WorldWideScience

Sample records for ilc test facilities

  1. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  2. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  3. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  4. Status of superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Hayano, Hitoshi

    2005-01-01

    A superconducting technology was recommended for the main linac design of the International Linear Collider (ILC) by the International Technology Recommendation Panel (ITRP). The basis for this design has been developed and tested at DESY, and R and D is progressing at many laboratories around the world including DESY, Orsay, KEK, FNAL, SLAC, Cornell, and JLAB. In order to promote Asian SC-technology for ILC, construction of a test facility in KEK was discussed and decided. The role and status of the superconducting RF test facility (STF) is reported in this paper. (author)

  5. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  6. Radiation Requirements and Testing of Cryogenic Thermometers for the Ilc

    Science.gov (United States)

    Barnett, T.; Filippov, Yu. P.; Filippova, E. Yu.; Mokhov, N. V.; Nakao, N.; Klebaner, A. L.; Korenev, S. A.; Theilacker, J. C.; Trenikhina, J.; Vaziri, K.

    2008-03-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox® and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.

  7. Radiation requirements and testing of cryogenic thermometers for the ILC

    International Nuclear Information System (INIS)

    Barnett, T.; Filippov, Yu.P.; Mokhov, N.V.; Nakao, N.; Klebaner, A.L.; Korenev, S.A.; Theilacker, J.C.; Trenikhina, J.; Vaziri, K.

    2007-01-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox(reg s ign) and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results

  8. Beam Dynamics Challenges for the ILC

    International Nuclear Information System (INIS)

    Kubo, Kiyoshi; Seryi, Andrei; Walker, Nicholas; Wolski, Andy

    2008-01-01

    The International Linear Collider (ILC) is a proposal for 500 GeV center-of-mass electron-positron collider, with a possible upgrade to ∼1 TeV center-of-mass. At the heart of the ILC are the two ∼12 km 1.3 GHz superconducting RF (SCRF) linacs which will accelerate the electron and positron beams to an initial maximum energy of 250 GeV each. The Global Design Effort (GDE)--responsible for the world-wide coordination of this uniquely international project--published the ILC Reference Design Report in August of 2007 [1]. The ILC outlined in the RDR design stands on a legacy of over fifteen-years of R and D. The GDE is currently beginning the next step in this ambitious project, namely an Engineering Design phase, which will culminate with the publication of an Engineering Design Report (EDR) in mid-2010. Throughout the history of linear collider development, beam dynamics has played an essential role. In particular, the need for complex computer simulations to predict the performance of the machine has always been crucial, not least because the parameters of the ILC represent in general a large extrapolation from where current machines operate today; many of the critical beam-dynamics features planned for the ILC can ultimately only be truly tested once the ILC has been constructed. It is for this reason that beam dynamics activities will continue to be crucial during the Engineering Design phase, as the available computer power and software techniques allow ever-more complex and realistic models of the machine to be developed. Complementary to the computer simulation efforts are the need for well-designed experiments at beam-test facilities, which--while not necessarily producing a direct demonstration of the ILC-like parameters for the reasons mentioned above--can provide important input and benchmarking for the computer models

  9. Design and commissioning of Fermilab's vertical test stand for ILC SRF cavities

    International Nuclear Information System (INIS)

    Ozelis, Joseph P.; Carcagno, Ruben; Ginsburg, Camille M.; Huang, Yuenian; Norris, Barry; Peterson, Thomas; Poloubotko, Valeri; Rabehl, roger; Rakhno, Igor; Reid, Clark; Sergatskov, Dmitri A.

    2007-01-01

    As part of its ILC program, Fermilab is developing a facility for vertical testing of SRF cavities. It operates at a nominal temperature of 2K, using a cryoplant that can supply LHe in excess of 20g/sec and provide bath pumping capacity of 125W at 2K. The below-grade cryostat consists of a vacuum vessel and LHe vessel, equipped with magnetic shielding to reduce the ambient magnetic field to <10mG. Internal fixed and external movable radiation shielding ensures that exposure to personnel is minimized. The facility features an integrated personnel safety system consisting of RF switches, interlocks, and area radiation monitors

  10. Evaluation of different photodetector types for an ILC polarimeter

    International Nuclear Information System (INIS)

    Helebrant, Christian

    2009-01-01

    At the International Linear Collider (ILC) (ILC Reference Design Report, 2007 ) the polarization of the electron and positron beams needs to be measured with as yet unequaled precision of ΔP/P∼0.25%. The key element of the polarimeter will be the precise detection of Cherenkov light from Compton scattered electrons. The poster ) deals with the choice of a suitable photodetector (PD). In a recently assembled test facility various types of PDs have been checked. Results are presented with a special focus on the linearity of the device, since this is expected to be the limiting factor on the precision of the polarization measurement at the ILC.

  11. An Architecture Proposal for the ILC Test Beam Silicon Telescope at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Turqueti, M.A.; /Fermilab

    2007-04-01

    The requirements for an ILC Test Beam silicon telescope system are foreseen to be very stringent. Resolution, noise, and throughput must be carefully managed in order to provide a useful instrument for the high energy physics community to develop detector technologies for the ILC. Since the ILC Test Beam is meant to test a wide variety of different detectors, it must employ universally accepted software techniques, hardware standards and protocols as well as easy integration of hardware and software with the various clients using the system. In this paper, we describe an open modular architecture to achieve these goals, including an analysis of the entire chain of software and hardware needed to meet the requirements.

  12. Design and commissioning of Fermilab's vertical test stand for ILC SRF cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Ozelis, Joseph P.; Carcagno, Ruben; Ginsburg, Camille M.; Huang, Yuenian; Norris, Barry; Peterson, Thomas; Poloubotko, Valeri; Rabehl, roger; Rakhno, Igor; Reid, Clark; Sergatskov, Dmitri A.; /Fermilab

    2007-06-01

    As part of its ILC program, Fermilab is developing a facility for vertical testing of SRF cavities. It operates at a nominal temperature of 2K, using a cryoplant that can supply LHe in excess of 20g/sec and provide bath pumping capacity of 125W at 2K. The below-grade cryostat consists of a vacuum vessel and LHe vessel, equipped with magnetic shielding to reduce the ambient magnetic field to <10mG. Internal fixed and external movable radiation shielding ensures that exposure to personnel is minimized. The facility features an integrated personnel safety system consisting of RF switches, interlocks, and area radiation monitors.

  13. The ILC control system

    International Nuclear Information System (INIS)

    Carwardine, J.; Saunders, C.; Arnold, N.; Lenkszus, F.; Rehlich, K.; Simrock, S.; Banerjee, b.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larson, R.S.; Downing, R.

    2007-01-01

    Since the last ICALEPCS, a small multi-region team has developed a reference design model for a control system for the International Linear Collider as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring 'Five Nines' availability. The R and D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry's emerging ATCA standard - conceived, specified, and designed for High Availability - is being evaluated for suitability for ILC front-end electronics.

  14. Converter-Modulator Design and Operations for the ILC L-band Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A.; /Los Alamos; Burkhart, C.; Adolphsen, Chris E.; Beukers, T.; Cassel, R.; de Lira, A.; Papas, C.; Nguyen, M.; Went, R.; /SLAC; Anderson, David E.; /Oak

    2007-09-10

    To facilitate a rapid response to the International Linear Collider (ILC) L-band development program at SLAC, a spare converter-modulator was shipped from LANL. This modulator was to be a spare for the spallation neutron source (SNS) accelerator at ORNL. The ILC application requires a 33% higher peak output power (15 MW) and output current (120 Amp). This presents significant design challenges to modify the existing hardware and yet maintain switching parameters and thermal cycling within the semiconductor component ratings. To minimize IGBT commutation and free-wheeling diode currents, a different set of optimizations, as compared to the SNS design, were used to tune the resonant switching networks. Additional complexities arose as nanocrystalline cores with different performance characteristics (as compared to SNS), were used to fabricate the resonant 'boost' transformers. This paper will describe the electrical design, modeling efforts, and resulting electrical performance as implemented for the ILC L-band test stand.

  15. Cooling tests of the cryomodules at superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Ohuchi, Norihito; Nakai, Hirotaka; Kojima, Yuuji

    2009-01-01

    KEK has been constructing the Superconducting RF Test Facility (STF) with aiming at a center of the ILC-R and D in Asia from 2005. In this project, KEK targets manufacturing and operational experiences of the RF cavity and cryomodule toward the ILC, and two cryomodules have been developed. These cryomodules are 6 meter long and have 4 nine-cell cavities in each cryostat. The designs of the cryomodules are based on the TESLA Type-3 (TTF-3) at DESY, however, each cryostat has the different type of cavities, TESLA-like type and Low-Loss type. The tests of the cryomodules were performed in two steps. In the first test, measurements of the cryogenic performances of these cryomodules were the main objective. One nine-cell cavity was assembled in each cryomodule and cool-down of the two cryomodules was performed, individually. In the second test, the four TESLA-like cavities were assembled in the cryomodule as complete integration. Cool-down of the cryomodule to 2 K was successfully completed, and thermal performances of the cryomodule and cooling capacity of the cryogenics system were studied in detail. In this paper, we will report the design of the cryomodules and the thermal performances at these cold tests. (author)

  16. A test facility for the international linear collider at SLAC end station a for prototypes of beam delivery and IR components

    International Nuclear Information System (INIS)

    Hildreth, M.D.; Erickson, R.; Frisch, J.

    2006-01-01

    The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference. (author)

  17. UK pulls out of plans for ILC

    CERN Multimedia

    Durrani, Matin

    2007-01-01

    "A funding crisis at one of the UK's leading research councils has forced the country to pull out of plans for the International Linear Collider (ILC). The science and Technology Facilities Council (STFC) says in a report published today that it does not see "a practicable path towards the realization of this facility as currently conceived on a reasonable timescale". (1 page)

  18. The Development and Psychometric Properties of the Immigration Law Concerns Scale (ILCS) for HIV Testing.

    Science.gov (United States)

    Lechuga, Julia; Galletly, Carol L; Broaddus, Michelle R; Dickson-Gomez, Julia B; Glasman, Laura R; McAuliffe, Timothy L; Vega, Miriam Y; LeGrand, Sarah; Mena, Carla A; Barlow, Morgan L; Valera, Erik; Montenegro, Judith I

    2017-11-08

    To develop, pilot test, and conduct psychometric analyses of an innovative scale measuring the influence of perceived immigration laws on Latino migrants' HIV-testing behavior. The Immigration Law Concerns Scale (ILCS) was developed in three phases: Phase 1 involved a review of law and literature, generation of scale items, consultation with project advisors, and subsequent revision of the scale. Phase 2 involved systematic translation- back translation and consensus-based editorial processes conducted by members of a bilingual and multi-national study team. In Phase 3, 339 sexually active, HIV-negative Spanish-speaking, non-citizen Latino migrant adults (both documented and undocumented) completed the scale via audio computer-assisted self-interview. The psychometric properties of the scale were tested with exploratory factor analysis and estimates of reliability coefficients were generated. Bivariate correlations were conducted to test the discriminant and predictive validity of identified factors. Exploratory factor analysis revealed a three-factor, 17-item scale. subscale reliability ranged from 0.72 to 0.79. There were significant associations between the ILCS and the HIV-testing behaviors of participants. Results of the pilot test and psychometric analysis of the ILCS are promising. The scale is reliable and significantly associated with the HIV-testing behaviors of participants. Subscales related to unwanted government attention and concerns about meeting moral character requirements should be refined.

  19. ILC Higgs White Paper

    CERN Document Server

    Asner, D.M.; Calancha, C.; Fujii, K.; Graf, N.; Haber, H.E.; Ishikawa, A.; Kanemura, S.; Kawada, S.; Kurata, M.; Miyamoto, A.; Neal, H.; Ono, H.; Potter, C.; Strube, J.; Suehara, T.; Tanabe, T.; Tian, J.; Tsumura, J.; Watanuki, S.; Weiglein, G.; Yagyu, K.; Yokoya, H.

    2013-01-01

    The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Luminosity scenarios based on the ILC TDR machine design are used throughout. The gamma-gamma collider option at the ILC is also discussed.

  20. Cavity BPM system tests for the ILC energy spectrometer

    Science.gov (United States)

    Slater, M.; Adolphsen, C.; Arnold, R.; Boogert, S.; Boorman, G.; Gournaris, F.; Hildreth, M.; Hlaing, C.; Jackson, F.; Khainovski, O.; Kolomensky, Yu. G.; Lyapin, A.; Maiheu, B.; McCormick, D.; Miller, D. J.; Orimoto, T. J.; Szalata, Z.; Thomson, M.; Ward, D.; Wing, M.; Woods, M.

    2008-07-01

    The main physics programme of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10-4 or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 h for a 1 m long BPM triplet. We find micron-level stability over 1 h for 3 BPM stations distributed over a 30 m long baseline. The understanding of the behaviour and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.

  1. Connecting LHC, ILC, and quintessence

    International Nuclear Information System (INIS)

    Chung, Daniel J.H.; Everett, Lisa L.; Kong, Kyoungchul; Matchev, Konstantin T.

    2007-01-01

    If the cold dark matter consists of weakly interacting massive particles (WIMPs), anticipated measurements of the WIMP properties at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) will provide an unprecedented experimental probe of cosmology at temperatures of order 1 GeV. It is worth emphasizing that the expected outcome of these tests may or may not be consistent with the picture of standard cosmology. For example, in kination-dominated quintessence models of dark energy, the dark matter relic abundance can be significantly enhanced compared to that obtained from freeze out in a radiation-dominated universe. Collider measurements then will simultaneously probe both dark matter and dark energy. In this article, we investigate the precision to which the LHC and ILC can determine the dark matter and dark energy parameters under those circumstances. We use an illustrative set of four benchmark points in minimal supergravity in analogy with the four LCC benchmark points. The precision achievable together at the LHC and ILC is sufficient to discover kination-dominated quintessence, under the assumption that the WIMPs are the only dark matter component. The LHC and ILC can thus play important roles as alternative probes of both dark matter and dark energy

  2. Development of monolithic pixel detector with SOI technology for the ILC vertex detector

    Science.gov (United States)

    Yamada, M.; Ono, S.; Tsuboyama, T.; Arai, Y.; Haba, J.; Ikegami, Y.; Kurachi, I.; Togawa, M.; Mori, T.; Aoyagi, W.; Endo, S.; Hara, K.; Honda, S.; Sekigawa, D.

    2018-01-01

    We have been developing a monolithic pixel sensor for the International Linear Collider (ILC) vertex detector with the 0.2 μm FD-SOI CMOS process by LAPIS Semiconductor Co., Ltd. We aim to achieve a 3 μm single-point resolution required for the ILC with a 20×20 μm2 pixel. Beam bunch crossing at the ILC occurs every 554 ns in 1-msec-long bunch trains with an interval of 200 ms. Each pixel must record the charge and time stamp of a hit to identify a collision bunch for event reconstruction. Necessary functions include the amplifier, comparator, shift register, analog memory and time stamp implementation in each pixel, and column ADC and Zero-suppression logic on the chip. We tested the first prototype sensor, SOFIST ver.1, with a 120 GeV proton beam at the Fermilab Test Beam Facility in January 2017. SOFIST ver.1 has a charge sensitive amplifier and two analog memories in each pixel, and an 8-bit Wilkinson-type ADC is implemented for each column on the chip. We measured the residual of the hit position to the reconstructed track. The standard deviation of the residual distribution fitted by a Gaussian is better than 3 μm.

  3. Challenges of the ILC Main Linac

    International Nuclear Information System (INIS)

    Ross, Marc

    2007-01-01

    With the completion of the ILC Reference Design Report (RDR), we begin the next phase of the project - development of the Engineering Design. Our strategy and priorities come from the identification, contained in the RDR, of scientific and engineering challenges of the ILC. First among these is the cost of the main linac which, including the associated earthworks and cooling/power systems, amounts to 60% of the ILC total cost. Next is the challenge to reach the highest practical gradient since this R and D has the largest cost leverage of any of the ongoing programs. Finally, we have to understand the beam dynamics and beam tuning processes in the main linac, as we will not have the opportunity to do full (or even large) scale tests of these before the linac is constructed.

  4. Studies on GEM modules for a Large Prototype TPC for the ILC

    International Nuclear Information System (INIS)

    Tsionou, Dimitra

    2017-01-01

    The International Linear Collider (ILC) is a future electron–positron collider with centre of mass energy of 500–1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1–6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R&D activities in order to prepare the next GEM module iteration are discussed.

  5. Studies on GEM modules for a Large Prototype TPC for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Tsionou, Dimitra, E-mail: dimitra.tsionou@desy.de

    2017-02-11

    The International Linear Collider (ILC) is a future electron–positron collider with centre of mass energy of 500–1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1–6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R&D activities in order to prepare the next GEM module iteration are discussed.

  6. Studies on GEM modules for a large prototype TPC for the ILC

    International Nuclear Information System (INIS)

    Tsionou, Dimitra

    2016-12-01

    The International Linear Collider (ILC) is a future electron-positron collider with centre of mass energy of 500-1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1-6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R and D; activities in order to prepare the next GEM module iteration are discussed.

  7. LHC-ILC synergy

    CERN Document Server

    Godbole, Rohini M

    2006-01-01

    I will begin by making a few general comments on the synergy between the Large Hadron Collider (LHC) which will go in action in 2007 and the International Linear Collider (ILC) which is under planning. I will then focus on the synergy between the LHC and the PLC option at the ILC, which is expected to be realised in the later stages of the ILC program. In this I will cover the possible synergy in the Higgs sector (with and without CP violation), in the determination of the anomalous vector boson couplings and last but not the least, in the search for extra dimensions and radions.

  8. Discovering bottom squark coannihilation at the ILC

    International Nuclear Information System (INIS)

    Belyaev, Alexander; Lastovicka, Tomas; Nomerotski, Andrei; Lastovicka-Medin, Gordana

    2010-01-01

    We study the potential of the international linear collider (ILC) at √(s)=500 GeV to probe new dark matter motivated scenario where the bottom squark (sbottom) is the next-to-lightest supersymmetric particle. For this scenario, which is virtually impossible for the LHC to test, the ILC has a potential to cover a large fraction of the parameter space. The challenge is due to a very low energy of jets, below 20-30 GeV, which pushes the jet clustering and flavor tagging algorithms to their limits. The process of sbottom pair production was studied within the SiD detector concept. We demonstrate that ILC offers a unique opportunity to test the supersymmetry parameter space motivated by the sbottom-neutralino coannihilation scenario in cases when the sbottom production is kinematically accessible. The study was done with the full SiD simulation and reconstruction chain including all standard model and beam backgrounds.

  9. Physics highlights at ILC and CLIC

    CERN Document Server

    Lukić, Strahinja

    2015-01-01

    In this lecture, the physics potential for the e+e- linear collider experiments ILC and CLIC is reviewed. The experimental conditions are compared to those at hadron colliders and their intrinsic value for precision experiments, complementary to the hadron colliders, is discussed. The detector concepts for ILC and CLIC are outlined in their most important aspects related to the precision physics. Highlights from the physics program and from the benchmark studies are given. It is shown that linear colliders are a promising tool, complementing the LHC in essential ways to test the Standard Model and to search for new physics.

  10. ILC2s and fungal allergy

    Directory of Open Access Journals (Sweden)

    Hirohito Kita

    2015-07-01

    Full Text Available Innate lymphoid cells (ILCs have emerged recently as an important component of the immune system and the cell type that regulates mucosal immune responses and tissue homeostasis. Group 2 ILCs (ILC2s, a subset of ILCs, reside in various tissues and are characterized by their capacity to produce type 2 cytokines and tissue growth factors. These ILC2s play an important role in allergic immune responses by linking signals in the atmospheric environment to the immune system. Fungi are one of the major allergens associated with human asthma, and animal and in vitro models using the fungal allergens have provided significant information toward our understanding of the mechanisms of allergic disease. In mouse models of fungus-induced allergic airway inflammation, IL-33, IL-25, and TSLP are released by airway epithelial cells. Lung ILC2s that respond to these cytokines quickly produce a large quantity of type 2 cytokines, resulting in airway eosinophilia, mucus production, and airway hyperreactivity even in the absence of adaptive immune cells. Evidence also suggests that ILC2s interact with conventional immune cells, such as CD4+ T cells, and facilitate development of adaptive immune response and persistent airway inflammation. ILC2s are also present in respiratory mucosa in humans. Further investigations into the biology of ILC2s and their roles in the pathophysiology of allergic diseases will provide major conceptual advances in the field and may provide useful information toward development of new therapeutic strategies for patients.

  11. Cryomodule tests of four Tesla-like cavities in the Superconducting RF Test Facility at KEK

    Directory of Open Access Journals (Sweden)

    Eiji Kako

    2010-04-01

    Full Text Available A 6-m cryomodule including four Tesla-like cavities was developed, and was tested in the Superconducting RF Test Facility phase-I at KEK. The performance as a total superconducting cavity system was checked in the cryomodule tests at 2 K with high rf power. One of the four cavities achieved a stable pulsed operation at 32  MV/m, which is higher than the operating accelerating gradient in the ILC. The maximum accelerating gradient (E_{acc,max⁡} obtained in the vertical cw tests was maintained or slightly improved in the cryomodule tests operating in a pulse mode. Compensation of the Lorentz force detuning at 31  MV/m was successfully demonstrated by a piezo tuner and predetuning.

  12. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  13. ILC Operating Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.; Brau, J.; Fujii, K.; Gao, J.; List, J.; Walker, N.; Yokoya, K.; Collaboration: ILC Parameters Joint Working Group

    2015-06-15

    The ILC Technical Design Report documents the design for the construction of a linear collider which can be operated at energies up to 500 GeV. This report summarizes the outcome of a study of possible running scenarios, including a realistic estimate of the real time accumulation of integrated luminosity based on ramp-up and upgrade processes. The evolution of the physics outcomes is emphasized, including running initially at 500 GeV, then at 350 GeV and 250 GeV. The running scenarios have been chosen to optimize the Higgs precision measurements and top physics while searching for evidence for signals beyond the standard model, including dark matter. In addition to the certain precision physics on the Higgs and top that is the main focus of this study, there are scientific motivations that indicate the possibility for discoveries of new particles in the upcoming operations of the LHC or the early operation of the ILC. Follow-up studies of such discoveries could alter the plan for the centre-of-mass collision energy of the ILC and expand the scientific impact of the ILC physics program. It is envisioned that a decision on a possible energy upgrade would be taken near the end of the twenty year period considered in this report.

  14. A teststand for photo detectors and beamtests for ILC polarimetry; Aufbau eines Teststandes fuer Photodetektoren und Teststrahlmessungen fuer die Strahlpolarisationsmessung am ILC

    Energy Technology Data Exchange (ETDEWEB)

    Velte, Ulrich

    2009-02-15

    In the future International Linear Collider (ILC) up to 80% polarized electrons shall be brought to collision with up to 60% polarized positrons. Because the cross sections of the resulting reactions depend sensitively on the beam polarization this must be measured with a hitherto never reached accuracy of {delta}P/P{approx}0.25%. This shall be reached via Compton scattering of laser photons from the beam particles and subsequent detection of the scattered electrons in a Cherenkov hodoscope. Content of this thesis was to build a teststand, in which different photodetectors for the detection of the Cherenkov light can be characterized and checked on their suitability for the special application in the ILC polarimeter. The until now best polarization measurement was reached in the framework of the SLD experiment at SLAC in California ({delta}P/P{approx}0.5%). At present the Cherenkov counter of the SLD polarimeter is at DESY and is their used in order to measure different photodetectors coming into question for the ILC polarimetry in the test beam. In order to be able to continue the experiences from the SLD experiment in the framework of this thesis test-beam measurements at the Cherenkov detector are evaluated and the first developments towards a polarimeter for the ILC described. [German] Im zukuenftigen International Linear Collider (ILC) sollen bis zu 80% polarisierte Elektronen mit bis zu 60% polarisierten Positronen zur Kollision gebracht werden. Da die Wirkungsquerschnitte der resultierenden Reaktionen empfindlich von der Strahlpolarisation abhaengen, muss diese mit einer bisher nie erreichten Genauigkeit von {delta}P/P{approx}0.25% gemessen werden. Dies soll ueber Compton-Streuung von Laserphotonen an den Strahlteilchen und anschliessendem Nachweis der gestreuten Elektronen in einem Cerenkov-Hodoskop erreicht werden. Inhalt dieser Arbeit war es, einen Teststand aufzubauen, in dem verschiedenartige Photodetektoren zum Nachweis des Cerenkov

  15. Characterization of innate lymphoid cells (ILC) in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis

    Science.gov (United States)

    Tosi, Isabella; Grys, Katarzyna; Sreeneebus, Hemawtee; Perera, Gayathri K; Chapman, Anna; Smith, Catherine H; Di Meglio, Paola; Nestle, Frank O

    2013-01-01

    Innate lymphoid cells (ILC) are increasingly appreciated as key regulators of tissue immunity. However, their role in human tissue homeostasis and disease remains to be fully elucidated. Here we characterise the ILC in human skin from healthy individuals and from the inflammatory skin disease psoriasis. We show that a substantial proportion of IL-17A and IL-22 producing cells in skin and blood of normal individuals and psoriasis patients are CD3 negative innate lymphocytes. Deep immunophenotyping of human ILC subsets showed a statistically significant increase in the frequency of circulating NKp44+ ILC3 in blood of psoriasis patients compared to healthy individuals or atopic dermatitis patients. More than 50% of circulating NKp44+ ILC3 expressed cutaneous lymphocyte-associated antigen indicating their potential for skin homing. Analysis of skin tissue revealed a significantly increased frequency of total ILC in skin compared to blood. Moreover the frequency of NKp44+ ILC3 was significantly increased in non-lesional psoriatic skin compared to normal skin. A detailed time course of a psoriasis patient treated with anti-TNF showed a close association between therapeutic response, decrease in inflammatory skin lesions, and decrease of circulating NKp44+ ILC3. Overall, data from this initial observational study suggest a potential role for NKp44+ ILC3 in psoriasis pathogenesis. PMID:24352038

  16. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  17. Common ground in ILC and CLIC detector concepts

    CERN Multimedia

    Daisy Yuhas

    2013-01-01

    The Compact Linear Collider and the International Linear Collider will accelerate particles and create collisions in different ways. Nonetheless, the detector concepts under development share many commonalities.   Timepix chips under scrutiny in the DESY test beam with the help of the beam telescope. CERN physicist Dominik Dannheim explains that the CLIC detector plans are adaptations of the ILC detector designs with a few select modifications. “When we started several years ago, we did not want to reinvent the wheel,” says Dannheim. “The approved ILC detector concepts served as an excellent starting point for our designs.” Essential differences Both CLIC and ILC scientists foresee general-purpose detectors that make measurements with exquisite precision. These colliders, however, have very different operating parameters, which will have important consequences for the various detector components. The ILC’s collision energy is set at 500 GeV ...

