sustainability into companies’ daily activities both directly and indirectly. It analyses the extent to which top management’s commitment to sustainability directly affects structural and social alignment and the effectiveness of measurement...... and environmental performance. More specifically, the results challenge the diffuse belief that the alignment and commitment of middle managers to sustainability strategies as defined by the upper echelons have a relevant impact on the company’s social and environmental performance....

  1. Effect of aligning pulse train on the orientation and alignment of a molecule in presence of orienting pulse

    Science.gov (United States)

    Tyagi, Ashish; Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2017-02-01

    Field-free molecular alignment is studied theoretically in presence of orienting laser pulse and a delayed Infrared laser (IRL) pulse train. The pulse shapes taken are sine square (sin2) and square. The degree of alignment can be significantly enhanced by the combination of orienting pulse and IRL pulse train compared with only IRL pulse train. Special emphasis is laid on time delay between orienting and aligning pulse, the width and shape of the pulse train. By adjusting the time delay, width and intensity of coupling laser one can suppress a population of particular state while simultaneously enhancing the population of desired states.

  2. Improving alignment in Tract-based spatial statistics: Evaluation and optimization of image registration

    NARCIS (Netherlands)

    De Groot, M.; Vernooij, M.W.; Klein, S.; Arfan Ikram, M.; Vos, F.M.; Smith, S.M.; Niessen, W.J.; Andersson, J.L.R.

    2013-01-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS

  3. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    Science.gov (United States)

    Kim, Lee Yeong; Lee, Ju Hyeon; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-07-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. Herein, we consider the effects of state-dependent alignment in estimating the optical dipole force acting on the molecules and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear molecules subject to either propagating or standing-wave optical fields for a range of temperatures and laser intensities. The results demonstrate that the alignment-dependent effective polarizability can serve to provide correct estimates of the optical dipole force, on which a state-selection method applicable to nonpolar molecules could be based. We note that an analogous analysis of the forces acting on polar molecules subject to an inhomogeneous static electric field reveals a similarly strong dependence on molecular orientation.

  4. Effects of Temperature and Catalyst Concentration on the Growth of Aligned Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaodong; LI Dan; WANG Ye; LIANG Ji

    2005-01-01

    The effects of preheating and pyrolysis temperatures and catalyst concentration on the synthesis of aligned carbon nanotubes (CNTs) using ferrocene as the catalyst and xylene as the carbon source in chemical vapor deposition were experimentally studied. The as-grown aligned CNTs were characterized by field emission scanning electron microscopy, transmission electronic microscopy, high-resolution transmission electronic microscopy, and Raman spectroscopy. The growth rate, the diameters, and the degree of crystal structure of the aligned CNTs were all found to depend on the preheating and pyrolysis temperatures and the catalyst concentration. The optimized conditions for the growth of aligned CNTs resulted in a rapid growth rate of 20.4 μm/min, with the CNTs having a good, uniform crystal structure, and clean surfaces with little amorphous carbon. The results also show that higher preheating temperatures and lower ferrocene concentrations favor the growth of single-walled CNTs.

  5. Measurement of process dynamics through coaxially aligned high speed near-infrared imaging in laser powder bed fusion additive manufacturing

    Science.gov (United States)

    Fox, Jason C.; Lane, Brandon M.; Yeung, Ho

    2017-05-01

    For process stability in laser powder bed fusion (LPBF) additive manufacturing (AM), control of melt pool dimensions is imperative. In order to control melt pool dimensions in real time, sampling frequencies in excess of 10 kHz may be required, which presents a challenge for many thermal and optical monitoring systems. The National Institute of Standards and Technology (NIST) is currently developing the Additive Manufacturing Metrology Testbed (AMMT), which replicates a metal based laser powder bed fusion AM process while providing open architecture for control, sensing, and calibration sources. The system is outfitted with a coaxially aligned, near-infrared (NIR) high speed melt pool monitoring (MPM) system. Similar monitoring systems are incorporated into LPBF research testbeds, and appearing on commercial machines, but at lower available frame rates, which may limit observation of higher frequency events such as spatter or size fluctuations. This paper presents an investigation of the coaxial imaging systems of the AMMT to capture the process dynamics, and quantify the effects of dynamic fluctuations on melt pool size measurements. Analysis is carried out on a baseline experiment with no powder material added, melt pool size measurements collected in-situ are compared to ex-situ measurements, and results are discussed in terms of temporal bandwidth. Findings will show that, even at the frame rate and resolution presented, challenges in relating in-situ video signals to the ex-situ measurement analysis remain.

  6. The effects of DRIE operational parameters on vertically aligned micropillar arrays

    Science.gov (United States)

    Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An

    2013-03-01

    Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.

  7. Alignment effects in beer mugs: Automatic action activation or response competition?

    Science.gov (United States)

    Roest, Sander A; Pecher, Diane; Naeije, Lilian; Zeelenberg, René

    2016-08-01

    Responses to objects with a graspable handle are faster when the response hand and handle orientation are aligned (e.g., a key press with the right hand is required and the object handle is oriented to the right) than when they are not aligned. This effect could be explained by automatic activation of specific motor programs when an object is viewed. Alternatively, the effect could be explained by competition at the response level. Participants performed a reach-and-grasp or reach-and-button-press action with their left or right hand in response to the color of a beer mug. The alignment effect did not vary as a function of the type of action. In addition, the alignment effect disappeared in a go/no-go version of the task. The same results were obtained when participants made upright/inverted decisions, so that object shape was task-relevant. Our results indicate that alignment effects are not due to automatic motor activation of the left or right limb.

  8. Assessment of prosthesis alignment after revision total knee arthroplasty using EOS 2D and 3D imaging: a reliability study.

    Directory of Open Access Journals (Sweden)

    Marrigje F Meijer

    Full Text Available INTRODUCTION: A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobserver reliability of EOS 2D and 3D knee prosthesis alignment measurements after revision total knee arthroplasty (rTKA. METHODS: Forty anteroposterior and lateral images of 37 rTKA patients were included. Two observers independently performed measurements on these images twice. Varus/valgus angles were measured in 2D (VV2D and 3D (VV3D. Intraclass correlation coefficients and the Bland and Altman method were used to determine reliability. T-tests were used to test potential differences. RESULTS: Intraobserver and interobserver reliability were excellent for VV2D and VV3D. No significant difference or bias between the first and second measurements or the two observers was found. A significant mean and absolute difference of respectively 1.00° and 1.61° existed between 2D and 3D measurements. CONCLUSIONS: EOS provides reliable varus/valgus measurements in 2D and 3D for the alignment of the knee joint with a knee prosthesis. However, significant differences exist between varus/valgus measurements in 2D and 3D.

  9. Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules.

    Science.gov (United States)

    Boll, Rebecca; Rouzée, Arnaud; Adolph, Marcus; Anielski, Denis; Aquila, Andrew; Bari, Sadia; Bomme, Cédric; Bostedt, Christoph; Bozek, John D; Chapman, Henry N; Christensen, Lauge; Coffee, Ryan; Coppola, Niccola; De, Sankar; Decleva, Piero; Epp, Sascha W; Erk, Benjamin; Filsinger, Frank; Foucar, Lutz; Gorkhover, Tais; Gumprecht, Lars; Hömke, André; Holmegaard, Lotte; Johnsson, Per; Kienitz, Jens S; Kierspel, Thomas; Krasniqi, Faton; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Moshammer, Robert; Müller, Nele L M; Rudek, Benedikt; Savelyev, Evgeny; Schlichting, Ilme; Schmidt, Carlo; Scholz, Frank; Schorb, Sebastian; Schulz, Joachim; Seltmann, Jörn; Stener, Mauro; Stern, Stephan; Techert, Simone; Thøgersen, Jan; Trippel, Sebastian; Viefhaus, Jens; Vrakking, Marc; Stapelfeldt, Henrik; Küpper, Jochen; Ullrich, Joachim; Rudenko, Artem; Rolles, Daniel

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.

  10. Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules

    OpenAIRE

    Boll, Rebecca; Rouzée, Arnaud; Christensen, Lauge; Coffee, Ryan; Coppola, Niccola; Sankar,; Decleva, Piero; Epp, Sascha W.; Erk, Benjamin; Filsinger, Frank; Foucar, Lutz; Gorkhover, Tais; Adolph, Marcus; Gumprecht, Lars; Hömke, André

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump–probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffrac...

  11. Effect of aligning pulse train on the orientation and alignment of a molecule in presence of orienting pulse.

    Science.gov (United States)

    Tyagi, Ashish; Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2017-02-15

    Field-free molecular alignment is studied theoretically in presence of orienting laser pulse and a delayed Infrared laser (IRL) pulse train. The pulse shapes taken are sine square (sin(2)) and square. The degree of alignment can be significantly enhanced by the combination of orienting pulse and IRL pulse train compared with only IRL pulse train. Special emphasis is laid on time delay between orienting and aligning pulse, the width and shape of the pulse train. By adjusting the time delay, width and intensity of coupling laser one can suppress a population of particular state while simultaneously enhancing the population of desired states. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Moderating Effects of Human Factors on IT-Business Alignment and IT Effectiveness in Modern Firms

    Directory of Open Access Journals (Sweden)

    Teresita Navedo-Samper

    2013-04-01

    Full Text Available Information technology (IT emerges as an essential asset of modern firms’competitive advantage, because it connects all business functions and supports managerial decision processes - both essential conditions for the attainment of the organization agility level. However, many modern firms experience difficulties on attaining its competitive edge, mainly because of a deficient ITBusiness managerial role that, either deliberately or involuntarily, ignores the moderating effects of human factors - social determinants that are common elements to all hierarchy levels, of every business unit, within any modern firm. This work emphasizes the importance studying the IT-Business management function, as the organization’s main trigger for the attainment of the ITBusiness Competitive Advantage, through an appropriate management of the moderating effects of human factors. This research paper also proposes a business conceptual model - “The Five-Level Triad of IT-Business Competitive Advantage” - which predicts the achievement of a modern firm IT-Business Competitive Advantage, through the advancement of five progress levels - IT-Business Managerial Role Efficiency, Employee Alignment, IT-Business Alignment, IT Effectiveness, and Firm’s Agility. The rationale of the model is supplemented by the referenced literature and the application of a measuring instrument, which assists in the examination of the alignment maturity level, between IT and Business organizational objectives. The model acts as a guide to any modern firm IT-Business managerial function, which aims for the successful design of an effective IT strategy, on the road to the conquering of the IT-Business competitive advantage.

  13. Automated invariant alignment to improve canonical variates in image fusion of satellite and weather radar data

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg

    2013-01-01

    data sets, was observed, corrupting the subspace. A method for aligning the two data sets is proposed, in order to overcome this issue and render a useful subspace projection. The observed corruption of the subspace gives rise to the hypothesis that the optimal correspondence, between a heavily...

  14. Large Eddy Simulation studies of the effects of alignment and wind farm length

    CERN Document Server

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    Large eddy simulations of wind farms are performed to study the effects of wind turbine row alignment with respect to the incoming flow direction. Various wind farms with fixed stream-wise spacing (7.85 rotor diameters) and varying lateral displacements and span-wise turbine spacings are considered, for a fixed inflow direction. Simulations show that, contrary to common belief, a perfectly staggered (checker-board) configuration does not necessarily give the highest average power output. Instead, the highest mean wind farm power output is found to depend on several factors, the most important one being the alignment that leads to minimization of wake effects from turbines in several upstream rows. This alignment typically occurs at significantly smaller angles than those corresponding to perfect staggering. The observed trends have implications for wind farm designs, especially in sites with a well-defined prevailing wind direction.

  15. Hydrodynamic Interactions between Two Forced Objects of Arbitrary Shape: I Effect on Alignment

    CERN Document Server

    Goldfriend, Tomer; Witten, Thomas A

    2015-01-01

    We study the properties and symmetries governing the hydrodynamic interaction between two identical, arbitrarily shaped objects, driven through a viscous fluid. We treat analytically the leading (dipolar) terms of the pair-mobility matrix, affecting the instantaneous relative linear and angular velocities of the two objects at large separation. We find that the ability to align asymmetric objects by an external time-dependent drive [Moths and Witten, Phys. Rev. Lett. 110, 028301 (2013)] is degraded by the hydrodynamic interaction. The effects of hydrodynamic interactions are explicitly demonstrated through numerically calculated time-dependent trajectories of model alignable objects composed of four stokeslets. In addition to the orientational effect, we find that the two objects generally repel each other, thus restoring full alignment at long times.

  16. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop

    2017-07-18

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  17. Vertically Aligned ZnO Nanorods: Effect of Synthesis Parameters.

    Science.gov (United States)

    Rehman, Zeeshan Ur; Heo, Si-Nae; Cho, Hyeon Ji; Koo, Bon Heun

    2016-06-01

    This report is devoted to the synthesis of high quality nanorods using spin coating technique for seed layer growth. Effect of different parameter i.e., spins coating counts, spin coating speed, and the effect of temperature during the drying process was analyzed. Hot plate and furnace technique was used for heating purpose and the difference in the morphology was carefully observed. It is worthy to mention here that there is a substantial effect of all the above mentioned parameters on the growth and morphology of the ZnO nanostructure. The ZnO nanorods were finally synthesized using wet chemical method. The morphological properties of the obtained nanostructures were analyzed by using FESEM technique.

  18. Ecology of dark matter haloes -II. Effects of interactions on the alignment of halo pairs

    Science.gov (United States)

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2017-01-01

    We use the Horizon Run 4 cosmological N-body simulation to study the effects of distant and close interactions on the alignments of the shapes, spins, and orbits of targets haloes with their neighbours, and their dependence on the local density environment and neighbour separation. Interacting targets have a significantly lower spin and higher sphericity and oblateness than all targets. Interacting pairs initially have anti-parallel spins, but the spins develop parallel alignment as time goes on. Neighbours tend to evolve in the plane of rotation of the target, and in the direction of the major axis of prolate haloes. Moreover, interactions are preferentially radial, while pairs with non-radial orbits are preferentially prograde. The alignment signals are stronger at high-mass and for close separations, and independent on the large-scale density. Positive alignment signals are found at redshifts up to 4, and increase with decreasing redshifts. Moreover, the orbits tend to become prograde at low redshift, while no alignment is found at high redshift (z = 4).

  19. Effect of Alignment on Text Cohesion in the Continuation Task

    Science.gov (United States)

    Jiang, Lin; Xu, Xin

    2016-01-01

    A continuation task provides learners with a text with its ending removed and requires them to complete it through writing in a most coherent and logical way. The current study investigated (a) whether the continuation task had a positive effect on text cohesion and (b) whether texts produced by pairs exhibited higher cohesion than those produced…

  20. Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    CERN Document Server

    Boll, R; Adolph, M; Anielski, D; Aquila, A; Bari, S; Bomme, C; Bostedt, C; Bozek, J D; Chapman, H N; Christensen, L; Coffee, R; Coppola, N; De, S; Decleva, P; Epp, S W; Erk, B; Filsinger, F; Foucar, L; Gorkhover, T; Gumprecht, L; Hoemke, A; Holmegaard, L; Johnsson, P; Kienitz, J S; Kierspel, T; Krasniqi, F; Kuehnel, K -U; Maurer, J; Messerschmidt, M; Moshammer, R; Mueller, Nele L M; Rudek, B; Savelyev, E; Schlichting, I; Schmidt, C; Scholz, F; Schorb, S; Schulz, J; Seltmann, J; Stener, M; Stern, S; Techert, S; Thogersen, J; Trippel, S; Viefhaus, J; Vrakking, M; Stapelfeldt, H; Kuepper, J; Ullrich, J; Rudenko, A; Rolles, D

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.

  1. Seebeck effect position sensor for CO/sub 2/ laser beam alignment

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.B.; Gruhn, C.R.

    1979-09-01

    A new concept for a laser position sensor is presented. The device utilizes the Seebeck effect in semiconductors. Results using a Si detector show position linearity and energy linearity of the device signal. A theoretical model explaining the operation of the device is outlined. Applications to pulsed laser beam alignment are discussed.

  2. Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode During Electrospinning

    Science.gov (United States)

    Carnell, Lisa S.; Siochi, Emilie J.; Wincheski, Russell A.; Holloway, Nancy M.; Clark, Robert L.

    2009-01-01

    Control of electrospun fiber placement and distribution was investigated by examining the effect of electric field parameters on the electrospinning of fibers. The experimental set-up used in this study eliminated the bending instability and whipping, allowing the jet to be modeled as a stable trajectory. Coupling of experimental and computational results suggests the potential for predicting aligned fiber distribution in electrospun mats.

  3. Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode During Electrospinning

    Science.gov (United States)

    Carnell, Lisa S.; Siochi, Emilie J.; Wincheski, Russell A.; Holloway, Nancy M.; Clark, Robert L.

    2009-01-01

    Control of electrospun fiber placement and distribution was investigated by examining the effect of electric field parameters on the electrospinning of fibers. The experimental set-up used in this study eliminated the bending instability and whipping, allowing the jet to be modeled as a stable trajectory. Coupling of experimental and computational results suggests the potential for predicting aligned fiber distribution in electrospun mats.

  4. Effect of Spatial Alignment Transformations in PCA and ICA of Functional Neuroimages

    DEFF Research Database (Denmark)

    Lukic, Ana S.; Wernick, Miles N.; Yang, Yongui;

    2007-01-01

    It has been previously observed that spatial independent component analysis (ICA), if applied to data pooled in a particular way, may lessen the need for spatial alignment of scans in a functional neuroimaging study. In this paper we seek to determine analytically the conditions under which...... this observation is true, not only for spatial ICA, but also for temporal ICA and for principal component analysis (PCA). In each case we find conditions that the spatial alignment operator must satisfy to ensure invariance of the results. We illustrate our findings using functional magnetic-resonance imaging (f......MRI) data. Our analysis is applicable to both inter-subject and intra-subject spatial normalization....

  5. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging

    Science.gov (United States)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Liu, Shaoxiong; Guo, Yihong; Wu, Jian; He, Yonghong; Ma, Hui

    2014-10-01

    Polarization measurements are sensitive to the microstructure of tissues and can be used to detect pathological changes. Many tissues contain anisotropic fibrous structures. We obtain the local orientation of aligned fibrous scatterers using different groups of the backscattering Mueller matrix elements. Experiments on concentrically well-aligned silk fibers and unstained human papillary thyroid carcinoma tissues show that the m22, m33, m23, and m32 elements have better contrast but higher degeneracy for the extraction of orientation angles. The m12 and m13 elements show lower contrast, but allow us to determine the orientation angle for the fibrous scatterers along all directions. Moreover, Monte Carlo simulations based on the sphere-cylinder scattering model indicate that the oblique incidence of the illumination beam introduces some errors in the orientation angles obtained by both methods. Mapping the local orientation of anisotropic tissues may not only provide information on pathological changes, but can also give new leads to reduce the orientation dependence of polarization measurements.

  6. Alignment and position visualization methods for the biomedical imaging and therapy (BMIT) MRT lift

    Energy Technology Data Exchange (ETDEWEB)

    Bree, Michael, E-mail: michael.bree@lightsource.ca; Miller, Denise; Kerr, Graham; Belev, George; Wysokinski, Tomasz W.; Dolton, Wade [Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, SK S7N 2V3 Canada (Canada)

    2016-07-27

    The Microbeam Radiation Therapy (MRT) Lift is an eight stage positioning and scanning system at the Canadian Light Source’s BMIT Facility. Alignment of the sample with the beam using the MRT Lift is a time consuming and challenging task. The BMIT Group has developed a Python-based MRT Lift positioning and control program that uses a combination of computational and iterative methods to independently adjust the sample’s X, Y, Z, pitch and roll positions. The program offers “1-Click” alignment of the sample to the beam. Use of a wireframe visualization technique enables even minute movements to be illustrated. Proposed movements and the resulting MRT Lift position can be manually verified before being applied. Optional integration with the SolidWorks modelling platform allows high quality renderings of the MRT Lift in its current or proposed position to be displayed in real time. Human factors principles are incorporated into the program with the objective of delivering easy to use controls for this complex device.

  7. Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques.

    Directory of Open Access Journals (Sweden)

    Chia-Han Chu

    Full Text Available This work presents a novel detection method for three-dimensional domain swapping (DS, a mechanism for forming protein quaternary structures that can be visualized as if monomers had "opened" their "closed" structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D image transformations of secondary structural elements (SSEs, specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its

  8. Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques.

    Science.gov (United States)

    Chu, Chia-Han; Lo, Wei-Cheng; Wang, Hsin-Wei; Hsu, Yen-Chu; Hwang, Jenn-Kang; Lyu, Ping-Chiang; Pai, Tun-Wen; Tang, Chuan Yi

    2010-10-14

    This work presents a novel detection method for three-dimensional domain swapping (DS), a mechanism for forming protein quaternary structures that can be visualized as if monomers had "opened" their "closed" structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D) image transformations of secondary structural elements (SSEs), specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC) and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD) computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its hinge loop

  9. Effects of Matrix Alignment and Mechanical Constraints on Cellular Behavior in 3D Engineered Microtissues

    Science.gov (United States)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    The adhesion of cells to the extracellular matrix (ECM) plays a crucial role in a variety of cellular functions. The main building blocks of the ECM are 3D networks of fibrous proteins whose structure and alignments varies with tissue type. However, the impact of ECM alignment on cellular behaviors such as cell adhesion, spreading, extension and mechanics remains poorly understood. We present results on the development of a microtissue-based system that enables control of the structure, orientation, and degree of fibrillar alignment in 3D fibroblast-populated collagen gels. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of elastic pillars. The contractile action of the cells leads to controlled alignment of the fibrous collagen, depending on the number and location of the pillars in each well. The pillars are elastic, and are utilized to measure the contractile forces of the microtissues, and by incorporating magnetic material in selected pillars, time-varying forces can be applied to the tissues for dynamic stimulation and measurement of mechanical properties. Results on the effects of varying pillar shape, spacing, location, and stiffness on microtissue organization and contractility will be presented. This work is supported by NSF CMMI-1463011.

  10. Compounding of hydroxyapatite crystals to molecularly aligned crab tendon chitosan: the effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Atsushi [Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan) and Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)]. E-mail: Matsuda.Atsushi@nims.go.jp; Kasahara, Mayumi [School of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-0072 (Japan); Kobayashi, Hisatoshi [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)]. E-mail: Kobayashi.Hisatoshi@nims.go.jp; Ichinose, Noboru [School of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-0072 (Japan); Tanaka, Junzo [Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan); Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2004-12-01

    The aim of this study was to demonstrate the effect of heat treatment on the formation of hydroxyapatite crystals in molecularly aligned chitosan. Molecularly aligned chitosan was prepared from crab (Macrocheira Kaempferi) tendons by treatment with ethanol and a 4 wt.% NaOH solution to remove proteins and calcium phosphate, subsequently performed was deacetyl treatment using a 50 wt.% NaOH solution at 100 deg. C. The tendon chitosan (t-chitosan) obtained was compounded with hydroxyapatite (HAp) before and after heat treatment by applying an alternate soaking method. The amount of compounded HAp to t-chitosan before heat treatment was larger than that after heat treatment as shown by thermogravimetric and differential thermal analysis (TG-DTA) analysis. The HAp compounded to t-chitosan before heat treatment was distributed on the whole area as shown by energy dispersive X-ray spectroscopy (EDS) analysis. On the other hand, the compound after heat treatment was distributed only on the surface of t-chitosan. The compounded HAp crystals to t-chitosan before heat treatment were aligned in the horizontal direction to t-chitosan molecules as shown by transmission electron microscopy (TEM) and electron diffraction technique. These results suggest the control of crystallographic orientation in HAp by aligned amino groups.

  11. Alignment Solution for CT Image Reconstruction by Fixed Point and Virtual Rotation Axis

    CERN Document Server

    Jun, Kyungtaek; Kwon, Kyu

    2016-01-01

    Since X-ray tomography is now widely adopted in many different areas, it becomes more crucial to find a robust routine of handling tomographic data to get quality reconstructed images. Though there are several existing techniques, it seems helpful to have a more automated method to remove the possible errors that hinder clearer image reconstruction. Here, we proposed an alternative method and new algorithm using the sinogram and the fixed point. A new physical concept of Center of Attenuation (CA) was also introduced to figure out how this fixed point is applied to the image reconstruction with errors we further categorized. Our technique showed a promising performance in restoring images with translation and vertical tilt errors.

  12. Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals

    Science.gov (United States)

    Palermo, Giovanna; Cataldi, Ugo; De Sio, Luciano; Bürgi, Thomas; Tabiryan, Nelson; Umeton, Cesare

    2016-11-01

    We demonstrate and characterize an optical control of the plasmonic heat delivered by a monolayer substrate of gold nanoparticles, obtained by modulating the effective refractive index of the neighboring dielectric medium. The effect, which exploits the dependence of the nematic liquid crystal (NLC) refractive index on the molecular director orientation, is realized by using a polarization dependent, light-induced molecular reorientation of a thin film of photo-alignment layer that the NLC is in contact with. For a suitable alignment, plasmonic pumping intensity values ranging from 0.25 W/cm2 to 6.30 W/cm2 can induce up to 17.4 °C temperature variations in time intervals of the order of seconds. The reversibility of the optically induced NLC molecular director orientation enables an active control of the plasmonic photo-induced heat.

  13. ALIGNING INFORMATION SECURITY WITH THE IMAGE OF THE ORGANIZATION AND PRIORITIZATION BASED ON FUZZY LOGIC FOR THE INDUSTRIAL AUTOMATION SECTOR

    Directory of Open Access Journals (Sweden)

    Adolfo Alberto Vanti

    2011-12-01

    Full Text Available This paper develops the strategic alignment of organizational behavior through the organizations´ image, prioritization and information security practices. To this end, information security is studied based on the business requirements of confidentiality, integrity and availability by applying a tool which integrates the strategic, tactical and operational vision through the following framework: Balanced Scorecard - BSC (strategic x Control Objectives for Information and Related Technology - COBIT (tactical x International Organization for Standardization - ISO/International Electro Technical Commission - IEC27002 (operational. Another image instrument of the organization is applied in parallel with this analysis to identify and analyze performance involving profiles related to mechanistic, psychic prisons, political systems, instruments of domination, organisms, cybernetics, flux and transformation (MORGAN, 1996. Finally, a model of strategic prioritization, based on compensatory fuzzy logic (ESPIN and VANTI, 2005, is applied. The method was applied to an industrial company located in southern Brazil. The results with the application show two organizational images: "organism" and "flux and transformation ". The strategic priorities indicated a significant search for new business services and international markets. Regarding protection of information, security found the gap between "minimum" and "Reasonable" and in domain 8 (HR of standard ISO/IEC27002, considered 71% protection as "inappropriate" and "minimal" in the IT Governance context.

  14. Effects of proton angular momentum alignment on the two-shears-like mechanism in 101Pd

    Science.gov (United States)

    Zhang, Zhen-Hua

    2016-09-01

    The recently observed possible antimagnetic rotation band in 101Pd is investigated by the cranked shell model with pairing correlations treated by a particle-number-conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and reduced B (E 2 ) transition probabilities and their variations with the rotational frequency ω are well reproduced. By analyzing the ω dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the total angular momentum alignment, the upbending mechanism of ν h11 /2 in 101Pd is understood clearly. The proton angular momentum alignment and its influence on the two-shears-like mechanism are also discussed.

  15. Effects of the Hot Alignment of a Power Unit on Oil-Whip Instability Phenomena

    Directory of Open Access Journals (Sweden)

    A. Vania

    2010-01-01

    Full Text Available This paper shows the results of the analysis of the dynamic behaviour of a power unit, whose shaft-train alignment was significantly influenced by the machine thermal state, that was affected in operating condition by high subsynchronous vibrations caused by oil-whip instability phenomena. The dynamic stiffness coefficients of the oil-film journal bearings of the generator were evaluated considering the critical average journal positions that caused the instability onsets. By including these bearing coefficients in a mathematical model of the fully assembled machine, the real part of the eigenvalue associated with the first balance resonance of the generator rotor became positive. This paper shows the successful results obtained by combining diagnostic techniques based on mathematical models of journal bearings and shaft train with detailed analyses of monitoring data aimed to investigate the effects of the hot alignment of rotating machines on the occurrence of oil-whip instability onsets.

  16. Effect of upward ion on field-aligned currents in the near-earth magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG; LingQian; LIU; ZhenXing; MA; ZhiWei; SHEN; Chao; ZHOU; XuZhi; ZHANG; XianGuo

    2007-01-01

    A 3-dimensional resistive MHD simulation was carried out to study the effect of the upward ions on the field-aligned currents (FACs) in the near-earth magnetotail. The simulation results show that the up-flow ions originating from the nightside auroral oval would drift into the center plasma sheet along the magnetic field lines in the plasma sheet boundary, and have an important effect on the field-aligned currents. The main conclusions include that: 1) the upward-ions mainly affect the field- aligned currents in the near-earth magnetotail (inside 15 Re); 2) the generated FACs in the near-earth region have two types, i.e., Region 1 FAC in the high-latitude and Region 2 FAC in the low-latitude; 3) FACs increase with the enhancement of the upward ion flux; 4) with the same flux of the upward ions, FACs enhance with the increase of the velocity of the up-flow ions; 5) the intensification of FACs is also closely related with the latitude of the upward ions, and the ions from the closed field line region generate larger FACs; 6) the generation of FACs is closely related with By created by the upward ions.

  17. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  18. Effect of random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement.

    Science.gov (United States)

    Borges, Alexandre L S; Münchow, Eliseu A; de Oliveira Souza, Ana Carolina; Yoshida, Takamitsu; Vallittu, Pekka K; Bottino, Marco C

    2015-08-01

    The aims of this study were (1) to synthesize and characterize random and aligned nanocomposite fibers of multi-walled carbon nanotubes (MWCNT)/nylon-6 and (2) to determine their reinforcing effects on the flexural strength of a dental resin composite. Nylon-6 was dissolved in hexafluoropropanol (10 wt%), followed by the addition of MWCNT (hereafter referred to as nanotubes) at two distinct concentrations (i.e., 0.5 or 1.5 wt%). Neat nylon-6 fibers (without nanotubes) were also prepared. The solutions were electrospun using parameters under low- (120 rpm) or high-speed (6000 rpm) mandrel rotation to collect random and aligned fibers, respectively. The processed fiber mats were characterized by scanning (SEM) and transmission (TEM) electron microscopies, as well as by uni-axial tensile testing. To determine the reinforcing effects on the flexural strength of a dental resin composite, bar-shaped (20×2×2 mm(3)) resin composite specimens were prepared by first placing one increment of the composite, followed by one strip of the mat, and one last increment of composite. Non-reinforced composite specimens were used as the control. The specimens were then evaluated using flexural strength testing. SEM was done on the fractured surfaces. The data were analyzed using ANOVA and the Tukey׳s test (α=5%). Nanotubes were successfully incorporated into the nylon-6 fibers. Aligned and random fibers were obtained using high- and low-speed electrospinning, respectively, where the former were significantly (presin composite tested was significantly reinforced when combined with nylon-6 fibrous mats composed of aligned fibers (with or without nanotubes) or random fibers incorporated with nanotubes at 0.5 wt%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Foot alignments influence the effect of knee adduction moment with lateral wedge insoles during gait.

    Science.gov (United States)

    Sawada, Tomonori; Tokuda, Kazuki; Tanimoto, Kenji; Iwamoto, Yoshitaka; Ogata, Yuta; Anan, Masaya; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2016-09-01

    Lateral wedge insoles (LWIs) reduce the peak external knee adduction moment (KAM). However, the efficacy of LWIs is limited in certain individuals for whom they fail to decrease KAM. Possible explanations for a lack of desired LWI response are variations in foot alignments. The purpose of this study was to evaluate whether the immediate biomechanical effects of LWIs depend on individual foot alignments during gait. Fifteen healthy adults participated in this study. Their feet were categorized as normal, pronated, and supinated using the foot posture index. All subjects were subsequently requested to perform a normal gait under barefoot and LWI conditions. A three-dimensional motion analysis system was used to record the kinematic and kinetic data, included peak KAM, KAM impulse (KAAI), center of pressure displacement, and knee-ground reaction force lever arm (KLA). Furthermore, lower limb frontal plane kinematic parameters at the rear foot, ankle, knee, and hip were evaluated. Among all feet, there was no significant difference in the peak KAM and KAAI between the conditions. In contrast, the peak KAM was significantly reduced under the LWI condition relative to the barefoot condition in the normal foot group. Reductions in the peak KAM were correlated with a more lateral center of pressure and reduced KLA. In addition, a reduced KLA was correlated with decreased hip adduction. LWIs significantly reduced the peak KAM in normal feet, indicating that biomechanical effects of LWIs vary between individual foot alignments. Our findings suggest that it is helpful to assess individual foot alignment to ensure adequate insole treatment for patients with knee osteoarthritis.

  20. Effects of nanostructure geometry on polymer chain alignment and device performance in nanoimprinted polymer solar cell

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2013-03-01

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. This article demonstrates our recent studies on the nanostructure geometry effects on the nanoimprint induced poly(3 hexylthiophene-2,5-diyl) (P3HT) chain alignment and photovoltaic performance. Out-of-plane and in-plane grazing incident X-ray diffractions are employed to characterize the chain orientations in P3HT nanogratings with different widths and heights. It is found that nanoimprint procedure changes the initial edge-on alignment in non-imprinted P3HT thin film to a vertical orientation which favors the hole transport, with an organization height H≥ 170 nm and width in the range of 60 nmImprinted P3HT/[6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM) solar cells show an increase in power conversion efficiency (PCE) with the decrease of nanostructure width, and with the increase of height and junction area. Devices with the highest PCE are made by the fully aligned and highest P3HT nanostructures (width w= 60 nm, height h= 170 nm), allowing for the most efficient charge separation, transport and light absorption. We believe this work will contribute to the optimal geometry design of nanoimprinted polymer solar cells.

  1. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation

    Directory of Open Access Journals (Sweden)

    Jingjia Han

    2016-05-01

    Full Text Available Enhancing the maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs will facilitate their applications in disease modeling and drug discovery. Previous studies suggest that cell alignment could enhance hPSC-CM maturation; however, the robustness of this approach has not been well investigated. To this end, we examined if the anisotropic orientation of hPSC-CMs imposed by the underlying aligned fibers within a 3D microenvironment could improve the maturation of hPSC-CMs. Enriched hPSC-CMs were cultured for two weeks on Matrigel-coated anisotropic (aligned and isotropic (random polycaprolactone (PCL fibrous scaffolds, as well as tissue culture polystyrenes (TCPs as a control. As expected, hPSC-CMs grown on the two types of fibrous scaffolds exhibited anisotropic and isotropic orientations, respectively. Similar to cells on TCPs, hPSC-CMs cultured on these scaffolds expressed CM-associated proteins and were pharmacologically responsive to adrenergic receptor agonists, a muscarinic agonist, and a gap junction uncoupler in a dose-dependent manner. Although hPSC-CMs grown on anisotropic fibrous scaffolds displayed the highest expression of genes encoding a number of sarcomere proteins, calcium handling proteins and ion channels, their calcium transient kinetics were slower than cells grown on TCPs. These results suggest that electrospun anisotropic fibrous scaffolds, as a single method, have limited effect on improving the maturation of hPSC-CMs.

  2. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    Energy Technology Data Exchange (ETDEWEB)

    Ojkic, Nikola; Vavylonis, Dimitrios [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Wu Jianqiu, E-mail: vavylonis@lehigh.edu [Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States)

    2011-09-21

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  3. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    Directory of Open Access Journals (Sweden)

    Davood Askari and Mehrdad N Ghasemi-Nejhad

    2012-01-01

    Full Text Available The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength using carbon nanotubes (CNTs as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  4. The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia

    Science.gov (United States)

    Tian, Y.; Tanaka, Y.; Kuriyama, S.; Ito, H.; Furu, M.; Matsuda, S.

    2017-01-01

    Objectives Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Materials and Methods Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis. Results In all bone models, posterior translation on the lateral side and external rotation in the KA TKA models were greater than in the MA TKA models. The tibiofemoral force at the medial side was increased in the moderate and severe varus models with KA TKA. In the severe varus model with KA TKA, the contact stress on the tibial insert and the stress to the resection surface and to the medial tibial cortex were increased by 41.5%, 32.2% and 53.7%, respectively, compared with MA TKA, and the bone strain at the medial side was highest among all models. Conclusion Near normal kinematics was observed in KA TKA. However, KA TKA increased the contact force, stress and bone strain at the medial side for moderate and severe varus knee models. The application of KA TKA for severe varus knees may be inadequate. Cite this article: S. Nakamura, Y. Tian, Y. Tanaka, S. Kuriyama, H. Ito, M. Furu, S. Matsuda. The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia: A case study for varus knee. Bone Joint Res 2017;6:43–51. DOI: 10.1302/2046-3758.61.BJR-2016-0090.R1. PMID:28077396

  5. Effects of rotation on measurement of lower limb alignment for knee osteotomy.

    Science.gov (United States)

    Kawakami, Hideo; Sugano, Nobuhiko; Yonenobu, Kazuo; Yoshikawa, Hideki; Ochi, Takahiro; Hattori, Asaki; Suzuki, Naoki

    2004-11-01

    The purposes of this study were to clarify the effects of rotation on two-dimensional measurement of lower limb alignment for knee osteotomy using a three-dimensional method and to determine whether this 3-D simulation method could help with planning of knee osteotomy. We developed computer software to calculate femorotibial angle (FTA) and hip-knee-ankle angle (HKA) and simulate knee osteotomy from a CT-based 3-D bone model of the lower limb. Lower limb rotation on anteroposterior long-standing radiographs was measured by superimposing the 3-D bone models. Changes in alignment with limb rotation were calculated using the software. FTA after virtual closed-wedged osteotomy was measured for a hypothetical case of a rotation error of the osteotomy plane in reattaching the proximal cutting surface to the distal cutting surface. For 31 varus knees in 20 patients with medial compartment arthritis, the mean rotation angle, relative to the epicondylar axis, with variable limb position was 7.4 +/- 3.9 degrees of internal rotation (mean +/- SD), ranging from 8 degrees of external rotation to 14 degrees of internal rotation; the mean changes in FTA and HKA were 3.5 +/- 2.2 degrees (range, 0.4-8.6) and 1.6 +/- 1.3 degrees (range, 0.2-4.9), respectively. The FTA "flexion angle" (lateral view alignment from neutral AP) and the absolute HKA "flexion angle" correlated with the change in FTA and HKA with limb rotation, respectively (FTA, R = 0.999; HKA, R = 0.993). The mean change in FTA after virtual closed-wedged osteotomy was 3.2 degrees for internal and external 10 degrees rotation errors in reattaching the osteotomy plane. Rotation may affect measurement of lower limb alignment for knee osteotomy, and 3-D methods are preferable for surgical planning.