  18. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  19. ILC Reference Design Report Volume 4 - Detectors

    CERN Document Server

    Behnke, Ties; Jaros, John; Miyamoto, Akiya; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Brau, James E.; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Djouadi, Abdelhak; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lykken, Joseph; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moenig, Klaus; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okada, Yasuhiro; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oreglia, Mark; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Phinney, Nan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Toge, Nobukazu; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walker, Nicholas J.; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamashita, Satoru; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.

  20. Fast Extraction Kicker for the Accelerator Test Facility

    International Nuclear Information System (INIS)

    De Santis, Stefano; Urakawa, Junji; Naito, Takashi

    2007-01-01

    We present the results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. This activity is carried on in the framework of the ATF2 project, which will be built on the KEK Tsukuba campus as an extension of the existing ATF, taking advantage of the worlds smallest normalized emittance achieved there. ATF2's primary goal is to operate as a test facility and establish the hardware and beam handling technologies envisaged for the International Linear Collider. In particular, the fast extraction kicker object of the present paper is an important component of the ILC damping rings, since its rise and fall time define the minimum distance between bunches and ultimately the damping rings length itself. Building on the initial results presented at EPAC '06, we report on the present status of the kicker design and define the minimum characteristics for pulsers and other subsystems. In addition to the original scheme with multiple stripline modules producing a total deflection of 5 mrad, we also investigated a scheme with a single kicker module for a reduced deflection of 1 mrad placed inside a closed orbit bump, which takes the electron closer to the extraction septum

  1. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  2. IOP Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    CERN Document Server

    Irles, Adrián

    2018-02-22

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the International Large Detector at the ILC. In this document we present the latest nes on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration a...

  3. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation.

    Science.gov (United States)

    Pearson, Claire; Thornton, Emily E; McKenzie, Brent; Schaupp, Anna-Lena; Huskens, Nicky; Griseri, Thibault; West, Nathaniel; Tung, Sim; Seddon, Benedict P; Uhlig, Holm H; Powrie, Fiona

    2016-01-18

    Innate lymphoid cells (ILCs) contribute to host defence and tissue repair but can induce immunopathology. Recent work has revealed tissue-specific roles for ILCs; however, the question of how a small population has large effects on immune homeostasis remains unclear. We identify two mechanisms that ILC3s utilise to exert their effects within intestinal tissue. ILC-driven colitis depends on production of granulocyte macrophage-colony stimulating factor (GM-CSF), which recruits and maintains intestinal inflammatory monocytes. ILCs present in the intestine also enter and exit cryptopatches in a highly dynamic process. During colitis, ILC3s mobilize from cryptopatches, a process that can be inhibited by blocking GM-CSF, and mobilization precedes inflammatory foci elsewhere in the tissue. Together these data identify the IL-23R/GM-CSF axis within ILC3 as a key control point in the accumulation of innate effector cells in the intestine and in the spatio-temporal dynamics of ILCs in the intestinal inflammatory response.

  4. Physics at international linear collider (ILC)

    International Nuclear Information System (INIS)

    Yamamoto, Hitoshi

    2007-01-01

    International Linear Collider (ILC) is an electron-positron collider with the initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV later on. Its goal is to study the physics at TeV scale with unprecedented high sensitivities. The main topics include precision measurements of the Higgs particle properties, studies of supersymmetric particles and the underlying theoretical structure if supersymmetry turns out to be realized in nature, probing alternative possibilities for the origin of mass, and the cosmological connections thereof. In many channels, Higgs and leptonic sector in particular, ILC is substantially more sensitive than LHC, and is complementary to LHC overall. In this short article, we will have a quick look at the capabilities of ILC. (author)

  5. Adaptive ILC with an adaptive iterative learnign gain

    International Nuclear Information System (INIS)

    Ashraf, S.; Muhammad, E.

    2008-01-01

    This paper describes the design of an adaptive ILC (Iterative Learning Controller) with an iterative learning gain. The basic idea behind ILC is that the information obtained from one trial can be used to improve the control input for the next trial. This proposed scheme extends the idea further and suggests that the information obtained from one trial could also be used to improve control algorithm parameters (gain matrices). The scheme converges faster than the conventional ILC. This convergence and hence number of iterations has always been an issue with ILC. This scheme because of its simple mathematical structure can easily be implemented with lower memory and simpler hardware as opposed to other such adaptive schemes which are computationally expensive. (author)

  6. CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors

    Directory of Open Access Journals (Sweden)

    Sylvestre Chea

    2015-01-01

    Full Text Available Innate lymphoid cells are present at mucosal sites and represent the first immune barrier against infections, but what contributes to their circulation and homing is still unclear. Using Rag2−/−Cxcr6Gfp/+ reporter mice, we assessed the expression and role of CXCR6 in the circulation of ILC precursors and their progeny. We identify CXCR6 expressing ILC precursors in the bone marrow and characterize their significant increase in CXCR6-deficient mice at steady state, indicating their partial retention in the bone marrow after CXCR6 ablation. Circulation was also impaired during embryonic life as fetal liver from CXCR6-deficient embryos displayed decreased numbers of ILC3 precursors. When injected, fetal CXCR6-deficient ILC3 precursors also fail to home and reconstitute ILC compartments in vivo. We show that adult intestinal ILC subsets have heterogeneous expression pattern of CXCR6, integrin α4β7, CD62L, CD69, and CD44, with ILC1 and ILC3 being more likely tissue resident lymphocytes. Intestinal ILC subsets were unchanged in percentages and numbers in both mice. We demonstrate that the ILC frequency is maintained due to a significant increase of ILC peripheral proliferation, as well as an increased proliferation of the in situ ILC precursors to compensate their retention in the bone marrow.

  7. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    International Nuclear Information System (INIS)

    Groll, M.

    2007-06-01

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  8. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Groll, M.

    2007-06-15

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  9. Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    Science.gov (United States)

    Irles, A.

    2018-02-01

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.

  10. ILC Reference Design Report Volume 3 - Accelerator

    CERN Document Server

    Phinney, Nan; Walker, Nicholas J.; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Behnke, Ties; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Brau, James E.; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Damerell, Chris; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Djouadi, Abdelhak; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jaros, John; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lykken, Joseph; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyamoto, Akiya; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moenig, Klaus; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okada, Yasuhiro; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oreglia, Mark; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamashita, Satoru; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.

  11. ILC Reference Design Report Volume 1 - Executive Summary

    CERN Document Server

    Brau, James; Walker, Nicholas; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Behnke, Ties; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Damerell, Chris; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Djouadi, Abdelhak; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jaros, John; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lykken, Joseph; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyamoto, Akiya; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moenig, Klaus; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oreglia, Mark; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Phinney, Nan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Toge, Nobukazu; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamashita, Satoru; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.

  12. Stress evaluation at the ILC positron source

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, Andriy; Moortgat-Pick, Gudrid [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Luruper Chaussee 149, 22761 Hamburg (Germany); Riemann, Sabine; Dietrich, Felix [Deutsches Elektronen-Synchrotron (DESY), Standort Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Aulenbacher, Kurt; Tyukin, Valery; Heil, Philipp [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernphysik, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany)

    2016-07-01

    High luminosity is required at future Linear Colliders which is particularly challenging for all corresponding positron sources. At the International Linear Collider (ILC), polarized positrons are obtained from electron-positron pairs by converting high-energy photons produced by passing the high-energy main electron beam through a helical undulator. The conversion target undergoes cyclic stress with high peak values. To distribute the thermal load, the target is designed as wheel spinning in vacuum with 100 m/s. However, the cyclic stress over long time at high target temperatures could exceed the fatigue stress limit. In the talk, an overview of the ILC positron source is given. The prospects to study material parameters under conditions as expected at the ILC are discussed.

  13. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis

    NARCIS (Netherlands)

    Nagasawa, Maho; Spits, Hergen; Ros, Xavier Romero

    2017-01-01

    Innate lymphoid cells (ILCs) have emerged as an expanding family of effector cells particularly enriched in the mucosal barriers. ILCs are promptly activated by stress signals and multiple epithelial- and myeloid-cell-derived cytokines. In response, ILCs rapidly secrete effector cytokines, which

  14. Detecting metastable staus and gravitinos at the ILC

    International Nuclear Information System (INIS)

    Martyn, H.U.

    2006-06-01

    A study of various SUSY scenarios is presented in which the lightest supersymmetric particle is the gravitino G and the next-to-lightest supersymmetric particle is a scalar tau τ with lifetimes ranging from seconds to years. Gravitinos are interesting dark matter candidates which can be produced in decays of heavier sparticles at the International Linear Collider (ILC), but remain undetected in direct searches of astrophysical experiments. We investigate the detection and measurement of metastable staus, which may be copiously produced at the ILC either directly or via cascade decays. A proper choice of the experimental conditions will allow one to stop large samples of τ's in the calorimeters of the ILC detector and to study the subsequent decays τ → τG. Detailed simulations show that the properties of the stau and the gravitino, such as τ mass and lifetime and G mass, can be accurately determined at a future ILC and may provide direct access to the gravitational coupling, respectively Planck scale. (Orig.)

  15. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules.

    Science.gov (United States)

    Elemam, Noha Mousaad; Hannawi, Suad; Maghazachi, Azzam A

    2017-12-10

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce T H 2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.

  16. Innate Lymphoid Cells (ILCs as Mediators of Inflammation, Release of Cytokines and Lytic Molecules

    Directory of Open Access Journals (Sweden)

    Noha Mousaad Elemam

    2017-12-01

    Full Text Available Innate lymphoid cells (ILCs are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce TH2 cytokines while ILC3s and lymphoid tissue inducer (LTis are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.

  17. Full simulation of the beam-related backgrounds at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Anne [DESY (Germany); KIT (Germany)

    2016-07-01

    The ILC has been proposed as the next machine at the energy frontier and a Technical Design Report was presented in 2012. As part of the site-specific studies to prepare the hosting of the ILC in Japan, the final focus region of the ILC had to be adapted. In this contribution, updated results for the beam-related background as well as new results for the backgrounds originating from the beam dump are presented. The beam-related backgrounds are simulated using GuineaPig and are then propagated through the full simulation of the SiD detector. The impact of various modifications in the final-focus region on the detector occupancies are then evaluated. For the neutron background from the beam dump, the FLUKA simulation suite is used, which is well established for dosimetry and shielding studies. With this program, the effect of the neutrons from the ILC beam dumps on the ILC detectors are studied.

  18. Accelerator Physics for ILC and CLIC

    CERN Document Server

    Zimmermann, F

    2010-01-01

    This paper summarizes the second part of the “accelerator physics lectures” delivered at the Ambleside Linear Collider School 2009. It discusses more specific linear-collider issues: superconducting and room-temperature linear accelerators, particle sources for electrons and positrons, synchrotron radiation and damping, intensity limits, beam stability, and beam delivery system – including final focus, collimation, and beam-beam effects. It also presents an overview of the International Linear Collider (ILC), a description of the two beam acceleration scheme of the Compact Linear Collider (CLIC), and a comparison of the ILC and CLIC parameters.

  19. A precise Higgs mass measurement at the ILC and test beam data analyses with CALICE

    International Nuclear Information System (INIS)

    Ruan, Manqi

    2008-01-01

    Utilizing Monte Carlo tools and test-beam data, some basic detector performance properties are studied for the International Linear Collider (ILC). The contributions of this thesis are mainly twofold, first, a study of the Higgs mass and cross section measurements at the ILC (with full simulation to the e + e - → HZ→Hμμ channel and backgrounds); and second, an analysis of test-beam data of the Calorimeter for Linear Collider Experiment (CALICE). For a most general type of Higgs particle with 120 GeV the mass, setting the center-of-mass energy to 230 GeV and with an integrated luminosity of 500fb -1 , a precision of 38.4 MeV is obtained in a model independent analysis for the Higgs boson mass measurement, while the cross section could be measured to 5%; if we make some assumptions about the Higgs boson's decay, for example a Standard Model Higgs boson with a dominant invisible decay mode, the measurement result can be improved by 25% (achieving a mass measurement precision of 29 MeV and a cross section measurement precision of 4%). For the CALICE test-beam data analysis, our work is mainly focused upon two aspects: data quality checks and the track-free ECAL angular measurement. Data quality checks aim to detect strange signals or unexpected phenomena in the test-beam data so that one knows quickly how the overall data taking quality is. They also serve to classify all the data and give useful information for the later offline data analyses. The track-free ECAL angular resolution algorithm is designed to precisely measure the direction of a photon, a very important component in determining the direction of the neutral components in jets. We found that the angular resolution can be well fitted as a function of the square root of the beam energy (in a similar way as for the energy resolution) with a precision of approximately 80 mrad/√(E/GeV) in the angular resolution. (author)

  20. Human innate lymphoid cells (ILCs) in filarial infections.

    Science.gov (United States)

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Study of the granular electromagnetic calorimeter with PPDs and scintillator strips for ILC

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Katsushige, E-mail: coterra@azusa.shinshu-u.ac.j [Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan)

    2011-02-01

    A prototype module of a fine-granular electromagnetic calorimeter has been constructed by the CALICE collaboration and tested in the period August-September 2008 at the FNAL meson beam test facility. The calorimeter is one of the proposed concepts for a highly granular electromagnetic calorimeter for the International Linear Collider (ILC) experiment, which is designed to have an effective 10 mmx10 mm lateral segmentation using 10 mmx45 mm scintillator strips. The strips in the 15 odd layers are orthogonal with respect to those in the 15 even layers. A total of 2160 strip scintillators are individually read out using a Pixelated Photon Detector (PPD) or MPPC. As a preliminary result of the first stage analysis, we obtain a relative energy resolution for single electrons of {sigma}{sub E}/E=(15.15{+-}0.03)%/{radical}(E{sub beam}(GeV))+(1.44{+-}0.02)%, the quoted uncertainties are purely statistical.

  2. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update).

    Science.gov (United States)

    Yazdani, Reza; Sharifi, Mehri; Shirvan, Aylar Saba; Azizi, Gholamreza; Ganjalikhani-Hakemi, Mazdak

    2015-01-01

    Innate lymphoid cells (ILCs) are a novel family of hematopoietic effectors and regulators of innate immunity. Although these cells are morphologically similar to B cells and T cells, however they do not express antigen receptors. ILCs seems to have emerging roles in innate immune responses against infectious or non-infectious microorganisms, protection of the epithelial barrier, lymphoid organogenesis and inflammation, tissue remodeling and regulating homeostasis of tissue stromal cells. In addition, it has recently been reported that ILCs have a crucial role in several disorders such as allergy and autoimmunity. Based on their phenotype and functions, ILCs are classified into three major groups called ILCs1, ILCs2, and ILCs3. Here we reviewed the most recent data concerning diverse ILC phenotypes, subclasses, functions in immune responses as well as in immune mediated disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Group 3 innate lymphoid cells (ILC3s): Origin, differentiation, and plasticity in humans and mice.

    Science.gov (United States)

    Montaldo, Elisa; Juelke, Kerstin; Romagnani, Chiara

    2015-08-01

    Since their discovery, innate lymphoid cells (ILCs) have been the subject of intense research. As their name implies, ILCs are innate cells of lymphoid origin, and can be grouped into subsets based on their cytotoxic activity, cytokine profile, and the transcriptional requirements during ILC differentiation. The main ILC groups are "killer" ILCs, comprising NK cells, and "helper-like" ILCs (including ILC1s, ILC2s, and ILC3s). This review examines the origin, differentiation stages, and plasticity of murine and human ILC3s. ILC3s express the retinoic acid receptor (RAR) related orphan receptor RORγt and the signature cytokines IL-22 and IL-17. Fetal ILC3s or lymphoid tissue inducer cells are required for lymphoid organogenesis, while postnatally developing ILC3s are important for the generation of intestinal cryptopatches and isolated lymphoid follicles as well as for the defence against pathogens and epithelial homeostasis. Here, we discuss the transcription factors and exogenous signals (including cytokines, nutrients and cell-to-cell interaction) that drive ILC3 lineage commitment and acquisition of their distinctive effector program. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xun

    2009-01-21

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e{sup +}e{sup -} collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis

  5. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    International Nuclear Information System (INIS)

    Chen, Xun

    2009-01-01

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e + e - collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis procedures

  6. Readout ASIC for ILC-FPCCD vertex detector

    International Nuclear Information System (INIS)

    Takubo, Yosuke; Miyamoto, Akiya; Ikeda, Hirokazu; Yamamoto, Hitoshi; Itagaki, Kennosuke; Nagamine, Tadashi; Sugimoto, Yasuhiro

    2010-01-01

    The concept of FPCCD (Fine Pixel CCD) whose pixel size is 5x5μm 2 has been proposed as vertex detector at ILC. Since FPCCD has 128 x20,000 pixels in one readout channel, its readout poses a considerable challenge. We have developed a prototype of readout ASIC to readout the large number of pixels during the inter-train gap of the ILC beam. In this paper, we report the design and performance of the readout ASIC.

  7. Design studies and sensor tests for the beam calorimeter of the ILC detector

    International Nuclear Information System (INIS)

    Kuznetsova, E.

    2007-03-01

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  8. Design studies and sensor tests for the beam calorimeter of the ILC detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, E.

    2007-03-15

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  9. Non-simplified SUSY. τ-coannihilation at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.; Kruecker, D.; List, J.; Melzer-Pellmann, I.A.; Seitz, C. [DESY, Hamburg (Germany); Cakir, A. [DESY, Hamburg (Germany); Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Samani, B.S. [DESY, Hamburg (Germany); IPM, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wayand, S. [KIT IEKP, Karlsruhe (Germany)

    2016-04-15

    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small τ-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states. (orig.)

  10. Physics Interplay of the LHC and the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Weiglein, G.

    2004-12-17

    Physics at the Large Hadron Collider (LHC) and the International e{sup +}e{sup -} Linear Collider (ILC)will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC/LC Study Group so far is summarized in this report. Possible topics for future studies are outlined.

  11. A large superconducting accelerator project. International linear collider (ILC). Introduction

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2013-01-01

    The international linear collider (ILC) is proposed as the next-energy-frontier particle accelerator anticipated to be realized through global cooperation. The ILC accelerator is composed of a pair of electron and positron linear accelerators to realize head-on collision with a center-of-mass energy of 500 (250+250) GeV. It is based on superconducting radio-frequency (SCRF) technology, and the R and D and technical design have progressed in the technical design phase since 2007, and the technical design report (TDR) reached completion in 2012. This report reviews the ILC general design and technology. (author)

  12. Injection and Extraction Lines for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Reichel, Ina

    2007-01-01

    The current design for the injection and extraction lines into and out of the ILC Damping Rings is presented as well as the design for the abort line. Due to changes of the geometric boundary conditions by other subsystems of the ILC, a modular approach has been used to be able to respond to recurring layout changes while reusing previously designed parts

  13. Freeway Traffic Density and On-Ramp Queue Control via ILC Approach

    Directory of Open Access Journals (Sweden)

    Ronghu Chi

    2014-01-01

    Full Text Available A new queue length information fused iterative learning control approach (QLIF-ILC is presented for freeway traffic ramp metering to achieve a better performance by utilizing the error information of the on-ramp queue length. The QLIF-ILC consists of two parts, where the iterative feedforward part updates the control input signal by learning from the past control data in previous trials, and the current feedback part utilizes the tracking error of the current learning iteration to stabilize the controlled plant. These two parts are combined in a complementary manner to enhance the robustness of the proposed QLIF-ILC. A systematic approach is developed to analyze the convergence and robustness of the proposed learning scheme. The simulation results are further given to demonstrate the effectiveness of the proposed QLIF-ILC.

  14. Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC

    International Nuclear Information System (INIS)

    Bechtle, P.; Staal, O.

    2014-03-01

    We explore the room for possible deviations from the Standard Model (SM) Higgs boson coupling structure in a systematic study of Higgs coupling scale factor (κ) benchmark scenarios using the latest signal rate measurements from the Tevatron and LHC experiments. We employ a profile likelihood method based on a χ 2 test performed with HiggsSignals, which takes into account detailed information on signal efficiencies and major correlations of theoretical and experimental uncertainties. All considered scenarios allow for additional non-standard Higgs boson decay modes, and various assumptions for constraining the total decay width are discussed. No significant deviations from the SM Higgs boson coupling structure are found in any of the investigated benchmark scenarios. We derive upper limits on an additional (undetectable) Higgs decay mode under the assumption that the Higgs couplings to weak gauge bosons do not exceed the SM prediction. We furthermore discuss the capabilities of future facilities for probing deviations from the SM Higgs couplings, comparing the high luminosity upgrade of the LHC with a future International Linear Collider (ILC), where for the latter various energy and luminosity scenarios are considered. At the ILC model-independent measurements of the coupling structure can be performed, and we provide estimates of the precision that can be achieved.

  15. Post LHC7 SUSY benchmark points for ILC physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first year of serious data taking at LHC with {radical}(s)=7 TeV and {proportional_to}5 fb{sup -1} of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m{sub h}{proportional_to}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m{sub A}, non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){proportional_to}0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.

  16. Post LHC7 SUSY benchmark points for ILC physics

    International Nuclear Information System (INIS)

    Baer, Howard; List, Jenny

    2012-05-01

    We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first year of serious data taking at LHC with √(s)=7 TeV and ∝5 fb -1 of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m h ∝125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m A , non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at √(s)∝0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.

  17. CLIC/ILC Researchers Explore New Avenues for Collaboration

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    Researchers from CLIC and ILC met for their first common International Workshop on Linear Colliders, which was held in Geneva from 18 to 22 October. Although the talks were mostly scientific and technical, the political message behind them was a breakthrough, as the workshop showed the progress made in unifying the two communities.   The International Workshop on Linear Colliders (IWLC), which was organised by the European Committee for Future Accelerators, hosted by CERN, and held at CERN and the International Conference Centre in Geneva, attracted a large audience of about 500 experts. Although there have been other joint conferences between the CLIC and ILC communities before, they have all been focused on specific technical and/or managerial issues. The IWLC was part of an ongoing effort by CLIC and ILC to provide an environment in which researchers can exchange ideas, inform their peers about their most recent achievements and work together on common issues. Given the possible technical ov...

  18. Track reconstruction at the ILC: the ILD tracking software

    International Nuclear Information System (INIS)

    Gaede, Frank; Aplin, Steven; Rosemann, Christoph; Voutsinas, Georgios; Glattauer, Robin

    2014-01-01

    One of the key requirements for Higgs physics at the International Linear Collider ILC is excellent track reconstruction with very good momentum and impact parameter resolution. ILD is one of the two detector concepts at the ILC. Its central tracking system comprises of an outer Si-tracker, a highly granular TPC, an intermediate silicon tracker and a pixel vertex detector, and it is complemented by silicon tracking disks in the forward direction. Large hit densities from beam induced coherent electron-positron pairs at the ILC pose an additional challenge to the pattern recognition algorithms. We present the recently developed new ILD tracking software, the pattern recognition algorithms that are using clustering techniques, Cellular Automatons and Kalman filter based track extrapolation. The performance of the ILD tracking system is evaluated using a detailed simulation including dead material, gaps and imperfections.

  19. Down-regulation of E protein activity augments an ILC2 differentiation program in the thymus

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are important regulators in various immune responses. Current paradigm states that all newly-made ILCs originate from common lymphoid progenitors (CLP) in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Une...

  20. Hidden particle production at the ILC

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Itoh, Hideo; Okada, Nobuchika; Hano, Hitoshi; Yoshioka, Tamaki

    2008-01-01

    In a class of new physics models, the new physics sector is completely or partly hidden, namely, a singlet under the standard model (SM) gauge group. Hidden fields included in such new physics models communicate with the standard model sector through higher-dimensional operators. If a cutoff lies in the TeV range, such hidden fields can be produced at future colliders. We consider a scalar field as an example of the hidden fields. Collider phenomenology on this hidden scalar is similar to that of the SM Higgs boson, but there are several features quite different from those of the Higgs boson. We investigate productions of the hidden scalar at the International Linear Collider (ILC) and study the feasibility of its measurements, in particular, how well the ILC distinguishes the scalar from the Higgs boson, through realistic Monte Carlo simulations.

  1. ILC in 2012: Decisions ahead!

    CERN Multimedia

    Barry Barish, Director of the Global Design Effort for the International Linear Collider

    2011-01-01

    The 2000 or so people from around the world who are planning and developing the International Linear Collider (ILC) are starting to get this funny feeling when something that you have been working on and looking forward to for a long, long time is suddenly just around the corner.   Simulation of a Higgs event in a future ILC detector. Copyright: DESY 2006. 2012 will be a big one for the potential next big thing in particle physics: towards the end of the year the community plans to release its Technical Design Report, that all-important publication that basically says “we’re ready – just say the word”. Of course the future of particle physics in the world depends crucially on results from the LHC, so we are all curious (on the edge of our seats may describe it more appropriately) to see what the big discovery machine will tell us about Standard Model Higgs particles (or not), dark matter and all those other unsolved mysteries on which...

  2. ILC in 2012: Decisions ahead!

    CERN Multimedia

    Barry Barish, Director of the Global Design Effort for the International Linear Collider

    2012-01-01

    The 2000 or so people from around the world who are planning and developing the International Linear Collider (ILC) are starting to get this funny feeling when something that you have been working on and looking forward to for a long, long time is suddenly just around the corner.   Simulation of a Higgs event in a future ILC detector. Copyright: DESY 2006. 2012 will be a big one for the potential next big thing in particle physics: towards the end of the year the community plans to release its Technical Design Report, that all-important publication that basically says “we’re ready – just say the word”. Of course the future of particle physics in the world depends crucially on results from the LHC, so we are all curious (on the edge of our seats may describe it more appropriately) to see what the big discovery machine will tell us about Standard Model Higgs particles (or not), dark matter and all those other unsolved mysteries on which...

  3. Post LHC8 SUSY benchmark points for ILC physics

    International Nuclear Information System (INIS)

    Baer, Howard; List, Jenny

    2013-07-01

    We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with ∝5 fb -1 of pp collisions at √(s)=7 TeV and LHC8 with ∝20 fb -1 at √(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m h ≅125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m A , a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, τ-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at √(s)≅ 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

  4. Post LHC8 SUSY benchmark points for ILC physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

  5. Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, M.

    2011-04-30

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  6. A large area Micromegas TPC for tracking at the ILC

    International Nuclear Information System (INIS)

    Wang, Wenxin

    2013-01-01

    The study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e + e - collider. The leading project for this is called ILC. The team that I joined is working on the R and D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a 55 Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion back-flow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several

  7. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph

    2011-10-15

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the

  8. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    International Nuclear Information System (INIS)

    Bartels, Christoph

    2011-10-01

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e + e - → χχγ, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb -1 , the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of δ P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the required precision. At ILC, these

  9. Non-simplified SUSY. {tau}-coannihilation at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.; Cakir, A.; Krueger, D.; List, J.; Lobanov, A.; Melzer-Pellmann, I.A.

    2013-07-15

    Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small {tau} -LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.

  10. Bilinear R parity violation at the ILC. Neutrino physics at colliders

    International Nuclear Information System (INIS)

    List, J.; Vormwald, B.; Hamburg Univ.

    2013-07-01

    Supersymmetry (SUSY) with bilinearly broken R parity (bRPV) offers an attractive possibility to explain the origin of neutrino masses and mixings. Thereby neutralinos become a probe to the neutrino sector since studying neutralino decays gives access to neutrino parameters at colliders. We present the study of a bRPV SUSY model at the International Linear Collider (ILC), with the bRPV parameters determined from current neutrino data. The ILC offers a very clean environment to study the neutralino properties as well as their subsequent decays, which typically involve a W/Z and a lepton. This study is based on ILC beam parameters according to the Technical Design Report for a center of mass energy of 500 GeV. Full detector simulation of the International Large Detector (ILD) was performed for SUSY and Standard Model processes. We show for the fully simulated example point that the χ 0 1 mass can be reconstructed with an uncertainty of less than 0.2% for an integrated luminosity of 100 fb -1 from direct χ 0 1 pair production, thus to a large extent independently of the rest of the SUSY spectrum. We also demonstrate that the achievable precision on the atmospheric neutrino mixing angle sin 2 θ 23 from measuring the neutralino branching fractions BR(χ 0 1 →Wμ) and BR(χ 0 1 →Wτ) at the ILC is comparable to current uncertainties from neutrino experiments. Thus the ILC could have the opportunity to unveil the mechanism of neutrino mass generation.

  11. Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    de La Taille, C

    2008-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  12. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  13. Bilinear R parity violation at the ILC. Neutrino physics at colliders

    Energy Technology Data Exchange (ETDEWEB)

    List, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vormwald, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2013-07-15

    Supersymmetry (SUSY) with bilinearly broken R parity (bRPV) offers an attractive possibility to explain the origin of neutrino masses and mixings. Thereby neutralinos become a probe to the neutrino sector since studying neutralino decays gives access to neutrino parameters at colliders. We present the study of a bRPV SUSY model at the International Linear Collider (ILC), with the bRPV parameters determined from current neutrino data. The ILC offers a very clean environment to study the neutralino properties as well as their subsequent decays, which typically involve a W/Z and a lepton. This study is based on ILC beam parameters according to the Technical Design Report for a center of mass energy of 500 GeV. Full detector simulation of the International Large Detector (ILD) was performed for SUSY and Standard Model processes. We show for the fully simulated example point that the {chi}{sup 0}{sub 1} mass can be reconstructed with an uncertainty of less than 0.2% for an integrated luminosity of 100 fb{sup -1} from direct {chi}{sup 0}{sub 1} pair production, thus to a large extent independently of the rest of the SUSY spectrum. We also demonstrate that the achievable precision on the atmospheric neutrino mixing angle sin{sup 2} {theta}{sub 23} from measuring the neutralino branching fractions BR({chi}{sup 0}{sub 1}{yields}W{mu}) and BR({chi}{sup 0}{sub 1}{yields}W{tau}) at the ILC is comparable to current uncertainties from neutrino experiments. Thus the ILC could have the opportunity to unveil the mechanism of neutrino mass generation.

  14. Innovations in ILC detector design using a particle flow algorithm approach

    International Nuclear Information System (INIS)

    Magill, S.; High Energy Physics

    2007-01-01

    The International Linear Collider (ILC) is a future e + e - collider that will produce particles with masses up to the design center-of-mass (CM) energy of 500 GeV. The ILC complements the Large Hadron Collider (LHC) which, although colliding protons at 14 TeV in the CM, will be luminosity-limited to particle production with masses up to ∼1-2 TeV. At the ILC, interesting cross-sections are small, but there are no backgrounds from underlying events, so masses should be able to be measured by hadronic decays to dijets (∼80% BR) as well as in leptonic decay modes. The precise measurement of jets will require major detector innovations, in particular to the calorimeter, which will be optimized to reconstruct final state particle 4-vectors--called the particle flow algorithm approach to jet reconstruction

  15. Recommendation for Mitigations of the Electron Cloud Instability in the ILC

    International Nuclear Information System (INIS)

    Pivi, Mauro

    2011-01-01

    Electron cloud has been identified as one of the highest priority issues for the international Linear Collider (ILC) Damping Rings (DR). An electron cloud Working Group (WG) has evaluated the electron cloud effect and instability, and mitigation solutions for the electron cloud formation. Working group deliverables include recommendations for the baseline and alternate solutions to the electron cloud formation in various regions of the ILC Positron DR, which is presently assumed to be the 3.2 km design. Detailed studies of a range of mitigation options including coatings, clearing electrodes, grooves and novel concepts, were carried out over the previous several years by nearly 50 researchers, and the results of the studies form the basis for the recommendation. The recommendations are the result of the working group discussions held at numerous meetings and during a dedicated workshop. In addition, a number of items requiring further investigation were identified during the discussions at the Cornell meeting and studies will be carried out at CesrTA, a test accelerator dedicated to electron cloud studies, and other institutions.

  16. Fast calculation of the `ILC norm' in iterative learning control

    Science.gov (United States)

    Rice, Justin K.; van Wingerden, Jan-Willem

    2013-06-01

    In this paper, we discuss and demonstrate a method for the exploitation of matrix structure in computations for iterative learning control (ILC). In Barton, Bristow, and Alleyne [International Journal of Control, 83(2), 1-8 (2010)], a special insight into the structure of the lifted convolution matrices involved in ILC is used along with a modified Lanczos method to achieve very fast computational bounds on the learning convergence, by calculating the 'ILC norm' in ? computational complexity. In this paper, we show how their method is equivalent to a special instance of the sequentially semi-separable (SSS) matrix arithmetic, and thus can be extended to many other computations in ILC, and specialised in some cases to even faster methods. Our SSS-based methodology will be demonstrated on two examples: a linear time-varying example resulting in the same ? complexity as in Barton et al., and a linear time-invariant example where our approach reduces the computational complexity to ?, thus decreasing the computation time, for an example, from the literature by a factor of almost 100. This improvement is achieved by transforming the norm computation via a linear matrix inequality into a check of positive definiteness - which allows us to further exploit the almost-Toeplitz properties of the matrix, and additionally provides explicit upper and lower bounds on the norm of the matrix, instead of the indirect Ritz estimate. These methods are now implemented in a MATLAB toolbox, freely available on the Internet.

  17. Proceedings of the 2. International Linear Collider Test-beam workshop - LCTW'09

    International Nuclear Information System (INIS)

    Wormser, G.; Poeschl, R.; Takeshi, M.; Yu, J.; Hauptman, J.; Jeans, D.; Velthuis, J.; Repond, J.; Stanitzki, M.; Chefdeville, M.; Pauletta, G.; Hauptman, J.; Kulis, S.; Charpy, A.; Rivera, R.; Turchetti, M.; Vos, M.; Dehmelt, K.; Settles, R.; Decotigny, D.; Killenberg, M.; Haas, D.; Gaede, F.; Graf, N.; Wing, M.; Gaede, F.; Karstensen, S.; Meyners, N.; Hast, C.; Vrba, V.; Takeshita, T.; Kawagoe, K.; Linssen, L.; Ramberg, E.; Demarteau, M.; Fisk, H.E.; Savoy-Navarro, A.; Videau, H.; Boudry, V.; Hauptman, J.; Lipton, R.; Nelson, T.

    2009-01-01

    At this workshop detector and simulation experts have described and discussed the necessary ILC (International Linear Collider) detector research and development program in view of its need for test beams. This workshop has provided an opportunity to evaluate the capabilities and shortcomings of existing facilities in the context of planned test beam activities. This document gathers together the slides of the presentations. The presentations have been classified into 4 topics: -) plans of sub-detectors - calorimetry, silicon and gaseous tracking, -) data acquisition, -) test beam facilities, and -) resources and infrastructure for future test beams

  18. CrossRef Energy Reconstruction in a High Granularity Semi-Digital Hadronic Calorimeter for ILC Experiments

    CERN Document Server

    Mannai, S; Cortina, E; Laktineh, I

    2016-01-01

    Abstract: The Semi-Digital Hadronic CALorimeter (SDHCAL) is one of the two hadronic calorimeter options proposed by the International Large Detector (ILD) project for the future International Linear Collider (ILC) experiments. It is a sampling calorimeter with 48 active layers made of Glass Resistive Plate Chambers (GRPCs) and their embedded electronics. A fine lateral segmentation is obtained thanks to pickup pads of 1 cm2. This ensures the high granularity required for the application of the Particle Flow Algorithm (PFA) in order to improve the jet energy resolution in the ILC experiments. The performance of the SDHCAL technological prototype was tested successfully in several beam tests at CERN. The main point to be discussed here concerns the energy reconstruction in SDHCAL. Based on Monte Carlo simulation of the SDHCAL prototype using the GEANT4 package, we present different energy reconstruction methods to study the energy linearity and resolution of the detector response to single hadrons. In particula...

  19. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    Science.gov (United States)

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  20. Multivariate optimization of ILC parameters

    International Nuclear Information System (INIS)

    Bazarov, I.V.; Padamsee, H.S.

    2005-01-01

    We present results of multiobjective optimization of the International Linear Collider (ILC) which seeks to maximize luminosity at each given total cost of the linac (capital and operating costs of cryomodules, refrigeration and RF). Evolutionary algorithms allow quick exploration of optimal sets of parameters in a complicated system such as ILC in the presence of realistic constraints as well as investigation of various what-if scenarios in potential performance. Among the parameters we varied there were accelerating gradient and Q of the cavities (in a coupled manner following a realistic Q vs. E curve), the number of particles per bunch, the bunch length, number of bunches in the train, etc. We find an optimum which decreases (relative to TESLA TDR baseline) the total linac cost by 22%, capital cost by 25% at the same luminosity of 3 x 10 38 m -2 s -1 . For this optimum the gradient is 35 MV/m, the final spot size is 3.6 nm, and the beam power is 15.9 MV/m. Changing the luminosity by 10 38 m -2 s -1 results in 10% change in the total linac cost and 4% in the capital cost. We have also explored the optimal fronts of luminosity vs. cost for several other scenarios using the same approach. (orig.)

  1. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis.

    Science.gov (United States)

    Villanova, Federica; Flutter, Barry; Tosi, Isabella; Grys, Katarzyna; Sreeneebus, Hemawtee; Perera, Gayathri K; Chapman, Anna; Smith, Catherine H; Di Meglio, Paola; Nestle, Frank O

    2014-04-01

    Innate lymphoid cells (ILCs) are increasingly appreciated as key regulators of tissue immunity. However, their role in human tissue homeostasis and disease remains to be fully elucidated. Here we characterize the ILCs in human skin from healthy individuals and from the inflammatory skin disease psoriasis. We show that a substantial proportion of IL-17A and IL-22 producing cells in the skin and blood of normal individuals and psoriasis patients are CD3-negative innate lymphocytes. Deep immunophenotyping of human ILC subsets showed a statistically significant increase in the frequency of circulating NKp44+ ILC3 in the blood of psoriasis patients compared with healthy individuals or atopic dermatitis patients. More than 50% of circulating NKp44+ ILC3 expressed cutaneous lymphocyte-associated antigen, indicating their potential for skin homing. Analysis of skin tissue revealed a significantly increased frequency of total ILCs in the skin compared with blood. Moreover, the frequency of NKp44+ ILC3 was significantly increased in non-lesional psoriatic skin compared with normal skin. A detailed time course of a psoriasis patient treated with anti-tumor necrosis factor showed a close association between therapeutic response, decrease in inflammatory skin lesions, and decrease of circulating NKp44+ ILC3. Overall, data from this initial observational study suggest a potential role for NKp44+ ILC3 in psoriasis pathogenesis.

  2. The correction of the littlest Higgs model to the Higgs production process e+e-→e+e-H at the ILC

    International Nuclear Information System (INIS)

    Wang, Xuelei; Liu, Yaobei; Chen, Jihong; Yang, Hua

    2007-01-01

    The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs model, we study the process e + e - →e + e - H at the ILC and calculate the correction of the littlest Higgs model to the cross section of this process. The results show that, in the favorable parameter spaces preferred by the electroweak precision data, the value of the relative correction is in the range from a few percent to tens percent. In most cases, the correction is large enough to reach the measurement precision of the ILC. Therefore, the correction of the littlest Higgs model to the process e + e - →e + e - H might be detected at the ILC, which will give an ideal way to test the model. (orig.)

  3. A quartz Cherenkov detector for polarimetry at the ILC

    International Nuclear Information System (INIS)

    Vauth, Annika

    2014-09-01

    At the proposed International Linear Collider (ILC), the use of polarised electron and positron beams is a key ingredient of the physics program. A measurement of the polarisation with a yet unprecedented precision of δP / P =0.25% is required. To achieve this, Compton polarimeter measurements in front of and behind the collision point are foreseen. In this thesis, a novel concept for a detector for ILC polarimetry is introduced to eliminate one of the dominating systematics limiting the previous best measurement of beam polarisation: a detector using quartz as Cherenkov medium could increase the tolerance against non-linear photodetector responses. The high refractive index of quartz results in a higher Cherenkov light yield compared to conventional Cherenkov gases. This could allow single-peak resolution in the Cherenkov photon spectra produced by the Compton electrons at the polarimeters. The detailed simulation studies presented in this work imply that such single-peak resolution is possible. Considerations for the choice of a suitable detector geometry are discussed. A four-channel prototype has been constructed and successfully operated in a first testbeam campaign at the DESY testbeam, confirming simulation predictions. Although further studies have to be considered to quantify all aspects of the detector response, the findings of the analysis of the data from the first testbeam are promising with regards to reaching the desired light yield. In the final part of this thesis, the application of a detector concept allowing single-peak resolution to the polarisation measurement at the ILC is examined. Two of the main sources of systematic uncertainties on the polarimeter measurements are detector non-linearities and misalignments. The performance of the suggested quartz detector concept in Monte Carlo studies promises a control of these systematics which meets the precision requirements for ILC polarimetry.

  4. Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score.

    Directory of Open Access Journals (Sweden)

    Hannah C Jeffery

    Full Text Available Innate lymphoid cells (ILC have been implicated in the initiation of inflammation and fibrosis in mice. However, ILC have not been characterized in inflamed human liver tissue.Human intrahepatic lymphocytes were isolated by mechanical digestion and phenotyped by flow cytometry. Conditioned medium from cultures of primary human biliary epithelial cells, stellate cells, fibroblasts and inflamed human liver tissue was used to model the effects of the inflammatory liver environment of ILC phenotype and function.All three ILC subsets were present in the human liver, with the ILC1 (CRTH2negCD117neg subset constituting around 70% of intrahepatic ILCs. Both NCRpos (NKp44+ and NCRneg ILC3 (CRTH2negCD117pos subsets were also detected. ILC2 (CRTH2pos frequency correlated with disease severity measured by model of end stage liver disease (MELD scoring leading us to study this subset in more detail. ILC2 displayed a tissue resident CD69+ CD161++ phenotype and expressed chemokine receptor CCR6 allowing them to respond to CCL20 secreted by cholangiocytes and stellate cells. ILC2 expressed integrins VLA-5 and VLA-6 and the IL-2 and IL-7 cytokine receptors CD25 and CD127 although IL-2 and IL-7 were barely detectable in inflamed liver tissue. Although biliary epithelial cells secrete IL-33, intrahepatic ILC2 had low expression of the ST2 receptor. Intrahepatic ILC2 secreted the immunoregulatory and repair cytokines IL-13 and amphiregulin.Intrahepatic ILC2 express receptors allowing them to be recruited to bile ducts in inflamed portal tracts. Their frequencies increased with worsening liver function. Their secretion of IL-13 and amphiregulin suggests they may be recruited to promote resolution and repair and thereby they may contribute to ongoing fibrogenesis in liver disease.

  5. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  6. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  7. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  8. Physics at the ILC

    International Nuclear Information System (INIS)

    Lutz, P.

    2007-01-01

    The seminar was an introduction to the physics studies made possible at an e + e - collider at center-of-mass energies of 500 GeV and above, like the ILC (International Linear Collider) now in discussion within the community of high energy physicists. After a brief introduction to the machine, three main topics were covered, namely Physics of the Standard Model, Physics related to the understanding of the EWSB (electroweak Symmetry Breaking) and Physics beyond the Standard Model. Before the conclusion, the attention was drawn on challenges concerning the detectors that could tackle the precision needed

  9. The ILC global control system

    International Nuclear Information System (INIS)

    Carwardine, J.; Arnold, N.; Lenkszus, F.; Saunders, C.; Rehlich, K.; Simrock, S.; Banerjee, B.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larsen, R.S.; Downing, R.

    2008-01-01

    The scale and performance parameters of the ILC require new thinking in regards to control system design. This design work has begun quite early in comparison to most accelerator projects, with the goal of uniquely high overall accelerator availability. Among the design challenges are high control system availability, precision timing and rf phase reference distribution, standardizing of interfaces, operability, and maintainability. We present the current state of the design and take a prospective look at ongoing research and development projects.

  10. Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation

    Directory of Open Access Journals (Sweden)

    Yotam E. Bar-Ephraim

    2017-10-01

    Full Text Available A substantial number of human and mouse group 3 innate lymphoid cells (ILC3s reside in secondary lymphoid organs, yet the phenotype and function of these ILC3s is incompletely understood. Here, we employed an unbiased cross-tissue transcriptomic approach to compare human ILC3s from non-inflamed lymph nodes and spleen to their phenotypic counterparts in inflamed tonsils and from circulation. These analyses revealed that, in the absence of inflammation, lymphoid organ-residing ILC3s lack transcription of cytokines associated with classical ILC3 functions. This was independent of expression of the natural cytotoxicity receptor NKp44. However, and in contrast to ILC3s from peripheral blood, lymphoid organ-residing ILC3s express activating cytokine receptors and have acquired the ability to be recruited into immune responses by inflammatory cytokines. This comprehensive cross-tissue dataset will allow for identification of functional changes in human lymphoid organ ILC3s associated with human disease.

  11. Development of ultra-light pixelated ladders for an ILC vertex detector

    CERN Document Server

    Chon-Sen, N.; Claus, G.; De Masi, R.; Deveaux, M.; Dulinski, W.; Goffe, M.; Goldstein, J.; Gregor, I.-M.; Hu-Guo, Ch.; Imhoff, M.; Muntz, C.; Nomerotski, A.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Winter, M.

    2010-01-01

    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested.

  12. Flavorful Z{sup '} signatures at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-L. [Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China); Okada, Nobuchika [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Theory Group, KEK, Tsukuba 305-0801 (Japan)], E-mail: okadan@post.kek.jp

    2008-10-30

    There are lots of new physics models which predict an extra neutral gauge boson, referred as Z{sup '}-boson. In a certain class of these new physics models, the Z{sup '}-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z{sup '}-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z{sup '}-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z{sup '}-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z{sup '}-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z{sup '}-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z{sup '}-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.

  13. TESLA & ILC Cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T. J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Weisend, II, J. G. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-01

    The TESLA collaboration developed a unique variant of SRF cryomodule designs, the chief feature being use of the large, low pressure helium vapor return pipe as the structural support backbone of the cryomodule. Additional innovative features include all cryogenic piping within the cryomodule (no parallel external cryogenic transfer line), long strings of RF cavities within a single cryomodule, and cryomodules connected in series. Several projects, including FLASH and XFEL at DESY, LCLS-II at SLAC, and the ILC technical design have adopted this general design concept. Advantages include saving space by eliminating the external transfer line, relatively tight packing of RF cavities along the beamline due to fewer warm-cold transitions, and potentially lower costs. However, a primary disadvantage is the relative lack of independence for warm-up, replacement, and cool-down of individual cryomodules.

  14. Higgs boson production in the littlest Higgs model with T-parity at the ILC

    Science.gov (United States)

    Han, Jinzhong; Yang, Guang; Meng, Ming; Wang, Weijian; Li, Jingyun

    2018-04-01

    We investigate the Higgs boson production processes e+e‑→ ZH, e+e‑→ νν¯H, e+e‑→ tt¯H, e+e‑→ ZHH and e+e‑→ νν¯HH in the littlest Higgs model with T-parity (LHT) at the International Linear Collider (ILC). We calculate the LHT model predictions on the production rate of these processes at the ILC in the case of (un)polarized beams and the signal strengths of the production processes ZH and νν¯H with Higgs decaying to bb¯(gg,γγ). In the allowed parameter space, we find that the signal strengths μgg is most likely approach to the expected precision of the ILC.

  15. ILC Instrumentation R and D at SCIPP

    International Nuclear Information System (INIS)

    Carman, J.; Crosby, S.; Fadeyev, V.; Schumm, B.A.; Spencer, N.; Wilder, M.; Partridge, R.

    2011-01-01

    The Santa Cruz Institute for Particle Physics (SCIPP) continues to be engaged in research and development towards an ILC detector. The latest efforts at SCIPP are described, including those associated with the LSTFE front-end readout ASIC, the use of charge division to obtain a longitudinal coordinate from silicon strip detectors, and the contribution of strip resistance to readout noise.

  16. The potential of the ILC for discovering new particles

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keisuke [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Grojean, Christophe [DESY, Hamburg (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; ICREA, Barcelona (Spain); Peskin, Michael E. [Stanford Univ., Menlo Park, CA (United States). SLAC; Collaboration: LCC Physics Working Group; and others

    2017-02-15

    This paper addresses the question of whether the International Linear Collider has the capability of discovering new particles that have not already been discovered at the CERN Large Hadron Collider. We summarize the various paths to discovery offered by the ILC, and discuss them in the context of three different scenarios: 1. LHC does not discover any new particles, 2. LHC discovers some new low mass states and 3. LHC discovers new heavy particles. We will show that in each case, ILC plays a critical role in discovery of new phenomena and in pushing forward the frontiers of high-energy physics as well as our understanding of the universe in a manner which is highly complementary to that of LHC. For the busy reader, a two-page executive summary is provided at the beginning of the document.

  17. The potential of the ILC for discovering new particles

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.

    2017-02-01

    This paper addresses the question of whether the International Linear Collider has the capability of discovering new particles that have not already been discovered at the CERN Large Hadron Collider. We summarize the various paths to discovery offered by the ILC, and discuss them in the context of three different scenarios: 1. LHC does not discover any new particles, 2. LHC discovers some new low mass states and 3. LHC discovers new heavy particles. We will show that in each case, ILC plays a critical role in discovery of new phenomena and in pushing forward the frontiers of high-energy physics as well as our understanding of the universe in a manner which is highly complementary to that of LHC. For the busy reader, a two-page executive summary is provided at the beginning of the document.

  18. Determination of new electroweak parameters at the ILC. Sensitivity to new physics

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M.; Schmidt, E.; Schroeder, H. [Rostock Univ. (Germany). Inst. fuer Physik; Kilian, W. [Siegen Univ. (Gesamthochschule) (Germany). Fach Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Krstonosic, P.; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2006-04-15

    We present a study of the sensitivity of an International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multidimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel. (Orig.)

  19. Determination of new electroweak parameters at the ILC. Sensitivity to new physics

    International Nuclear Information System (INIS)

    Beyer, M.; Schmidt, E.; Schroeder, H.; Krstonosic, P.; Reuter, J.; Moenig, K.

    2006-04-01

    We present a study of the sensitivity of an International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multidimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel. (Orig.)

  20. Reflooding phenomena of German PWR estimated from CCTF [Cylindrical Core Test Facility], SCTF [Slab Core Test Facility] and UPTF [Upper Plenum Test Facility] results

    International Nuclear Information System (INIS)

    Murao, Y.; Iguchi, T.; Sugimoto, J.

    1988-09-01

    The reflooding behavior in a PWR with a combined injection type ECCS was studied by comparing the test results from Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF) and Upper Plenum Test Facility (UPTF). Core thermal-hydraulics is discussed mainly based on SCTF test data. In addition, the water accumulation behavior in hot legs and the break-through characteristics at tie plate are discussed

  1. Coherent Instabilities of ILC Damping Ring

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; Stupakov, G.; Bane, K.; /SLAC

    2006-09-27

    The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.

  2. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  3. Photon production at the interaction point of the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, R. [Manchester Univ., Cockcroft Institute and the University of Oxford Road, Manchester (United Kingdom); Bambade, P. [Univ Paris-Sud, LAL, CNRS/IN2P3, 91 - Orsay (France)

    2008-01-15

    The intense beam-beam effect at the interaction point of the International Linear Collider (ILC) causes large disruption of the beams and the production of photons. These photons, arising dominantly through Beamstrahlung emission, are problematic for the machine design as they need to be transported and dumped in a controlled way. In this work, we perform simulations of the beam-beam interaction to predict photon production rates and distributions for the different beam parameters considered at ILC. The results are expressed in terms of a set of cones of excluded power, allowing to define the beam-stay-clear requirements relevant for different cases and contexts. A comparison is also made with theoretical expectations. The suggested photon cone half-opening angles are 0.75 and 0.85 mrad in the horizontal and vertical planes, respectively. These cones cover all machine energies and parameter sets, and include the low power Compton photons. (authors)

  4. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  5. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  6. Beam-induced backgrounds in detectors at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Adrian

    2008-11-15

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 10{sup 34} cm{sup -2}s{sup -1} in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  7. Beam-induced backgrounds in detectors at the ILC

    International Nuclear Information System (INIS)

    Vogel, Adrian

    2008-11-01

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 10 34 cm -2 s -1 in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  8. Discriminating leptonic Yukawa interactions with doubly charged scalar at the ILC

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi; Yokoya, Hiroshi

    2018-04-01

    We explore discrimination of two types of leptonic Yukawa interactions associated with Higgs triplet, LbarLc ΔLL, and with SU (2) singlet doubly charged scalar, ebarRc k++eR. These interactions can be distinguished by measuring the effects of doubly charged scalar boson exchange in the e+e- →ℓ+ℓ- processes at polarized electron-positron colliders. We study a forward-backward asymmetry of scattering angular distribution to estimate the sensitivity for these effects at the ILC. In addition, we investigate prospects of upper bounds on the Yukawa couplings by combining the constraints of lepton flavor violation processes and the e+e- →ℓ+ℓ- processes at the LEP and the ILC.

  9. Critical role of fatty acid metabolism in ILC2 mediated barrier protection during malnutrition and helminth infection

    Science.gov (United States)

    Innate lymphoid cells (ILCs) play an important role in many immune processes, including control of infections, inflammation and tissue repair. To date little is known about the metabolism of ILCs under steady-state conditions and infection, and whether these cells can metabolically adapt in response...

  10. In search of new phenomena using polarization. HERA and ILC

    International Nuclear Information System (INIS)

    Helebrant, Christian

    2009-12-01

    The longitudinal polarization of leptons can be used as an important tool in the search for new phenomena at particle colliders. In the first part of this thesis a search for first generation leptoquarks at the H1 experiment is presented. During the HERA-2 runperiod polarized lepton beams were used. The analysis presented herein utilizes this fact in order to enhance the sensitivity to these chirally coupling leptoquarks. Since no evidence for their existence is found, exclusion limits depending on the mass and Yukawa coupling are calculated. This analysis can exclude leptoquarks coupling at electromagnetic strength up to masses of 280-300 GeV, depending on the leptoquark quantum numbers. A new domain of physics is expected to be open to the planned electron positron linear collider ILC, where polarized lepton beams will play an important role. In order to fully exploit its physics potential, the polarization will have to be measured with an as yet unequaled precision of 0.25%, which is expected to be limited by systematic effects, like the nonlinearity of the photodetectors employed. In the second part of this thesis several methods are tested with respect to their capability to resolve photodetector nonlinearities at the permille level, and checked for their long term stability. With some of the methods presented herein it will be possible to measure and correct photodetector nonlinearities at a running ILC experiment with the accuracy required in order to achieve the aimed precision of the polarization measurement. (orig.)