  6. Fine alignment of a large segmented mirror

    Science.gov (United States)

    Dey, Thomas William (Inventor)

    2010-01-01

    A system for aligning a segmented mirror includes a source of radiation directed along a first axis to the segmented mirror and a beamsplitter removably inserted along the first axis for redirecting radiation from the first axis to a second axis, substantially perpendicular to the first axis. An imaging array is positioned along the second axis for imaging the redirected radiation, and a knife-edge configured for cutting the redirected radiation is serially positioned to occlude and not occlude the redirected radiation, effectively providing a variable radiation pattern detected by the imaging array for aligning the segmented mirror.

  7. Near Field Intensity Trends of Main Laser Alignment Images in the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R R; Beltsar, I; Burkhart, S; Lowe-Webb, R; Kamm, V M; Salmon, T; Wilhelmsen, K

    2015-01-22

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years; during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics over time performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements and was used to view potential trends. Results are presented for the NIF input and output sensor package trends and changes over the three year time-frame.

  8. Near field intensity trends of main laser alignment images in the National Ignition Facility (NIF)

    Science.gov (United States)

    Leach, Richard R.; Beltsar, Ilona; Burkhart, Scott; Lowe-Webb, Roger; Miller-Kamm, Victoria; Salmon, Thad; Wilhelmsen, Karl

    2015-02-01

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years and during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or `big data' archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements. Changes in light transmission from the NIF main laser over the three year time-frame are presented.

  9. Upright CT of the knee: the effect of weight-bearing on joint alignment

    Energy Technology Data Exchange (ETDEWEB)

    Hirschmann, Anna [Orthopedic University Hospital Balgrist, University of Zurich, Department of Radiology, Zurich (Switzerland); University of Basel Hospital, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Buck, Florian M.; Pfirrmann, Christian W.A. [Orthopedic University Hospital Balgrist, University of Zurich, Department of Radiology, Zurich (Switzerland); Fucentese, Sandro F. [Orthopedic University Hospital Balgrist, University of Zurich, Orthopedic Surgery, Zurich (Switzerland)

    2015-11-15

    To prospectively compare patellofemoral and femorotibial alignment in supine non-weight-bearing computed tomography (NWBCT) and upright weight-bearing CT (WBCT) and assess the differences in joint alignment. NWBCT and WBCT images of the knee were obtained in 26 patients (mean age, 57.0 ± 15.9 years; range, 21-81) using multiple detector CT for NWBCT and cone-beam extremity CT for WBCT. Two musculoskeletal radiologists independently quantified joint alignment by measuring femorotibial rotation, tibial tuberosity-trochlear groove distance (TTTG), lateral patellar tilt angle, lateral patellar shift, and medial and lateral femorotibial joint space widths. Significant differences between NWBCT and WBCT were sought using Wilcoxon signed-rank test (P-value < 0.05). Significant differences were found for femorotibial rotation (the NWBCT mean changed from 2.7 ± 5.1 (reader 1)/2.6 ± 5.6 (reader 2) external rotation to WBCT 0.4 ± 7.7/0.2 ± 7.5 internal rotation; P = 0.009/P = 0.004), TTTG decrease from NWBCT (13.8 mm ± 5.1/13.9 mm ± 3.9) to WBCT (10.5 mm ± 5.0/10.9 mm ± 5.2; P = 0.008/P = 0.002), lateral patellar tilt angle decrease from NWBCT (15.6 ± 6.7/16.9 ± 7.4) to WBCT (12.5 ± 7.7/15.0 ± 6.2; P = 0.011/P = 0.188). The medial femorotibial joint space decreased from NWBCT (3.9 mm ± 1.4/4.5 mm ± 1.3) to WBCT (2.9 mm ± 2.2/3.5 mm ± 2.2; P = 0.003/P = 0.004). Inter-reader agreement ranged from 0.52-0.97. Knee joint alignment changes significantly in the upright weight-bearing position using CT when compared to supine non-weight-bearing CT. (orig.)

  10. DETERMINATION OF STEERING WHEEL ANGLES DURING CAR ALIGNMENT BY IMAGE ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    M. Mueller

    2016-06-01

    Full Text Available Optical systems for automatic visual inspections are of increasing importance in the field of automation in the industrial domain. A new application is the determination of steering wheel angles during wheel track setting of the final inspection of car manufacturing. The camera has to be positioned outside the car to avoid interruptions of the processes and therefore, oblique images of the steering wheel must be acquired. Three different approaches of computer vision are considered in this paper, i.e. a 2D shape-based matching (by means of a plane to plane rectification of the oblique images and detection of a shape model with a particular rotation, a 3D shape-based matching approach (by means of a series of different perspectives of the spatial shape of the steering wheel derived from a CAD design model and a point-to-point matching (by means of the extraction of significant elements (e.g. multifunctional buttons of a steering wheel and a pairwise connection of these points to straight lines. The HALCON system (HALCON, 2016 was used for all software developments and necessary adaptions. As reference a mechanical balance with an accuracy of 0.1° was used. The quality assessment was based on two different approaches, a laboratory test and a test during production process. In the laboratory a standard deviation of ±0.035° (2D shape-based matching, ±0.12° (3D approach and ±0.029° (point-to-point matching could be obtained. The field test of 291 measurements (27 cars with varying poses and angles of the steering wheel results in a detection rate of 100% and ±0.48° (2D matching and ±0.24° (point-to-point matching. Both methods also fulfil the request of real time processing (three measurements per second.

  11. Determination of Steering Wheel Angles during CAR Alignment by Image Analysis Methods

    Science.gov (United States)

    Mueller, M.; Voegtle, T.

    2016-06-01

    Optical systems for automatic visual inspections are of increasing importance in the field of automation in the industrial domain. A new application is the determination of steering wheel angles during wheel track setting of the final inspection of car manufacturing. The camera has to be positioned outside the car to avoid interruptions of the processes and therefore, oblique images of the steering wheel must be acquired. Three different approaches of computer vision are considered in this paper, i.e. a 2D shape-based matching (by means of a plane to plane rectification of the oblique images and detection of a shape model with a particular rotation), a 3D shape-based matching approach (by means of a series of different perspectives of the spatial shape of the steering wheel derived from a CAD design model) and a point-to-point matching (by means of the extraction of significant elements (e.g. multifunctional buttons) of a steering wheel and a pairwise connection of these points to straight lines). The HALCON system (HALCON, 2016) was used for all software developments and necessary adaptions. As reference a mechanical balance with an accuracy of 0.1° was used. The quality assessment was based on two different approaches, a laboratory test and a test during production process. In the laboratory a standard deviation of ±0.035° (2D shape-based matching), ±0.12° (3D approach) and ±0.029° (point-to-point matching) could be obtained. The field test of 291 measurements (27 cars with varying poses and angles of the steering wheel) results in a detection rate of 100% and ±0.48° (2D matching) and ±0.24° (point-to-point matching). Both methods also fulfil the request of real time processing (three measurements per second).

  12. Effects of proton angular momentum alignment on the two-shears-like mechanism in $^{101}$Pd

    CERN Document Server

    Zhang, Zhen-Hua

    2016-01-01

    The recently observed possible antimagnetic rotation band in $^{101}$Pd is investigated by the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and reduced $B(E2)$ transition probabilities and their variations with the rotational frequency $\\omega$ are well reproduced. By analyzing the $\\omega$-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the total angular momentum alignment, the upbending mechanism of $\

  13. Effect of temperature-dependent shape anisotropy on coercivity with aligned Stoner-Wohlfarth soft ferromagnets

    OpenAIRE

    He, Lin; Chen, Chinping

    2007-01-01

    The temperature variation effect of shape anisotropy on the coercivity, HC(T), for the aligned Stoner-Wohlfarth (SW) soft ferromagnets, such as fcc Ni, fcc Co and bcc Fe, are investigated within the framework of Neel-Brown (N-B) analysis. An extended N-B equation is thus proposed,by introducing a single dimensionless correction function, the reduced magnetization, m(\\tao) = MS(T)/MS(0), in which \\tao = T/TC is the reduced temperature, MS(T) is the saturation magnetization, and TC is the Curie...

  14. Multiview locally linear embedding for effective medical image retrieval.

    Directory of Open Access Journals (Sweden)

    Hualei Shen

    Full Text Available Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE, principal component analysis (PCA, or laplacian eigenmaps (LE can be employed to reduce the "curse of dimensionality". Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods.

  15. It Effectiveness and Flexibility versus Strategic Alignment: Assessing the Correlative Effects in Higher Education

    Science.gov (United States)

    Burke, Michael F.

    2011-01-01

    Fiscal challenges are forcing institutions of higher education to do more with less, while retaining the quality of service that the institution has established. The net result is that these institutions need to prepare themselves to achieve a sustained competitive advantage. In business, the focus has been on strategic alignment of IT to provide…

  16. It Effectiveness and Flexibility versus Strategic Alignment: Assessing the Correlative Effects in Higher Education

    Science.gov (United States)

    Burke, Michael F.

    2011-01-01

    Fiscal challenges are forcing institutions of higher education to do more with less, while retaining the quality of service that the institution has established. The net result is that these institutions need to prepare themselves to achieve a sustained competitive advantage. In business, the focus has been on strategic alignment of IT to provide…

  17. Effect of alignment changes on socket reaction moments during gait in transfemoral and knee-disarticulation prostheses: Case series

    OpenAIRE

    Kobayashi, Toshiki; Orendurff, Michael S.; Boone, David A.

    2013-01-01

    The alignment of a lower-limb prosthesis is critical to the successful prosthetic fitting and utilization by the wearer. Loads generated by the socket applied to the residual limb while walking are thought to be different in transfemoral and knee-disarticulation prostheses. The aim of this case series was to compare the socket reaction moments between transfemoral and knee-disarticulation prostheses and to investigate the effect of alignment changes on them. Two amputees, one with a transfemo...

  18. Alignment, vibronic level splitting, and coherent coupling effects on the pump-probe polarization anisotropy.

    Science.gov (United States)

    Smith, Eric R; Jonas, David M

    2011-04-28

    The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence

  19. EFFECTS OF FLOW INTENSITY, OBSTACLE ALIGNMENT AND CROSS-SECTION GEOMETRY ON SCOUR AT BRIDGE ABUTMENTS

    Institute of Scientific and Technical Information of China (English)

    A. H. CARDOSO; J. S. SANTOS; M. ROCA

    2002-01-01

    Experiments are reported on the effects of flow intensity, obstacle alignment and cross-section geome try on the equilibrium scour depth around abutments. The effect of flow intensity was studied for clear water flow conditions, the obstacle alignment was studied for a wide range of angles of the obstacle with the flow direction, and tests on the cross-section geometry apply only to the case where the abut ment extends into the main channel of a compound cross-section (two-stage channel). The channel bank and flood plain were built up with sand. The hypothesis of zero scour for flow velocities smaller than approximately 50% of the threshold velocity for the beginning of motion in the approaching flow cannot be rejected; maximum scour occurs for obstacles protruding at right angle from the cross-section walls, the reduction being small when obstacles point upstream; compared with rigid banks, the scour depth seems to be significantly reduced when channel bank and flood plain are constituted of alluvial material.

  20. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, Jan-Erik, E-mail: janerikscholtz@gmail.com; Wichmann, Julian L.; Kaup, Moritz; Fischer, Sebastian; Kerl, J. Matthias; Lehnert, Thomas; Vogl, Thomas J.; Bauer, Ralf W.

    2015-03-15

    Highlights: •Automatic segmentation and labeling of the thoracolumbar spine. •Automatically generated double-angulated and aligned axial images of spine segments. •High grade of accurateness for the symmetric depiction of anatomical structures. •Time-saving and may improve workflow in daily practice. -- Abstract: Objectives: To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. Material and methods: 77 patients (28 women, 49 men, mean age 65.3 ± 14.4 years) with known or suspected spinal disorders (degenerative spine disease n = 32; disc herniation n = 36; traumatic vertebral fractures n = 9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. Results: In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1 min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p < 0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p < 0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. Conclusion: The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time

  1. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin-Bin; Han, Yong-Chang, E-mail: ychan@dlut.edu.cn; Cong, Shu-Lin [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-09-07

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na{sub 2}) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X{sup 1}Σ{sup +}) is associated into the molecule in the bound states of the excited state (A{sup 1}Σ{sup +}) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  2. Effect of divalent cations on DMPC/DHPC bicelle formation and alignment.

    Science.gov (United States)

    Brindley, Amanda J; Martin, Rachel W

    2012-05-22

    Many important classes of biomolecules require divalent cations for optimal activity, making these ions essential for biologically relevant structural studies. Bicelle mixtures composed of short-chain and long-chain lipids are often used in solution- and solid-state NMR structure determination; however, the phase diagrams of these useful orienting media and membrane mimetics are sensitive to other solution components. Therefore, we have investigated the effect of varying concentrations of four divalent cations, Ca(2+), Mg(2+), Zn(2+), and Cd(2+), on cholesterol sulfate-stabilized DMPC/DHPC bicelles. We found that low concentrations of all the divalent ions are tolerated with minimal perturbation. At higher concentrations Zn(2+) and Cd(2+) disrupt the magnetically aligned phase while Ca(2+) and Mg(2+) produce more strongly oriented phases. This result indicates that divalent cations are not only required to maintain the biological activity of proteins and nucleic acids; they may also be used to manipulate the behavior of the magnetically aligned phase.

  3. Thalamocortical dynamics of the McCollough effect: boundary-surface alignment through perceptual learning.

    Science.gov (United States)

    Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio

    2002-05-01

    This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.

  4. Molecular alignment effect on the photoassociation process via a pump-dump scheme.

    Science.gov (United States)

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-07

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  5. Acute and reproductive effects of Align, an insecticide containing azadirachtin, on the grape berry moth, Lobesia botrana.

    Science.gov (United States)

    Irigaray, F Javier Sáenz-De-Cabezón; Moreno-Grijalba, Fernando; Marco, Vicente; Pérez-Moreno, Ignacio

    2010-01-01

    Azadirachtin, derived from the neem tree, Azadirachta indica A. Juss (Sapindales: Meliaceae), seems promising for use in integrated pest management programs to control a variety of pest species. A commercial formulation of azadirachtin, Align, has been evaluated against different developmental stages of the European grape berry moth, Lobesia botrana Denis and Schiffermüller (Lepidoptera: Tortricidae). When administered orally, Align reduced the fecundity and fertility of adults treated with 1, 5, and 10 mg litre(-1). At the highest doses, fecundity and fertility were zero, but longevity was not affected. An LC(50) of 231.5 mg litre(-1) was obtained when Align was sprayed on eggs less than 1 day old. Hatching of all egg classes was significantly reduced, and this reduction was more pronounced for eggs less than 24 h old. LC(50) values of 2.1 mg litre(-1) for first instars and 18.7 mg litre(-1) for third instars were obtained when Align was present in the diet. Larvae reared on a diet containing different concentrations of Align did not molt into adults at the highest concentrations (0.3, 0.6, 1.2), and 50% molted at the lowest concentration (0.15). Phenotypic effects included inability to molt properly and deformities. The combination of acute toxicity and low, effective concentrations of Align observed in this study could lead to the inclusion of insecticides containing azadirachtin in integrated management programs against this pest.

  6. Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbonate matrix

    Indian Academy of Sciences (India)

    M M Larijani; E J Khamse; Z Asadollahi; M Asadi

    2012-06-01

    This article reports effects of alignment of embedded carbon nanotubes in a polycarbonate polymer matrix under magnetic, direct and alternating current electric fields on the electrical properties of the resulting nanocomposites. Composites consisting of different quantities of carbon nanotubes in a polycarbonate matrix have been prepared using a solution casting technique. The effects of field strength and nanotube concentration on the resulted network structure and conductivity of the composites were studied by in situ optical microscopy, transmission electron microscopy and four-point probe technique. The results showed that the composites prepared in the presence of field had better conductivity than those of as-prepared composites. It was also concluded that the application of alternating current electric field and magnetic field in this system led to the formation of relatively continuing networks while direct current electric field only prevented agglomeration of the carbon nanotubes in the polycarbonate matrix and created relatively uniform distribution of nanotubes in the matrix.

  7. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  8. Information Technology Governance Maturity: Examining the Moderating Effect on the Relationship between Strategic Alignment Maturity and Information Technology Effectiveness

    Science.gov (United States)

    Kouakou, Claude N.

    2013-01-01

    The positive contribution of information technology (IT) in an organization is undeniable. Most organizations take advantage of that contributive benefit by aligning their business strategy with their IT strategy. This alignment is known as IT-business strategic alignment. Strategic alignment involves making the best possible use of corporate IT…

  9. Information Technology Governance Maturity: Examining the Moderating Effect on the Relationship between Strategic Alignment Maturity and Information Technology Effectiveness

    Science.gov (United States)

    Kouakou, Claude N.

    2013-01-01

    The positive contribution of information technology (IT) in an organization is undeniable. Most organizations take advantage of that contributive benefit by aligning their business strategy with their IT strategy. This alignment is known as IT-business strategic alignment. Strategic alignment involves making the best possible use of corporate IT…

  10. Effective aligned 2HDM with a DFSZ-like invisible axion

    Directory of Open Access Journals (Sweden)

    Alejandro Celis

    2014-10-01

    Full Text Available We discuss the possibility of having a non-minimal scalar sector at the weak scale within the framework of invisible axion models. To frame our discussion we consider an extension of the Dine–Fischler–Srednicki–Zhitnitsky invisible axion model with two additional Higgs doublets blind under the Peccei–Quinn symmetry. Due to mixing effects among the scalar fields, it is possible to obtain a rich scalar sector at the weak scale in certain decoupling limits of the theory. In particular, this framework provides an ultraviolet completion of the so-called aligned two-Higgs-doublet model and solves the strong CP problem. The axion properties and the smallness of active neutrino masses are also discussed.

  11. Effective aligned 2HDM with a DFSZ-like invisible axion

    Energy Technology Data Exchange (ETDEWEB)

    Celis, Alejandro, E-mail: alejandro.celis@ific.uv.es; Fuentes-Martín, Javier, E-mail: javier.fuentes@ific.uv.es; Serôdio, Hugo, E-mail: hugo.serodio@ific.uv.es

    2014-10-07

    We discuss the possibility of having a non-minimal scalar sector at the weak scale within the framework of invisible axion models. To frame our discussion we consider an extension of the Dine–Fischler–Srednicki–Zhitnitsky invisible axion model with two additional Higgs doublets blind under the Peccei–Quinn symmetry. Due to mixing effects among the scalar fields, it is possible to obtain a rich scalar sector at the weak scale in certain decoupling limits of the theory. In particular, this framework provides an ultraviolet completion of the so-called aligned two-Higgs-doublet model and solves the strong CP problem. The axion properties and the smallness of active neutrino masses are also discussed.

  12. Growth of Aligned Multiwall Carbon Nanotubes and the Effect of Adsorbates on the Field Emission Properties

    Science.gov (United States)

    Milne, W. I.; Teo, K. B. K.; Lansley, S. B.; Chhowalla, M.; Amaratunga, G. A. J.; Semet, V.; Binh, Vu Thien; Pirio, G.; Legagneux, P.

    2003-10-01

    In attempt to decipher the field emission characteristics of multiwall carbon nanotubes (MWCNTs), we have developed a fabrication method based on plasma enhanced chemical vapour deposition (PECVD) to provide utmost control of the nanotube structure such as their alignment, individual position, diameter, length and morphology. We investigated the field emission properties of these nanotubes to elucidate the effect of adsorbates on the nanotubes. Our results show that although the adsorbates cause an apparent lowering of the required turn on voltage/field of the nanotubes, the adsorbates undesirably cause a saturation of the current, large temporal fluctuations in the current, and also a deviation of the emission characteristics from Fowler-Nordheim like emission. The adsorbates are easily removed by extracting an emission current of 1 uA per nanotube or using a high applied electric field (˜25V/um).

  13. Effect of hierarchically aligned fibrin hydrogel in regeneration of spinal cord injury demonstrated by tractography: A pilot study

    Science.gov (United States)

    Zhang, Zhenxia; Yao, Shenglian; Xie, Sheng; Wang, Xiumei; Chang, Feiyan; Luo, Jie; Wang, Jingming; Fu, Jun

    2017-01-01

    Some studies have reported that scaffold or cell-based transplantation may improve functional recovery following SCI, but no imaging information regarding regeneration has been provided to date. This study used tractography to show the regenerating process induced by a new biomaterial-aligned fibrin hydrogel (AFG). A total of eight canines subjected to SCI procedures were assigned to the control or the AFG group. AFG was implanted into the SCI lesion immediately after injury in 5 canines. A follow-up was performed at 12 weeks to evaluate the therapeutic effect including the hindlimb functional recovery, anisotropy and continuity of fibers on tractography. Using tractography, we found new fibers running across the SCI in three canines of the AFG group. Further histological examination confirmed limited glial scarring and regenerated nerve fibers in the lesions. Moreover, Repeated Measures Analysis revealed a significantly different change in fractional anisotropy (FA) between the two groups during the follow-up interval. An increase in FA during the post injury time interval was detected in the AFG group, indicating a beneficial effect of AFG in the rehabilitation of injured axons. Using tractography, AFG was suggested to be helpful in the restoration of fibers in SCI lesions, thus leading to promoted functional recovery. PMID:28067245

  14. Effect of alignment changes on socket reaction moments during gait in transfemoral and knee-disarticulation prostheses: case series.

    Science.gov (United States)

    Kobayashi, Toshiki; Orendurff, Michael S; Boone, David A

    2013-09-27

    The alignment of a lower-limb prosthesis is critical to the successful prosthetic fitting and utilization by the wearer. Loads generated by the socket applied to the residual limb while walking are thought to be different in transfemoral and knee-disarticulation prostheses. The aim of this case series was to compare the socket reaction moments between transfemoral and knee-disarticulation prostheses and to investigate the effect of alignment changes on them. Two amputees, one with a transfemoral prosthesis and another with a knee-disarticulation prosthesis, participated in this study. A Smart Pyramid™ was used to measure socket reaction moments while walking under 9 selected alignment conditions; including nominally aligned, angle malalignments of 6° (flexion, extension, abduction and adduction) and translation malalignments of 15 mm (anterior, posterior, medial and lateral) of the socket relative to the foot. This study found that the pattern of the socket reaction moments was similar between transfemoral and knee-disarticulation prostheses. An extension moment in the sagittal plane and a varus moment in the coronal plane were dominant during stance under the nominally aligned condition. This study also demonstrated that alignment changes might have consistent effects on the socket reaction moments in transfemoral and knee-disarticulation prostheses. Extension and posterior translation of the socket resulted in increases in an extension moment, while abduction and lateral translation of the socket resulted in increases in a varus moment. The socket reaction moments may potentially serve as useful biomechanical parameters to evaluate alignment in transfemoral and knee-disarticulation prostheses.

  15. Gauging Item Alignment through Online Systems While Controlling for Rater Effects

    Science.gov (United States)

    Anderson, Daniel; Irvin, Shawn; Alonzo, Julie; Tindal, Gerald A.

    2015-01-01

    The alignment of test items to content standards is critical to the validity of decisions made from standards-based tests. Generally, alignment is determined based on judgments made by a panel of content experts with either ratings averaged or via a consensus reached through discussion. When the pool of items to be reviewed is large, or the…

  16. Gauging Item Alignment through Online Systems While Controlling for Rater Effects

    Science.gov (United States)

    Anderson, Daniel; Irvin, Shawn; Alonzo, Julie; Tindal, Gerald A.

    2015-01-01

    The alignment of test items to content standards is critical to the validity of decisions made from standards-based tests. Generally, alignment is determined based on judgments made by a panel of content experts with either ratings averaged or via a consensus reached through discussion. When the pool of items to be reviewed is large, or the…

  17. Effect of pier shape and pier alignment on the equilibrium scour depth at single piers

    Institute of Scientific and Technical Information of China (English)

    Cristina Fael; Rui Lança; António Cardoso

    2016-01-01

    The equilibrium scour depth at uniform single bridge piers depends on a large number of variables, including the pier horizontal cross-section shape and its alignment angle towards the flow direction. The influence of these variables has been studied by only a few researchers, mostly, on the basis of tests that were far from approaching equilibrium. This experimental study aims at revisiting the influence of piers' shape and alignment on local scouring for length–width ratios smaller than or equal to 4, by increasing the experimental evidence. Fifty five long-duration laboratory tests were run under steady, clear-water flow, close to the threshold for initiation of sediment motion. Five pier shapes were considered:circular, rectangular square-nosed, rectangular round-nosed, oblong, and zero-spacing (packed) pile-groups;the tested skew-angles were 0°, 30°, 45°, 60°, and 90°. It was concluded that i) the shape factor can be taken as 1.0, for rectangular round-nosed and oblong cross-section piers, and as 1.2, for rectangular square-nosed and packed pile-group cross-section piers, ii) the shape factor does not vary significantly with the duration of tests, this way confirming the robustness of the shape factors reported to date, iii) the effect of shape is present at skewed piers although the associated coefficients remain in the narrow range of 1.0–1.2, and iv) for length–width ratios smaller than 4, the shape factor is of the same order of magnitude as the skew angle factor and should not be neglected.

  18. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Behnaz BAKHSHANDEH; Masoud SOLEIMANI; Nasser GHAEMI; Iman SHABANI

    2011-01-01

    Aim: Bioartificial bone tissue engineering is an increasingly popular technique to solve bone defect challenges. This study aimed to investigate the interactions between matrix composition and appropriate cell type, focusing on hydroxyapatite (HA), to achieve a more effective combination for bone regeneration.Methods: Human unrestricted somatic stem cells (USSCs) were isolated from placental cord blood. The cellular and molecular events during the osteo-induction of USSCs were evaluated for 21 d under the following conditions: (1) in basal culture, (2) supplemented with hydroxyapatite nanoparticle (nHA) suspension, and (3) seeded on electrospun aligned nanoflbrous poly-ε-caprolactone/poly-L-lactic acid/nHA (PCL/PLLA/nHA) scaffolds. The scaffolds were characterized using scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and tensile test.Results: Maintenance of USSCs for 21 d in basal or osteogenic culture resulted in significant increase in osteoblast differentiation. With nHA suspension, even soluble osteo-inductive additives were ineffective, probably due to induced apoptosis of the cells. In con-trast to the hindrance of proliferation by nHA suspension, the scaffolds improved cell growth. The scaffolds mimic the nanostructure of natural bone matrix with the combination of PLLA/PCL (organic phase) and HA (inorganic phase) offering a favorable surface topogra-phy, which was demonstrated to possess suitable properties for supporting USSCs. Quantitative measurement of osteogenic markers, enzymatic activity and mineralization indicated that the scaffolds did not disturb, but enhanced the osteogenic potential of USSCs.Moreover, the alignment of the fibers led to cell orientation during cell growth.Conclusion: The results demonstrated the synergism of PCL/PLLA/nHA nanoflbrous scaffolds and USSCs in the augmentation of osteo-genic differentiation. Thus, nHA grafted into PCI./PLLA scaffolds can be a suitable choice for bone tissue

  19. CSR's effect on brand image

    OpenAIRE

    Gudjonsdottir, Elly; Jusubova, Albina

    2015-01-01

    The purpose of this study is to investigate CSR’s effect on brand image in order to increase the understanding of CSR as a marketing tool, within the service industry. The research questions of the study are “How does a service-based company’s involvement in CSR as a marketing strategy affect the brand image? And how do the different CSR dimensions affect the brand image?” This study has a positive and deductive approach with a cross sectional design. The quantitative method chosen was a ques...

  20. Nematic Liquid Crystal Alignment Behaviors between Crossed Stretched Miropolymer Filaments with Anchoring Effects

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2006-04-01

    We observed the molecular alignment of a liquid crystal (LC) induced by crossing two stretched micropolymer filaments between glass substrates and confirmed its light modulation property. The two microfilaments, which were extracted from a cellulose cloth by stretching it in advance, had surface molecular alignment and stabilized nematic LC alignment between the microfilaments crossed with a small angle. In the fabricated LC cell, a spatially-uniform LC planar alignment is achieved in the area of a filament interval of less than 60 μm. By polarizing microscopy observation of the isotropic-to-nematic wetting transition of the LC material between the polymer filaments, it was confirmed that the stable LC alignment area is formed by the surface anchoring of the filaments. When external voltages were applied to the obtained uniformed alignment LC area, a characteristic periodic electrooptic property was confirmed on the basis of electrically-controlled birefringence under the alignment control of the in-plane anchoring of the filaments.

  1. Effect of stump flexion contracture with and without prosthetic alignment intervention towards postural stability among transtibial prosthesis users

    Science.gov (United States)

    Ghazali, M. F.; Razak, N. A. Abd; Abu Osman, N. A.; Gholizadeh, H.

    2017-06-01

    Knee flexion contracture on a stump side is a phenomenon in which the stump cannot move in normal range of motion (ROM) or cannot be fully extended. This study has been carried out by using Biodex Stability System (BSS) in order to investigate the effect of stump flexion contracture towards the postural stability among the transtibial prosthesis users with the intervention of alignment accommodation. The BSS provides the reading of anterior-posterior stability index (APSI), medial-lateral stability index (MLSI), and overall stability index (OSI). Higher reading of the index indicates lesser stability. Each of the subjects had been tested in three different sessions that were Visit 1 (before contracture improvement), Visit 2 (after contracture improvement without alignment readjustment), and Visit 3 (after contracture improvement with alignment readjustment). The APSI reading was significantly higher during Visit 2 compared to Visit 1 and Visit 3. The OSI during Visit 2 was also found significantly higher compared to Visit 3. In Visit 2, the degree of contracture was significantly improved with 44.1% less than Visit 1. The stability index in anterior-posterior aspect (APSI) was proven to be lower as the prosthetic alignment was adjusted according to the ROM of knee. This finding explained that the alignment set up based on the adaptation with the stump’s ROM can contribute positively in maintaining postural stability.

  2. Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria.

    Science.gov (United States)

    Padial, José M; Grant, Taran; Frost, Darrel R

    2014-06-26

    Brachycephaloidea is a monophyletic group of frogs with more than 1000 species distributed throughout the New World tropics, subtropics, and Andean regions. Recently, the group has been the target of multiple molecular phylogenetic analyses, resulting in extensive changes in its taxonomy. Here, we test previous hypotheses of phylogenetic relationships for the group by combining available molecular evidence (sequences of 22 genes representing 431 ingroup and 25 outgroup terminals) and performing a tree-alignment analysis under the parsimony optimality criterion using the program POY. To elucidate the effects of alignment and optimality criterion on phylogenetic inferences, we also used the program MAFFT to obtain a similarity-alignment for analysis under both parsimony and maximum likelihood using the programs TNT and GARLI, respectively. Although all three analytical approaches agreed on numerous points, there was also extensive disagreement. Tree-alignment under parsimony supported the monophyly of the ingroup and the sister group relationship of the monophyletic marsupial frogs (Hemiphractidae), while maximum likelihood and parsimony analyses of the MAFFT similarity-alignment did not. All three methods differed with respect to the position of Ceuthomantis smaragdinus (Ceuthomantidae), with tree-alignment using parsimony recovering this species as the sister of Pristimantis + Yunganastes. All analyses rejected the monophyly of Strabomantidae and Strabomantinae as originally defined, and the tree-alignment analysis under parsimony further rejected the recently redefined Craugastoridae and Pristimantinae. Despite the greater emphasis in the systematics literature placed on the choice of optimality criterion for evaluating trees than on the choice of method for aligning DNA sequences, we found that the topological differences attributable to the alignment method were as great as those caused by the optimality criterion. Further, the optimal tree-alignment indicates

  3. Alignment validation

    Energy Technology Data Exchange (ETDEWEB)

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  4. The Effect of Coupled Dark Energy on the Alignment between Dark Matter and Galaxy Distributions in Clusters

    CERN Document Server

    Baldi, Marco; Maccio, Andrea V

    2011-01-01

    We investigate the effects of a coupled Dark Energy (cDE) scalar field on the alignment between satellites and matter distributions in galaxy clusters. Using high-resolution N-body simulations for LCDM and cDE cosmological models, we compute the probability density distribution for the alignment angle between the satellite galaxies and underlying matter distributions, finding a difference between the two scenarios. With respect to LCDM, in cDE cosmologies the satellite galaxies are less preferentially located along the major axis of the matter distribution, possibly reducing the tension with obersevational data. A physical explanation is that the coupling between dark matter and dark energy acts as an additional tidal force on the satellite galaxies diminishing the alignments between their distribution and the matter one. Through a likelihood ratio test based on the generalized chi square statistics, the null hypothesis that the two probability distributions come from the same parent population is rejected at...

  5. Moiré Effect: Index and the Digital Image

    Directory of Open Access Journals (Sweden)

    Stella Baraklianou

    2014-10-01

    Full Text Available The moiré effect and phenomena are natural occurring geometric formations that appear during the super-position of grid structures. Most widely recognisable in colour printing practices, generally viewed on screens (computer and TV they are in most cases examples of interference within a signal or a code, unwanted visual mis-alignment. Especially in digital image capture, moiré patternings appear when a geometrically even pattern, like a fabric or close-up of fine texture, has an appearance of rippled water with blue or red hues of concentric circle formations. The intriguing pattern formation in this case points back not only to the mis-alignment of frequencies, but can be further seen as the intersection point of a speculative ontology for the index of the digital image. Moiré not only as a visually reproducible phenomenon or effect, but a field of vision that blurs the boundaries between analogue and digital, perception and affect, manifesting the photographic as a constant site of becoming, a site of immanence. The philosophy of Henri Bergson, Brian Massumi and Francois Laruelle will be explored alongside the moiré image and phenomenon, to see if there is such a speculative site underlining the becoming of the digital image and its repercussions in contemporary digital culture.

  6. Effect of ammonia gas etching on growth of vertically aligned carbon nanotubes/nanofibers

    Institute of Scientific and Technical Information of China (English)

    Sang-Gook KIM; Sooh-Yung KIM; Hytmg-Woo LEE

    2011-01-01

    The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni catalyst layer to form nanoscale islands while NH3 plasma etches the deposited amorphous carbon. Based on the etching effect of NH3 gas on Ni catalyst, the differences of growing bundles of CNTs and single strand CNTs were discussed; specifically, the amount of optimal NH3 gas etchingis different between bundles of CNTs and single strand CNTs. In contrast to the CNT carpet growth. the single strand CNT growth requires shorter etching time (5 min) than large catalytic patterns (10 min) since nano dots already form catalyst islands for CNT growth. Through removing the plasma pretreatment process, the damage from being exposed at high temperature substrate occurring during the plasma generation time is minimized. High resolution transmission electron microscopy (HTEM) shows fishbone structure of CNTs grown by PECVD.

  7. Effects of field-aligned flows on standing kink and sausage modes supported by coronal loops

    CERN Document Server

    Chen, S -X; Xia, L -D; Chen, Y -J; Yu, H

    2013-01-01

    Fundamental standing modes and their overtones play an important role in coronal seismology. We examine how a significant field-aligned flow affects standing modes supported by coronal loops, modeled here as cold magnetic slabs. Of particular interest are the period ratios of the fundamental to its $(n-1)$-th overtone ($P_1/nP_n$) for both kink and sausage modes, and the threshold half-width-to-length ratio for sausage modes. For standing kink modes, the flow significantly reduces $P_1/nP_n$ in general, the effect being particularly strong for larger $n$ and when the density contrast $\\rho_0/\\rho_e$ between loops and their surroundings is weak. That said, even when $\\rho_0/\\rho_e$ approaches infinity, this effect is still substantial, reducing the minimal $P_1/nP_n$ by up to 13.7% (24.5%) for $n=2$ ($n=4$) relative to the static case, when the Alfv\\'en Mach number $M_A$ reaches 0.8 where $M_A$ measures the loop flow speed in units of the internal Alfv\\'en speed. For standing sausage modes, though not negligib...