  11. In search of new phenomena using polarization. HERA and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Helebrant, Christian

    2009-12-15

    The longitudinal polarization of leptons can be used as an important tool in the search for new phenomena at particle colliders. In the first part of this thesis a search for first generation leptoquarks at the H1 experiment is presented. During the HERA-2 runperiod polarized lepton beams were used. The analysis presented herein utilizes this fact in order to enhance the sensitivity to these chirally coupling leptoquarks. Since no evidence for their existence is found, exclusion limits depending on the mass and Yukawa coupling are calculated. This analysis can exclude leptoquarks coupling at electromagnetic strength up to masses of 280-300 GeV, depending on the leptoquark quantum numbers. A new domain of physics is expected to be open to the planned electron positron linear collider ILC, where polarized lepton beams will play an important role. In order to fully exploit its physics potential, the polarization will have to be measured with an as yet unequaled precision of 0.25%, which is expected to be limited by systematic effects, like the nonlinearity of the photodetectors employed. In the second part of this thesis several methods are tested with respect to their capability to resolve photodetector nonlinearities at the permille level, and checked for their long term stability. With some of the methods presented herein it will be possible to measure and correct photodetector nonlinearities at a running ILC experiment with the accuracy required in order to achieve the aimed precision of the polarization measurement. (orig.)

  12. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  13. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  14. An Intelligent Lighting Control System (ILCS) using LabVIEW ...

    African Journals Online (AJOL)

    An Intelligent Lighting Control System (ILCS) was proposed and designed by considering ergonomic setting and energy efficiency. The integration of CompactRIO as a main hardware and National Instrument Laboratory Virtual Instrument Engineering Workbench (NI LabVIEW) 2012 as a platform to design an interactive ...

  15. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s

    Directory of Open Access Journals (Sweden)

    Sam Sheppard

    2018-03-01

    Full Text Available Summary: TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s and a subset of natural killer (NK cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells. : Sheppard et al. find that mice deficient in the activating receptor NCR1/NKp46 (Ncr1−/− fail to express the apoptosis-inducing ligand TRAIL at the surface of group 1 innate lymphoid cells (ILC1s. Keywords: NK cell, natural killer cell, NKp46, ILC1, TRAIL, IL-15, IL-2

  16. Summary and Conclusions of the First DESY Test Beam User Workshop arXiv

    CERN Document Server

    Arling, Jan-Hendrik; Bandiera, Laura; Behnke, Ties; Dannheim, Dominik; Diener, Ralf; Dreyling-Eschweiler, Jan; Ehrlichmann, Heiko; Gerbershagen, Andreas; Gregor, Ingrid-Maria; Hayrapetyan, Avetik; Kaminski, Jochen; Kroll, Jiri; Martinengo, Paolo; Meyners, Norbert; Müntz, Christian; Poley, Luise; Schwenker, Benjamin; Stanitzki, Marcel

    On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future linear colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities.

  17. Simplified SUSY at the ILC

    International Nuclear Information System (INIS)

    Berggren, Mikael

    2013-08-01

    At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.

  18. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  19. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  20. From neutrino physics to beam polarisation. A high precision story at the ILC

    International Nuclear Information System (INIS)

    Vormwald, Benedikt

    2014-03-01

    In this thesis, we investigate the experimental prospects of studying a supersymmetric model with bilinearly broken R parity at the International Linear Collider. In this model, neutrinos mix with the supersymmetric neutralinos such that neutrino properties can be probed by examining neutralino decays, which incorporate usually a lepton and a W/Z boson. As a study case, we focus on the determination of the atmospheric neutrino mixing angle θ 23 , which is accessible via the ratio of the neutralino branching ratios BR(χ 0 1 →Wμ)/BR(χ 0 1 →Wτ). A detailed simulation of the International Large Detector has been performed for all Standard Model backgrounds and for χ 0 1 -pair production within a simplified model. The study is based on ILC beam parameters according to the Technical Design Report for a center-of-mass energy of √(s)=500 GeV. From muonic χ 0 1 decays, we find that the χ 0 1 mass can be reconstructed with an uncertainty of δ(m χ 0 1 )=(40(stat.)+35(syst.)) MeV for an integrated luminosity of ∫Ldt=500 fb -1 . The ratio of branching ratios can be determined to a precision of δ(BR(χ 0 1 →Wμ)/BR(χ 0 1 →Wτ))=2.9%. Due to this, the atmospheric neutrino mixing angle can be deduced with a precision comparable to modern neutrino experiments. Thus, the ILC is capable to test whether bRPV SUSY is the mechanism of neutrino mass generation. As also shown in the bRPV SUSY study of this thesis, beam polarisation is an important parameter in physics analyses at the ILC. The beam polarisation is measured with two Compton polarimeters per electron/positron beam. In order to achieve the design goal of an envisaged precision of 0.25%, the detector nonlinearity of the used Cherenkov detectors has to be determined very precisely. Herein, the main source of nonlinearity is expected to originate from the involved photomultipliers. For this reason, a differential nonlinearity measurement as well as a linearisation method is developed. The working

  1. Inverse type II seesaw mechanism and its signature at the LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F.F.; Pires, C.A. de S, E-mail: cpires@fisica.ufpb.br; Rodrigues da Silva, P.S.

    2017-06-10

    The advent of the LHC, and the proposal of building future colliders as the ILC, both programmed to explore new physics at the TeV scale, justify the recent interest in collider phenomenology of seesaw mechanisms whose signatures lie on TeV scale or less. The most popular TeV scale seesaw mechanisms are the inverse seesaw ones. There are three types of inverse seesaw mechanisms, but only that one implemented in an arrangement involving six non-standard heavy neutrinos has received attention. In this paper we develop an inverse seesaw mechanism based on Higgs triplet model and simulate its collider phenomenology by producing doubly charged Higgses at the LHC and ILC and analyzing their subsequent decays in pair of leptons. We find that although the new scalars decouple from the standard ones, signals of these scalars may be detected in the current run of the LHC or in the future ILC. Our simulations probe the model in the region of parameter space that generates the correct neutrino masses and mixing for both normal and inverted hierarchy cases.

  2. Capture cavity II results at FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Branlard, Julien; Chase, Brian; Cancelo, G.; Carcagno, R.; Edwards, H.; Fliller, R.; Hanna, B.; Harms, Elvan; Hocker, A.; Koeth, T.; Kucera, M.; /Fermilab

    2007-06-01

    As part of the research and development towards the International Linear Collider (ILC), several test facilities have been developed at Fermilab. This paper presents the latest Low Level RF (LLRF) results obtained with Capture Cavity II (CCII) at the ILC Test Accelerator (ILCTA) test facility. The main focus will be on controls and RF operations using the SIMCON based LLRF system developed in DESY [1]. Details about hardware upgrades and future work will be discussed.

  3. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  4. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  5. A Study of Failure Modes in the ILC Main Linac

    CERN Document Server

    Eliasson, Peder; Krücker, Dirk; Latina, Andrea; Poirier, Freddy; Schulte, Daniel; Walker, Nicholas John; Xia, Guoxing

    2006-01-01

    Failures in the ILC can lead to beam loss or even damage the machine. In the paper quadrupole failures and errors in the klystron phase are being investigated and the impact on the machine protection is being considered for the main linac.

  6. Polarimeters and energy spectrometers for the ILC beam delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, S. [London Univ. (United Kingdom). Royal Holloway; Hildreth, M. [Univ. of Notre Dame (United States); Kaefer, K. [DESY, Hamburg (Germany); DESY, Zeuthen (DE)] (and others)

    2009-02-15

    This article gives an overview of current plans and issues for polarimeters and energy spectrometers in the Beam Delivery System of the ILC. It is meant to serve as a useful reference for the Detector Letter of Intent documents currently being prepared. (orig.)

  7. A Study of Laser System Requirements for Application in Beam Diagnostics And Polarimetry at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, S.; Delerue, N.; Foster, B.; Howell, D.F.; Peach, K.; Quelch, G.; Qureshi, M.; Reichold, A.; /Oxford U.; Hirst, G.; Ross, I.; /Rutherford; Urakawa, J.; /KEK,; Soskov, V.; Variola, A.; Zomer, F.; /Orsay, LAL; Blair, G.A.; Boogert, S.T.; Boorman, G.; Bosco, A.; Driouichi, C.; Karataev, P.; /Royal Holloway, U. of London; Brachmann,; /SLAC

    2007-02-12

    Advanced laser systems will be essential for a range of diagnostics devices and polarimetry at the ILC. High average power, high beam quality, excellent stability and reliability will be crucial in order to deliver the information required to attain the necessary ILC luminosity as well as for efficient polarimetry. The key parameters are listed together with the R & D required to achieve the necessary laser system performance.

  8. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  9. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  10. Simplified SUSY at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, Mikael

    2013-08-15

    At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.

  11. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  12. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  13. Characterisation and application of radiation hard sensors for LHC and ILC

    International Nuclear Information System (INIS)

    Novgorodova, Olga

    2013-11-01

    sides of the interaction region. They monitor the beam conditions to protect the inner CMS detectors from adverse beam conditions and ensure high quality data for CMS. In this thesis, BCM1F data is evaluated for its intrinsic time resolution and performance under harsh radiation conditions. Furthermore, it is investigated if it can be used for a bunch by bunch on-line luminosity measurement. The second type of sensor, made of GaAs:Cr, was produced in Tomsk State University and tested as a candidate for the BeamCal for future ILC and CLIC detectors. Several GaAs:Cr sensors were characterized in the laboratory for leakage current and capacitances and used for the test beam investigations. Two sensors were assembled with a fan-out, front-end and ADC ASICs to build a fully functional prototype of a sensor plane. Several test beam campaigns were done to measure the performance of the system.

  14. Characterisation and application of radiation hard sensors for LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga

    2013-11-15

    sides of the interaction region. They monitor the beam conditions to protect the inner CMS detectors from adverse beam conditions and ensure high quality data for CMS. In this thesis, BCM1F data is evaluated for its intrinsic time resolution and performance under harsh radiation conditions. Furthermore, it is investigated if it can be used for a bunch by bunch on-line luminosity measurement. The second type of sensor, made of GaAs:Cr, was produced in Tomsk State University and tested as a candidate for the BeamCal for future ILC and CLIC detectors. Several GaAs:Cr sensors were characterized in the laboratory for leakage current and capacitances and used for the test beam investigations. Two sensors were assembled with a fan-out, front-end and ADC ASICs to build a fully functional prototype of a sensor plane. Several test beam campaigns were done to measure the performance of the system.

  15. The RF Design of an HOM Polarized RF Gun for the ILC

    International Nuclear Information System (INIS)

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.

    2006-01-01

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed

  16. Report of the Fermilab ILC Citizens' Task Force

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  17. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Dulucq, Frédéric; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2009-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  18. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2007-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  19. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  20. Polarization of ILC2s in Peripheral Blood Might Contribute to Immunosuppressive Microenvironment in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Qingli Bie

    2014-01-01

    Full Text Available Newly identified nuocytes or group 2 innate lymphoid cells (ILC2s play an important role in Th2 cell mediated immunity such as protective immune responses to helminth parasites, allergic asthma, and chronic rhinosinusitis. However, the contributions of ILC2s in the occurrence and development of cancer remain unknown. Our previous study found that there was a predominant Th2 phenotype in patients with gastric cancer. In this study, the ILC2s related genes or molecules in PBMC from patients with gastric cancer were measured, and the potential correlation between them was analyzed. The expression levels of RORα, GATA3, T1/ST2, IL-17RB, CRTH2, IL-33, IL-5, and IL-4 mRNA were significantly increased in patients, but no significant changes were found in ICOS, CD45, and IL-13 expression, and there was a positive correlation between RORα or IL-13 and other related factors, such as ICOS and CD45. The increased frequency of ILC2s was also found in PBMC of patients by flow cytometry. In addition, the mRNA of Arg1 and iNOS were also significantly increased in patients. These results suggested that there are polarized ILC2s in gastric cancer patients which might contribute to immunosuppressive microenvironment and closely related to the upregulation of MDSCs and M2 macrophages.

  1. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility)

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  2. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  3. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    Y. Renier

    2013-06-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs, it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  4. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  5. Measuring Hadronic Jets at the ILC - From Particle Flow Calorimetry to the Higgs Self-Coupling

    CERN Document Server

    Hermberg, Benjamin

    2015-01-01

    This work deals with the development of a technical prototype of a highly segmented hadron calorimeter for precision measurements at the future International Linear Col- lider (ILC). The precision measurements at the ILC pose special challenges for both the detector technology as well as for the reconstruction methods. In this thesis two aspects to hadronic final states are examined. The first part deals with a prototype of a highly segmented hadronic calorimeter and the second part with kinematic Fits for the deter- mination of the Higgs self-coupling in decays of the Higgs boson into b quarks. The challenge for the examined prototype of the hadronic calorimeter is the demon- stration of the technical feasibility of a real detector. The ILC is pursuing the Particle Flow concept, as a consequence, it follows for the calorimeter a high granularity and an integrated readout electronics. Two important aspects of the calorimeter prototype are the channel-wise adjustable trigger threshold and the power-pulsing fun...

  6. From neutrino physics to beam polarisation. A high precision story at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vormwald, Benedikt

    2014-03-15

    In this thesis, we investigate the experimental prospects of studying a supersymmetric model with bilinearly broken R parity at the International Linear Collider. In this model, neutrinos mix with the supersymmetric neutralinos such that neutrino properties can be probed by examining neutralino decays, which incorporate usually a lepton and a W/Z boson. As a study case, we focus on the determination of the atmospheric neutrino mixing angle θ{sub 23}, which is accessible via the ratio of the neutralino branching ratios BR(χ{sup 0}{sub 1}→Wμ)/BR(χ{sup 0}{sub 1}→Wτ). A detailed simulation of the International Large Detector has been performed for all Standard Model backgrounds and for χ{sup 0}{sub 1}-pair production within a simplified model. The study is based on ILC beam parameters according to the Technical Design Report for a center-of-mass energy of √(s)=500 GeV. From muonic χ{sup 0}{sub 1} decays, we find that the χ{sup 0}{sub 1} mass can be reconstructed with an uncertainty of δ(m{sub χ{sup 0}{sub 1}})=(40(stat.)+35(syst.)) MeV for an integrated luminosity of ∫Ldt=500 fb{sup -1}. The ratio of branching ratios can be determined to a precision of δ(BR(χ{sup 0}{sub 1}→Wμ)/BR(χ{sup 0}{sub 1}→Wτ))=2.9%. Due to this, the atmospheric neutrino mixing angle can be deduced with a precision comparable to modern neutrino experiments. Thus, the ILC is capable to test whether bRPV SUSY is the mechanism of neutrino mass generation. As also shown in the bRPV SUSY study of this thesis, beam polarisation is an important parameter in physics analyses at the ILC. The beam polarisation is measured with two Compton polarimeters per electron/positron beam. In order to achieve the design goal of an envisaged precision of 0.25%, the detector nonlinearity of the used Cherenkov detectors has to be determined very precisely. Herein, the main source of nonlinearity is expected to originate from the involved photomultipliers. For this reason, a differential

  7. Proceedings of the ILC Physics Working Group Meeting at KEK in the period from May 2007 to June 2009

    CERN Document Server

    AUTHOR|(CDS)2080137; Ono, Hiroaki; Kanemura, Shinya; Suehara, Taikan; Takubo, Yosuke; Tanabe, Tomohiko; Fujii, Keisuke

    2010-01-01

    The ILC physics working group is a mixture of experimentalists and theorists mainly working in Japan. It has its origin in the previous LC physics study group and has been reformed with the initiative of a JSPS Creative Scientific Research project: "Research and Development of a Novel Detector System for the International Linear Collider". The working group is, however, formally independent of the JSPS project and is open to everybody who is interested in ILC physics. The primary task of the working group is to reexamine the ILC physics in the context of the expected LHC outcome and to further strengthen the physics case for the ILC project. The topics covered in the working group activities range from key measurements such as those of the Higgs self-coupling and the top Yukawa coupling to uncover the secrets of the electroweak symmetry breaking to various new physics scenarios like supersymmetry, large extra dimensions, and other models of terascale physics. The working group has held ten General Meetings in...

  8. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  9. Search for Higgs portal DM at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Ko, P. [School of Physics, KIAS,Seoul 02455 (Korea, Republic of); Quantum Universe Center, KIAS,Seoul 02455 (Korea, Republic of); Yokoya, Hiroshi [Quantum Universe Center, KIAS,Seoul 02455 (Korea, Republic of)

    2016-08-18

    Higgs portal dark matter (DM) models are simple interesting and viable DM models. There are three types of the models depending on the DM spin: scalar, fermion and vector DM models. In this paper, we consider renormalizable, unitary and gauge invariant Higgs portal DM models, and study how large parameter regions can be surveyed at the International Linear Collider (ILC) experiment at √s=500 GeV. For the Higgs portal singlet fermion and vector DM cases, the force mediator involves two scalar propagators, the SM-like Higgs boson and the dark Higgs boson. We show that their interference generates interesting and important patterns in the mono-Z plus missing E{sub T} signatures at the ILC, and the results are completely different from those obtained from the Higgs portal DM models within the effective field theories. In addition, we show that it would be possible to distinguish the spin of DM in the Higgs portal scenarios, if the shape of the recoil-mass distribution is observed. We emphasize that the interplay between these collider observations and those in the direct detection experiments has to be performed in the model with renomalizability and unitarity to combine the model analyses in different scales.

  10. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  11. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  12. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  13. Associated production of a neutral top-Higgs with a heavy-quark pair in the γγ collisions at ILC

    International Nuclear Information System (INIS)

    Huang Jinshu; Lu Gongru; Xu Wei; Wang Shuaiwei

    2010-01-01

    We have studied the associated production processes of a neutral top-Higgs in the topcolor assisted technicolor model with a pair of heavy quarks in γγ collisions at the International Linear Collider (ILC). We find that the cross section for t(t-bar)h t in γγ collisions is at the level of a few fb with the c.m. energy √s=1000 GeV, which is consistent with the results of the cross section of t(t-bar)H in the standard model and the cross section of t(t-bar)h in the minimal supersymmetric standard model. It should be clear that hundreds of to thousands of ht per year can be produced at the ILC. This process of γγ→t(t-bar)h t is really interesting in testing the standard model and searching the signs of technicolor. (authors)

  14. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection

    Science.gov (United States)

    Pelly, VS; Kannan, Y; Coomes, SM; Entwistle, LJ; Rückerl, D; Seddon, B; MacDonald, AS; McKenzie, A; Wilson, MS

    2017-01-01

    Immunity to many human and murine gastrointestinal helminth parasites requires interleukin-4 (IL-4)-directed type 2 helper (TH2) differentiation of CD4+ T cells to elicit type-2 immunity. Despite a good understanding of the inflammatory cascade elicited following helminth infection, the initial source of IL-4 is unclear. Previous studies using the rat helminth parasite Nippostronglyus brasiliensis, identified an important role for basophil-derived IL-4 for TH2 differentiation. However, basophils are redundant for TH2 differentiation following infection with the natural helminth parasite of mice Heligmosomoides polygyrus, indicating that other sources of IL-4 are required. In this study using H. polygyrus, which is controlled by IL-4-dependent immunity, we identified that group-2 innate lymphoid cells (ILC2s) produced significant amounts of IL-4 and IL-2 following H. polygyrus infection. Leukotriene D4 was sufficient to stimulate IL-4 secretion by ILC2s, and the supernatant from activated ILC2s could potently drive TH2 differentiation in vitro in an IL-4-dependent manner. Furthermore, specific deletion of IL-4 from ILC2s compromised TH2 differentiation in vivo. Overall, this study highlights a previously unrecognized and important role for ILC2-derived IL-4 for TH2 differentiation in a natural TH2-dependent model of human helminthiasis. PMID:26883724

  15. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  16. Hadron production in photon-photon processes at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar, Kollassery Swathi [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Berggren, Carl Mikael; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

    2016-07-01

    The International linear Collider (ILC) is a proposed e{sup +}e{sup -} collider, designed to operate at energies from 91 GeV upto about 500 GeV (with the possibility to upgrade to 1 TeV). The highly clean conditions provided by the ILC enables us to make high precision measurements e.g. of the Higgs boson and to search for new particles. In addition to the desired e{sup +}e{sup -} collisions, parasitic collisions of real and virtual photons radiated off the e{sup ±} beams occur at rates of a few γγ collisions per bunch crossing. The γγ centre of mass energies reach from few 100 MeV up to the full e{sup +}e{sup -} centre of mass energy. For all these energies, in particular the production of hadrons,needs to be modelled correctly in order to estimate the impact of these backgrounds which pile-up on each e{sup +}e{sup -} event. This contribution discusses the current simulations of γγ → hadron processes, evaluates their impact on the detector and introduces new methods to remove them from the interesting physics events.

  17. Scalar production in association with a Z boson at the LHC and ILC: The mixed Higgs-radion case of warped models

    Science.gov (United States)

    Angelescu, Andrei; Moreau, Grégory; Richard, François

    2017-07-01

    The radion scalar field might be the lightest new particle predicted by extradimensional extensions of the standard model. It could thus lead to the first signatures of new physics at the LHC collider. We perform a complete study of the radion production in association with the Z gauge boson in the custodially protected warped model with a brane-localized Higgs boson addressing the gauge hierarchy problem. Radion-Higgs mixing effects are present. Such a radion production receives possibly resonant contributions from the Kaluza-Klein excitations of the Z boson as well as the extra neutral gauge boson (Z'). All the exchange and mixing effects induced by those heavy bosons are taken into account in the radion coupling and rate calculations. The investigation of the considered radion production at the LHC allows us to be sensitive to some parts of the parameter space but only the ILC program at high luminosity would cover most of the theoretically allowed parameter space via the studied reaction. Complementary tests of the same theoretical parameters can be realized through the high accuracy measurements of the Higgs couplings at the ILC. The generic sensitivity limits on the rates discussed for the LHC and ILC potential reach can be applied to the searches for other (light) exotic scalar bosons.

  18. Construction and commissioning test report of the CEDM test facility

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system.

  19. Construction and commissioning test report of the CEDM test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K.

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system

  20. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  1. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Cherrill M.; /slac; Sugahara, Ryuhei; Masuzawa, Mika; /KEK, Tsukuba; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

  2. Characterization and Comparison of Control Units for Piezo Actuators to be used for Lorentz Force Compensation inth ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Sampriti; Pilipenko, Roman; /Fermilab

    2010-01-01

    Superconducting accelerators, such as the International Linear Collider (ILC), rely on very high Q accelerating cavities to achieve high electric fields at low RF power. Such cavities have very narrow resonances: a few kHz with a 1.3GHz resonance frequency for the ILC. Several mechanical factors cause tune shifts much larger than this: pressure variations in the liquid helium bath; microphonics from pumps and other mechanical devices; and for a pulsed machine such as the ILC, Lorentz force detuning (pressure from the contained RF field). Simple passive stiffening is limited by many manufacturing and material considerations. Therefore, active tuning using piezo actuators is needed. Here we study a supply for their operation. Since commercial power amplifiers are expensive, we analyzed the characteristics of four power amplifiers: (iPZD) built by Istituto Nazionale di Fisica Nucleare (Sezione di Pisa); and a DC-DC converter power supply built in Fermilab (Piezo Master); and two commercial amplifiers, Piezosystem jena and Piezomechanik. This paper presents an analysis and characterization of these amplifiers to understand the cost benefit and reliability when using in a large scale, pulsed beam accelerator like the ILC.

  3. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  4. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  5. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  6. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  7. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  8. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  9. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  10. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  11. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  12. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  13. Resource-efficient ILC for LTI/LTV systems through LQ tracking and stable inversion: enabling large feedforward tasks on a position-dependent printer

    NARCIS (Netherlands)

    van Zundert, J.; Bolder, J.J.; Koekebakker, S.H.; Oomen, T.A.E.

    Iterative learning control (ILC) enables high performance for systems that execute repeating tasks. Norm-optimal ILC based on lifted system representations provides an analytic expression for the optimal feedforward signal. However, for large tasks the computational load increases rapidly for

  14. ilc-25.pdf | dec2005 | jess | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; jess; dec2005; ilc-25.pdf. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will be held ...

  15. International Linear Collider Reference Design Report Volume 2: PHYSICS AT THE ILC

    CERN Document Server

    Djouadi, Abdelhak; Moenig, Klaus; Okada, Yasuhiro; Oreglia, Mark; Yamashita, Satoru; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Behnke, Ties; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Brau, James E.; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Damerell, Chris; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jaros, John; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyamoto, Akiya; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Phinney, Nan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Toge, Nobukazu; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walker, Nicholas J.; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described.

  16. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    2001-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L' Air Liquide in the form of a NET contract. (author)

  17. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    1999-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L'Air Liquide in the form of a NET contract. (author)

  18. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  19. First results with prototype ISIS devices for ILC vertex detector

    International Nuclear Information System (INIS)

    Damerell, C.; Zhang, Z.; Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A.; Holland, A.; Seabroke, G.; Havranek, M.; Stefanov, K.; Kar-Roy, A.; Bell, R.; Burt, D.; Pool, P.

    2010-01-01

    The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 μm square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 μm imaging CMOS process, instead of a conventional CCD process.

  20. First results with prototype ISIS devices for ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C., E-mail: c.damerell@rl.ac.u [RAL, Oxon OX11 0QX (United Kingdom); Zhang, Z. [RAL, Oxon OX11 0QX (United Kingdom); Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A. [Oxford U (United Kingdom); Holland, A.; Seabroke, G. [Centre for Electronic Imaging, Open U (United Kingdom); Havranek, M. [Czech Technical University in Prague (Czech Republic); Stefanov, K. [Sentec Ltd, Cambridge (United Kingdom); Kar-Roy, A. [Jazz Semiconductors, California (United States); Bell, R.; Burt, D.; Pool, P. [e2V Technologies, Chelmsford (United Kingdom)

    2010-12-11

    The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 {mu}m square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 {mu}m imaging CMOS process, instead of a conventional CCD process.

  1. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  2. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  3. Silicon Tracker Design for the ILC

    International Nuclear Information System (INIS)

    Nelson, T.; SLAC

    2005-01-01

    The task of tracking charged particles in energy frontier collider experiments has been largely taken over by solid-state detectors. While silicon microstrip trackers offer many advantages in this environment, large silicon trackers are generally much more massive than their gaseous counterparts. Because of the properties of the machine itself, much of the material that comprises a typical silicon microstrip tracker can be eliminated from a design for the ILC. This realization is the inspiration for a tracker design using lightweight, short, mass-producible modules to tile closed, nested cylinders with silicon microstrips. This design relies upon a few key technologies to provide excellent performance with low cost and complexity. The details of this concept are discussed, along with the performance and status of the design effort

  4. 40 CFR 792.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas... waste and refuse or for safe sanitary storage of waste before removal from the testing facility...

  5. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  6. Polarized positrons for the ILC. Update on simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, A.; Adeyemi, O.S.; Moortgat-Pick, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Staufenbiel, F.; Riemann, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-02-15

    To achieve the extremely high luminosity for colliding electron-positron beams at the future International Linear Collider [1] (ILC) an undulator-based source with about 230 meters helical undulator and a thin titanium-alloy target rim rotated with tangential velocity of about 100 meters per second are foreseen. The very high density of heat deposited in the target has to be analyzed carefully. The energy deposited by the photon beam in the target has been calculated in FLUKA. The resulting stress in the target material after one bunch train has been simulated in ANSYS. (orig.)

  7. The ILC P2 Marx and Application of the Marx Topology to Future Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Hugyik, J.; Larsen, R.; Macken, K.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2011-08-19

    The SLAC P2 Marx is under development as the linac klystron modulator for the ILC. This modulator builds upon the success of the P1 Marx, which is currently undergoing lifetime evaluation. While the SLAC P2 Marx's (henceforth, 'P2 Marx') target application is the ILC, characteristics of the Marx topology make it equally well-suited for operation at different parameter ranges; for example, increased pulse repetition frequency, increased output current, longer pulse width, etc. Marx parameters such as the number of cells, cell capacitance, and component selection can be optimized for the application. This paper provides an overview of the P2 Marx development. In addition, the scalability of the Marx topology to other long-pulse parameter ranges is discussed.

  8. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... housed, facilities shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage of waste before removal from the testing facility. Disposal facilities shall be so...

  9. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  10. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-03-31

    The case of axisymmetric ILC-type cavities with titanium helium vessels is investigated. A first-order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  11. Measuring hadronic jets at the ILC. From particle flow calorimetry to the Higgs self-coupling

    International Nuclear Information System (INIS)

    Hermberg, Benjamin

    2015-10-01

    This work deals with the development of a technical prototype of a highly segmented hadron calorimeter for precision measurements at the future International Linear Collider (ILC). The precision measurements at the ILC pose special challenges for both the detector technology as well as for the reconstruction methods. In this thesis two aspects to hadronic final states are examined. The first part deals with a prototype of a highly segmented hadronic calorimeter and the second part with kinematic Fits for the determination of the Higgs self-coupling in decays of the Higgs boson into b quarks. The challenge for the examined prototype of the hadronic calorimeter is the demonstration of the technical feasibility of a real detector. The ILC is pursuing the Particle Flow concept, as a consequence, it follows for the calorimeter a high granularity and an integrated readout electronics. Two important aspects of the calorimeter prototype are the channel-wise adjustable trigger threshold and the power-pulsing functionality to minimize the power consumption. In this work it could be shown that with the current readout chip generation, the use of the channel-wise threshold adjustment leads to a shift of the global trigger threshold. Despite of the functionality of the power pulsing, the total current consumption is 30 times above the desired power consumption of 25 μW/channel. In the data of a test beam campaign at CERN 2012 the pedestal was determined, the stability analyzed and specific features of the pedestal identified. In order to achieve the accuracy for the measurement of the Higgs self-coupling, this work examines the applicability of kinematic fits within the framework of the Higgs self-coupling analysis. Basis of the analysis is the lepton channel ZHH→l anti lb anti bb anti b.It could be shown that the use of kinematic fits improves the mass resolution, thus the uncertainty of the cross section is reduced by 18%. The use of a modified fit processor improves the

  12. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  13. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  14. International Linear Collider Reference Design Report Volume 2: Physics at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; /SLAC /Tokyo U. /Victoria U. /Beijing, Inst. High Energy Phys. /Tel Aviv U. /Birmingham U. /Annecy, LAPP /Minsk, High Energy Phys. Ctr. /DESY /Royal Holloway, U. of London /CERN /Pusan Natl. U. /KEK, Tsukuba /Orsay, LAL /Notre Dame U. /Frascati /Cornell U., Phys. Dept. /Oxford U. /Hefei, CUST /Bangalore, Indian Inst. Sci. /Fermilab

    2011-11-14

    account for all of the dark matter, or only part of it? What do their properties tell us about the evolution of the universe? How is dark matter connected to new principles or forces of nature? A third cluster of scientific opportunities for the ILC focus on Einstein's vision of an ultimate unified theory. Particle physics data already suggests that three of the fundamental forces originated from a single 'grand' unified force in the first instant of the Big Bang. Experiments at the ILC could test this idea and look for evidence of a related unified origin of matter involving supersymmetry. A theoretical framework called string theory goes beyond grand unification to include gravity, extra spatial dimensions, and new fundamental entities called superstrings. Theoretical models to explain the properties of neutrinos, and account for the mysterious dominance of matter over antimatter, also posit unification at high energies.

  15. International Linear Collider Reference Design Report. Volume 2: Physics at the ILC

    International Nuclear Information System (INIS)

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya

    2011-01-01

    all of the dark matter, or only part of it? What do their properties tell us about the evolution of the universe? How is dark matter connected to new principles or forces of nature? A third cluster of scientific opportunities for the ILC focus on Einstein's vision of an ultimate unified theory. Particle physics data already suggests that three of the fundamental forces originated from a single 'grand' unified force in the first instant of the Big Bang. Experiments at the ILC could test this idea and look for evidence of a related unified origin of matter involving supersymmetry. A theoretical framework called string theory goes beyond grand unification to include gravity, extra spatial dimensions, and new fundamental entities called superstrings. Theoretical models to explain the properties of neutrinos, and account for the mysterious dominance of matter over antimatter, also posit unification at high energies.

  16. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  17. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  18. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  19. Study of an ILC Main Linac that Follows the Earth Curvature

    CERN Document Server

    Eliasson, P; Poirier, F; Schulte, Daniel; Walker, N

    2006-01-01

    In the base line configuration, the tunnel of the ILC will follow the earth curvature. The emittance growth in a curved main linac has been studied including static and dynamic imperfections. These include effects due to current ripples in the power supplies of the steering coils and the impact of the beam position monitors scale errors.

  20. Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions

    Science.gov (United States)

    Telnov, V. I.

    2018-03-01

    At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.

  1. HOM/LOM Coupler Study for the ILC Crab Cavity

    International Nuclear Information System (INIS)

    Xiao, L.; Li, Z.; Ko, K.

    2007-01-01

    The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM experiment was chosen as the baseline design for the ILC BDS crab cavity. The full 9-cell CKM cavity including the coupler end-groups was simulated using the parallel eigensolver Omega3P and scattering parameter solver S3P. It was found that both the notch filters for the HOM/LOM couplers are very sensitive to the notch gap, which is about 1.6MHz/micron and is more than 10 times more sensitive than the TTF cavity. It was also found in the simulation that the unwanted vertical π-mode (SOM) is strongly coupled to the horizontal 7π/9 mode which causes x-y coupling and reduces the effectiveness of the SOM damping. To meet the ILC requirements, the HOM/LOM couplers are redesigned to address these issues. With the new designs, the damping of the HOM/LOM modes is improved. The sensitivity of the notch filter for the HOM coupler is reduced by one order of magnitude. The notch filter for the LOM coupler is eliminated in the new design which significantly simplifies the geometry. In this paper, we will present the simulation results of the original CKM cavity and the progresses on the HOM/LOM coupler re-design and optimization

  2. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  3. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  4. Simulations of the Electron Cloud Build Up and Instabilities for Various ILC Damping Ring Configurations

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Wang, Lanfa; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej

    2007-01-01

    In the beam pipe of the positron damping ring of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gases and then increased by the secondary emission process. This paper reports the assessment of electron cloud effects in a number of configuration options for the ILC baseline configuration. Careful estimates were made of the secondary electron yield (sometimes in the literature also referred as secondary emission yield SEY or (delta), with a peak value (delta) max ) threshold for electron cloud build-up, and the related single- and coupled-bunch instabilities, as a function of beam current and surface properties for a variety of optics designs. When the configuration for the ILC damping rings was chosen at the end of 2005, the results from these studies were important considerations. On the basis of the joint theoretical and experimental work, the baseline configuration currently specifies a pair of 6 km damping rings for the positron beam, to mitigate the effects of the electron cloud that could present difficulties in a single 6 km ring. However, since mitigation techniques are now estimated to be sufficiently mature, a reduced single 6-km circumference is presently under consideration so as to reduce costs

  5. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  6. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  7. Probing Higgs-radion mixing in warped models through complementary searches at the LHC and the ILC

    Science.gov (United States)

    Frank, Mariana; Huitu, Katri; Maitra, Ushoshi; Patra, Monalisa

    2016-09-01

    We consider the Higgs-radion mixing in the context of warped space extradimensional models with custodial symmetry and investigate the prospects of detecting the mixed radion. Custodial symmetries allow the Kaluza-Klein excitations to be lighter and protect Z b b ¯ to be in agreement with experimental constraints. We perform a complementary study of discovery reaches of the Higgs-radion mixed state at the 13 and 14 TeV LHC and at the 500 and 1000 GeV International Linear Collider (ILC). We carry out a comprehensive analysis of the most significant production and decay modes of the mixed radion in the 80 GeV-1 TeV mass range and indicate the parameter space that can be probed at the LHC and the ILC. There exists a region of the parameter space which can be probed, at the LHC, through the diphoton channel even for a relatively low luminosity of 50 fb-1 . The reach of the four-lepton final state in probing the parameter space is also studied in the context of 14 TeV LHC, for a luminosity of 1000 fb-1 . At the ILC, with an integrated luminosity of 500 fb-1 , we analyze the Z -radion associated production and the W W fusion production, followed by the radion decay into b b ¯ and W+W-. The W W fusion production is favored over the Z -radion associated channel in probing regions of the parameter space beyond the LHC reach. The complementary study at the LHC and the ILC is useful both for the discovery of the radion and the understanding of its mixing sector.

  8. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  9. DOE LeRC photovoltaic systems test facility

    Science.gov (United States)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  10. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  11. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  12. Forward instrumentation for ILC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, Halina [Tel Aviv Univ. (Israel); Abusleme, Angel [Stanford Univ., CA (United States); Afanaciev, Konstantin [NCPHEP, Minsk (BY)] (and others)

    2010-09-15

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10{sup -3} and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised. (orig.)

  13. Forward instrumentation for ILC detectors

    International Nuclear Information System (INIS)

    Abramowicz, Halina; Abusleme, Angel; Afanaciev, Konstantin

    2010-09-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10 -3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised. (orig.)

  14. Forward Instrumentation for ILC Detectors

    CERN Document Server

    Abramowicz, Halina; Afanaciev, Konstantin; Aguilar, Jonathan; Ambalathankandy, Prasoon; Bambade, Philip; Bergholz, Matthias; Bozovic-Jelisavcic, Ivanka; Castro, Elena; Chelkov, Georgy; Coca, Cornelia; Daniluk, Witold; Dragone, Angelo; Dumitru, Laurentiu; Elsener, Konrad; Emeliantchik, Igor; Fiutowski, Tomasz; Gostkin, Mikhail; Grah, Christian; Grzelak, Grzegorz; Haller, Gunter; Henschel, Hans; Ignatenko, Alexandr; Idzik, Marek; Ito, Kazutoshi; Jovin, Tatjana; Kielar, Eryk; Kotula, Jerzy; Krumstein, Zinovi; Kulis, Szymon; Lange, Wolfgang; Lohmann, Wolfgang; Levy, Aharon; Moszczynski, Arkadiusz; Nauenberg, Uriel; Novgorodova, Olga; Ohlerich, Marin; Orlandea, Marius; Oleinik, Gleb; Oliwa, Krzysztof; Olshevski, Alexander; Pandurovic, Mila; Pawlik, Bogdan; Przyborowski, Dominik; Sato, Yutaro; Sadeh, Iftach; Sailer, Andre; Schmidt, Ringo; Schumm, Bruce; Schuwalow, Sergey; Smiljanic, Ivan; Swientek, Krzysztof; Takubo, Yosuke; Teodorescu, Eliza; Wierba, Wojciech; Yamamoto, Hitoshi; Zawiejski, Leszek; Zhang, Jinlong

    2010-01-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10-3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.

  15. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  16. Correction of beam-beam effects in luminosity measurement at ILC

    CERN Document Server

    Lukic, S

    2015-01-01

    Three methods for handling beam-beam effects in luminosity measurement at ILC are tested and evaluated in this work. The first method represents an optimization of the LEPtype asymmetric selection cuts that reduce the counting biases. The second method uses the experimentally reconstructed shape of the √ s ′ spectrum to determine the Beamstrahlung component of the bias. The last, recently proposed, collision-frame method relies on the reconstruction of the collision-frame velocity to define the selection function in the collision frame both in experiment and in theory. Thus the luminosity expression is insensitive to the difference between the CM frame of the collision and the lab frame. The collision-frame method is independent of the knowledge of the beam parameters, and it allows an accurate reconstruction of the luminosity spectrum above 80% of the nominal CM energy. However, it gives no precise infromation about luminosity below 80% of the nominal CM energy. The compatibility of diverse selection cut...

  17. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  18. Impact of calibration errors on CMB component separation using FastICA and ILC

    Science.gov (United States)

    Dick, Jason; Remazeilles, Mathieu; Delabrouille, Jacques

    2010-01-01

    The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic cosmic microwave background (CMB) radiation, as performed by the Wilkinson Microwave Anisotropy Probe satellite and the more recent Planck mission, launched on 2009 May 14 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the CMB from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components) and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors (less than 1 per cent) with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise ratio regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.

  19. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  20. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  1. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  2. 33-GVA interrupter test facility

    International Nuclear Information System (INIS)

    Parsons, W.M.; Honig, E.M.; Warren, R.W.

    1979-01-01

    The use of commercial ac circuit breakers for dc switching operations requires that they be evaluated to determine their dc limitations. Two 2.4-GVA facilities have been constructed and used for this purpose at LASL during the last several years. In response to the increased demand on switching technology, a 33-GVA facility has been constructed. Novel features incorporated into this facility include (1) separate capacitive and cryogenic inductive energy storage systems, (2) fiber-optic controls and optically-coupled data links, and (3) digital data acquisition systems. Facility details and planned tests on an experimental rod-array vacuum interrupter are presented

  3. A facility for accelerator research and education at Fermilab

    International Nuclear Information System (INIS)

    Church, Mike; Nagaitsev, Sergei

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  4. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  5. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  6. Buffet test in the National Transonic Facility

    Science.gov (United States)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  7. E-4 Test Facility Design Status

    Science.gov (United States)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  8. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  9. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  10. The PANDA facility and first test results

    International Nuclear Information System (INIS)

    Dreier, J.; Huggenberger, M.; Aubert, C.; Bandurski, T.; Fischer, O.; Healzer, J.; Lomperski, S.; Strassberger, H.J.; Varadi, G.; Yadigaroglu, G.

    1996-01-01

    The PANDA test facility at the Paul Scherrer Institute is used to study the long-term performance of the Simplified Boiling Water Reactor's passive containment cooling system. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensable gases in the system. The facility is in 1:1 vertical scale and 1:25 scale for volume, power etc. Extensive facility characterization tests and steady-state passive containment condenser performance tests are presented. The results of the base case test of a series of transient system behaviour tests are reviewed. The first PANDA tests exhibited reproducibility, and indicated that the Simplified Boiling Water Reactor's containment is likely to be favorably responsive and highly robust to changes in the thermal transport patterns. (orig.) [de

  11. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  12. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  13. Development of turbopump cavitation performance test facility and the test of inducer performance

    International Nuclear Information System (INIS)

    Sohn, Dong Kee; Kim, Chun Tak; Yoon, Min Soo; Cha, Bong Jun; Kim, Jin Han; Yang, Soo Seok

    2001-01-01

    A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar, rotational speed - 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification

  14. Directory of transport packaging test facilities

    International Nuclear Information System (INIS)

    1983-08-01

    Radioactive materials are transported in packagings or containers which have to withstand certain tests depending on whether they are Type A or Type B packagings. In answer to a request by the International Atomic Energy Agency, 13 Member States have provided information on the test facilities and services existing in their country which can be made available for use by other states by arrangement for testing different kinds of packagings. The directory gives the technical information on the facilities, the services, the tests that can be done and in some cases even the financial arrangement is included

  15. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  16. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  17. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  18. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  19. ORNL 150 keV neutral beam test facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Kim, J.; Menon, M.M.; Schilling, G.

    1977-01-01

    The 150 keV neutral beam test facility provides for the testing and development of neutral beam injectors and beam systems of the class that will be needed for the Tokamak Fusion Test Reactor (TFTR) and The Next Step (TNS). The test facility can simulate a complete beam line injection system and can provide a wide range of experimental operating conditions. Herein is offered a general description of the facility's capabilities and a discussion of present system performance

  20. The Higgs-strahlung and double Higgs-strahlung production in the left-right twin Higgs model at the ILC

    International Nuclear Information System (INIS)

    Yao-Bei, Liu; Hong-Mei, Han; Xue-Lei, Wang

    2008-01-01

    The Higgs-strahlung process e + e - → ZH and the double Higgs-strahlung process e + e - → ZHH are very important for studying Higgs boson properties and the Higgs self-coupling in the high-energy e + e - collider (ILC). We calculate the contributions of the left-right twin Higgs (LRTH) model to these processes and find that, in the favorable parameter spaces, the LRTH model can generate significant corrections to the production cross-section of these processes. We expect that the possible signals of the LRTH model can be detected via these processes in the future ILC experiments. (authors)

  1. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    Storz, R.

    1980-10-01

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  2. Optimization of Helium Vessel Design for ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fratangelo, Enrico [Univ. of Pisa (Italy)

    2009-01-01

    The ILC (International Linear Collider) is a proposed new major particle accelerator. It consists of two 20 km long linear accelerators colliding electrons and positrons at an energy exceeding 500 GeV, Achieving this collision energy while keeping reasonable accelerator dimensions requires the use of high electric field superconducting cavities as the main acceleration element. These cavities are operated at l.3 GHz inside an appropriate container (He vessel) at temperatures as low as 1.4 K using superfluid Helium as the refrigerating medium. The purpose of this thesis, in the context of the ILC R&D activities currently in progress at Fermilab (Fermi National Accelerator Laboratory), is the mechanical study of an ILC superconducting cavity and Helium vessel prototype. The main goals of these studies are the determination of the limiting working conditions of the whole He vessel assembly, the simulation of the manufacturing process of the cavity end-caps and the assessment of the Helium vessel's efficiency. In addition this thesis studies the requirements to certify the compliance with the ASME Code of the whole cavity/vessel assembly. Several Finite Elements Analyses were performed by the candidate himself in order to perform the studies listed above and described in detail in Chapters 4 through 8. ln particular the candidate has developed an improved procedure to obtain more accurate results with lower computational times. These procedures will be accurately described in the following chapters. After an introduction that briefly describes the Fennilab and in particular the Technical Division (where all the activities concerning with this thesis were developed), the first part of this thesis (Chapters 2 and 3) explains some of the main aspects of modem particle accelerators. Moreover it describes the most important particle accelerators working at the moment and the basic features of the ILC project. Chapter 4 describes all the activities that were done to

  3. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  4. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  5. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  6. The high-temperature helium test facility (HHV)

    International Nuclear Information System (INIS)

    Noack, G.; Weiskopf, H.

    1977-03-01

    The report describes the high-temperature helium test facility (HHV). Construction of this plant was started in 1972 by Messrs. BBC, Mannheim, on behalf of the Kernforschungsanlage Juelich. By the end of 1976, the construction work is in its last stage, so that the plant may start operation early in 1977. First of all, the cycle system and the arrangement of components are dealt with, followed by a discussion of individual components. Here, emphasis is laid on components typical for HHT systems, while conventional components are mentioned without further structural detail. The projected test programme for the HHV facility in phase IB of the HHT project is shortly dealt with. After this, the potential of this test facility with regard to the possible use of test components and to fluid- and thermodynamic boundary conditions is pointed out. With the unique potential the facility offers here, aspects of shortened service life at higher cycle temperatures do not remain disregarded. (orig./UA) [de

  7. Large coil test facility

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system

  8. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  9. Is There a Role for Oncotype Dx Testing in Invasive Lobular Carcinoma?

    Science.gov (United States)

    Conlon, Niamh; Ross, Dara S; Howard, Jane; Catalano, Jeffrey P; Dickler, Maura N; Tan, Lee K

    2015-01-01

    Oncotype Dx Breast Cancer Assay is a 21-gene assay used in estrogen receptor (ER)-positive breast cancer to predict benefit from chemotherapy (CT). Tumors are placed into one of three risk categories based on their recurrence score (RS). This paper explores the impact of tumor histopathologic features and Oncotype Dx RS on the treatment plan for invasive lobular carcinoma (ILC). Invasive lobular carcinoma cases submitted for Oncotype Dx testing were identified from a clinical data base. The histopathologic and immunohistochemical features and RS subcategory of each tumor, and treatment regimen and medical oncologic assessments of each patient were reviewed. A total of 135 cases of ILC had RS testing, which represented 15% of all ILC diagnosed at the institution over the time period. 80% of ILC was of the classical subtype and all tumors were ER positive and human epidermal growth factor receptor 2 (HER-2) negative by immunohistochemistry. Sixty three percent of cases were low risk (LR), 35.5% were intermediate risk (IR) and 1.5% were high risk (HR). Both HR cases were pleomorphic ILC. Sixty eight percent of classical ILC had a LR score, while 70% of pleomorphic ILC had an IR score. Patients in the IR category were significantly more likely to undergo CT than patients in the LR category (54% versus 18%; p < 0.0001). In the LR category, those undergoing CT were significantly younger and more likely to have positive lymph nodes (p < 0.05). Qualitative analysis of medical oncologic assessments showed that RS played a role in decision-making on CT in 74% of cases overall. At our institution, Oncotype Dx RS currently plays a role in the management of a proportion of ILC and impacts on treatment decisions. © 2015 Wiley Periodicals, Inc.

  10. Qualification test for ITER HCCR-TBS mockups with high heat flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon, E-mail: skkim93@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated. • A thermo-hydraulic analysis was performed using a high heat flux test facility by using electron beam. • The plan for qualification tests was developed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization. - Abstract: The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated, and an integrity and thermo-hydraulic performance test should be completed under the same or similar operation conditions of ITER. The test plan for a thermo-hydraulic analysis was developed by using a high heat flux test facility, called the Korean heat load test facility by using electron beam (KoHLT-EB). This facility is utilized for a qualification test of the plasma facing component (PFC) for the ITER first wall and DEMO divertor, and for the thermo-hydraulic experiments. In this work, KoHLT-EB will be used for the plan of the performance qualification test of the ITER HCCR-TBS mockups. This qualification tests should be performed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization (IO), which describe the specifications and qualifications of the heat flux test facility and test procedure for ITER PFC.

  11. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  12. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  13. Stored energy analysis in the scaled-down test facilities

    International Nuclear Information System (INIS)

    Deng, Chengcheng; Chang, Huajian; Qin, Benke; Wu, Qiao

    2016-01-01

    Highlights: • Three methods are developed to evaluate stored energy in the scaled-down test facilities. • The mechanism behind stored energy distortion in the test facilities is revealed. • The application of stored energy analysis is demonstrated for the ACME facility of China. - Abstract: In the scaled-down test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy release in the metal structures has an important influence on the accuracy and effectiveness of the experimental data. Three methods of stored energy analysis are developed, and the mechanism behind stored energy distortion in the test facilities is revealed. Moreover, the application of stored energy analysis is demonstrated for the ACME test facility newly built in China. The results show that the similarity requirements of three methods analyzing the stored energy release decrease gradually. The physical mechanism of stored energy release process can be characterized by the dimensionless numbers including Stanton number, Fourier number and Biot number. Under the premise of satisfying the overall similarity of natural circulation, the stored energy release process in the scale-down test facilities cannot maintain exact similarity. The results of the application of stored energy analysis illustrate that both the transient release process and integral total stored energy of the reactor pressure vessel wall of CAP1400 power plant can be well reproduced in the ACME test facility.

  14. Cold moderator test facilities working group

    International Nuclear Information System (INIS)

    Bauer, Guenter S.; Lucas, A. T.

    1997-09-01

    The working group meeting was chaired by Bauer and Lucas.Testing is a vital part of any cold source development project. This applies to specific physics concept verification, benchmarking in conjunction with computer modeling and engineering testing to confirm the functional viability of a proposed system. Irradiation testing of materials will always be needed to continuously extend a comprehensive and reliable information database. An ever increasing worldwide effort to enhance the performance of reactor and accelerator based neutron sources, coupled with the complexity and rising cost of building new generation facilities, gives a new dimension to cold source development and testing programs. A stronger focus is now being placed on the fine-tuning of cold source design to maximize its effectiveness in fully exploiting the facility. In this context, pulsed spallation neutron sources pose an extra challenge due to requirements regarding pulse width and shape which result from a large variety of different instrument concepts. The working group reviewed these requirements in terms of their consequences on the needs for testing equipment and compiled a list of existing and proposed facilities suitable to carry out the necessary development work.

  15. Air pollution control system testing at the DOE offgas components test facility

    International Nuclear Information System (INIS)

    Burns, D.B.; Speed, D.; VanPelt, W.; Burns, H.H.

    1997-01-01

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex

  16. FFTF [Fast Flux Test Facility] management

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1986-11-01

    Fuel Management at the Fast Flux Test Facility (FFTF) involves more than just the usual ex-core and in-core management of standard fuel and non-fuel components between storage locations and within the core since it is primarily an irradiation test facility. This mission involves testing an ever increasing variety of fueled and non-fueled experiments, each having unique requirements on the reactor core as well as having its own individual impact on the reload design. This paper describes the fuel management process used by the Westinghouse Hanford Company Core Engineering group that has led to the successful reload design of nine operating cycles and the irradiation of over 120 tests

  17. Construction of the two-phase critical flow test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-03-01

    The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility

  18. Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1978-01-01

    A large, new Mirror Fusion Test Facility is under construction at LLL. Begun in FY78 it will be completed at the end of FY78 at a cost of $94.2M. This facility gives the mirror program the flexibility to explore mirror confinement principles at a signficant scale and advances the technology of large reactor-like devices. The role of MFTF in the LLL program is described here

  19. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  20. Recommissioning the K-1600 seismic test facility

    International Nuclear Information System (INIS)

    Wynn, C.C.; Brewer, D.W.

    1991-01-01

    The Center for Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and gives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload biaxial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of the problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development

  1. UPTF test 21D counterpart test in the MIDAS test facility

    International Nuclear Information System (INIS)

    Yoon, B. C.; Ah, D. J.; Joo, I. C.; Kwon, T. S.; Park, W. M.; Song, C. H.