  8. The Effects of Using Bloom's Taxonomy to Align Reading Instruction with the Virginia Standards of Learning Framework for English

    Science.gov (United States)

    Crews, Charla Faulkner

    2010-01-01

    This study examined the effects of aligning the "Virginia Standards of Learning (SOL)" English Framework with Bloom's Taxonomy on student achievement. Changes prompted by "No Child Left Behind" legislation increased accountability for student success, as well as mandated testing to determine annual academic growth of all students. Documentation…

  9. The Effects of Using Bloom's Taxonomy to Align Reading Instruction with the Virginia Standards of Learning Framework for English

    Science.gov (United States)

    Crews, Charla Faulkner

    2010-01-01

    This study examined the effects of aligning the "Virginia Standards of Learning (SOL)" English Framework with Bloom's Taxonomy on student achievement. Changes prompted by "No Child Left Behind" legislation increased accountability for student success, as well as mandated testing to determine annual academic growth of all…

  10. Optical imaging using spatial grating effects in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Dave, Vishakha; Virpura, Hiral; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in [Department of Physics, Maharaja Krishankumarsinhji Bhavnagar University, Bhavnagar. 364002. India (India)

    2015-06-24

    Under the effect of magnetic field the magnetic nanoparticles of the ferrofluid tend to align in the direction of the magnetic field. This alignment of the magnetic nanoparticles behaves as a spatial grating and diffract light, when light is propagating perpendicular to the direction of the applied magnetic field. The chains of the magnetic nanoparticles represents a linear series of fringes like those observed in a grating/wire. Under applied magnetic field the circular beam of light transforms into a prominent diffraction line in the direction perpendicular to the applied magnetic field. This diffracted light illuminates larger area on the screen. This behavior can be used as magneto controlled illumination of the object and image analysis.

  11. Embedding strategies for effective use of information from multiple sequence alignments.

    OpenAIRE

    1997-01-01

    We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with...

  12. Grain alignment induced by radiative torques: effects of internal relaxation of energy and complex radiation fields

    CERN Document Server

    Hoang, Thiem

    2008-01-01

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns grain axis of maximum moment of inertia with respect to grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of maximum moment of inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of maximum moment of inertia with angular momentum, and both axis of maximum moment of inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For the alignment without high-J attractors, beside the earlier studie...

  13. Assessment of Prosthesis Alignment after Revision Total Knee Arthroplasty Using EOS 2D and 3D Imaging : A Reliability Study

    NARCIS (Netherlands)

    Meijer, Marrigje F.; Boerboom, Alexander L.; Stevens, Martin; Bulstra, Sjoerd K.; Reininga, Inge H. F.

    2014-01-01

    Introduction: A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobse

  14. Alignment of cryo-electron tomography datasets.

    Science.gov (United States)

    Amat, Fernando; Castaño-Diez, Daniel; Lawrence, Albert; Moussavi, Farshid; Winkler, Hanspeter; Horowitz, Mark

    2010-01-01

    Data acquisition of cryo-electron tomography (CET) samples described in previous chapters involves relatively imprecise mechanical motions: the tilt series has shifts, rotations, and several other distortions between projections. Alignment is the procedure of correcting for these effects in each image and requires the estimation of a projection model that describes how points from the sample in three-dimensions are projected to generate two-dimensional images. This estimation is enabled by finding corresponding common features between images. This chapter reviews several software packages that perform alignment and reconstruction tasks completely automatically (or with minimal user intervention) in two main scenarios: using gold fiducial markers as high contrast features or using relevant biological structures present in the image (marker-free). In particular, we emphasize the key decision points in the process that users should focus on in order to obtain high-resolution reconstructions.

  15. Influence of contact height on the performance of vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2013-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been experimentally demonstrated (J. Li et al., Carbon, 2012, 50, 4628-4632). The source and drain contact heights in vertical CNTFETs could be much higher than in flat CNTFETs if the fabrication process is not optimized. To understand the impact of contact height on transistor performance, we use a semi-classical method to calculate the characteristics of CNTFETs with different contact heights. The results show that the drain current decreases with increasing contact height and saturates at a value governed by the thickness of the oxide. The current reduction caused by the increased contact height becomes more significant when the gate oxide is thicker. The higher the drain voltage, the larger the current reduction. It becomes even worse when the band gap of the carbon nanotube is larger. The current can differ by a factor of more than five between the CNTEFTs with low and high contact heights when the oxide thickness is 50 nm. In addition, the influence of the contact height is limited by the channel length. The contact height plays a minor role when the channel length is less than 100 nm. © 2013 The Royal Society of Chemistry.

  16. Radiation effects on video imagers

    Science.gov (United States)

    Yates, G. J.; Bujnosek, J. J.; Jaramillo, S. A.; Walton, R. B.; Martinez, T. M.

    1986-02-01

    Radiation senstivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analysing stored photo-charge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented.

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  18. The effect of instrument alignment on peripheral refraction measurements by automated optometer.

    Science.gov (United States)

    Ehsaei, Asieh; Chisholm, Catharine M; Mallen, Edward A H; Pacey, Ian E

    2011-07-01

    Interest in peripheral refraction measurement has grown in recent years in response to the insight it may provide into myopia development. In light of the likely increase in the clinical use of open-field autorefractors for peripheral refraction measurements, the question of instrument alignment and its impact on the accuracy of refraction measurements is raised. The aim of this study was to investigate the accuracy and precision when an open-field device was moved away from alignment with the corneal reflex towards the pupil margins, and to determine the optimum alignment position for peripheral refraction measurements. Autorefractions were performed on the right eyes of 10 healthy participants using the Shin-Nippon NVision-K 5001 autorefractor. At least five measurements were taken with the subject fixating a distance target in the primary position of gaze, and then four peripheral fixation targets located along the horizontal meridian (10° and 20° eccentricities in the nasal and temporal retina). Measurements were taken at seven alignment positions across the pupil for each fixation angle. Refraction was recorded as the spherical and cylindrical power. The central objective refraction achieved under cycloplegia based on the autorefraction result for the whole sample, ranged between -5.62 D and +1.85 D for the value of sphere, with a maximum astigmatism of -1.00 D. Acceptable alignment position range varied with fixation angle but was -1.0 to +1.0 mm in width across the pupil. Peripheral refraction measurements centred on the entrance pupil were as reliable as those centred on the corneal reflex. Our data suggest that for peripheral refraction measurements, there is a range of acceptable positions and operators can be confident of the validity of results obtained if aligned half way between the pupil centre and corneal reflex. The alignment becomes more critical at greater eccentricities. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.

  19. Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications.

    Science.gov (United States)

    Valente, T A M; Silva, D M; Gomes, P S; Fernandes, M H; Santos, J D; Sencadas, V

    2016-02-10

    Medically approved sterility methods should be a major concern when developing a polymeric scaffold, mainly when commercialization is envisaged. In the present work, poly(lactic acid) (PLA) fiber membranes were processed by electrospinning with random and aligned fiber alignment and sterilized under UV, ethylene oxide (EO), and γ-radiation, the most common ones for clinical applications. It was observed that UV light and γ-radiation do not influence fiber morphology or alignment, while electrospun samples treated with EO lead to fiber orientation loss and morphology changing from cylindrical fibers to ribbon-like structures, accompanied to an increase of polymer crystallinity up to 28%. UV light and γ-radiation sterilization methods showed to be less harmful to polymer morphology, without significant changes in polymer thermal and mechanical properties, but a slight increase of polymer wettability was detected, especially for the samples treated with UV radiation. In vitro results indicate that both UV and γ-radiation treatments of PLA membranes allow the adhesion and proliferation of MG 63 osteoblastic cells in a close interaction with the fiber meshes and with a growth pattern highly sensitive to the underlying random or aligned fiber orientation. These results are suggestive of the potential of both γ-radiation sterilized PLA membranes for clinical applications in regenerative medicine, especially those where customized membrane morphology and fiber alignment is an important issue.

  20. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.

    Science.gov (United States)

    Li, Hanying; Tee, Benjamin C-K; Cha, Judy J; Cui, Yi; Chung, Jong Won; Lee, Sang Yoon; Bao, Zhenan

    2012-02-08

    Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.

  1. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.

    Science.gov (United States)

    Pedersen, John A; Lichter, Seth; Swartz, Melody A

    2010-03-22

    Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman-Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.

  2. PILOT optical alignment

    Science.gov (United States)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  3. Membrane glucocorticoid receptor activation induces proteomic changes aligning with classical glucocorticoid effects.

    Science.gov (United States)

    Vernocchi, Sara; Battello, Nadia; Schmitz, Stephanie; Revets, Dominique; Billing, Anja M; Turner, Jonathan D; Muller, Claude P

    2013-07-01

    Glucocorticoids exert rapid nongenomic effects by several mechanisms including the activation of a membrane-bound glucocorticoid receptor (mGR). Here, we report the first proteomic study on the effects of mGR activation by BSA-conjugated cortisol (Cort-BSA). A subset of target proteins in the proteomic data set was validated by Western blot and we found them responding to mGR activation by BSA-conjugated cortisol in three additional cell lines, indicating a conserved effect in cells originating from different tissues. Changes in the proteome of BSA-conjugated cortisol treated CCRF-CEM leukemia cells were associated with early and rapid pro-apoptotic, immune-modulatory and metabolic effects aligning with and possibly "priming" classical activities of the cytosolic glucocorticoid receptor (cGR). PCR arrays investigating target genes of the major signaling pathways indicated that the mGR does not exert its effects through the transcriptional activity of any of the most common kinases in these leukemic cells, but RhoA signaling emerged from our pathway analysis. All cell lines tested displayed very low levels of mGR on their surface. Highly sensitive and specific in situ proximity ligation assay visualized low numbers of mGR even in cells previously thought to be mGR negative. We obtained similar results when using three distinct anti-GR monoclonal antibodies directed against the N-terminal half of the cGR. This strongly suggests that the mGR and the cGR have a high sequence homology and most probably originate from the same gene. Furthermore, the mGR appears to reside in caveolae and its association with caveolin-1 (Cav-1) was clearly detected in two of the four cell lines investigated using double recognition proximity ligation assay. Our results indicate however that Cav-1 is not necessary for membrane localization of the GR since CCRF-CEM and Jurkat cells have a functional mGR, but did not express this caveolar protein. However, if expressed, this membrane protein

  4. Beyond Alignment

    DEFF Research Database (Denmark)

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...... is a valuable way of thinking about the viable enterprise and how to architect it....

  5. Robust local intervertebral disc alignment for spinal MRI

    Science.gov (United States)

    Reisman, James; Höppner, Jan; Huang, Szu-Hao; Zhang, Li; Lai, Shang-Hong; Odry, Benjamin; Novak, Carol L.

    2006-03-01

    Magnetic resonance (MR) imaging is frequently used to diagnose abnormalities in the spinal intervertebral discs. Owing to the non-isotropic resolution of typical MR spinal scans, physicians prefer to align the scanner plane with the disc in order to maximize the diagnostic value and to facilitate comparison with prior and follow-up studies. Commonly a planning scan is acquired of the whole spine, followed by a diagnostic scan aligned with selected discs of interest. Manual determination of the optimal disc plane is tedious and prone to operator variation. A fast and accurate method to automatically determine the disc alignment can decrease examination time and increase the reliability of diagnosis. We present a validation study of an automatic spine alignment system for determining the orientation of intervertebral discs in MR studies. In order to measure the effectiveness of the automatic alignment system, we compared its performance with human observers. 12 MR spinal scans of adult spines were tested. Two observers independently indicated the intervertebral plane for each disc, and then repeated the procedure on another day, in order to determine the inter- and intra-observer variability associated with manual alignment. Results were also collected for the observers utilizing the automatic spine alignment system, in order to determine the method's consistency and its accuracy with respect to human observers. We found that the results from the automatic alignment system are comparable with the alignment determined by human observers, with the computer showing greater speed and consistency.

  6. Effect of elbow position on radiographic measurements of radio-capitellar alignment.

    Science.gov (United States)

    Sandman, Emilie; Canet, Fanny; Petit, Yvan; Laflamme, G-Yves; Athwal, George S; Rouleau, Dominique M

    2016-02-18

    To evaluate the effect of different elbow and forearm positions on radiocapitellar alignment. Fifty-one healthy volunteers were recruited and bilateral elbow radiographs were taken to form a radiologic database. Lateral elbow radiographs were taken with the elbow in five different positions: Maximal extension and forearm in neutral, maximal flexion and forearm in neutral, elbow at 90° and forearm in neutral, elbow at 90° and forearm in supination and elbow at 90° and forearm in pronation. A goniometer was used to verify the accuracy of the elbow's position for the radiographs at a 90° angle. The radiocapitellar ratio (RCR) measurements were then taken on the collected radiographs using the SliceOmatic software. An orthopedic resident performed the radiographic measurements on the 102 elbows, for a total of 510 lateral elbow radiographic measures. ANOVA paired t-tests and Pearson coefficients were used to assess the differences and correlations between the RCR in each position. Mean RCR values were -2% ± 7% (maximal extension), -5% ± 9% (maximal flexion), and for elbow at 90° and forearm in neutral -2% ± 5%, supination 1% ± 6% and pronation 1% ± 5%. ANOVA analyses demonstrated significant differences between the RCR in different elbow and forearm positions. Paired t-tests confirmed significant differences between the RCR at maximal flexion and flexion at 90°, and maximal extension and flexion. The Pearson coefficient showed significant correlations between the RCR with the elbow at 90° - maximal flexion; the forearm in neutral-supination; the forearm in neutral-pronation. Overall, 95% of the RCR values are included in the normal range (obtained at 90° of flexion) and a value outside this range, in any position, should raise suspicion for instability.

  7. Effects of a Custom Bite-Aligning Mouthguard on Performance in College Football Players.

    Science.gov (United States)

    Drum, Scott N; Swisher, Anna M; Buchanan, Christina A; Donath, Lars

    2016-05-01

    Besides injury prevention, mouthguards can also be employed to improve physical performance. The effects of personalization of mouthguards have rarely been investigated. This 3-armed, randomized, controlled crossover trial investigated the difference of wearing (a) personalized or custom-made (CM, e.g., bite-aligned), (b) standard (BB, boil and bite), and (c) no (CON) mouthguards on general fitness parameters in experienced collegiate football players. A group of 10 upperclassmen (age, 19-22 years; mean ± SD: age = 20.7 ± 0.8 years; body mass = 83 ± 7.4 kg; height = 179.1 ± 5.2 cm; body mass index = 25.9 ± 2.2 kg·cm), National Collegiate Athletic Association Division II football players with at least 2 years of playing experience, were randomly assigned to the 3 mouthguard conditions: a randomized, within-subjects repeated-measures design was applied. All participants were randomly tested on strength and endurance performance V[Combining Dot Above]O2max testing, with Bruce treadmill protocol including (a) time to fatigue, (b) blood lactate concentration in millimoles per liter at stage 2 and (c) at peak fatigue, (d) flexibility, (e) reaction time, (f) squat vertical jump, (g) countermovement vertical jump, and (h) 1 repetition maximum bench press. Repeated-measures analysis of variance showed no significant differences between the 3 conditions for each outcome variable (0.23 football players is questioned. Further studies with larger sample sizes, gender comparison, and (sport) discipline-specific performance testing are needed.

  8. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira

    2012-10-01

    The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a significant component in the E×B direction. Ions are unmagnetized and, arguably, of wide collisional mean free paths. Collisions between the atomic species are rare. This paper reports on a computational approach that solves numerically the 2D axisymmetric vector form of Ohm's law with no assumptions regarding the resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange) and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the impact of the above-mentioned features on our understanding of the plasma in these accelerators.

  9. Effects of sex and lower extremity alignment on orientation of the knee joint line in knee surgery

    Institute of Scientific and Technical Information of China (English)

    ZENG Yi-ming; WANG You; ZHU Zhen-an; DAI Ke-rong

    2012-01-01

    Background Determination of the proper orientation of the knee articular surface is required both for correction of knee malalignment by osteotomy and for correct component alignment in knee arthroplasty.We sought to determine whether the patients' sex and lower extremity alignment (hip-knee-ankle angle) affects proper knee realignment in osteotomy or component alignment in total knee arthroplasty.Methods We examined 199 healthy adult knees with malalignment of <5° to determine the mechanical medial distal femoral angle,mechanical medial proximal tibial angle,surgical transepicondylar axis angle,and discrepancies between bone-cut orientations of osteotomy or total knee arthroplasty and the joint line of the distal femoral condyles,posterior femoral condyles and proximal tibial plateaus,using a three-dimensional computed tomography model.Results The mean mechanical medial distal femoral angle and mean mechanical medial proximal tibial angle were (94.4±1.9)° and (87.6±1.8)° respectively for women and (93.8±2.0)° and (87.1±.1.4)° respectively for men.The surgical transepicondylar axis angle was (2.9±1.6)° for women and (3.2±1.7)° for men.Independent of sex,the hip-knee-ankle angle was closely related to the mechanical medial distal femoral angle and mechanical medial proximal tibial angle,but not to the surgical transepicondylar axis angle.A slightly more valgus alignment of the knee and a more valgus angulation of the distal femoral joint line were found in women,whereas a more varus angulation of the proximal tibial joint line was found in men.Sex had the greatest effect on knee joint line orientation when the lower extremity was valgus in alignment.Conclusions A more valgus femoral joint line can be expected in women and in persons with valgus lower extremity alignment; a more varus tibial joint line can be found in men and in persons with varus lower extremity alignment.

  10. Aligning Competencies with Success: What Does It Take to Be an Effective Admissions Counselor?

    Science.gov (United States)

    Gansemer-Topf, Ann M.; Von Haden, Kasie; Peggar, Elyse

    2015-01-01

    The admissions counselor position is a common entry-level professional position in higher education. However, little is known about the competencies needed to be successful in this position. Through interviews with entry-level admissions counselors, this study sought to better understand these competencies and their alignment with the recently…

  11. Effects of Enhanced Anchored Instruction on Skills Aligned to Common Core Math Standards

    Science.gov (United States)

    Bottge, Brian A.; Cho, Sun-Joo

    2013-01-01

    This study compared how students with learning difficulties in math (MLD) who were randomly assigned to two instructional conditions answered items on problem solving tests aligned to the Common Core State Standards Initiative for Mathematics. Posttest scores showed improvement in the math performance of students receiving Enhanced Anchored…

  12. Effect of valgus knee alignment on gait biomechanics in healthy women.

    Science.gov (United States)

    Hoch, Matthew C; Weinhandl, Joshua T

    2017-08-01

    The purpose of this study was to compare lower extremity kinematics and kinetics between women with greater or lesser degrees of valgus knee alignment during gait. Nine women with greater valgus knee alignment (11.9±1.6°) were compared to nine women with lesser valgus knee alignment (6.6±2.4°). Participants completed a biomechanical assessment of overground walking for the right limb. Dependent variables included sagittal and frontal plane joint angles and moments for the hip, knee, and ankle at peak vertical ground reaction force, along with knee abduction angular impulse. Sagittal and frontal plane excursions for the hip, knee, and ankle were calculated from heel strike to the peak angle for each variable. The greater valgus alignment group demonstrated lower knee abduction moment (p=0.007), lower knee adduction angle (p0.05). Less knee adduction angle and excursion coupled with lower knee abduction moment and angular impulse in women with greater knee valgus indicates these individuals may be experiencing biomechanics which promote lateral tibiofemoral joint loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of positional dependence and alignment strategy on modeling transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Quader Saad

    2012-07-01

    Full Text Available Abstract Background Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor binding sites (TFBS are not well suited to the variability in the lengths of binding sites. Besides, many methods discard known binding sites while building the model. Moreover, the impact of Information Content (IC and the positional dependence of nucleotides within an aligned set of TFBS has not been well researched for modeling variable-length binding sites. In this paper, we propose ML-Consensus (Mixed-Length Consensus: a consensus model for variable-length TFBS which does not exclude any reported binding sites. Methods We consider Pairwise Score (PS as a measure of positional dependence of nucleotides within an alignment of TFBS. We investigate how the prediction accuracy of ML-Consensus is affected by the incorporation of IC and PS with a particular binding site alignment strategy. We perform cross-validations for datasets of six species from the TRANSFAC public database, and analyze the results using ROC curves and the Wilcoxon matched-pair signed-ranks test. Results We observe that the incorporation of IC and PS in ML-Consensus results in statistically significant improvement in the prediction accuracy of the model. Moreover, the existence of a core region among the known binding sites (of any length is witnessed by the pairwise coexistence of nucleotides within the core length. Conclusions These observations suggest the possibility of an efficient multiple sequence alignment algorithm for aligning TFBS, accommodating known binding sites of any length, for optimal (or near-optimal TFBS prediction. However, designing such an algorithm is a matter of further investigation.

  14. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor.

    Science.gov (United States)

    Olofsson, Niklas; Ek-Weis, Johan; Eriksson, Anders; Idda, Tonio; Campbell, Eleanor E B

    2009-09-23

    The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. The effective Young's modulus for the carbon nanotube arrays was determined by comparing the actuation results with the results of electrostatic simulations and was found to be exceptionally low, of the order of 1-10 MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100-10 were achieved for a frequency range of 0.2-1.5 GHz.

  15. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    Science.gov (United States)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  16. Effect of eye movements and proprioceptive neuromuscular facilitation on balance and head alignment in stroke patients with neglect syndrome.

    Science.gov (United States)

    Park, Si-Eun; Min, Kyung-Ok; Lee, Sang-Bin; Choi, Wan-Suk; Kim, Soon-Hee

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of eye movements and proprioceptive neuromuscular facilitation (PNF) on patients with neglect syndrome. [Subjects and Methods] The subjects were randomly allocated to 2 groups: the eye movements (EM) group; and the PNF with eye movements (PEM) group. The program was conducted five times each week for 6 weeks. Balance (both static and dynamic) and head alignment (craniovertebral angle and cranial rotation angle) were measured before and after testing. [Results] In measurements of static balance, the EM group showed significant improvement in sway length and sway area when examined in the eyes-open condition, but not when examined in the eyes-closed condition. The PEM group showed significant improvement when examined under both conditions. In the assessment of dynamic balance, both groups showed significant improvement in measurements of sway areas. With respect to head alignment, there were no significant differences pre- and post-testing in either the craniovertebral angle or the cranial rotation angle in the EM group, but the PEM group showed significant differences in both measurements. [Conclusion] These results suggest that in stroke patients with neglect syndrome, PNF with eye movements, rather than eye movements alone, has a greater positive effect on balance and head alignment.

  17. Characterizing the effects of aligned collagen fibers and ascorbic acid derivatives on behavior of rabbit corneal fibroblasts.

    Science.gov (United States)

    Phu, Donna; Orwin, Elizabeth J

    2009-01-01

    The cornea is responsible for functional optical activity of the mammalian eye, as it must remain transparent in order to focus light onto the retina. Corneal disease is the second leading cause worldwide of vision loss [1]. Human donor tissue transplantation in the cornea is associated with problems such as immunorejection and recurring graft failures [1]. Tissue engineering offers a promising alternative to using human donor tissues in treating corneal diseases. A viable tissue-engineered cornea must be mechanically resilient to protect the fragile intraocular components of the eye, and optically transparent to refract light onto the retina. In the native cornea, transparency is maintained by both the cells in the stromal layer and the high organization of the extracellular matrix (ECM). This study aims to combine the effects of aligned collagen fibers and ascorbic acid derivatives to control corneal fibroblast behavior to not only express the appropriate proteins, but also to deposit aligned, small diameter collagen fibers that resemble the highly organized structure of the natural ECM. Results from this study suggest that the combined effect of an aligned scaffolding material and ascorbic acid supplements can create a cell-matrix construct that both downregulates expression of the light scattering protein a-smooth muscle actin (alpha-sma) and supports an increased number of cell layers.

  18. Effects of the Hot Alignment of a Power Unit on Oil-Whip Instability Phenomena

    OpenAIRE

    2010-01-01

    This paper shows the results of the analysis of the dynamic behaviour of a power unit, whose shaft-train alignment was significantly influenced by the machine thermal state, that was affected in operating condition by high subsynchronous vibrations caused by oil-whip instability phenomena. The dynamic stiffness coefficients of the oil-film journal bearings of the generator were evaluated considering the critical average journal positions that caused the instability onsets. By including these ...

  19. The alignment of SDSS satellites with the VPOS: effects of the survey footprint shape

    CERN Document Server

    Pawlowski, Marcel S

    2015-01-01

    It is sometimes argued that the uneven sky coverage of the Sloan Digital Sky Survey (SDSS) biases the distribution of satellite galaxies discovered by it to align with the polar plane defined by the 11 brighter, classical Milky Way (MW) satellites. This might prevent the SDSS satellites from adding significance to the MW's Vast Polar Structure (VPOS). We investigate whether this argument is valid by comparing the observed situation with model satellite distributions confined to the exact SDSS footprint area. We find that the SDSS satellites indeed add to the significance of the VPOS and that the survey footprint rather biases away from a close alignment between the plane fitted to the SDSS satellites and the plane fitted to the 11 classical satellites. Finding the observed satellite phase-space alignments of both the classical and SDSS satellites is a ~5{\\sigma} event with respect to an isotropic distribution. This constitutes a robust discovery of the VPOS and makes it more significant than the Great Plane o...

  20. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth

    Science.gov (United States)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-01

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to

  1. Plant Leaf Recognition through Local Discriminative Tangent Space Alignment

    Directory of Open Access Journals (Sweden)

    Chuanlei Zhang

    2016-01-01

    Full Text Available Manifold learning based dimensionality reduction algorithms have been payed much attention in plant leaf recognition as the algorithms can select a subset of effective and efficient discriminative features in the leaf images. In this paper, a dimensionality reduction method based on local discriminative tangent space alignment (LDTSA is introduced for plant leaf recognition based on leaf images. The proposed method can embrace part optimization and whole alignment and encapsulate the geometric and discriminative information into a local patch. The experiments on two plant leaf databases, ICL and Swedish plant leaf datasets, demonstrate the effectiveness and feasibility of the proposed method.

  2. Bokeh Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment ...

  3. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design.

    Science.gov (United States)

    Gnavi, Sara; Fornasari, Benedetta Elena; Tonda-Turo, Chiara; Laurano, Rossella; Zanetti, Marco; Ciardelli, Gianluca; Geuna, Stefano

    2015-01-01

    Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction.

  4. Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging

    CERN Document Server

    Purwar, Harsh; Rozé, Claude; Sedarsky, David; Blaisot, Jean-Bernard

    2015-01-01

    Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of th...

  5. Alignment method for solar collector arrays

    Science.gov (United States)

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  6. The Effect of Aligned and Random Electrospun Fibrous Scaffolds on Rat Mesenchymal Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Zahra Zonoubi

    2012-01-01

    Full Text Available Objective: The development of combining mesenchymal stem cells (MSCs with surface modified three-dimensional (3D biomaterial scaffold provides a desirable alternative for replacement of damaged and diseased tissue. Nanofibrous scaffolds serve as suitable environment for cell attachment and proliferation due to their similarity to the physical dimension of the natural extracellular matrix. In this study the properties of plasma treated poly-C-caprolactone nanofiber scaffolds (p-PCL and unaltered PCL scaffolds were compared,and then p-PCL scaffolds were evaluated for MSC culture.Materials and Methods: Aligned and random PCL nanofibrus scaffolds were fabricatedby electrospining and their surface modified with O2 plasma treatment to enhanceMSC proliferation, adhesion and interaction. Chemical and mechanical characterizationswere carried out using scanning electron microscopy (SEM, water contact angle and tensile testing. Cell adhesion and morphology were evaluated using SEM 1 day after culture. Statistical analysis was carried out using one way analysis of variance(ANOVA.Results: The proliferation of MSCs were evaluated using 3-(4,5-Dimethylthiazol-2-yl-2,5-DiphenyltetrazoliumBromide(MTT assay on day 1, 3, and 5 after cell culture. Results showed that the numbers of cells that had grown on PCL nanofibrous scaffolds were significantly higher than those of control surfaces without nanofibers. Furthermore, the proliferation of MSCs on random nanofiber was significantly higher compared to that on aligned nanofiber.Conclusion: This study showed that while both aligned and random plasma treated PCL nanofibrous scaffold are more suitable substrates for MSC growth than tissue culture plates, random nanofiber best supported the proliferation of MSCs.

  7. The effect of blockage on power production for laterally aligned wind turbines

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels

    2015-01-01

    This paper studies the change in the individual power coefficients for a laterally aligned row of wind turbines over a single, free turbine in the context of varying inflow directions via numerical simulations. All turbines were rotating in-line with the main flow direction. The problem definition...... to be detrimental in avoiding any domain-inflicted blockage. Increasing the misalignment of the main flow direction with the row of turbines led to significant variations in the power production across turbines. At the largest inflow angle of 45 it varied from -1.1 % to 2 %. As a whole, the power production...

  8. Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.

    2015-03-01

    Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.

  9. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  10. Automatic slice-alignment method in cardiac magnetic resonance imaging for evaluation of the right ventricle in patients with pulmonary hypertension

    Science.gov (United States)

    Yokoyama, Kenichi; Nitta, Shuhei; Kuhara, Shigehide; Ishimura, Rieko; Kariyasu, Toshiya; Imai, Masamichi; Nitatori, Toshiaki; Takeguchi, Tomoyuki; Shiodera, Taichiro

    2015-09-01

    We propose a new automatic slice-alignment method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, to simplify right ventricular cardiac scan planning and assess its accuracy and the clinical acceptability of the acquired imaging planes in the evaluation of patients with pulmonary hypertension. Steady-state free precession (SSFP) sequences covering the whole heart in the end-diastolic phase with ECG gating were used to acquire 2D axial multislice images. To realize right ventricular scan planning, two morphological feature points are added to be detected and a total of eight morphological features of the heart were extracted from these series of images, and six left ventricular planes and four right ventricular planes were calculated simultaneously based on the extracted features. The subjects were 33 patients (25 with chronic thromboembolic pulmonary hypertension and 8 with idiopathic pulmonary arterial hypertension). The four right ventricular reference planes including right ventricular short-axis, 4-chamber, 2-chamber, and 3-chamber images were evaluated. The acceptability of the acquired imaging planes was visually evaluated using a 4-point scale, and the angular differences between the results obtained by this method and by conventional manual annotation were measured for each view. The average visual scores were 3.9±0.4 for short-axis images, 3.8±0.4 for 4-chamber images, 3.8±0.4 for 2-chamber images, and 3.5±0.6 for 3-chamber images. The average angular differences were 8.7±5.3, 8.3±4.9, 8.1±4.8, and 7.9±5.3 degrees, respectively. The processing time was less than 2.5 seconds in all subjects. The proposed method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, can provide clinically acceptable planes in a short time and is useful because special proficiency in performing cardiac MR for

  11. Electric field effects on alignment of lamellar structures in diblock copolymer thin films studied by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiuli

    2006-12-07

    We investigated the lamellar orientation in thin films of a diblock copolymer P(S-b-MMA), under competing effects of surface interactions and an electric field applied perpendicular to the substrate. The surface effects tend to align the lamellae parallel to the substrate while the electric field tends to align the lamellae perpendicular to the substrate. Using neutron reflectivity, neutron diffuse scattering, and neutron small-angle scattering, we achieved a quantitative analysis of the internal structure of the films. Film thickness was found to play a non-trivial role in determining the structure of the films. A complete alignment by the surface effects was observed in the thinner films by annealing. The parallel orientation remains stable even if an electric field as strong as 40 V/{mu}m is applied. In the thicker films, a mixed orientation with boundary layers parallel and the central part partially perpendicular to the substrate was observed after annealing. The mixed orientation becomes unstable under a small compressive stress, and will be converted into a completely parallel orientation. The parallel orientation induced by the compressive stress remains stable as long as the electric field is weaker than several ten V/{mu}m. Only a field of about 40 V/{mu}m is able to stabilize the above mentioned mixed orientation. A fully perpendicular orientation was never observed in our experiments. Diffuse scattering shows a mosaic structure in the absence of an electric field, whose mosaicity will be increased by the torque exerted by an electric field. The lateral correlation length of the lamellar domains is estimated as 1-2 {mu}m. Limited by the small q{sub x}-range we have used, a clear statement on the existence of the electric-field-induced structural undulations predicted by the Onuki's theory cannot be made from our experiments. (orig.)

  12. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  14. Computational design and engineering of polymeric orthodontic aligners.

    Science.gov (United States)

    Barone, S; Paoli, A; Razionale, A V; Savignano, R

    2016-10-05

    Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner

  15. Dynamic measurement of patello-femoral joint alignment using weight-bearing magnetic resonance imaging (WB-MRI).

    Science.gov (United States)

    Mariani, Silvia; La Marra, Alice; Arrigoni, Francesco; Necozione, Stefano; Splendiani, Alessandra; Di Cesare, Ernesto; Barile, Antonio; Masciocchi, Carlo

    2015-12-01

    Aim of our work was to compare standard and weight-bearing WB-MRI to define their contribution in unmasking patello-femoral (PF) maltracking and to define what measurement of patellar alignment is the most reliable. We prospectively collected 95 non consecutive patients, clinically divided into 2 groups: group A (the control group), including 20 patients (negative for patellar maltracking), and group B including 75 patients (positive for patellar maltracking). The patients underwent a dedicated 0.25 T MRI, in supine and WB position, with knee flexion of 12-15°. The following measurements were performed: Insall-Salvati index (IS), lateral patellar displacement (LPD), lateral patello-femoral angle (LPA) and lateral patellar tilt (LPT). Quantitative and qualitative statistical analyses were performed to compare the results obtained before and after WB-MRI. Measurements were subsequently performed on both groups. Group A patients showed no statistically significant variations at all measurements both on standard and WB-MRI. On the basis of measurements made on standard MRI, group B patients were divided into group B1 (23 patients) (negative or positive at 1 measurement) and group B2 (52 patients) (positive at 2 or more measurements). After WB-MRI, group B1 patients were divided into group B1a (6 patients), in case they remained positive at 0/1 measurement, and group B1b (17 patients), in case they became positive at 2 or more measurements. All group B2 patients confirmed to be positive at 2 or more measurements at WB-MRI. Quantitative statistical analysis showed that LPT and LPA were the most reproducible and clinically useful measurements. Qualitative statistical analysis performed on standard and WB-MRI demonstrated that LPT was the best predictive measurement. This study demonstrates both the high diagnostic value of WB-MRI in unmasking PF-maltracking and the best predictive value of LPT measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Jung

    2014-01-01

    Full Text Available The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.

  17. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    Science.gov (United States)

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-07

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers.

  18. Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment

    Science.gov (United States)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-11-01

    We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.

  19. The effect of blockage on power production for laterally aligned wind turbines

    Science.gov (United States)

    Meyer Forsting, A. R.; Troldborg, N.

    2015-06-01

    This paper studies the change in the individual power coefficients for a laterally aligned row of wind turbines over a single, free turbine in the context of varying inflow directions via numerical simulations. All turbines were rotating in-line with the main flow direction. The problem definition is similar to that of many wind turbine testing sites and wind farms. Hence any changes in the individual turbine power production could have implications regarding power curve validation procedures.These changes are relatively small and therefore the size of the computational domain was identified to be detrimental in avoiding any domain-inflicted blockage. Increasing the misalignment of the main flow direction with the row of turbines led to significant variations in the power production across turbines. At the largest inflow angle of 45° it varied from -1.1% to 2%. As a whole, the power production increased by about 0.5%, almost independent of the inflow direction.

  20. SubVis: an interactive R package for exploring the effects of multiple substitution matrices on pairwise sequence alignment

    Directory of Open Access Journals (Sweden)

    Scott Barlowe

    2017-06-01

    Full Text Available Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment

  1. SubVis: an interactive R package for exploring the effects of multiple substitution matrices on pairwise sequence alignment

    Science.gov (United States)

    Coan, Heather B.; Youker, Robert T.

    2017-01-01

    Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information. PMID:28674656

  2. Particle alignment reliability in single particle electron cryomicroscopy: a general approach

    OpenAIRE

    Vargas, J.; J. Otón; Marabini, R; Carazo, J.M.; Sorzano, C.O.S.

    2016-01-01

    Electron Microscopy is reaching new capabilities thanks to the combined effect of new technologies and new image processing methods. However, the reconstruction process is still complex, requiring many steps and elaborated optimization procedures. Therefore, the possibility to reach a wrong structure exists, justifying the need of robust statistical tests. In this work, we present a conceptually simple alignment test, which does not require tilt-pair images, to evaluate the alignment consiste...

  3. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system

    Directory of Open Access Journals (Sweden)

    S. Saito

    2008-08-01

    Full Text Available Mid-latitude F-region field-aligned irregularities (FAIs were studied by using the middle-and-upper atmosphere (MU radar ultra-multi-channel system with the radar imaging technique. On 12 June 2006, F-region FAI echoes with a period of about one hour were observed intermittently. These echoes were found to be embedded in medium-scale traveling ionospheric disturbances (MSTIDs observed as variations of total electron content (TEC. The echoes drifting away from (toward the radar were observed in the depletion (enhancement phase of the MSTID. The Doppler velocity of the echoes is consistent with the range rates in the the range-time-intensity (RTI maps. Fine scale structures with a spatial scale of 10 km or less were found by the radar imaging analysis. Those structures with positive Doppler velocities (moving away from the radar appeared to drift north- (up- westward, and those with negative Doppler velocities south- (down- eastward approximately along the wavefronts of the MSTID. FAIs with positive Doppler velocities filling TEC depletion regions were observed.