    2002-01-01

    This paper describes the experimental results of UPTF Test 21D counterpart tests in the downcomer during the late reflood phase of LBLOCA. The experiments have been performed in the MIDAS test facility using superheated steam and water. The test condition was determined,based on the test results of UPTF Test 21D, by applying the 'modified linear scaling method of 1/4.077 length scale. The tests of ECC direct bypass and void height are performed separately to estimate each phenomena quantitatively. The tests were carried out by varying the injection steam flow rate of intact cold legs widely to investigate the effect of steam flow rate on the direct bypass fraction and void height. In the tests, separate effect tests have been performed in cases of DVI-1,DVI- 2 and DVI-1 and 2 injections to see the direct bypass fraction according to the DVI nozzle combination. From the tests, we found that the fraction of direct ECC bypass and the void height observed in the MIDAS test facility reasonably well agree with those of UPTF test 21- D. It confirms that the applied 'modified linear scaling law' reproduces major thermal hydraulics phenomena in the downcomer during the LBLOCA reflood phase

  2. Engineered Barrier Test Facility status report, 1984

    International Nuclear Information System (INIS)

    Phillips, S.J.; Adams, M.R.; Gilbert, T.W.; Meinhardt, C.C.; Mitchell, R.M.; Waugh, W.J.

    1985-02-01

    This report provides a general summary of activities completed to date at the Hanford Engineered Barrier Test Facility. This facility is used to test and compare construction practices and performance of alternative designs of engineered barrier cover systems. These cover systems are being evaluated for potential use for isolation and confinement of buried waste disposal structures

  3. ITER primary cryopump test facility

    International Nuclear Information System (INIS)

    Petersohn, N.; Mack, A.; Boissin, J.C.; Murdoc, D.

    1998-01-01

    A cryopump as ITER primary vacuum pump is being developed at FZK under the European fusion technology programme. The ITER vacuum system comprises of 16 cryopumps operating in a cyclic mode which fulfills the vacuum requirements in all ITER operation modes. Prior to the construction of a prototype cryopump, the concept is tested on a reduced scale model pump. To test the model pump, the TIMO facility is being built at FZK in which the model pump operation under ITER environmental conditions, except for tritium exposure, neutron irradiation and magnetic fields, can be simulated. The TIMO facility mainly consists of a test vessel for ITER divertor duct simulation, a 600 W refrigerator system supplying helium in the 5 K stage and a 30 kW helium supply system for the 80 K stage. The model pump test programme will be performed with regard to the pumping performance and cryogenic operation of the pump. The results of the model pump testing will lead to the design of the full scale ITER cryopump. (orig.)

  4. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  5. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Kohrs, Robert

    2008-09-01

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  6. 10 CFR 26.125 - Licensee testing facility personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Licensee testing facility personnel. 26.125 Section 26.125 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.125... reports, if any; results of tests that establish employee competency for the position he or she holds...

  7. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  8. TOP 01-1-011B Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center

    Science.gov (United States)

    2017-12-12

    Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059 U.S. Army Yuma Proving Ground Yuma Test Center 301 C. Street Yuma, AZ...22 2.6 Munson Test Area (MTA) ..................................................... 24 2.7 Land Vehicle Maintenance Facility...127 3.6 Maintenance Facilities ........................................................... 143

  9. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  10. Reservatsioonide lubatavus ning reservatsioonide vastuväidete õiguslik mõju ILC uurimistöö valguses : [bakalaureusetöö] / Marja-Liisa Laatsit ; Tartu Ülikool, õigusteaduskond ; juhendaja: Lauri Mälksoo

    Index Scriptorium Estoniae

    Laatsit, Marja-Liisa

    2009-01-01

    ILC = International Law Commission. - Reservatsioonidest tänases teoorias ja praktikas, vastuväidetest reservatsioonide tegemisele, reservatsioonide lubatavusest ja nende õiguslikust mõjust (ILC eriraportöör Pellet̀ettepanekutest, NATO SOFA lepingust)

  11. Stored energy analysis in scale-down test facility

    International Nuclear Information System (INIS)

    Deng Chengcheng; Qin Benke; Fang Fangfang; Chang Huajian; Ye Zishen

    2013-01-01

    In the integral test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy in the metal components has a direct influence on the simulation range and the test results of the facilities. Based on the heat transfer theory, three methods analyzing the stored energy were developed, and a thorough study on the stored energy problem in the scale-down test facilities was further carried out. The lumped parameter method and power integration method were applied to analyze the transient process of energy releasing and to evaluate the average total energy stored in the reactor pressure vessel of the ACME (advanced core-cooling mechanism experiment) facility, which is now being built in China. The results show that the similarity requirements for such three methods to analyze the stored energy in the test facilities are reduced gradually. Under the condition of satisfying the integral similarity of natural circulation, the stored energy releasing process in the scale-down test facilities can't maintain exact similarity. The stored energy in the reactor pressure vessel wall of ACME, which is released quickly during the early stage of rapid depressurization of system, will not make a major impact on the long-term behavior of system. And the scaling distortion of integral average total energy of the stored heat is acceptable. (authors)

  12. Remote-handling demonstration tests for the Fusion Materials Irradiation Test (FMIT) Facility

    International Nuclear Information System (INIS)

    Shen, E.J.; Hussey, M.W.; Kelly, V.P.; Yount, J.A.

    1982-01-01

    The mission of the Fusion Materials Irradiation Test (FMIT) Facility is to create a fusion-like environment for fusion materials development. Crucial to the success of FMIT is the development and testing of remote handling systems required to handle materials specimens and maintenance of the facility. The use of full scale mock-ups for demonstration tests provides the means for proving these systems

  13. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  14. Calibration and use of filter test facility orifice plates

    Science.gov (United States)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  15. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  16. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  17. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  18. Emittance Correction in the 2006 ILC Bunch Compressor

    International Nuclear Information System (INIS)

    Tenenbaum, P.; SLAC

    2007-01-01

    A recent study [1] has indicated substantial potential emittance growth in the ILC bunch compressor due to quad misalignments, BPM misalignments, and pitches in the RF cavities. Table 1 summarizes several results from [1]. In this simulation, quad misalignments and cavity pitches are Gaussian distributed and are considered with respect to the nominal survey line; BPM misalignments are also Gaussian-distributed but are considered with respect to the quadrupole axis. It is assumed that the BPM offsets with respect to the quads are found in a previous quad-shunting BBA step which is not simulated. In this study we seek to repeat the studies documented above, and additionally to perform a study in which additional dispersion bumps are used to further reduce the projected emittance

  19. Utilization of the capsule out-pile test facilities(2000-2003)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M. S.; Oh, J. M.; Cho, Y. G. and others

    2003-06-01

    Two out-pile test facilities were installed and being utilized for the non-irradiation tests outside the HANARO. The names of the facilities are the irradiation equipment design verification test facilities and the one-channel flow test device. In these facilities, the performance test of all capsules manufactured before loading in the HANARO and the design verification test for newly developed capsules were performed. The tests in these facilities include loading/unloading, pressure drop, endurance and vibration test etc. of capsules. In the period 2000{approx}2003, the performance tests for 8 material capsules of 99M-01K{approx}02M-05U were carried out, and the design verification tests of creep and fuel capsules developed newly were performed. For development of the creep capsule, pressure drop measurement, operation test of heater, T/C, LVDT and stress loading test were performed. In the design stage of the fuel capsule, the endurance and vibration test besides the above mentioned tests were carried out for verification of the safe operation during irradiation test in the HANARO. And in-chimeny bracket and the capsule supporting system were fixed and the flow tubes and the handling tools were manufactured for use at the facilities.

  20. (abstract) Cryogenic Telescope Test Facility

    Science.gov (United States)

    Luchik, T. S.; Chave, R. G.; Nash, A. E.

    1995-01-01

    An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.

  1. Kauai Test Facility hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility's chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the open-quotes Main Complexclose quotes and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the open-quotes Main Complexclose quotes is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility's site boundary

  2. Automation of electromagnetic compatability (EMC) test facilities

    Science.gov (United States)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  3. Transfer of test samples and wastes between post-irradiation test facilities (FMF, AGF, MMF)

    International Nuclear Information System (INIS)

    Ishida, Yasukazu; Suzuki, Kazuhisa; Ebihara, Hikoe; Matsushima, Yasuyoshi; Kashiwabara, Hidechiyo

    1975-02-01

    Wide review is given on the problems associated with the transfer of test samples and wastes between post-irradiation test facilities, FMF (Fuel Monitoring Facility), AGF (Alpha Gamma Facility), and MMF (Material Monitoring Facility) at the Oarai Engineering Center, PNC. The test facilities are connected with the JOYO plant, an experimental fast reactor being constructed at Oarai. As introductory remarks, some special features of transferring irradiated materials are described. In the second part, problems on the management of nuclear materials and radio isotopes are described item by item. In the third part, the specific materials that are envisaged to be transported between JOYO and the test facilities are listed together with their geometrical shapes, dimensions, etc. In the fourth part, various routes and methods of transportation are explained with many block charts and figures. Brief explanation with lists and drawings is also given to transportation casks and vessels. Finally, some future problems are discussed, such as the prevention of diffusive contamination, ease of decontamination, and the identification of test samples. (Aoki, K.)

  4. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  5. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  6. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  7. HIV testing in nonhealthcare facilities among adolescent MSM.

    Science.gov (United States)

    Marano, Mariette R; Stein, Renee; Williams, Weston O; Wang, Guoshen; Xu, Songli; Uhl, Gary; Cheng, Qi; Rasberry, Catherine N

    2017-07-01

    To describe the extent to which Centers for Disease Control and Prevention (CDC)-funded HIV testing in nonhealthcare facilities reaches adolescent MSM, identifies new HIV infections, and links those newly diagnosed to medical care. We describe HIV testing, newly diagnosed positivity, and linkage to medical care for adolescent MSM who received a CDC-funded HIV test in a nonhealthcare facility in 2015. We assess outcomes by race/ethnicity, HIV-related risk behaviors, and US geographical region. Of the 703 890 CDC-funded HIV testing events conducted in nonhealthcare facilities in 2015, 6848 (0.9%) were provided to adolescent MSM aged 13-19 years. Among those tested, 1.8% were newly diagnosed with HIV, compared with 0.7% among total tests provided in nonhealthcare facilities regardless of age and sex. The odds of testing positive among black adolescent MSM were nearly four times that of white adolescent MSM in multivariable analysis (odds ratio = 3.97, P adolescent MSM newly diagnosed with HIV, 67% were linked to HIV medical care. Linkage was lower among black (59%) and Hispanic/Latino adolescent MSM (71%) compared with white adolescent MSM (88%). CDC-funded nonhealthcare facilities can reach and provide HIV tests to adolescent MSM and identify new HIV infections; however, given the low rate of HIV testing overall and high engagement in HIV-related risk behaviors, there are opportunities to increase access to HIV testing and linkage to care for HIV-positive adolescent MSM. Efforts are needed to identify and address the barriers that prevent black and Hispanic/Latino adolescent MSM from being linked to HIV medical care in a timely manner.

  8. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  9. Fast Flux Test Facility (FFTF) maintenance provisions

    International Nuclear Information System (INIS)

    Marshall, J.L.

    1981-05-01

    The Fast Flux Test Facility (FFTF) was designed with maintainability as a primary parameter, and facilities and provisions were designed into the plant to accommodate the maintenance function. This paper describes the FFTF and its systems. Special maintenance equipment and facilities for performing maintenance on radioactive components are discussed. Maintenance provisions designed into the plant to enhance maintainability are also described

  10. The global electroweak fit at NNLO and prospects for the LHC and ILC

    International Nuclear Information System (INIS)

    Baak, M.; Hoecker, A.; Cuth, J.; Schott, M.; Haller, J.; Kogler, R.; Moenig, K.; Stelzer, J.

    2014-01-01

    For a long time, global fits of the electroweak sector of the standard model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC) and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using the latest NNLO theoretical predictions and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and we examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons. (orig.)

  11. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  12. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  13. Technical bases for establishing a salt test facility

    International Nuclear Information System (INIS)

    1985-05-01

    The need for a testing facility in which radioactive materials may be used in an underground salt environment is explored. No such facility is currently available in salt deposits in the United States. A salt test facility (STF) would demonstrate the feasibility of safely storing radioactive waste in salt and would provide data needed to support the design, construction, licensing, and operation of a radioactive waste repository in salt. Nineteen issues that could affect long-term isolation of waste materials in a salt repository are identified from the most pertinent recent literature. The issues are assigned an overall priority and a priority relative to the activities of the STF. Individual tests recommended for performance in the STF to resolve the 19 issues are described and organized under three groups: waste package performance, repository design and operation, and site characterization and evaluation. The requirements for a salt test facility are given in the form of functional criteria, and the approach that will be used in the design, execution, interpretation, and reporting of tests is discussed

  14. Analysis on working pressure selection of ACME integral test facility

    International Nuclear Information System (INIS)

    Chen Lian; Chang Huajian; Li Yuquan; Ye Zishen; Qin Benke

    2011-01-01

    An integral effects test facility, advanced core cooling mechanism experiment facility (ACME) was designed to verify the performance of the passive safety system and validate its safety analysis codes of a pressurized water reactor power plant. Three test facilities for AP1000 design were introduced and review was given. The problems resulted from the different working pressures of its test facilities were analyzed. Then a detailed description was presented on the working pressure selection of ACME facility as well as its characteristics. And the approach of establishing desired testing initial condition was discussed. The selected 9.3 MPa working pressure covered almost all important passive safety system enables the ACME to simulate the LOCAs with the same pressure and property similitude as the prototype. It's expected that the ACME design would be an advanced core cooling integral test facility design. (authors)

  15. Design of a hydrogen test facility

    International Nuclear Information System (INIS)

    Morgan, M.J.; Beam, J.E.; Sehmbey, M.S.; Pais, M.R.; Chow, L.C.; Hahn, O.J.

    1992-01-01

    The Air Force has sponsored a program at the University of Kentucky which will lead to a better understanding of the thermal and fluid instabilities during blowdown of supercritical fluids at cryogenic temperatures. An integral part of that program is the design and construction of that hydrogen test facility. This facility will be capable of providing supercritical hydrogen at 30 bars and 35 K at a maximum flow rate of 0.1 kg/s for 90 seconds. Also presented here is an extension of this facility to accommodate the use of supercritical helium

  16. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  17. Establishment and operation of a photovoltaic cell test facility

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, N.M.; Forbes, I.

    1999-07-01

    This report describes the setting up of a test facility at the University of Northumbria. Details of the equipment specification and procurement are given, and the commissioning and initial operation of the facility, and the measurement procedures for I-V characteristics, spectral response measurements, optical scanning and test charges are outlined. The business plan for the test facility is discussed, and operating experience is reviewed in terms of publicity, services provided, and collaboration.

  18. TESLA Test Facility. Status

    International Nuclear Information System (INIS)

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  19. Precision natural SUSY at CEPC, FCC-ee, and ILC

    International Nuclear Information System (INIS)

    Fan, JiJi; Reece, Matthew; Wang, Lian-Tao

    2015-01-01

    Testing the idea of naturalness is and will continue to be one of the most important goals of high energy physics experiments. It will play a central role in the physics program of future colliders. In this paper, we present projections of the reach of natural SUSY at future lepton colliders: CEPC, FCC-ee and ILC. We focus on the observables which give the strongest reach, the electroweak precision observables (for left-handed stops), and Higgs to gluon and photon decay rates (for both left- and right-handed stops). There is a “blind spot” when the stop mixing parameter X t is approximately equal to the average stop mass. We argue that in natural scenarios, bounds on the heavy Higgs bosons from tree-level mixing effects that modify the hbb̄ coupling together with bounds from b→sγ play a complementary role in probing the blind spot region. For specific natural SUSY scenarios such as folded SUSY in which the top partners do not carry Standard Model color charges, electroweak precision observables could be the most sensitive probe. In all the scenarios discussed in this paper, the combined set of precision measurements will probe down to a few percent in fine-tuning.

  20. Overview of the IFMIF test facility design in IFMIF/EVEDA phase

    International Nuclear Information System (INIS)

    Tian, Kuo; Abou-Sena, Ali; Arbeiter, Frederik; García, Ángela; Gouat, Philippe; Heidinger, Roland; Heinzel, Volker; Ibarra, Ángel; Leysen, Willem; Mas, Avelino; Mittwollen, Martin; Möslang, Anton; Theile, Jürgen; Yamamoto, Michiyoshi; Yokomine, Takehiko

    2015-01-01

    Highlights: • This paper summarizes the current design status of IFMIF EVEDA test facility. • The principle functions of the test facility and key components are described. • The brief specifications of the systems and key components are addressed. - Abstract: The test facility (TF) is one of the three major facilities of the International Fusion Material Irradiation Facility (IFMIF). Engineering designs of TF main systems and key components have been initiated and developed in the IFMIF EVEDA (Engineering Validation and Engineering Design Activities) phase since 2007. The related work covers the designs of a test cell which is the meeting point of the TF and accelerator facility and lithium facility, a series of test modules for experiments under different irradiation conditions, an access cell to accommodate remote handling systems, four test module handling cells for test module processing and assembling, and test facility ancillary systems for engineering support on energy, media, and control infrastructure. This paper summarizes the principle functions, brief specifications, and the current design status of the above mentioned IFMIF TF systems and key components.

  1. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  2. Fast flux test facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  3. The NAF: National analysis facility at DESY

    International Nuclear Information System (INIS)

    Haupt, Andreas; Kemp, Yves

    2010-01-01

    Within the framework of a broad collaboration among German particle physicists, the strategic Helmholtz Alliance P hysics a the Terascale , an analysis facility has been set up at DESY. The facility is intended to provide the best possible analysis infrastructure for researches of the ATLAS, CMS, LHCb and ILC experiments and also for theory researchers. In a first part of the contribution, we will present the concept of the NAF and its place in the existing distributed grid landscape of the experiments. In a second part, the building blocks of the NAF will be detailed with an emphasis on technical implementations of some parts: - Usage of VOMS for separating grid resources between collaboration-wide and NAF-specific resources. - interactive and batch cluster and integration with PROOF. - usage of grid proxies to access work group servers and AFS. - the usage and operation of Lustre for fast data access. A special focus is the seamless integration of the facility into the two geographically separated DESY sites and its implications. In a third part, the experience of running the facility for one year will be reported.

  4. Successful start for new CLIC test facility

    CERN Document Server

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  5. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  6. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  7. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility

    International Nuclear Information System (INIS)

    Yang, Jun; Choi, Sung-Won; Lim, Jaehyok; Lee, Doo-Yong; Rassame, Somboon; Hibiki, Takashi; Ishii, Mamoru

    2013-01-01

    Highlights: ► Counterpart tests were performed on two large-scale BWR integral facilities. ► Similarity of post-LOCA system behaviors observed between two tests. ► Passive core and containment cooling systems work as design in both tests. -- Abstract: A counterpart test to the Passive Nachwärmeabfuhr und Druckabbau Test Anlage (Passive Decay Heat Removal and Depressurization Test Facility, PANDA) International Standard Problem (ISP)-42 test was conducted at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. Aimed to support code validation on a range of light water reactor (LWR) containment issues, the ISP-42 test consists of six sequential phases (Phases A–F) with separately defined initial and boundary conditions, addressing different stages of anticipated accident scenario and system responses. The counterpart test was performed from Phases A to D, which are within the scope of the normal integral tests performed on the PUMA facility. A scaling methodology was developed by using the PANDA facility as prototype and PUMA facility as test model, and an engineering scaling has been applied to the PUMA facility. The counterpart test results indicated that functions of passive safety systems, such as passive containment cooling system (PCCS) start-up, gravity-driven cooling system (GDCS) discharge, PCCS normal operation and overload function were confirmed in both the PANDA and PUMA facilities with qualitative similarities

  8. Test facility for the evaluation of microwave transmission components

    International Nuclear Information System (INIS)

    Fong, C.G.; Poole, B.R.

    1985-01-01

    A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE 01 , TE 02 , or TE 03 launched at power levels of 1/2 milliwatt. The propagation of the rf as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE 10 to circular TE 01 mode transducer, mode filter, circular TE 01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE 01 to TE 03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test

  9. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  10. Corrosion testing facilities in India

    International Nuclear Information System (INIS)

    Viswanathan, R.; Subramanian, Venu

    1981-01-01

    Major types of corrosion tests, establishment of specifications on corrosion testing and scope of their application in practice are briefly described. Important organizations in the world which publish specifications/standards are listed. Indian organizations which undertake corrosion testing and test facilities available at them are also listed. Finally in an appendix, a comprehensive list of specifications relevant to corrosion testing is given. It is arranged under the headings: environmental testing, humidity tests, salt spray/fog tests, immersion tests, specification corrosion phenomena, (tests) with respect to special corrosion media, (tests) with respect to specific corrosion prevention methods, and specific corrosion tests using electrical and electrochemical methods (principles). Each entry in the list furnishes information about: nature of the test, standard number, and its specific application. (M.G.B.)

  11. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    International Nuclear Information System (INIS)

    Paladino, D.; Dreier, J.

    2012-01-01

    The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries) worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  12. The short circumference damping ring design for the ILC

    CERN Document Server

    Korostelev, Maxim S; Kuriki, Masao; Kuroda, Shigeru; Naito, Takashi; Ross, Marc; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.

  13. Qualification tests and facilities for the ITER superconductors

    International Nuclear Information System (INIS)

    Bruzzone, P.; Wesche, R.; Stepanov, B.; Cau, F.; Bagnasco, M.; Calvi, M.; Herzog, R.; Vogel, M.

    2009-01-01

    All the ITER superconductors are tested as short length samples in the SULTAN test facility at CRPP. Twenty-four TF conductor samples with small layout variations were tested since February 2007 with the aim of verifying the design and qualification of the manufacturers. The sample assembly and the measurement techniques at CRPP are discussed. Starting in 2010, another test facility for ITER conductors, named EDIPO, will be operating at CRPP to share with SULTAN the load of the samples for the acceptance tests during the construction of ITER.

  14. Australian national networked tele-test facility for integrated systems

    Science.gov (United States)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  15. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  16. SULTAN test facility: Summary of recent results

    International Nuclear Information System (INIS)

    Stepanov, Boris; Bruzzone, Pierluigi; Sedlak, Kamil; Croari, Giancarlo

    2013-01-01

    The test campaigns of the ITER conductors in the SULTAN test facility re-started in December 2011 after three months break. The main focus of the activities is about the qualification tests of the Central Solenoid (CS) conductors, with three different samples for a total six variations of strand suppliers and cable layouts. In 2012, five Toroidal Field (TF) conductor samples have also been tested as part of the supplier and process qualification phase of the European, Korean, Chinese and Russian Federation Agencies. A summary of the test results for all the ITER samples tested in the last period is presented, including an updated statistics of the broad transition, the performance degradation and the impact of layout variations. The role of SULTAN test facility during the ITER construction is reviewed, and the load of work for the next three years is anticipated

  17. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  18. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  19. Higgs CP properties using the τ decay modes at the ILC

    OpenAIRE

    Berge, Stefan; Bernreuther, Werner; Spiesberger, Hubert

    2013-01-01

    We investigate the prospects of determining the CP nature of the 126 GeV neutral spin-0 (Higgs) boson h, discovered at the LHC, at a future linear e+e− collider (ILC). We consider the production of h by the Higgsstrahlung process e+e−→Z+h and its subsequent decays to τ leptons, h→τ−τ+. We investigate how precisely a possible pseudoscalar component of h can be detected by the measurement of a suitably defined angular distribution, if all major decay modes of the τ lepton are used. From our num...

  20. The TOPFLOW multi-purpose thermohydraulic test facility

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Kruessenberg, A.-K.; Weiss, F.-P.; Prasser, H.-M.

    2002-01-01

    The TOPFLOW (Transient Two Phase Flow Test Facility) multi-purpose thermohydraulic test facility is being built for studies of steady-state and transient flow phenomena in two-phase flows, and for the development and validation of the models contained in CFD (Computational Fluid Dynamics) codes. The facility is under construction at the Institute for Safety Research of the Rossendorf Research Center (FZR). It will be operated together with the Dresden Technical University and the Zittau/Goerlitz School for Technology, Economics and Social Studies within the framework of the Nuclear Technology Competence Preservation Program. TOPFLOW, with its test sections and its flexible concept, is available as an attractive facility also to users from all European countries. Experiments are planned in these fields, among others: - Transient two-phase flows in vertical and horizontal pipes and pipes of any inclination as well as in geometries typical of nuclear reactors (annulus, hot leg). - Boiling in large vessels and water pools (measurements of steam generation, 3D steam content distribution, turbulence, temperature stratification). - Test of passive components and safety systems. - Condensation in horizontal pipes in the absence and presence of non-condensable gases. The construction phase of TOPFLOW has been completed more or less on schedule. Experiments can be started after a commissioning phase in the 3rd quarter of 2002. (orig.) [de

  1. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    International Nuclear Information System (INIS)

    Hardy, J.E.; Hess, R.A.; Hylton, J.O.

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions

  2. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  3. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  4. SNS Target Test Facility for remote handling design and verification

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Graves, V.B.; Schrock, S.L.

    1998-01-01

    The Target Test Facility will be a full-scale prototype of the Spallation Neutron Source Target Station. It will be used to demonstrate remote handling operations on various components of the mercury flow loop and for thermal/hydraulic testing. This paper describes the remote handling aspects of the Target Test Facility. Since the facility will contain approximately 1 cubic meter of mercury for the thermal/hydraulic tests, an enclosure will also be constructed that matches the actual Target Test Cell

  5. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    International Nuclear Information System (INIS)

    Park, Nam Gyu; Kim, K. T.; Park, J. K.

    2006-12-01

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation

  6. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Gyu; Kim, K. T.; Park, J. K. [KNF, Daejeon (Korea, Republic of)] (and others)

    2006-12-15

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation.

  7. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  8. Development of a triple GEM readout module for a time projection chamber and measurement accuracies of hadronic Higgs branching fractions in ννH at a 350 GeV ILC

    International Nuclear Information System (INIS)

    Mueller, Felix

    2016-07-01

    The presented thesis addresses the development and evaluation of one of the detector concept for the International Linear Collider (ILC). The ILC is a planned, future electron-positron linear collider with a center-of-mass energy of up to 500 GeV in its first construction stage. The ILC is designed to perform precision measurements of the Standard Model, especially a model-independent reconstruction of the electroweak symmetry breaking sector. In 2012, the discovery of the Higgs boson at the LHC was an important first step and facilitates precision measurements of the Higgs boson coupling constants at the ILC. Challenging design goals have been defined for the ILC detectors in order to reach the desired measurement precisions. One of the two ILC detector concepts is the International Large Detector (ILD). A large Time Projection Chamber (TPC) is foreseen as the central tracking detector. In contrast to modern silicon tracking detectors, a TPC provides a large number of space points, and thus continuous sampling of the track parameters. Therefore, TPCs offer great pattern recognition capabilities including the identification of particle decays within the sensitive volume. The design momentum resolution of the ILD TPC is δ(1/p t )∼10 -4 GeV -1 which can be translated into a transverse spatial resolution of σ rφ ≤100 μm over the complete drift distance of 2.35 m. In the first part of the thesis, the development of a readout module for the TPC is presented which fulfills the performance requirements of the ILD TPC. The developed readout module is based on a stack of three ''Gas Electron Multiplier'' (GEM) foils and a pad readout. Thin ceramic grids are used as the support structure and spacers between the GEMs. The readout module was tested in a prototype TPC with a maximal drift distance of around 60 cm at the DESY II test beam. An additional guard ring at the upper edge of the module was introduced to minimize field distortions at the

  9. Development of a triple GEM readout module for a time projection chamber and measurement accuracies of hadronic Higgs branching fractions in ννH at a 350 GeV ILC

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix

    2016-07-15

    The presented thesis addresses the development and evaluation of one of the detector concept for the International Linear Collider (ILC). The ILC is a planned, future electron-positron linear collider with a center-of-mass energy of up to 500 GeV in its first construction stage. The ILC is designed to perform precision measurements of the Standard Model, especially a model-independent reconstruction of the electroweak symmetry breaking sector. In 2012, the discovery of the Higgs boson at the LHC was an important first step and facilitates precision measurements of the Higgs boson coupling constants at the ILC. Challenging design goals have been defined for the ILC detectors in order to reach the desired measurement precisions. One of the two ILC detector concepts is the International Large Detector (ILD). A large Time Projection Chamber (TPC) is foreseen as the central tracking detector. In contrast to modern silicon tracking detectors, a TPC provides a large number of space points, and thus continuous sampling of the track parameters. Therefore, TPCs offer great pattern recognition capabilities including the identification of particle decays within the sensitive volume. The design momentum resolution of the ILD TPC is δ(1/p{sub t})∼10{sup -4} GeV{sup -1} which can be translated into a transverse spatial resolution of σ{sub rφ}≤100 μm over the complete drift distance of 2.35 m. In the first part of the thesis, the development of a readout module for the TPC is presented which fulfills the performance requirements of the ILD TPC. The developed readout module is based on a stack of three ''Gas Electron Multiplier'' (GEM) foils and a pad readout. Thin ceramic grids are used as the support structure and spacers between the GEMs. The readout module was tested in a prototype TPC with a maximal drift distance of around 60 cm at the DESY II test beam. An additional guard ring at the upper edge of the module was introduced to minimize field

  10. The construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Kim, Joon Hyung; Lee, Byung Jik; Koo, Jun Mo; Kim, Jeong Guk; Jung, In Ha

    1990-03-01

    The solid waste form test facility (SWFTF) to test and/or evaluate the characteristics of waste forms, such as homogeniety, mechanical properties, thermal properties, waste resistance and leachability, have been constructed, and some equipments for testing actual waste forms has been purchased; radiocative monitoring system, glove box for the manipulator repair room, and uninteruppted power supply system, et al. Classifications of radioactive wastes, basic requirements and criteria to be considered during waste management were also reviewed. Some of the described items above have been standardized for the purpose of indigenigation. Therefore, safety assurance of waste forms, as well as increase in the range of participating of domestic companies in construction of further nuclear facilities could be obtained as results through constructing this facility. In the furture this facility is going to be utilized not only for the inspection of waste forms but also for the periodic decontamination for extending the life time of some expensive radiological equipments using remote handling techniques. (author)

  11. Fast Flux Test Facility fuel and test management: The first 10 years

    International Nuclear Information System (INIS)

    Bennett, R.A.; Bennett, C.L.; Campbell, L.R.; Dobbin, K.D.; Tang, E.L.

    1991-07-01

    Core design and fuel and test management have been performed efficiently at the Fast Flux Test Facility. No outages have been extended to adjust core loadings. Development of mixed oxide fuels for advanced liquid metal breeder reactors has been carried out successfully. In fact, the fuel performance is extraordinary. Failures have been so infrequent that further development and refinement of fuel requirements seem appropriate and could lead to a significant reduction in projected electrical busbar costs. The Fast Flux Test Facility is also involved in early metal fuel development tests and appears to be an ideal test bed for any further fuel development or refinement testing. 3 refs., 4 figs., 2 tabs

  12. RAMI strategies in the IFMIF Test Facilities design

    Energy Technology Data Exchange (ETDEWEB)

    Abal, Javier, E-mail: javier.abal@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Dies, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, José Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Bargalló, Enric [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Casal, Natalia; García, Ángela [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain)

    2013-10-15

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation.

  13. RAMI strategies in the IFMIF Test Facilities design

    International Nuclear Information System (INIS)

    Abal, Javier; Dies, Javier; Arroyo, José Manuel; Bargalló, Enric; Casal, Natalia; García, Ángela; Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo; Mollá, Joaquín; Ibarra, Ángel

    2013-01-01

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation

  14. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  15. National Ignition Facility TestController for automated and manual testing

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Jason, E-mail: fishler2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2012-12-15

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  16. National Ignition Facility TestController for automated and manual testing

    International Nuclear Information System (INIS)

    Zielinski, Jason

    2012-01-01

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  17. Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Kemp, E.L.; Trego, A.L.

    1979-01-01

    A Fusion Materials Irradiation Test Facility is being designed to be constructed at Hanford, Washington, The system is designed to produce about 10 15 n/cm-s in a volume of approx. 10 cc and 10 14 n/cm-s in a volume of 500 cc. The lithium and target systems are being developed and designed by HEDL while the 35-MeV, 100-mA cw accelerator is being designed by LASL. The accelerator components will be fabricated by US industry. The total estimated cost of the FMIT is $105 million. The facility is scheduled to begin operation in September 1984

  18. Project assembling and commissioning of a rewetting test facility

    International Nuclear Information System (INIS)

    Rezende, H.C.

    1985-08-01

    A test facility (ITR - Instalacao de Testes de Remolhamento) has been erected at the Thermal-hydraulics Laboratory of CDTN, dedicated to the investigation of the basic phenomena that can occur during the reflood phase of a Loss of Coolant Accident (LOCA) in a Pressurized Water Reactor (PWR), utilizing tubular and annular test sections. The present work consists in a presentation of the facility design and a report of its commissioning. The mechanical aspects of the facility, its power supply system and its instrumentation are described. The results of the instruments calibration and two operational tests are presented and a comparison is done with calculations perfomed usign a computer code. (Author) [pt

  19. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  20. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  1. THORS: a high-temperature sodium test facility rated at 2.0 MW

    International Nuclear Information System (INIS)

    Gnadt, P.A.; Anderson, A.H.; Clapp, N.E.; Montgomery, B.H.; Collins, C.W.; Stulting, R.D.

    1979-01-01

    The Thermal--Hydraulic Out-of-Reactor Safety (THORS) facility at Oak Ridge Naitonal Laboratory (ORNL) is a high-temperature sodium test facility operated for the United States Breeder Reactor Safety Program. The facility is primarily used for testing large simulated Liquid-Metal Fast Breeder Reactor (LMFBR) fuel subassemblies. The facility has recently been upgraded to provide a 2.0-MW test bundle power input and heat removal capability. A new test section, which will be capable of operating at 980 0 C and which will accommodate a 217-pin bundle, has also been added. A 61-pin bundle is currently under test in the facility. A description of the test facility is presented, along with a brief summary of the 8-year operating history of this safety-related test facility

  2. BWR Full Integral Simulation Test (FIST) program: facility description report

    International Nuclear Information System (INIS)

    Stephens, A.G.

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented

  3. 3D detector and electronics integration technologies: Applications to ILC, SLHC, and beyond

    International Nuclear Information System (INIS)

    Lipton, Ronald

    2011-01-01

    The application of vertically integrated (3D) electronics to particle physics has been explored by the our group for the past several years. We have successfully designed the first vertically integrated demonstrator chip for ILC vertex detection in the three-tier MIT-Lincoln Labs process. We have also studied sensor integration with electronics through oxide bonding and silicon-on-insulator technology. This paper will discuss the status of these studies and prospects for future work.

  4. 3D detector and electronics integration technologies: Applications to ILC, SLHC, and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Ronald, E-mail: lipton@fnal.gov [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    2011-04-21

    The application of vertically integrated (3D) electronics to particle physics has been explored by the our group for the past several years. We have successfully designed the first vertically integrated demonstrator chip for ILC vertex detection in the three-tier MIT-Lincoln Labs process. We have also studied sensor integration with electronics through oxide bonding and silicon-on-insulator technology. This paper will discuss the status of these studies and prospects for future work.

  5. Safety test facilities - status, needs, future directions

    International Nuclear Information System (INIS)

    Heusener, G.; Cogne, F.

    1979-08-01

    A survey is given of the in-pile programs which are presently or in the near future being performed in the DeBeNe-area and in France. Only those in-pile programs are considered which are dealing with severe accidents that might lead to disruption of major parts of the core. By comparing the needs with the goals of the present programs points are identified which are not sufficiently well covered up till now. The future procedure is described: the existing facilities will be used to the largest possible extent. Whenever it is necessary, upgrading and improvement will be foreseen. Studies of a Test Facility allowing the transient testing of large pin bundles should be continued. The construction of such a facility in Europe in the near future however seems premature

  6. RIA testing capability of the transient reactor test facility

    International Nuclear Information System (INIS)

    Crawford, D.C.; Swanson, R.W.

    1999-01-01

    The advent of high-burnup fuel implementation in LWRs has generated international interest in high-burnup LWR fuel performance. Recent testing under simulated RIA conditions has demonstrated that certain fuel designs fail at peak fuel enthalpy values that are below existing regulatory criteria. Because many of these tests were performed with non-prototypically aggressive test conditions (i.e., with power pulse widths less than 10 msec FWHM and with non-protoypic coolant configurations), the results (although very informative) do not indisputably identify failure thresholds and fuel behavior. The capability of the TREAT facility to perform simulated RIA tests with prototypic test conditions is currently being evaluated by ANL personnel. TREAT was designed to accommodate test loops and vehicles installed for in-pile transient testing. During 40 years of TREAT operation and fuel testing and evaluation, experimenters have been able to demonstrate and determine the transient behavior of several types of fuel under a variety of test conditions. This experience led to an evolution of test methodology and techniques which can be employed to assess RIA behavior of LWR fuel. A pressurized water loop that will accommodate RIA testing of LWR and CANDU-type fuel has completed conceptual design. Preliminary calculations of transient characteristics and energy deposition into test rods during hypothetical TREAT RIA tests indicate that with the installation of a pressurized water loop, the facility is quite capable of performing prototypic RIA testing. Typical test scenarios indicate that a simulated RIA with a 72 msec FWHM pulse width and energy deposition of 1200 kJ/kg (290 cal/gm) is possible. Further control system enhancements would expand the capability to pulse widths as narrow as 40 msec. (author)

  7. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  8. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  9. S.E.T., CSNI Separate Effects Test Facility Validation Matrix

    International Nuclear Information System (INIS)

    1997-01-01

    1 - Description of test facility: The SET matrix of experiments is suitable for the developmental assessment of thermal-hydraulics transient system computer codes by selecting individual tests from selected facilities, relevant to each phenomena. Test facilities differ from one another in geometrical dimensions, geometrical configuration and operating capabilities or conditions. Correlation between SET facility and phenomena were calculated on the basis of suitability for model validation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant and is sufficiently instrumented); limited suitability for model variation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant but has problems associated with imperfect scaling, different test fluids or insufficient instrumentation); and unsuitability for model validation. 2 - Description of test: Whereas integral experiments are usually designed to follow the behaviour of a reactor system in various off-normal or accident transients, separate effects tests focus on the behaviour of a single component, or on the characteristics of one thermal-hydraulic phenomenon. The construction of a separate effects test matrix is an attempt to collect together the best sets of openly available test data for code validation, assessment and improvement, from the wide range of experiments that have been carried out world-wide in the field of thermal hydraulics. In all, 2094 tests are included in the SET matrix

  10. Full scale BWR containment LOCA response test at the INKA test facility

    International Nuclear Information System (INIS)

    Wagner, Thomas; Leyer, Stephan

    2015-01-01

    KERENA is an innovative boiling water reactor concept with passive safety systems (Generation III+) of AREVA. The reactor is an evolutionary design of operating BWRs (Generation II). In order to verify the functionality and performance of the KERENA safety concept required for the transient and accident management, the test facility “Integral Teststand Karlstein” (INKA) was built at Karlstein (Germany). It is a mock-up of the KERENA boiling water reactor containment, with integrated pressure suppression system. The complete chain of passive safety components is available. The passive components and the levels are represented in full scale. The volume scaling of the containment compartments is approximately 1:24. The reactor pressure vessel (RPV) is simulated via the steam accumulator of the Karlstein Large Valve Test Facility. This vessel provides an energy storage capacity of approximately 1/6 of the KERENA RPV and is supplied by a Benson boiler with a thermal power of 22 MW. With respect to the available power supply, the containment- and system-sizing of the facility is by far the largest one of its kind worldwide. From 2009 to 2012, several single component tests were conducted (Emergency Condenser, Containment Cooling Condenser, Core Flooding System etc.). On March 21st, 2013, the worldwide first large-scale only passively managed integral accident test of a boiling water reactor was simulated at INKA. The integral test measured the combined response of the KERENA passive safety systems to the postulated initiating event was the “Main Steam Line Break” (MSLB) inside the Containment with decay heat simulation. The results of the performed integral test (MSLB) showed that the passive safety systems alone are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them as response to an anticipated accident scenario

  11. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  12. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  13. Light higgsinos at the ILC. Precision measurements and detector requirements

    International Nuclear Information System (INIS)

    Sert, Hale

    2016-01-01

    This thesis is based on a study of Natural Supersymmetry (SUSY) scenarios at the International Linear Collider (ILC). These scenarios are motivated by naturalness, which requires the mu parameter to be at the electroweak scale. The considered Natural SUSY scenario contains three light higgsino-like charginos and neutralinos, χ 1 ± , χ 1 0 and χ 2 0 with a mass splitting of a few GeV or even sub-GeV, while all other supersymmetric particles are heavy in the multi-TeV scale. Due to the small mass difference of a few GeV, the final state consists of a large missing energy and a few very soft visible particles. Therefore, the analysis of such scenarios is extremely challenging for the LHC as well as the ILC. In order to investigate the feasibility of observing light higgsinos at the ILC, an analysis has been performed using both fast detector simulation and full detector simulation for International Large Detector (ILD). The fast simulation results have indicated that the key observables of the higgsinos can be reconstructed with an uncertainty of a few percent. It has been shown that the results enable determining the lower limits and allowed regions for the mass parameters of the bino M 1 and the wino M 2 , as well as determining the higgsino mass parameter μ to the accuracy of a few percent. The full simulation analysis has provided information about detector requirements, such as the identification of low momentum electrons and muons. The electron identification can be studied by using the ionisation energy loss of the particles per length, dE/dx, which can be obtained from the Time Projection Chamber (TPC) of ILD. The identification of low momentum muons has been studied in the context of the thesis by using the calorimeter cluster shape differences between muons and pions. As a result, a method has been developed for particles with momentum lower than 2 GeV, and its impact on the higgsino analysis has been investigated. It has been found that assuming the

  14. Neutron generator instrumentation at the Department 2350 Neutron Generator Test Facility

    International Nuclear Information System (INIS)

    Bryant, T.C.; Mowrer, G.R.

    1979-06-01

    The computer and waveform digitizing capability at the test facility has allowed several changes in the techniques used to test neutron generators. These changes include methods used to calibrate the instrumentation and changes in the operation of the test facility. These changes have increased the efficiency of the test facility as well as increasing both timing and amplitude accuracy of neutron generator waveforms

  15. Searching for the doubly charged scalars in the Georgi-Machacek model via γγ collisions at the ILC

    Science.gov (United States)

    Cao, Jun; Li, Yu-Qi; Liu, Yao-Bei

    2018-04-01

    The Georgi-Machacek (GM) model predicts the existence of the doubly-charged scalars H5±±, which can be seen the typical particles in this model and their diboson decay channels are one of the most promising ways to discover such new doubly-charged scalars. Based on the constraints of the latest combined ATLAS and CMS Higgs boson diphoton signal strength data at 2σ confidence level, we focus on the study of the triple scalar production in γγ collisions at the future International Linear collider (ILC): γγ → hH5++H 5‑‑, where the production cross-sections are very sensitive to the triple scalar coupling parameter ghHH. Considering the typical same-sign diboson decay modes for the doubly-charged scalars, the possible final signals might be detected via this process at the future ILC experiments.

  16. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  17. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  18. Results from the CLIC Test Facility

    CERN Document Server

    Braun, H; Bossart, Rudolf; Chautard, F; Corsini, R; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Madsen, J H B; Rinolfi, Louis; Rossat, G; Schreiber, S; Suberlucq, Guy; Thorndahl, L; Wilson, Ian H; Wuensch, Walter

    1996-01-01

    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and acceleratin...

  19. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  20. ORNL facilities for testing first-wall components

    International Nuclear Information System (INIS)

    Tsai, C.C.; Becraft, W.R.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Menon, M.M.; Stirling, W.L.

    1985-01-01

    Future long-impulse magnetic fusion devices will have operating characteristics similar to those described in the design studies of the Tokamak Fusion Core Experiment (TFCX), the Fusion Engineering Device (FED), and the International Tokamak Reactor (INTOR). Their first-wall components (pumped limiters, divertor plates, and rf waveguide launchers with Faraday shields) will be subjected to intense bombardment by energetic particles exhausted from the plasma, including fusion products. These particles are expected to have particle energies of approx.100 eV, particle fluxes of approx.10 18 cm -2 .s -1 , and heat fluxes of approx.1 kW/cm 2 CW to approx.100 kW/cm 2 transient. No components are available to simultaneously handle these particle and heat fluxes, survive the resulting sputtering erosion, and remove exhaust gas without degrading plasma quality. Critical issues for research and development of first-wall components have been identified in the INTOR Activity. Test facilities are needed to qualify candidate materials and develop components. At Oak Ridge National Laboratory (ORNL), existing neutral beam and wave heating test facilities can be modified to simulate first-wall environments with heat fluxes up to 30 kW/cm 2 , particle fluxes of approx.10 18 cm -2 .s -1 , and pulse lengths up to 30 s, within test volumes up to approx.100 L. The characteristics of these test facilities are described, with particular attention to the areas of particle flux, heat flux, particle energy, pulse length, and duty cycle, and the potential applications of these facilities for first-wall component development are discussed

  1. Integrated Human Test Facilities at NASA and the Role of Human Engineering

    Science.gov (United States)

    Tri, Terry O.

    2002-01-01

    Integrated human test facilities are a key component of NASA's Advanced Life Support Program (ALSP). Over the past several years, the ALSP has been developing such facilities to serve as a large-scale advanced life support and habitability test bed capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. These facilities-targeted for evaluation of hypogravity compatible life support and habitability systems to be developed for use on planetary surfaces-are currently in the development stage at the Johnson Space Center. These major test facilities are comprised of a set of interconnected chambers with a sealed internal environment, which will be outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support and habitability functions. This presentation provides a description of the proposed test "missions" to be supported by these integrated human test facilities, the overall system architecture of the facilities, the current development status of the facilities, and the role that human design has played in the development of the facilities.

  2. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  3. Testing of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Halliwell, J.W.; Bradley, E.C.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has designed and tested the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system operates the cart under battery power by wireless control. The equipment includes cart-mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas. Testing was performed in several phases of development: (1) prototype equipment was built and tested during design, (2) board-level testing was then performed at ORNL during fabrication, and (3) system-level testing was then performed by ORNL at the fabrication subcontractor's facility for the completed cart system. These tests verified (1) the performance of the cart relative to design requirements and (2) operation of various built-in cart features. The final phase of testing is planned to be conducted during installation at the West Valley Vitrification Facility

  4. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  5. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  6. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  7. Multi-Bunch Simulations of the ILC for Luminosity Performance Studies

    CERN Document Server

    White, Glen; Walker, Nicholas J

    2005-01-01

    To study the luminosity performance of the International Linear Collider (ILC) with different design parameters, a simulation was constructed that tracks a multi-bunch representation of the beam from the Damping Ring extraction through to the Interaction Point. The simulation code PLACET is used to simulate the LINAC, MatMerlin is used to track through the Beam Delivery System and GUINEA-PIG for the beam-beam interaction. Included in the simulation are ground motion and wakefield effects, intra-train fast feedback and luminosity-based feedback systems. To efficiently study multiple parameters/multiple seeds, the simulation is deployed on the Queen Mary High-Throughput computing cluster at Queen Mary, University of London, where 100 simultaneous simulation seeds can be run.

  8. Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho

    1994-12-01

    The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new

  9. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  10. Beam polarization at the ILC. The physics impact and the accelerator solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, B. [Bonn Univ. (Germany). Phys. Inst.; Bailey, I. [Liverpool Univ. (United Kingdom). Cockcroft Inst.; Bartels, C. [DESY, Hamburg (Germany); DESY, Zeuthen (DE)] (and others)

    2009-03-15

    In this contribution accelerator solutions for polarized beams and their impact on physics measurements are discussed. Focus are physics requirements for precision polarimetry near the interaction point and their realization with polarized sources. Based on the ILC baseline programme as described in the Reference Design Report (RDR), recent developments are discussed and evaluated taking into account physics runs at beam energies between 100 GeV and 250 GeV, as well as calibration runs on the Z-pole and options as the 1 TeV upgrade and GigaZ. (orig.)

  11. Testing experience with fast flux test facility

    International Nuclear Information System (INIS)

    Noordhoff, B.H.; McGough, C.B.; Nolan, J.E.

    1975-01-01

    Early FFTF project planning emphasized partial and full-scale testing of major reactor and plant prototype components under expected environmental conditions, excluding radiation fields. Confirmation of component performance during FFTF service was considered essential before actual FFTF startup, to provide increased assurance against FFTF startup delays or operational difficulties and downtime. Several new sodium facilities were constructed, and confirmation tests on the prototype components are now in progress. Test conditions and results to date are reported for the primary pump, intermediate heat exchanger, sodium-to-air dump heat exchanger, large and small sodium valves, purification cold trap, in-vessel handling machine, instrument tree, core restraint, control rod system, low-level flux monitor, closed loop ex-vessel machine, refueling equipment, and selected maintenance equipment. The significance and contribution of these tests to the FFTF and Liquid Metal Fast Breeder Reactor (LMFBR) program are summarized. (U.S.)

  12. Scaling analysis for the OSU AP600 test facility (APEX)

    International Nuclear Information System (INIS)

    Reyes, J.N.

    1998-01-01

    In this paper, the authors summarize the key aspects of a state-of-the-art scaling analysis (Reyes et al. (1995)) performed to establish the facility design and test conditions for the advanced plant experiment (APEX) at Oregon State University (OSU). This scaling analysis represents the first, and most comprehensive, application of the hierarchical two-tiered scaling (H2TS) methodology (Zuber (1991)) in the design of an integral system test facility. The APEX test facility, designed and constructed on the basis of this scaling analysis, is the most accurate geometric representation of a Westinghouse AP600 nuclear steam supply system. The OSU APEX test facility has served to develop an essential component of the integral system database used to assess the AP600 thermal hydraulic safety analysis computer codes. (orig.)

  13. Facility-level association of preoperative stress testing and postoperative adverse cardiac events.

    Science.gov (United States)

    Valle, Javier A; Graham, Laura; Thiruvoipati, Thejasvi; Grunwald, Gary; Armstrong, Ehrin J; Maddox, Thomas M; Hawn, Mary T; Bradley, Steven M

    2018-06-22

    Despite limited indications, preoperative stress testing is often used prior to non-cardiac surgery. Patient-level analyses of stress testing and outcomes are limited by case mix and selection bias. Therefore, we sought to describe facility-level rates of preoperative stress testing for non-cardiac surgery, and to determine the association between facility-level preoperative stress testing and postoperative major adverse cardiac events (MACE). We identified patients undergoing non-cardiac surgery within 2 years of percutaneous coronary intervention in the Veterans Affairs (VA) Health Care System, from 2004 to 2011, facility-level rates of preoperative stress testing and postoperative MACE (death, myocardial infarction (MI) or revascularisation within 30 days). We determined risk-standardised facility-level rates of stress testing and postoperative MACE, and the relationship between facility-level preoperative stress testing and postoperative MACE. Among 29 937 patients undergoing non-cardiac surgery at 131 VA facilities, the median facility rate of preoperative stress testing was 13.2% (IQR 9.7%-15.9%; range 6.0%-21.5%), and 30-day postoperative MACE was 4.0% (IQR 2.4%-5.4%). After risk standardisation, the median facility-level rate of stress testing was 12.7% (IQR 8.4%-17.4%) and postoperative MACE was 3.8% (IQR 2.3%-5.6%). There was no correlation between risk-standardised stress testing and composite MACE at the facility level (r=0.022, p=0.81), or with individual outcomes of death, MI or revascularisation. In a national cohort of veterans undergoing non-cardiac surgery, we observed substantial variation in facility-level rates of preoperative stress testing. Facilities with higher rates of preoperative stress testing were not associated with better postoperative outcomes. These findings suggest an opportunity to reduce variation in preoperative stress testing without sacrificing patient outcomes. © Article author(s) (or their employer(s) unless otherwise

  14. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  15. Progress and Plans for R&D and the Conceptual Design of the ILC High Gradient Structures

    CERN Document Server

    Padamsee, Hasan

    2005-01-01

    Gradients and Q's in the dominant ILC candidate structure have shown steady improvement, reaching 35-40 MV/m in the last year by using the best techniques of electropolishing, high pressure rinsing and 120 C baking for 48 hours. Progress and plans for t his structure will be reviewed. Above 40 MV/m, the surface magnetic field encroaches the rf critical magnetic field, believed to fall between 1750 and 2000 Oe, depending on the theory. One way to circumvent the limit is to modify the cavity shape to reduc e the ratio of peak magnetic to accelerating field. Two candidate shapes are evolving, the Re-entrant shape and the Low-Loss shape. Although field emission is aggravated by higher electric fields, it does not present a brick wall limit because high pressu re rinsing at 100 bar eliminates microparticles which cause field emission. Fundamental and higher mode properties of these new shapes will be compared with the dominant ILC candidate. Results of single and multicell cavities will be presented. The record fi...

  16. Polarized Photocathode R&D for Future Linear Collliders

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F; Brachmann, A.; Maruyama, T.; Sheppard, J.C.; /SLAC

    2009-01-23

    It is a challenge to generate full charge electrons from the electron sources without compromising polarization for the proposed ILC and CLIC. It is essential to advance polarized photocathodes to meet the requirements. SLAC has worldwide unique dedicated test facilities, Cathode Test System and dc-Gun Test Laboratory, to fully characterize polarized photocathodes. Recent systematic measurements on a strained-well InAlGaAs/AlGaAs cathode at the facilities show that 87% polarization and 0.3% QE are achieved. The QE can be increased to {approx}1.0% with atomic hydrogen cleaning. The surface charge limit at a very low current intensity and the clear dependence of the polarization on the surface charge limit are observed for the first time. On-going programs to develop photocathodes for the ILC and CLIC are briefly introduced.