  4. Aligned-Braided Nanofibrillar Scaffold with Endothelial Cells Enhances Arteriogenesis.

    Science.gov (United States)

    Nakayama, Karina H; Hong, Guosong; Lee, Jerry C; Patel, Jay; Edwards, Bryan; Zaitseva, Tatiana S; Paukshto, Michael V; Dai, Hongjie; Cooke, John P; Woo, Y Joseph; Huang, Ngan F

    2015-07-28

    The objective of this study was to enhance the angiogenic capacity of endothelial cells (ECs) using nanoscale signaling cues from aligned nanofibrillar scaffolds in the setting of tissue ischemia. Thread-like nanofibrillar scaffolds with porous structure were fabricated from aligned-braided membranes generated under shear from liquid crystal collagen solution. Human ECs showed greater outgrowth from aligned scaffolds than from nonpatterned scaffolds. Integrin α1 was in part responsible for the enhanced cellular outgrowth on aligned nanofibrillar scaffolds, as the effect was abrogated by integrin α1 inhibition. To test the efficacy of EC-seeded aligned nanofibrillar scaffolds in improving neovascularization in vivo, the ischemic limbs of mice were treated with EC-seeded aligned nanofibrillar scaffold; EC-seeded nonpatterned scaffold; ECs in saline; aligned nanofibrillar scaffold alone; or no treatment. After 14 days, laser Doppler blood spectroscopy demonstrated significant improvement in blood perfusion recovery when treated with EC-seeded aligned nanofibrillar scaffolds, in comparison to ECs in saline or no treatment. In ischemic hindlimbs treated with scaffolds seeded with human ECs derived from induced pluripotent stem cells (iPSC-ECs), single-walled carbon nanotube (SWNT) fluorophores were systemically delivered to quantify microvascular density after 28 days. Near infrared-II (NIR-II, 1000-1700 nm) imaging of SWNT fluorophores demonstrated that iPSC-EC-seeded aligned scaffolds group showed significantly higher microvascular density than the saline or cells groups. These data suggest that treatment with EC-seeded aligned nanofibrillar scaffolds improved blood perfusion and arteriogenesis, when compared to treatment with cells alone or scaffold alone, and have important implications in the design of therapeutic cell delivery strategies.

  5. Exploring the electrodes alignment and mushrooming effects on weld geometry of dissimilar steels during the spot welding process

    Indian Academy of Sciences (India)

    Nachimani Charde

    2014-12-01

    The class two of RWMA electrode caps has very common applicationpurpose for the welding of steels and withstand for high thermal application on wrought cast. It has been experimentally used to weld carbon and stainless steels up to 900 weld attempts using AC waveform, C-type JPC 75 kVA, Japanese made spot welder. So the electrode alignments and resulting mushrooming effects are finally analysed in this research as well as the weld geometry of dissimilar (carbon and stainless) steels. When considering such weld joints, the heat imbalances are very interesting factors on spot welding research and therefore I have simulated the dissimilar weld joints using Ansys 14. Initially, it was simulated and later those results are compared with real welded samples. The common welded regions such as: fusion zones, heat affected zones, heat extended zones and base metals are all well-noticed for carbon steel sides but not for stainless steel sides. Besides, the electrode mushrooming effect on both sides of electrodes are not parallel deterioration and it has some demerits on internal structure indeed. Some of the dissimilar welded samples and electrode caps are eventually underwent metallurgical test to identify the improper alignment.

  6. Sagittal lumbopelvic alignment in patients with low back pain and the effects of a high-load lifting exercise and individualized low-load motor control exercises-a randomized controlled trial.

    Science.gov (United States)

    Berglund, Lars; Aasa, Björn; Michaelson, Peter; Aasa, Ulrika

    2017-07-28

    Assessment of posture and lumbopelvic alignment is often the main focus in the classification and treatment of patients with low back pain (LBP). However, little is known regarding the effects of motor control interventions on objective measures of lumbopelvic alignment. The primary aim of this study was to describe the variation of sagittal lumbopelvic alignment in patients with nociceptive mechanical LBP. The secondary aim was to compare the effects of a high-load lifting exercise (HLL) and low-load motor control exercises (LMC) on the change in lumbopelvic alignment with a special emphasis on patients with high and low degrees of lumbar lordosis (lu) and sacral angle (sa). This study is a secondary analysis of a randomized controlled trial evaluating the effects of HLL and LMC. Patients from the primary study, that is, patients categorized with nociceptive mechanical LBP, who agreed to participate in the radiographic examination were included (n=66). Lateral plain radiographic images were used to evaluate lumbopelvic alignment regarding the lumbar lordosis and the sacral angle as outcomes, with posterior bend as an explanatory variable. The participants were recruited to the study from two occupational health-care facilities. They were randomized to either the HLL or the LMC intervention group and offered 12 supervised exercise sessions. Outcome measures were collected at baseline and following the end of intervention period 2 months after baseline. Between- and within-group analyses of intervention groups and subgroups based on the distribution of the baseline values for the lumbar lordosis and the sacral angle, respectively (LOW, MID, and HIGH), were performed using both parametric and non-parametric statistics. The ranges of values for the present sample were 26.9-91.6° (M=59.0°, standard deviation [SD]=11.5°) for the lumbar lordosis and 18.2-72.1° (M=42.0°, SD=9.6°) for the sacral angle. There were no significant differences between the intervention

  7. Aligning molecules with intense nonresonant laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Safvan, C.P.; Sakai, H.

    1999-01-01

    Molecules in a seeded supersonic beam are aligned by the interaction between an intense nonresonant linearly polarized laser field and the molecular polarizability. We demonstrate the general applicability of the scheme by aligning I2, ICl, CS2, CH3I, and C6H5I molecules. The alignment is probed...... by mass selective two dimensional imaging of the photofragment ions produced by femtosecond laser pulses. Calculations on the degree of alignment of I2 are in good agreement with the experiments. We discuss some future applications of laser aligned molecules....

  8. Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yong; Li Ruying; Liu Hao [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON. N6A 5B9 (Canada); Sun Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON. N6A 5B9 (Canada); Merel, Philippe; Desilets, Sylvain [Defence Research and Development Canada- Valcartier, 2459 Boulevard Pie-XI nord, Quebec, QC G3J 1X5 (Canada)

    2009-02-15

    We report here a facile way to grow aligned multi-walled carbon nanotubes (MWCNTs) on various metal (e.g. gold, tungsten, vanadium and copper)/silicon electrically conductive substrates by aerosol-assisted chemical vapor deposition (AACVD). Without using any buffer layers, integration of high quality MWCNTs to the conductive substrates has been achieved by introducing appropriate amount of water vapor into the growth system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) determination indicate tidy morphology and narrow diameter distribution of the nanotubes as well as promising growth rate suitable for industrial applications. Raman spectra analysis illustrates that the structural order and purity of the nanotubes are significantly improved in the presence of water vapor. The growth mechanism of the nanotubes has been discussed. It is believed that water vapor plays a key role in the catalyst-substrate interaction and nucleation of the carbon nanotubes on the conductive substrates. This synthesis approach is expected to be extended to other catalyst-conductive substrate systems and provide some new insight in the direct integration of carbon nanotubes onto conductive substrates, which promises great potential for applications in electrical interconnects, contacts for field emitters, and other electronic nanodevices.

  9. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  10. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia.

    Science.gov (United States)

    Fatone, Stefania; Gard, Steven A; Malas, Bryan S

    2009-05-01

    To investigate the effect of ankle-foot orthosis (AFO) alignment and foot-plate length on sagittal plane knee kinematics and kinetics during gait in adults with poststroke hemiplegia. Repeated measures, quasi-experimental study. Motion analysis laboratory. Volunteer sample of adults with poststroke hemiplegia (n=16) and able-bodied adults (n=12) of similar age. Subjects with hemiplegia were measured walking with standardized footwear in 4 conditions: (1) no AFO (shoes only); (2) articulated AFO with 90 degrees plantar flexion stop and full-length foot-plate-conventionally aligned AFO (CAFO); (3) the same AFO realigned with the tibia vertical in the shoe-heel-height compensated AFO (HHCAFO); and (4) the same AFO (tibia vertical) with 3/4 length foot-plate-3/4 AFO. Gait of able-bodied control subjects was measured on a single occasion to provide a normal reference. Sagittal plane ankle and knee kinematics and kinetics. In adults with hemiplegia, walking speed was unaffected by the different conditions (P=.095). Compared with the no AFO condition, all AFOs decreased plantar flexion at initial contact and mid-swing (Phemiplegia.

  11. The alignment between effective people management, business strategy and organisational performance in the banking and insurance sector

    Directory of Open Access Journals (Sweden)

    Ruwayne Kock

    2002-10-01

    Full Text Available The aim of the study was to determine the nature of the alignment between people management effectiveness, business strategy and organisational performance within the banking and insurance sector in South Africa. From the field study, it was evident that the majority of the participating companies fell short of people management best practices and were therefore unable to support their business strategies, which were in line with best practices. The organisational performance data was insufficient to determine the nature of the alignment between organisational performance, people management, and business strategy. The South African banking and insurance industry needs to realign their people management component to support the appropriate business strategy and to produce a desired level of organisational performance. Opsomming Die doel van die studie was om die onderlinge verhouding tussen mensbestuursdoeltreffendheid, besigheidstrategie en organisasieresultate binne die Suid-Afrikaanse bank- en versekeringsektor te ondersoek. Diestudie het duidelik gewys dat toonaangewende bestuurspraktyke by die meerderheid van die deelnemende organisasies ontbreek. Die mensbestuur was nie in staat om die besigheidstrategieë te ondersteun nie wat wel met wêreldwye beste praktyke ooreenstem. Inligting oor organisasieresultate was onvoldoende om enige afleiding te maak. Mensbestuur in die Suid-Afrikaanse bank- en versekeringsektor moet met die besigheidstrategie belyn word om die verwagte organisasieresultate te lewer.

  12. Edge Effects and Coupling Effects in Atomic Force Microscope Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; MENGYong-gang; WENShi-zhu

    2004-01-01

    The AFM images were obtained by an atomic force microscope (AFM) and transformed from the deformation of AFM micro cantilever probe. However, due to the surface topography and surface forces applied on the AFM tip of sample, the deformation of AFM probe results in obvious edge effects and coupling effects in the AFM images. The deformation of AFM probe was analyzed,the mechanism of the edge effects and the coupling effects was investigated, and their results in the AFM images were studied. It is demanstrated by the theoretical analysis and AFM experiments that the edge effects make lateral force images more clear than the topography images, also make extraction of frictional force force from lateral force images mare complex and difficult. While the coupling effects make the comparison between topography images and lateral force images mare advantage to acquire precise topography information by AFM.

  13. Alignment and focus of mirrored facets of a heliosat

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B; Moss, Timothy A

    2013-11-12

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoretical image.

  14. GASSST: global alignment short sequence search tool

    National Research Council Canada - National Science Library

    Rizk, Guillaume; Lavenier, Dominique

    2010-01-01

    .... Our goal with our new aligner GASSST (Global Alignment Short Sequence Search Tool) is thus 2-fold-achieving high performance with no restrictions on the number of indels with a design that is still effective on long reads...

  15. The SuperCam Remote Sensing Suite for MARS 2020: Nested and Co-Aligned LIBS, Raman, and VISIR Spectroscopies, and color micro-imaging

    Science.gov (United States)

    Fouchet, Thierry; Wiens, Roger; Maurice, Sylvestre; Johnson, Jeffrey R.; Clegg, Samuel; Sharma, Shiv; Rull, Fernando; Montmessin, Franck; Anderson, Ryan; Beyssac, Olivier; Bonal, Lydie; Deflores, Lauren; Dromart, Gilles; Fischer, William; Forni, Olivier; Gasnault, Olivier; Grotzinger, John P.; Mangold, Nicolas; Martinez-Frias, Jesus; MacLennan, Scott; McCabe, Kevin; cais, Philippe; Nelson, Tony; Angel, Stanley; Beck, Pierre; Benzerara, Karim; Bernard, Sylvain; Bousquet, Bruno; Bridges, Nathan; Cloutis, Edward; Fabre, Cécile; Grasset, Olivier; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Leveille, Rich; Lewin, Eric; McConnochie, Timothy H.; Melikechi, Noureddine; Meslin, Pierre-Yves; Misra, Anupam; Montagnac, Gilles; Newsom, Horton; Ollila, Ann; Pinet, Patrick; Poulet, Francois; Sobron, Pablo

    2016-10-01

    As chartered by the Science Definition Team, the Mars 2020 mission addresses four primary objectives: A. Characterize the processes that formed and modified the geologic record within an astrobiologically relevant ancient environment, B. Perform astrobiologically relevant investigations to determine habitability, search for materials with biosignature presentation potential, and search for evidence of past life, C. Assemble a returnable cache of samples and D. Contribute to preparation for human exploration of Mars. The SuperCam instrument, selected for the Mars 2020 rover, as a suite of four instruments, provides nested and co-aligned remote investigations: Laser Induced Breakdown Spectroscopy (LIBS), Raman spectroscopy and time-resolved fluorescence (TRF), visible and near-infrared spectroscopy (VISIR), and high resolution color imaging (RMI). SuperCam appeals broadly to the four Mars 2020 objectives.In detail, SuperCam will perform:1. Microscale mineral identification by combining LIBS elemental and VISIR mineralogical spectroscopies, especially targeting secondary minerals2. Determine the sedimental stratigraphy through color imaging and LIBS and VISIR spectroscopy3. Search for organics and bio-signatures with LIBS and Raman spectroscopy4. Quantify the volatile content of the rocks by LIBS spectroscopy to determine the degree of aquaeous alteration5. Characterize the texture of the rocks by color imaging to determine their alteration processes6. Characterize the rocks' coatings by LIBS spectroscopy7. Characterize the soil and its potential for biosignature preservation8. Monitor the odd-oxygen atmospheric chemistry.To meet these goals SuperCam will perform LIBS spectroscopy on 0.5 mm spot up to 7-meter distance, perform Raman and time-resolved fluoresence up to 12-m distance with a 0.8 mrad angular resolution, a 100 ns time gating in the 534-850 nm spectral range, acquire VISIR spectra in the range 0.4-0.85 μm with a resolution of 0.35 nm, and in the IR range

  16. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  17. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    Science.gov (United States)

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Curriculum-Faculty-Reinforcement Alignment and Its Effect on Learning Retention of Core Marketing Concepts of Marketing Capstone Students

    Science.gov (United States)

    Raska, David; Keller, Eileen Weisenbach; Shaw, Doris

    2014-01-01

    Curriculum-Faculty-Reinforcement (CFR) alignment is an alignment between fundamental marketing concepts that are integral to the mastery of knowledge expected of our marketing graduates, their perceived importance by the faculty, and their level of reinforcement throughout core marketing courses required to obtain a marketing degree. This research…

  19. The Curriculum-Faculty-Reinforcement Alignment and Its Effect on Learning Retention of Core Marketing Concepts of Marketing Capstone Students

    Science.gov (United States)

    Raska, David; Keller, Eileen Weisenbach; Shaw, Doris

    2014-01-01

    Curriculum-Faculty-Reinforcement (CFR) alignment is an alignment between fundamental marketing concepts that are integral to the mastery of knowledge expected of our marketing graduates, their perceived importance by the faculty, and their level of reinforcement throughout core marketing courses required to obtain a marketing degree. This research…

  20. The effect of protective football equipment on alignment of the injured cervical spine. Radiographic analysis in a cadaveric model.

    Science.gov (United States)

    Palumbo, M A; Hulstyn, M J; Fadale, P D; O'Brien, T; Shall, L

    1996-01-01

    No universally accepted management protocol is available for dealing with the protective equipment worn by a neck-injured football player. The purpose of this cadaveric study was to determine the effects of the helmet and shoulder pads on the alignment of 1) the intact lower cervical spine and 2) the partially destabilized C5-6 motion segment. In Group I cadavers (N = 15), the lower cervical spine was tested in an intact condition. In Group II (N = 8), the C5-6 motion segment was tested in both an intact and a partially destabilized condition. Each cadaver was placed supine on a backboard and four lateral cervical radiographs were obtained as follows: no protective equipment, helmet only, helmet and shoulder pads, and shoulder pads only. Results for Group I showed that wearing both helmet and shoulder pads did not result in a significant change in cervical lordosis when compared with the neutral position (i.e., the no-equipment test). Cervical lordosis was significantly decreased in the helmet-only category (mean, 9.6 degrees) and significantly increased in the shoulder pads-only category (mean, 13.6 degrees). In Group II, destabilized specimens under the helmet test situation showed a significant mean increase in C5-6 forward angulation (16.5 degrees), posterior disk space height (3.8 mm), and dorsal element distraction (8.3 mm). Immobilizing the neck-injured football player with only the helmet or only the shoulder pads in place violates the principle of splinting the cervical spine in neutral alignment, according to our findings. We support the concept that removal of the helmet and shoulder pads should be an all-or-none proposition.

  1. Effect of Long Term Oral Warfarin Sodium Treatment on Bone Mineral Density Scores and Spinal Sagittal Alignment

    Directory of Open Access Journals (Sweden)

    Kamil Eyvazov

    2016-04-01

    Full Text Available Objective: The aim of this study was to investigate the effect of long term oral warfarin sodium treatment on bone mineral density (BMD and spinal sagittal alignment. Materials and Methods: Sixty four participants were enrolled for this retrospective study. Participants were divided into two groups-participants who had taken warfarin sodium for at least two years (n=33 and participants who had never taken warfarin sodium (n=31. All of the individuals were evaluated at the same center. Dual X-ray absorptiometry (DXA was used for measuring BMD. Whole spine x-rays were obtained for sagittal assessment and the following parameters were measured: Cervical lordosis, thoracic kyphosis, lumbar lordosis, pelvic incidence, pelvic tilt, sacral slope and sagittal vertical axis (SVA. Results: The mean BMD value was significantly higher in participants who had not taken warfarin sodium compared to participants who had taken warfarin sodium. The differences between the average values were 0.1552 g/cm2 in BMD; 2.1 in T scores; 1.4 in Z scores. On the radiological evaluation of the spine, cervical lordosis was 7.1 degrees lower, lumbar lordosis was 4.7 degrees lower and thoracic kyphosis was 5.3 degrees higher in the patients using drug. C7 plumb line was interchanged forward in the patients using drug. Conclusions: This study shows that warfarin sodium use worsens bone quality in the lumbar region and does not affect bone quality in the femoral region. Furthermore, warfarin sodium use also reduces physiological lordosis and enhances thoracic kyphosis. Consequences of these changes are the likely cause of sagittal spinal anterior imbalance. Long-term oral warfarin sodium use affect bone mineral density and spinal alignment. Our conclusion about giving clear message and show exactly mechanism we need prospective randomized multicentre studies in future. We strongly believe this study will be pioneer for future researches.

  2. Cervical Sagittal Alignment in Extensive Fusions for Lenke 3C and 6C Scoliosis: The Effect of Upper Instrumented Vertebra.

    Science.gov (United States)

    Yanik, Hakan Serhat; Ketenci, Ismail Emre; Erdem, Sevki

    2017-03-15

    A retrospective analysis of cervical sagittal alignment (CSA) in Lenke 3C and 6C adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate CSA according to upper instrumented vertebra (UIV) level. Hypokyphotic effect of extensive fusions of Lenke 3C and 6C curves on thoracic spine leads to kyphotic changes in cervical region. No study has evaluated the CSA in these patients according to UIV level. A total of 55 Lenke 3C and 6C AIS patients who underwent posterior fusion with pedicle screw instrumentation were recruited in this study. Patients were divided into three groups according to UIV level, which was determined preoperatively on the basis of shoulder balance. There were 22, 19, and 14 patients in T2, T3, and T4 groups, respectively. Three groups were similar according to demographic and preoperative coronal and sagittal alignment parameters. Patients were compared at two-year follow-up according to radiographic changes in coronal and sagittal planes. Main sagittal parameters were C2-C7 cervical lordosis (CL), T1 slope, T1-T5, and T5-T12 kyphosis. Clinical outcomes were assessed using scoliosis research society (SRS)-22 and short form (SF)-36 questionnaires. In all patients, C2-C7 CL, T5-T12 kyphosis, and T1 slope significantly decreased postoperatively (P cervical kyphosis (CK). Thirteen of them had preoperative CL and 14 had CK. Twenty-eight of 41 patients with preoperative CL remained in lordotic CSA postoperatively. SRS-22 and SF-36 scores did not change significantly after the surgery. In Lenke 3C and 6C AIS, postoperative CSA is independent from UIV level. Decreased CL is mainly caused by T5-T12 and T1 slope decrease. In order to achieve level shoulders, fusion can be extended to appropriate upper level, without increased risk of CK. 4.

  3. Electron paramagnetic resonance studies of magnetically aligned phospholipid bilayers utilizing a phospholipid spin label: the effect of cholesterol.

    Science.gov (United States)

    Dave, Paresh C; Nusair, Nisreen A; Inbaraj, Johnson J; Lorigan, Gary A

    2005-08-15

    X-band EPR spectroscopy has been employed to study the dynamic properties of magnetically aligned phospholipid bilayers (bicelles) utilizing a variety of phosphocholine spin labels (n-PCSL) as a function of cholesterol content. The utilization of both perpendicular and parallel aligned bicelles in EPR spectroscopy provides a more detailed structural and orientational picture of the phospholipid bilayers. The magnetically aligned EPR spectra of the bicelles and the hyperfine splitting values reveal that the addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC bicelles. The corresponding molecular order parameter, Smol, of the DMPC/DHPC bicelles increased upon addition of cholesterol. Cholesterol also decreased the rotational motion and increased the degree of anisotropy in the interior region of the bicelles. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other model membrane systems and that the magnetically aligned bicelles are an excellent model membrane system.

  4. SU-E-J-119: What Effect Have the Volume Defined in the Alignment Clipbox for Cervical Cancer Using Automatic Registration Methods for Cone- Beam CT Verification?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W; Yang, H; Wang, Y; Jia, H; Xie, Y [Taizhou Hospital, Wenzhou Medical College, Taizhou, Zhejiang (China)

    2014-06-01

    Purpose: To investigate the impact of different clipbox volumes with automated registration techniques using commercially available software with on board volumetric imaging(OBI) for treatment verification in cervical cancer patients. Methods: Fifty cervical cancer patients received daily CBCT scans(on-board imaging v1.5 system, Varian Medical Systems) during the first treatment week and weekly thereafter were included this analysis. A total of 450 CBCT scans were registered to the planning CTscan using pelvic clipbox(clipbox-Pelvic) and around PTV clip box(clipbox- PTV). The translations(anterior-posterior, left-right, superior-inferior) and the rotations(yaw, pitch and roll) errors for each matches were recorded. The setup errors and the systematic and random errors for both of the clip-boxes were calculated. Paired Samples t test was used to analysis the differences between clipbox-Pelvic and clipbox-PTV. Results: . The SD of systematic error(σ) was 1.0mm, 2.0mm,3.2mm and 1.9mm,2.3mm, 3.0mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. The average random error(Σ)was 1.7mm, 2.0mm,4.2mm and 1.7mm,3.4mm, 4.4mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. But, only the SI direction was acquired significantly differences between two image registration volumes(p=0.002,p=0.01 for mean and SD). For rotations, the yaw mean/SD and the pitch SD were acquired significantly differences between clipbox-Pelvic and clipbox-PTV. Conclusion: The defined volume for Image registration is important for cervical cancer when 3D/3D match was used. The alignment clipbox can effect the setup errors obtained. Further analysis is need to determine the optimal defined volume to use the image registration in cervical cancer. Conflict of interest: none.

  5. Alignment-Annotator web server: rendering and annotating sequence alignments.

    Science.gov (United States)

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Magnetic alignment and the Poisson alignment reference system

    Science.gov (United States)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  7. Image Alignment and Correlation System.

    Science.gov (United States)

    1980-07-01

    SIGNO RilE 1 1BA3 SFLAG RilE 1 18A4 SNFLAG RMBE 1 laps ORG $laDps___ laps DELTA RMB 10IO *---- ----- -- 18E2 EICDAR RMBE 5121’ 1AE2 E4-DRYLF RMBE 5...189A DIRECT RAID 1 189D DTHR11 RME4 1 3B9C- DTHR12 RAID 1 189D DTHR21 RAID 1 189E DTHR22 RAID 1 T8__l9F AIpLX -- __ __ ISAI SIGNI RAID 1 18A2 SIGNO ...l BC71 B6 18 27 LDAA COR4 BC74- B9 -18-A2 ADCA- - SIGNO BC77 87 18 27 STAA COR4 __ EI7A 7A 18 08 DEC CTR________ _________ 1:-7D--20 ri-~-A-Rr3 BC7F 7D

  8. Effect of upflowing field-aligned electron beams on the electron cyclotron waves in the auroral magnetosphere

    Indian Academy of Sciences (India)

    Sushil Kumar; S K Singh; A K Gwal

    2007-04-01

    The role of low density upflowing field-aligned electron beams (FEBs) on the growth rate of the electron cyclotron waves at the frequencies r < ­e, propagating downward in the direction of the Earth's magnetic field, has been analysed in the auroral region at e/e < 1 where e is the plasma frequency and ­e is the gyrofrequency. The FEBs with low to high energy (b) but with low temperature (∥b) have no effect on these waves. The FEBs with b < 1 keV and ∥b (> 1.5 keV) have been found to have significant effect on the growth rate. Analysis has revealed that it is mainly the ∥b which inhibits the growth rate (magnitude) and the range of frequency (bandwidth) of the instability mainly in the higher frequency spectrum. The inhibition in the growth rate and bandwidth increases with increase in ∥b. The FEBs with less b (giving drift velocity) reduce growth rate more than the beams with larger b. The inhibition of growth rate increases with the increase in the ratio e/e indicating that the beams are more effective at higher altitudes.

  9. Image watermarking against lens flare effects

    Science.gov (United States)

    Chotikawanid, Piyanart; Amornraksa, Thumrongrat

    2017-02-01

    Lens flare effects in various photo and camera software nowadays can partially or fully damage the watermark information within the watermarked image. We propose in this paper a spatial domain based image watermarking against lens flare effects. The watermark embedding is based on the modification of the saturation color component in HSV color space of a host image. For watermark extraction, a homomorphic filter is used to predict the original embedding component from the watermarked component, and the watermark is blindly recovered by differentiating both components. The watermarked image's quality is evaluated by wPSNR, while the extracted watermark's accuracy is evaluated by NC. The experimental results against various types of lens flare effects from both computer software and mobile application showed that our proposed method outperformed the previous methods.

  10. Strategy Precedes Operational Effectiveness: Aligning High Graduation Rankings with Competitive Graduation Grade Point Averages

    Science.gov (United States)

    Apprey, Maurice; Bassett, Kimberley C.; Preston-Grimes, Patrice; Lewis, Dion W.; Wood, Beverly

    2014-01-01

    Two pivotal and interconnected claims are addressed in this article. First, strategy precedes program effectiveness. Second, graduation rates and rankings are insufficient in any account of academic progress for African American students. In this article, graduation is regarded as the floor and not the ceiling, as it were. The ideal situation in…

  11. [Atmospheric adjacency effect correction of ETM images].

    Science.gov (United States)

    Liu, Cheng-yu; Chen, Chun; Zhang, Shu-qing; Gao, Ji-yue

    2010-09-01

    It is an important precondition to retrieve the ground surface reflectance exactly for improving the subsequent product of remote sensing images and the quantitative application of remote sensing. However, because the electromagnetic wave is scattered by the atmosphere during its transmission from the ground surface to the sensor, the electromagnetic wave signal of the target received by the sensor contained the signal of the background. The adjacency effect emerges. Because of the adjacency effect, the remote sensing images become blurry, and their contrast reduces. So the ground surface reflectance retrieved from the remote sensing images is also inaccurate. Finally, the quality of subsequent product of remote sensing images and the accuracy of quantitative application of remote sensing might decrease. In the present paper, according to the radiative transfer equation, the atmospheric adjacency effect correction experiment of ETM images was carried out by using the point spread function method. The result of the experiment indicated that the contrast of the corrected ETM images increased, and the ground surface reflectance retrieved from those images was more accurate.

  12. Aligned Magnetic Field Effects on Flow and Heat Transfer of the Upper-Convected Maxwell Fluid over a Stretching/Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Waini Iskandar

    2017-01-01

    Full Text Available In this paper, the effect of aligned magnetic field towards the flow and heat transfer of the upper-convected Maxwell (UCM fluid over a stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using the shooting method. The skin friction and heat transfer coefficients, the velocity, as well as the temperature profiles of the fluid are presented and discussed. Results indicate that an increase in the aligned angle strengthens the applied magnetic field which decrease the velocity and increase the temperature profiles of the fluid. This implies that an increase in the aligned angle increases the skin friction coefficient and decreases the heat transfer coefficients.

  13. Effect of energy distribution of laser facula on shafting aligning detection of large assembling set

    Science.gov (United States)

    Cao, Guohua; Su, Chengzhi; Xu, Hongji

    2005-01-01

    This paper introduces the principle of Shafting correction In heavy mechanical manufacturing industry, shipping industry and Nuclear industry, analyzes the effect of distribution of laser light beam spot energy to PSD measure precision. With experiment, we analyze the relation between the different distribution of laser light beam spot energy and PSD measure precision, discuss the method to compensate of shafting correction error caused by the distribution of laser light beam spot energy.

  14. Sand Dune Ridge Alignment Effects on Surface BRF over the Libya-4 CEOS Calibration Site

    Directory of Open Access Journals (Sweden)

    Yves M. Govaerts

    2015-02-01

    Full Text Available The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm.

  15. Sand dune ridge alignment effects on surface BRF over the Libya-4 CEOS calibration site.

    Science.gov (United States)

    Govaerts, Yves M

    2015-02-03

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm.

  16. Aligning for Innovation - Alignment Strategy to Drive Innovation

    Science.gov (United States)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  17. Aligning for Innovation - Alignment Strategy to Drive Innovation

    Science.gov (United States)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  18. Effect of frictional heating on radiative ferrofluid flow over a slendering stretching sheet with aligned magnetic field

    Science.gov (United States)

    Ramana Reddy, J. V.; Sugunamma, V.; Sandeep, N.

    2017-01-01

    The pivotal objective of this paper is to look into the flow of ferrofluids past a variable thickness surface with velocity slip. Magnetite (Fe3O4 nanoparticles are embedded to the regular fluid. The occurrence of frictional heating in the flow is also taken into account. So the flow equations will be coupled and nonlinear. These are remodelled into dimensionless form with the support of suitable transmutations. The solution of the transformed equations is determined with the support of an effective Runge-Kutta (RK)-based shooting technique. Ultimately, the effects of a few flow modulating quantities on fluid motion and heat transport were explored through plots which are procured using the MATLAB tool box. Owing to the engineering applications, we also calculated the friction factor and the heat transfer coefficient for the influencing parameters. The results are presented comparatively for both regular fluid (water) and water-based ferrofluid. This study enables us to deduce that inflation in the aligned angle or surface thickness reduces the fluid velocity. The radiation and dissipation parameters are capable of providing heat energy to the flow.

  19. The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report.

    Science.gov (United States)

    Pinzur, M S; Cox, W; Kaiser, J; Morris, T; Patwardhan, A; Vrbos, L

    1995-11-01

    The prosthetic sockets of 14 independent persons with unilateral trans-tibial (BK) amputation were mounted on an adjustable alignment pylon. Vertical ground reaction forces were recorded in neutral prosthetic alignment and in 10 degrees of prosthetic socket varus, valgus, flexion, and extension. Stance phase time, peak vertical ground reaction force, and impulse were all found to be increased on the sound limb when compared to the amputated residual limb. Significant differences were found in stance phase time and peak vertical ground reaction force when comparing malaligned with neutrally aligned prosthetic limbs. Significant differences were also seen in impulse between neutrally aligned and malaligned prosthetic limbs. The results suggest that prosthetic malalignment in persons with trans-tibial amputation leads to increased loading of the contralateral limb.

  20. Vibrating wire alignment technique

    CERN Document Server

    Xiao-Long, Wang; lei, Wu; Chun-Hua, Li

    2013-01-01

    Vibrating wire alignment technique is a kind of method which through measuring the spatial distribution of magnetic field to do the alignment and it can achieve very high alignment accuracy. Vibrating wire alignment technique can be applied for magnet fiducialization and accelerator straight section components alignment, it is a necessary supplement for conventional alignment method. This article will systematically expound the international research achievements of vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation and the relation between wire amplitude and magnetic induction intensity. On the basis of model analysis this article will introduce the alignment method which based on magnetic field measurement and the alignment method which based on amplitude and phase measurement. Finally, some basic questions will be discussed and the solutions will be given.

  1. Robust and Efficient Parametric Face Alignment

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    2011-01-01

    We propose a correlation-based approach to parametric object alignment particularly suitable for face analysis applications which require efficiency and robustness against occlusions and illumination changes. Our algorithm registers two images by iteratively maximizing their correlation coefficient

  2. The ion capturing effect of 5° SiOx alignment films in liquid crystal devices

    Science.gov (United States)

    Huang, Yi; Bos, Philip J.; Bhowmik, Achintya

    2010-09-01

    We show that SiOx, deposited at 5° to the interior surface of a liquid crystal cell allows for a surprisingly substantial reduction in the ion concentration of liquid crystal devices. We have investigated this effect and found that this type of film, due to its surface morphology, captures ions from the liquid crystal material. Ion adsorption on 5° SiOx film obeys the Langmuir isotherm. Experimental results shown allow estimation of the ion capturing capacity of these films to be more than an order of 10 000/μm2. These types of materials are useful for new types of very low power liquid crystal devices such as e-books.

  3. On the Stability of Satellite Planes I: Effects of Mass, Velocity, Halo Shape and Alignment

    CERN Document Server

    Fernando, Nuwanthika; Guglielmo, Magda; Lewis, Geraint F; Ibata, Rodrigo A; Power, Chris

    2016-01-01

    The recently discovered vast thin plane of dwarf satellites orbiting the Andromeda Galaxy (M31) adds to the mystery of the small scale distribution of the Local Group's galaxy population. Such well defined planar structures are apparently rare occurrences in cold dark matter cosmological simulations, and we lack a coherent explanation of their formation and existence. In this paper, we explore the long-term survivability of thin planes of dwarfs in galactic halos, focusing, in particular, on systems mimicking the observed Andromeda distribution. The key results show that, in general, planes of dwarf galaxies are fragile, sensitive to the shape of the dark matter halo and other perturbing effects. In fact, long lived planes of satellites only exist in polar orbits in spherical dark matter halos, presenting a challenge to the observed Andromeda plane which is significantly tilted with respect to the optical disk. Our conclusion is that, in standard cosmological models, planes of satellites are generally short l...

  4. Effect of tow alignment on the mechanical performance of 3D woven textile composites

    Science.gov (United States)

    Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave

    1993-01-01

    Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.

  5. A New Continuous Rotation IMU Alignment Algorithm Based on Stochastic Modeling for Cost Effective North-Finding Applications

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-12-01

    Full Text Available Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW, Rate Random Walk (RRW and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ north-finding accuracy for the two-position alignment and 1° (1σ for the fixed-position alignment.

  6. A New Continuous Rotation IMU Alignment Algorithm Based on Stochastic Modeling for Cost Effective North-Finding Applications

    Science.gov (United States)

    Li, Yun; Wu, Wenqi; Jiang, Qingan; Wang, Jinling

    2016-01-01

    Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment. PMID:27983585

  7. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.

    Science.gov (United States)

    Zhang, Daoyu; Yang, Minnan; Dong, Shuai

    2015-11-21

    Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.

  8. Physician-Hospital Alignment in Orthopedic Surgery.

    Science.gov (United States)

    Bushnell, Brandon D

    2015-09-01

    The concept of "alignment" between physicians and hospitals is a popular buzzword in the age of health care reform. Despite their often tumultuous histories, physicians and hospitals find themselves under increasing pressures to work together toward common goals. However, effective alignment is more than just simple cooperation between parties. The process of achieving alignment does not have simple, universal steps. Alignment will differ based on individual situational factors and the type of specialty involved. Ultimately, however, there are principles that underlie the concept of alignment and should be a part of any physician-hospital alignment efforts. In orthopedic surgery, alignment involves the clinical, administrative, financial, and even personal aspects of a surgeon's practice. It must be based on the principles of financial interest, clinical authority, administrative participation, transparency, focus on the patient, and mutual necessity. Alignment can take on various forms as well, with popular models consisting of shared governance and comanagement, gainsharing, bundled payments, accountable care organizations, and other methods. As regulatory and financial pressures continue to motivate physicians and hospitals to develop alignment relationships, new and innovative methods of alignment will also appear. Existing models will mature and evolve, with individual variability based on local factors. However, certain trends seem to be appearing as time progresses and alignment relationships deepen, including regional and national collaboration, population management, and changes in the legal system. This article explores the history, principles, and specific methods of physician-hospital alignment and its critical importance for the future of health care delivery.

  9. Alignment of lower-limb prostheses.

    Science.gov (United States)

    Zahedi, M S; Spence, W D; Solomonidis, S E; Paul, J P

    1986-04-01

    Alignment of a prosthesis is defined as the position of the socket relative to the other prosthetic components of the limb. During dynamic alignment the prosthetist, using subjective judgment and feedback from the patient, aims to achieve the most suitable limb geometry for best function and comfort. Until recently it was generally believed that a patient could only be satisfied with a unique "optimum alignment." The purpose of this systematic study of lower-limb alignment parameters was to gain an understanding of the factors that make a limb configuration or optimum alignment, acceptable to the patient, and to obtain a measure of the variation of this alignment that would be acceptable to the amputee. In this paper, the acceptable range of alignments for 10 below- and 10 above-knee amputees are established. Three prosthetists were involved in the majority of the 183 below-knee and 100 above-knee fittings, although several other prosthetists were also involved. The effects of each different prosthetist on the established range of alignment for each patient are reported to be significant. It is now established that an amputee can tolerate several alignments ranging in some parameters by as much as 148 mm in shifts and 17 degrees in tilts. This paper describes the method of defining and measuring the alignment of lower-limb prostheses. It presents quantitatively established values for bench alignment position and the range of adjustment required for incorporation into the design of new alignment units.

  10. On the stability of satellite planes - I. Effects of mass, velocity, halo shape and alignment

    Science.gov (United States)

    Fernando, Nuwanthika; Arias, Veronica; Guglielmo, Magda; Lewis, Geraint F.; Ibata, Rodrigo A.; Power, Chris

    2017-02-01

    The recently discovered vast thin plane of dwarf satellites orbiting the Andromeda Galaxy (M31) adds to the mystery of the small-scale distribution of the Local Group's galaxy population. Such well-defined planar structures are apparently rare occurrences in cold dark matter cosmological simulations, and we lack a coherent explanation of their formation and existence. In this paper, we explore the long-term survivability of thin planes of dwarfs in galactic haloes, focusing, in particular, on systems mimicking the observed Andromeda distribution. The key results show that, in general, planes of dwarf galaxies are fragile, sensitive to the shape of the dark matter halo and other perturbing effects. In fact, long-lived planes of satellites only exist in polar orbits in spherical dark matter haloes, presenting a challenge to the observed Andromeda plane that is significantly tilted with respect to the optical disc. Our conclusion is that, in the standard cosmological models, planes of satellites are generally short lived, and hence we must be located at a relatively special time in the evolution of the Andromeda Plane, lucky enough to see its coherent pattern.

  11. Aligning health information technologies with effective service delivery models to improve chronic disease care

    Science.gov (United States)

    Bauer, Amy M.; Thielke, Stephen M.; Katon, Wayne; Unützer, Jürgen; Areán, Patricia

    2014-01-01

    Objective Healthcare reforms in the United States, including the Affordable Care and HITECH Acts, and the NCQA criteria for the Patient Centered Medical Home have promoted health information technology (HIT) and the integration of general medical and mental health services. These developments, which aim to improve chronic disease care have largely occurred in parallel, with little attention to the need for coordination. In this article, the fundamental connections between HIT and improvements in chronic disease management are explored. We use the evidence-based collaborative care model as an example, with attention to health literacy improvement for supporting patient engagement in care. Method A review of the literature was conducted to identify how HIT and collaborative care, an evidence-based model of chronic disease care, support each other. Results Five key principles of effective collaborative care are outlined: care is patient-centered, evidence-based, measurement-based, population-based, and accountable. The potential role of HIT in implementing each principle is discussed. Key features of the mobile health paradigm are described, including how they can extend evidence-based treatment beyond traditional clinical settings. Conclusion HIT, and particularly mobile health, can enhance collaborative care interventions, and thus improve the health of individuals and populations when deployed in integrated delivery systems. PMID:24963895

  12. Effects of physical characteristics and residence style on alignment of lower extremity.

    Science.gov (United States)

    Lee, Jangwon; Park, Hye-Sang

    2016-04-01

    This research was performed to identify the incidence of deformity of lower extremity and to identify the relationship of the incidence between the deformities. Once the incidences and relationship are found, next purpose was to find the effects of physical characteristics and residence styles on the development of lower extremity deformities. One hundred fifteen males and 108 females participated in this study. Data collecting was performed by questionnaire and visual postural evaluation. The incidence of genu varus was significantly high in standing-up life style compared to sitting-on life style (chi-square=8.28; P=0.004). However, the incidences of heel varus (chi-square=13.223; P=0.004) and femoral torsion (chi-square=19.347; Pstyle than standing-up life style. The incidences of genu varus (chi-square=24.18; Pstyle compared to standing-up life style (Pstyle against standing-up life style showed 6.6 times significantly high relationship in femoral torsion (95% confidence range, 1.64-26.47) in men.

  13. An alignment and integration technique for mirror segment pairs on the Constellation-X telescope

    Science.gov (United States)

    Hadjimichael, Theo; Owens, Scott; Lehan, John; Olsen, Larry; Saha, Timo; Wallace, Tom; Zhang, Will

    2007-09-01

    We present the concepts behind the current alignment and integration technique for a Constellation-X primary-secondary mirror segment pair prior to an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image.

  14. Application of image alignment technology based on OpenCV for the reverse location system%基于 OpenCV 图像对准技术在倒车定位系统中的应用

    Institute of Scientific and Technical Information of China (English)

    张永利; 徐超

    2014-01-01

    On the basis of introducing OpenCV ( an Intel open source computer vision library ) , this paper introduces an image alignment technology with machine vision .Through the selection of aiming at the lable and prepare a transaction and lable clamping technique , it can effectively withdraw to aim at a lable characteristic;with pass error margin model , complete vehicle to reverse the car process in aim at with object precision .The experimental results show good performances ,superiority and feasibility of the algorithm .%在介绍Intel公司的开源OpenCV计算机视觉库的基础上,研究一种基于视频图像对准技术。通过对准标记的选取、图像预处理、标记定位技术,有效提取对准标记特征,通过误差模型,完成车辆倒车过程中与目标精确对准。实验结果证明了该方法的有效性、优越性、可行性。

  15. Stress shielding in periprosthetic bone following a total knee replacement: Effects of implant material, design and alignment.

    Science.gov (United States)

    Zhang, Qing-Hang; Cossey, Andrew; Tong, Jie

    2016-12-01

    Periprosthetic bone strain distributions in some of the typical cases of total knee replacement (TKR) were studied with regard to the selection of material, design and the alignments of tibial components to examine which conditions are more forgiving than the others to stress shielding post a TKR. Four tibial components with two implant designs (cruciate sacrificing and cruciate retaining) and material properties (metal-backed (MB) and all-polyethylene (AP)) were considered in a specimen-specific finite element tibia bone model loaded in a neutral position. The influence of tibial material and design on the periprosthetic bone strain response was investigated under the peak loads of walking and stair descending/ascending. Two of the models were also modified to examine the effect of selected implant malalignment conditions (7° posterior, 5° valgus and 5° varus) on stress shielding in the bone, where the medio-lateral load share ratios were adjusted accordingly. The predicted increases of bone density due to implantation for the selected cases studied were also presented. For the cases examined, the effect of stress shielding on the periprosthetic bone seems to be more significantly influenced by the implant material than by the implant geometry. Significant stress shielding is found in MB cases, as opposed to increase in bone density found in AP cases, particularly in the bones immediately beneath the baseplate. The effect of stress shielding is reduced somewhat for the MB components in the malaligned positions compared with the neutral case. In AP cases, the effect of stress shielding is mostly low except in the varus position, possibly due to off-loading of lateral condyle. Increases in bone density are found in both MB and AP cases for the malaligned conditions. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Effects of body mass index on foot posture alignment and core stability in a healthy adult population.

    Science.gov (United States)

    AlAbdulwahab, Sami S; Kachanathu, Shaji John

    2016-06-01

    Foot biomechanics and core stability (CS) play significant roles in the quality of standing and walking. Minor alterations in body composition may influence base support or CS strategies. The aim of this study was to investigate the effect of the body mass index (BMI) on the foot posture index (FPI) and CS in a healthy adult population. A total of 39 healthy adult subjects with a mean age of 24.3±6.4 years and over-weight BMI values between 25 and 29.9 kg/m2 (27.43±6.1 kg/m2) participated in this study. Foot biomechanics were analyzed using the FPI. CS was assessed using a plank test with a time-to-failure trial. The Spearman correlation coefficient indicated a significant correlation between BMI and both the FPI (r=0.504, P=0.001) and CS (r= -0.34, P=0.036). Present study concluded that an overweight BMI influences foot posture alignment and body stability. Consequently, BMI should be considered during rehabilitation management for lower extremity injuries and body balance.

  17. A novel twisted nematic alignment and its effects on the electro-optical dynamics of nanoscale liquid crystalline films

    Science.gov (United States)

    Rauzan, Brittany; Lee, Lay Min; Nuzzo, Ralph

    2015-03-01

    Vibrational spectroscopic studies of a surface induced, twisted alignment of the nematic liquid crystal, 4-n-pentyl-4'-cyanobiphenyl (5CB) and its temperature-dependent electro-optical (EO) dynamics were studied near the crystalline-nematic and nematic-isotropic transition temperatures, and at a median temperature in the nematic phase. A 50 nm thick film of 5CB was confined in nanocavities defined by the dimensions of a gold interdigitated electrode array patterned on a unidirectionally polished ZnSe substrate. The film was assembled between two polished substrates bearing extended nanometer-scaled grooves that are oriented orthogonally to one another. The results show that with this anchoring scheme, the molecular director of the LC film undergoes a ninety-degree twist. Step-scan time resolved spectroscopy (TRS) measurements were made to determine the rate constants for the temperature-dependent EO dynamics of both the electric field-induced orientation and thermal relaxation processes of the LC film. The work rationalizes the impacts of organizational anisotropy and illustrates how it can be exploited as a design principle to effectively influence the electric field-induced dynamics of LC systems.

  18. Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass ratios and spins

    Science.gov (United States)

    Pürrer, Michael

    2016-03-01

    I provide a frequency domain reduced order model (ROM) for the aligned-spin effective-one-body model "SEOBNRv2" for data analysis with second- and third-generation ground-based gravitational wave (GW) detectors. SEOBNRv2 models the dominant mode of the GWs emitted by the coalescence of black hole binaries. The large physical parameter space (dimensionless spins -1 ≤χi≤0.99 and symmetric mass ratios 0.01 ≤η ≤0.25 ) requires sophisticated reduced order modeling techniques, including patching in the parameter space and in frequency. I find that the time window over which the inspiral-plunge and the merger-ringdown waveform in SEOBNRv2 are connected has a discontinuous dependence on the parameters when the spin parameter χ =0.8 or the symmetric mass ratio η ˜0.083 . This discontinuity increases resolution requirements for the ROM. The ROM can be used for compact binary systems with total masses of 2 M⊙ or higher for the Advanced LIGO design sensitivity and a 10 Hz lower cutoff frequency. The ROM has a worst mismatch against SEOBNRv2 of ˜1 %, but in general mismatches are better than ˜0.1 %. The ROM is crucial for key data analysis applications for compact binaries, such as GW searches and parameter estimation carried out within the LIGO Scientific Collaboration.

  19. Relationship of Trochlear Morphology and Patellofemoral Joint Alignment to Superolateral Hoffa Fat Pad Edema on MR Images in Individuals with or at Risk for Osteoarthritis of the Knee: The MOST Study.

    Science.gov (United States)

    Widjajahakim, Rafael; Roux, Michael; Jarraya, Mohamed; Roemer, Frank W; Neogi, Tuhina; Lynch, John A; Lewis, Cora E; Torner, James C; Felson, David T; Guermazi, Ali; Stefanik, Joshua J

    2017-09-01

    Purpose To determine the relationship of patellofemoral joint alignment and trochlear morphology to superolateral Hoffa fat pad (SHFP) edema on magnetic resonance (MR) images in older adults with or at risk for osteoarthritis of the knee. Materials and Methods Institutional review board approval and written informed consent were obtained from all subjects. The Multicenter Osteoarthritis Study is a prospective cohort study of older adults with or at risk for osteoarthritis of the knee. Subjects were recruited from Birmingham, Alabama, and Iowa City, Iowa. In this cross-sectional study, patellofemoral joint alignment (bisect offset, patellar tilt angle, and Insall-Salvati ratio), trochlear morphology (sulcus angle, lateral and medial trochlear inclination, and trochlear angle) and SHFP edema were assessed on MR images of the knee. Measures of alignment and morphology were divided into quartiles, and SHFP was determined to be present or absent. Separate logistic regression models were used to determine the relationship of each measure of alignment and morphology to the presence of SHFP edema, with adjustments for age, sex, and body mass index. Results SHFP edema was present in 152 (13.4%) of the 1134 knees that were included. When compared with knees with measurements in the lowest quartile, knees with measurements in the highest quartile for trochlear angle, bisect offset, and Insall-Salvati ratios were 1.6 (95% confidence interval [CI]: 1.0, 2.6), 2.3 (95% CI: 1.3, 4.0), and 8.9 (95% CI: 4.7, 16.9) times more likely to show SHFP edema, respectively. No relationship was found between other measures and SHFP edema. Conclusion A more anterior trochlear facet, a more laterally displaced patella, and knees with patella alta were significantly associated with SHFP edema on MR images in subjects with or at risk for osteoarthritis of the knee. (©) RSNA, 2017.

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  1. Magnetic axis alignment and the Poisson alignment reference system

    Science.gov (United States)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and J. Pivarski

    2011-01-01

    Alignment efforts in the first few months of 2011 have shifted away from providing alignment constants (now a well established procedure) and focussed on some critical remaining issues. The single most important task left was to understand the systematic differences observed between the track-based (TB) and hardware-based (HW) barrel alignments: a systematic difference in r-φ and in z, which grew as a function of z, and which amounted to ~4-5 mm differences going from one end of the barrel to the other. This difference is now understood to be caused by the tracker alignment. The systematic differences disappear when the track-based barrel alignment is performed using the new “twist-free” tracker alignment. This removes the largest remaining source of systematic uncertainty. Since the barrel alignment is based on hardware, it does not suffer from the tracker twist. However, untwisting the tracker causes endcap disks (which are aligned ...

  3. Anatomical references for tibial sagittal alignment in total knee arthroplasty: A comparison of three anatomical axes based on 3D reconstructed CT images

    Institute of Scientific and Technical Information of China (English)

    SHAO Jun-jie; Thomas Parker Vail; WANG Qiao-jie; SHEN Hao; CHEN Yun-su; WANG Qi; JIANG Yao

    2013-01-01

    Background This study was designed to analyze three tibial axis reference lines including the anterior tibial cortex (ATC) line,the fibular line (FL),and the anatomical axis of tibia (AAT) line,to determine which line most closely parallels the mechanical axis (MA) of the tibia in the sagittal plane.The clinical relevance of the study is that through finding a reliable landmark on the leg,a surgeon may minimize posterior tibial slope measurement errors thereby and improving the technique for assuring proper alignment of total knee arthroplasty.Methods The material for this study included CT scans of the tibia from 85 consecutive patients and 168 knees (78 without osteoarthritis (OA) and 90 knees with OA).Measurements of the angles between the tibial mechanical axis and each of three reference lines in the sagittal plane were carried out using 3D imaging software.Results Mean angles of 168 knees were as follows:aMT (3.96±0.85)°,aMF (0.70±0.58)°,and aMA (1.40±0.66)°,(aMT:an angle between MA and ATC,aMF:an angle between MA and FL,aMA:an angle between MA and AAT.All abovementioned angles were measured in the sagittal plane of tibia) and the aMF was significantly smaller than the others (P <0.0001).The mean value of the medial tibial slope angle vs.the MA was (9.19±3.97)°,and this was significantly larger than the mean lateral slope angle of (6.62±4.23)° (P <0.0001).The difference between aMF without OA and with OA was not statistically significant (P=0.5015) and the association between the aMT and aMA was strong (r=0.82,P <0.01).Conclusions FL was more closely parallel to the MA of tibia,and more showed less variation between OA and nonOA controls than ATC and AAT lines.Furthermore,the amount of posterior slope in medial plateau was greater than that in lateral plateau.The findings of this analysis suggest that when using the anterior tibial cortex line as is commonly done with extramedullary tibial resection guides,the tibial resection should be sloped

  4. Robustly Aligning a Shape Model and Its Application to Car Alignment of Unknown Pose.

    Science.gov (United States)

    Li, Yan; Gu, Leon; Kanade, Takeo

    2011-09-01

    Precisely localizing in an image a set of feature points that form a shape of an object, such as car or face, is called alignment. Previous shape alignment methods attempted to fit a whole shape model to the observed data, based on the assumption of Gaussian observation noise and the associated regularization process. However, such an approach, though able to deal with Gaussian noise in feature detection, turns out not to be robust or precise because it is vulnerable to gross feature detection errors or outliers resulting from partial occlusions or spurious features from the background or neighboring objects. We address this problem by adopting a randomized hypothesis-and-test approach. First, a Bayesian inference algorithm is developed to generate a shape-and-pose hypothesis of the object from a partial shape or a subset of feature points. For alignment, a large number of hypotheses are generated by randomly sampling subsets of feature points, and then evaluated to find the one that minimizes the shape prediction error. This method of randomized subset-based matching can effectively handle outliers and recover the correct object shape. We apply this approach on a challenging data set of over 5,000 different-posed car images, spanning a wide variety of car types, lighting, background scenes, and partial occlusions. Experimental results demonstrate favorable improvements over previous methods on both accuracy and robustness.

  5. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies.

    Directory of Open Access Journals (Sweden)

    Patrick D Schloss

    Full Text Available Pyrosequencing of PCR-amplified fragments that target variable regions within the 16S rRNA gene has quickly become a powerful method for analyzing the membership and structure of microbial communities. This approach has revealed and introduced questions that were not fully appreciated by those carrying out traditional Sanger sequencing-based methods. These include the effects of alignment quality, the best method of calculating pairwise genetic distances for 16S rRNA genes, whether it is appropriate to filter variable regions, and how the choice of variable region relates to the genetic diversity observed in full-length sequences. I used a diverse collection of 13,501 high-quality full-length sequences to assess each of these questions. First, alignment quality had a significant impact on distance values and downstream analyses. Specifically, the greengenes alignment, which does a poor job of aligning variable regions, predicted higher genetic diversity, richness, and phylogenetic diversity than the SILVA and RDP-based alignments. Second, the effect of different gap treatments in determining pairwise genetic distances was strongly affected by the variation in sequence length for a region; however, the effect of different calculation methods was subtle when determining the sample's richness or phylogenetic diversity for a region. Third, applying a sequence mask to remove variable positions had a profound impact on genetic distances by muting the observed richness and phylogenetic diversity. Finally, the genetic distances calculated for each of the variable regions did a poor job of correlating with the full-length gene. Thus, while it is tempting to apply traditional cutoff levels derived for full-length sequences to these shorter sequences, it is not advisable. Analysis of beta-diversity metrics showed that each of these factors can have a significant impact on the comparison of community membership and structure. Taken together, these results

  6. Beamforming effects on generalized Nakagami imaging

    Science.gov (United States)

    Yu, Xue; Guo, Yuexin; Huang, Sheng-Min; Li, Meng-Lin; Lee, Wei-Ning

    2015-10-01

    Ultrasound tissue characterization is crucial for the detection of tissue abnormalities. Since the statistics of the backscattered ultrasound signals strongly depend on density and spatial arrangement of local scatterers, appropriate modeling of the backscattered signals may be capable of providing unique physiological information on local tissue properties. Among various techniques, the Nakagami imaging, realized in a window-based estimation scheme, has a good performance in assessing different scatterer statistics in tissues. However, inconsistent m values have been reported in literature and obtained only from a local tissue region, abating the reliability of Nakagami imaging in tissue characterization. The discrepancies in m values in relevant literature may stem from the nonuniformity of the ultrasound image resolution, which is often neglected. We therefore hypothesized that window-based Nakagami m estimation was highly associated with the regional spatial resolution of ultrasound imaging. To test this hypothesis, our study investigated the effect of beamforming methods, including synthetic aperture (SA), coherent plane wave compounding (CPWC), multi-focusing (MF), and single-focusing (SF), on window-based m parameter estimation from the perspective of the resolution cell. The statistics of m parameter distribution as a function of imaging depth were characterized by their mean, variance, and skewness. The phantom with a low scatterer density (16 scatterers mm-3) had significantly lower m values compared to the ones with high scatterer densities (32 and 64 scatterers mm-3). Results from the homogeneous phantom with 64 scatterers mm-3 showed that SA, MF, and CPWC had relatively uniform lateral resolutions compared to SF and thus relatively constant m estimates at different imaging depths. Our findings suggest that an ultrasound imaging regime exhibiting invariant spatial resolution throughout the entire imaging field of view would be the most appropriate for

  7. Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires.

    Science.gov (United States)

    Liu, Xingqiang; Yang, Xiaonian; Gao, Guoyun; Yang, Zhenyu; Liu, Haitao; Li, Qiang; Lou, Zheng; Shen, Guozhen; Liao, Lei; Pan, Caofeng; Lin Wang, Zhong

    2016-08-23

    We report high-performance self-aligned MoS2 field-effect transistors (FETs) with enhanced photoresponsivity by the piezo-phototronic effect. The FETs are fabricated based on monolayer MoS2 with a piezoelectric GaN nanowire (NW) as the local gate, and a self-aligned process is employed to define the source/drain electrodes. The fabrication method allows the preservation of the intrinsic property of MoS2 and suppresses the scattering center density in the MoS2/GaN interface, which results in high electrical and photoelectric performances. MoS2 FETs with channel lengths of ∼200 nm have been fabricated with a small subthreshold slope of 64 mV/dec. The photoresponsivity is 443.3 A·W(-1), with a fast response and recovery time of ∼5 ms under 550 nm light illumination. When strain is introduced into the GaN NW, the photoresponsivity is further enhanced to 734.5 A·W(-1) and maintains consistent response and recovery time, which is comparable with that of the mechanical exfoliation of MoS2 transistors. The approach presented here opens an avenue to high-performance top-gated piezo-enhanced MoS2 photodetectors.

  8. Effect of πg and νg alignments in the shape of 75Br from lifetime measurement

    Science.gov (United States)

    Mukherjee, G.; Joshi, P.; Bhowmik, R. K.; Roy, S. N.; Dutta, S.; Muralithar, S.; Singh, R. P.

    2009-10-01

    Lifetimes of 18 high spin states of 75Br were measured by Doppler shift attenuation method. The high spin states in the nucleus were populated by the reaction 51V( 28Si, 2p2n) at 115 MeV beam energy. The transition quadrupole moments, deduced from the lifetimes, were measured beyond the g neutron and proton band crossings in the positive and the negative parity bands. The results were discussed in the cranking model with Woods-Saxon potential and Strutinsky shell correction. Change in triaxiality γ due to neutron and proton alignments has been proposed to explain the observed change in transitional quadrupole moments Q. The experimental results and the cranking calculations suggest that the alignment of a pair of neutrons in the g orbital tends to drive the shape of the nucleus towards negative value of γ while the proton pair alignment in the g orbital tends to drive it towards positive γ.

  9. Thermal imaging of spin Peltier effect

    Science.gov (United States)

    Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi

    2016-12-01

    The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.

  10. Assembly and alignment of infrared refractive system

    Science.gov (United States)

    Yang, Lin; Lin, Jian-chun; Wang, Ya-jing; Chen, Fan-sheng

    2013-09-01

    Optical systems for scientific instrumentation frequently include lens or mirrors with critical mechanical requirements. Position issues of those components are inextricably bound to the efficiency of the instrument. The position referring to the lens system mainly means spacer and rotation of all elements concerned. Instrument could not be completed without the accuracy assembly even the previous design was top one. The alignment of infrared optical system always is a tough thing due to the IR material being opaque to visible light which hardly effect on the imaging ability of the system. In this paper a large-aperture IR refractive system was described in details and the alignment of this system was presented. The brief work describes the assembly and integration of the camera barrel in lab. First of all, all the mechanical elements must be manufactured with high accuracy requirements to meet alignment tolerances and minimum errors mostly could be ignored. The rotations relative to the optical axis were hardy restricted by the space between barrel and cells. The lens vertex displacements were determined through high accuracy titanium alloy spacer. So the actual shape data of the optical lenses were obtained by coordinate measuring machining (CMM) to calculate the real space between lenses after alignment1 done. All the measured results were critical for instruction of the practical assemble. Based on the properties and tolerances of the system, the camera barrel includes sets of six lenses with their respective supports and cells which are composed of two parts: the flied lens group and the relay lenses group. The first one was aligned by the geometry centering used CMM. And the relay lenses were integrated one by one after centered individually with a classical centering instrument. Then the two separate components were assembled under the monitor of the CMM with micron precision. Three parameters on the opti-mechanical elements which include decenter, tilt and

  11. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery.

    Science.gov (United States)

    Archip, Neculai; Clatz, Olivier; Whalen, Stephen; Kacher, Dan; Fedorov, Andriy; Kot, Andriy; Chrisochoides, Nikos; Jolesz, Ferenc; Golby, Alexandra; Black, Peter M; Warfield, Simon K

    2007-04-01

    The usefulness of neurosurgical navigation with current visualizations is seriously compromised by brain shift, which inevitably occurs during the course of the operation, significantly degrading the precise alignment between the pre-operative MR data and the intra-operative shape of the brain. Our objectives were (i) to evaluate the feasibility of non-rigid registration that compensates for the brain deformations within the time constraints imposed by neurosurgery, and (ii) to create augmented reality visualizations of critical structural and functional brain regions during neurosurgery using pre-operatively acquired fMRI and DT-MRI. Eleven consecutive patients with supratentorial gliomas were included in our study. All underwent surgery at our intra-operative MR imaging-guided therapy facility and have tumors in eloquent brain areas (e.g. precentral gyrus and cortico-spinal tract). Functional MRI and DT-MRI, together with MPRAGE and T2w structural MRI were acquired at 3 T prior to surgery. SPGR and T2w images were acquired with a 0.5 T magnet during each procedure. Quantitative assessment of the alignment accuracy was carried out and compared with current state-of-the-art systems based only on rigid registration. Alignment between pre-operative and intra-operative datasets was successfully carried out during surgery for all patients. Overall, the mean residual displacement remaining after non-rigid registration was 1.82 mm. There is a statistically significant improvement in alignment accuracy utilizing our non-rigid registration in comparison to the currently used technology (paugmented reality visualization to aid the surgeon.

  12. Automated quantification of one-dimensional nanostructure alignment on surfaces

    CERN Document Server

    Dong, Jianjin; Abukhdeir, Nasser Mohieddin

    2016-01-01

    A method for automated quantification of the alignment of one-dimensional nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be rigorously compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous metho...

  13. SU-C-18C-02: Specifcation of X-Ray Projection Angles Which Are Aligned with the Aortic Valve Plane From a Planar Image of a Valvuloplasty Balloon Inflated Across the Aortic Valve

    Energy Technology Data Exchange (ETDEWEB)

    Fetterly, K; Mathew, V [Mayo Clinic, Rochester, MN (United States)

    2014-06-01

    Purpose: Transcatheter aortic valve replacement (TAVR) procedures provide a method to implant a prosthetic aortic valve via a minimallyinvasive, catheter-based procedure. TAVR procedures require use of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane to minimize prosthetic valve positioning error due to x-ray imaging parallax. The purpose of this work is to calculate the continuous range of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane from a single planar image of a valvuloplasty balloon inflated across the aortic valve. Methods: Computational methods to measure the 3D angular orientation of the aortic valve were developed. Required inputs include a planar x-ray image of a known valvuloplasty balloon inflated across the aortic valve and specifications of x-ray imaging geometry from the DICOM header of the image. A-priori knowledge of the species-specific typical range of aortic orientation is required to specify the sign of the angle of the long axis of the balloon with respect to the x-ray beam. The methods were validated ex-vivo and in a live pig. Results: Ex-vivo experiments demonstrated that the angular orientation of a stationary inflated valvuloplasty balloon can be measured with precision less than 1 degree. In-vivo pig experiments demonstrated that cardiac motion contributed to measurement variability, with precision less than 3 degrees. Error in specification of x-ray geometry directly influences measurement accuracy. Conclusion: This work demonstrates that the 3D angular orientation of the aortic valve can be calculated precisely from a planar image of a valvuloplasty balloon inflated across the aortic valve and known x-ray geometry. This method could be used to determine appropriate c-arm angular projections during TAVR procedures to minimize x-ray imaging parallax and thereby minimize prosthetic valve positioning errors.

  14. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  16. Attractive celebrity and peer images on Instagram: Effect on women's mood and body image.

    Science.gov (United States)

    Brown, Zoe; Tiggemann, Marika

    2016-12-01

    A large body of research has documented that exposure to images of thin fashion models contributes to women's body dissatisfaction. The present study aimed to experimentally investigate the impact of attractive celebrity and peer images on women's body image. Participants were 138 female undergraduate students who were randomly assigned to view either a set of celebrity images, a set of equally attractive unknown peer images, or a control set of travel images. All images were sourced from public Instagram profiles. Results showed that exposure to celebrity and peer images increased negative mood and body dissatisfaction relative to travel images, with no significant difference between celebrity and peer images. This effect was mediated by state appearance comparison. In addition, celebrity worship moderated an increased effect of celebrity images on body dissatisfaction. It was concluded that exposure to attractive celebrity and peer images can be detrimental to women's body image. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aligning carbon fibers in micro-extruded composite ink

    Science.gov (United States)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  18. An Effective Method of Image Retrieval using Image Mining Techniques

    CERN Document Server

    Kannan, A; Anbazhagan, N; 10.5121/ijma.2010.2402

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CBIR) which performs retrieval based on the similarity defined in terms of extracted features with more objectiveness. The drawback in CBIR is the features of the query image alone are considered. Hence, a new technique called Image retrieval based on optimum clusters is proposed for improving user interaction with image retrieval systems by fully exploiting the similarity information. The index is created by describing the images according to their color characteristics, with compact feature vectors, that represent typical co...

  19. DEPENDENCE OF ELECTRON-CAPTURE FROM NA-ASTERISK(3P) ON ORBITAL ALIGNMENT - A KINEMATIC EFFECT

    NARCIS (Netherlands)

    SCHLATMANN, AR; MORGENSTERN, R

    1993-01-01

    Recent experimental data of electron capture into He+(4l) states from SIGMA and PI aligned Na*(3p) orbitals are interpreted. Calculations of the overlap integral of the initial Na*(3p) and the final He+(4l) wavefunctions in momentum space reproduce the velocity dependence of the measured cross secti

  20. Characterization and Alignment of Carbon Nanofibers under Shear Force in Microchannel

    Directory of Open Access Journals (Sweden)

    Jinshan Yang

    2016-01-01

    Full Text Available This work presents a novel method to align CNFs by using shear forces in microchannels. Effect of two different microchannel sizes (1 mm × 0.1 mm and 1 mm × 0.2 mm on CNFs alignment is investigated. SEM images of CNFs preform display significant alignment by both microchannels, which can be interpreted using a second-order alignment tensor and a manual angle meter. In the second-order alignment tensor description, an elongated ellipse can signify high degree of alignment in the direction of the major axis. When the microchannel size is 1 mm × 0.2 mm, the lengths of major and minor axes of the ellipse are 0.982 to 0.018. An angle meter manually shows that 85% of the CNFs are aligned in the direction between 60° and 90° when the microchannel is 1 mm × 0.2 mm. Both methods can demonstrate that better alignment of CNFs can be obtained using the 1 mm × 0.2 mm microchannel.

  1. Multiple sequence alignment accuracy and phylogenetic inference.

    Science.gov (United States)

    Ogden, T Heath; Rosenberg, Michael S

    2006-04-01

    Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.

  2. COS to FGS Alignment {NUV}

    Science.gov (United States)

    Hartig, George

    2009-07-01

    DESCRIPTION: In order to determine the location of the COS reference frame with respect to the FGS reference frames, NUV MIRRORA images will be obtained of an astrometric target and field. Astrometric guide stars and targets must be employed for this activity in order to facilitate the alignment wth the FGS. Images will be obtained at the initial pointing and at positions offset in V2 and in V3. Starting with the original blind pointing, obtain MIRRORA image exposures in a 5x5 POS-TARG grid centered on initial pointing; repeat the image sequence at two bracketing focus positions in same visit. Following completion of third pattern, return to nominal focus and perform 5x5 ACQ/SEARCH target acquisition and obtain one TIME-TAG MIRRORA image and one ACCUM verification exposure. Next perform an ACQ/IMAGE target acquisition followed by an ACCUM verification exposure. Also obtain ACCUM verification exposure for each of the two alternate focus positions used previously. Using MIRRORB obtain ACCUM confirmation image at nominal focus and ACCUM images at alternate focus positions and then perform an ACQ/IMAGE and confirming image at nominal focus. Analyze imagery, uplink pointing offset as offset 11469A and adjust nominal focus via patchable constant uplinked with subsequent visit of this program; update aperture locations via modified SIAF file uplinked with subsequent SMS. Use updated focus and offset pointing as input for COS 09 {program 11469 - NUV Optics Alignment and Focus} {note the SIAF update is not a prerequisite for COS 09 to proceed, but the pointing offset and focus update are}.

  3. Galaxy alignments: Observations and impact on cosmology

    CERN Document Server

    Kirk, Donnacha; Hoekstra, Henk; Joachimi, Benjamin; Kitching, Thomas D; Mandelbaum, Rachel; Sifón, Cristóbal; Cacciato, Marcello; Choi, Ami; Kiessling, Alina; Leonard, Adrienne; Rassat, Anais; Schäfer, Björn Malte

    2015-01-01

    Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the astrophysics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of intrinsic alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments took on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes intrinsic alignments an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigat...

  4. Implementation of Autofocus in Alignment System for Layered Imprint Fabrication

    Institute of Scientific and Technical Information of China (English)

    WANG Quandai; DUAN Yugang; LU Bingheng; XIANG Jiawei; YANG Lianfa

    2009-01-01

    Autofocus method based on the analysis of image content information is investigated to reduce the alignment error resulting from mark positioning uncertainty due to defocus in microstructure layered fabrication process based on multilevel imprint lithography, The applicability of several autofocus functions to the alignment mark images is evaluated concerning their uniformity, sharpness near peak, reliability and measure computation efficiency and the most suitable one based on power spectrum in frequency domain (PSFD) is adopted. To solve the problem of too much computation amount needed in PSFD algorithm, the strategy of interested region detection and effective image reconstruction is proposed and the algorithm efficiency is improved. The test results show that the computation time is reduced from 0.316 s to 0.023 s under the same conditions while the other merits of the function are preserved, which indicates that the modified algorithm can meet the mark image autofocusing require-ments in response time, accuracy and robustness. The alignment error due to defocus which is about 0.5 μm indi-cated by experimental results can be reduced or eliminated by the autofocusing implementation.

  5. Spin alignment in superdeformed rotational bands

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, F.S. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1990-12-24

    Many superdeformed bands in different nuclei are found to have virtually identical moments of inertia and alignments that differ from each other by quantized amounts - multiples of 1/2 {Dirac h}. Pseudo spins represent the only source of quantized alignment that has been thought of to date. Additional puzzles in these bands are the absence of other larger effects on the moments of inertia, and a surprising number of alignments of 1 {Dirac h}. (orig.).

  6. Study on computer-aided alignment method of reflective zoom systems

    Science.gov (United States)

    Zhou, Jide; Chang, Jun; Xie, Guijuan; Zhang, Ke

    2015-08-01

    Computer-aided alignment is an effective method to improve the imaging quality of high-precision, complex, and off-axis optical systems. However, how to determine the misalignment quickly, exactly and constantly is essential to the technology of computer-aided alignment. Owing to the varying optical characteristics of a zoom system, sensitivity matrices are used in the alignment rather than a single matrix. Thus, the processing of sensitivity matrices is important for the computer-aided alignment of the reflective zoom system. So, the total least squares is proposed in order to solve the problems of the numerical instability and the result inaccuracy which result from the solution of the least squares method directly. Finally, the simulant calculation is processed using the numerical analysis model established in the essay. The results demonstrate that the computation method is rational and effective.

  7. DIDA: Distributed Indexing Dispatched Alignment.

    Directory of Open Access Journals (Sweden)

    Hamid Mohamadi

    Full Text Available One essential application in bioinformatics that is affected by the high-throughput sequencing data deluge is the sequence alignment problem, where nucleotide or amino acid sequences are queried against targets to find regions of close similarity. When queries are too many and/or targets are too large, the alignment process becomes computationally challenging. This is usually addressed by preprocessing techniques, where the queries and/or targets are indexed for easy access while searching for matches. When the target is static, such as in an established reference genome, the cost of indexing is amortized by reusing the generated index. However, when the targets are non-static, such as contigs in the intermediate steps of a de novo assembly process, a new index must be computed for each run. To address such scalability problems, we present DIDA, a novel framework that distributes the indexing and alignment tasks into smaller subtasks over a cluster of compute nodes. It provides a workflow beyond the common practice of embarrassingly parallel implementations. DIDA is a cost-effective, scalable and modular framework for the sequence alignment problem in terms of memory usage and runtime. It can be employed in large-scale alignments to draft genomes and intermediate stages of de novo assembly runs. The DIDA source code, sample files and user manual are available through http://www.bcgsc.ca/platform/bioinfo/software/dida. The software is released under the British Columbia Cancer Agency License (BCCA, and is free for academic use.

  8. The mere exposure effect for visual image.

    Science.gov (United States)

    Inoue, Kazuya; Yagi, Yoshihiko; Sato, Nobuya

    2017-08-30

    Mere exposure effect refers to a phenomenon in which repeated stimuli are evaluated more positively than novel stimuli. We investigated whether this effect occurs for internally generated visual representations (i.e., visual images). In an exposure phase, a 5 × 5 dot array was presented, and a pair of dots corresponding to the neighboring vertices of an invisible polygon was sequentially flashed (in red), creating an invisible polygon. In Experiments 1, 2, and 4, participants visualized and memorized the shapes of invisible polygons based on different sequences of flashed dots, whereas in Experiment 3, participants only memorized positions of these dots. In a subsequent rating phase, participants visualized the shape of the invisible polygon from allocations of numerical characters on its vertices, and then rated their preference for invisible polygons (Experiments 1, 2, and 3). In contrast, in Experiment 4, participants rated the preference for visible polygons. Results showed that the mere exposure effect appeared only when participants visualized the shape of invisible polygons in both the exposure and rating phases (Experiments 1 and 2), suggesting that the mere exposure effect occurred for internalized visual images. This implies that the sensory inputs from repeated stimuli play a minor role in the mere exposure effect. Absence of the mere exposure effect in Experiment 4 suggests that the consistency of processing between exposure and rating phases plays an important role in the mere exposure effect.

  9. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Niklas; Eriksson, Anders [Department of Physics, Goeteborg University, SE-41296 Goeteborg (Sweden); Ek-Weis, Johan; Campbell, Eleanor E B [School of Chemistry, Edinburgh University, West Mains Road, Edinburgh EH9 3JJ (United Kingdom); Idda, Tonio, E-mail: eleanor.campbell@ed.ac.u [LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cedex (France)

    2009-09-23

    The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. The effective Young's modulus for the carbon nanotube arrays was determined by comparing the actuation results with the results of electrostatic simulations and was found to be exceptionally low, of the order of 1-10 MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100-10 were achieved for a frequency range of 0.2-1.5 GHz.

  10. Effects of aligned magneticfield and radiation on the flow of ferrofluids over a flat plate with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    Sandeep N

    2015-03-01

    Full Text Available In this study we analyzed the influence of radiation and aligned magneticfield on the flow of ferrofluids over a flat plate in presence of non-uniform heat source/sink and slip velocity.  We considered Fe3O4 magnetic nano particles embedded within the two types of base fluids namely water and kerosene. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using bvp5c Matlab package. The effects of dimensionless quantities on the flow and temperature profiles along with the friction factor and Nusselt number is discussed and presented through graphs and tables. It is found that present results have an excellent agreement with the existed studies under some special assumptions. Results indicate that a raise in the aligned angle enhances the skin friction coefficient and heat transfer rate.

  11. Non-rigid alignment of preoperative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery

    Science.gov (United States)

    Archip, Neculai; Clatz, Olivier; Whalen, Stephen; Kacher, Dan; Fedorov, Andriy; Kot, Andriy; Chrisochoides, Nikos; Jolesz, Ferenc; Golby, Alexandra; Black, Peter M.; Warfield, Simon K.

    2012-01-01

    Objective The usefulness of neurosurgical navigation with current visualizations is seriously compromised by brain shift, which inevitably occurs during the course of the operation, significantly degrading the precise alignment between the preoperative MR data and the intra-operative shape of the brain. Our objectives were (i) to evaluate the feasibility of non-rigid registration that compensates for the brain deformations within the time constraints imposed by neurosurgery, and (ii) create augmented reality visualizations of critical structural and functional brain regions during neurosurgery using pre-operatively acquired fMRI and DT-MRI. Materials and Methods Eleven consecutive patients with supratentorial gliomas were included in our study. All underwent surgery at our intra-operative MR imaging–guided therapy facility and have tumors in eloquent brain areas (e.g. precentral gyrus and cortico-spinal tract). Functional MRI and DT-MRI, together with MPRAGE and T2w structural MRI were acquired at 3T prior to surgery. SPGR and T2w images were acquired with a 0.5T magnet during each procedure. Quantitative assessment of the alignment accuracy was carried out and compared with current state-of the-art systems based only on rigid-registration. Results Alignment between preoperative and intra-operative datasets was successfully carried out during surgery for all patients. Overall, the mean residual displacement remaining after non-rigid registration was 1.82 mm. There is a statistically significant improvement in alignment accuracy utilizing our non-rigid registration in comparison to the currently used technology (paugmented reality visualization to aid the surgeon. PMID:17289403

  12. Ontology alignment with OLA

    OpenAIRE

    Euzenat, Jérôme; Loup, David; Touzani, Mohamed; Valtchev, Petko

    2004-01-01

    euzenat2004d; International audience; Using ontologies is the standard way to achieve interoperability of heterogeneous systems within the Semantic web. However, as the ontologies underlying two systems are not necessarily compatible, they may in turn need to be aligned. Similarity-based approaches to alignment seems to be both powerful and flexible enough to match the expressive power of languages like OWL. We present an alignment tool that follows the similarity-based paradigm, called OLA. ...

  13. Sparse alignment for robust tensor learning.

    Science.gov (United States)

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  14. An Effective Method of Image Retrieval using Image Mining Techniques

    OpenAIRE

    Kannan, A.; Dr.V.Mohan; Dr.N.Anbazhagan

    2010-01-01

    The present research scholars are having keen interest in doing their research activities in the area of Data mining all over the world. Especially, [13]Mining Image data is the one of the essential features in this present scenario since image data plays vital role in every aspect of the system such as business for marketing, hospital for surgery, engineering for construction, Web for publication and so on. The other area in the Image mining system is the Content-Based Image Retrieval (CB...

  15. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A.

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  17. Effects of atmospheric oscillations on the field-aligned ion motions in the polar F-region

    Directory of Open Access Journals (Sweden)

    S. Oyama

    Full Text Available The field-aligned neutral oscillations in the F-region (altitudes between 165 and 275 km were compared using data obtained simultaneously with two independent instruments: the European Incoherent Scatter (EISCAT UHF radar and a scanning Fabry-Perot interferometer (FPI. During the night of February 8, 1997, simultaneous observations with these instruments were conducted at Tromsø, Norway. Theoretically, the field-aligned neutral wind velocity can be obtained from the field-aligned ion velocity and by diffusion and ambipolar diffusion velocities. We thus derived field-aligned neutral wind velocities from the plasma velocities in EISCAT radar data. They were compared with those observed with the FPI (λ=630.0 nm, which are assumed to be weighted height averages of the actual neutral wind. The weighting function is the normalized height dependent emission rate. We used two model weighting functions to derive the neutral wind from EISCAT data. One was that the neutral wind velocity observed with the FPI is velocity integrated over the entire emission layer and multiplied by the theoretical normalized emission rate. The other was that the neutral wind velocity observed with the FPI corresponds to the velocity only around an altitude where the emission rate has a peak. Differences between the two methods were identified, but not completely clarified. However, the neutral wind velocities from both instruments had peak-to-peak correspondences at oscillation periods of about 10–40 min, shorter than that for the momentum transfer from ions to neutrals, but longer than from neutrals to ions. The synchronizing motions in the neutral wind velocities suggest that the momentum transfer from neutrals to ions was thought to be dominant for the observed field-aligned oscillations rather than the transfer from ions to neutrals. It is concluded that during the observation, the plasma oscillations observed with the EISCAT radar at different altitudes

  18. A multivariate nonlinear mixed effects model for longitudinal image analysis: Application to amyloid imaging.

    Science.gov (United States)

    Bilgel, Murat; Prince, Jerry L; Wong, Dean F; Resnick, Susan M; Jedynak, Bruno M

    2016-07-01

    It is important to characterize the temporal trajectories of disease-related biomarkers in order to monitor progression and identify potential points of intervention. These are especially important for neurodegenerative diseases, as therapeutic intervention is most likely to be effective in the preclinical disease stages prior to significant neuronal damage. Neuroimaging allows for the measurement of structural, functional, and metabolic integrity of the brain at the level of voxels, whose volumes are on the order of mm(3). These voxelwise measurements provide a rich collection of disease indicators. Longitudinal neuroimaging studies enable the analysis of changes in these voxelwise measures. However, commonly used longitudinal analysis approaches, such as linear mixed effects models, do not account for the fact that individuals enter a study at various disease stages and progress at different rates, and generally consider each voxelwise measure independently. We propose a multivariate nonlinear mixed effects model for estimating the trajectories of voxelwise neuroimaging biomarkers from longitudinal data that accounts for such differences across individuals. The method involves the prediction of a progression score for each visit based on a collective analysis of voxelwise biomarker data within an expectation-maximization framework that efficiently handles large amounts of measurements and variable number of visits per individual, and accounts for spatial correlations among voxels. This score allows individuals with similar progressions to be aligned and analyzed together, which enables the construction of a trajectory of brain changes as a function of an underlying progression or disease stage. We apply our method to studying cortical β-amyloid deposition, a hallmark of preclinical Alzheimer's disease, as measured using positron emission tomography. Results on 104 individuals with a total of 300 visits suggest that precuneus is the earliest cortical region to

  19. Bokeh mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.

  20. Effect of Nb-doped TiO2 on nanocomposited aligned ZnO nanorod/TiO2:Nb for dye-sensitized solar cells

    Science.gov (United States)

    Saurdi, I.; Shafura, A. K.; Azhar, N. E. A.; Ishak, A.; Malek, M. F.; Alrokayan, A. H. Salman; Khan, Haseeb A.; Mamat, M. H.; Rusop, M.

    2016-07-01

    The Nb-doped TiO2 films were deposited on glass substrate at different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively and their electrical and structural properties were investigated. Subsequently, the Nb-doped TiO2 films were deposited on top of aligned ZnO Nanorod on ITO glass substrates using spin coating technique. The nanocomposited aligned ZnO nanorod/Nb-doped TiO2 (TiO2:Nb) were coated with different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively. The Dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO2:Nb photoanodes and their effects on the performance of the DSSCs were investigated. From the solar simulator measurement of DSSC the solar energy conversion efficiency (η) of 5.376% under AM 1.5 was obtained for the ZnO nanorod/TiO2:Nb-5at.%.

  1. The effects of lumbar stabilization exercise with thoracic extension exercise on lumbosacral alignment and the low back pain disability index in patients with chronic low back pain.

    Science.gov (United States)

    Woo, Seong-Dae; Kim, Tae-Ho

    2016-01-01

    [Purpose] To determine the effects of lumbar stabilization exercise with thoracic extension exercise on chronic low back pain patients. [Subjects and Methods] Thirty patients with chronic low back pain were randomly divided into a lumbar stabilization exercise group (group A) and a lumbar stabilization exercise with thoracic extension exercise group (group B). Group B did 15 min of lumbar stabilization exercises and 15 min of thoracic extension exercises, while group A did 30 min of lumbar stabilization exercises five times a week for 4 weeks. For assessing lumbosacral alignment, the lordotic angle, lumbosacral angle, and sacral angle were evaluated. The Oswestry disability index was used for assessment of disability due to low back pain. [Results] Both groups showed improvement in lumbosacral alignment and in the disability index. Group B showed greater changes in the lordotic angle and in the Oswestry disability index than group A, although the differences were not statistically significant. [Conclusion] Lumbar stabilization exercise with thoracic extension exercise can be recommended for improvement of chronic low back pain, although the improvements seen in lumbosacral alignment and low back pain disability index in this study did not achieve statistical significance.

  2. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride.

    Science.gov (United States)

    Quah, Hock Jin; Cheong, Kuan Yew

    2013-01-29

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10-6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).

  3. Effect of AZO Substrates on Self-Seeded Electrochemical Growth of Vertically Aligned ZnO Nanorod Arrays and Their Optical Properties

    Directory of Open Access Journals (Sweden)

    A. Peić

    2012-01-01

    Full Text Available We present a single step and an electrochemical synthesis of vertically aligned ZnO nanorod (NR arrays, directly on transparent aluminium-doped zinc oxide (AZO electrodes. The NRs grow from mild, aqueous-based solution at low temperature, with no need for catalysts or additional seed layer. The use of textured AZO as substrate allows for highly effective growth of hexagonally faceted, single-crystalline ZnO NRs along the wurtzite c-axis. The matching of the crystal lattices initiates a self-seeding route, thus the inherent growth habit of the AZO crystallites advances the vertical growth and alignment of NRs. Moreover, the thickness-dependant grain size of the AZO layer provides a valuable feature for tuning the diameter of ZnO NRs grown atop. In the absence of any seed mediator, the interfacial quality is expected to improve significantly. This should enhance the thermal and electrical transport throughout the whole nanostructured transparent electrode. The NR growth was investigated under systematic manipulation of the synthesis variables in order to optimize growth conditions for highly aligned, single-crystalline NRs with a large aspect ratio and a good optical quality. The structure and optical property of the AZO/ZnO NR ensembles were characterized by atomic force microscopy, scanning electron microscopy, X-ray diffraction, photoluminescence, and ultraviolet-visible transmission spectroscopy.

  4. Bystander Effects During Synchrotron Imaging Procedures?

    Science.gov (United States)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  7. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  8. Achieving Organisational Change through Values Alignment

    Science.gov (United States)

    Branson, Christopher M.

    2008-01-01

    Purpose: The purpose of this paper is to, first, establish the interdependency between the successful achievement of organisational change and the attainment of values alignment within an organisation's culture and then, second, to describe an effective means for attaining such values alignment. Design/methodology/approach: Literature from the…

  9. Compositions for directed alignment of conjugated polymers

    Science.gov (United States)

    Kim, Jinsang; Kim, Bong-Gi; Jeong, Eun Jeong

    2016-04-19

    Conjugated polymers (CPs) achieve directed alignment along an applied flow field and a dichroic ratio of as high as 16.67 in emission from well-aligned thin films and fully realized anisotropic optoelectronic properties of CPs in field-effect transistor (FET).

  10. A precise CT phantom alignment procedure.

    Science.gov (United States)

    Schneiders, N J; Bushong, S C

    1980-01-01

    Two of the AAPM CT performance phantom inserts require precise alignment. We present a method for aligning an insert which makes use of the partial volume effect. We demonstrate that the procedure is sensitive to tilts of less than one degree and, using the slice thickness insert, allows reproducible positioning.

  11. Instructional Alignment under No Child Left Behind

    Science.gov (United States)

    Polikoff, Morgan S.

    2012-01-01

    The alignment of instruction with the content of standards and assessments is the key mediating variable separating the policy of standards-based reform (SBR) from the outcome of improved student achievement. Few studies have investigated SBR's effects on instructional alignment, and most have serious methodological limitations. This research uses…

  12. Achieving Organisational Change through Values Alignment

    Science.gov (United States)

    Branson, Christopher M.

    2008-01-01

    Purpose: The purpose of this paper is to, first, establish the interdependency between the successful achievement of organisational change and the attainment of values alignment within an organisation's culture and then, second, to describe an effective means for attaining such values alignment. Design/methodology/approach: Literature from the…

  13. Megavoltage X-Ray Imaging Based on Cerenkov Effect: A New Application of Optical Fibres to Radiation Therapy

    Directory of Open Access Journals (Sweden)

    A. Teymurazyan

    2012-01-01

    Full Text Available A Monte Carlo simulation was used to study imaging and dosimetric characteristics of a novel design of megavoltage (MV X-ray detectors for radiotherapy applications. The new design uses Cerenkov effect to convert X-ray energy absorbed in optical fibres into light for MV X-ray imaging. The proposed detector consists of a matrix of optical fibres aligned with the incident X rays and coupled to an active matrix flat-panel imager (AMFPI for image readout. Properties, such as modulation transfer function, detection quantum efficiency (DQE, and energy response of the detector, were investigated. It has been shown that the proposed detector can have a zero-frequency DQE more than an order of magnitude higher than that of current electronic portal imaging device (EPID systems and yet a spatial resolution comparable to that of video-based EPIDs. The proposed detector is also less sensitive to scattered X rays from patients than current EPIDs.

  14. Physics of Grain Alignment

    CERN Document Server

    Lazarian, A

    2000-01-01

    Aligned grains provide one of the easiest ways to study magnetic fields in diffuse gas and molecular clouds. How reliable our conclusions about the inferred magnetic field depends critically on our understanding of the physics of grain alignment. Although grain alignment is a problem of half a century standing recent progress achieved in the field makes us believe that we are approaching the solution of this mystery. I review basic physical processes involved in grain alignment and show why mechanisms that were favored for decades do not look so promising right now. I also discuss why the radiative torque mechanism ignored for more than 20 years looks right now the most powerful means of grain alignment.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  16. SPEAR3 Construction Alignment

    Energy Technology Data Exchange (ETDEWEB)

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers,; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  17. Effect of pillow height on the biomechanics of the head-neck complex: investigation of the cranio-cervical pressure and cervical spine alignment

    Directory of Open Access Journals (Sweden)

    Sicong Ren

    2016-08-01

    Full Text Available Background While appropriate pillow height is crucial to maintaining the quality of sleep and overall health, there are no universal, evidence-based guidelines for pillow design or selection. We aimed to evaluate the effect of pillow height on cranio-cervical pressure and cervical spine alignment. Methods Ten healthy subjects (five males aged 26 ± 3.6 years were recruited. The average height, weight, and neck length were 167 ± 9.3 cm, 59.6 ± 11.9 kg, and 12.9 ± 1.2 cm respectively. The subjects lay on pillows of four different heights (H0, 110 mm; H1, 130 mm; H2, 150 mm; and H3, 170 mm. The cranio-cervical pressure distribution over the pillow was recorded; the peak and average pressures for each pillow height were compared by one-way ANOVA with repeated measures. Cervical spine alignment was studied using a finite element model constructed based on data from the Visible Human Project. The coordinate of the center of each cervical vertebra were predicted for each pillow height. Three spine alignment parameters (cervical angle, lordosis distance and kyphosis distance were identified. Results The average cranial pressure at pillow height H3 was approximately 30% higher than that at H0, and significantly different from those at H1 and H2 (p < 0.05. The average cervical pressure at pillow height H0 was 65% lower than that at H3, and significantly different from those at H1 and H2 (p < 0.05. The peak cervical pressures at pillow heights H2 and H3 were significantly different from that at H0 (p < 0.05. With respect to cervical spine alignment, raising pillow height from H0 to H3 caused an increase of 66.4% and 25.1% in cervical angle and lordosis distance, respectively, and a reduction of 43.4% in kyphosis distance. Discussion Pillow height elevation significantly increased the average and peak pressures of the cranial and cervical regions, and increased the extension and lordosis of the cervical spine. The cranio-cervical pressures and cervical

  18. Effect of pillow height on the biomechanics of the head-neck complex: investigation of the cranio-cervical pressure and cervical spine alignment.

    Science.gov (United States)

    Ren, Sicong; Wong, Duo Wai-Chi; Yang, Hui; Zhou, Yan; Lin, Jin; Zhang, Ming

    2016-01-01

    While appropriate pillow height is crucial to maintaining the quality of sleep and overall health, there are no universal, evidence-based guidelines for pillow design or selection. We aimed to evaluate the effect of pillow height on cranio-cervical pressure and cervical spine alignment. Ten healthy subjects (five males) aged 26 ± 3.6 years were recruited. The average height, weight, and neck length were 167 ± 9.3 cm, 59.6 ± 11.9 kg, and 12.9 ± 1.2 cm respectively. The subjects lay on pillows of four different heights (H0, 110 mm; H1, 130 mm; H2, 150 mm; and H3, 170 mm). The cranio-cervical pressure distribution over the pillow was recorded; the peak and average pressures for each pillow height were compared by one-way ANOVA with repeated measures. Cervical spine alignment was studied using a finite element model constructed based on data from the Visible Human Project. The coordinate of the center of each cervical vertebra were predicted for each pillow height. Three spine alignment parameters (cervical angle, lordosis distance and kyphosis distance) were identified. The average cranial pressure at pillow height H3 was approximately 30% higher than that at H0, and significantly different from those at H1 and H2 (p cervical pressure at pillow height H0 was 65% lower than that at H3, and significantly different from those at H1 and H2 (p cervical pressures at pillow heights H2 and H3 were significantly different from that at H0 (p cervical spine alignment, raising pillow height from H0 to H3 caused an increase of 66.4% and 25.1% in cervical angle and lordosis distance, respectively, and a reduction of 43.4% in kyphosis distance. Pillow height elevation significantly increased the average and peak pressures of the cranial and cervical regions, and increased the extension and lordosis of the cervical spine. The cranio-cervical pressures and cervical spine alignment were height-specific, and they were believed to reflect quality of sleep. Our results provide a

  19. The flow upstream of a row of aligned wind turbine rotors and its effect on power production

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels; Gaunaa, Mac

    2017-01-01

    The blockage developing in front of a laterally aligned row of wind turbines and its impact on power production over a single turbine was analysed using two different numerical methods. The inflow direction was varied from orthogonal to the row until 45◦, with the turbines turning into the wind......, thereby resembling a wind turbine testing site or row in a wind park. The numerical methods included computational fluid dynamics (CFD) with an actuator disc representation of the rotor and a simple vortex method. The forces on the actuator disc were either derived from airfoil data of a modern wind...

  20. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  1. Effect of oxygen plasma treatment on horizontally aligned carbon nanotube thin film as pH-sensing membrane of extended-gate field-effect transistor

    Science.gov (United States)

    Wang, Kuang-Yu; Tsai, Wan-Lin; Yang, Po-Yu; Chou, Chia-Hsin; Li, Yu-Ren; Liao, Chan-Yu; Cheng, Huang-Chung

    2015-04-01

    The high-performance pH-sensing membrane of extended-gate field-effect transistors (EGFET) composed of high-conductivity horizontally aligned carbon nanotube thin films (HACNTFs) after oxygen plasma treatment is successfully demonstrated. The 10-µm-wide catalytic metal lines with 60 µm interspace produced CNT vertical plates, and the plates were mechanically pulled down and densified to form HACNTFs. A large amount of oxygen-containing functional groups are decorated on the CNTs after the oxygen plasma treatment. These functional groups act as the sensing sites and respond to the H+ or OH- ions in solutions with different pH values. Therefore, these functionalized HACNTFs as pH-EGFET-sensing membranes can achieve a high voltage sensitivity of 40 mV/pH and high current sensitivity of 0.78 µA1/2/pH. Moreover, large linearity of 0.998 is measured in a wide sensing range from pH 1 to 13. These results reveal that the oxygen plasma treatment is an effective way to improve the CNT-sensing characteristics in pH-EGFET sensors.

  2. Transition effects characterization on spatiotemporal images

    Science.gov (United States)

    Ruiloba, Rosa I.; Joly, Philippe

    2000-10-01

    This article presents the results of a study on spatio-temporal images to evaluate their performances for video-to-shots segmentation purposes. Some shots segmentation methods involve spatio-temporal images that are computed by a projection of successive video frames over the X or Y-axis. On these projections, transition effects and motion are supposed to have different characteristics. Whereas cuts can be easily recognized, the main problem remains in determining a measure that discriminates motions from gradual transition effects. In this article, the quality of transition detections based on line similarity of spatio-temporal images is studied. The probability functions of several measures are estimated to determine which one produce the lowest detection error rate. These distributions are computed on four classes of events: intra shot sequences without motion, sequences with cuts, sequences with fades and sequences with motion. A line matching is performed, based on correlation estimations between projection lines. To separate these classes, we estimate first the density probability functions of the correlation between consecutive lines for each class. For different line segment sizes, the experimental results prove that the class separation can not be clearly produced. To take into account the evolution of the correlation and because we try to detect some particular types of boundaries, we then consider ratios between statistic moments. There are computed over a subset of correlation values. The results show that used measures, based on the matching of projection lines, can not discriminate between motion and fade. Only a subset of motions will be differentiated from gradual transitions. Therefore previous measures should be combined with methods that produce complementary results. Such a method could be a similar measure based on correlation between spatial-shifted segments.

  3. Galaxy alignments: An overview

    CERN Document Server

    Joachimi, Benjamin; Kitching, Thomas D; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-01-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  4. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    The alignment of shape data to a common mean before its subsequent processing is an ubiquitous step within the area shape analysis. Current approaches to shape analysis or, as more specifically considered in this work, shape classification perform the alignment in a fully unsupervised way......, not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two......-dimensional shapes from a two-class recognition problem....

  5. Investigating the Effectiveness of Wavelet Approximations in Resizing Images for Ultrasound Image Classification.

    Science.gov (United States)

    Manzoor, Umar; Nefti, Samia; Ferdinando, Milella

    2016-10-01

    Images are difficult to classify and annotate but the availability of digital image databases creates a constant demand for tools that automatically analyze image content and describe it with either a category or a set of variables. Ultrasound Imaging is very popular and is widely used to see the internal organ(s) condition of the patient. The main target of this research is to develop a robust image processing techniques for a better and more accurate medical image retrieval and categorization. This paper looks at an alternative to feature extraction for image classification such as image resizing technique. A new mean for image resizing using wavelet transform is proposed. Results, using real medical images, have shown the effectiveness of the proposed technique for classification task comparing to bi-cubic interpolation and feature extraction.

  6. How the cosmic web induces intrinsic alignments of galaxies

    CERN Document Server

    Codis, Sandrine; Pichon, Christophe; Devriendt, Julien; Slyz, Adrianne

    2014-01-01

    Intrinsic alignments are believed to be a major source of systematics for future generation of weak gravitational lensing surveys like Euclid or LSST. Direct measurements of the alignment of the projected light distribution of galaxies in wide field imaging data seem to agree on a contamination at a level of a few per cent of the shear correlation functions, although the amplitude of the effect depends on the population of galaxies considered. Given this dependency, it is difficult to use dark matter-only simulations as the sole resource to predict and control intrinsic alignments. We report here estimates on the level of intrinsic alignment in the cosmological hydrodynamical simulation Horizon-AGN that could be a major source of systematic errors in weak gravitational lensing measurements. In particular, assuming that the spin of galaxies is a good proxy for their ellipticity, we show how those spins are spatially correlated and how they couple to the tidal field in which they are embedded. We also present t...

  7. How the cosmic web induces intrinsic alignments of galaxies

    Science.gov (United States)

    Codis, S.; Dubois, Y.; Pichon, C.; Devriendt, J.; Slyz, A.

    2016-10-01

    Intrinsic alignments are believed to be a major source of systematics for future generation of weak gravitational lensing surveys like Euclid or LSST. Direct measurements of the alignment of the projected light distribution of galaxies in wide field imaging data seem to agree on a contamination at a level of a few per cent of the shear correlation functions, although the amplitude of the effect depends on the population of galaxies considered. Given this dependency, it is difficult to use dark matter-only simulations as the sole resource to predict and control intrinsic alignments. We report here estimates on the level of intrinsic alignment in the cosmological hydrodynamical simulation Horizon-AGN that could be a major source of systematic errors in weak gravitational lensing measurements. In particular, assuming that the spin of galaxies is a good proxy for their ellipticity, we show how those spins are spatially correlated and how they couple to the tidal field in which they are embedded. We will also present theoretical calculations that illustrate and qualitatively explain the observed signals.

  8. Hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays: The effect of silicon conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sungho, E-mail: shwoo@dgist.ac.kr [Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Hoon Jeong, Jae [Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kun Lyu, Hong; Jeong, Seonju; Hyoung Sim, Jun; Hyun Kim, Wook [Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Soo Han, Yoon [Department of Advanced Energy Material Science and Engineering, Catholic University of Daegu, Gyeongbuk 712-702 (Korea, Republic of); Kim, Youngkyoo, E-mail: ykimm@knu.ac.kr [Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-08-01

    Organic/inorganic hybrid solar cells, based on vertically aligned n-type silicon nanowires (n-Si NWs) and p-type conducting polymers (PEDOT:PSS), were investigated as a function of Si conductivity. The n-Si NWs were easily prepared from the n-Si wafer by employing a silver nanodot-mediated micro-electrochemical redox reaction. This investigation shows that the photocurrent-to-voltage characteristics of the n-Si NW/PEDOT:PSS cells clearly exhibit a stable rectifying diode behavior. The increase in current density and fill factor using high conductive silicon is attributed to an improved charge transport towards the electrodes achieved by lowering the device's series resistance. Our results also show that the surface area of the nanowire that can form heterojunction domains significantly influences the device performance.

  9. Atomic alignment effect on reactivity and on product alignment in the energy-transfer reaction of oriented Ar (3P2, 4s [3/2]2, M(J) = 2) + Kr (4p6, 1S0) → Ar (3p6, 1S0) + Kr (5p [3/2]2).

    Science.gov (United States)

    Ohoyama, H

    2015-03-12

    Steric effect for the formation of Kr (5p [3/2]₂) in the energy transfer reaction of Ar (³P₂, 4s [3/2]₂) + Kr has been studied by using an oriented Ar (³P₂, 4s [3/2]₂, M(J) = 2) beam at a collision energy of ∼0.09 eV. The emission intensity of Kr (5p [3/2]₂) is ca. 2 times enhanced when the angular momentum (J(Ar)) of Ar (³P₂) is aligned perpendicular to the relative velocity vector (v(R)). In addition, the Kr (5p [3/2]₂) emission is highly polarized parallel to v(R) (I(∥)/I(⊥) ∼ 1.2) when JAr is aligned perpendicular to v(R). The observed polarization moments indicate that the alignment of the unpaired Ar (3p) orbital of Ar (³P₂) to v(R), (Σ (|L′| = 0), Π (|L′| = 1)), dominates the energy transfer probability (σ(Π)(∥): σ(Σ)(∥): σ(Π)(⊥): σ(Σ)(⊥) = 0.49:1.33:0.55:1.23) and also the alignment of the Kr (5p) orbital of Kr (5p [3/2]₂) to v(R): the Σ-configuration of the Ar (3p) orbital leads to the parallel alignment (Σ-configuration) of the Kr(5p) orbital to v(R), conversely, the Π-configuration of Ar (3p) orbital leads to the perpendicular alignment (Π-configuration) of the Kr(5p) orbital. In addition, the selectivity of the alignment of the Kr (5p) orbital turns out to vary from perpendicular to parallel as the collision energy increases after a threshold down to 0.03 eV.

  10. Effects of Media on Female Body Image: Myth or Reality?

    Science.gov (United States)

    Bryla, Karen Y.

    2002-01-01

    Examines the media's influence on female body image. differentiating between the effects of print and electronic media. Results suggest that print media have a direct, immediate, and negative effect on female body image, while no such relationship exists for electronic media. Results also indicate that exploring only exposure to media images is…

  11. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  12. Aligned Fibrous Scaffold Induced Aligned Growth of Corneal Stroma Cells in vitro Culture

    Institute of Scientific and Technical Information of China (English)

    GAO Yan; YAN Jing; CUI Xue-jun; WANG Hong-yan; WANG Qing

    2012-01-01

    To investigate the contribution of fibre arrangement to guiding the aligned growth of corneal stroma cells,aligned and randomly oriented fibrous scaffolds of gelatin and poly-L-lactic acid(PLLA) were fabricated by electrospinning.A comparative study of two different systems with corneal stroma cells on randomly organized and aligned fibres were conducted.The efficiency of the scaffolds for inducing the aligned growth of cells was assessed by morphological observation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT) assay.Results show that the cells cultured on both randomly oriented and aligned scaffolds maintained normal morphology and well spreading as well as long term proliferation.Importantly,corneal stroma cells grew high orderly on the aligned scaffold,while the cells grew disordered on the randomly oriented scaffold.Moreover,the cells exhibited higher viability in aligned scaffold than that in randomly oriented scaffold.These results indcate that electrospinng to prepare aligned fibrous scaffolds has provided an effective approach to the aligned growth of corneal stroma cells in vitro.Our findings that fiber arrangement plays a crucial role in guiding the aligned growth of cells may be helpful to the development of better biomaterials for tissue engineered cornea.

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  14. Incremental Alignment Manifold Learning

    Institute of Scientific and Technical Information of China (English)

    Zhi Han; De-Yu Meng; Zong-Sen Xu; Nan-Nan Gu

    2011-01-01

    A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to incrementally align low-dimensional coordinates of input data patch-by-patch to iteratively generate the representation of the entire dataset. The method consists of two major steps, the incremental step and the alignment step. The incremental step incrementally searches neighborhood patch to be aligned in the next step, and the alignment step iteratively aligns the low-dimensional coordinates of the neighborhood patch searched to generate the embeddings of the entire dataset. Compared with the existing manifold learning methods, the proposed method dominates in several aspects: high efficiency, easy out-of-sample extension, well metric-preserving, and averting of the local minima issue. All these properties are supported by a series of experiments performed on the synthetic and real-life datasets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically argued and experimentally demonstrated.

  15. Imaging the Sunyaev-Zel'dovich Effect

    CERN Document Server

    Carlstrom, J E; Grego, L E; Holder, G P; Holzapfel, W L; Mohr, J J; Patel, S; Reese, E D

    1999-01-01

    We report on results of interferometric imaging of the Sunyaev-Zel'dovich Effect (SZE) with the OVRO and BIMA mm-arrays. Using low-noise cm-wave receivers on the arrays, we have obtained high quality images for 27 distant galaxy clusters. We review the use of the SZE as a cosmological tool. Gas mass fractions derived from the SZE data are given for 18 of the clusters, as well as the implied constraint on the matter density of the universe, $\\Omega_M$. We find $\\Omega_M h_{100} \\le 0.22 ^{+0.05}_{-0.03}$. A best guess for the matter density obtained by assuming a reasonable value for the Hubble constant and also by attempting to account for the baryons contained in the galaxies as well as those lost during the cluster formation process gives $\\Omega_M \\sim 0.25$. We also give preliminary results for the Hubble constant. Lastly, the power for investigating the high redshift universe with a non-targeted high sensitivity SZE survey is discussed and an interferometric survey is proposed.

  16. Effects of phosphate-buffered saline concentration and incubation time on the mechanical and structural properties of electrochemically aligned collagen threads.

    Science.gov (United States)

    Uquillas, Jorge Alfredo; Kishore, Vipuil; Akkus, Ozan

    2011-06-01

    A key step during the synthesis of collagen constructs is the incubation of monomeric collagen in phosphate buffer saline (PBS) to promote fibrillogenesis in the collagen network. Optimal PBS-treatment conditions for monomeric collagen solutions to induce gelation are well established in the literature. Recently, a report in the literature (Cheng et al 2008 Biomaterials 29 3278-88) showed a novel method to fabricate highly oriented electrochemically aligned collagen (ELAC) threads which have orders of magnitude greater packing density than collagen gels. The optimal PBS-treatment conditions for induction of D-banding pattern in such a dense and anisotropic collagen network are unknown. This study aimed to optimize PBS treatment of ELAC threads by investigating the effect of phosphate ion concentration (0.5×, 1×, 5× and 10×) and incubation time (3, 12 and 96 h) on the mechanical strength and ultrastructural organization by monotonic mechanical testing, small angle x-ray scattering and transmission electron microscopy (TEM). ELAC threads incubated in water (no PBS) served as the control. ELAC threads incubated in 1× PBS showed significantly higher extensibility compared to those in 0.5× or 10× PBS along with the presence of D-banded patterns with a periodicity of 63.83 nm. Incubation of ELAC threads in 1× PBS for 96 h resulted in significantly higher ultimate stress compared to 3 or 12 h. However, these threads lacked the D-banding pattern. TEM observations showed no significant differences in the microfibril diameter distribution of ELAC threads treated with or without PBS. This indicates that microfibrils lacked D-banding following electrochemical alignment and the subsequent PBS-treatment-induced D-banding by reorganization within microfibrils. It was concluded that incubation of aligned collagen in 1× PBS for 12 h results in mechanically competent, D-banded ELAC threads which can be used for the regeneration of load bearing tissues such as tendons and

  17. Effects of phosphate-buffered saline concentration and incubation time on the mechanical and structural properties of electrochemically aligned collagen threads

    Energy Technology Data Exchange (ETDEWEB)

    Uquillas, Jorge Alfredo; Kishore, Vipuil; Akkus, Ozan, E-mail: vkishor@purdue.edu [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032 (United States)

    2011-06-15

    A key step during the synthesis of collagen constructs is the incubation of monomeric collagen in phosphate buffer saline (PBS) to promote fibrillogenesis in the collagen network. Optimal PBS-treatment conditions for monomeric collagen solutions to induce gelation are well established in the literature. Recently, a report in the literature (Cheng et al 2008 Biomaterials 29 3278-88) showed a novel method to fabricate highly oriented electrochemically aligned collagen (ELAC) threads which have orders of magnitude greater packing density than collagen gels. The optimal PBS-treatment conditions for induction of D-banding pattern in such a dense and anisotropic collagen network are unknown. This study aimed to optimize PBS treatment of ELAC threads by investigating the effect of phosphate ion concentration (0.5x, 1x, 5x and 10x) and incubation time (3, 12 and 96 h) on the mechanical strength and ultrastructural organization by monotonic mechanical testing, small angle x-ray scattering and transmission electron microscopy (TEM). ELAC threads incubated in water (no PBS) served as the control. ELAC threads incubated in 1x PBS showed significantly higher extensibility compared to those in 0.5x or 10x PBS along with the presence of D-banded patterns with a periodicity of 63.83 nm. Incubation of ELAC threads in 1x PBS for 96 h resulted in significantly higher ultimate stress compared to 3 or 12 h. However, these threads lacked the D-banding pattern. TEM observations showed no significant differences in the microfibril diameter distribution of ELAC threads treated with or without PBS. This indicates that microfibrils lacked D-banding following electrochemical alignment and the subsequent PBS-treatment-induced D-banding by reorganization within microfibrils. It was concluded that incubation of aligned collagen in 1x PBS for 12 h results in mechanically competent, D-banded ELAC threads which can be used for the regeneration of load bearing tissues such as tendons and ligaments.

  18. Separating intrinsic alignment and galaxy-galaxy lensing

    CERN Document Server

    Blazek, Jonathan; Seljak, Uros; Nakajima, Reiko

    2012-01-01

    The coherent physical alignment of galaxies is an important systematic for gravitational lensing studies as well as a probe of the physical mechanisms involved in galaxy formation and evolution. We develop a formalism for treating this intrinsic alignment (IA) in the context of galaxy-galaxy lensing, and present an improved method for measuring IA contamination, which can arise when sources physically associated with the lens are placed behind the lens due to photometric redshift scatter. We apply the technique to recent Sloan Digital Sky Survey (SDSS) measurements of Luminous Red Galaxy lenses and sources with photometric redshifts selected from the SDSS imaging data. Compared to previous measurements, this method has the advantage of being fully self-consistent in its treatment of the IA and lensing signals, solving for the two simultaneously. We find an IA signal consistent with zero, placing tight constraints on both the magnitude of the IA effect and its potential contamination to the lensing signal. Whi...

  19. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    Science.gov (United States)

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  20. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    Science.gov (United States)

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  1. Imaging, spectroscopy, mechanical, alignment and biocompatibility studies of electrospun medical grade polyurethane (Carbothane™ 3575A) nanofibers and composite nanofibers containing multiwalled carbon nanotubes.

    Science.gov (United States)

    Sheikh, Faheem A; Macossay, Javier; Cantu, Travis; Zhang, Xujun; Shamshi Hassan, M; Esther Salinas, M; Farhangi, Chakavak S; Ahmad, Hassan; Kim, Hern; Bowlin, Gary L

    2015-01-01

    In the present study, we discuss the electrospinning of medical grade polyurethane (Carbothane™ 3575A) nanofibers containing multi-walled-carbon-nanotubes (MWCNTs). A simple method that does not depend on additional foreign chemicals has been employed to disperse MWCNTs through high intensity sonication. Typically, a polymer solution consisting of polymer/MWCNTs has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were evaluated by SEM, TEM, FT-IR and Raman spectroscopy, confirming nanofibers containing MWCNTs. The biocompatibility and cell attachment of the produced nanofiber mats were investigated while culturing them in the presence of NIH 3T3 fibroblasts. The results from these tests indicated non-toxic behavior of the prepared nanofiber mats and had a significant attachment of cells towards nanofibers. The incorporation of MWCNTs into polymeric nanofibers led to an improvement in tensile stress from 11.40 ± 0.9 to 51.25 ± 5.5 MPa. Furthermore, complete alignment of the nanofibers resulted in an enhancement on tensile stress to 72.78 ± 5.5 MPa. Displaying these attributes of high mechanical properties and non-toxic nature of nanofibers are recommended for an ideal candidate for future tendon and ligament grafts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Qualitative Variation in Constructive Alignment in Curriculum Design

    Science.gov (United States)

    Trigwell, Keith; Prosser, Michael

    2014-01-01

    Constructive alignment has emerged as a powerful curriculum design idea, but little is known of the extent to which the effectiveness of this idea is a function of qualitative variation. This article introduces a model of qualitative variation in constructive alignment, and uses the results from known alignment studies to test the model. The…

  3. MaxAlign: maximizing usable data in an alignment

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Sackett, Peter Wad; Pedersen, Anders Gorm

    2007-01-01

    BACKGROUND: The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. RESULTS: MaxAlign is a program that optimizes...... the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical...... analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign...

  4. Algorithms for Automatic Alignment of Arrays

    Science.gov (United States)

    Chatterjee, Siddhartha; Gilbert, John R.; Oliker, Leonid; Schreiber, Robert; Sheffler, Thomas J.

    1996-01-01

    Aggregate data objects (such as arrays) are distributed across the processor memories when compiling a data-parallel language for a distributed-memory machine. The mapping determines the amount of communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: an alignment that maps all the objects to an abstract template, followed by a distribution that maps the template to the processors. This paper describes algorithms for solving the various facets of the alignment problem: axis and stride alignment, static and mobile offset alignment, and replication labeling. We show that optimal axis and stride alignment is NP-complete for general program graphs, and give a heuristic method that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. We also show how local graph contractions can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. We show how to model the static offset alignment problem using linear programming, and we show that loop-dependent mobile offset alignment is sometimes necessary for optimum performance. We describe an algorithm with for determining mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself or can be used to improve performance. We describe an algorithm based on network flow that replicates objects so as to minimize the total amount of broadcast communication in replication.

  5. The effect of gender on force, muscle activity, and frontal plane knee alignment during maximum eccentric leg-press exercise.

    Science.gov (United States)

    Liebensteiner, Michael C; Platzer, Hans-Peter; Burtscher, Martin; Hanser, Friedrich; Raschner, Christian

    2012-03-01

    To investigate for gender differences during eccentric leg-press exercise. Tears of the anterior cruciate ligament (ACL) are considered to be related to eccentric tasks, altered neuromuscular control (e.g., reduced co-contraction of hamstrings), and increased knee abduction (valgus alignment). Based on these observations and the fact that ACL tears are more common in women, it was hypothesized that men and women differ significantly with regard to key parameters of force, knee stabilization, and muscle activity when exposed to maximum eccentric leg extension. Thirteen women and thirteen men were matched for age and physical activity. They performed maximum isokinetic eccentric leg-pressing against footplates of varied stability. The latter was done because earlier studies had shown that perturbational test conditions might be relevant in respect of ACL injuries. Key parameters of force, frontal plane knee stabilization, and muscle recruitment of significant muscles crossing the knee were recorded. The 'force stabilization deficit' (difference between maximum forces under normal and perturbed leg-pressing) did not differ significantly between genders. Likewise, parameters of muscle activity and frontal plane leg stabilization revealed no significant differences between men and women. This study is novel, in that gender differences in parameters of force, muscle activity, and leg kinematic were investigated during functional conditions of eccentric leg-pressing. No gender differences were observed in the measured parameters. However, the conclusion should be viewed with caution because the findings concurred with, but also contrasted, previous research in this field. Diagnostic study, Level III.

  6. Effects of Side Chains with Similar Lengths and Different Structures of Polyimides on Liquid Crystal Alignment Behavior

    Institute of Scientific and Technical Information of China (English)

    Jia-hao Xia; Ying Jiang; Shi-ming Gong; Zhen Sun; Ying-han Wang

    2014-01-01

    Polyimides (PI) with different side chains in structure were synthesized by copolycondensation of pyromelliticmdianhydride (PMDA) with 3,5-diamino-(4'-methane acid hexyl ester) phenyl-benzamide (C6-PDA),(4-butoxybiphenol)-3',5'-diaminobenzoate (C4-BBDA) and 3,5-diamino-benzoic acid decyl ester (C 10-DA) named PI-PDA,PI-C4,PI-DA,respectively.The lengths of side chains of PI-PDA and PI-DA are as similar as that of PI-C4.Through the pretilt angle tests it is demonstrated that neither the structure of side chains nor the rubbing process could make an obvious difference on vertical alignment property when the lengths of the side chains are similar,standing at around 1.6 nm.The measurement of surface energy of PI surfaces further proved this result.The result of the X-ray photo-electron spectroscope measurement indicated that the side chains of PIs stretched out from the polymer bulk phase and accumulated on the surface.

  7. Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes.

    Science.gov (United States)

    Trivedi, Samarth; Alameh, Kamal

    2016-01-01

    In this paper, vertically aligned carbon nanotube (VACNT) membranes of different densities are developed and their performances are investigated. VACNT arrays of densities 5 × 10(9), 10(10), 5 × 10(10) and 10(11) tubes cm(-2), are initially grown on 1 cm × 1 cm silicon substrates using chemical vapour deposition. A VACNT membrane is realised by attaching a 300 μm-thick 1 cm × 1 cm VACNT array on silicon to a 4″ glass substrate, applying polydimethylsiloxane (PDMS) through spin coating to fill the gaps between the VACNTs, and using a microtome to slice the VACNT-PDMS composite into 25-μm-thick membranes. Experimental results show that the permeability of the developed VACNT membranes increases with the density of the VACNTs, while the salt rejection is almost independent of the VACNT density. The best measured permeance is attained with a VACNT membrane having a CNT density of 10(11) tubes cm(-2) is 1203 LMH at 1 bar.

  8. Hydrodynamic alignment and assembly of nano-fibrillated cellulose in the laminar extensional flow: Effects of solidifying agents

    Science.gov (United States)

    Mittal, Nitesh; Lundell, Fredrik; Soderberg, Daniel

    2015-11-01

    There are several fiber production technologies that are based on wet-spinning processes. Many such processes rely on the transformation of a liquid solution into a solid filament. The kinetics of solidification depends largely on the diffusion of the solvents, additives and polymer molecules, which make such systems quite complex and differ from a system to another as a function of the specific chemical, physical and structural features of the used material components. Moreover, tuning the orientation of the polymers in the liquid suspensions makes it further possible to control their structure, which in turn can lead to materials having improved properties. By keeping in mind the facts mentioned above, the aim of the current study is to utilize benefits of a flow focusing approach to align carboxymethylated cellulose nanofibrils (CNF), as a colloidal dispersion, with the help of a laminar elongational flow-field followed by the solidification using different solidifying agents or molecules (with dissimilar diffusion behavior based on their size and charges) to synthesize fibers with enhanced mechanical properties. CNF are charged elongated particles obtained from woods with diameter of 4-10 nm and length of 1-1.5 μm, and they are completely biodegradable.

  9. Pulling-force-induced elongation and alignment effects on entanglement and knotting characteristics of linear polymers in a melt.

    Science.gov (United States)

    Panagiotou, E; Kröger, M

    2014-10-01

    We employ a primitive path (PP) algorithm and the Gauss linking integral to study the degree of entanglement and knotting characteristics of linear polymer model chains in a melt under the action of a constant pulling force applied to selected chain ends. Our results for the amount of entanglement, the linking number, the average crossing number, the writhe of the chains and their PPs and the writhe of the entanglement strands all suggest a different response at the length scale of entanglement strands than that of the chains themselves and of the corresponding PPs. Our findings indicate that the chains first stretch at the level of entanglement strands and next the PP (tube) gets oriented with the "flow." These two phases of the extension and alignment of the chains coincide with two phases related to the disentanglement of the chains. Soon after the onset of external force the PPs attain a more entangled conformation, and the number of nontrivially linked end-to-end closed chains increases. Next, the chains disentangle continuously to attain an almost unentangled conformation. Using the linking matrix of the chains in the melt, we furthermore show that these phases are accompanied by a different scaling of the homogeneity of the global entanglement in the system. The homogeneity of the end-to-end closed chains first increases to a maximum and then decreases slowly to a value characterizing a completely unlinked system.

  10. A CMOS imager using focal-plane pinhole effect for confocal multibeam scanning microscopy

    Science.gov (United States)

    Seo, Min-Woong; Wang, An; Li, Zhuo; Yasutomi, Keita; Kagawa, Keiichiro; Kawahito, Shoji

    2012-03-01

    A CMOS imager for confocal multi-beam scanning microscopy, where the pixel itself works as a pinhole, is proposed. This CMOS imager is suitable for building compact, low-power, and confocal microscopes because the complex Nipkow disk with a precisely aligned pinhole array can be omitted. The CMOS imager is composed of an array of sub-imagers, and can detect multiple beams at the same time. To achieve a focal-plane pinhole effect, only one pixel in each subimager, which is at the conjugate position of a light spot, accumulates the photocurrent, and the other pixels are unread. This operation is achieved by 2-dimensional vertical and horizontal shift registers. The proposed CMOS imager for the confocal multi-beam scanning microscope system was fabricated in 0.18-μm standard CMOS technology with a pinned photodiode option. The total area of the chip is 5.0mm × 5.0mm. The number of effective pixels is 256(Horizontal) × 256(Vertical). The pixel array consists of 32(H) × 32(V) sub-imagers each of which has 8(H) × 8(V) pixels. The pixel is an ordinary 4-transistor active pixel sensor using a pinned photodiode and the pixel size is 7.5μm × 7.5μm with a fillfactor of 45%. The basic operations such as normal image acquisition and selective pixel readout were experimentally confirmed. The sensitivity and the pixel conversion gain were 25.9 ke-/lx•sec and 70 μV/e- respectively.

  11. Fourier-transform and global contrast interferometer alignment methods

    Science.gov (United States)

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  12. Low temperature and cost-effective growth of vertically aligned carbon nanofibers using spin-coated polymer-stabilized palladium nanocatalysts

    Science.gov (United States)

    Saleem, Amin M.; Shafiee, Sareh; Krasia-Christoforou, Theodora; Savva, Ioanna; Göransson, Gert; Desmaris, Vincent; Enoksson, Peter

    2015-02-01

    We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMAx-b-AEMAy/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer-Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 °C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 °C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions.

  13. The effects of spatiotemporal coherence on interferometric imaging

    CERN Document Server

    Shin, Seungwoo; Lee, KyeoReh; Lee, SangYun; Park, YongKeun

    2016-01-01

    Illumination coherence plays a major role in various imaging systems, from microscopy, metrology, digital holography, optical coherence tomography, to ultrasound imaging. Here, we present a systematic study on the effects of degrees of spatiotemporal coherence of an illumination (DSTCI) on imaging quality. An optical field with arbitrary DSTCI was decomposed into wavelets with constituent spatiotemporal frequencies, and the effects on image quality were quantitatively investigated. The results show the synergistic effects on reduction of speckle noise when DSTCI is decreased. This study presents a method to systematically control DSTCI, and the result provides an essential reference on the effects of DSTCI on imaging quality. We believe that the presented methods and results can be implemented in various imaging systems for characterising and improving imaging quality.

  14. MUON DETECTORS: ALIGNMENT

    CERN Document Server

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  15. Ergodic Secret Alignment

    CERN Document Server

    Bassily, Raef

    2010-01-01

    In this paper, we introduce two new achievable schemes for the fading multiple access wiretap channel (MAC-WT). In the model that we consider, we assume that perfect knowledge of the state of all channels is available at all the nodes in a causal fashion. Our schemes use this knowledge together with the time varying nature of the channel model to align the interference from different users at the eavesdropper perfectly in a one-dimensional space while creating a higher dimensionality space for the interfering signals at the legitimate receiver hence allowing for better chance of recovery. While we achieve this alignment through signal scaling at the transmitters in our first scheme (scaling based alignment (SBA)), we let nature provide this alignment through the ergodicity of the channel coefficients in the second scheme (ergodic secret alignment (ESA)). For each scheme, we obtain the resulting achievable secrecy rate region. We show that the secrecy rates achieved by both schemes scale with SNR as 1/2log(SNR...

  16. Effects of image processing on the detective quantum efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na [Yonsei University, Wonju (Korea, Republic of)

    2010-02-15

    The evaluation of image quality is an important part of digital radiography. The modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) are widely accepted measurements of the digital radiographic system performance. However, as the methodologies for such characterization have not been standardized, it is difficult to compare directly reported the MTF, NPS, and DQE results. In this study, we evaluated the effect of an image processing algorithm for estimating the MTF, NPS, and DQE. The image performance parameters were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) posterior-anterior (PA) images of a hand for measuring the signal to noise ratio (SNR), the slit images for measuring the MTF, and the white images for measuring the NPS were obtained, and various multi-Scale image contrast amplification (MUSICA) factors were applied to each of the acquired images. All of the modifications of the images obtained by using image processing had a considerable influence on the evaluated image quality. In conclusion, the control parameters of image processing can be accounted for evaluating characterization of image quality in same way. The results of this study should serve as a baseline for based on evaluating imaging systems and their imaging characteristics by MTF, NPS, and DQE measurements.

  17. Cost-effectiveness modelling in diagnostic imaging: a stepwise approach

    NARCIS (Netherlands)

    Sailer, A.M.; Zwam, W.H. van; Wildberger, J.E.; Grutters, J.P.C.

    2015-01-01

    Diagnostic imaging (DI) is the fastest growing sector in medical expenditures and takes a central role in medical decision-making. The increasing number of various and new imaging technologies induces a growing demand for cost-effectiveness analysis (CEA) in imaging technology assessment. In this ar

  18. Effect of Testing Conditions on Fibre-Bundle Tensile Properties Part Ⅰ: Sample Preparation, Bundle Mass and Fibre Alignment of Wool Bundles

    Institute of Scientific and Technical Information of China (English)

    YU Wei-dong; YAN Hao-jing; Ron Postle; Yang Shouren

    2002-01-01

    Due to the effects of samples and testing conditions on fibre-bundle tensile behaviour, it is necessary to investigate the relationships between experimental factors and tensile properties for the fibre-bumdle tensile tester (TENSOR). The effects of bundle sample preparation, fibre bundle mass and fibre alignment have been tested. The experimental results indicated that (1) the low damage in combing and no free-end fibres in the cut bundle are most important for the sample preparation; (2) the reasonable bundle mass is 400- 700tex, but the tensile properties measured should bemodified with the bundle mass because a small amount of bundle mass causes the scatter results, while the larger is the bundle mass, the more difficult to comb fibres parallel and to clamp fibre evenly; and (3) the fibre irregular arrangement forms a slack bundle resulting in interaction between fibres, which will affect the reproducibility and accuracy of the tensile testing.

  19. Coelostat and heliostat - Theory of alignment

    Science.gov (United States)

    Demianski, M.; Pasachoff, J. M.

    1984-06-01

    For perfectly aligned heliostats and coelostats tracking at the solar rate and half the solar rate, respectively, the solar beam has no translational motion. But, particularly in the field at eclipses, it is not possible to align heliostats and coelostats with infinite precision. The authors derive the effect of small misalignments on the translational motion of the beam, and give tables to allow the calculation of the accuracy to which the instruments must be mounted and adjusted to attain a desired accuracy over a given duration. Further, it is shown how to derive the necessary adjustments to improve alignment, given measurements of the tracking error.

  20. FMIT alignment cart

    Energy Technology Data Exchange (ETDEWEB)

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance.

  1. Alignment - SAHG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...e URL: ftp://ftp.biosciencedbc.jp/archive/sahg/LATEST/sahg_alignment.zip File size: 12.0 MB Simple search UR...s Database Database Description Download License Update History of This Database Site Policy | Contact Us Alignment - SAHG | LSDB Archive ...

  2. Three dimensional alignment of molecules using elliptically polarized laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Hald, K.

    2000-01-01

    is illustrated through time dependent quantum mechanical calculations. Experimentally, 3, 4-dibromothiophene molecules are aligned with a nanosecond laser pulse. The alignment is probed by 2D ion imaging of the fragments from a 20 fs laser pulse induced Coulomb explosion....

  3. Effects of Films and Television Dramas on Destination Image

    Directory of Open Access Journals (Sweden)

    Pars Şahbaz

    2009-09-01

    Full Text Available The aim of this study is bring up the effects of films and television dramas on destination image. Image is a picture and a imagery which ia about destination and also image affects the purchase decision making. The population of the study contains domestic tourists who visited Mardin. The result of the study suggests that there is a substantive relationship between destination images and films and television dramas.

  4. Strategic Alignment of Business Intelligence

    OpenAIRE

    Cederberg, Niclas

    2010-01-01

    This thesis is about the concept of strategic alignment of business intelligence. It is based on a theoretical foundation that is used to define and explain business intelligence, data warehousing and strategic alignment. By combining a number of different methods for strategic alignment a framework for alignment of business intelligence is suggested. This framework addresses all different aspects of business intelligence identified as relevant for strategic alignment of business intelligence...

  5. Group Based Interference Alignment

    CERN Document Server

    Ma, Yanjun; Chen, Rui; Yao, Junliang

    2010-01-01

    in $K$-user single-input single-output (SISO) frequency selective fading interference channels, it is shown that the achievable multiplexing gain is almost surely $K/2$ by using interference alignment (IA). However when the signaling dimensions is limited, allocating all the resource to all the users simultaneously is not optimal. According to this problem, a group based interference alignment (GIA) scheme is proposed and a search algorithm is designed to get the group patterns and the resource allocation among them. Analysis results show that our proposed scheme achieves a higher multiplexing gain when the resource is limited.

  6. Orientation and Alignment Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Hartmann, J -M; Faucher, O; Gershnabel, E; Prior, Y; Averbukh, I Sh

    2015-01-01

    We present what is probably the simplest classical system featuring the echo phenomenon - a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation/alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_2 molecules excited by a pair of femtosecond laser pulses.

  7. Aligned, short-fiber composites by novel flow processing methods

    Energy Technology Data Exchange (ETDEWEB)

    Guell, D.C.; Graham, A.L.; Papathanasiou, T.; Petrovic, J.J.

    1993-03-01

    A hydrodynamic method has been employed to align short, reinforcing fibers in polymer matrix composite materials. Samples of composite materials were prepared and tested two at a time (one with randomly oriented fibers and the other with aligned fibers) to isolate and directly measure the effect on mechanical properties of aligning the fibers. Data were collected for the ultimate tensile strength, modulus of elasticity, and ultimate tensile strain of the composite samples prepared. Results show that the aligned fibers were approximately twice as effective (as randomly oriented fibers) at stiffening and strengthening the composite in the alignment direction. 5 figs, 20 refs.

  8. Aligned, short-fiber composites by novel flow processing methods

    Energy Technology Data Exchange (ETDEWEB)

    Guell, D.C.; Graham, A.L.; Papathanasiou, T.; Petrovic, J.J.

    1993-01-01

    A hydrodynamic method has been employed to align short, reinforcing fibers in polymer matrix composite materials. Samples of composite materials were prepared and tested two at a time (one with randomly oriented fibers and the other with aligned fibers) to isolate and directly measure the effect on mechanical properties of aligning the fibers. Data were collected for the ultimate tensile strength, modulus of elasticity, and ultimate tensile strain of the composite samples prepared. Results show that the aligned fibers were approximately twice as effective (as randomly oriented fibers) at stiffening and strengthening the composite in the alignment direction. 5 figs, 20 refs.

  9. Little solar impact from planets' alignment

    Science.gov (United States)

    Bell, Peter M.

    Contrary to some projections, planetary alignments of the type that have begun recently (when the sun, Venus, Earth, Jupiter, and Saturn move into almost perfect alignment) should have no perceptible effect on solar flare activity. Some researchers have postulated that the increased gravitational attraction exerted on the sun by the aligned planets could produce massive eruptions near sunspots. The radiation and particles directed earthward by the sun, according to this hypothesis, would change the atmosphere in a way that would slow the earth's rotation; and this change in rotation rate would cause the large plates which constitute the earth's crust to grind together more vigorously and cause major earthquakes. Because Jupiter is the largest of the planets, and so exerts the most gravitational attraction, this geophysical domino theory is sometimes referred to as the Jupiter Effect. But, at least at the solar end of this theory, one would not expect much change in solar activity from planetary alignments of this type.

  10. Aligning parallel arrays to reduce communication

    Science.gov (United States)

    Sheffler, Thomas J.; Schreiber, Robert; Gilbert, John R.; Chatterjee, Siddhartha

    1994-01-01

    Axis and stride alignment is an important optimization in compiling data-parallel programs for distributed-memory machines. We previously developed an optimal algorithm for aligning array expressions. Here, we examine alignment for more general program graphs. We show that optimal alignment is NP-complete in this setting, so we study heuristic methods. This paper makes two contributions. First, we show how local graph transformations can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. Second, we give a heuristic that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. Our algorithms have been implemented; we present experimental results showing their effect on the performance of some example programs running on the CM-5.

  11. Effective Image Database Search via Dimensionality Reduction

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Aanæs, Henrik

    2008-01-01

    Image search using the bag-of-words image representation is investigated further in this paper. This approach has shown promising results for large scale image collections making it relevant for Internet applications. The steps involved in the bag-of-words approach are feature extraction......, vocabulary building, and searching with a query image. It is important to keep the computational cost low through all steps. In this paper we focus on the efficiency of the technique. To do that we substantially reduce the dimensionality of the features by the use of PCA and addition of color. Building....... In the query step, features from the query image are assigned to the visual vocabulary. The dimensionality reduction enables us to do exact feature labeling using kD-tree, instead of approximate approaches normally used. Despite the dimensionality reduction to between 6 and 15 dimensions we obtain improved...

  12. Effective elastic modulus of a transverse isotropy solid with aligned inhomogeneity%横向各向同性固体材料中含定向非均匀体的有效弹性模量∗

    Institute of Scientific and Technical Information of China (English)

    许松; 唐晓明; 苏远大

    2015-01-01

    The effective modulus of transversely isotropic compound material containing aligned ellipsoidal inhomogeneity is derived using the method of sphere-equivalency of effective scattering. Based on this approach, we derive the integral solution of the Eshelby tensor for the anisotropic medium, allowing for numerically evaluating the effects of anisotropy for the solution. The numerical results show that the effective modulus of the medium decreases monotonically with increasing the concentration of the inhomogeneties. The anisotropy increases if the inhomogeneity alignment direction is perpendicular to the TI symmetry axis of the background medium. By reducing the numbers of matrix elastic modulus from 5 to 2, we calculate the slowness surfaces for the three modes of propagation in an isotropic medium containing aligned ellipsoidal inhomogeneity. The results are the same as the existing ones, which validates the exactness of our theory. The modeling results can be used to evaluate elastic property of an anisotropic medium with aligned inclusions, such as earth formation shale rocks containing aligned cracks.

  13. The Nonlinear Evolution of Galaxy Intrinsic Alignments

    OpenAIRE

    Lee, Jounghun; Pen, Ue-Li

    2007-01-01

    The non-Gaussian contribution to the intrinsic halo spin alignments is analytically modeled and numerically detected. Assuming that the growth of non-Gaussianity in the density fluctuations caused the tidal field to have nonlinear-order effect on the orientations of the halo angular momentum, we model the intrinsic halo spin alignments as a linear scaling of the density correlations on large scales, which is different from the previous quadratic-scaling model based on the linear tidal torque ...

  14. Molecular focusing and alignment with plasmon fields.

    Science.gov (United States)

    Artamonov, Maxim; Seideman, Tamar

    2010-12-01

    We show the possibility of simultaneously aligning molecules and focusing their center-of-mass motion near a metal nanoparticle in the field intensity gradient created by the surface plasmon enhancement of incident light. The rotational motion is described quantum mechanically while the translation is treated classically. The effects of the nanoparticle shape on the alignment and focusing are explored. Our results carry interesting implications to the field of molecular nanoplasmonics and suggest several potential applications in nanochemistry.

  15. Aligning Responsible Business Practices

    DEFF Research Database (Denmark)

    Weller, Angeli E.

    2017-01-01

    This article offers an in-depth case study of a global high tech manufacturer that aligned its ethics and compliance, corporate social responsibility, and sustainability practices. Few large companies organize their responsible business practices this way, despite conceptual relevance and calls...... and managers interested in understanding how responsible business practices may be collectively organized....

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  17. Aligning Theory with Practice

    Science.gov (United States)

    Kurz, Terri L.; Batarelo, Ivana

    2009-01-01

    This article describes a structure to help preservice teachers get invaluable field experience by aligning theory with practice supported by the integration of elementary school children into their university mathematics methodology course. This course structure allowed preservice teachers to learn about teaching mathematics in a nonthreatening…

  18. Alignment of concerns

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn;

    2014-01-01

    The emergence of patient-centered eHealth systems introduces new challenges, where patients come to play an increasingly important role. Realizing the promises requires an in-depth understanding of not only the technology, but also the needs of both clinicians and patients. However, insights from...... as a design rationale for successful eHealth, termed 'alignment of concerns'....

  19. Aligning Mental Representations

    DEFF Research Database (Denmark)

    Kano Glückstad, Fumiko

    2013-01-01

    on the application of the BMG to publicly available datasets, the Leuven natural concept database [3] representing semantic structures of domain knowledge possessed by individual subjects [3]. Results indicate that the BMG is potentially a model applicable to simulating the alignment of domain knowledge from...

  20. Automated quantification of one-dimensional nanostructure alignment on surfaces

    Science.gov (United States)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  1. Secrets to effective imaging services marketing.

    Science.gov (United States)

    Leepson, Evan

    2005-01-01

    Marketing outpatient diagnostic imaging services is similar to marketing professional services. However, the definition of marketing outpatient diagnostic imaging goes far beyond textbook and traditional meanings of marketing. There are 5 major trends that are forcing hospitals to market their diagnostic imaging services: demographics, competition, non-radiologist expansion, self-protective practice, and evolving technologies. Before thinking about identifying whom to target to develop a strategic relationship, it is necessary to get a sense of what is going on in the local area in terms of demographic trends. Much of this information can be obtained from the hospital's planning department. Local and state health planning organizations have some of the data and information. It is most critical for imaging departments to manage strategic relationships because they do not have direct access to patients. The department is solely dependent on cultivating relationships if it is to thrive. Diagnostic imaging centers have more freedom than hospitals when considering with whom to develop relationships. There are 5 essential components to any diagnostic imaging services marketing plan: be on top of referral patterns; brag about the organization's service; know the customer; keep communication channels open; and understand that marketing is a family affair. Successful diagnostic imaging marketing is key to an organization's long-term health. Developing and implementing a comprehensive, targeted, and sustained plan is crucial.

  2. Rear foot kinematics when wearing lateral wedge insoles and foot alignment influence the effect of knee adduction moment for medial knee osteoarthritis.

    Science.gov (United States)

    Sawada, Tomonori; Tanimoto, Kenji; Tokuda, Kazuki; Iwamoto, Yoshitaka; Ogata, Yuta; Anan, Masaya; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-09-01

    Lateral wedge insoles (LWIs) are prescribed for patients with medial knee osteoarthritis to reduce the external knee adduction moment (KAM). However, the biomechanical effects of LWIs are limited in some patients. The purpose of this study was to investigate whether the biomechanical effects of LWIs depend on individual foot alignment and to examine the relationship between change in KAM and changes in foot and ankle biomechanics when wearing LWIs. Twenty-one patients participated in this study. They were categorized into normal or abnormal foot groups based on the foot posture index (FPI). All patients were requested to perform a normal gait under barefoot and LWI conditions. A three-dimensional motion analysis system was used to record 1st and 2nd KAM, knee adduction angular impulse (KAAI), center of pressure displacement, and knee-ground reaction force lever arm. Furthermore, the foot and ankle frontal plane kinematic parameters were evaluated. The 1st KAM was significantly reduced under the LWI condition compared to that under the barefoot condition in the normal foot group. In contrast, there was no significant difference in 1st KAM between both conditions in the abnormal foot group. Decreased rear foot eversion strongly correlated with reduction in the 1st KAM in the normal foot group. These findings suggested that it is helpful to assess individual foot alignment to ensure adequate insole treatment for patients with medial knee osteoarthritis and that decreased rear foot eversion during the early stance phase is significantly involved in the reduction of 1st KAM when wearing LWIs with normal feet. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Proper alignment of the microscope.

    Science.gov (United States)

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  4. Alignment of the Fibrin Network Within an Autologous Plasma Clot.

    Science.gov (United States)

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2016-01-01

    Autologous plasma clots with longitudinally aligned fibrin fibers could serve as a scaffold for longitudinal axonal regrowth in cases of traumatic peripheral nerve injuries. Three different techniques for assembling longitudinally oriented fibrin fibers during the fibrin polymerization process were investigated as follows: fiber alignment was induced by the application of either a magnetic field or-as a novel approach-electric field or by the induction of orientated flow. Fiber alignment was characterized by scanning electron microscopy analysis followed by image processing using fast Fourier transformation (FFT). Besides FFT output images, area xmin to xmax, as well as full width at half maximum (FWHM) of the FFT graph plot peaks, was calculated to determine the relative degree of fiber alignment. In addition, fluorescently labeled human fibrinogen and mesenchymal stem cells (MSCs) were used to visualize fibrin and cell orientation in aligned and nonaligned plasma clots. Varying degrees of fiber alignment were achieved by the three different methods, with the electric field application producing the highest degree of fiber alignment. The embedded MSCs showed a longitudinal orientation in the electric field-aligned plasma clots. The key feature of this study is the ability to produce autologous plasma clots with aligned fibrin fibers using physical techniques. This orientated internal structure of an autologous biomaterial is promising for distinct therapeutic applications, such as a guiding structure for cell migration and growth dynamics.

  5. Improving the performance of the actinic inspection tool with an optimized alignment procedure

    Energy Technology Data Exchange (ETDEWEB)

    Mochi, I.; Goldberg, K.A.; Naulleau, P.; Huh, Sungmin

    2009-03-04

    Extreme ultraviolet (EUV) microscopy is an important tool for the investigation of the performance of EUV masks, for detecting the presence and the characteristics of defects, and for evaluating the effectiveness of defect repair techniques. Aerial image measurement bypasses the difficulties inherent to photoresist imaging and enables high data collection speed and flexibility. It provides reliable and quick feedback for the development of masks and lithography system modeling methods. We operate the SEMATECH Berkeley Actinic Inspection Tool (AIT), a EUV microscope installed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The AIT is equipped with several high-magnification Fresnel zoneplate lenses, with various numerical aperture values, that enable it image the reflective mask surface with various resolution and magnification settings. Although the AIT has undergone significant recent improvements in terms of imaging resolution and illumination uniformity, there is still room for improvement. In the AIT, an off-axis zoneplate lens collects the light coming from the sample and an image of the sample is projected onto an EUV-sensitive CCD camera. The simplicity of the optical system is particularly helpful considering that the AIT alignment has to be performed every time that a sample or a zoneplate is replaced. The alignment is sensitive to several parameters such as the lens position and orientation, the illumination direction and the sample characteristics. Since the AIT works in high vacuum, there is no direct access to the optics or to the sample during the alignment and the measurements. For all these reasons the alignment procedures and feedback can be complex, and in some cases can reduce the overall data throughput of the system. In this paper we review the main strategies and procedures that have been developed for quick and reliable alignments, and we describe the performance improvements we have achieved, in terms of aberration

  6. Purification process for vertically aligned carbon nanofibers

    Science.gov (United States)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  7. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  8. Fast global sequence alignment technique

    KAUST Repository

    Bonny, Mohamed Talal

    2011-11-01

    Bioinformatics database is growing exponentially in size. Processing these large amount of data may take hours of time even if super computers are used. One of the most important processing tool in Bioinformatics is sequence alignment. We introduce fast alignment algorithm, called \\'Alignment By Scanning\\' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the \\'GAP\\' (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 51% enhancement in alignment score when it is compared with the GAP Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  9. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube–silicon solar cells

    Directory of Open Access Journals (Sweden)

    Benedikt W. Stolz

    2016-10-01

    Full Text Available Recent results in the field of carbon nanotube–silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning – in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube–silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  10. A simple method to control over-alignment in the MAFFT multiple sequence alignment program.

    Science.gov (United States)

    Katoh, Kazutaka; Standley, Daron M

    2016-07-01

    We present a new feature of the MAFFT multiple alignment program for suppressing over-alignment (aligning unrelated segments). Conventional MAFFT is highly sensitive in aligning conserved regions in remote homologs, but the risk of over-alignment is recently becoming greater, as low-quality or noisy sequences are increasing in protein sequence databases, due, for example, to sequencing errors and difficulty in gene prediction. The proposed method utilizes a variable scoring matrix for different pairs of sequences (or groups) in a single multiple sequence alignment, based on the global similarity of each pair. This method significantly increases the correctly gapped sites in real examples and in simulations under various conditions. Regarding sensitivity, the effect of the proposed method is slightly negative in real protein-based benchmarks, and mostly neutral in simulation-based benchmarks. This approach is based on natural biological reasoning and should be compatible with many methods based on dynamic programming for multiple sequence alignment. The new feature is available in MAFFT versions 7.263 and higher. http://mafft.cbrc.jp/alignment/software/ katoh@ifrec.osaka-u.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  11. The effect of decreasing digital image resolution on teledermatology diagnosis.

    Science.gov (United States)

    Vidmar, D A; Cruess, D; Hsieh, P; Dolecek, Q; Pak, H; Gwynn, M; Maggio, K; Montemorano, A; Powers, J; Richards, D; Sperling, L; Wong, H; Yeager, J

    1999-01-01

    To determine the effect of degraded digital image resolution (as viewed on a monitor) on the accuracy and confidence of dermatologic interpretation. Eight dermatologists interpreted 180 clinical cases divided into three Logical Competitor Sets (LCS) (pigmented lesions, non-pigmented lesions, and inflammatory dermatoses). Each case was digitized at three different resolutions. The images were randomized and divided into (9) 60-image sessions. The physicians were completely blinded concerning the image resolution. After 60 seconds per image, the viewer recorded a diagnosis and level of confidence. The resultant ROC curves compared the effect of LCS, level of clinical difficulty, and resolution of the digital image. One-way analysis of variance (ANOVA) compared the curves. The areas beneath the ROC curves did not demonstrate any consistently significant difference between the digital image resolutions for all LCS and levels of difficulty. The only significant effect observed was amongst pigmented lesions (LCS-A) where the ROC curve area was significantly smaller in the easy images at high resolution compared to low and medium resolutions. For all other ROC curve comparisons within LCS-A, at all other levels of difficulty, as well as within the other LCS at all levels of difficulty, none of the differences was significant. A 720 x 500 pixel image can be considered equivalent to a 1490 x 1000 pixel image for most store-and-forward teledermatology consultations.

  12. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  13. Formatt: Correcting protein multiple structural alignments by incorporating sequence alignment

    Directory of Open Access Journals (Sweden)

    Daniels Noah M

    2012-10-01

    Full Text Available Abstract Background The quality of multiple protein structure alignments are usually computed and assessed based on geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate sequence similarity measures into the construction and assessment of protein multiple structure alignments has proved surprisingly difficult. Results We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure alignment program, that also takes into account sequence similarity when constructing alignments. We show that Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark. For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity, for a small cost in average RMSD. Conclusions Considering sequence information as well as purely geometric information seems to improve quality of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural measures would suggest different alignments remains a difficult open question.

  14. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    Science.gov (United States)

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH3NH3PbI3 perovskite crystals and PbI2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  15. The spin axes orbital alignment of both stars within the eclipsing binary system V1143Cyg using the Rossiter-McLaughlin effect

    CERN Document Server

    Albrecht, S; Snellen, I; Quirrenbach, Andreas G; Mitchell, D S

    2007-01-01

    Context: The Rossiter-McLaughlin (RM) effect, a rotational effect in eclipsing systems, provides unique insight into the relative orientation of stellar spin axes and orbital axes of eclipsing binary systems. Aims: Our aim is to develop a robust method to analyze the RM effect in an eclipsing system with two nearly equally bright components. This gives access to the orientation of the stellar rotation axes and may shed light on questions of binary formation and evolution. Methods: High-resolution spectra have been obtained both out of eclipse and during the primary and secondary eclipses in the V1143Cyg system, using the high-resolution Hamilton Echelle Spectrograph at the Lick Observatory. The Rossiter-McLaughlin effect is analyzed in two ways: (1) by measuring the shift of the line center of gravity during different phases of the eclipses and (2) by analysis of the line shape change of the rotational broadening function during eclipses. Results: The projected axes of both stars are aligned with the orbital ...

  16. The comparative effectiveness of conventional and digital image libraries.

    Science.gov (United States)

    McColl, R I; Johnson, A

    2001-03-01

    Before introducing a hospital-wide image database to improve access, navigation and retrieval speed, a comparative study between a conventional slide library and a matching image database was undertaken to assess its relative benefits. Paired time trials and personal questionnaires revealed faster retrieval rates, higher image quality, and easier viewing for the pilot digital image database. Analysis of confidentiality, copyright and data protection exposed similar issues for both systems, thus concluding that the digital image database is a more effective library system. The authors suggest that in the future, medical images will be stored on large, professionally administered, centrally located file servers, allowing specialist image libraries to be tailored locally for individual users. The further integration of the database with web technology will enable cheap and efficient remote access for a wide range of users.

  17. Effects of a cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine.

    Science.gov (United States)

    Kim, Seok Woo; Shin, Jae Hyuk; Arbatin, Jose Joefrey; Park, Moon Soo; Chung, Yung Khee; McAfee, Paul C

    2008-01-01

    The object of this study is to review the early clinical results and radiographic outcomes following insertion of the Bryan Cervical Disc Prosthesis (Medtronic Sofamor Danek, Memphis, TN), together with its effect on maintaining sagittal alignment of the functional spinal unit (FSU) and overall sagittal balance of the cervical spine for the treatment of single-level or two-level symptomatic disc disease. Forty-seven patients with symptomatic single or two-level cervical disc disease who received the Bryan Cervical Artificial Disc were reviewed prospectively. A total of 55 Bryan disc were placed in 47 patients. A single-level procedure was performed in 39 patients and a two-level procedure in the other eight. Radiographic and clinical assessments were made preoperatively and at 1.5, 3, 6, 9, 12, and 18 and up to 33 months postoperatively. Mean follow-up duration was 24 months, ranging from 13 to 33 months. Periods were categorized as early follow up (1.5-3 months) and late follow up (6-33 months). The visual analogue scale (VAS), neck disability index(NDI), Odom's criteria were used to assess pain and clinical outcomes. Static and dynamic radiographs were measured by hand and computer to determine the range of motion (ROM), the angle of the functional segmental unit (FSU), and the overall cervical alignment (C2-7 Cobb angle). With all of these data, we evaluated the change of the preoperative lordosis (or kyphosis) of the FSU and Overall sagittal balance of the cervical spine during the follow-up period. There was a statistically significant improvement in the VAS score from 7.0 +/- 2.6 to 2.0 +/- 1.5 (paired-t test, P = 0.000), and in the NDI from 21.5 +/- 5.5 to 4.5 +/- 3.9 (paired-t test P = 0.000). All of the patients were satisfied with the surgical results by Odom's criteria. The postoperative ROM of the implanted level was preserved without significant difference from preoperative ROM of the operated level. Only 36% of patients with a preoperative lordotic

  18. Robust Non-Frontal Face Alignment with Edge Based Texture

    Institute of Scientific and Technical Information of China (English)

    Hua Li; Shui-Cheng Yan; Li-Zhong Peng

    2005-01-01

    This paper proposes a new algorithm, called Edge-based Texture Driven Shape Model (E-TDSM), for nonfrontal face alignment task. First, the texture is defined as the un-warped edge image contained in the shape rectangle; then,a Bayesian network is constructed to describe the relationship between the shape and texture models; finally, ExpectationMaximization (EM) approach is utilized to infer the optimal texture and position parameters from the observed shape and texture information. Compared with the traditional shape localization algorithms, E-TDSM has the following advantages:1) the un-warped edge-based texture can better predict the shape and is more robust to the illumination and expression variation than the conventional warped gray-level based texture; 2) the presented Bayesian network indicates the logic structure of the face alignment task; and 3) the mutually enhanced shape and texture observations are integrated to infer the optimal parameters of the proposed Bayesian network using EM approach. The extensive experiments on non-frontal face alignment task demonstrate the effectiveness and robustness of the proposed E-TDSM algorithm.

  19. Inflation by alignment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [PH -TH Division, CERN,CH-1211, Genève 23 (Switzerland); Department of Physics & Astronomy, McMaster University,1280 Main Street West, Hamilton ON (Canada); Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo ON (Canada); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  20. Aligning component upgrades

    Directory of Open Access Journals (Sweden)

    Roberto Di Cosmo

    2011-08-01

    Full Text Available Modern software systems, like GNU/Linux distributions or Eclipse-based development environment, are often deployed by selecting components out of large component repositories. Maintaining such software systems by performing component upgrades is a complex task, and the users need to have an expressive preferences language at their disposal to specify the kind of upgrades they are interested in. Recent research has shown that it is possible to develop solvers that handle preferences expressed as a combination of a few basic criteria used in the MISC competition, ranging from the number of new components to the freshness of the final configuration. In this work we introduce a set of new criteria that allow the users to specify their preferences for solutions with components aligned to the same upstream sources, provide an efficient encoding and report on the experimental results that prove that optimising these alignment criteria is a tractable problem in practice.

  1. Inflation by Alignment

    CERN Document Server

    Burgess, Cliff

    2015-01-01

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f > Mp, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  2. Aligning component upgrades

    CERN Document Server

    Di Cosmo, Roberto; Michel, Claude; 10.4204/EPTCS.65.1

    2011-01-01

    Modern software systems, like GNU/Linux distributions or Eclipse-based development environment, are often deployed by selecting components out of large component repositories. Maintaining such software systems by performing component upgrades is a complex task, and the users need to have an expressive preferences language at their disposal to specify the kind of upgrades they are interested in. Recent research has shown that it is possible to develop solvers that handle preferences expressed as a combination of a few basic criteria used in the MISC competition, ranging from the number of new components to the freshness of the final configuration. In this work we introduce a set of new criteria that allow the users to specify their preferences for solutions with components aligned to the same upstream sources, provide an efficient encoding and report on the experimental results that prove that optimising these alignment criteria is a tractable problem in practice.

  3. A similarity-based framework for the alignment of an ontology for remote sensing

    Science.gov (United States)

    Farah, Mohamed; Nefzi, Hafedh; Farah, Imed Riadh

    2016-11-01

    Building remote sensing (RS) ontologies can undoubtedly help automatic interpretation of RS images content. Ontology alignment is proven to be an effective ontology building process that enables reusing already existing semantic resources. The quality of the ontology alignment output highly depends on the similarity measures that have been considered as well as the way they are combined together. In the literature, research on similarity measures mainly focuses on how to build new or refine already existing similarity measures leading to a wide range of measures. However, few research addresses their dependencies and combination in order to evaluate the overall similarity of the concepts to be compared. In this paper, we first show how to select a reduced set of similarity measures to be used in the alignment process. Afterwards, we present a ranking model that allows sorting mappings between concepts coming from two different ontologies in a decreasing order of global similarity score. First experimentation shows that the proposed approach is promising.

  4. Case series of an intraoral balancing appliance therapy on subjective symptom severity and cervical spine alignment.

    Science.gov (United States)

    Lee, Young Jun; Lee, Joo Kang; Jung, Soo Chang; Lee, Hwang-Woo; Yin, Chang Shik; Lee, Young Jin

    2013-01-01

    Objective. The objective of this study was to investigate the effect of a holistic intraoral appliance (OA) on cervical spine alignment and subjective symptom severity. Design. An observational study on case series with holistic OA therapy. Setting. An outpatient clinic for holistic temporomandibular joint (TMJ) therapy under the supervision of the Pain Center, CHA Biomedical center, CHA University. Subjects. Ambulatory patients presenting with diverse chief complaints in the holistic TMJ clinic. Main Measures. Any immediate change in the curvature of cervical spine and the degree of atlantoaxial rotation was investigated in the images of simple X-ray and computed tomography of cervical spine with or without OA. Changes of subjective symptom severity were also analyzed for the holistic OA therapy cases. Results. A total of 59 cases were reviewed. Alignment of upper cervical spine rotation showed an immediate improvement (P alignment. These results show that further researches may warrant for the holistic TMJ therapy.

  5. Alignment of magnetized accretion disks and relativistic jets with spinning black holes.

    Science.gov (United States)

    McKinney, Jonathan C; Tchekhovskoy, Alexander; Blandford, Roger D

    2013-01-04

    Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a "magneto-spin alignment" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.

  6. Alignment of concerns

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    E-health promises to enable and support active patient participation in chronic care. However, these fairly recent innovations are complicated matters and emphasize significant challenges, such as patients’ and clinicians’ different ways of conceptualizing disease and illness. Informed by insight...... from medical phenomenology and our own empirical work in telemonitoring and medical care of heart patients, we propose a design rationale for e-health systems conceptualized as the ‘alignment of concerns’....

  7. Orbit IMU alignment: Error analysis

    Science.gov (United States)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  8. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  9. JWST science instrument pupil alignment measurements

    Science.gov (United States)

    Kubalak, Dave; Sullivan, Joe; Ohl, Ray; Antonille, Scott; Beaton, Alexander; Coulter, Phillip; Hartig, George; Kelly, Doug; Lee, David; Maszkiewicz, Michael; Schweiger, Paul; Telfer, Randal; Te Plate, Maurice; Wells, Martyn

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy ( 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI), including a guider. OSIM is a full field, cryogenic, optical simulator of the JWST OTE. It is the "Master Tool" for verifying the cryogenic alignment and optical performance of ISIM by providing simulated point source/star images to each of the four Science Instruments in ISIM. Included in OSIM is a Pupil Imaging Module (PIM) - a large format CCD used for measuring pupil alignment. Located at a virtual stop location within OSIM, the PIM records superimposed shadow images of pupil alignment reference (PAR) targets located in the OSIM and SI pupils. The OSIM Pupil Imaging Module was described by Brent Bos, et al, at SPIE in 2011 prior to ISIM testing. We have recently completed the third and final ISIM cryogenic performance verification test before ISIM was integrated with the OTE. In this paper, we describe PIM implementation, performance, and measurement results.

  10. Seeking the perfect alignment

    CERN Multimedia

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...

  11. Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects

    Directory of Open Access Journals (Sweden)

    Mayer Christoph

    2007-08-01

    Full Text Available Abstract Background Published molecular phylogenies are usually based on data whose quality has not been explored prior to tree inference. This leads to errors because trees obtained with conventional methods suppress conflicting evidence, and because support values may be high even if there is no distinct phylogenetic signal. Tools that allow an a priori examination of data quality are rarely applied. Results Using data from published molecular analyses on the phylogeny of crustaceans it is shown that tree topologies and popular support values do not show existing differences in data quality. To visualize variations in signal distinctness, we use network analyses based on split decomposition and split support spectra. Both methods show the same differences in data quality and the same clade-supporting patterns. Both methods are useful to discover long-branch effects. We discern three classes of long branch effects. Class I effects consist of attraction of terminal taxa caused by symplesiomorphies, which results in a false monophyly of paraphyletic groups. Addition of carefully selected taxa can fix this effect. Class II effects are caused by drastic signal erosion. Long branches affected by this phenomenon usually slip down the tree to form false clades that in reality are polyphyletic. To recover the correct phylogeny, more conservative genes must be used. Class III effects consist of attraction due to accumulated chance similarities or convergent character states. This sort of noise can be reduced by selecting less variable portions of the data set, avoiding biases, and adding slower genes. Conclusion To increase confidence in molecular phylogenies an exploratory analysis of the signal to noise ratio can be conducted with split decomposition methods. If long-branch effects are detected, it is necessary to discern between three classes of effects to find the best approach for an improvement of the raw data.

  12. Seasonal effects in the ionosphere-thermosphere response to the precipitation and field-aligned current variations in the cusp region

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earth's upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer Hemisphere obtained

  13. 表面垂直取向对HPDLC光栅特性的影响%Surface vertical alignment effect on performance of holographic polymer dispersed liquid crystal gratings

    Institute of Scientific and Technical Information of China (English)

    李文萃; 舒新建; 杨燚; 黄文彬

    2014-01-01

    为了提高聚合物/液晶(HPDLC)光栅的衍射效率并改善光栅的表面形貌,研究了表面垂直取向处理对HPDLC光栅的影响。首先,研究了表面垂直处理对液晶分子的取向作用,发现垂直取向层对液晶的锚定作用随着盒厚的增加而逐渐减弱,取向层的作用范围大概在3μm ~5μm之间;其次,对相分离程度进行了实验表征,结果表明,随着液晶盒厚度的增加,相分离开始的时间越来越快,并且分离程度也越来越彻底。最后,讨论了表面垂直取向对 HPDLC光栅衍射效率的影响,随着盒厚的增加,相分离出来的液晶微滴形成连续的区域,光栅的衍射效率逐渐升高,当盒厚增加到一定程度,其衍射效率和无取向处理的光栅接近。当盒厚过大时,垂直取向处理对HPDLC光栅散射损失并没有太大的改善,只有当盒厚适中(12μm)时,光栅的衍射效率最高,散射损失最小。%In order to get the holographic polymer dispersed liquid crystal (HPDLC ) grating with high diffraction efficiency and perfect morphology ,the effect of surface vertical alignment on the properties of HPDLC grating was investigated .Firstly ,the effect of the vertical surface treatment on the orientation of liquid crystal molecules was studied .It is found that the vertical anchor effect of liquid crystal decreases with the increase of cell gap and the orientation depth is about 3 μm ~ 5 μm .Secondary ,the characterization experiment of separation was done .And results show that as the cell gap increases ,the surface effect on the bulk LC droplets reduces due to the longer distance .For the thinner cell ,almost all the LC droplets are confined on the inner surfaces of the substrates which cannot flow and coalesce with the neighboring droplets , so the phase separate is not good .However ,if the cell is too thick ,the effect of vertical align‐ment on the LC droplets in the middle of the

  14. Experimental Estimation of CLASP Spatial Resolution: Results of the Instrument's Optical Alignment

    Science.gov (United States)

    Giono, Gabrial; Katsukawa, Yukio; Ishikawa, Ryoko; Narukage, Noriyuki; Bando, Takamasa; Kano, Ryohei; Suematsu, Yoshinori; Kobayashi, Ken; Winebarger, Amy; Auchere, Frederic

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding-rocket experiment currently being built at the National Astronomical Observatory of Japan. This instrument aims to probe for the first time the magnetic field strength and orientation in the solar upper-chromosphere and lower-transition region. CLASP will measure the polarization of the Lyman-Alpha line (121.6nm) with an unprecedented accuracy, and derive the magnetic field information through the Hanle effect. Although polarization accuracy and spectral resolution are crucial for the Hanle effect detection, spatial resolution is also important to get reliable context image via the slit-jaw camera. As spatial resolution is directly related with the alignment of optics, it is also a good way of ensuring the alignment of the instrument to meet the scientific requirement. This poster will detail the experiments carried out to align CLASP's optics (telescope and spectrograph), as both part of the instrument were aligned separately. The telescope was aligned in double-pass mode, and a laser interferometer (He-Ne) was used to measure the telescope's wavefront error (WFE). The secondary mirror tilt and position were adjusted to remove comas and defocus aberrations from the WFE. Effect of gravity on the WFE measurement was estimated and the final WFE derived in zero-g condition for CLASP telescope will be presented. In addition, an estimation of the spot shape and size derived from the final WFE will also be shown. The spectrograph was aligned with a custom procedure: because Ly-??light is absorbed by air, the spectrograph's off-axis parabolic mirrors were aligned in Visible Light (VL) using a custom-made VL grating instead of the flight Ly-? grating. Results of the alignment in Visible Light will be shown and the spot shape recorded with CCDs at various position along the slit will be displayed. Results from both alignment experiment will be compared to the design requirement, and will be combined in

  15. 磁共振图像测量膝关节置换股骨假体旋转对线%Magnetic resonance imaging measurement of the rotational alignment of knee prosthesis

    Institute of Scientific and Technical Information of China (English)

    龙腾河; 吕国顺; 崔惠勤

    2011-01-01

    BACKGROUND: Three-dimensional magnetic resonance image (MRI) measurement method can not only observe and measureknee diameters in one direction or a plane, but also measure the multi -directional and multi -plane diameter lines and angles.OBJECTIVE: To assess the application of MRI measurement in the rotational alignment of knee prosthesi s during kneereplacement.METHODS: A computer-based search was performed for retrieve of articles published 2001-01/2009-10 about the clinicalapplication of MRI measurement in the rotational alignment of knee prosthesis. The key words were “magnetic resonanceimaging, replacement” in Chinese and English.RESULTS AND CONCLUSION: Both of MRI and CT are three-dimensional measurement tools, which can measure the distanceof the maximal salient point of the external epicondyle of the femur, the lowest point of the medial epicondyle of the femur, themaximal salient point of the medial epicondyle of the femur from the joint line between the back of the knee and distal end of theknee, groove depth and width of the medial epicondyle, the anteroposterior diameter of the femur, and the rotation angle of kneeprosthesis. All the measurement data are of clinical significance. The findings show that the role of MRI measurement is superiorto CT. As a result, MRI measurement can be considered as an ideal measurement method for the rotational alignment of kneeprosthesis during knee replace replacement.%背景:磁共振图像三维测量法不仅能观察和测量一个方向或一个平面的膝关节径线,也可多方向测量多个平面径线和角度.目的:评价磁共振图像测量在临床上膝关节置换中假体旋转对线中的应用.方法:以"磁共振,置换"为中文关键词,以"magnetic resonance imaging,replacement"为英文关键词.采用计算机检索2001-01/2009-10有关磁共振图像测量在临床上膝关节置换中假体旋转对线中应用的文章.结果与结论:磁共振和CT同是三维测量,均能测

  16. RECAT - Redundant Channel Alignment Technique

    Science.gov (United States)

    2016-06-07

    distribution unlimited 13. SUPPLEMENTARY NOTES NUWC2015 14. ABSTRACT A problem in the analog-to- digital , (A/D), conversion of broadband tape recorded...Alignment Technique, is used to align data taken on one pass with data from any other pass. The accuracy of this alignment is a function of the digital ...Redundant Channel Alignment Technique; analog-to- digital ; A/D; Broadband Bearing Time Processing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  17. [Suggestion of new slice thickness mensuration using partial volume effect in magnetic resonance imaging].

    Science.gov (United States)

    Kimura, Tetsuya; Higashida, Mitsuji; Takatsu, Yasuo; Ogura, Akio

    2011-01-01

    The wedge and the slab methods are standard procedures as slice thickness mensuration of the MRI needs an expensive and exclusive phantom, and they are poor in versatility. We suggest a new method, that we call "differential edge response function method". This is a modified version of the partial method which Higashida and others proposed. In this method, we use an original phantom which has an acrylic disk on the bottom, and take an image of it while moving a slice position so it includes the disk part. We established the region of interest on an image set up and got the edge response function (ERF) from the mean signal intensity and relations of the Z position of the image. In this method, the effective slice thickness is the half width of the slice profile, which is differentiated ERF. This method can be measured even if the linearity of the signal intensity is poor compared to the partial method. It is possible to correct the alignment. In this method the measurement accuracy was approximately equal to the wedge method. This method is minimally influenced by signal-to-noise ratio in comparison with the wedge method. Furthermore, versatility is high, because it is simple and relatively easy to use.

  18. A line-source method for aligning on-board and other pinhole SPECT systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2013-12-15

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by

  19. New Attitude Sensor Alignment Calibration Algorithms

    Science.gov (United States)

    Hashmall, Joseph A.; Sedlak, Joseph E.; Harman, Richard (Technical Monitor)

    2002-01-01

    Accurate spacecraft attitudes may only be obtained if the primary attitude sensors are well calibrated. Launch shock, relaxation of gravitational stresses and similar effects often produce large enough alignment shifts so that on-orbit alignment calibration is necessary if attitude accuracy requirements are to be met. A variety of attitude sensor alignment algorithms have been developed to meet the need for on-orbit calibration. Two new algorithms are presented here: ALICAL and ALIQUEST. Each of these has advantages in particular circumstances. ALICAL is an attitude independent algorithm that uses near simultaneous measurements from two or more sensors to produce accurate sensor alignments. For each set of simultaneous observations the attitude is overdetermined. The information content of the extra degrees of freedom can be combined over numerous sets to provide the sensor alignments. ALIQUEST is an attitude dependent algorithm that combines sensor and attitude data into a loss function that has the same mathematical form as the Wahba problem. Alignments can then be determined using any of the algorithms (such as the QUEST quaternion estimator) that have been developed to solve the Wahba problem for attitude. Results from the use of these methods on active missions are presented.

  20. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    Energy Technology Data Exchange (ETDEWEB)

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G. [Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome (Italy); Pizzoferrato, R., E-mail: pizzoferrato@uniroma2.it [Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome (Italy); Orsini, A.; Falconi, C. [Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome (Italy)

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  1. Cost-effective forensic image enhancement

    Science.gov (United States)

    Dalrymple, Brian E.

    1998-12-01

    In 1977, a paper was presented at the SPIE conference in Reston, Virginia, detailing the computer enhancement of the Zapruder film. The forensic value of this examination in a major homicide investigation was apparent to the viewer. Equally clear was the potential for extracting evidence which is beyond the reach of conventional detection techniques. The cost of this technology in 1976, however, was prohibitive, and well beyond the means of most police agencies. Twenty-two years later, a highly efficient means of image enhancement is easily within the grasp of most police agencies, not only for homicides but for any case application. A PC workstation combined with an enhancement software package allows a forensic investigator to fully exploit digital technology. The goal of this approach is the optimization of the signal to noise ratio in images. Obstructive backgrounds may be diminished or eliminated while weak signals are optimized by the use of algorithms including Fast Fourier Transform, Histogram Equalization and Image Subtraction. An added benefit is the speed with which these processes are completed and the results known. The efficacy of forensic image enhancement is illustrated through case applications.

  2. Method for alignment of microwires

    Energy Technology Data Exchange (ETDEWEB)

    Beardslee, Joseph A.; Lewis, Nathan S.; Sadtler, Bryce

    2017-01-24

    A method of aligning microwires includes modifying the microwires so they are more responsive to a magnetic field. The method also includes using a magnetic field so as to magnetically align the microwires. The method can further include capturing the microwires in a solid support structure that retains the longitudinal alignment of the microwires when the magnetic field is not applied to the microwires.

  3. MICAN: a protein structure alignment algorithm that can handle Multiple-chains, Inverse alignments, C(α) only models, Alternative alignments, and Non-sequential alignments.

    Science.gov (United States)

    Minami, Shintaro; Sawada, Kengo; Chikenji, George

    2013-01-18

    Protein pairs that have the same secondary structure packing arrangement but have different topologies have attracted much attention in terms of both evolution and physical chemistry of protein structures. Further investigation of such protein relationships would give us a hint as to how proteins can change their fold in the course of evolution, as well as a insight into physico-chemical properties of secondary structure packing. For this purpose, highly accurate sequence order independent structure comparison methods are needed. We have developed a novel protein structure alignment algorithm, MICAN (a structure alignment algorithm that can handle Multiple-chain complexes, Inverse direction of secondary structures, Cα only models, Alternative alignments, and Non-sequential alignments). The algorithm was designed so as to identify the best structural alignment between protein pairs by disregarding the connectivity between secondary structure elements (SSE). One of the key feature of the algorithm is utilizing the multiple vector representation for each SSE, which enables us to correctly treat bent or twisted nature of long SSE. We compared MICAN with other 9 publicly available structure alignment programs, using both reference-dependent and reference-independent evaluation methods on a variety of benchmark test sets which include both sequential and non-sequential alignments. We show that MICAN outperforms the other existing methods for reproducing reference alignments of non-sequential test sets. Further, although MICAN does not specialize in sequential structure alignment, it showed the top level performance on the sequential test sets. We also show that MICAN program is the fastest non-sequential structure alignment program among all the programs we examined here. MICAN is the fastest and the most accurate program among non-sequential alignment programs we examined here. These results suggest that MICAN is a highly effective tool for automatically detecting non

  4. MICAN : a protein structure alignment algorithm that can handle Multiple-chains, Inverse alignments, Cα only models, Alternative alignments, and Non-sequential alignments

    Science.gov (United States)

    2013-01-01

    Background Protein pairs that have the same secondary structure packing arrangement but have different topologies have attracted much attention in terms of both evolution and physical chemistry of protein structures. Further investigation of such protein relationships would give us a hint as to how proteins can change their fold in the course of evolution, as well as a insight into physico-chemical properties of secondary structure packing. For this purpose, highly accurate sequence order independent structure comparison methods are needed. Results We have developed a novel protein structure alignment algorithm, MICAN (a structure alignment algorithm that can handle Multiple-chain complexes, Inverse direction of secondary structures, Cα only models, Alternative alignments, and Non-sequential alignments). The algorithm was designed so as to identify the best structural alignment between protein pairs by disregarding the connectivity between secondary structure elements (SSE). One of the key feature of the algorithm is utilizing the multiple vector representation for each SSE, which enables us to correctly treat bent or twisted nature of long SSE. We compared MICAN with other 9 publicly available structure alignment programs, using both reference-dependent and reference-independent evaluation methods on a variety of benchmark test sets which include both sequential and non-sequential alignments. We show that MICAN outperforms the other existing methods for reproducing reference alignments of non-sequential test sets. Further, although MICAN does not specialize in sequential structure alignment, it showed the top level performance on the sequential test sets. We also show that MICAN program is the fastest non-sequential structure alignment program among all the programs we examined here. Conclusions MICAN is the fastest and the most accurate program among non-sequential alignment programs we examined here. These results suggest that MICAN is a highly effective tool

  5. Ageing effects on image sensors due to terrestrial cosmic radiation

    NARCIS (Netherlands)

    Nampoothiri, G.G.; Horemans, M.L.R.; Theuwissen, A.J.P.

    2011-01-01

    We analyze the “ageing” effect on image sensors introduced by neutrons present in natural (terrestrial) cosmic environment. The results obtained at sea level are corroborated for the first time with accelerated neutron beam tests and for various image sensor operation conditions. The results reveal

  6. Lossless Astronomical Image Compression and the Effects of Random Noise

    Science.gov (United States)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  7. Perception of socket alignment perturbations in amputees with transtibial prostheses

    OpenAIRE

    David A. Boone, PhD; Toshiki Kobayashi, PhD; Teri G . Chou, PhD; Adam K. Arabian, PhD; Kim L. Coleman, MS; Michael S. Orendurff, PhD; Ming Zhang, Ph

    2012-01-01

    A person with amputation’s subjective perception is the only tool available to describe fit and comfort to a prosthetist. However, few studies have investigated the effect of alignment on this perception. The aim of this article is to determine whether people with amputation could perceive the alignment perturbations of their prostheses and effectively communicate them. A randomized controlled perturbation of angular (3 and 6 degrees) and translational (5 and 10 mm) alignments in the sagittal...

  8. Evryscope Robotilter automated camera / ccd alignment system

    Science.gov (United States)

    Ratzloff, Jeff K.; Law, Nicholas M.; Fors, Octavi; Ser, Daniel d.; Corbett, Henry T.

    2016-08-01

    We have deployed a new class of telescope, the Evryscope, which opens a new parameter space in optical astronomy - the ability to detect short time scale events across the entire sky simultaneously. The system is a gigapixel-scale array camera with an 8000 sq. deg. field of view, 13 arcsec per pixel sampling, and the ability to detect objects brighter than g = 16 in each 2-minute exposure. The Evryscope is designed to find transiting exoplanets around exotic stars, as well as detect nearby supernovae and provide continuous records of distant relativistic explosions like gamma-ray-bursts. The Evryscope uses commercially available CCDs and optics; the machine and assembly tolerances inherent in the mass production of these parts introduce problematic variations in the lens / CCD alignment which degrades image quality. We have built an automated alignment system (Robotilters) to solve this challenge. In this paper we describe the Robotilter system, mechanical and software design, image quality improvement, and current status.

  9. Aligning Astronomical Telescopes via Identification of Stars

    Science.gov (United States)

    Whorton, Mark

    2010-01-01

    A proposed method of automated, precise alignment of a ground-based astronomical telescope would eliminate the need for initial manual alignment. The method, based on automated identification of known stars and other celestial objects in the telescope field of view, would also eliminate the need for an initial estimate of the aiming direction. The method does not require any equipment other than a digital imaging device such as a charge-coupled-device digital imaging camera and control computers of the telescope and camera, all of which are standard components in professional astronomical telescope systems and in high-end amateur astronomical telescope systems. The method could be implemented in software running in the telescope or camera control computer or in an external computer communicating with the telescope pointing mount and camera control computers.

  10. Intrinsic Alignments in the Illustris Simulation

    CERN Document Server

    Hilbert, Stefan; Schneider, Peter; Springel, Volker; Vogelsberger, Mark; Hernquist, Lars

    2016-01-01

    We study intrinsic alignments (IA) of galaxy image shapes within the Illustris cosmic structure formation simulations. We investigate how IA correlations depend on observable galaxy properties such as stellar mass, apparent magnitude, redshift, and photometric type, and on the employed shape measurement method. The correlations considered include the matter density-intrinsic ellipticity (mI), galaxy density-intrinsic ellipticity (dI), gravitational shear-intrinsic ellipticity (GI), and intrinsic ellipticity-intrinsic ellipticity (II) correlations. We find stronger correlations for more massive and more luminous galaxies, as well as for earlier photometric types, in agreement with observations. Moreover, shape measurement methods that down-weight the outer parts of galaxy images produce much weaker IA signals on intermediate and large scales than methods employing flat radial weights. Thus, the expected contribution of intrinsic alignments to the observed ellipticity correlation in tomographic cosmic shear sur...

  11. The concept of printable holograms through the alignment of diffractive pigments

    Science.gov (United States)

    Argoitia, Alberto; Chu, Sean

    2004-06-01

    Iridescent Optically Variable Image Devices (IOVID) for the document security market are currently produced using thin film or diffractive interference phenomena. Special optical effects by diffractive interference depend on the alignment of a series of grooves with differet frequencies and modulations to produce Diffractive Optically Variable Image Devices (DOVIDs). These devices, more commonly know as holograms, have been exclusively restricted to foil applications. In this work, we are taking into consideration basic concepts of thin film and diffractive light interference theory together with some fundamentals of magnetic behavior of materials to create a new family of diffractive pigments. These pigments not only exhibit thin film and diffractive interference but the grooves can also be aligned along predetermined orientations in a magnetic field. This property of groove alignability opens the door to the concept of printable holograms. Different groove alignable diffractive pigments have been produced. The influence of the particle size, loading, and groove frequency has been studied. The microstructure of the groove orientable flakes has been characterized by optical and electron micrscopy, and the optical effects by goniospectrophotometry. Finally, simple DOVIDs have been produced by silkscreen printing to demonstrate the feasibility of the concept.

  12. A study on the effect of CT imaging acquisition parameters on lung nodule image interpretation

    Science.gov (United States)

    Yu, Shirley J.; Wantroba, Joseph S.; Raicu, Daniela S.; Furst, Jacob D.; Channin, David S.; Armato, Samuel G., III

    2009-02-01

    Most Computer-Aided Diagnosis (CAD) research studies are performed using a single type of Computer Tomography (CT) scanner and therefore, do not take into account the effect of differences in the imaging acquisition scanner parameters. In this paper, we present a study on the effect of the CT parameters on the low-level image features automatically extracted from CT images for lung nodule interpretation. The study is an extension of our previous study where we showed that image features can be used to predict semantic characteristics of lung nodules such as margin, lobulation, spiculation, and texture. Using the Lung Image Data Consortium (LIDC) dataset, we propose to integrate the imaging acquisition parameters with the low-level image features to generate classification models for the nodules' semantic characteristics. Our preliminary results identify seven CT parameters (convolution kernel, reconstruction diameter, exposure, nodule location along the z-axis, distance source to patient, slice thickness, and kVp) as influential in producing classification rules for the LIDC semantic characteristics. Further post-processing analysis, which included running box plots and binning of values, identified four CT parameters: distance source to patient, kVp, nodule location, and rescale intercept. The identification of these parameters will create the premises to normalize the image features across different scanners and, in the long run, generate automatic rules for lung nodules interpretation independently of the CT scanner types.

  13. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  14. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junliang, E-mail: liujunliang@yzu.edu.cn [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zeng, Yanwei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Zhang, Xingkai [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Ming [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Testing Center of Yangzhou University, Yangzhou 225002 (China)

    2015-05-15

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%.

  15. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun

    2015-09-23

    This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.

  16. Are the strategic stars aligned for your corporate brand?

    Science.gov (United States)

    Hatch, M J; Schultz, M

    2001-02-01

    In recent years, companies have increasingly seen the benefits of creating a corporate brand. Rather than spend marketing dollars on branding individual products, giants like Disney and Microsoft promote a single umbrella image that casts one glow over all their products. A company must align three interdependent elements--call them strategic stars--to create a strong corporate brand: vision, culture, and image. Aligning the stars takes concentrated managerial skill and will, the authors say, because each element is driven by a different constituency: management, employees, or stakeholders. To effectively build a corporate brand, executives must identify where their strategic stars fall out of line. The authors offer a series of diagnostic questions designed to reveal misalignments in corporate vision, culture, and image. The first set of questions looks for gaps between vision and culture; for example, when management establishes a vision that is too ambitious for the organization to implement. The second set addresses culture and image, uncovering possible gaps between the attitudes of employees and the perceptions of the outside world. The last set of questions explores the vision-image gap--is management taking the company in a direction that its stake-holders support? The authors discuss the benefits of a corporate brand, such as reducing marketing costs and building a sense of community among customers. But they also point to cases in which a corporate brand doesn't make sense--for instance, if you are a product incubator, if you've recently experienced M&A activity, or if you are expecting fallout from risky ventures.

  17. Requirements for effective functional breast imaging

    Science.gov (United States)

    Weinberg, I. N.; Zawarzin, V.; Adler, L. P.; Pani, R.; DeVincentis, G.; Khalkhali, I.; Vargas, H.; Venegas, R.; Kim, S. C.; Bakale, G.; Levine, E.; Perrier, N.; Freimanis, R. I.; Lesko, N. M.; Newman, D. P.; Geisinger, K. R.; Berg, W. A.; Masood, S.

    2003-01-01

    Most nuclear medicine physicists were trained on devices aimed at functional neuroimaging. The clinical goals of brain-centered devices differ dramatically from the parameters needed to be useful in the breast clinic. We will discuss similarities and differences that impact on design considerations, and describe our latest generation of positron emission mammography and intraoperative products. Source of physiologic contrast: Clinical neuroimaging depends on flow agents to detect the presence of breaks in the blood-brain barrier. Breast flow agents are nonspecific, and may miss preinvasive lesions. Resolution: Brain cancers are generally diagnosed at late stages, so resolution is not so critical. Detecting early breast cancers, and specifying margins for surgery requires 3 mm spatial resolution or better. Prevalence: Primary brain cancer is uncommon, and lesions mimicking brain cancer are rare. Primary breast cancer is common, and benign lesions are even more common, so specificity and biopsy capability are very important. Anatomic references: Brain structure is standard, while breast structure is highly variable, requiring immobilization/compression for physiologic imaging and biopsy. Surgery: Complete cancer resections for brain are very rare, but are possible for breast with appropriate imaging guidance, implying the need for rapid and reliable imaging. To summarize, the breast clinic needs a rapid and highly sensitive method of assessing breast physiology, compatible with biopsy and surgery. Positron emission mammography devices, in handheld and X-ray platform based configurations, are ideal for this mission.

  18. Effect of Image Linearization on Normalized Compression Distance

    Science.gov (United States)

    Mortensen, Jonathan; Wu, Jia Jie; Furst, Jacob; Rogers, John; Raicu, Daniela

    Normalized Information Distance, based on Kolmogorov complexity, is an emerging metric for image similarity. It is approximated by the Normalized Compression Distance (NCD) which generates the relative distance between two strings by using standard compression algorithms to compare linear strings of information. This relative distance quantifies the degree of similarity between the two objects. NCD has been shown to measure similarity effectively on information which is already a string: genomic string comparisons have created accurate phylogeny trees and NCD has also been used to classify music. Currently, to find a similarity measure using NCD for images, the images must first be linearized into a string, and then compared. To understand how linearization of a 2D image affects the similarity measure, we perform four types of linearization on a subset of the Corel image database and compare each for a variety of image transformations. Our experiment shows that different linearization techniques produce statistically significant differences in NCD for identical spatial transformations.

  19. Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer

    Science.gov (United States)

    Jeong, Hae-Chang; Heo, Gi-Seok; Kim, Eun-Mi; Lee, Ju Hwan; Han, Jeong-Min; Seo, Dae-Shik

    2017-02-01

    We demonstrated a homogeneous liquid-crystal (LC) alignment state on yttrium aluminum oxide (YAlO) films, where the alignment was induced by ion-beam (IB) irradiation. Topographical analysis was performed by atomic force microscopy as a function of annealing temperature. Higher annealing temperatures yielded a smoother surface, accompanied by reduced light scattering. Transparency in the visible region increased on the surface fabricated at higher annealing temperatures. LC alignment mechanism was determined by X-ray diffraction (XRD) analysis. Moreover, IB-irradiated YAlO films annealed at temperatures greater than 200 °C exhibited good thermal stability and low capacitance-voltage hysteresis. The IB-irradiated YAlO films are suitable as alternative alignment layers in advanced LC display applications.

  20. Alignment of suprathermally rotating grains

    Science.gov (United States)

    Lazarian, A.

    1995-12-01

    It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.