  17. Validity and Utilization of the Out-Pile Testing Facilities at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Kee-Nam; Cho, Man-Soon; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jun, Byung-Hyuk; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities and the capsule irradiation facilities for irradiation tests of nuclear materials, fuels and radioisotope products have been developed at HANARO. Among these irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. To support the national research and development programs on nuclear reactors and the nuclear fuel cycle technology in Korea, new irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users. The environmental conditions for these reactors are generally beyond present day reactor technology, especially regarding the higher neutron fluence and higher operating temperature. To effectively support the national R and Ds relevant to the future nuclear systems, the development of advanced irradiation technologies concerning higher neutron fluence and irradiation temperature are being preferentially developed at HANARO. The utilization of the out-pile testing facilities to satisfy the criteria of safety evaluation for a new device installed in the core of HANARO was summarized. In addition, the validity of the out-pile testing facilities was evaluated and proved to be effective for verifying the integrity of irradiation capsule.

  18. Validity and Utilization of the Out-Pile Testing Facilities at HANARO

    International Nuclear Information System (INIS)

    Choo, Kee-Nam; Cho, Man-Soon; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jun, Byung-Hyuk; Kim, Myong-Seop

    2016-01-01

    Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities and the capsule irradiation facilities for irradiation tests of nuclear materials, fuels and radioisotope products have been developed at HANARO. Among these irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. To support the national research and development programs on nuclear reactors and the nuclear fuel cycle technology in Korea, new irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users. The environmental conditions for these reactors are generally beyond present day reactor technology, especially regarding the higher neutron fluence and higher operating temperature. To effectively support the national R and Ds relevant to the future nuclear systems, the development of advanced irradiation technologies concerning higher neutron fluence and irradiation temperature are being preferentially developed at HANARO. The utilization of the out-pile testing facilities to satisfy the criteria of safety evaluation for a new device installed in the core of HANARO was summarized. In addition, the validity of the out-pile testing facilities was evaluated and proved to be effective for verifying the integrity of irradiation capsule

  19. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    International Nuclear Information System (INIS)

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; KEK, Tsukuba; Solyak, N.; Yakovlev, V.; Gai, W.

    2007-01-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed

  20. PLC based control system for RAM assembly test facility

    International Nuclear Information System (INIS)

    Kulkarni, S.S.; Kumar, Vinaya; Chandra, Umesh

    1994-01-01

    The flexibility, expandability, ease of programming and diagnostic features makes the programmable logic controller (PLC) suitable for a variety of control applications in engineering system test facilities. A PLC based control system for RAM assembly test facility (RATF) and for testing the related hydraulic components is being developed and installed at BARC. This paper describes the approach taken for meeting the control requirements and illustrates the PLC software that has been developed. (author). 1 fig

  1. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    Label, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  2. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  3. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  4. The WR-1 corrosion test facility

    International Nuclear Information System (INIS)

    Murphy, E.V.; Simmons, G.R.

    1978-07-01

    This report describes a new Corrosion Test Facility which has recently been installed in the WR-1 organic-cooled research reactor. The irradiation facility is a single insert, installed in a reactor site, which can deliver a fast neutron flux density of 2.65 x 10 17 neutrons/(m 2 .s) to specimens under irradiation. A self-contained controlled-chemistry cooling water circuit removes the gamma- and neutron-heat generated in the insert and specimens. Specimen temperatures typically vary from 245 deg C to 280 deg C across the insert core region. (author)

  5. Upgraded Features of Newly Constructed Fuel Assembly Mechanical Characterization Test Facility in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Lee, Young Ho; Kim, Soo Ho; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Fuel assembly mechanical characterization test facility (FAMeCT) in KAERI is newly constructed with upgraded functional features such as increased loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. The facility building is compactly designed in the scale of 3rd floor building and has regions for assembly-wise mechanical test equipment, dynamic load (seismic) simulating test system, small scale hydraulic loop and component wise test equipment. Figure 1 shows schematic regional layout of the facility building. Mechanical test platform and system is designed to increase loading capacity for axial compression test. Structural stability of the support system of new upper core plate simulator is validated through a limit case functional test. Fuel assembly mechanical characterization test facility in KAERI is newly constructed and upgraded with advanced functional features such as uprated loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. This paper briefly introduce the test facility construction and scope of the facility and is focused on the upgraded design features of the facility. Authors hope to facilitate the facility more in the future and collaborate with the industry.

  6. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  7. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S.; McDonald, K.T.; Russell, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO 2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  8. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  9. National RF Test Facility as a multipurpose development tool

    International Nuclear Information System (INIS)

    McManamy, T.J.; Becraft, W.R.; Berry, L.A.

    1983-01-01

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments

  10. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  11. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  12. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  13. The NRU blowdown test facility commissioning program

    Energy Technology Data Exchange (ETDEWEB)

    Walsworth, J A; Zanatta, R J; Yamazaki, A R; Semeniuk, D D; Wong, W; Dickson, L W; Ferris, C E; Burton, D H [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1990-12-31

    A major experimental program has been established at the Chalk River Nuclear Laboratories (CRL) that will provide essential data on the thermal and mechanical behaviour of nuclear fuel under abnormal reactor operating conditions and on the transient release, transport and deposition of fission product activity from severely degraded fuel. A number of severe fuel damage (SFD) experiments will be conducted within the Blowdown Test Facility (BTF) at CRL. A series of experiments are being conducted to commission this new facility prior to the SFD program. This paper describes the features and the commissioning program for the BTF. A development and testing program is described for critical components used on the reactor test section. In-reactor commissioning with a fuel assembly simulator commenced in 1989 June and preliminary results are given. The paper also outlines plans for future all-effects, in-reactor tests of CANDU-designed fuel. (author). 11 refs., 3 tabs., 7 figs.

  14. Switch evaluation test system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Reynolds, F.D.

    1997-01-01

    Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100's of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches

  15. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  16. Cryogenics for a vertical test stand facility for testing superconducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Gupta, Prabhat Kumar; Kumar, Manoj; Kush, P.K.

    2015-01-01

    Vertical Test Stand (VTS) Facility is located in a newly constructed building of Cryo-Engineering and Cryo-Module Development Division (CCDD). This test facility is one of the important facilities to develop SCRF technologies for superconducting accelerators like Indian Spallation Neutron Source. VTS has to be used for regular testing of the Superconducting Radio Frequency (SRF) Niobium cavities at nominal frequency of 1.3 GHz/ 650 MHz at 4 K / 2 K liquid helium (LHe) bath temperatures. Testing of these cavities at 2 K evaluates cavity processing methods, procedures and would also serve as a pre-qualification test for cavity to test it in horizontal cryostat, called horizontal test stand, with other cavity components such as tuner and helium vessel. Cryogenic technologies play a major role in these cavity testing facilities. Achieving and maintaining a stable temperature of 2 K in these test stands on regular and reliable basis is a challenging task and require broad range of cryogenic expertise, large scale system level understanding and many in-house technological and process developments. Furthermore this test stand will handle large amount of liquid helium. Therefore, an appropriately designed infrastructure is required to handle such large amount of helium gas generated during the operation of VTS .This paper describes the different cryogenic design aspects, initial cryogenic operation results and different cryogenic safety aspects. (author)

  17. Reconstruction of IP Beam Parameters at the ILC from Beamstraahlung

    CERN Document Server

    White, Glen

    2005-01-01

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  18. The DFVLR wind-energy test facility 'Ulrich Huetter' on Schnittlinger Berg

    Science.gov (United States)

    Kussmann, Alfred

    1986-11-01

    The DFVLR test facility for wind-energy systems (named after Ulrich Huetter, the designer of the 100-kW GFRP-rotor W 34 wind turbine first manufactured and tested in the 1950s) is described and illustrated with photographs. The history of the facility is traced, and current operations in gathering, archiving, processing, interpreting, and documenting performance-test data are outlined. The facility includes instrumentation for rotor telemetry, gondola motion measurements, and ground measurements and provides testing services to private users on both contract and leasing bases.

  19. Improving the pair separation of WW/ZZ at the ILC by consideration of photon radiation in kinematic fits; Verbesserung der WW/ZZ-Unterscheidung am ILC durch Beruecksichtigung von Photonabstrahlung in kinematischen Fits

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Moritz

    2010-04-15

    The International Linear Collider (ILC) is intended for high precision measurements. This places enormous demands on detector precision in the ongoing detector development program. Precision can be further improved by application of a kinematic fit to the data, forcing energy and momentum conservation. However, this requires all energies and momenta to be considered. Initial state radiation and beamstrahlung are two processes which emit photons predominantly in the beam direction and which escape detection. Due to higher center-of-mass energy and stronger focussing of the beam, these processes will have more impact at the ILC than at earlier colliders. This thesis investigates the effects of these processes on kinematic fits at the example of the separation of events with WW/ZZ pair production events. Different approaches in consideration of these processes are pointed out. A kinematic fit was performed on a sample of simulated e{sup +}e{sup -} {yields} u anti dd anti u events, forcing energy and momentum conservation and equal boson masses. It is shown that 25% more events can be covered in this fit, if photon radiation is taken into consideration using a basic approximation of the momentum spectrum of the photons. This method obtains even a further increase in resolution. Thus, a mass resolution of 1.9 GeV (without decay width) can be obtained. (orig.)

  20. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  1. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  2. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  3. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  4. Enhanced operator-training simulator for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Schrader, F.D.; Swanson, C.D.

    1983-01-01

    The FFTF Plant Operator Training Simulator Facility has proven to be a valuable asset throughtout the testing, startup and early operational phases of the Fast Flux Test facility. However, limitations inherent in the existing simulation facility, increased emphasis on the required quality of operator training, and an expanded scope of applications (e.g., MNI development) justify an enhanced facility. Direct use of plant operators in the development of improved reactor control room displays and other man/machine interface equipment and procedures increases the credibility of proposed techniques and reported results. The FFTF Plant Operator Training Simulator provides a key element in this development program

  5. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    Science.gov (United States)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  6. Discriminating Z' from anomalous trilinear gauge coupling signatures in e+e- → W+W- at ILC with polarized beams

    International Nuclear Information System (INIS)

    Andreev, V.V.; Moortgat-Pick, G.; Osland, P.; Pankov, A.A.

    2012-05-01

    New heavy neutral gauge bosons Z' are predicted by many models of physics beyond the Standard Model. It is quite possible that Z's are heavy enough to lie beyond the discovery reach of the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z' exchanges may emerge at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We discuss in this context the foreseeable sensitivity to Z's of W ± -pair production cross sections at the e + e - International Linear Collider (ILC), especially as regards the potential of distinguishing observable effects of the Z' from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to the same or similar new physics experimental signatures at the ILC. The sensitivity of the ILC for probing the Z-Z' mixing and its capability to distinguish these two new physics scenarios is substantially enhanced when the polarization of the initial beams and the produced W ± bosons are considered. A model independent analysis of the Z' effects in the process e + e - → W + W - allows to differentiate the full class of vector Z' models from those with anomalous trilinear gauge couplings, with one notable exception: the sequential SM (SSM)-like models can in this process not be distinguished from anomalous gauge couplings. Results of model dependent analysis of a specific Z' are expressed in terms of discovery and identification reaches on the Z-Z' mixing angle and the Z' mass.

  7. Discriminating Z' from anomalous trilinear gauge coupling signatures in e+e-→W+W- at ILC with polarized beams

    International Nuclear Information System (INIS)

    Andreev, V.V.; Moortgat-Pick, G.; Osland, P.; Pankov, A.A.; Paver, N.

    2012-01-01

    New heavy neutral gauge bosons Z' are predicted by many models of physics beyond the Standard Model. It is quite possible that Z's are heavy enough to lie beyond the discovery reach of the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z' exchanges may emerge at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We discuss in this context the foreseeable sensitivity to Z's of W ± -pair production cross sections at the e + e - International Linear Collider (ILC), especially as regards the potential of distinguishing observable effects of the Z' from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to the same or similar new physics experimental signatures at the ILC. The sensitivity of the ILC for probing the Z-Z' mixing and its capability to distinguish these two new physics scenarios is substantially enhanced when the polarization of the initial beams and the produced W ± bosons are considered. A model-independent analysis of the Z' effects in the process e + e - →W + W - allows to differentiate the full class of vector Z' models from those with anomalous trilinear gauge couplings, with one notable exception: the sequential SM (SSM)-like models can in this process not be distinguished from anomalous gauge couplings. Results of model-dependent analysis of a specific Z' are expressed in terms of discovery and identification reaches on the Z-Z' mixing angle and the Z' mass. (orig.)

  8. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  9. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated

  10. Overview of US fast-neutron facilities and testing capabilities

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Jackson, R.J.

    1982-01-01

    Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected

  11. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  12. Introduction to flow visualization system in SPARC test facility

    International Nuclear Information System (INIS)

    Lee, Wooyoung; Song, Simon; Na, Young Su; Hong, Seong Wan

    2016-01-01

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm 2 limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV

  13. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  14. Development of a fault test experimental facility model using Matlab

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida

    2015-01-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  15. 2-MW plasmajet facility thermal tests of concrete

    International Nuclear Information System (INIS)

    Goin, K.L.

    1977-07-01

    A test was made in the 2-Megawatt Plasmajet Facility to obtain experimental data relative to the thermal response of concrete to incident heat flux. 14.6 cm diameter by 8.0 cm long concrete cylinders were positioned in a supersonic flow of heated nitrogen from an arc heater. The end of the concrete cylinders impacted by the flow were subjected to heat fluxes in the range of 0.13 to 0.35 kW/cm 2 . Measurements included cold wall surface heat flux and pressure distributions, surface and indepth temperatures, ablation rates, and surface emission spectrographs. The test was part of the Sandia light water reactor safety research program and complements similar tests made in the Radiant Heat Facility at heat fluxes from 0.03 to 0.12 kW/cm 2 . A description of the tests and a tabulation of test data are included

  16. Gas Cooled Fast Breeder Reactor cost estimate for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    1979-10-01

    This is a conceptual design cost estimate for a Helium Circulator Test Facility to be located at the General Atomic Company, San Diego, California. The circulator, drive motors, controllers, thermal barrier, and circulator service module installation costs are part of the construction cost included

  17. Lattice design for an ILC damping ring with 3 km circumference

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    We describe a simple lattice that meets the specifications for the damping times and horizontal and longitudinal emittances for the International Linear Collider (ILC) damping rings. The circumference of a little over 3 km leads to a bunch spacing of around 3 ns, which will require advances in kicker technology for injection and extraction. We present the lattice design, and initial results of studies of the acceptance and collective effects. With the high bunch charge and close spacing, the ion and electron cloud effects are expected to be severe; however, the simple structure of the lattice allows for easy variation of the circumference and bunch spacing, which may make it useful for future investigations

  18. Simulations of the ILC Electron Gun and Electron Bunching System

    International Nuclear Information System (INIS)

    Haakonsen, C.B.; McGill U.

    2006-01-01

    The International Linear Collider (ILC) is a proposed electron-positron collider, expected to provide insight into important questions in particle physics. A part of the global R and D effort for the ILC is the design of its electron gun and electron bunching system. The present design of the bunching system has two sub-harmonic bunchers, one operating at 108 MHz and one at 433MHz, and two 5-cell 1.3 GHz (L-band) bunchers. This bunching system has previously been simulated using the Phase and Radial Motion in Electron Linear Accelerators (PARMELA) software, and those simulations indicated that the design provides sufficient bunching and acceleration. Due to the complicated dynamics governing the electrons in the bunching system we decided to verify and expand the PARMELA results using the more recent and independent simulation software General Particle Tracer (GPT). GPT tracks the motion and interactions of a set of macro particles, each of which represent a number of electrons, and provides a variety of analysis capabilities. To provide initial conditions for the macro particles, a method was developed for deriving the initial conditions from detailed simulations of particle trajectories in the electron gun. These simulations were performed using the Egun software. For realistic simulation of the L-band bunching cavities, their electric and magnetic fields were calculated using the Superfish software and imported into GPT. The GPT simulations arrived at similar results to the PARMELA simulations for sub-harmonic bunching. However, using GPT it was impossible to achieve an efficient bunching performance of the first L-band bunching cavity. To correct this, the first L-band buncher cell was decoupled from the remaining 4 cells and driven as an independent cavity. Using this modification we attained results similar to the PARMELA simulations. Although the modified bunching system design performed as required, the modifications are technically challenging to implement

  19. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  20. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  1. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  2. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  3. Thermionic system evaluated test (TSET) facility description

    Science.gov (United States)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  4. Buildings, fields of activity, testing facilities

    International Nuclear Information System (INIS)

    1974-01-01

    Since 1969 the activities of the Materialpruefungsanstalt Stuttgart (MPA) have grown quickly as planned, especially in the field of reactor safety research, which made it necessary to increase the staff to approximately 165 members, to supplement the machines and equipment and to extend the fields of activities occasioning a further departmental reorganization. At present the MPA has the following departments: 1. Teaching (materials testing, materials science and strength of materials) 2. Materials and Welding Technology 3. Materials Science and General Materials Testing with Tribology 4. Design and Strength 5. Creep and Fatigue Testing 6. Central Facilities 7. Vessel and Component Testing. (orig./RW) [de

  5. Configuration Studies and Recommendations for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-01-01

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration

  6. Evolution of Interactive Analysis Facilities: from NAF to NAF 2.0

    International Nuclear Information System (INIS)

    Haupt, Andreas; Kemp, Yves; Nowak, Friederike

    2014-01-01

    In 2007, the National Analysis Facility (NAF) was set up within the framework of the Helmholtz Alliance 'Physics at the Terascale', and is located at DESY. Its purpose was and is the provision of an analysis infrastructure for up-to-date research in Germany, complementing the Grid by offering a interactive access to the data. It has been well received within the physics community, and has proven to be a highly successful concept. We will review experiences with the original NAF, and discuss both the resulting motivation and constraints for the transition to an evolved model. We call this new facility the NAF 2.0. We will present a new setup including its building blocks and user handling, and give an overview of the current status. The integration of new communities has broadened the range of the analysis facility beyond its primary focus on LHC and ILC experiments. To finish, an outlook on further developments like the adoption of new technologies will be given.

  7. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  8. I and C functional test facility user guide

    International Nuclear Information System (INIS)

    Kwon, Ki Chun

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ''C'' language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author)

  9. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  10. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  11. Design and Construction of a Hydroturbine Test Facility

    Science.gov (United States)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  12. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  13. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  14. Analysis of Elektrogorsk 108 test facility experimental data

    International Nuclear Information System (INIS)

    Urbonas, R.

    2001-01-01

    In the paper an evaluation of experimental data obtained at Russian Elektrogorsk 108 (E-108) test facility is presented. E-108 facility is a scaled model of Russian RBMK design reactor. An attempt to validate state-of-the-art thermal hydraulic codes on the basis of E-108 test facility was made. Originally these codes were developed and validated for BWRs and PWRs. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors further codes' implementation and validation is required. The facility was modelled by employing RELAP5 (INEEL, USA) thermal hydraulic system analysis best estimate code. The results show dependence from number of nodes used in the heated channels, frictional and form losses employed. The obtained oscillatory behaviour is resulted by density wave and critical heat flux. It is shown that codes are able to predict thermal hydraulic instability and sudden heat structure temperature excursion, when critical heat flux is approached, well. In addition, an uncertainty analysis of one of the experiments was performed by employing GRS developed System for Uncertainty and Sensitivity Analysis (SUSA). It was one of the first attempts to use this statistic-based methodology in Lithuania.(author)

  15. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  16. Design study of an ERL Test Facility at CERN

    CERN Document Server

    Jensen, E; Brüning, O; Calaga, R; Catalan-Lasheras, N; Goddard, B; Klein, M; Torres-Sanchez, R; Valloni, A

    2014-01-01

    The modern concept of an Energy Recovery Linac allows providing large electron currents at large beam energy with low power consumption. This concept is used in FEL’s, electron-ion colliders and electron coolers. CERN has started a Design Study of an ERL Test Facility with the purpose of 1) studying the ERL principle, its specific beam dynamics and operational issues, as relevant for LHeC, 2) providing a test bed for superconducting cavity modules, cryogenics and integration, 3) studying beam induced quenches in superconducting magnets and protection methods, 4) providing test beams for detector R&D and other applications. It will be complementary to existing or planned facilities and is fostering international collaboration. The operating frequency of 802 MHz was chosen for performance and for optimum synergy with SPS and LHC; the design of the cryomodule has started. The ERL Test Facility can be constructed in stages from initially 150 MeV to ultimately 1 GeV in 3 passes, with beam currents of up to 8...

  17. TFTR neutral-beam test facility

    International Nuclear Information System (INIS)

    Turitzin, N.M.; Newman, R.A.

    1981-11-01

    TFTR Neutral Beam System will have thirteen discharge ion sources, each with its own power supply. Twelve of these will be utilized for supplemental heating of the TFTR tokamak plasma, while the thirteenth will be dedicated to an off-machine test chamber for source development and/or conditioning. A test installation for one source was set up using prototype equipment to discover and correct possible deficiencies, and to properly coordinate the equipment. This test facility represents the first opportunity for assembling an integrated system of hardware supplied by diverse vendors, each of whom designed and built his equipment to performance specifications. For the installation and coordination of the different portions of the total system, particular attention was given to personnel safety and safe equipment operation. This paper discusses various system components, their characteristics, interconnection and control. Results of the recently initiated test phase will be reported at a later date

  18. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  19. Signals of leptophilic dark matter at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sukanta [University of Delhi, SGTB Khalsa College, Delhi (India); Rawat, Bharti; Sachdeva, Divya [University of Delhi, Department of Physics and Astrophysics, Delhi (India)

    2017-09-15

    Adopting a model independent approach, we constrain the various effective interactions of leptophilic DM particles with the visible world from the WMAP and Planck data. The thermally averaged indirect DM annihilation cross section and the DM-electron direct-detection cross section for such a DM candidate are observed to be consistent with the respective experimental data. We study the production of cosmologically allowed leptophilic DM in association with Z (Z → f anti f), f ≡ q, e{sup -}, μ{sup -} at the ILC. We perform the χ{sup 2} analysis and compute the 99% C.L. acceptance contours in the m{sub χ} and Λ plane from the two-dimensional differential distributions of various kinematic observables obtained after employing parton showering and hadronisation to the simulated data. We observe that the dominant hadronic channel provides the best kinematic reach of 2.62 TeV (m{sub χ} = 25 GeV), which further improves to ∝ 3 TeV for polarised beams at √(s) = 1 TeV and an integrated luminosity of 1 ab{sup -1}. (orig.)

  20. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  1. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  2. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  3. Natural circulation in an integral CANDU test facility

    International Nuclear Information System (INIS)

    Ingham, P.J.; Sanderson, T.V.; Luxat, J.C.; Melnyk, A.J.

    2000-01-01

    Over 70 single- and two-phase natural circulation experiments have been completed in the RD-14M facility, an integral CANDU thermalhydraulic test loop. This paper describes the RD-14M facility and provides an overview of the impact of key parameters on the results of natural circulation experiments. Particular emphasis will be on phenomena which led to heat up at high system inventories in a small subset of experiments. Clarification of misunderstandings in a recently published comparison of the effectiveness of natural circulation flows in RD-14M to integral facilities simulating other reactor geometries will also be provided. (author)

  4. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  5. Commissioning and early operating experience with the Fermilab horizontal test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Chase, B.; Harms, E.; Hocker, A.; Prieto, P.; Reid, J.; Rowe, A.; Theilacker, J.; Votava, M.; /Fermilab

    2007-10-01

    Fermilab has constructed a facility for testing dressed superconducting radiofrequency (RF) cavities at 1.8 K with high-power pulsed RF. This test stand was designed to test both 9-cell 1.3 GHz TESLA-style cavities and 9-cell 3.9 GHz cavities being built by Fermilab for DESY's TTF-FLASH facility. An overview of the test stand and a description of its initial commissioning is described here.

  6. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  7. Evaluation of the Netherlands' International Test Facility for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-01

    The Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland, or RVO) engaged the U.S. National Renewable Energy Laboratory (NREL) for two primary purposes: to evaluate the International Test Facility for Smart Grids (ITF) sponsored by RVO and to learn best practices for integrated test facilities from NREL's Energy Systems Integration Facility (ESIF). This report covers the ITF evaluation and is largely based on a one-week visit to the Netherlands in November 2014.

  8. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  9. Ten years operating experience at the Fast Flux Test Facility: A decade of excellence

    International Nuclear Information System (INIS)

    Swaim, D.J.; Waldo, J.B.; Farabee, O.A.

    1991-07-01

    The Fast Flux Test Facility is a 400 MW(t) fast reactor cooled by three sodium loops. The Fast Flux Test Facility is managed by the Westinghouse Hanford Company for the US Department of Energy. The Fast Flux Test Facility was designed and constructed to provide irradiation testing of fuels and materials for the US Department of Energy Liquid Metal Reactor research program. Facility activities have increased to include fusion power materials testing, passive safety testing, isotope production, and international collaboration. 5 figs

  10. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  11. Sodium-water reaction test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Shimazu, Hisashi; Ukechi, Kazutoshi; Sasakura, Kazutake; Kusunoki, Junichi

    1976-01-01

    In the development of the liquid metal cooled fast breeder reactor (LMFBR), the steam generator (SG) is considered one of the most important components. The Power Reactor and Nuclear Fuel Development Corporation (PNC) is now promoting the research and development of the SG system used with the prototype fast breeder reactor ''Monju''. In this research, the phenomena of the sodium-water reaction in the SG are the key which must be investigated for the solution of problems. The test facility (SWAT-3) simulating Monju's SG on the scale of 1/2.5 was designed, fabricated and installed by IHI at Oarai Engineering Center of PNC, its pre-operation being accomplished in February 1975. The purpose of SWAT-3 is summarized as follows: (1) To perform an overall test on the safety of Monju's SG and intermediate heat transport system under the design condition against sodium-water reaction accidents. (2) To investigate the damage of the SG structure caused by the sodium-water reaction, and the possibility of repair and recovery operations. The first test was accomplished successfully on June 9, 1975. As a result of the test, the fundamental function of this test facility was proven to be satisfactory as expected. (auth.)

  12. Test facility for rewetting experiments at CDTN

    International Nuclear Information System (INIS)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C.

    2015-01-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  13. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  14. Digital low level rf control system with four different intermediate frequencies for the International Linear Collider

    Science.gov (United States)

    Wibowo, Sigit Basuki; Matsumoto, Toshihiro; Michizono, Shinichiro; Miura, Takako; Qiu, Feng; Liu, Na

    2017-09-01

    A field programmable gate array-based digital low level rf (LLRF) control system will be used in the International Linear Collider (ILC) in order to satisfy the rf stability requirements. The digital LLRF control system with four different intermediate frequencies has been developed to decrease the required number of analog-to-digital converters in this system. The proof of concept of this technique was demonstrated at the Superconducting RF Test Facility in the High Energy Accelerator Research Organization, Japan. The amplitude and phase stability has fulfilled the ILC requirements.

  15. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressuri