WorldWideScience

Sample records for iiia metals aluminum

  1. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  2. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  3. Experimental data report for transient flow calibration facility tests IIIA101, IIIA102, IIIA201, and IIIA202

    International Nuclear Information System (INIS)

    Wambach, J.L.

    1980-01-01

    Thermal-hydraulic response data are presented for the transient performance tests of an ECC pitot tube rake (IIIA201, IIIA202) and both an ECC pitot tube rake and modular drag disc-turbine transducer (DTT) rake (IIIA101, IIIA102). The tests were conducted in a system which provided full scale simulation of the pressure vessel and intact loop cold leg piping of the Loss of Fluid Test Facility (LOFT). A load cell system was used to provide a reference mass flow rate measurement

  4. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  5. Phosphors containing boron and metals of Group IIIA and IIIB

    Science.gov (United States)

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  6. Metallic aluminum in combustion; Metalliskt aluminium i foerbraenningen

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Rainer; Berg, Magnus; Bostroem, Dan; Hirota, Catherine; Oehman, Marcus; Oehrstroem, Anna

    2007-06-15

    Although aluminum is easily oxidized and melts at temperatures lower than those common in combustion, it can pass through the combustion chamber almost unscathed. If one performs calculations of thermodynamic equilibriums, conditions under which this could happen are extreme in comparison to those generally found in a furnace. Metallic aluminum may yet be found in rather large concentrations in fly ashes. There are also indications that metallic aluminum is present in deposits inside the furnaces. The objectives for the present investigation are better understanding of the behavior of the metallic aluminum in the fuel when it passes through an incinerator and to suggest counter/measures that deal with the problems associated with it. The target group is primary incineration plants using fuel that contains aluminum foil, for example municipal waste, industrial refuse or plastic reject from cardboard recycling. Combustion experiments were performed in a bench scale reactor using plastic reject obtained from the Fiskeby Board mill. First the gas velocity at which a fraction of the reject hovers was determined for the different fuel fractions, yielding a measure for their propensity to be carried over by the combustion gases. Second fractions rich in aluminum foils were combusted with time, temperature and gas composition as parameters. The partially combusted samples were analyzed using SEM/EDS. The degree of oxidation was determined using TGA/DTA. Reference material from full scale incinerators was obtained by collecting fly ash samples from five plants and analyzing them using XRD and SEM/EDS. The results show that thin aluminum foils may easily be carried over from the furnace. Furthermore, it was very difficult to fully oxidize the metallic flakes. The oxide layer on the surface prevents further diffusion of oxygen to the molten core of the flake. The contribution of these flakes to the build of deposits in a furnace is confirmed by earlier investigations in pilot

  7. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  8. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cervical Cancer Stage IIIA

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IIIA Add to My Pictures View /Download : ... 1275x1275 View Download Large: 2550x2550 View Download Title: Cervical Cancer Stage IIIA Description: Stage IIIA cervical cancer; drawing ...

  10. 49 CFR 178.506 - Standards for metal drums other than steel or aluminum.

    Science.gov (United States)

    2010-10-01

    ... aluminum. 178.506 Section 178.506 Transportation Other Regulations Relating to Transportation PIPELINE AND... drums other than steel or aluminum. (a) The following are the identification codes for metal drums other than steel or aluminum: (1) 1N1 for a non-removable head metal drum; and (2) 1N2 for a removable head...

  11. Study of aluminum content in a welding metal by thermoelectric measurements

    Science.gov (United States)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  12. Thin-layer chromatography of ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone and 2,2'-bipyridyl on cellulose layer

    Energy Technology Data Exchange (ETDEWEB)

    Chao, H E; Saitoh, K; Suzuki, N [Tohoku Univ., Sendai (Japan). Faculty of Science

    1980-11-11

    Normal phase thin-layer chromatographic behaviour of several ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone (TTA) and 2,2'bipyridyl (bpy) has been investigated on cellulose layer. The ternary complexes of lanthanide metals show higher mutual separability than the complexes with TTA alone. Mutual separation of TTA complexes with La(III), Ce(III), Eu(III) or Y(III), Sc(III), Th(IV), and U(VI) has been successfully achieved by two-dimensional TLC, primarily with carbon tetrachloride-benzene (75:25) containing 0.02M TTA, and secondary with carbon tetrachloride-hexane (35:65) containing both 0.02M TTA and 0.02M bpy.

  13. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    . The improvement obtained is shown to be due to the development of a secondary bond in the joint beside the weld nugget increasing the total weld area. The application of powder additive is especially feasible, when using welding machines with insufficient current capacity for producing the required nugget size......In order to ensure good quality joints between aluminum sheets by resistance spot welding, a new approach involving the addition of metal powder to the faying surfaces before resistance heating is proposed. Three different metal powders (pure aluminum and two powders corresponding to the alloys AA....... In such cases the best results are obtained with pure aluminum powder....

  14. The metal-organic framework MIL-53(Al) constructed from multiple metal sources: alumina, aluminum hydroxide, and boehmite.

    Science.gov (United States)

    Li, Zehua; Wu, Yi-nan; Li, Jie; Zhang, Yiming; Zou, Xin; Li, Fengting

    2015-04-27

    Three aluminum compounds, namely alumina, aluminum hydroxide, and boehmite, are probed as the metal sources for the hydrothermal synthesis of a typical metal-organic framework MIL-53(Al). The process exhibits enhanced synthetic efficiency without the generation of strongly acidic byproducts. The time-course monitoring of conversion from different aluminum sources into MIL-53(Al) is achieved by multiple characterization that reveals a similar but differentiated crystallinity, porosity, and morphology relative to typical MIL-53(Al) prepared from water-soluble aluminum salts. Moreover, the prepared MIL-53(Al) constructed with the three insoluble aluminum sources exhibit an improved thermal stability of up to nearly 600 °C and enhanced yields. Alumina and boehmite are more preferable than aluminum hydroxide in terms of product porosity, yield, and reaction time. The adsorption performances of a typical environmental endocrine disruptor, dimethyl phthalate, on the prepared MIL-53(Al) samples are also investigated. The improved structural stability of MIL-53(Al) prepared from these alternative aluminum sources enables double-enhanced adsorption performance (up to 206 mg g(-1)) relative to the conventionally obtained MIL-53(Al). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Aluminum metal combustion in water revealed by high-speed microphotography

    Science.gov (United States)

    Tao, William C.; Frank, Alan M.; Clements, Rochelle E.; Shepherd, Joseph E.

    1991-01-01

    In high explosives designed for air blast cratering fragmentation and underwater applications metallic additives chemically react with the oxidizer and are used to tailor the rate of energy delivery by the expansion medium. Although the specific mechanism for sustained metal combustion in the dense detonation medium remains in question it is generally accepted that the fragmentation of the molten particle and disruption of its oxide layer are a necessity. In this study we use high speed microphotography to examine the ignition and combustion of small 25-76 jim diameter and 23 mm long aluminum wires rapidly heated by a capacitor discharge system in water. Streak and framing photographs detailing the combustion phenomenon and the fragmentation of the molten aluminum were obtained over periods of 100 nsec - 100 j. tsec with a spatial resolution of 2 . im. The wire temperature was determined as a function of time by integrating the circuit equation together with the energy equation for an adiabatic wire and incorporating known aluminum electrical resistivity and temperature functions of energy density in the integration. In order for the aluminum to sustain a rapid chemical reaction with the water we found that the wire temperature has to be raised above the melting temperature of aluminum oxide. The triggering mechanism for this rapid reaction appears to be the fragmentation of the molten aluminum from the collapse of a vapor blanket about

  16. Corrosion of Graphite Aluminum Metal Matrix Composites

    Science.gov (United States)

    1991-02-01

    cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R

  17. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  18. Wafer-Scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition

    Science.gov (United States)

    2016-01-04

    Because the plasma frequency of aluminum is at significantly higher energies than that of gold or silver, aluminum holds promise for UV sensing and...plasmonics. Unlike plasmonic devices based on coinage metals, such as gold and silver, which are effectively banned from silicon semiconductor fabrication... hydroxide -based developer. Finally, samples were plasma etched using a 1200 W plasma with a 145 W bias and a 12 mTorr chamber pressure. The flow

  19. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  20. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  1. Selection of a mineral binder for the stabilization - solidification of waste containing aluminum metal

    International Nuclear Information System (INIS)

    Lahalle, H.; Cau Dit Counes, C.; Lambertin, D.; Antonucci, P.; Delpech, S.

    2015-01-01

    The dismantling of nuclear facilities produces radioactive waste materials, some of which may contain aluminum metal. In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal becomes corroded, with a continued production of dihydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution

  2. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  3. Reinforcement of Aluminum Castings with Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  4. Recovery of aluminum and other metal values from fly ash

    Science.gov (United States)

    McDowell, W.J.; Seeley, F.G.

    1979-11-01

    The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  5. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration.

    Science.gov (United States)

    Ates, Nuray; Uzal, Nigmet

    2018-05-27

    Aluminum manufacturing has been reported as one of the largest industries and wastewater produced from the aluminum industry may cause significant environmental problems due to variable pH, high heavy metal concentration, conductivity, and organic load. The management of this wastewater with a high pollution load is of great importance for practitioners in the aluminum sector. There are hardly any studies available on membrane treatment of wastewater originated from anodic oxidation. The aim of this study is to evaluate the best treatment and reuse alternative for aluminum industry wastewater using membrane filtration. Additionally, the performance of chemical precipitation, which is the existing treatment used in the aluminum facility, was also compared with membrane filtration. Wastewater originated from anodic oxidation coating process of an aluminum profile manufacturing facility in Kayseri (Turkey) was used in the experiments. The characterization of raw wastewater was in very low pH (e.g., 3) with high aluminum concentration and conductivity values. Membrane experiments were carried out with ultrafiltration (PTUF), nanofiltration (NF270), and reverse osmosis (SW30) membranes with MWCO 5000, 200-400, and 100 Da, respectively. For the chemical precipitation experiments, FeCl 3 and FeSO 4 chemicals presented lower removal performances for aluminum and chromium, which were below 35% at ambient wastewater pH ~ 3. The membrane filtration experimental results show that, both NF and RO membranes tested could effectively remove aluminum, total chromium and nickel (>90%) from the aluminum production wastewater. The RO (SW30) membrane showed a slightly higher performance at 20 bar operating pressure in terms of conductivity removal values (90%) than the NF 270 membrane (87%). Although similar removal performances were observed for heavy metals and conductivity by NF270 and SW30, significantly higher fluxes were obtained in NF270 membrane filtration at any pressure

  6. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  7. Mineral phases and metals in baghouse dust from secondary aluminum production

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  8. Preparation of rare earth and other metal alloys containing aluminum and silicon

    International Nuclear Information System (INIS)

    Mitchell, A.; Goldsmith, J.R.; Gray, M.

    1981-01-01

    A method is provided for making alloys of aluminum and silicon with a third metal which may be a rare earth or a member of groups 4b, 5b, or 6b of the periodic table. The flux system CaF 2 -CaO-Al 2 O 3 is used as a solvent to provide a reactive medium for the alloy-forming reactions. Aluminum is supplied as a reducing agent, and silicon is added as a sink for the alloying metal. The resulting alloy may be used in steels. (L.L.)

  9. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  10. Extraction of lithium from sea water with metallic aluminum

    International Nuclear Information System (INIS)

    Takeuchi, Takeji

    1980-01-01

    Extraction of lithium from sea water was investigated. It was found that a corrosion product of metallic aluminum immersed in sea water extracts lithium from it selectively. Effects of the temperature and the pH of sea water, and of the initial concentration of lithium in it were examined. On the basis of the analysis of the surface deposit on aluminum, which is a corrosion product of aluminum, the selectivity coefficients were calculated. For the extraction of lithium from natural sea water, the values of K sub(Na)sup(Li), K sub(Mg)sup(Li), K sub(Ca)sup(Li) and K sub(K)sup(Li) were 9.9 x 10 2 , 1.1 x 10, 4.5 x 10 and 4.4 x 10 2 , respectively. (author)

  11. Evaluation of workers exposed to dust containing hard metals and aluminum oxide.

    Science.gov (United States)

    Schwarz, Y; Kivity, S; Fischbein, A; Abraham, J L; Fireman, E; Moshe, S; Dannon, Y; Topilsky, M; Greif, J

    1998-08-01

    Fourteen worker exposed to hard metals and aluminum oxide were evaluated. Six heavily exposed workers underwent bronchoscopy and bronchoalveolar lavage, and five workers underwent transbronchial biopsy. Microchemical analysis of transbronchial biopsies showed a high lung burden of exogenous particles, especially metal related to their hard metals exposure. Lung tissue and cellular changes, which were associated with exposure to hard metal and aluminum oxide, corresponded well with the microanalytic test results. Three workers had at biopsy diffuse interstitial inflammatory changes: two of them were asymptomatic with normal chest X-ray films, and one had clinically evident disease with severe giant cell inflammation. Two other workers showed focal inflammation. The worker showing clinical disease and one asymptomatic worker with interstitial inflammatory changes had evaluated bronchoalveolar lavage fluid-eosinophilia counts. These two were father (with clinical disease) and son (asymptomatic).

  12. Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM

    International Nuclear Information System (INIS)

    Selvi, S.; Rajasekar, E.

    2015-01-01

    The tribological properties such as wear rate, hardness of the aluminum-fly ash composite synthesized by stir casting were investigated by varying the weight % of fly ash from 5 to 20 with constant weight % of zinc and magnesium metal powder. A mathematical model was developed to predict the wear rate of aluminum metal matrix composites and the adequacy of the model was verified using analysis of variance. Scanning electron microscopy was used for the microstructure analysis which showed a uniform distribution of fly ash in the metal matrix. Energy - dispersive X-ray spectroscopy was used for the elemental analysis or chemical characterization of a sample. The results showed that addition of fly ash to aluminum based metal matrix improved both the mechanical and tribological properties of the composites. The fly ash particles improved the wear resistance of the metal matrix composites because the hardness of the samples taken increased as the fly ash content was increased.

  13. Explorations of new selenites of the group IIIA and IVA metals

    International Nuclear Information System (INIS)

    Kong Fang; Li Peicin; Zhang Suyun; Mao Jianggao

    2012-01-01

    Systematic explorations of new phases in the Ga III /In III /Ge IV –Se IV –O systems by hydrothermal syntheses or solid-state reactions at high-temperature led to six new ternary compounds, namely, M 2 Se 2 O 7 (M=Ga 1, In 2), M(OH)(SeO 3 ) (M=Ga 3, In 4), α-Ge(SeO 3 ) 2 5 and β-Ge(SeO 3 ) 2 6. Ga 2 Se 2 O 7 1 displays a 3D open framework composed of 2D gallium oxide layers being further bridged and capped by SeO 3 groups. In 2 Se 2 O 7 2 features a 3D indium oxide framework formed by corner- and edge- sharing InO 6 octahedra with SeO 3 groups attached on the cavities and the 8-member ring tunnels of the structure. The isostructural of M(OH)(SeO 3 ) (M=Ga 3, In 4) exhibit a 2D metal selenite layer composed of 1D edge-sharing MO 6 octahedral chains that are interconnected by SeO 3 groups. α-Ge(SeO 3 ) 2 (P2 1 /n) 5 displays a 3D open framework with 1D 8-member ring tunnels along the a-axis while β-Ge(SeO 3 ) 2 (Pa-3) 6 exhibits a condensed 3D network. - Graphical abstract: Highlights: ► Up to now, selenites of the group IIIA and IVA metals are still rare. ► Hydrothermal or solid state reactions yielded six new compounds in this system. ► They are M 2 Se 2 O 7 (M=Ga, In), M(OH)(SeO 3 ) (M=Ga, In), α-Ge(SeO 3 ) 2 and β-Ge(SeO 3 ) 2 . ► They exhibit four different 3D and one 2D structural types. ► α-Ge(SeO 3 ) 2 and β-Ge(SeO 3 ) 2 represent the first examples of germanium selenites.

  14. Environmental Remediation and Sorption of Metal Cations Using Aluminum Pillared Nano-Bentonite

    Science.gov (United States)

    Rifai, Rifai; Abou El Safa, Magda

    2015-04-01

    The release of heavy metal cations into the environment is a potential threat to water and soil quality. Some clay minerals play an important role, as physical and chemical barriers, for the isolation of metal-rich wastes and to adsorb heavy metals as well as to avoid their environmental dispersion. In the present study, the bentonitic clay (southeast El-Hammam City, Egypt) was subjected to pillaring using hydroxyl-aluminum solution. The XRD patterns of the Aluminum Pillared Nano-Bentonite (APNB) showed severe alteration of the crystal structure after pillaring. Poly metal solutions with different metal concentrations of Cu, Co, Ni, Zn, Cd and Pb (0.001, 0.005 and 0.01 moles), and pH (1, 2.5, 5 and 6) were subjected to treatment by the APNB. The removal process is very rapid and spontaneous and the contact time may be short (several minutes) for most adsorption to occur. The criterion for environmental remediation of APNB is less stringent and a short contact time is sufficient. The rate of Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+sorption remained higher or equal to the CEC. The sorption of metal ions by APNB are complex and probably involve several mechanisms. In general, APNB can be used to immobilize Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+ to any extent. For each metal ion, the most effective immobilization occurs over a particular pH around 5. According to the experimental data obtained, the uptake amount of the studied cations by APNB increased with increasing solution pH, sorbent dose and contact time. The preference of the APNB adsorption for heavy metal ions that are through the cation exchange processes decreases in the order: Cu2+>Zn2+>Co2+>Cd2+ >Ni2+ >Pb2+. Keywords: Bentonitic clay, Egypt, Aluminum Pillared Nano-Bentonite, heavy metal, environmental remediation

  15. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...

  16. Treatment selection for stage IIIA Hodgkin's disease patients

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Cooper, D.; Cox, E.B.; Kapp, D.S.; Farber, L.R.

    1985-01-01

    Two treatment policies for the therapy of patients with Stage IIIA Hodgkin's disease are compared. From 1969-1976, 49 newly diagnosed and pathologically staged IIIA patients received total nodal irradiation (TNI) alone (no liver irradiation). Although actuarial survival was 80% at 5 years and 68% at 10 years, actuarial freedom from relapse was only 38% at 5 years. Accordingly, a new treatment policy was instituted in 1976. Patients with either CS IIIA disease, multiple splenic nodules, IIIA with a large mediastinal mass or III 2 , received combined modality therapy (combination chemotherapy and irradiation). All others received TNI. Thirty-six patients have been treated under the new program. The actuarial survival is 90% at 5 years and the relapse-free survival is 87%, suggesting the superiority of this approach. Complications from the treatments are discussed

  17. Solidification of metallic aluminum on magnesium phosphate cements

    International Nuclear Information System (INIS)

    Lahalle, Hugo

    2016-01-01

    This work deals with the stabilization/solidification of radioactive waste using cement. More particularly, it aims at assessing the chemical compatibility between metallic aluminum and mortars based on magnesium phosphate cement. The physical and chemical processes leading to setting and hardening of the cement are first investigated. X-ray diffraction (XRD), thermogravimetry (TGA) and nuclear magnetic resonance spectroscopy ("3"1P and "1"1B MAS-NMR) are first used to characterize the solid phases formed during hydration, while inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES), electrical conductometry and pH measurements provide information on the pore solution composition. Then, the corrosion of metallic aluminum in magnesium phosphate mortars is studied by monitoring the equilibrium potential and by electrochemical impedance spectroscopy (EIS). Magnesium phosphate cement is prepared from a mix of magnesium oxide (MgO) and potassium dihydrogen orthophosphate (KH_2PO_4). In the presence of water, hydration occurs according to a dissolution - precipitation process. The main hydrate is K-struvite (MgKPO_4.6H_2O). Its precipitation is preceded by that of two transient phases: phosphorrosslerite (MgHPO_4.7H_2O) and Mg_2KH(PO_4)_2.15H_2O. Boric acid retards cement hydration by delaying the formation of cement hydrates. Two processes may be involved in this retardation: the initial precipitation of amorphous or poorly crystallized minerals containing boron and phosphorus atoms, and/or the stabilization of cations (Mg"2"+, K"+) in solution. As compared with a Portland cement-based matrix, corrosion of aluminum is strongly limited in magnesium phosphate mortar. The pore solution pH is close to neutrality and falls within the passivation domain of aluminum. Corrosion depends on several parameters: it is promoted by a water-to-cement ratio (w/c) significantly higher than the chemical water demand of cement (w/c = 0.51), and by the addition of boric

  18. The ROTSE-IIIa telescope system

    International Nuclear Information System (INIS)

    Smith, D.; Akerlof, C.; Kehoe, R.; McKay, T.; Rykoff, E.; Ashley, M.C.B.; Phillips, M.A.; Casperson, D.; Gisler, G.; McGowan, K.; Vestrand, W.T.; Wozniak, P.; Wren, J.; Marshall, S.

    2003-01-01

    We report on the current operating status of the ROTSE-IIIa telescope, currently undergoing testing at Los Alamos National Laboratories in New Mexico. It will be shipped to Siding Spring Observatory, Australia, in first quarter 2002. ROTSE-IIIa has been in automated observing mode since early October, 2001, after completing several weeks of calibration and check-out observations. Calibrated lists of objects in ROTSE-IIIa sky patrol data are produced routinely in an automated pipeline, and we are currently automating analysis procedures to compile these lists, eliminate false detections, and automatically identify transient and variable objects. The manual application of these procedures has already led to the detection of a nova that rose over six magnitudes in two days to a maximum detected brightness of mR ∼ 13.9 and then faded two magnitudes in two weeks. We also readily identify variable stars, includings those suspected to be variables from the Sloan Digital Sky Survey. We report on our system to allow public monitoring of the telescope operational status in real time over the WWW

  19. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  20. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  1. BLM and RMI1 Alleviate RPA Inhibition of TopoIIIa Decatenase Activity

    DEFF Research Database (Denmark)

    Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D

    2012-01-01

    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIa complex. We investigated the effect of RPA on the ssDNA decatenase activity...... of topoisomerase IIIa. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIa. Complex formation between BLM, TopoIIIa, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species......-specific interactions between RPA and BLM-TopoIIIa-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIa and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIa activity, promoting...

  2. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  3. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  4. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harman, J.P.; Kabulski, A. (West Virginia U., Morgantown, WV); Pagan, V.R. (West Virginia U., Morgantown, WV); Famouri, K. (West Virginia U., Morgantown, WV); Kasarla, K.R.; Rodak, L.E. (West Virginia U., Morgantown, WV); Hensel, J.P.; Korakakis, D.

    2008-07-01

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  5. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harman, J.; Kabulski, A.; Pagán, V. R.; Famouri, P.; Kasarla, K. R.; Rodak, L. E.; Peter Hensel, J.; Korakakis, D.

    2008-01-01

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  6. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  7. [Mechanism of renal elimination of 2 elements of group IIIA of the periodic table : aluminum and indium].

    Science.gov (United States)

    Galle, P

    1981-01-05

    Aluminium and indium, two elements of group IIIA of the periodic table, are concentrated by the kidney inside lysosomes of proximal tubule cell. In these lysosomes, aluminium and indium are precipitated as non-soluble phosphate salts and these precipitates are then expelled in the tubular lumen and eliminated with the urinary flow. These data have been visualized by analytical microscopy (ion microscopy and X ray microanalysis). Local acid phosphatases are assumed to permit the concentration of aluminium and indium salts inside the lysosomes.

  8. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  9. Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation

    International Nuclear Information System (INIS)

    Dilip Kumar, K.; Appukuttan, K.K.; Neelakantha, V.L.; Naik, Padmayya S.

    2014-01-01

    Highlights: • The spring back and thinning effect during L-bending was determined on aluminum sheet. • Beyond a particular clearance, the above said effects are linearly increasing. • Below the critical clearance scratches will occur on the surface due to wear. • As the clearance reduces, the wear rate increases on the punching surface. - Abstract: In automotive industry, significant efforts are being put forth to replace steel sheets with aluminum sheets for various applications. Besides its higher cost, there are several technical hurdles for wide usage of aluminum sheets in forming. Major problems in aluminum sheet metal forming operations are deformation errors and spring back effect. These problems are dependent on the number of parameters such as die and tool geometry, friction condition, loading condition and anisotropic properties of the metal. To predict the exact shape, the geometry based punch contact program must be used. The shape changes once the punch is withdrawn, because of the materials elasticity. Prediction of such a spring back effect is a major challenging problem in industry involving sheet metal forming operations. It also needs applying appropriate back tension during the forming complex shapes. Slight deformation of the metal leads to non-axisymmetric loading. One can predict the residual stress by determining plastic and elastic deformation. Thus appropriate spring back effect can be investigated. The present investigation was carried out to determine the spring back and thinning effect of aluminum sheet metal during L-bending operation. Number of specimens with thickness varying from 0.5 mm to 3.5 mm were prepared. The experiments were conducted for different clearances between punch and die. It is observed that, beyond a particular clearance for each thickness of the sheet metal, the spring back and thinning effects were linearly increasing. However, below the critical clearance, scratches on the surface of the sheet metal were

  10. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  11. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  12. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  13. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  14. Micro structural analysis of nanocomposite of metallic matrix of aluminum reinforced by 2% of NTC

    International Nuclear Information System (INIS)

    Dias, Fabio Saldanha; LavaredaCarlos Romulo; Mendes, Luiz Fernando; Queiroz, Jennyson Luz

    2016-01-01

    The study of based on aluminum materials has a high importance level, mainly when is intense wanted in automobile and aerospace industry to transform in light and high perform parts. Aluminum has low specific weight and easiness to join with other materials and these qualities can supply excellent properties and lots of technological applications. Components based on aluminum represents good examples to develop optimized micro structures during the fabrication process that can be basic on properties mechanical performance. As a result this work analyses the micro structure's composites with metallic matrix reinforced by 2% of Multi-Walled Carbon Nanotubes manufactured by aluminum splinters mixed to CNT (author)

  15. Semi-solid metal forming of beryllium-reinforced aluminum alloys

    International Nuclear Information System (INIS)

    Haws, W.; Lane, L.; Marder, J.; Nicholas, N.

    1995-01-01

    A Powder Metallurgy (PM) based, Semi-Solid Metal (SSM) forming process has been developed to produce low cost near-net shapes of beryllium-reinforced aluminum alloys. Beryllium acts as a reinforcing additive to the aluminum, in which there is nearly no mutual solid solubility. The modulus of elasticity of the alloy dramatically increases, while the density and thermal expansion coefficient decrease with increasing beryllium content. The material is suitable for complex thermal management and vibration resistance applications, as well as for airborne components which are density and stiffness sensitive. The forming process involves heating a blank of the material to a temperature at which the aluminum is semi-solid and the beryllium is solid. The semi-solid blank is then injected without turbulence into a permanent mold. High quality, near net shape components can be produced which are functionally superior to those produced by other permanent mold processes. Dimensional accuracy is equivalent to or better than that obtained in high pressure die casting. Cost effectiveness is the primary advantage of this technique compared to other forming processes. The advantages and limitations of the process are described. Physical and mechanical property data are presented, as well as directions for future investigation

  16. Dissolution rates and solubility of some metals in liquid gallium and aluminum

    International Nuclear Information System (INIS)

    Yatsenko, S P; Sabirzyanov, N A; Yatsenko, A S

    2008-01-01

    The effect of liquid gallium and aluminum on some hard metals leading to dissolution and formation of intermetallic compounds (IMC) under static conditions and rotation of a specimen is studied. The solubility parameters from the Clapeyron-Clausius equation were considered to estimate the stability of still not studied metals. The presented experimental data on solubility and corrosion in a wide temperature range allow to calculate a number of parameters useful in manufacturing and application of master-alloys

  17. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  18. Open field locomotor activity and anxiety-related behaviors in mucopolysaccharidosis type IIIA mice.

    Science.gov (United States)

    Lau, Adeline A; Crawley, Allison C; Hopwood, John J; Hemsley, Kim M

    2008-08-05

    Mucopolysaccharidosis (MPS) IIIA, or Sanfilippo syndrome, is a lysosomal storage disorder characterized by severe and progressive neuropathology. Following an asymptomatic period, patients may present with sleep disturbances, cognitive decline, aggressive tendencies and hyperactivity. A naturally-occurring mouse model of MPS IIIA also exhibits many of these behavioral features and has been recently back-crossed onto a C57BL/6 genetic background. To more thoroughly characterize the behavioral phenotype of congenic MPS IIIA mice, we assessed exploratory activity and unconditioned anxiety-related behavior in the elevated plus maze (EPM) and open field locomotor activity. Although MPS IIIA male mice were less active in the EPM at 18 and 20 weeks of age, they were more likely to explore the open arms than their normal counter-parts suggesting reduced anxiety. Repeated EPM testing reduced exploration of the open arms in MPS IIIA mice. In the open field test, significant reductions in activity were evident in naïve-tested male MPS IIIA mice from 10 weeks of age. Female normal and MPS IIIA mice displayed similar exploratory activity in the open field test. These differences in anxiety and locomotor activity will allow us to evaluate the efficacy of therapeutic regimes for MPS IIIA as a forerunner to developing safe and effective therapies for Sanfilippo patients.

  19. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  20. Narrow groove gas metal-arc welding of aluminum

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1975-01-01

    The Gas Metal-Arc (GMA) welding process is explained and the equipment used described with an analysis of power supply function and the action of the arc, followed by discussion of general applications and problems. GMA braze welding of beryllium is then described, as is the development of a special high purity filler wire and a narrow deep groove joint design for improved weld strength in beryllium. This joint design and the special wire are applied in making high strength welds in high strength aluminum for special applications. High speed motion pictures of the welding operation are shown to illustrate the talk. (auth)

  1. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    International Nuclear Information System (INIS)

    Sidhu, Navdeep S.; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M.; Gärtner, Jutta; Krätzner, Ralph; Steinfeld, Robert

    2014-01-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder

  2. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, Navdeep S. [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Schreiber, Kathrin [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); Pröpper, Kevin [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Becker, Stefan [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); Usón, Isabel [Instituto de Biologia Molecular de Barcelona (IBMB–CSIC), Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); Sheldrick, George M. [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Gärtner, Jutta; Krätzner, Ralph, E-mail: rkraetz@gwdg.de; Steinfeld, Robert, E-mail: rkraetz@gwdg.de [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany)

    2014-05-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  3. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  4. Study of tritium decontamination of stainless steel, copper, aluminum metals by tritium dry desorption

    International Nuclear Information System (INIS)

    Xie Yun; Shi Zhengkun; Wu Tao

    2014-01-01

    In order to study the decontamination efficiency of stainless steel, copper, aluminum metals contaminated by tritium, the metals were decontaminated by exposing to UV, ozone, heating, and the combination of heating, UV and ozone. The result indicates that the elevation of temperature can obviously improve decontamination. While irradiated by 172 nm UV, the decontamination efficiency is low, but it is better while heated and irradiated by 172 nm UV. If the stainless steel is irradiated by 172 nm UV and heated at 500℃ for 4 h, the decontamination efficiency is 99.2%. There is better decontamination efficiency of copper while exposed to ozone. While exposed to ozone and heated at 500℃, the decontamination efficiencies of stainless steel, copper and aluminum are higher than 99.2%. The decontamination efficiency can more obviously improve when metal is heated at high temperature (500℃) than low temperature (300℃). The surface tritium of metal placed at 30 d after decontamination increases because of diffusion and penetration of the tritium. Resolution spectra of tritium show that there are four kinds of contamination adsorbed tritium of stainless steel. (authors)

  5. The relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Takaoka, Kyo

    1986-01-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 ∼ 1012 ppm, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 ∼ 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppm, nickel, 0.04 ppm and chromium, from 0.02 to 0.03 ppm. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppm. (author)

  6. Relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Takaoka, Kyo

    1986-12-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 -- 1012 ppM, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 -- 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppM, nickel, 0.04 ppM and chromium, from 0.02 to 0.03 ppM. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppM.

  7. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab.

  8. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    International Nuclear Information System (INIS)

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab

  9. On The Generation of Interferometric Colors in High Purity and Technical Grade Aluminum: An Alternative Green Process for Metal Finishing Industry

    International Nuclear Information System (INIS)

    Chen, Yuting; Santos, Abel; Ho, Daena; Wang, Ye; Kumeria, Tushar; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Graphical abstract: Toward green processes in metal finishing industry by rationally designed electrochemical anodization. Biomimetic photonic films based on nanoporous anodic alumina produced in high purity and technical grade aluminum foils display vivid colors that can be precisely tuned across the visible spectrum. The presented method is a solid rationale aimed toward green processes for metal finishing industry. - Highlights: • Environmentally friendly approach to color aluminum through biomimetic photonic films. • Nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). • Rationally designed galvanostatic pulse anodization approach. • Macroscopic and microscopic differences in high purity and technical grade aluminum. • Substitute method for conventional coloring processes in metal finishing industry. - Abstract: Metal finishing industry is one of the leading pollutants worldwide and green approaches are urgently needed in order to address health and environmental issues associated with this industrial activity. Herein, we present an environmentally friendly approach aimed to overcome some of these issues by coloring aluminum through biomimetic photonic films based on nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). Our study aims to compare the macroscopic and microscopic differences between the resulting photonic films produced in high purity and technical grade aluminum in terms of color features, appearance, electrochemical behavior and internal nanoporous structure in order to establish a solid rationale toward optimal fabrication processes that can be readily incorporated into industrial methodologies. The obtained results reveal that our approach, based on a rational galvanostatic pulse anodization approach, makes it possible to precisely generate a complete palette of colors in both types of aluminum substrates. As a result of its versatility, this method could become a promising alternative to substitute

  10. Transition-metal interactions in aluminum-rich intermetallics

    International Nuclear Information System (INIS)

    Al-Lehyani, Ibrahim; Widom, Mike; Wang, Yang; Moghadam, Nassrin; Stocks, G. Malcolm; Moriarty, John A.

    2001-01-01

    The extension of the first-principles generalized pseudopotential theory (GPT) to transition-metal (TM) aluminides produces pair and many-body interactions that allow efficient calculations of total energies. In aluminum-rich systems treated at the pair-potential level, one practical limitation is a transition-metal overbinding that creates an unrealistic TM-TM attraction at short separations in the absence of balancing many-body contributions. Even with this limitation, the GPT pair potentials have been used effectively in total-energy calculations for Al-TM systems with TM atoms at separations greater than 4 Aa. An additional potential term may be added for systems with shorter TM atom separations, formally folding repulsive contributions of the three- and higher-body interactions into the pair potentials, resulting in structure-dependent TM-TM potentials. Towards this end, we have performed numerical ab initio total-energy calculations using the Vienna ab initio simulation package for an Al-Co-Ni compound in a particular quasicrystalline approximant structure. The results allow us to fit a short-ranged, many-body correction of the form a(r 0 /r) b to the GPT pair potentials for Co-Co, Co-Ni, and Ni-Ni interactions

  11. Adjuvant Treatment after Surgery in Stage IIIA Endometrial Adenocarcinoma

    Science.gov (United States)

    Yoon, Mee Sun; Huh, Seung Jae; Kim, Hak Jae; Kim, Young Seok; Kim, Yong Bae; Kim, Joo-Young; Lee, Jong-Hoon; Kim, Hun Jung; Cha, Jihye; Kim, Jin Hee; Kim, Juree; Yoon, Won Sup; Choi, Jin Hwa; Chun, Mison; Choi, Youngmin; Lee, Kang Kyoo; Kim, Myungsoo; Jeong, Jae-Uk; Chang, Sei Kyung; Park, Won

    2016-01-01

    Purpose We evaluated the role of adjuvant therapy in stage IIIA endometrioid adenocarcinoma patients who underwent surgery followed by radiotherapy (RT) alone or chemoradiotherapy (CTRT) according to risk group. Materials and Methods A multicenter retrospective study was conducted including patients with surgical stage IIIA endometrial cancertreated by radical surgery and adjuvant RT or CTRT. Disease-free survival (DFS) and overall survival (OS) were analyzed. Results Ninety-three patients with stage IIIA disease were identified. Nineteen patients (20.4%) experienced recurrence, mostly distant metastasis (17.2%). Combined CTRT did not affect DFS (74.1% vs. 82.4%, p=0.130) or OS (96.3% vs. 91.9%, p=0.262) in stage IIIA disease compared with RT alone. Patients with age ≥ 60 years, grade G2/3, and lymphovascular space involvement had a significantly worse DFS and those variables were defined as risk factors. The high-risk group showed a significant reduction in 5-year DFS (≥ 2 risk factors) (49.0% vs. 88.0%, p < 0.001) compared with the low-risk group (< 2). Multivariate analysis confirmed that more than one risk factor was the only predictor of worse DFS (hazard ratio, 5.45; 95% confidence interval, 2.12 to 13.98; p < 0.001). Of patients with no risk factors, a subset treated with RT alone showed an excellent 5-year DFS and OS (93.8% and 100%, respectively). Conclusion We identified a low-risk subset of stage IIIA endometrioid adenocarcinoma patients who might be reasonable candidates for adjuvant RT alone. Further randomized studies are needed to determine which subset might benefit from combined CTRT. PMID:26511800

  12. Aluminum low temperature smelting cell metal collection

    Science.gov (United States)

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  13. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  14. Ultrasonographic findings of type IIIa biliary atresia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Seob; Kim, Myung Joon; Lee, Mi Jung; Yoon, Choon Sik; Han, Seok Joo; Koh, Hong [Dept. of Radiology, Research Institute of Radiological Science, Severance Hospital, Yensei University College of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    To describe the ultrasonographic (US) findings of type IIIa biliary atresia. We retrospectively reviewed a medical database of patients pathologically confirmed to have biliary atresia, Kasai type IIIa, between January 2002 and May 2013 (n=18). We evaluated US findings including the visible common bile duct (CBD), triangular cord thickness, gallbladder size and shape, and subcapsular flow on color Doppler US; laboratory data; and pathological hepatic fibrosis grades. We divided them into two groups-those with visible (group A) and invisible (group B) CBD on US-and compared all parameters between the two groups. CBD was visible on US in five cases (27.8%; group A) and invisible in 13 cases (72.2%; group B). US was performed at an earlier age in group A than in group B (median, 27 days vs. 60 days; P=0.027) with the maximal age of 51 days. A comparison of the US findings revealed that the triangular cord thickness was smaller (4.1 mm vs. 4.9 mm; P=0.004) and the gallbladder length was larger (20.0 mm vs. 11.7 mm; P=0.021) in group A. The gallbladder shape did not differ between the two groups, and the subcapsular flow was positive in all cases of both groups. There was no significant difference in the laboratory data between the two groups. Upon pathological analysis, group A showed low-grade and group B showed low- to high-grade hepatic fibrosis. When CBD is visible on US in patients diagnosed with type IIIa biliary atresia, other US features could have a false negative status. A subcapsular flow on the color Doppler US would be noted in the type IIIa biliary atresia patients.

  15. Electronic structure and magnetism in transition metals doped 8-hydroxy-quinoline aluminum.

    Science.gov (United States)

    Baik, Jeong Min; Shon, Yoon; Lee, Seung Joo; Jeong, Yoon Hee; Kang, Tae Won; Lee, Jong-Lam

    2008-10-15

    We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K. The Co atoms interact chemically with O atoms and provide electrons to Alq3, forming new states acting as electron trap sites. From this, it is suggested that ferromagnetism may be associated with the strong chemical interaction of Co atoms and Alq3 molecules.

  16. Production and characterization of monoclonal antibodies against rat platelet GPIIb/IIIa

    International Nuclear Information System (INIS)

    Miyazaki, H.; Tamura, S.; Sudo, T.; Suzuki, T.

    1990-01-01

    Four murine monoclonal antibodies against rat platelets were produced by fusion of spleen cells from mice intravenously immunized with whole rat platelets. All four antibodies immunoprecipitated two major platelet membrane proteins with apparent molecular weights of 130,000 and 82,000 (nonreduced) and of 120,000 and 98,000 (reduced), which were structurally analogous to human glycoprotein (GP) IIb/IIIa, i.e. rat GPIIb/IIIa. Two of four antibodies, named P9 and P55, strongly inhibited adenosine diphosphate (ADP)-induced aggregation of washed rat platelets and caused approximately 50% inhibition of human fibrinogen binding to ADP-stimulated rat platelets, suggesting that rat GPIIb/IIIa serves as a fibrinogen receptor in ADP-induced aggregation. In contrast, two other antibodies, named P14 and P34, themselves caused aggregation of rat platelets in platelet-rich plasma (PRP) and the secretion of 14C-serotonin from 14C-serotonin-labeled PRP. These results indicate that rat GPIIb/IIIa plays an important role in platelet aggregation

  17. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  18. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  19. Value of Surgery for Stage IIIa Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Huihui LIU

    2013-12-01

    Full Text Available Background and objective Nowadays, comprehensive treatment, including surgery, chemotherapy and radiotherapy is advocated for stage III non-small cell lung cancer (NSCLC. However, many researchers have questioned the effectiveness of surgery. The aim of this study is to evaluate the effect of surgery for stage III NSCLC. Methods Between March 2002 and October 2012, 310 cases that have completed followed-up data with stage III NSCLC were received in the Peking Union Medical College Hospital. They were divided into surgical and non-surgical groups according to whether received surgery when diagnosed. In TNM staging, stage III NSCLC includes stage IIIa and IIIb, and stage IIIa NSCLC can be grouped into stage T4N0/T3-4N1M0 and T1-3N2M0 according to different N stages. Analyzed the enumeration data by Chi-Square test. Kaplan-Meier survival method was used to calculate the overall survival (OS and progression-free survival (PFS, and to draw the survival curves. A P value less than 0.05 was evaluated as statistically significant. Results Three hundred and ten stage III NSCLC patients include surgical group 189 cases and non-surgical group 121 cases. One hundred and eighty-eight stage IIIa NSCLC patients include surgical group 152 cases and non-surgical group 36 cases. In stage IIIa, stage T4N0/T3-4N1M0 had 57 patients with 44 surgical and 13 non-surgical patients, and stage T1-3N2M0 had 131 patients with 108 surgical and 23 non-surgical patients. Thirty-seven out of 121 stage IIIb NSCLC patients received surgery. They had 22 stage T4N2M0 cases and 15 stage T1-4N3M0 cases. The patient whose performance status was 0 and staging was stage IIIa was more inclined to undergo surgery. For stage IIIa NSCLC patients, the median OS of surgical and non-surgical groups were 38.9 and 21.8 months, and the median PFS of them were 19.2 and 11.9 months respectively. The difference of OS between the two groups was significant (P=0.041, but the PFS of them had no

  20. Joining of dissimilar metals by diffusion bonding. Titanium alloy with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Akca, Enes [International Univ. of Sarajevo (Bosnia and Herzegovina). Research and Development Center; International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering; Gursel, Ali [International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2017-05-01

    This paper presents a novel diffusion bonding process of commercially pure aluminum to Ti-6Al-4V alloy at 520, 560, 600 and 640 C for 30, 45 and 60 minutes under argon gas shielding without the use of interlayer. The approach is to overcome the difficulties in fusion welding of dissimilar alloys. Diffusion bonding is a dissimilar metal welding process which can be applied to the materials without causing any physical deformations. Processed samples were metallographically prepared, optically examined followed by Vickers microhardness test and subjected to tensile test in order to determine joint strength. Scanning electron microscopy and energy dispersive spectroscopy were used in this work to investigate the compositional changes across the joint region. Elemental composition of the region has been successfully defined between titanium alloy and aluminum. The maximum tensile strength was obtained from the samples bonded at the highest temperatures of 600 and 640 C.

  1. Risk-stratifying capacity of PET/CT metabolic tumor volume in stage IIIA non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Finkle, Joshua H.; Jo, Stephanie Y.; Yuan, Cindy; Pu, Yonglin [University of Chicago, Department of Radiology, Chicago, IL (United States); Ferguson, Mark K. [University of Chicago, Department of Surgery, Chicago, IL (United States); Liu, Hai-Yan [First Hospital of Shanxi Medical University, Department of Nuclear Medicine, Taiyuan, Shanxi (China); Zhang, Chenpeng [Shanghai Jiao Tong University, Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai (China); Zhu, Xuee [Nanjing Medical University, Department of Radiology, BenQ Medical Center, Nanjing, Jiangsu Province (China)

    2017-08-15

    Stage IIIA non-small cell lung cancer (NSCLC) is heterogeneous in tumor burden, and its treatment is variable. Whole-body metabolic tumor volume (MTV{sub WB}) has been shown to be an independent prognostic index for overall survival (OS). However, the potential of MTV{sub WB} to risk-stratify stage IIIA NSCLC has previously been unknown. If we can identify subgroups within the stage exhibiting significant OS differences using MTV{sub WB}, MTV{sub WB} may lead to adjustments in patients' risk profile evaluations and may, therefore, influence clinical decision making regarding treatment. We estimated the risk-stratifying capacity of MTV{sub WB} in stage IIIA by comparing OS of stratified stage IIIA with stage IIB and IIIB NSCLC. We performed a retrospective review of 330 patients with clinical stage IIB, IIIA, and IIIB NSCLC diagnosed between 2004 and 2014. The patients' clinical TNM stage, initial MTV{sub WB}, and long-term survival data were collected. Patients with TNM stage IIIA disease were stratified by MTV{sub WB}. The optimal MTV{sub WB} cutoff value for stage IIIA patients was calculated using sequential log-rank tests. Univariate and multivariate cox regression analyses and Kaplan-Meier OS analysis with log-rank tests were performed. The optimal MTV{sub WB} cut-point was 29.2 mL for the risk-stratification of stage IIIA. We identified statistically significant differences in OS between stage IIB and IIIA patients (p < 0.01), between IIIA and IIIB patients (p < 0.01), and between the stage IIIA patients with low MTV{sub WB} (below 29.2 mL) and the stage IIIA patients with high MTV{sub WB} (above 29.2 mL) (p < 0.01). There was no OS difference between the low MTV{sub WB} stage IIIA and the cohort of stage IIB patients (p = 0.485), or between the high MTV{sub WB} stage IIIA patients and the cohort of stage IIIB patients (p = 0.459). Similar risk-stratification capacity of MTV{sub WB} was observed in a large range of cutoff values from 15 to 55 mL in

  2. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    Science.gov (United States)

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    Science.gov (United States)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  4. [Value of surgery for stage IIIa non-small cell lung cancer].

    Science.gov (United States)

    Liu, Huihui; Wang, Mengzhao; Hu, Ke; Xu, Yan; Ma, Manjiao; Zhong, Wei; Zhao, Jing; Li, Longyun; Wang, Huazhu

    2013-12-01

    Nowadays, comprehensive treatment, including surgery, chemotherapy and radiotherapy is advocated for stage III non-small cell lung cancer (NSCLC). However, many researchers have questioned the effectiveness of surgery. The aim of this study is to evaluate the effect of surgery for stage III NSCLC. Between March 2002 and October 2012, 310 cases that have completed followed-up data with stage III NSCLC were received in the Peking Union Medical College Hospital. They were divided into surgical and non-surgical groups according to whether received surgery when diagnosed. In TNM staging, stage III NSCLC includes stage IIIa and IIIb, and stage IIIa NSCLC can be grouped into stage T4N0/T3-4N1M0 and T1-3N2M0 according to different N stages. Analyzed the enumeration data by Chi-Square test. Kaplan-Meier survival method was used to calculate the overall survival (OS) and progression-free survival (PFS), and to draw the survival curves. A P value less than 0.05 was evaluated as statistically significant. Three hundred and ten stage III NSCLC patients include surgical group 189 cases and non-surgical group 121 cases. One hundred and eighty-eight stage IIIa NSCLC patients include surgical group 152 cases and non-surgical group 36 cases. In stage IIIa, stage T4N0/T3-4N1M0 had 57 patients with 44 surgical and 13 non-surgical patients, and stage T1-3N2M0 had 131 patients with 108 surgical and 23 non-surgical patients. Thirty-seven out of 121 stage IIIb NSCLC patients received surgery. They had 22 stage T4N2M0 cases and 15 stage T1-4N3M0 cases. The patient whose performance status was 0 and staging was stage IIIa was more inclined to undergo surgery. For stage IIIa NSCLC patients, the median OS of surgical and non-surgical groups were 38.9 and 21.8 months, and the median PFS of them were 19.2 and 11.9 months respectively. The difference of OS between the two groups was significant (P=0.041), but the PFS of them had no significant difference (P=0.209). For stage T4N0/T3-4N1M0 which

  5. Arteriosclerosis and the promise of GPIIb/IIIa inhibitors in stroke Arteriosclerosis y nuevas perspectivas de los inhibidores del receptor GPIIb/IIIa en stroke

    Directory of Open Access Journals (Sweden)

    GUSTAVO SAPOSNIK

    2000-03-01

    Full Text Available Ischemic mechanisms in patients with brain and heart attacks have been studied for more than 150 years. Antiplatelets agents did show benefit in secondary prevention. Aspirin is the most common antiaggregant in clinical use today. However, the benefit produced by the "best" antiplatelet regimen in stroke prevention is lower than 40%. The adherence of circulating platelets to the subendothelium is mediated by glycoprotein (GP residing on the cell's surface. GPIIb/IIIa is the most important platelet membrane receptor that mediates the process of platelet aggregation, and thrombus formation. Thus, new drugs that block the GPIIb/IIIa receptor have recently emerged. Clinical trials using these agents have shown effectiveness in acute coronary syndromes. However, the absence of studies in cerebrovascular disease and the potential hemorrhagic complications questioned their use in stroke prevention. We review the clinical trials using the new GPIIb/IIIa agents in myocardial ischemia, and consider the potential implications for cerebrovascular disease.Los mecanismos de isquemia en infarto de miocardio y enfermedad cerebrovascular (ECV han sido estudiados por mas de 150 años. Drogas antiplaquetarias mostraron un beneficio en la prevención secundaria. La aspirina es el mas común de los antiagregantes usados en la practica clínica. No obstante, el beneficio producido, aun con el "mejor" tratamiento antiagregante, en la prevención de ECV es inferior al 40%. La adhesión plaquetaria es un proceso mediado por glicoproteinas (GP de la membrana celular. GPIIb/IIIa es un receptor de membrana plaquetaria que interviene en el proceso de agregación plaquetaria y formación del trombo. Estudios clínicos con nuevos agentes que bloquean a este receptor mostraron ser efectivos en los síndromes coronarios agudos. No obstante, la falta de estudios en ECV y las potenciales complicaciones hemorrágicas, limitan su uso en la prevención de stroke. Revisamos los

  6. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  7. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  8. Hemispherical Shell Nanostructures from Metal-Stripped Embossed Alumina on Aluminum Templates

    DEFF Research Database (Denmark)

    Nielsen, Peter; Albrektsen, Ole; Simonsen, Adam Cohen

    2011-01-01

    aluminum/ alumina (Al/Al2O3) templates as a novel and versatile nanofabrication procedure, and we demonstrate explicitly how to exploit the technique for developing large-area hexagonally close-packed hemispherical shell nanostructures by stripping noble metal layers from embossed templates fabricated from...... anodized Al. Utilizing for this process the linear relationship between anodization voltage and the resulting interpore distance in the formed oxide, it is possible to tune the radius of curvature of the resulting hemispherical shells continuously, which in turn results in tunable optical properties...

  9. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    International Nuclear Information System (INIS)

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-01-01

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies

  10. Proposal of the Tubular Daylight System Using Acrylonitrile Butadiene Styrene (ABS Metalized with Aluminum for Reflective Tube Structure

    Directory of Open Access Journals (Sweden)

    Anderson Diogo Spacek

    2018-01-01

    Full Text Available In the search for alternatives to reduce the consumption of electric energy, the possibility of using natural light for lighting through TDD (tubular daylight devices or TDGS (tubular daylight guidance systems appears. These natural luminaires are used in rooms where you want to save electricity and enjoy the benefits of natural light. The present work proposes the construction of a tubular system for the conduction of natural light that replaces aluminum with silver (currently marketed by several companies by polymer metallized with aluminum, offering a low cost. The polymer acrylonitrile butadiene styrene (ABS, coated with aluminum by physical vapor deposition (ionization, was evaluated for some tests to verify characteristics of the structure and the metallized surface. After the tests, the construction of the reflective tube was performed and validated in a real scale of application. The results proved the technical viability of the proposed tube construction for the realization of direct sunlight for illumination using polymeric material. Although it has produced 35% less than the reference tube, it can be marketed at an estimated cost of 50% less.

  11. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Directory of Open Access Journals (Sweden)

    Alex Langford-Smith

    Full Text Available Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A, is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  12. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Science.gov (United States)

    Langford-Smith, Alex; Langford-Smith, Kia J; Jones, Simon A; Wynn, Robert F; Wraith, J E; Wilkinson, Fiona L; Bigger, Brian W

    2011-01-01

    Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  13. Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad

    Science.gov (United States)

    Manurung, Charles SP; Napitupulu, Richard AM

    2017-09-01

    Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.

  14. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications

    International Nuclear Information System (INIS)

    Hirsch, J.; Al-Samman, T.

    2013-01-01

    Aluminum and magnesium are two highly important lightweight metals used in automotive applications to reduce vehicle weight. Crystallographic texture engineering through a combination of intelligent processing and alloying is a powerful and effective tool to obtain superior aluminum and magnesium alloys with optimized strength and ductility for automotive applications. In the present article the basic mechanisms of texture formation of aluminum and magnesium alloys during wrought processing are described and the major aspects and differences in deformation and recrystallization mechanisms are discussed. In addition to the crystal structure, the resulting properties can vary significantly, depending on the alloy composition and processing conditions, which can cause drastic texture and microstructure changes. The elementary mechanisms of plastic deformation and recrystallization comprising nucleation and growth and their orientation dependence, either within the homogeneously formed microstructure or due to inhomogeneous deformation, are described along with their impact on texture formation, and the resulting forming behavior. The typical face-centered cubic and hexagonal close-packed rolling and recrystallization textures, and related mechanical anisotropy and forming conditions are analyzed and compared for standard aluminum and magnesium alloys. New aspects for their modification and advanced strategies of alloy design and microstructure to improve material properties are derived

  15. Elucidation of the mechanisms of CryIIIA overproduction in a mutagenized strain of Bacillus thuringiensis var. tenebrionis

    International Nuclear Information System (INIS)

    Adams, L.F.; Mathewes, S.; O'Hara, P.; Peterson, A.; Gürtler, H.

    1994-01-01

    NB176 is a Bacillus thuringiensis mutant derived by λ-irradiation of NB125 Bacillus thuringiensis var. tenebrionis (Krieg). It exhibits two interesting phenotypes: (i) oligosporogeny and (ii) twofold to threefold overproduction of the CryIIIA protein. Southern profiles of the NB176 strain showed an additional copy(s) of the cryIIIA gene located on a 4 kb HindIII fragment, in addition to the expected cryIIIA gene on a 3 kb HindIII fragment. Each cryIIIA gene-bearing HindIII fragment was cloned from NB176. The restriction map of the 3 kb HindIII fragment was identical to that published by Donovan and coworkers. Sequencing of the 4 kb HindIII fragment showed no alterations in the promoter region of the cryIIIA gene but did show replacement of the region immediately following the cryIIIA open reading frame with a sequence encoding a transposase with 50% amino acid homology to that of Tn 1000. These findings suggest that the overproduction phenotype of NB176 results from extra copies of the cryIIIA gene produced from a transposition event(s) induced or stabilized by γ-irradiation. Integration of additional copies of the cryIIIA gene into the native 90MDa plasmid of the wild-type B. thuringiensis var. tenebrionis strain resulted in strains that made enormous crystals, many possessing greatly enhanced insecticidal activity

  16. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  17. Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification

    International Nuclear Information System (INIS)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW)

  18. Method for Evaluating the Corrosion Resistance of Aluminum Metallization of Integrated Circuits under Multifactorial Influence

    Science.gov (United States)

    Kolomiets, V. I.

    2018-03-01

    The influence of complex influence of climatic factors (temperature, humidity) and electric mode (supply voltage) on the corrosion resistance of metallization of integrated circuits has been considered. The regression dependence of the average time of trouble-free operation t on the mentioned factors has been established in the form of a modified Arrhenius equation that is adequate in a wide range of factor values and is suitable for selecting accelerated test modes. A technique for evaluating the corrosion resistance of aluminum metallization of depressurized CMOS integrated circuits has been proposed.

  19. Dissolution Rate And Mechanism Of Metals In Molten Aluminum Alloy A380

    OpenAIRE

    Zhu, Hengyu

    2014-01-01

    Shot sleeve is a very easily worn out part in a high-pressure die-casting machine due to serious dissolution of the area underneath the pouring hole. It is because during a normal pouring process, the high temperature molten aluminum will impact and dissolve that area of the shot sleeve by complex chemical and physical process. Rotation experiment was carried out to H13 and four kinds of refractory metal samples. SEM and EDS pictures were taken in order to investigate the microstructure and t...

  20. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    Science.gov (United States)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  1. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  2. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  3. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S J; Smith, P A [National Power plc, Swindon (United Kingdom)

    1999-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  4. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S.J.; Smith, P.A. [National Power plc, Swindon (United Kingdom)

    1998-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  5. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR Prepared Using Hot Press Forging (HPF Process

    Directory of Open Access Journals (Sweden)

    Azlan Ahmad

    2017-09-01

    Full Text Available Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  6. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process.

    Science.gov (United States)

    Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah

    2017-09-19

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  7. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  8. Formation of Self-assembled Nanostructure on Noble Metal Islands Based on Anodized Aluminum Oxide

    International Nuclear Information System (INIS)

    Park, Jong Bae; Kim, Young Sic; Kim, Seong Kyu; Lee, Hae Seong

    2004-01-01

    We have developed the methodology to produce nanoscale gold rods using an AAO template. Each gold rod was generated in every AAO pore. This nanoislands array of gold formed over the AAO pores can be used as corner stones for building nanostructures. We demonstrated this by forming a nanostructure on the Au/AAO by binding a self-assembly class of molecules onto the metal islands. Anodized aluminum oxide (AAO) has been considered an attractive template for simple fabrication of highly-ordered nanostructures. It provides a 2-dimensional array of hexagonal cells with pores of uniform diameter and inter-pore distance that are adjustable in the range of a few tens to hundreds of nanometers. It can be easily grown on an aluminum sheet with high purity by a sequence of several electrochemical steps; electro-polishing, the 1st anodization, etching, and the 2nd anodization. The pores are grown vertically with respect to the AAO surface. The regularity of the pore structure is usually limited by the inherent grain domain in the aluminum sheet to a few micrometers, but can be improved to cover many millimeters of monodomain by pre-indenting the aluminum sheet with SiC 7 or Si 3 N 4 molds. Although fabrication of such molds requires elaborate and costly processes with e-beam nanolithography, such potentially superb regularity can be practically applied to fabrication of nanoscale devices in electronics, optics, biosensors, etc

  9. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles.

    Science.gov (United States)

    Szunerits, Sabine; Walt, David R

    2002-02-15

    The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.

  10. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  11. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  12. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  13. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, David C. [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  14. Warship Radar Signatures (Ship Survivability Part III-A)

    NARCIS (Netherlands)

    Galle, L.F.; Heemskerk, H.J.M.; Ewijk, L.J. van

    2000-01-01

    Radar Cross Section (RCS) management is of paramount importance for a warships's survivability. In this first part of the paper (Part III-A), the operational benefits of low RCS will be explained. Basic RCS theory, measurement and simulation techniques will be addressed. The RCS of representative

  15. Atomic-scale epitaxial aluminum film on GaAs substrate

    Directory of Open Access Journals (Sweden)

    Yen-Ting Fan

    2017-07-01

    Full Text Available Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  16. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  17. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  18. Precision forging technology for aluminum alloy

    Science.gov (United States)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  19. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    Science.gov (United States)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  20. Survival Advantage Associated with Decrease in Stage at Detection from Stage IIIC to Stage IIIA Epithelial Ovarian Cancer

    Science.gov (United States)

    Lefringhouse, Jason; Pavlik, Edward; Miller, Rachel; DeSimone, Christopher; Ueland, Frederick; Kryscio, Richard; van Nagell, J. R.

    2014-01-01

    Objective. The aim of this study was to document the survival advantage of lowering stage at detection from Stage IIIC to Stage IIIA epithelial ovarian cancer. Methods. Treatment outcomes and survival were evaluated in patients with Stage IIIA and Stage IIIC epithelial ovarian cancer treated from 2000 to 2009 at the University of Kentucky Markey Cancer Center (UKMCC) and SEER institutions. Results. Cytoreduction to no visible disease (P < 0.0001) and complete response to platinum-based chemotherapy (P < 0.025) occurred more frequently in Stage IIIA than in Stage IIIC cases. Time to progression was shorter in patients with Stage IIIC ovarian cancer (17 ± 1 months) than in those with Stage II1A disease (36 ± 8 months). Five-year overall survival (OS) improved from 41% in Stage IIIC patients to 60% in Stage IIIA patients treated at UKMCC and from 37% to 56% in patients treated at SEER institutions for a survival advantage of 19% in both data sets. 53% of Stage IIIA and 14% of Stage IIIC patients had NED at last followup. Conclusions. Decreasing stage at detection from Stage IIIC to stage IIIA epithelial ovarian cancer is associated with a 5-year survival advantage of nearly 20% in patients treated by surgical tumor cytoreduction and platinum-based chemotherapy. PMID:25254047

  1. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  2. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    Directory of Open Access Journals (Sweden)

    Kerryn Mason

    2014-12-01

    Full Text Available Heparan sulfate (HS catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA, which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues.

  3. A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminum sheets and comparison with experimental results

    International Nuclear Information System (INIS)

    Reichl, Ch.; Schneider, R.; Hohenauer, W.; Grabner, F.; Grant, R.J.

    2017-01-01

    Highlights: • Thermodynamic processes for cryogenic sheet metal forming tools were examined. • Static and transient temperature field simulations are evaluated on a Nakajima tool. • Differently arranged cooling loops lead to homogeneous temperature distribution. • Scaling of the geometry leads to significantly increased heat transfer times. • The temperature management of complex forming tools can be developed numerically. - Abstract: Forming at cryogenic temperatures provides a significant improvement in formability of aluminum sheets. This offers the potential for light, complex and highly integrated one-piece components to be produced out of aluminum alloys at sub-zero temperatures. This would allow weight reduction, environmental conservation and cost reduction of a car body to give one example in the automotive industry. For temperature supported processes special forming tools and cooling strategies are required to be able to reach and maintain process stability. Time dependent numerical simulations of the thermodynamic processes of cryogenic sheet metal forming covering all aspects of heat transfer through conduction, convection and radiation play a vital role in the design and development of future tools and are presented for several geometries. Cooling (and heating) strategies (including selection of the number of cooling loops and their relative positioning) in a Nakajima testing tool were evaluated using computational fluid dynamics. These simulations were performed with static and transient solvers to demonstrate the extraction of tool surface temperature distributions on different forming tool geometries. Comparisons of predicted temperature characteristics of an aluminum sheet and experimentally determined temperature distributions were made. The temperature distribution of the surface of an aluminum sheet could be predicted with high accuracy. Further, the influence of the tool size on the parameters temperature transfer times and

  4. Scientific Background for Processing of Aluminum Waste

    Directory of Open Access Journals (Sweden)

    Kononchuk Olga

    2017-01-01

    of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  5. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism.

    Science.gov (United States)

    Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed

    2015-01-01

    The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism.

  6. Contribution of inhibitory receptor glycoprotein iib / iiia in coronary angioplasty and acute coronary syndrome, about 152 patients

    International Nuclear Information System (INIS)

    Sellami, Walid

    2007-01-01

    The aim of our study was to evaluate the immediate results and long-term intake of anti-GP IIb / IIIa inhibitors for patients with acute coronary syndrome treated with coronary angioplasty. The use of anti-GP IIb / IIIa is a valid therapeutic option in patients with acute coronary syndrome with signs of severity and for patients undergoing complex angioplasty. Adverse effects of anti-GP IIb / IIIa can be seen to encourage vigilance and careful monitoring during the administration of these molecules and perfect knowledge of their pharmacological properties for appropriate use.

  7. PRODUCTION OF PLUTONIUM METAL

    Science.gov (United States)

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  8. Chemical effects in the Corrosion of Aluminum and Aluminum Alloys. A Bibliography

    Science.gov (United States)

    1976-10-01

    tances.II. Effect Of Pomegranate Juice And The Aqueous Extract Of Pomegranate Fruits And Tea leaves On The Corrosion Of Aluminum" The effect of the juices...T7651 tempers to exfoliation and stress- corrosion cracking . 1968-8 D.P. Doyle and H.P. Godard ,a) Tr. Mezhdunar. Kongr. Korroz. Metal, 4, 439-48, (1968...Tapper Brit. Corros. J., 3, 285-87, (1968) "Corrosion Of Aluminum" Summary of the literature of Al corrosion which includes stress- corrosion cracking

  9. Metallic glass coating on metals plate by adjusted explosive welding technique

    International Nuclear Information System (INIS)

    Liu, W.D.; Liu, K.X.; Chen, Q.Y.; Wang, J.T.; Yan, H.H.; Li, X.J.

    2009-01-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  10. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  11. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  12. Paul Scherrer Institut annual report 1994. Annex IIIA: PSI condensed matter research and material sciences

    Energy Technology Data Exchange (ETDEWEB)

    Baltensperger, U [ed.; Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    This annex reports on the PSI division IIIA`s progress achieved during 1994 in the Laboratory of Ionbeam-Physics, the Laboratory of Radiochemistry; the Laboratory for Neutron Scattering and the Laboratory for Astrophysics. Progress of the spallation neutron source project (SINQ) is documented by a set of pictures. A bibliography of the department`s publications is included. figs., tabs., refs.

  13. Digital laser printing of aluminum micro-structure on thermally sensitive substrates

    International Nuclear Information System (INIS)

    Zenou, Michael; Sa’ar, Amir; Kotler, Zvi

    2015-01-01

    Aluminum metal is of particular interest for use in printed electronics due to its low cost, high conductivity and low migration rate in electrically driven organic-based devices. However, the high reactivity of Al particles at the nano-scale is a major obstacle in preparing stable inks from this metal. We describe digital printing of aluminum micro-structures by laser-induced forward transfer in a sub-nanosecond pulse regime. We manage to jet highly stable molten aluminum micro-droplets with very low divergence, less than 2 mrad, from 500 nm thin metal donor layers. We analyze the micro-structural properties of the print geometry and their dependence on droplet volume, print gap and spreading. High quality printing of aluminum micro-patterns on plastic and paper is demonstrated. (paper)

  14. Impact of simulated acid rain on trace metals and aluminum leaching in latosol from Guangdong Province, China

    Science.gov (United States)

    Jia-En Zhang; Jiayu Yu; Ying Ouyang; Huaqin. Xu

    2014-01-01

    Acid rain is one of the most serious ecological and environmental problems worldwide. This study investigated the impacts of simulated acid rain (SAR) upon leaching of trace metals and aluminum (Al) from a soil. Soil pot leaching experiments were performed to investigate the impacts of SAR at five different pH levels (or treatments) over a 34-day period upon the...

  15. Explosion hazards of aluminum finishing operations

    NARCIS (Netherlands)

    Taveau, J.R.; Hochgreb, Simone; Lemkowitz, S.M.; Roekaerts, D.J.E.M.

    2018-01-01

    Metal dust deflagrations have become increasingly common in recent years. They are also more devastating than deflagrations involving organic materials, owing to metals' higher heat of combustion, rate of pressure rise, explosion pressure and flame temperature. Aluminum finishing operations offer

  16. Explosion hazards of aluminum finishing operations

    NARCIS (Netherlands)

    Taveau, J.; Hochgreb, S.; Lemkowitz, S.M.; Roekaerts, D.J.E.M.

    2018-01-01

    Metal dust deflagrations have become increasingly common in recent years. They are also more devastating than deflagrations involving organic materials, owing to metals' higher heat of combustion, rate of pressure rise, explosion pressure and flame temperature. Aluminum finishing operations offer a

  17. Familial temporal lobe epilepsy due to focal cortical dysplasia type IIIa.

    Science.gov (United States)

    Fabera, Petr; Krijtova, Hana; Tomasek, Martin; Krysl, David; Zamecnik, Josef; Mohapl, Milan; Jiruska, Premysl; Marusic, Petr

    2015-09-01

    Focal cortical dysplasia (FCD) represents a common cause of refractory epilepsy. It is considered a sporadic disorder, but its occasional familial occurrence suggests the involvement of genetic mechanisms. Siblings with intractable epilepsy were referred for epilepsy surgery evaluation. Both patients were examined using video-EEG monitoring, MRI examination and PET imaging. They underwent left anteromedial temporal lobe resection. Electroclinical features pointed to left temporal lobe epilepsy and MRI examination revealed typical signs of left-sided hippocampal sclerosis and increased white matter signal intensity in the left temporal pole. PET examination confirmed interictal hypometabolism in the left temporal lobe. Histopathological examination of resected tissue demonstrated the presence FCD type IIIa, i.e. hippocampal sclerosis and focal cortical dysplasia in the left temporal pole. We present a unique case of refractory mesial temporal lobe epilepsy in siblings, characterized by an identical clinical profile and histopathology of FCD type IIIa, who were successfully treated by epilepsy surgery. The presence of such a high concordance between the clinical and morphological data, together with the occurrence of epilepsy and febrile seizures in three generations of the family pedigree points towards a possible genetic nature of the observed FCD type IIIa. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  18. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  19. Typical corrosion of alumina refractory in aluminum reflow oven

    International Nuclear Information System (INIS)

    Baldo, Jaoa B.

    2014-01-01

    The refractory linings of furnaces for secondary melting of aluminum, are exposed to intense attack by the molten metal. This occurs, because molten aluminum has a strong reducing power over the refractory oxide components, particularly Fe 2 O 3 , SiO 2 and TiO 2 . In this work, based on X-ray diffraction and scanning electron microscopy, it is presented a post mortem study of the mechanisms that lead to a premature wear of a 80% Al2O3 chemically bonded refractory bricks, used in the metal line of an aluminum re-melting furnace. The SEM analysis demonstrated that the oxides SiO 2 and TiO 2 contained in the refractory were reduced and transformed into their metallic elements causing an intense structural spalling. (author)

  20. 76 FR 13643 - FDA Food Safety Modernization Act: Title III-A New Paradigm for Importers; Public Meeting

    Science.gov (United States)

    2011-03-14

    ... Act: Title III--A New Paradigm for Importers; Public Meeting AGENCY: Food and Drug Administration, HHS... announcing a public meeting entitled ``FDA Food Safety Modernization Act: Title III--A New Paradigm for... provided. Request special accommodations due By March 22, 2011.... Patricia M. Kuntze, 301- to disability...

  1. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Science.gov (United States)

    2010-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting subcategory. The...

  2. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  3. Electrometallurgical treatment of aluminum-based fuels

    International Nuclear Information System (INIS)

    Willit, J. L.

    1998-01-01

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining

  4. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    International Nuclear Information System (INIS)

    Zaitseva, L.V.; Romaniv, V.I.

    1984-01-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid

  5. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  6. Corrosion of magnesium and aluminum in palm biodiesel: A comparative evaluation

    International Nuclear Information System (INIS)

    Chew, K.V.; Haseeb, A.S.M.A.; Masjuki, H.H.; Fazal, M.A.; Gupta, M.

    2013-01-01

    The present study aims to investigate the comparative corrosion of light-weight metals such as aluminum and magnesium in palm biodiesel. Immersion test at room temperature was carried out for each metal for 1440 h. Sample characterization techniques employed include weight loss measurement, SEM (scanning electron microscope), XRD (X-ray diffraction), TAN (total acid number) and FTIR (Fourier transform infrared spectroscopy). Results showed that the corrosion rate of magnesium was much higher compared to that of aluminum. The surface morphology revealed a significant difference between the biodiesel exposed aluminum and magnesium specimens. Upon exposure to biodiesel, the magnesium surface was found to be fully covered by gel-like sticky mass while the aluminum surface remained clean. - Highlights: • Biodiesel is highly corrosive for magnesium. • Biodiesel exposed magnesium surface showed yellowish gel-like sticky mass. • Biodiesel undergoes significant degradation upon exposure to metals

  7. Microstructure, Friction and Wear of Aluminum Matrix Composites

    Science.gov (United States)

    Florea, R. M.

    2018-06-01

    MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.

  8. Determination of extraction equilibria for several metals in the development of a process designed to recover aluminum and other metals from coal combustion ash

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.; McDowell, W.J.; Felker, L.K.; Kelmers, A.D.; Egan, B.Z.

    1981-01-01

    Laboratory-scale tests of several methods for the recovery of resource materials from fly ash have led to the development of a sinter/dilute acid leach method (Calsinter process) in which fly ash is sintered with a source of calcium oxide (CaCO/sub 3/, CaSO/sub 4/, CaO, and/or limestone flue-gas desulfurization scrubber sludge) at 1000 to 1200/sup 0/C, followed by a two-stage leach of the sintered solids with dilute sulfuric acid. Recovery of aluminum from this leach solution in a relatively pure form requires that several contaminants, particularly iron, must be separated from the aluminum before it can be precipitated. Therefore, distribution coefficients for iron (III) and 16 other metal ions have been determined in the liquid-liquid extraction system: Primene JM-T - toluene versus aqueous ammonium sulfate (and sodium sulfate) as a function of sulfate, acid, metal ion, and amine sulfate concentration. A study of iron (III) loading equilibria as a function of time indicated that equilibrium was essentially achieved in 1 h; however, some changes, probably in the nature of the extracted species, occurred over a period of approximately 20 h. Iron (III) extraction results obtained under various sulfate concentration matrix conditions suggested the formation of an aqueous complex of ferric ammonium sulfate, which depressed iron distribution to the organic phase. Extraction isotherms for Ag, As, Cd, Cr, and Fe all exhibit linearity at low loading conditions with unit slopes, including the same degree of association of the metal ion species in both the organic and the aqueous phase. Other metal ions for which distribution coefficients are reported are: Ba, Mg, Mn, Na, K, P, Pb, Th, Ti, and U.

  9. Mechanical properties of composite coatings of chromium and nanodiamonds on aluminum

    Directory of Open Access Journals (Sweden)

    Gidikova Nelly

    2018-01-01

    Full Text Available Aluminum offers engineers weight saving advantages in their product design. However, aluminum has poor wear and friction properties. In addition, the surface oxide layer of this chemically active metal, which gives it the corrosion resistance, makes it a very difficult metal to plate [1]. Specific pre-treatment must be applied to remove the oxide layer from the aluminum surface. The nanodiamond particles additionally facilitates the process of chromium deposition. The object of this study is to evaluate the impact of nanodiamonds on the mechanical properties of the chromium coating plated on

  10. Aluminum electroplating on steel from a fused bromide electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  11. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

    2012-06-28

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  13. Decontamination method of contaminated metals

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Ueda, Yoshihiro; Sato, Chikara; Komori, Itaru.

    1980-01-01

    Purpose: To effectively separate radioactive materials from molten metals in dry-processing method by heating metals contaminated with radioactive materials at a temperature below melting point to oxidize the surface thereof, then heating them to melt and include the radioactive materials into the oxides. Method: Metals contaminated with radioactive materials are heated at a temperature below the melting point thereof in an oxidizing atmosphere to oxidize the surface. Thereafter they are heated to melt at temperature above the melting point of the metals, and the molten metals are separated with the radioactive materials included in the oxides. For instance, radiation-contaminated aluminum pipe placed on the bed of an electrical heating furnace, and heated at 500 0 C which is lower than the melting point 660 0 C of aluminum for 1 - 2 hours while supplying air from an air pipe into the furnace, and an oxide film is formed on the surface of the aluminum pipe. Then, the furnace temperature is increased to 750 0 C wherein molten aluminum is flown down to a container and the oxide film is separated by floating it as the slug on the molten aluminum. (Horiuchi, T.)

  14. Passivation process for superfine aluminum powders obtained by electrical explosion of wires

    International Nuclear Information System (INIS)

    Kwon, Young-Soon; Gromov, Alexander A.; Ilyin, Alexander P.; Rim, Geun-Hie

    2003-01-01

    The process of passivation of superfine aluminum powders (SFAPs) (a s ≤100 nm), obtained with the electrical explosion of wires (EEW) method, has been studied. The passivation coatings of different nature (oxides, stearic acid and aluminum diboride) were covered on the particle surface. The process of passivation and analysis of passivated powders was studied by X-ray photoelectron spectroscopy (XPS), XRD, TEM, infrared spectroscopy (IR), mass spectrometry (MS), thermocouple method and bomb calorimetry. After the comprehensive testing of coatings, a model of stabilization of the superfine aluminum particles was suggested, explaining the anomalous high content of aluminum metal in the electroexplosive powders. The main characteristic of the model is a formation of charged structures, which prevent metal oxidation

  15. Reversible post-breakdown conduction in aluminum oxide-polymer capacitors

    NARCIS (Netherlands)

    Chen, Qian; Gomes, H.L.; Rocha, P.R.F.; Leeuw, de D.M.; Meskers, S.C.J.

    2013-01-01

    Aluminum/Al2O3/polymer/metal capacitors submitted to a low-power constant current stress undergo dielectric breakdown. The post-breakdown conduction is metastable, and over time the capacitors recover their original insulating properties. The decay of the conduction with time follows a power law

  16. Female Mucopolysaccharidosis IIIA Mice Exhibit Hyperactivity and a Reduced Sense of Danger in the Open Field Test

    OpenAIRE

    Langford-Smith, Alex; Langford-Smith, Kia J.; Jones, Simon A.; Wynn, Robert F.; Wraith, J. E.; Wilkinson, Fiona L.; Bigger, Brian W.

    2011-01-01

    Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive lo...

  17. Aluminum recycling—An integrated, industrywide approach

    Science.gov (United States)

    Das, Subodh K.; Green, John A. S.; Kaufman, J. Gilbert; Emadi, Daryoush; Mahfoud, M.

    2010-02-01

    The aluminum industry is a leading proponent of global sustainability and strongly advocates the use of recycled metal. As the North American primary aluminum industry continues to move offshore to other geographic areas such as Iceland and the Middle East, where energy is more readily available at lower cost, the importance of the secondary (i.e., recycled metal) market in the U.S. will continue to increase. The purpose of this paper is to take an integrated, industry-wide look at the recovery of material from demolished buildings, shredded automobiles, and aging aircraft, as well as from traditional cans and other rigid containers. Attempts will be made to assess how the different alloys used in these separate markets can be recycled in the most energy-efficient manner.

  18. A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090

    International Nuclear Information System (INIS)

    Lin, D.C.; Wang, G.-X.; Srivatsan, T.S.

    2003-01-01

    In this technical note, the formation and presence of a zone of equiaxed grains (EQZ) along the fusion boundary of welded aluminum-lithium alloy 2090 using filler metals containing zirconium and lithium is presented and discussed. However, no EQZ was evident in welded joints of alloy 2090 using the commercial filler metals: aluminum alloy 2319 and 4145. Under identical conditions, aluminum-lithium alloy 2090 was fusion welded using several new filler metals containing various amounts of zirconium and lithium. Results reveal an increase in the width of the zone of equiaxed grains with an increase in zirconium and lithium content in the filler metal. A viable mechanism for the formation of equiaxed grains and its relationship to filler metal composition is highlighted

  19. The Diametrically Loaded Cylinder For The Study Of Nanostructured Aluminum-Graphene And Aluminum-Alumina Nanocomposites Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Meysam eTabandeh Khorshid

    2016-05-01

    Full Text Available Non-contact methods for characterization of metal matrix composites have the potential to accelerate the development and study of advanced composite materials. In this study, diametrical compression of small disk specimens was used to understand the mechanical properties of metal matrix micro and nano composites. Analysis was performed using an inverse method that couples digital image correlation and the analytical closed form formulation. This technique was capable of extracting the tension and compression modulus values in the metal matrix nanocomposite disk specimens. Specimens of aluminum and aluminum reinforced with either Al2O3 nanoparticles or graphene nanoplatelets (GNP were synthesized using a powder metallurgy approach that involved room temperature milling in ethanol, and low temperature drying followed by single action compaction. The elastic and failure properties of MMNC materials prepared using the procedure above are presented.

  20. Feasibility study of using thin aluminum nitride film as a buffer layer for dual metal gate process

    International Nuclear Information System (INIS)

    Park, Chang Seo; Cho, Byung Jin; Balasubramanian, N.; Kwong, Dim-Lee

    2004-01-01

    We evaluated the feasibility of using an ultra thin aluminum nitride (AlN) buffer layer for dual metal gates CMOS process. Since the buffer layer should not affect the thickness of gate dielectric, it should be removed or consumed during subsequent process. In this work, it was shown that a thin AlN dielectric layer would be reacted with initial gate metals and would be consumed during subsequent annealing, resulting in no increase of equivalent oxide thickness (EOT). The reaction of AlN layer with tantalum (Ta) and hafnium (Hf) during subsequent annealing, which was confirmed with X-ray photoelectron spectroscopy (XPS) analysis, shifted the flat-band voltage of AlN buffered MOS capacitors. No contribution to equivalent oxide thickness (EOT) was also an indication showing the full consumption of AIN, which was confirmed with TEM analysis. The work functions of gate metals were modulated through the reaction, suggesting that the consumption of AlN resulted in new thin metal alloys. Finally, it was found that the barrier heights of the new alloys were consistent with their work functions

  1. Energy analysis of hydrogen and electricity production from aluminum-based processes

    International Nuclear Information System (INIS)

    Wang, Huizhi; Leung, Dennis Y.C.; Leung, Michael K.H.

    2012-01-01

    The aluminum energy conversion processes have been characterized to be carbon-free and sustainable. However, their applications are restrained by aluminum production capacity as aluminum is never found as a free metal on the earth. This study gives an assessment of typical aluminum-based energy processes in terms of overall energy efficiency and cost. Moreover, characteristics associated with different processes are identified. Results in this study indicate the route from which aluminum is produced can be a key factor in determining the efficiency and costs. Besides, the aluminum–air battery provides a more energy-efficient manner for the conversion of energy stored in primary aluminum and recovered aluminum from products compared to aluminum-based hydrogen production, whereas the aluminum-based hydrogen production gives a more energy-efficient way of utilizing energy stored in secondary aluminum or even scrap aluminum.

  2. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    Science.gov (United States)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-07-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

  3. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    International Nuclear Information System (INIS)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-01-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied

  4. Assessment of Aluminum FSW Joints Using Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Adamus K.

    2017-12-01

    Full Text Available The paper concerns aluminum joints made using friction stir welding. Although in the aerospace industry there is a tendency to replace metal components with composites, aluminum continues to be a valuable material. Its share in the aircraft structures is the biggest among all structural metals. Lots of aluminum components are made of sheets and most of them require joining. Friction stir welding is a relatively new joining technology, particularly with regard to the sheets having a thickness of 1 mm or lower. The paper is dedicated to non-destructive testing of such joints using ultrasonic inspection. It was found that ultrasonic testing allows for distinguishing between joints without material discontinuities, joint with material discontinuities at the advancing side and joint with discontinuities extending through the whole width of the stir zone. During research only horizontally aligned defects were taken into account.

  5. Platelet glycoprotein IIb/IIIa polymorphism HPA-3 b/b is associated with increased risk of ischemic stroke in patients under 60 years of age.

    Science.gov (United States)

    Duan, Hao; Cai, Yan; Sun, Xiaojiang

    2012-01-01

    The role of genetic risk factors in ischemic stroke is unclear. Platelet glycoprotein IIb/IIIa (GpIIb-IIIa) has been implicated in the pathogenesis of ischemic stroke. We sought to evaluate the relationship between the GpIIb/IIIa complex gene polymorphism and ischemic stroke. We investigated the association of the GpIIb/IIIa complex gene polymorphism with stroke risk in 306 patients with acute ischemic stroke and 266 control subjects by determining the GpIIb and GpIIIa genotype from leukocyte DNA by polymerase chain reaction (PCR) followed by FokI and ScrFI digestion, respectively. Compared with controls, more patients presented with coronary heart disease, hypertension, smoking history, and diabetes. In addition, the patients had higher levels of cholesterol and glucose compared with the control subjects. All donors in the GpIIIa (n=572) group expressed the GpIIIa PlA1 (HPA-1 aa) phenotype. There were no significant differences between the HPA-3 genotype (GpIIb) patient distribution (aa=39.9%, ab=41.4%, bb=28.7%) and healthy control subjects (aa=36.1%, ab=35.0%, bb=28.9%) (P=0.580). Among study participants ischemic stroke >2-fold (P=0.008). The GpIIb Ile/Ser843 gene polymorphism is associated with ischemic stroke among young and middle-aged adults (ischemic stroke.

  6. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  7. Effect of PlA1/A2 glycoprotein IIIa gene polymorphism on the long-term outcome after successful coronary stenting

    Directory of Open Access Journals (Sweden)

    Riddell John

    2007-11-01

    Full Text Available Abstract Aim To prospectively determine the role of platelet glycoprotein IIIa (GP IIIa gene PlA1/PlA2 polymorphism on the long-term clinical outcome in patients with coronary artery disease undergoing coronary stenting. Design and setting Prospective observational study in the University Hospital of Caen (France. Patients and methods 1 111 symptomatic consecutive Caucasian patients treated with percutaneous coronary intervention including stent implantation underwent genotyping for GP IIIa PlA1/A2. Main outcome measures Long-term clinical outcome in terms of the rate of major adverse cardiac events (MACE, ie death from any cause, non-fatal Q wave or non Q wave myocardial infarction, and need for coronary revascularisation was obtained and subsequently stratified according to the GP IIIa PlA1/A2 polymorphism. Results Three groups of patients were determined according to the GP IIIa PlA1/A2 polymorphism (71.6% had the A1/A1, 25.8% had the A1/A2 and 2.6% had the A2/A2 genotype. These three groups were comparable for all clinical characteristics including sex ratio, mean age, vascular risk factors, previous coronary events, baseline angiographic exam, indication for the percutaneous coronary intervention and drug therapy. The incidence of MACE was similar in these 3 groups of patients during a mean follow-up period of 654+/-152 days. Independent risk factors for MACE were a left ventricular ejection fraction Conclusion The GP IIIa PlA1/A2 polymorphism does not influence the clinical long-term outcome in patients with symptomatic coronary disease undergoing percutaneous coronary intervention with stent implantation.

  8. 3-dimensional numerical analysis of friction stir welding of copper and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Aleagha, M. E. Aalami; Hadi, Behzad; Shahbazi, Mohammad Ali [Dept. of Mechanical Engineering, School of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-08-15

    A time dependent Eulerian thermal/material flow model of friction stir welding was developed and applied to the dissimilar joining of pure copper and aluminum 1050-H16 alloy to investigate the maximum penetration of base metals. Thermal and material flow analysis was done with the assumed velocity field in the stir zone and considering a thermal source of energy obtained from the both Coulomb type of friction and the loss of shear stress in a non-Newtonian viscous behavior of metal flow. The developed model was used to estimate temperature gradient and penetration of material under three different conditions of tool offset and compared with the experimental results. The model shows that the penetration of the base metals is closely related to tool offset. In all of the cases, the metal fixed in the advancing side is copper. Nevertheless, when considering tool offset in the copper side and also when considering tool offset in the aluminum side, penetrating metals are copper and aluminum, respectively. Also, the model shows that the maximum temperature achieved in the base metals significantly depends on the tool offset.

  9. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  10. Characterization of a canine model of glycogen storage disease type IIIa

    Directory of Open Access Journals (Sweden)

    Haiqing Yi

    2012-11-01

    Glycogen storage disease type IIIa (GSD IIIa is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR. The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT, aspartate transaminase (AST and alkaline phosphatase (ALP activities; serum creatine phosphokinase (CPK activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.

  11. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    Science.gov (United States)

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  12. Programmable type III-A CRISPR-Cas DNA targeting modules.

    Directory of Open Access Journals (Sweden)

    H Travis Ichikawa

    Full Text Available The CRISPR-Cas systems provide invader defense in a wide variety of prokaryotes, as well as technologies for many powerful applications. The Type III-A or Csm CRISPR-Cas system is one of the most widely distributed across prokaryotic phyla, and cleaves targeted DNA and RNA molecules. In this work, we have constructed modules of Csm systems from 3 bacterial species and heterologously expressed the functional modules in E. coli. The modules include a Cas6 protein and a CRISPR locus for crRNA production, and Csm effector complex proteins. The expressed modules from L. lactis, S. epidermidis and S. thermophilus specifically eliminate invading plasmids recognized by the crRNAs of the systems. Characteristically, activation of plasmid targeting activity depends on transcription of the plasmid sequence recognized by the crRNA. Activity was not observed when transcription of the crRNA target sequence was blocked, or when the opposite strand or a non-target sequence was transcribed. Moreover, the Csm module can be programmed to recognize plasmids with novel target sequences by addition of appropriate crRNA coding sequences to the module. These systems provide a platform for investigation of Type III-A CRISPR-Cas systems in E. coli, and for introduction of programmable transcription-activated DNA targeting into novel organisms.

  13. Leading research on super metal. 2. Aluminium materials; Super metal no sendo kenkyu. 2. Ogata sozai (aluminium kei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Aluminum materials were surveyed to improve aluminum materials drastically so as to play an important role as prospective materials in response to the changing social environment. Aluminum materials have become the following metal materials to iron materials due to their light weight, durability, and profitability. Based on their merits and demerits, it was made clear how the aluminum materials contribute to the future resource saving, energy saving, and global environmental protection. Review was made on the two research and development themes which contribute to the creation of super metals. Hence, the themes proposed are focused on the creation of new aluminum mill products with ultra fine grain structure using very low temperature processing and on the creation of super-formability aluminum alloy sheets by advanced texture control using processing which can enhance the shearing stress. Results of the research and development are expected to provide wide applicability for other metals, ceramics, and polymers. 433 refs., 315 figs., 56 tabs.

  14. Reuse of Aluminum Dross as an Engineered Product

    Science.gov (United States)

    Dai, Chen; Apelian, Diran

    To prevent the leaching of landfilled aluminum dross waste and save the energy consumed by recovering metallic aluminum from dross, aluminum dross is reused as an engineering product directly rather than "refurbished" ineffectively. The concept is to reduce waste and to reuse. Two kinds of aluminum dross from industrial streams were selected and characterized. We have shown that dross can be applied directly, or accompanied with a simple conditioning process, to manufacture refractory components. Dross particles below 50 mesh are most effective. Mechanical property evaluations revealed the possibility for dross waste to be utilized as filler in concrete, resulting in up to 40% higher flexural strength and 10% higher compressive strength compared to pure cement, as well as cement with sand additions. The potential usage of aluminum dross as a raw material for such engineering applications is presented and discussed.

  15. Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651aluminum alloy

    International Nuclear Information System (INIS)

    Sohn, Hye Jeong; Haryadi, Gunawan Dwi; Kim, Seon Jin

    2014-01-01

    The statistical aspects of fatigue crack growth life of base metal (BM), weld metal (WM) and heat affected zone (HAZ) in friction stir welded (FSWed) 7075-T651 aluminum alloy has been studied by Weibull statistical analysis. The fatigue crack growth tests were performed at room temperature on ASTM standard CT specimens under three different constant stress intensity factor range controls. The main objective of this paper is to investigate the effects of statistical aspects of fatigue crack growth life on stress intensity factor ranges and material properties, namely BM, WM and HAZ specimens. In this work, the Weibull distribution was employed to estimate the statistical aspects of fatigue crack growth life. The shape parameter of Weibull distribution for fatigue crack growth life was significantly affected by material properties and the stress intensity factor range. The scale parameter of WM specimen exhibited the lowest value at all stress intensity factor ranges.

  16. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  17. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  18. Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors

    Science.gov (United States)

    Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.

    2016-10-01

    Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.

  19. Aluminum-containing dense deposits of the glomerular basement membrane: identification by energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Smith, D.M. Jr.; Pitcock, J.A.; Murphy, W.M.

    1982-01-01

    Heavy metals, including gold, mercury, lead, bismuth, and cadmium, have the potential to cause renal disease. With the development of X-ray microanalysis, these heavy metals can now be identified in tissue deposits. This report describes a case of renal failure, probably related to dysproteinemia, in which granular, electron-opaque dense deposits were present in the glomerular basement membranes. Energy dispersive X-ray analysis demonstrated that these dense deposits contained aluminum. An analysis of this patient's history in relation to the current knowledge of aluminum metabolism suggests that the aluminum deposition occurred secondary to previous glomerular injury. This case emphasizes the need to utilize heavy metal identification technology whenever granular, electron-opaque dense deposits are identified and represents, to our knowledge, the first study to document aluminum deposits within the glomerular basement membrane of humans

  20. Acute Toxicity and Accumulation of Iron, Manganese and, Aluminum in Caspian Kutum Fish (Rutilus kutum

    Directory of Open Access Journals (Sweden)

    Saeed Zahedi

    2014-03-01

    Full Text Available Background: Iron, manganese, and aluminum are three abundant metals on earth and their concentrations have increased in aquatic environments as a result of natural and industrial activities. This study was undertaken to report the median acute toxicity (LC50 and accumulation of the sub-lethal concentration (10% 96-h LC50 of iron (Fe, manganese (Mn and aluminum (Al in kutum (Rutilus kutum fingerlings. Methods: For the 96-h LC50, the fish were exposed to concentrations of 105, 111, 117, 123, 129 and 135 mg/l of Fe and 40, 45, 50, 55, 60, and 65 mg/l of Mn and 18, 22, 26, 30, 34 and 38 mg/l of aluminum for 4 days. For sublethal exposure, they were exposed to mediums with concentrations of 12.3, 5.4 and 2.9 for Fe, Mn, and aluminum, respectively. Metal concentrations were determined by atomic absorption spectrophotometry in the gill tissues. Results: Probit analysis showed the 96-h LC50 values of 122.98, 54.39, and 28.89 mg/l for Fe, Mn, and aluminum, respectively. Sub-lethal tests were conducted with nominal concentrations of 12.3, 5.4, and 2.9 mg/l of Fe, Mn, and aluminum for four days, respectively. Significant accumulations were observed in gills for all tested metals as compared to the control groups in short-term exposure (P<0.05. Conclusion: Obtained results clearly show that aluminum is the most toxic metal among tested ones for kutum fingerlings and it has the highest branchial AF value during sub-lethal exposure.

  1. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  2. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  3. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  4. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  5. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    International Nuclear Information System (INIS)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood; Hafeez, Samia

    2013-01-01

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  6. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  7. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    Science.gov (United States)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  8. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    International Nuclear Information System (INIS)

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2007-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin

  9. Fabrication of aluminum nitride crucibles for molten salt and plutonium compatibility studies

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1991-01-01

    The overall objective of this research was to fabricate a calcium oxide sinter-aided aluminum nitride crucible and determine the compatibility of this crucible with molten chloride salts and plutonium metal in the DOR process. Calcium oxide sinter-aided aluminum nitride was preferred over yttrium oxide sinter-aided aluminum nitride because of (1) the presence of calcium chloride, calcium oxide, and calcium metal in the molten salts utilized in the DOR process, and (2) the higher volatility of the secondary phases formed compared with phases resulting from the addition of yttrium oxide during the aluminum nitride sintering process. The calcium oxide system may yield a higher purity crystal structure with fewer secondary phases present than in the yttrium oxide system. The secondary phases that are present in the grain boundaries may be unreactive with the calcium chloride salt due to the presence of calcium in the secondary phases

  10. Application of wetting to fabrication of boron nitride/aluminum composites

    International Nuclear Information System (INIS)

    Fujii, Hidetoshi; Nakae, Hideo; Okada, Koji

    1993-01-01

    The focus of this paper is the establishment of a cheap and easy method of manufacturing metal matrix composites by optimizing the wetting and structural properties of the materials used, (i.e. boron nitride/aluminum). Although aluminum is one of the most prominent metals in the fabrication of metal matrix composites, the oxidation of aluminum prevents us from precisely measuring the wetting of ceramics. Therefore, an improved sessile drop method was devised to prevent the oxidation of the aluminum. Using this method, the contact angle between h-BN (hexagonal-BN) and molten Al was measured in a purified He+3%H 2 atmosphere and in a very high vacuum in a temperature range of 1173-1373K. The contact angle progressed through four phases similar to typical ceramics. However, the contact angle became 0 degree in phase 4 at and over 1273K. This contact angle is extremely lower than the contact angles for typical ceramics and it indicates that h-BN is an ideal material for manufacturing a metal matrix composite from the viewpoint of wetting. It was also confirmed that AlN was produced at the solid/liquid interface and caused the contact angle to decrease to 0 degree. AlN has good structural properties whereas h-BN does not. Accordingly, it is suggested that h-BN particles, which have good wetting, be inserted into the Al melt. This will cause the surface of the h-BN to be converted into AlN which has good structural properties. Using this process, a metal matrix composite, which has good structural properties, should be produced. Further, since h-BN is lubricious, a material should be produced which has high wear resistance and good lubricating properties

  11. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, George [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-06-01

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles.

  12. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    Science.gov (United States)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  13. National Patterns of Care and Outcomes after Combined Modality Therapy for Stage IIIA Non-small Cell Lung Cancer

    Science.gov (United States)

    Patel, Aalok P.; Crabtree, Traves D.; Bell, Jennifer M.; Guthrie, Tracey J.; Robinson, Clifford G.; Morgensztern, Daniel; Colditz, Graham A.; Kreisel, Daniel; Krupnick, A. Sasha; Bradley, Jeffrey D.; Patterson, G. Alexander; Meyers, Bryan F.; Puri, Varun

    2014-01-01

    Introduction The role of surgery in addition to chemotherapy and radiation for stage IIIA non-small cell lung cancer (NSCLC) remains controversial. Since there is limited data on the benefit from surgery in this setting, we evaluated the use of combined modality therapy nationally, and explored the outcomes with and without the addition of surgery. Methods Patient variables and treatment-related outcomes were abstracted for patients with clinical stage IIIA NSCLC from the National Cancer Database. Patients receiving chemotherapy and radiation (CR) were compared to those undergoing chemotherapy, radiation, and surgery in any sequence (CRS). Results Between 1998 and 2010, 61339 patients underwent combined modality treatment for clinical stage IIIA NSCLC. Of these, 51979 (84.7%) received CR while 9360 (15.3%) underwent CRS. Patients in the CRS group were younger, more likely females and Caucasians, had smaller tumors and lower Charlson comorbidity scores. The 30-day surgical mortality was 200/8993 (2.2%). The median overall survival favored the CRS group in both unmatched (32.4 months vs. 15.7 months, p<.001) and matched analysis based on patient characteristics (34.3 months vs. 18.4months, p<.001). Conclusion There is significant heterogeneity in the treatment of stage IIIA NSCLC in the United States. Patients selected for surgery in addition to chemoradiation therapy appear to have better long-term survival. PMID:24722151

  14. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  15. Effect of Silicon on Desulfurization of Aluminum-killed Steels

    Science.gov (United States)

    Roy, Debdutta

    Recent reports have suggested that silicon has a beneficial effect on the rate of desulfurization of Al-killed steel. This effect is difficult to understand looking at the overall desulfurization reaction which does not include silicon. However an explanation is proposed by taking into account the (SiO2)/[Si] equilibrium in which some Al reaching the slag-metal interface is used in reducing the SiO2 in the slag. This reaction can be suppressed to some extent if the silicon content of the metal is increased and in doing so, more Al will be available at the slag-metal interface for the desulfurization reaction and this would increase the rate of the desulfurization reaction. A model was developed, assuming the rates are controlled by mass transfer, taking into account the coupled reactions of the reduction of silica, and other unstable oxides, namely iron oxide and manganese oxide, in the slag and desulfurization reaction in the steel by aluminum. The model predicts that increasing silicon increases the rate and extent of desulfurization. Plant data was analyzed to obtain rough estimates of ladle desulfurization rates and also used to validate the model predictions. Experiments have been conducted on a kilogram scale of material in an induction furnace to test the hypothesis. The major conclusions of the study are as follows: The rate and extent of desulfurization improve with increasing initial silicon content in the steel; the effect diminishes at silicon contents higher than approximately 0.2% and with increasing slag basicity. This was confirmed with kilogram-scale laboratory experiments. The effects of the silicon content in the steel (and of initial FeO and MnO in the slag) largely arise from the dominant effects of these reactions on the equilibrium aluminum content of the steel: as far as aluminum consumption or pick-up is concerned, the Si/SiO2 reaction dominates, and desulfurization has only a minor effect on aluminum consumption. The rate is primarily

  16. Adenovirus structural protein IIIa is involved in the serotype specificity of viral DNA packaging.

    Science.gov (United States)

    Ma, Hsin-Chieh; Hearing, Patrick

    2011-08-01

    The packaging of the adenovirus (Ad) genome into a capsid displays serotype specificity. This specificity has been attributed to viral packaging proteins, the IVa2 protein and the L1-52/55K protein. We previously found that the Ad17 L1-52/55K protein was not able to complement the growth of an Ad5 L1-52/55K mutant virus, whereas two other Ad17 packaging proteins, IVa2 and L4-22K, could complement the growth of Ad5 viruses with mutations in the respective genes. In this report, we investigated why the Ad17 L1-52/55K protein was not able to complement the Ad5 L1-52/55K mutant virus. We demonstrate that the Ad17 L1-52/55K protein binds to the Ad5 IVa2 protein in vitro and the Ad5 packaging domain in vivo, activities previously associated with packaging function. The Ad17 L1-52/55K protein also associates with empty Ad5 capsids. Interestingly, we find that the Ad17 L1-52/55K protein is able to complement the growth of an Ad5 L1-52/55K mutant virus in conjunction with the Ad17 structural protein IIIa. The same result was found with the L1-52/55K and IIIa proteins of several other Ad serotypes, including Ad3 and Ad4. The Ad17 IIIa protein associates with empty Ad5 capsids. Consistent with the complementation results, we find that the IIIa protein interacts with the L1-52/55K protein in vitro and associates with the viral packaging domain in vivo. These results underscore the complex nature of virus assembly and genome encapsidation and provide a new model for how the viral genome may tether to the empty capsid during the encapsidation process.

  17. 75 FR 22109 - Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

    Science.gov (United States)

    2010-04-27

    ... Aluminium, Ltd., a producer of aluminum extrusions, for the 2008 2009 fiscal year. See Volume II of the..., produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing with the numbers 1, 3, and 6...

  18. Transformation and fragmentation behavior of molten aluminum in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, S.; Kinoshita, I.; Ueda, N.; Sugiyama, K. I.

    2003-01-01

    In order to investigate the possibility of fragmentation of the metallic alloy fuel on liquid phase formed by metallurgical reactions, which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum and sodium under the condition that the boiling of sodium on the surface of the melt does not occur. The melting point of aluminum (933K) is roughly equivalent to the liquefaction temperature between the U-Pu-Zr alloy fuel and the SUS cladding (about 923K). The thermal fragmentation of a molten aluminum with a solid crust in the sodium pool is caused by the transient pressurization within the melt confined by the solid crust even under the condition that the instantaneous contact interface temperature between the melt and the sodium is below the boiling point of sodium. This indicates the possibility that the metallic alloy fuel on liquid phase formed by metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt. The transient pressurization within the melt is considered to be caused by following two mechanisms. i) the overheating of the coolant entrapped hydrodynamically inside the aluminum melt confined by solid crust ii) the progression of solid crust inward and the squeeze of inner liquid part of the aluminum melt confined by solid crust It is found that the degree of fragmentation defined by mass median diameter has the same tendency for different dropping modes (drop or jet) with different mass and ambient Weber number of the melt in the present experimental conditions

  19. Salt-soda sinter process for recovering aluminum from fly ash

    Science.gov (United States)

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  20. [The progressive reduction of functioning in the course of mucopolysaccharidosis type IIIA - longitudinal study of two siblings].

    Science.gov (United States)

    Michalska, Agata; Nawrocka, Małgorzata; Znój, Dorota

    2013-01-01

    This paper presents a description of changes in the functioning of two siblings diagnosed with mucopolysaccharidosis type III A. Both are under specialist care exercised by the Rehabilitation, Care and Education Centre in the city Kielce, including care of a oligophrenopedagogue, a psychologist, a speech therapist and a physiotherapist. Evaluation of changes in functioning of two siblings diagnosed with mucopolysaccharidosis type IIIA. The longitudinal study covered two children with MPS type IIIA. During the 29 months of observation, there were six measurements on the basis of PPAC Gunzburg Inventory in the Polish adaptation by Tadeusz Witkowski. The results are shown in the form of PPAC diagrams and profiles of functioning. Despite the differences in the presence and severity of somatic and neurocognitive symptoms, functioning both of the boy and the girl does not differ from functioning described in the literature. Therapeutic interventions have produced short-term improvements in its area of self-service, communication and activities. Despite the similar trend of changes in functioning, there is an inter-individual variability in the quality of patterns and dynamics of progress. The progressive decrease in the level of functioning in patients with MPS IIIA does not preclude the acquisition of new skills. They are not permanent, however. There is a need for functional assessment in order to learn more about the specificity of the disease and to assume an individualised therapeutic approach aimed at improving the quality of life of patients with MPS IIIA and, indirectly, the quality of life of their families.

  1. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  2. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  3. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    OpenAIRE

    Gerrard Eddy Jai Poinern; Derek Fawcett; Nurshahidah Ali

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical ...

  4. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  5. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  6. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  7. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Directory of Open Access Journals (Sweden)

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  8. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...... conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula...... was presented for correlation between external pressure and heat transfer coefficient. Acceptable agreement with data in literature shows the accuracy of the proposed formula....

  9. The corrosion behavior of iron and aluminum under waste disposal conditions

    International Nuclear Information System (INIS)

    Fujisawa, R.; Cho, T.; Sugahara, K.; Takizawa, Y.; Hironaga, M.

    1997-01-01

    The generation of hydrogen gas from metallic waste in corrosive disposal environment is an important issue for the safety analysis of low-level radioactive waste disposal facilities in Japan. In particular iron and aluminum are the possibly important elements regarding the gas generation. However, the corrosion behavior of these metals has not been sufficiently investigated under the highly alkaline non-oxidizing disposal conditions yet. The authors studied the corrosion behavior of iron and aluminum under simulated disposal environments. The quantity of hydrogen gas generated from iron was measured in a closed cell under highly alkaline non-oxidizing conditions. The observed corrosion rate of iron in the initial period of immersion was 4 nm/year at 15 C, 20 nm/year at 30 C, and 200 nm/year at 45 C. The activation energy was found to be 100 kJ/mol from Arrhenius plotting of the above corrosion rates. The corrosion behavior of aluminum was studied under an environment simulating conditions in which aluminum was solidified with mortar. In the initial period aluminum corroded rapidly with a corrosion rate of 20 mm/year. However, the corrosion rate decreased with time, and after 1,000 hours the rate reached 0.001 to 0.01 mm/year. Thus the authors obtained data on hydrogen gas generation from iron and aluminum under the disposal environment relevant to the safety analysis of low-level radioactive disposal facilities in Japan

  10. Equation of State of Aluminum-Iron Oxide-Epoxy Composite

    National Research Council Canada - National Science Library

    Jordan, Jennifer L; Foley, Jason R; Dick, Richard D; Ferranti, Louis; Thadhani, Naresh N; McDowell, David L; Austin, Ryan A; Benson, David J

    2007-01-01

    ...) donor material, using piezoelectric pins. The explosive loading of the metal donors (aluminum and copper) will be discussed. Gas gun experiments provide complementary lower pressure data in which piezoelectric polyvinylidene fluoride...

  11. Hybrid microcircuit metallization system for the SLL micro actuator

    International Nuclear Information System (INIS)

    Hampy, R.E.; Knauss, G.L.; Komarek, E.E.; Kramer, D.K.; Villaueva, J.

    1976-03-01

    A thin film technique developed for the SLL Micro Actuator in which both gold and aluminum can be incorporated on sapphire or fine grained alumina substrates in a two-level metallization system is described. Tungsten is used as a lateral transition metal permitting electrical contact between the gold and aluminum without the two metals coming in physical contact. Silicon dioxide serves as an insulator between the tungsten and aluminum for crossover purposes, and vias through the silicon dioxide permit interconnections where desired. Tungsten-gold is the first level conductor except at crossovers where tungsten only is used and aluminum is the second level conductor. Sheet resistances of the two levels can be as low as 0.01 ohm/square. Line widths and spaces as small as 0.025 mm can be attained. A second layer of silicon dioxide is deposited over the metallization and opened for all gold and aluminum bonding areas. The metallization system permits effective interconnection of a mixture of devices having both gold and aluminum terminations without creating undesirable gold-aluminum interfaces. Processing temperatures up to 400 0 C can be tolerated for short times without effect on bondability, conductor, and insulator characteristics, thus permitting silicon-gold eutectic die attachment, component soldering, and higher temperatures during gold lead bonding. Tests conducted on special test pattern circuits indicate good stability over the temperature range -55 to +150 0 C. Aging studies indicate no degradation in characteristics in tests of 500 h duration at 150 0 C

  12. Preliminary investigation of aluminum combustion in air and steam.

    OpenAIRE

    Hallenbeck, Amos Edward.

    1983-01-01

    Approved for public release; distribution in unlimited. The goal of the experiment is to understand the role of metal-steam combustion in the explosion of underwater shaped cnarges. An apparatus was constructed to investigate combustion of aluminum in stes.m. For background information, aluminum wires (1 mm diameter, 50 mm length) were ignited in air by high current (480 amperes) . Tests in air and steam were photographed using 35 mm color slides and 16 mm movies (4300 fr...

  13. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  14. Corrosion resistance properties of enamels with high B2O3-P2O5 content to molten aluminum

    International Nuclear Information System (INIS)

    Zhou, M.; Li, K.; Shu, D.; Sun, B.D.; Wang, J.

    2003-01-01

    Anticorrosive properties of borophosphate and boron-free enamels to molten aluminum were investigated using SEM and electron probe. Carbonates of alkali metal and alkaline earth metal were added in an appropriate weight ratio to achieve desired melting temperature of the enamels. SEM examination on the solidified interface between the enamels and aluminum alloy show that the enamels can spread slightly on aluminum alloy. For anticorrosive sample of borophosphate enamel, phosphorus was not detected by electron probe at the side of aluminum alloy near the interface, but silicon was detected in the silica-free enamels side. For the sample of boron-free enamels, however, phosphorus was found at the side of aluminum alloy near the interface. It was revealed that the enamels with high B 2 O 3 -P 2 O 5 content have high corrosion resistance to molten aluminum

  15. Electromagnetic hammer removes weld distortions from aluminum tanks

    Science.gov (United States)

    Schwinghamer, R. J.

    1965-01-01

    Distortions around weld areas on sheet-aluminum tanks and other structures are removed with a portable electromagnetic hammer. The hammer incorporates a coil that generates a controlled high-energy pulsed magnetic field over localized areas on the metal surface.

  16. Decontamination and reuse of ORGDP aluminum scrap

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF 6 . This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible

  17. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  18. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    Science.gov (United States)

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  19. Metal-nonmetal oscillations in doped blue phosphorene: a first-principles study

    Science.gov (United States)

    Li, Hui; Zhang, Liwei; Cai, Xiaolin; Li, Xiaohua; Wang, Baoji; Yu, Weiyang; Zhao, Ruiqi

    2018-05-01

    Based on density functional theory (DFT), we have systematically investigated the geometry structure and electronic properties of group IIIA, IVA, VA, and VIA atoms doped blue phosphorene, such as B‑, C‑, N‑, O‑, Al‑, Si- and S-doped blue phosphorene systems. We find that the electronic properties of blue phosphorene are drastically modified by the number of valence electrons in dopant atoms. An intriguing general rule of metal-nonmetal oscillations have been obtained that the dopant atoms from even group, such as IVA and VIA, lead to metal properties, while dopant atoms from odd group, such as IIIA and VA, give rise to semiconductor properties, which is different from traditional n or p doping effect in bulk case. This even–odd oscillating behavior is attributed to the peculiar bonding characteristics of blue phosphorene and the strong hybridization of sp orbitals between dopants and blue phosphorene. Then the underlying mechanism has been investigated with the electronic filling analysis. These results pave an intriguing way to tune the transport properties of electronic and photoelectronic devices based on blue phosphorene.

  20. Synthesis of aluminum oxide by the polymer precursor method (Pechini) in 4: 1 ratio of citric acid: metal cation: calcination temperature effect

    International Nuclear Information System (INIS)

    Silva, M.C.; Lira, H.L.; Ribeiro, P.C.; Freitas, N.L.

    2014-01-01

    The technology field is nanopowders prominent in science since these materials fall in various sectors regarding their applications. This work aims at the synthesis of aluminum oxide by polymeric precursors in 4:1 ratio of citric acid:metal cation and evaluate the influence of calcination temperature on their structural and morphological characteristics. The samples after reaction were characterized by XRD and thermal analysis. After calcination 500-1200°C the samples were characterized by XRD, SEM and particle size distribution. The results showed that the variation of the calcination temperature is sufficient to achieve a same material with different structural and morphological characteristics. The most stable phase aluminum oxide arose only after calcination at 1100°C, below 900°C, the amorphous material appeared. As regards the morphology, the change was not as significant as compared to the structure. (author)

  1. Hypofractionated Radiation Therapy After Mastectomy in Preventing Recurrence in Patients With Stage IIa-IIIa Breast Cancer

    Science.gov (United States)

    2018-04-06

    Ductal Breast Carcinoma; Invasive Breast Carcinoma; Lobular Breast Carcinoma; Medullary Breast Carcinoma; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Tubular Breast Carcinoma

  2. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  3. Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooseok [Inha University, Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (Korea, Republic of); Matsuo, Jiro; Cheng, Yingying [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering (Japan); Watanabe, Takayuki, E-mail: watanabe@chemenv.titech.ac.jp [Kyushu University, Department of Chemical Engineering (Japan)

    2013-08-15

    Boron-rich compounds of AlB{sub 12} and AlB{sub 10} nanoparticles were synthesized by a radiofrequency thermal plasma. Aluminum and boron raw powders were evaporated in virtue of high enthalpy of the thermal plasma in upstream region, followed by the formation of aluminum boride nanoparticles in the tail region of plasma flame with rapid quenching. A high production rate of aluminum boride was confirmed by the X-ray diffraction measurement in the case of high input power, high boron content in raw material and helium inner gas. Polyhedral nanoparticles of 20.8 nm in mean size were observed by a transmission electron microscope. In the raw powder mixture of aluminum, titanium, and boron, titanium-boride nanoparticles were synthesized preferentially, because the Gibbs free energy for the boridation of titanium is lower than that of aluminum. Since the nucleation temperature of boron is higher than that of aluminum, the condensation of metal monomers onto boron nuclei results in the formation of boron-rich aluminum boride nanoparticles.

  4. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity.

    Science.gov (United States)

    Pan, Ye-Tang; Zhang, Lu; Zhao, Xiaomin; Wang, De-Yi

    2017-05-01

    Novel honeycomb-like mesoporous aluminum hydroxide (pATH) was synthesized via a facile one-step reaction by employing ZIF-8 as a template. This self-decomposing template was removed automatically under acidic conditions without the need for any tedious or hazardous procedures. Meanwhile, the pore size of pATH was easily modulated by tuning the dimensions of the ZIF-8 polyhedrons. Of paramount importance was the fact that the dissolved ZIF-8 in solution was regenerated upon deprotonation of the ligand under mild alkali conditions, and was reused in the preparation of pATH, thus forming a delicate synthesis cycle. The renewable template conferred cost-effective and sustainable features to the as-synthesized product. As a proof-of-concept application, the fascinating nanoporous structure enabled pATH to load more phosphorous-containing flame retardant and endowed better interaction with epoxy resin over that of commercial aluminum hydroxide. The limiting oxygen index, UL-94 vertical burning test and cone calorimeter test showed that the results of epoxy with the modified pATH rivalled those of epoxy with two times the loading amount of the commercial counterpart, while the former presented better mechanical properties. The proposed "amorphous replica method" used in this work will advance the potential for launching a vast area of research and technology development for the preparation of porous metal hydroxides for use in practical applications.

  5. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

    Science.gov (United States)

    Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.

    2018-04-01

    A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

  6. FY 1999 report on the results of the investigational study on the promotion of application of aluminum materials to automobiles by the development of low-cost aluminum materials and aluminum resource recycling technology; 1999 nendo tei cost aluminium zai oyobi arumi shigen junkan gijutsu no kaihatsu ni yoru jidosha eno aluminium zai tekiyo suishin ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Presently, the aluminum demand in Japan is approximately 3.8 million tons, and the aluminum discharged as scrap reaches approximately 1.7 million tons/year. Out of the discharged scrap, 54% is recovered as the secondary metal, and the rest, 0.77 million tons, is not recovered and dumped for land reclamation. In future, if the present cascade type recycling goes on, it is predicted that a gap between supply and demand of about 0.5 million tons will arise. To cope with this problem, the following are the measures to be taken : 1) development of the technology to promote the use of recycled aluminum metal for automobiles in which a lot of aluminum is most likely to be used because of the increasing fuel consumption, etc. 2) establishment of a recycling system by which the waste sash discharged in quantity from the construction field is again used as sash. From the two points of view, which are needed in the case of using a lot of aluminum for automobiles, the heightening of competitiveness in the aluminum industry and the recycling in which the aluminum expanded materials used for automobiles are efficiently recycled as expanded materials in the recycling economic system, this survey extracted problems and made proposals, overlooking the state of the aluminum use in automobiles, state of the treatment of used cars, state of manufacturing/processing technology of aluminum products. (NEDO)

  7. Actualización en el tratamiento del cáncer pulmonar de células no pequeñas en etapa IIIA con afectación N2 Update on treatment of stage IIIA non-small cell lung cancer with N2 disease

    Directory of Open Access Journals (Sweden)

    Miguel Emilio García Rodríguez

    2012-09-01

    Full Text Available Los pacientes afectados de cáncer de células no pequeñas del pulmón en etapa IIIA, con afectación ganglionar N2, son comunes y considerados por muchos médicos como un subgrupo heterogéneo, y su tratamiento es controversial. Con el objetivo de realizar una revisión bibliográfica actualizada del tema en cuestión y definir cuáles son las opciones de tratamiento de estos enfermos en esta etapa, se realizó una búsqueda de resúmenes y artículos completos en diferentes bases de datos (Medline, Cochrane, Pubmed, Ebsco, Hinari, y se utilizó para ello el buscador End Note, con las siguientes palabras en inglés y su traducción en español: lung cáncer, stage IIIA, radiotherapy, chemotherapy, adyuvant treatment, surgery, limphoadenectomy. El manejo óptimo de pacientes en etapa IIIA N2 permanece como una de las áreas más polémicas en el cuidado del paciente con cáncer pulmonar de células no pequeñas, probablemente por las amplias variaciones patológicas en esta etapa, por lo que se acepta el tratamiento quirúrgico de primera intención en aquellos pacientes con una enfermedad N2 mínima y en el otro extremo se realiza tratamiento con quimiorradioterapia definitivo o prequirúrgico de inducción en casos seleccionados.The patients suffering stage IIIA non-small cell lung cancer with N2 ganglionic diseases are common and considered as an heterogeneous group by many physicians. Their treatment arouses controversies. For the purpose of making an updated literature review on this topic and defining the treatment options for these patients on this stage III, a number of full articles and of abstracts was searched on several database (Medline, Cochrane, Pubmed, Ebsco, Hinari. To this end, the End Note locator was used with the following English words and their respective Spanish translations: lung cancer, stage IIIa, radiotherapy, chemotherapy, adjuvant treatment, surgery, lymphoadenectomy. The optimal management of patients classified

  8. Aluminum as a source of background in low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Majorovits, B., E-mail: bela@mppmu.mpg.de [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Abt, I. [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, S.S.17/bis, km 18 plus 910, I-67100 Assergi (Italy); Volynets, O. [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2011-08-11

    Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10{sup -5} counts/(kg y keV) in the region of interest around the Q-value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of {sup 22}Na, {sup 26}Al, {sup 226}Ra and {sup 228}Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.

  9. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    Science.gov (United States)

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-02-24

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

  10. The effects of aluminum or scandium on the toughness, density and ...

    African Journals Online (AJOL)

    The effects of the substitution of aluminum or scandium on the density, toughness as well as the stability of the phases formed by such an addition on platinum, iridium, rhodium and palladium metals were evaluated with the density functional quantum mechanical calculation methods. All the metals had four atoms per ...

  11. Diffusionless bonding of aluminum to Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.

    1965-04-01

    Aluminum can be bonded to zirconium without difficulty even when a thin layer of oxide is present on the surface of the zirconium . No detectable diffusion takes place during the bonding process. The bond layer can be stretched as much. as 8% without affecting the bond. The bond can be heated for 1000 hours at 260 o C (500 o F), and can be water quenched from 260 o C (500 o F) without any noticeable change in the bond strength. An extrusion technique has been devised for making transition sections of aluminum bonded to zirconium which can then be used to join these metals by conventional welding. Welding can be done close to the bond zone without seriously affecting the integrity of the bond. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 26, 1965. (author)

  12. Enhancement of the mechanical properties of an aluminum metal matrix nanocomposite by the hybridization technique

    Directory of Open Access Journals (Sweden)

    Kalidindi Sita Rama Raju

    2016-07-01

    Full Text Available A uniform distribution of nanoparticles in the matrix plays a prominent role in improving the composite strength. In the present investigation, two types of launching vehicles, such as aluminum powder (primary and CNTs (secondary, are considered to uniformly carry and launch ultra-fine nanoparticles (13 nm into molten metal. The use of a secondary launching vehicle is identified to promote strengthening compared to a regular primary vehicle, as indicated by the good distribution observed from electron micrographs. CNTs are responsible for hybridizing the composite and also assist strengthening by anchoring to the matrix through the destroyed outer-walls and their axial orientation with the matrix. These results help us in attaining a strength of 197 MPa and a hardness of 93 BHN, with a minimal loss in ductility for the H-3 sample.

  13. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    Science.gov (United States)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  14. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    International Nuclear Information System (INIS)

    Liu Yao; Wang Wenjing; Xie Jijia; Sun Shouguang; Wang Liang; Qian Ye; Meng Yuan; Wei Yujie

    2012-01-01

    Highlights: ► Welding zones by GTAW and GMAW are softer than the parent material Al5083. ► GTAW for Al5083 are mechanically more reliable than that welded by GMAW. ► GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  15. Comprehensive study and design of scaled metal/high-k/Ge gate stacks with ultrathin aluminum oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Asahara, Ryohei; Hideshima, Iori; Oka, Hiroshi; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ogawa, Shingo [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Toray Research Center Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Yoshigoe, Akitaka; Teraoka, Yuden [Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-06-08

    Advanced metal/high-k/Ge gate stacks with a sub-nm equivalent oxide thickness (EOT) and improved interface properties were demonstrated by controlling interface reactions using ultrathin aluminum oxide (AlO{sub x}) interlayers. A step-by-step in situ procedure by deposition of AlO{sub x} and hafnium oxide (HfO{sub x}) layers on Ge and subsequent plasma oxidation was conducted to fabricate Pt/HfO{sub 2}/AlO{sub x}/GeO{sub x}/Ge stacked structures. Comprehensive study by means of physical and electrical characterizations revealed distinct impacts of AlO{sub x} interlayers, plasma oxidation, and metal electrodes serving as capping layers on EOT scaling, improved interface quality, and thermal stability of the stacks. Aggressive EOT scaling down to 0.56 nm and very low interface state density of 2.4 × 10{sup 11 }cm{sup −2}eV{sup −1} with a sub-nm EOT and sufficient thermal stability were achieved by systematic process optimization.

  16. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    International Nuclear Information System (INIS)

    Mautz, E.W.

    1975-11-01

    Literature on the common metals industries, scrap metal relationships, and transportation aspects has been reviewed as background information in a study to determine the feasibility of a portable melting facility for radioactively contaminated metals. This report draws substantially on government-sponsored studies. Aluminum, copper, iron and steel, and nickel metal industries are discussed from the viewpoints of the general industry characteristics, primary metal production processes, and secondary metal processing aspects. 46 references, 10 tables

  17. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  18. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.; Wit, J.H.W. de; Mol, J.M.C.; Terryn, H.

    2012-01-01

    Highlights: ► Localized electrochemical cell and glow discharge optical emission spectrometry were used. ► An electrochemical depth profile of an aluminum brazing sheet was obtained. ► The electrochemical responses were correlated to the microstructural features. - Abstract: Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1 wt% NaCl solution at pH 2.8 were obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion, while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical activity of the outer 10 μm in controlling the corrosion performance of the aluminum brazing sheet.

  19. Fabrication and Microstructure of Metal-Metal Syntactic Foams

    National Research Council Canada - National Science Library

    Nadler, J

    1998-01-01

    .... The composite microstructure consists of thin-wall, hollow Fe-Cr stainless steel spheres cast in various metal matrices including aluminum alloys 6061, 7075, 413, magnesium alloy AZ31B, and unalloyed...

  20. Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(III)-aluminum precipitates.

    Science.gov (United States)

    Violante, Antonio; Pigna, Massimo; Del Gaudio, Stefania; Cozzolino, Vincenza; Banerjee, Dipanjan

    2009-03-01

    Coprecipitation involving arsenic with aluminum or iron has been studied because this technique is considered particularly efficient for removal of this toxic element from polluted waters. Coprecipitation of arsenic with mixed iron-aluminum solutions has received scant attention. In this work we studied (i)the mineralogy, surface properties, and chemical composition of mixed iron-aluminum oxides formed at initial Fe/Al molar ratio of 1.0 in the absence or presence of arsenate [As/ Fe+Al molar ratio (R) of 0, 0.01, or 0.1] and at pH 4.0, 7.0, and 10.0 and aged for 30 and 210 days at 50 degrees C and (ii) the removal of arsenate from the coprecipitates after addition of phosphate. The amounts of short-range ordered precipitates (ferrihydrite, aluminous ferrihydrite and/or poorly crystalline boehmite) were greater than those found in iron and aluminum systems (studied in previous works), due to the capacity of both aluminum and arsenate to retard or inhibitthe transformation of the initially formed precipitates into well-crystallized oxides (gibbsite, bayerite, and hematite). As a consequence, the surface areas of the iron-aluminum oxides formed in the absence or presence of arsenate were usually much larger than those of aluminum or iron oxides formed under the same conditions. Arsenate was found to be associated mainly into short-range ordered materials. Chemical composition of all samples was affected by pH, initial R, and aging. Phosphate sorption was facilitated by the presence of short-range ordered materials, mainly those richer in aluminum, but was inhibited by arsenate present in the samples. The quantities of arsenate replaced by phosphate, expressed as percentages of its total amount present in the samples, were particularly low, ranging from 10% to 26%. A comparison of the desorption of arsenate by phosphate from aluminum-arsenate and iron-arsenate (studied in previous works) and iron-aluminum-arsenate coprecipitates evidenced that phosphate has a greater

  1. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    Science.gov (United States)

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  2. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  3. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  4. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  5. Candidates for Intensive Local Treatment in cIIIA-N2 Non-Small Cell Lung Cancer: Deciphering the Heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Horinouchi, Hidehito, E-mail: hhorinou@ncc.go.jp [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo (Japan); Goto, Yasushi; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Sumi, Minako [Department of Radiation Therapy, National Cancer Center Hospital, Tokyo (Japan); Tamura, Tomohide [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Ohe, Yuichiro [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo (Japan)

    2016-01-01

    Purpose: The purpose of this study was to refine the heterogeneous clinical stage IIIA non-small cell lung cancer (NSCLC) with N2 nodes status (cIIIA-N2) by clinicopathological characteristics before treatment. Methods and Materials: We analyzed data of consecutive patients with cIIIA-N2 NSCLC diagnosed between 1997 and 2010 and treated by chemoradiation therapy (CRT). The appearance of the mediastinal lymph nodes (MLNs) was classified into discrete or infiltrative according to the criteria proposed by the American College of Chest Physicians. In addition, the extent of MLN involvement (MLNI) was classified as limited (close to the primary tumor) or extensive (including upper MLNI in the case of tumors in the lower lobes and vice versa). Results: A total of 148 patients with cIIIA-N2 NSCLC was treated by CRT. The patient characteristics were as follows: males: 118; females: 30; median age: 62 years; appearance of the involved MLNs: 85 discrete, 63 infiltrative; extent of MLNI: 82 limited, 66 extensive; histology: 36 squamous, 112 nonsquamous. The median progression-free survival (PFS) and median overall survival (OS) in the entire subject population were 9.9 and 34.7 months, respectively. A discrete appearance of the involved MLNs and a limited extent of MLNI contributed significantly to a better PFS and OS. The percentages of cases with relapses within the irradiated field classified according to the characteristics of the MLNs were as follows; appearance of the MLNs (24.6% discrete, 18.9% infiltrative); extent of MLNI (25.9 limited, 17.9% extensive). Conclusions: Those with a discrete appearance of the involved MLNs and a limited extent of MLNI at diagnosis could show relatively more favorable outcomes and could be candidates for multimodality therapy.

  6. Ionizing radiation as optimization method for aluminum detection from drinking water samples

    International Nuclear Information System (INIS)

    Bazante-Yamguish, Renata; Geraldo, Aurea Beatriz C.; Moura, Eduardo; Manzoli, Jose Eduardo

    2013-01-01

    The presence of organic compounds in water samples is often responsible for metal complexation; depending on the analytic method, the organic fraction may dissemble the evaluation of the real values of metal concentration. Pre-treatment of the samples is advised when organic compounds are interfering agents, and thus sample mineralization may be accomplished by several chemical and/or physical methods. Here, the ionizing radiation was used as an advanced oxidation process (AOP), for sample pre-treatment before the analytic determination of total and dissolved aluminum by ICP-OES in drinking water samples from wells and spring source located at Billings dam region. Before irradiation, the spring source and wells' samples showed aluminum levels of 0.020 mg/l and 0.2 mg/l respectively; after irradiation, both samples showed a 8-fold increase of aluminum concentration. These results are discussed considering other physical and chemical parameters and peculiarities of sample sources. (author)

  7. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  8. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

    Directory of Open Access Journals (Sweden)

    Takehito Hiraki

    2014-07-01

    Full Text Available The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn’t significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling.

  9. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    .8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work

  10. On-line defect detection of aluminum coating using fiber optic sensor

    Science.gov (United States)

    Patil, Supriya S.; Shaligram, A. D.

    2015-03-01

    Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metallization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.

  11. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A.; Kuepouo, Gilbert; Corbin, Rebecca W.; Gottesfeld, Perry

    2014-01-01

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  12. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  13. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong; Huang Rongbin; Zheng Lansun

    2007-01-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates

  14. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum

    International Nuclear Information System (INIS)

    Wu, Jie; Zhang, Yifan; Liu, Run; Wang, Bin; Hua, Ming; Xue, Wenbin

    2015-01-01

    Highlights: • PEC/N can be applied to low melting point metal. • The spectroscopic characterization of plasma discharge is investigated. • Electron concentration and electron temperature are evaluated for PEC/N. • Phase composition of the carbonitrided layer is determined. • PEC/N improves the corrosion resistance of aluminum greatly. - Abstract: In this paper, plasma electrolytic carbonitriding (PEC/N) method was applied to pure aluminum for the first time. The spectroscopic characterization of plasma discharge during PEC/N process was analyzed and the electron temperature was calculated in terms of optical emission spectroscopy. The results showed the discharge plasma was in local thermal equilibrium (LTE) state. Electron concentration and electron temperature were about 6 × 10 21 m −3 and 4000 K, respectively. The carbonitrided layer contained Al 4 C 3 , AlN and Al 7 C 3 N 3 phases. After PEC/N treatment, the corrosion resistance of pure aluminum was significantly improved, which was related to the formation of nitride phases. This work expands the application of plasma electrolysis technology on the surface modification of low melting point metal

  15. The Solubility of Aluminum in Cryolite-Based Electrolyte-Containing KF

    Science.gov (United States)

    Zhang, Yu; Yu, Jiangyu; Gao, Bingliang; Liu, Yibai; Hu, Xianwei; Shi, Zhongning; Wang, Zhaowen

    2016-04-01

    The solubility of aluminum in NaF-AlF3-CaF2-KF-A12O3 electrolyte system at 1253 K (980 °C) has been measured by the analysis of quenched samples saturated with aluminum. The content of the dissolved metal in the quenched melt was determined by collecting the volume of hydrogen gas when a finely crushed sample is treated with HCl. Addition of 0 to 5 pct KF has no obvious effect on the solubility of aluminum in cryolite-based melts with molar ratio of NaF/AlF3 (cryolite ratio) ranging from 2.2 to 3.0. The solubility of aluminum increases from 0.015 to 0.026 wt pct with cryolite ratio increases from 2.2 to 4.0 in the NaF-AlF3-5 wt pct CaF2-3 wt pct A12O3 electrolyte at 1253 K (980 °C). Aluminum solubility was affected by both chemical replacement reaction of Al + 3NaF = AlF3 + 3Na and physical dissolution.

  16. Bioleaching of copper, aluminum, magnesium and manganese from ...

    African Journals Online (AJOL)

    The present study was done to check the bioleaching feasibility of brown shale for the recovery of copper (Cu), aluminum (Al), magnesium (Mg) and manganese (Mn) ions using Ganoderma lucidum. Different experimental parameters were optimized for the enhanced recovery of metals ions. Effect of different substrates like ...

  17. Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal - oxide - semiconductor field-effect transistors: Effective electron mobility

    International Nuclear Information System (INIS)

    Ragnarsson, L.-A degree.; Guha, S.; Copel, M.; Cartier, E.; Bojarczuk, N. A.; Karasinski, J.

    2001-01-01

    We report on high effective mobilities in yttrium-oxide-based n-channel metal - oxide - semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y 2 O 3 on top of a thin layer of interfacial SiO 2 . The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO 2 -based MOSFETs at higher fields with peak mobilities at approximately 210 cm 2 /Vs. [copyright] 2001 American Institute of Physics

  18. Body burden of aluminum in relation to central nervous system function among metal inert-gas welders.

    Science.gov (United States)

    Riihimäki, V; Hänninen, H; Akila, R; Kovala, T; Kuosma, E; Paakkulainen, H; Valkonen, S; Engström, B

    2000-04-01

    The relationship between elevated internal aluminum loads and central nervous system function was studied among aluminum welders, and the threshold level for adverse effect was defined. For 65 aluminum welders and 25 current mild steel welders body burden was estimated, and the aluminum concentrations in serum (S-Al) and urine (U-Al) were analyzed with graphite furnace atomic absorption spectrometry with Zeeman background correction. Referents and low-exposure and high-exposure groups were defined according to an aggregated measure of aluminum body burden, the group median S-Al levels being 0.08, 0.14, and 0.46 micromol/l, respectively, and the corresponding values for U-Al being 0.4, 1.8, and 7.1 micromol/l. Central nervous system functions were assessed with a neuropsychological test battery, symptom and mood questionnaires, a visual and quantitative analysis of electroencephalography (EEG), and P3 event-related potentials with pitch and duration paradigms. Subjective symptoms showed exposure-related increases in fatigue, mild depression, and memory and concentration problems. Neuropsychological testing revealed a circumscribed effect of aluminum, mainly in tasks demanding complex attention and the processing of information in the working memory system and in the analysis and recall of abstract visual patterns. The visual EEG analysis revealed pathological findings only for aluminum welders. Mild, diffuse abnormalities were found in 17% of the low-exposure group and 27% of the high-exposure group, and mild to moderate epileptiform abnormalities at a frequency of 7% and 17%, respectively. Both objective neurophysiological and neuropsychological measures and subjective symptomatology indicated mild but unequivocal findings dose-dependently associated with increased aluminum body burden. The study indicates that the body burden threshold for adverse effect approximates an U-Al value of 4-6 micromol/l and an S-Al value of 0.25-0.35 micromol/l among aluminum welders.

  19. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  20. Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.

    Science.gov (United States)

    J, Balaji; M G, Sethuraman

    2017-11-01

    The study outlines the role of chitosan, a biopolymer on corrosion behavior of Hy/nano-TiO 2 based sol-gel coating over aluminum metal. In this study organic-inorganic hybrid sols were synthesized through hydrolysis and condensation of 3-glycidoxypropyltrimethoxy silane (GPTMS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TIP) in acidic solution. Chitosan was doped into sol-gel matrix and self-assembled over aluminum substrate. The resultant chitosan-doped-Hy/nano-TiO 2 sol-gel coating was characterized by Fourier Transform Infrared (FT-IR) spectra, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Energy-Dispersive X-ray Spectroscopy (EDX) analyses. The as-tailored aluminum substrate was evaluated for corrosion resistance in neutral medium. The protection ability of these coatings was evaluated by electrochemical impedance studies (EIS) and potentiodynamic polarization (PP) measurements in 3.5% NaCl medium. The EIS and PP results showed that chitosan-doped- Hy/nano-TiO 2 sol-gel coating exhibited better protection from corrosion than the undoped Hy/TiO 2 nanocomposite coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Propagation of Channel Plasmons at the Visible Regime in Aluminum V-Groove Waveguides

    DEFF Research Database (Denmark)

    Lotan, Oren; Smith, Cameron; Bar-David, Jonathan

    2016-01-01

    Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V-grooves are ......Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V......-grooves are fabricated by a process involving UV-photolithography, crystallographic silicon etching, and metal deposition. Polarization measurements of coupling demonstrate a preference to the TM-aligned mode, as predicted in simulations....

  2. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...... electrolytes. The book is an updated review of the technological advances in the fields of electrolytic production and refining of metals, electroplating, anodizing and other electrochemical surface treatments, primary and secondary batteries, electrolytic capacitors; corrosion and protection and others....

  3. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weijiang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); South China Institute of Environmental Science, MEP, Guangzhou 510655 (China); Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Zihang; Tang, Bing; Wu, Shijiao [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-01-25

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+}) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  4. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  5. A study on fracture characteristic of aluminum foam by thickness

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Teng [Dept. of Mechanical Engineering, Graduate School, Kongju National University, Kongju (Korea, Republic of); Cho, Jae Ung [Div. of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of)

    2015-10-15

    Because foam metal has the excellent physical characteristics and mechanical performance, they are applied extensively into a lot of advanced technology areas. The aluminum foam with closed cell is one of the foam metals. It is applied widely into automobile and airplane because of the excellent absorption performance of impact energy. In this study, the mechanical characteristics by thickness was analyzed through the impact experiment of closed-cell aluminum foam, and the simulation analysis was performed for the verification. As the simulation analysis method, a finite-element analysis was carried under the same boundary conditions as the experiment by using ANSYS. By comparing with the results of experiment and simulation, it was thought that the case of thickness of 20 mm was the most efficient of among the cases of thicknesses of 10 mm, 20 mm and 30 mm. At the case of thickness of 20 mm, the absorption energy by comparing with the specimen thickness is shown to become the most among three models. By using the result of this study, it is thought that it can apply the material necessary to develop the mechanical structure with aluminum foam.

  6. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  7. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  8. Study of nanodispersed aluminum and iron alcosols by photoacoustic spectroscopy

    Science.gov (United States)

    An, Vladimir; de Izarra, Charles; Saveliev, Gennady

    2011-06-01

    Nanodispersed aluminum and iron alcosols were prepared by ultrasonic dispersion of nanodispersed aluminum and iron powders in absolute ethanol. The photoacoustic signal (PAS) produced in modulated CO2 laser irradiation (1.026 and 1.096 kHz) of alcosols depends on the nature and method of nanoparticle fabrication and does not depend on their concentration in ethanol (within 1-5 g/l). Chemical interaction between metal nanoparticles and ethanol activated by laser irradiation or/and ultrasound is considered as the cause of the PAS.

  9. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.

    Science.gov (United States)

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H; Zapol, Peter; Curtiss, Larry A; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-03-02

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al 3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.

  10. Structural Investigation of Aluminum in the U.S. Economy using Network Analysis.

    Science.gov (United States)

    Nuss, Philip; Chen, Wei-Qiang; Ohno, Hajime; Graedel, T E

    2016-04-05

    Metals are used in numerous products and are sourced via increasingly global and complex supply chains. Monetary input-output tables (MIOT) and network analysis can be applied to intersectoral supply chains and used to analyze structural aspects. We first provide a concise review of the literature related to network analysis applied to MIOTs. On the basis of a physical input-output table (PIOT) table of aluminum in the United States economy in 2007, we identify key sectors and discuss the overall topology of the aluminum network using tools of network analysis. Sectors highly dependent on metal product inputs or sales are identified using weighted degree centrality and their hierarchical organization is explored via clustering. Betweenness centrality and random walk centrality (page rank) are explored as means to identify network bottlenecks and relative sector importance. Aluminum, even though dominated by uses in the automobile, beverage and containers, and construction industries, finds application in a wide range of sectors. Motor vehicle parts manufacturing relies on a large number of upstream and downstream suppliers to function. We conclude by analyzing structural aspects of a subnetwork for automobile manufacturing and discuss how the use of network analysis relates to current criticality analyses of metal and mineral resources.

  11. Dietary intake of aluminum in a Spanish population (Canary Islands).

    Science.gov (United States)

    González-Weller, Dailos; Gutiérrez, Angel José; Rubio, Carmen; Revert, Consuelo; Hardisson, Arturo

    2010-10-13

    The aim of this study was to analyze the aluminum content in foods and beverages most commonly consumed by the Canary Island population to determine the dietary intake of this metal throughout the Canary Islands as a whole and in each of the seven islands (Gran Canaria, Lanzarote, Fuerteventura, Tenerife, La Palma, La Gomera, and El Hierro). Four hundred and forty samples were analyzed by ICP-OES. Estimated total intake of aluminum for the Canary population was 10.171 mg/day, slightly higher than the provisional tolerable weekly intake (PTWI; 10 mg/day for a person weighing 70 kg). Aluminum intake by age and sex of the Canary Island population was also determined and compared values from other populations, both national and international.

  12. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  13. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  14. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  15. Tactile Sensing From Laser-Ablated Metallized PET Films

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2016-01-01

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated

  16. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yao [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wang Wenjing [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xie Jijia [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Sun Shouguang [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Liang [College of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Qian Ye; Meng Yuan [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei Yujie, E-mail: yujie_wei@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Welding zones by GTAW and GMAW are softer than the parent material Al5083. Black-Right-Pointing-Pointer GTAW for Al5083 are mechanically more reliable than that welded by GMAW. Black-Right-Pointing-Pointer GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  17. Characterization of anodic barrier films on tantalum and 1100 aluminum by ISS/SIMS

    International Nuclear Information System (INIS)

    McCune, R.C.

    1978-01-01

    Ion scattering spectrometry (ISS) and concurrent secondary ion mass spectrometry (SIMS) were used to determine the depth profiles of anodic barrier oxide films grown on tantalum and type 1100 aluminum. The sputter rate in each case was determined from the film thickness measured by the anodic overvoltage, and the penetration time determined by the decrease in intensity of the metal oxide fragment observed using SIMS. A mixture of helium and neon ions was used to sputter aluminum oxide films in order to observe ion scattering of helium by oxygen, while taking advantage of the higher sputtering rate available with neon. A comparison of sputter rates for helium and neon on tantalum oxide indicated that neon sputtered the film at a rate eight times that of helium. SIMS depth profiling of the residual boron in the anodic aluminum oxide indicated a mixing effect which did not permit adequate resolution of the interface between the oxide film and the underlying metal

  18. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  19. Melt quality induced failure of electrical conductor (EC grade aluminum wires

    Directory of Open Access Journals (Sweden)

    Khaliq A.

    2017-01-01

    Full Text Available The failure of electrical conductor grade (EC aluminum during wire drawing process was investigated. The fractured aluminum wires were subjected to Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analyses for an initial examination. Thermodynamic analyses of molten aluminum interaction with refractories was also carried out using FactSage at 710°C to predict the stable phases. The SEM/EDX analyses has revealed the inclusions in aluminum matrix. The typical inclusions observed were Al2O3, Al3C4 (Al-Carbide and oxides of refractories elements (Al, Mg, Si and O that have particle size ranging up to 5 μm. The transition metal boride particles were not identified during SEM/EDX analyses these might be too fine to be detected with this microscope. The overall investigation suggested that the possible cause of this failure is second phase particles presence as inclusions in the aluminum matrix, and this was associated with the poor quality of melt. During wire drawing process, these inclusions were pulled out of the aluminum matrix by the wiredrawing forces to produce micro-voids which led to ductile tearing and final fracture of wires. It was recommended to use ceramic foam filters to segregate inclusions from molten aluminum.

  20. Aluminum access to the brain: A role for transferrin and its receptor

    International Nuclear Information System (INIS)

    Roskams, A.J.; Connor, J.R.

    1990-01-01

    The toxicity of aluminum in plant and animal cell biology is well established, although poorly understood. Several recent studies have identified aluminum as a potential, although highly controversial, contributory factor in the pathology of Alzheimer's disease, amyotrophic lateral sclerosis, and dialysis dementia. For example, aluminum has been found in high concentrations in senile plaques and neurofibrillary tangles, which occur in the brains of subjects with Alzheimer's disease. However, a mechanism for the entry of aluminum (Al 3+ ) into the cells of the central nervous system (CNS) has yet to be found. Here the authors describe a possible route of entry for aluminum into the cells of the CNS via the same high-affinity receptor-ligand system that has been postulated for iron (Fe 3 ) aluminum is able to gain access to the central nervous system under normal physiological conditions. Furthermore, these data suggest that the interaction between transferrin and its receptor may function as a general metal ion regulatory system in the CNS, extending beyond its postulated role in iron regulation

  1. Health and Recovery Program in Increasing Physical Activity Level in Stage IA-IIIA Endometrial Cancer Survivors

    Science.gov (United States)

    2018-03-05

    Cancer Survivor; Endometrial Carcinoma; Stage I Uterine Corpus Cancer AJCC v7; Stage IA Uterine Corpus Cancer AJCC v7; Stage IB Uterine Corpus Cancer AJCC v7; Stage II Uterine Corpus Cancer AJCC v7; Stage IIIA Uterine Corpus Cancer AJCC v7

  2. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  3. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    Science.gov (United States)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  4. Enabling lightweight designs by a new laser based approach for joining aluminum to steel

    Science.gov (United States)

    Brockmann, Rüdiger; Kaufmann, Sebastian; Kirchhoff, Marc; Candel-Ruiz, Antonio; Müllerschön, Oliver; Havrilla, David

    2015-03-01

    As sustainability is an essential requirement, lightweight design becomes more and more important, especially for mobility. Reduced weight ensures more efficient vehicles and enables better environmental impact. Besides the design, new materials and material combinations are one major trend to achieve the required weight savings. The use of Carbon Fiber Reinforced Plastics (abbr. CFRP) is widely discussed, but so far high volume applications are rarely to be found. This is mainly due to the fact that parts made of CFRP are much more expensive than conventional parts. Furthermore, the proper technologies for high volume production are not yet ready. Another material with a large potential for lightweight design is aluminum. In comparison to CFRP, aluminum alloys are generally more affordable. As aluminum is a metallic material, production technologies for high volume standard cutting or joining applications are already developed. In addition, bending and deep-drawing can be applied. In automotive engineering, hybrid structures such as combining high-strength steels with lightweight aluminum alloys retain significant weight reduction but also have an advantage over monolithic aluminum - enhanced behavior in case of crash. Therefore, since the use of steel for applications requiring high mechanical properties is unavoidable, methods for joining aluminum with steel parts have to be further developed. Former studies showed that the use of a laser beam can be a possibility to join aluminum to steel parts. In this sense, the laser welding process represents a major challenge, since both materials have different thermal expansion coefficients and properties related to the behavior in corrosive media. Additionally, brittle intermetallic phases are formed during welding. A promising approach to welding aluminum to steel is based on the use of Laser Metal Deposition (abbr. LMD) with deposit materials in the form of powders. Within the present work, the advantages of this

  5. FDTD analysis of Aluminum/a-Si:H surface plasmon waveguides

    Science.gov (United States)

    Lourenço, Paulo; Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela

    2018-02-01

    The large majority of surface plasmon resonance based devices use noble metals, namely gold or silver, in their manufacturing process. These metals present low resistivity, which leads to low optical losses in the visible and near infrared spectrum ranges. Gold shows high environmental stability, which is essential for long-term operation, and silver's lower stability can be overcome through the deposition of an alumina layer, for instance. However, their high cost is a limiting factor if the intended target is large scale manufacturing. In this work, it is considered a cost-effective approach through the selection of aluminum as the plasmonic material and hydrogenated amorphous silicon instead of its crystalline counterpart. This surface plasmon resonance device relies on Fano resonance to improve its response to refractive index deviations of the surrounding environment. Fano resonance is highly sensitive to slight changes of the medium, hence the reason we incorporated this interference phenomenon in the proposed device. We report the results obtained when conducting Finite-Difference Time Domain algorithm based simulations on this metal-dielectric-metal structure when the active metal is aluminum, gold and silver. Then, we evaluate their sensitivity, detection accuracy and resolution, and the obtained results for our proposed device show good linearity and similar parameter performance as the ones obtained when using gold or silver as plasmonic materials.

  6. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    Science.gov (United States)

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  7. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  8. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  9. Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II)

    International Nuclear Information System (INIS)

    Asencios, Yvan J.O.; Sun-Kou, María R.

    2012-01-01

    Highlights: ► Aluminum hydroxide obtained from aluminum scrap led to the formation of gamma alumina. ► Acidic pH of precipitation favored the formation of small particles of high surface areas. ► Higher aging temperature favored the formation of large structures of large pore sizes. ► Higher aging temperature generated symmetrical solids of regular hexagonal prism forms. ► Aluminas of large pores adsorbed metals as following: Pb (1.75 Å) > Cd (1.54 Å) > Zn (1.38 Å). - Abstract: Several types of alumina were synthesized from sodium aluminate (NaAlO 2 ) by precipitation with sulfuric acid (H 2 SO 4 ) and subsequently calcination at 500 °C to obtain γ-Al 2 O 3 . The precursor aluminate was derived from aluminum scrap. The various γ-Al 2 O 3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption–desorption of N 2 (S BET ) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al 2 O 3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m 2 g −1 ) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined.

  10. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improving the wettability of aluminum on carbon nanotubes

    International Nuclear Information System (INIS)

    So, Kang Pyo; Lee, Il Ha; Duong, Dinh Loc; Kim, Tae Hyung; Lim, Seong Chu; An, Kay Hyeok; Lee, Young Hee

    2011-01-01

    Research highlights: → The wettability of CNT in Al metal was improved by electroplating method. → This involves two steps: (i) Al electroplating and (ii) additional Al wetting. → The large surface tension difference was overcome by forming Al-C covalent bonds. → Al-C covalent bond was verified by Raman spectroscopy and XPS. → Density functional calculations confirmed structural model of CNT-vacancy-O-Al. - Abstract: The wetting of a metal on carbon nanotubes is fundamentally difficult due to the unusually large difference between their surface tensions and is a bottleneck for making metal-carbon nanotube (CNT) composites. Here, we report a simple method to enhance the wettability of metal particles on the CNT surface by applying aluminum, which is the material with the largest surface tension. This method involves two steps: (i) Al nanoparticles are decorated on multiwalled carbon nanotubes by electroplating and (ii) Al powder is further spread on Al-electroplated CNTs, followed by high-temperature annealing to accommodate complete wetting of the aluminum. The large surface tension difference is overcome by forming strong Al-C covalent bonds initiated by defects of the CNTs. The decrease in the D-band intensity, the G-band shift in the Raman spectroscopy and the formation of Al-C covalent bonds, as confirmed by X-ray photoelectron spectroscopy, were in agreement with our structural model of CNT-vacancy-O-Al determined by density functional calculations.

  12. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  13. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  14. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    Science.gov (United States)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  15. CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION WITH A 3 LITER TANK 51H SAMPLE

    International Nuclear Information System (INIS)

    Hay, M; John Pareizs, J; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Daniel McCabe, D

    2008-01-01

    A 3-liter sludge slurry sample was sent to SRNL for demonstration of a low temperature aluminum dissolution process. The sludge was characterized before and after the aluminum dissolution. Post aluminum dissolution sludge settling and the stability of the decanted supernate were also observed. The characterization of the as-received 3-liter sample of Tank 51H sludge slurry shows a typical high aluminum HM sludge. The XRD analysis of the dried solids indicates Boehmite is the predominant crystalline form of aluminum in the sludge solids. However, amorphous phases of aluminum present in the sludge would not be identified using this analytical technique. The low temperature (55 C) aluminum dissolution process was effective at dissolving aluminum from the sludge. Over the three week test, ∼42% of the aluminum was dissolved out of the sludge solids. The process appears to be selective for aluminum with no other metals dissolving to any appreciable extent. At the termination of the three week test, the aluminum concentration in the supernate had not leveled off indicating more aluminum could be dissolved from the sludge with longer contact times or higher temperatures. The slow aluminum dissolution rate in the test may indicate the dissolution of the Boehmite form of aluminum however; insufficient kinetic data exists to confirm this hypothesis. The aluminum dissolution process appears to have minimal impact on the settling rate of the post aluminum dissolution sludge. However, limited settling data were generated during the test to quantify the effects. The sludge settling was complete after approximately twelve days. The supernate decanted from the settled sludge after aluminum dissolution appears stable and did not precipitate aluminum over the course of several months. A mixture of the decanted supernate with Tank 11 simulated supernate was also stable with respect to precipitation

  16. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  17. Diel cycle of iron, aluminum and other heavy metals in a volcano watershed in northern Taiwan

    Science.gov (United States)

    Kao, S.

    2013-12-01

    It is well known that heavy metals in surface water show diel (24-hr) changes in concentrations due to diel biogeochemical cycle. Accordingly, it is important to have a better sampling policy for monitoring the environmental impact of heavy metals of surface water, especially volcanic and mining areas. This study investigated Tatun Volcano watershed in northern Taiwan with a 24-h sampling operation to explore the diel cycle of arsenic concentrations and discuss on the corresponding biogeochemical processes. According to the previous studies, solar energy is the main factor of diel cycles, which could have strong effects on temperature, pH, dissolved oxygen, and many other water qualities. These changes produce a series of chain reactions and finally result in the change of heavy metal concentrations. In general, diel cycle of dissolved oxygen is dominated by metabolism of aquatic plants and sunlight photoreduction in acidic stream water; therefore, the Fe and Al contents would be accordingly changed. In addition, the concentrations of heavy metals will be simultaneously modified due to the high adsorption capacity of Fe and Al hydroxides. In this study, the results of hydro chemical analysis show that creek water is characterized by higher temperature, low pH value (3.0-4.5) and high SO4content(60-400 ppm) due to the mixing of hot spring. That the pH dramatically drops in the noon demonstrates that pH is highly dependent on photoreduction. This can be confirmed by the opposite trend of Fe concentration. The high Fe content in the noon also demonstrates that the precipitation of Fe hydroxides is not dominant in the day time and Fe is mainly in dissolved and/or colloid forms. Under the situation, heavy metals are supposed to have a similar trend with Fe. However, arsenic, aluminum and rare earth elements show a quite different diel cycle from Fe and other heavy metals. It concludes that arsenic and rare earth elements may be adsorbed by Al hydroxides instead of Fe

  18. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie; Zhang, Yifan; Liu, Run; Wang, Bin; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-08-30

    Highlights: • PEC/N can be applied to low melting point metal. • The spectroscopic characterization of plasma discharge is investigated. • Electron concentration and electron temperature are evaluated for PEC/N. • Phase composition of the carbonitrided layer is determined. • PEC/N improves the corrosion resistance of aluminum greatly. - Abstract: In this paper, plasma electrolytic carbonitriding (PEC/N) method was applied to pure aluminum for the first time. The spectroscopic characterization of plasma discharge during PEC/N process was analyzed and the electron temperature was calculated in terms of optical emission spectroscopy. The results showed the discharge plasma was in local thermal equilibrium (LTE) state. Electron concentration and electron temperature were about 6 × 10{sup 21} m{sup −3} and 4000 K, respectively. The carbonitrided layer contained Al{sub 4}C{sub 3}, AlN and Al{sub 7}C{sub 3}N{sub 3} phases. After PEC/N treatment, the corrosion resistance of pure aluminum was significantly improved, which was related to the formation of nitride phases. This work expands the application of plasma electrolysis technology on the surface modification of low melting point metal.

  19. Safety of Neoadjuvant Bevacizumab plus Pemetrexed and Carboplatin 
in Patients with IIIa Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Songliang ZHANG

    2015-06-01

    Full Text Available Background and objective Bevacizumab has showed its efficacy in advanced non-squamous lung cancer. The aim of this study is to assess the safety of bevacizumab plus pemetrexed and carboplatin neoadjuvant chemotherapy in patients with lung adenocarcinoma. Methods 25 patients with IIIa lung adenocarcinoma undergoing lobectemy or pneumonectomy with mediastinal lymphadenectomy after induction bevacizumab (Bev plus pemetrexed/carboplatin (PC were selected. Toxicity of chemotherapy and postoperative complications were analyzed. Results Grade 3 or 4 neoadjuvant-related adverse events included fatigue (3 patients, neutropenia (3 patients, hypertension (1 patient. The adverse events thought to be related to bevacizumab included epistaxis in 2 patients (grade 1: 1; grade 2: 1 and hypertension in 3 patients (grade 1: 2; grade 3: 1. Postoperative complications included pneumonia in 2 patients, bronchial stump insufficiency in 1 case, atelectasis in 2 cases, and arrhythmia in 1 case. Hemorrhage events, thromboembolic events and wound-healing problems were not observed in the perioperative period. Conclusion The treatment modality of neoadjuvant Bev-PC appears to be safe and tolerant in patients with stage IIIa lung adenocarcinoma.

  20. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  1. A comprehensive review on recent progress in aluminum–air batteries

    Directory of Open Access Journals (Sweden)

    Yisi Liu

    2017-07-01

    Full Text Available The aluminum–air battery is considered to be an attractive candidate as a power source for electric vehicles (EVs because of its high theoretical energy density (8100 Wh kg−1, which is significantly greater than that of the state-of-the-art lithium-ion batteries (LIBs. However, some technical and scientific problems preventing the large-scale development of Al–air batteries have not yet to be resolved. In this review, we present the fundamentals, challenges and the recent advances in Al–air battery technology from aluminum anode, air cathode and electrocatalysts to electrolytes and inhibitors. Firstly, the alloying of aluminum with transition metal elements is reviewed and shown to reduce the self-corrosion of Al and improve battery performance. Additionally for the cathode, extensive studies of electrocatalytic materials for oxygen reduction/evolution including Pt and Pt alloys, nonprecious metal catalysts, and carbonaceous materials at the air cathode are highlighted. Moreover, for the electrolyte, the application of aqueous and nonaqueous electrolytes in Al–air batteries are discussed. Meanwhile, the addition of inhibitors to the electrolyte to enhance electrochemical performance is also explored. Finally, the challenges and future research directions are proposed for the further development of Al–air batteries. Keywords: Aluminum–air battery, Aluminum anode, Air cathode, Oxygen reduction reaction, Electrolytes

  2. Degradation Behavior of Epoxy Resins in Fibre Metal Laminates Under Thermal Conditions

    NARCIS (Netherlands)

    Zhu, G.; Xiao, Y.; Yang, Y.; Wang, J.; Sun, B.; Boom, R.

    2012-01-01

    GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic aluminum alloys,

  3. Experimental and theoretical study of electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Festa, Floriane

    2013-01-01

    Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author) [fr

  4. Paul Scherrer Institut annual report 1994. Annex IIIA: PSI condensed matter research and material sciences

    International Nuclear Information System (INIS)

    Baltensperger, U.

    1995-01-01

    This annex reports on the PSI division IIIA's progress achieved during 1994 in the Laboratory of Ionbeam-Physics, the Laboratory of Radiochemistry; the Laboratory for Neutron Scattering and the Laboratory for Astrophysics. Progress of the spallation neutron source project (SINQ) is documented by a set of pictures. A bibliography of the department's publications is included. figs., tabs., refs

  5. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Brandon C., E-mail: terry13@purdue.edu [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Sippel, Travis R. [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011 (United States); Pfeil, Mark A. [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Gunduz, I.Emre; Son, Steven F. [School of Mechanical Engineering, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States)

    2016-11-05

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I{sub SP}). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I{sub SP} by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  6. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Terry, Brandon C.; Sippel, Travis R.; Pfeil, Mark A.; Gunduz, I.Emre; Son, Steven F.

    2016-01-01

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I_S_P). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I_S_P by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  7. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Science.gov (United States)

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  8. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials

    Science.gov (United States)

    Weigl, M.; Albert, F.; Schmidt, M.

    Laser micro welding of direct copper-aluminum connections typically leads to the formation of intermetallic phases and an embrittlement of the metal joints. By means of adapted filler materials it is possible to reduce the brittle phases and thereby enhance the ductility of these dissimilar connections. As the element silicon features quite a well compatibility with copper and aluminum, filler materials based on Al-Si and Cu-Si alloys are used in the current research studies. In contrast to direct Cu-Al welds, the aluminum filler alloy AlSi12 effectuates a more uniform element mixture and a significantly enhanced ductility.

  9. Why industry propaganda and political interference cannot disguise the inevitable role played by human exposure to aluminum in neurodegenerative diseases, including Alzheimer's disease.

    Science.gov (United States)

    Exley, Christopher

    2014-01-01

    In the aluminum age, it is clearly unpalatable for aluminum, the globe's most successful metal, to be implicated in human disease. It is unpalatable because for approximately 100 years human beings have reaped the rewards of the most abundant metal of the Earth's crust without seriously considering the potential consequences for human health. The aluminum industry is a pillar of the developed and developing world and irrespective of the tyranny of human exposure to aluminum it cannot be challenged without significant consequences for businesses, economies, and governments. However, no matter how deep the dependency or unthinkable the withdrawal, science continues to document, if not too slowly, a burgeoning body burden of aluminum in human beings. Herein, I will make the case that it is inevitable both today and in the future that an individual's exposure to aluminum is impacting upon their health and is already contributing to, if not causing, chronic diseases such as Alzheimer's disease. This is the logical, if uncomfortable, consequence of living in the aluminum age.

  10. Experimental observation of the stratified electrothermal instability on aluminum with thickness greater than a skin depth

    Science.gov (United States)

    Hutchinson, T. M.; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yu, E. P.; Yelton, W. G.; Fuelling, S.

    2018-05-01

    A direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μ m Parylene-N were driven to 1 MA in 100 ns , with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally correlated stratified thermal perturbations perpendicular to the current whose wave numbers, k , grew exponentially with rate γ (k ) =0.06 n s-1-(0.4 n s-1μ m2ra d-2 ) k2 in ˜1 g /c m3 , ˜7000 K aluminum.

  11. Experimental Observation of the Stratified Electrothermal Instability on Aluminum with Thickness Greater than a Skin Depth

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, Trevor M. [Univ. of Nevada, Reno, NV (United States); Hutchinson, Trevor M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Awe, Thomas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States); Yates, Kevin [Univ. of New Mexico, Albuquerque, NM (United States); Yu, Edmund p. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yelton, William G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fuelling, Stephan [Univ. of Nevada, Reno, NV (United States)

    2017-07-01

    The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.

  12. The microstructure of aluminum A5083 butt joint by friction stir welding

    International Nuclear Information System (INIS)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-01-01

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected

  13. The microstructure of aluminum A5083 butt joint by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Jasri, M. A. H. M.; Afendi, M. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh, 02600, Arau, Perlis (Malaysia); Ismail, A. [UniKL MIMET, JalanPantaiRemis, 32200, Lumut, Perak (Malaysia); Ishak, M. [Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 02600, Pekan, Pahang (Malaysia)

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  14. Development of High Performance CFRP/Metal Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  15. The corrosion mechanisms for primer coated 2219-T87 aluminum

    Science.gov (United States)

    Danford, Merlin D.; Knockemus, Ward W.

    1987-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The EG&GPARC Model 368 ac Impedance Measurement System, along with dc measurements with the same system using the Polarization Resistance Method, was used to monitor changing properties of coated aluminum disks immersed in 3.5 percent NaCl solutions buffered at pH 5.5 and pH 8.2 over periods of 40 days each. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacitances, that can be assigned in the equivalent circuit following a least squares analysis of the data, describe changes occurring on the corroding metal surface and in the protective coatings. A suitable equivalent circuit has been determined which predicts the correct Bode phase and magnitude for the experimental sample. The dc corrosion current density data are related to equivalent circuit element parameters.

  16. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications.

    Science.gov (United States)

    Poot-Poot, Wilberth; Hernandez-Sotomayor, Soledad M Teresa

    2011-10-01

    An early response of plants to environmental signals or abiotic stress suggests that the phospholipid signaling pathway plays a pivotal role in these mechanisms. The phospholipid signaling cascade is one of the main systems of cellular transduction and is related to other signal transduction mechanisms. These other mechanisms include the generation of second messengers and their interactions with various proteins, such as ion channels. This phospholipid signaling cascade is activated by changes in the environment, such as phosphate starvation, water, metals, saline stres, and plant-pathogen interactions. One important factor that impacts agricultural crops is metal-induced stress. Because aluminum has been considered to be a major toxic factor for agriculture conducted in acidic soils, many researchers have focused on understanding the mechanisms of aluminum toxicity in plants. We have contributed the last fifteen years in this field by studying the effects of aluminum on phospholipid signaling in coffee, one of the Mexico's primary crops. We have focused our research on aluminum toxicity mechanisms in Coffea arabica suspension cells as a model for developing future contributions to the biotechnological transformation of coffee crops such that they can be made resistant to aluminum toxicity. We conclude that aluminum is able to not only generate a signal cascade in plants but also modulate other signal cascades generated by other types of stress in plants. The aim of this review is to discuss possible involvement of the phospholipid signaling pathway in the aluminum toxicity response of plant cells. Copyright © 2011 Wiley Periodicals, Inc.

  17. Metal-ceramic joint assembly

    Science.gov (United States)

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  18. Microstructure and Mechanical Property of 3003 Aluminum Alloy Joint Brazed with Al-Si-Cu-Zn Filler Metal

    Directory of Open Access Journals (Sweden)

    LI Xiao-qiang

    2016-09-01

    Full Text Available Al-Si-Cu-Zn filler metal was developed to braze 3003 aluminum alloy. The microstructure and fracture surface of the joint were analyzed by XRD, SEM and EDS, and the effects of brazing temperature on microstructure and property of the joint were investigated. The results show that good joints are obtained at brazing temperature of 540-580℃ for 10min. The brazed joint consists of α(Al solid solution, θ(Al2Cu intermetallic compound, fine silicon phase and AlCuFeMn+Si phase in the central zone of brazed seam, and α(Al solid solution and element diffusion layers at both the sides of brazed seam, and the base metal. The room temperature (RT shear fracture of the joint occurs at the interface between the teeth shape α(Al in the diffusion layer and the center zone of brazed seam, which is mainly characterized as brittle cleavage. As the brazing temperature increases, α(Al solid solution crystals in the diffusion zone grow up, and the interfacial bonding of the joint is in the form of interdigitation. Brazing at 560℃ for 10min, the RT shear strength of the joint reaches the maximum value of 92.3MPa, which is about 62.7% of the base material.

  19. Metal Compression Forming of aluminum alloys and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  20. Characterization of ion-implanted aluminum and iron by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Brodkin, J.S.; Franzen, W.; Culbertson, R.J.

    1990-01-01

    The change in the optical constants of aluminum alloy and iron samples caused by implantation with nitrogen and chromium ions has been investigated by spectroscopic ellipsometry. The objective is to develop a method for simple, non-destructive characterization of ion-implanted metals. 5 refs., 6 figs

  1. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  2. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    International Nuclear Information System (INIS)

    Gomez-Rosas, G.; Rubio-Gonzalez, C.; Ocana, J.L; Molpeceres, C.; Porro, J.A.; Chi-Moreno, W.; Morales, M.

    2005-01-01

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm 2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm 2 in 6061-T6 aluminum samples and 5000 pulses/cm 2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products

  3. An experimental investigation of glare and restructured fiber metal laminates

    Science.gov (United States)

    Benedict, Adelina Vanessa

    Fiber Metal Laminates (FMLs) are a group of materials fabricated by bonding glass/epoxy layers within metal layers. This class of materials can provide good mechanical properties, as well as weight savings. An FML known as Glass Laminate Aluminum Reinforced Epoxy (GLARE) was studied. An experimental investigation comprising of microscopy and tensile testing was carried out using different grades of GLARE. Microscopy revealed the construction details of GLARE, while tensile testing provided means of measuring and analyzing its stress-strain responses. Next, different metal surface pretreatment methods were explored. These included sandblasting, Phosphoric Acid Anodizing (PAA), and AC-130 Sol-Gel treatment. Woven S-2 glass, an epoxy adhesive, and aluminum alloy sheet metal were used to fabricate restructured FMLs using time and cost effective procedures. Additional microscopy and tensile testing allowed for comparisons with GLARE and aircraft grade aluminum alloys. The restructured FMLs showed similar behaviors to GLARE with potential significant improvements in fabrication efficiency.

  4. Bailout use of platelet glycoprotein IIb-IIIa inhibition during coronary stent implantation: observations from the ESPRIT trial.

    Science.gov (United States)

    Cantor, Warren J; Madan, Mina; O'Shea, J Conor; Chisholm, Robert J; Lui, Henry K; Cohen, David J; Feldman, Robert L; Green, Robert; Hellkamp, Anne S; Kitt, Michael M; Tcheng, James E

    2005-07-01

    Glycoprotein (GP) IIb/IIIa inhibitors are often used as a rescue or bailout therapy to manage complications arising during percutaneous coronary intervention, rather than as prophylactic treatment. We sought to identify the characteristics and outcomes of patients requiring bailout treatment. The ESPRIT trial randomized 2,064 patients to receive eptifibatide or placebo starting immediately before percutaneous coronary intervention (PCI). Bailout therapy was used in 77 patients: 43 (4.2%) randomized to placebo and 34 (3.3%) to eptifibatide (p = 0.3). Bailout therapy for thrombosis was used more often in the placebo group (2.1% versus 1.0%; p = 0.03). Multivariable predictors of bailout included a greater than or equal to 90% stenosis, or visible thrombus on the baseline angiogram, and no aspirin pre-treatment before PCI. However, overall the model predicted bailout poorly (c-index = 0.64). The need for bailout cannot be reliably predicted using baseline characteristics. Patients experiencing complications have poor clinical outcomes despite bailout use of GP IIb/IIIa inhibitors.

  5. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  6. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  7. Thermal Stability of Copper-Aluminum Alloy Thin Films for Barrierless Copper Metallization on Silicon Substrate

    Science.gov (United States)

    Wang, C. P.; Dai, T.; Lu, Y.; Shi, Z.; Ruan, J. J.; Guo, Y. H.; Liu, X. J.

    2017-08-01

    Copper thin films with thickness of about 500 nm doped with different aluminum concentrations have been prepared by magnetron sputtering on Si substrate and their crystal structure, microstructure, and electrical resistivity after annealing at various temperatures (200°C to 600°C) for 1 h or at 400°C for different durations (1 h to 11 h) investigated by grazing-incidence x-ray diffraction (GIXRD) analysis, scanning electron microscopy (SEM), and four-point probe (FPP) measurements. Cu-1.8Al alloy thin film exhibited good thermal stability and low electrical resistivity (˜5.0 μΩ cm) after annealing at 500°C for 1 h or 400°C for 7 h. No copper silicide was observed at the Cu-Al/Si interface by GIXRD analysis or SEM for this sample. This result indicates that doping Cu thin film with small amounts of Al can achieve high thermal stability and low electrical resistivity, suggesting that Cu-1.8Al alloy thin film could be used for barrierless Cu metallization on Si substrate.

  8. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  9. Hillock Formation, Metal Lifting and Voiding of an AlCu Metallization due to Temperature Treatment

    International Nuclear Information System (INIS)

    Foerster, J.; Schuderer, B.; Haeuser, M.; Kallensee, O.; Gross, Th.

    2004-01-01

    A metalstack with a layer composition of Ti/TiN/AlCu/TiN was evaluated in an AlCu metallization. Reliability results show a higher electromigration lifetime compared to a Ti/AlCu/Ti/TiN stack. During the metallization process flow large elevations were seen by optical inspection. Analysis by SEM cross sections showed different deviations. A metal lifting with void formation as consequence was found in large aluminum areas above tungsten plugs. Also voiding in the passivated Metal 2 and the unpassivated Metal 3 with a cracked anti-reflective coating as a result of the expansion of the aluminum was seen. The influence of processes with high thermal budget on the stress behaviour of the new metalstack was investigated. The final annealing was found as the process with the most critical influence. This study shows the influence of different final annealing temperatures on hillock formation and voiding using a Ti/TiN/AlCu/TiN metalstack. A reduction of the maximum temperature of the final annealing process is necessary for using the new AlCu metallization stack. The use of a surface treatment before deposition showed an optimization of the adhesion

  10. Metallography of pitted aluminum-clad, depleted uranium fuel

    International Nuclear Information System (INIS)

    Nelson, D.Z.; Howell, J.P.

    1994-01-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact

  11. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    Aluminum is one of our most important materials and finds major use in transportation (e.g. aircraft) and packaging (e.g. beverage cans). According to International Aluminium Institute statistics (www.world-aluminium.org) 23.46 million metric tons of aluminum were produced last year in the electrolytic cells used to make this metal, continuing an increase seen over the previous four years and sustained for the first half of this year. 23% of this ?primary? production was in North America. A smaller, yet important, source of the nation?s aluminum is ''secondary production'', that is the recycling of aluminum products such as beverage cans. The Aluminum Association reports that 51.4 billion beverage cans were recycled in the U.S. last year (compared to 98.9 billion new cans shipped). Whether from primary or secondary production, it is typically necessary to treat the aluminum to remove small quantities of impurities or unwanted alloying agents before the metal can be further processed and sold. In the case of primary aluminum it is the removal of trace impurities such as sodium that is needed; in the case of recycled aluminum it is the removal of alloy constituents, such as magnesium which is, after aluminum, the principal metal used in beverage cans. The procedure commonly used is known as ''gas fluxing'' and entails bubbling a reactive mixture of chlorine and argon through the molten metal. The intent is that the chlorine react with the impurities to form compounds that can easily separate from the aluminum. Unfortunately a fraction of the chlorine forms volatile aluminum chloride that leaves the fluxing unit. This represents a loss of aluminum product; furthermore the aluminum chloride can react with atmospheric moisture to form hydrogen chloride gas with impact on workers and the environment. Some of these emissions are controlled by bag houses but some escape. For example EPA's Toxic Release Inventory for 1997 has stack emissions of chlorides and chlorine

  12. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile

    International Nuclear Information System (INIS)

    Zhang, Cunsheng; Zhao, Guoqun; Chen, Zhiren; Chen, Hao; Kou, Fujun

    2012-01-01

    Highlights: ► Extrusion stem speed has significant effects on extrusion process. ► An optimum value of stem speed exists for uniform metal flow distribution. ► A higher stem speed leads to a higher required extrusion force. ► A high stem speed leads to an improved welding quality of aluminum profile. - Abstract: Extrusion stem speed is one of important process parameters during aluminum profile extrusion, which directly influences the profile quality and choice of extrusion equipments. In this paper, the extrusion process of a thin-walled hollow aluminum profile was simulated by means of the HyperXtrude commercial software. Through a serial of numerical simulation, the effects of stem speed on extrusion process, such as metal flow behavior at die exit, temperature distribution, extrusion force, and welding pressure, have been investigated. The numerical results showed that there existed an optimum value of stem speed for flow velocity distribution. With the increasing stem speed, the temperature of the extrudate and required extrusion force increased, and the welding quality of extrudate would be improved. Through comprehensive comparison and analysis, the appropriate stem speed could be determined for practical extrusion production. Thus, the research results could give effective guideline for determining initial billet and die temperature and choosing the proper extrusion press in aluminum profile industry.

  13. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  14. Complementary effects of thienopyridine pretreatment and platelet glycoprotein IIb/IIIa integrin blockade with eptifibatide in coronary stent intervention; results from the ESPRIT trial.

    Science.gov (United States)

    Dery, Jean-Pierre; Campbell, Mark E; Mathias, Jasmine; Pieper, Karen S; Harrington, Robert A; Madan, Mina; Gibson, C Michael; Tolleson, Thaddeus R; O'Shea, J Conor; Tcheng, James E

    2007-07-01

    This analysis sought to investigate the complementary effect of thienopyridine pretreatment and platelet glycoprotein (GP) IIb/IIIa integrin blockade in coronary stent intervention. Definitive evidence supporting combined antiplatelet therapy consisting of thienopyridine pretreatment and GP IIb/IIIa receptor blockade in patients undergoing percutaneous coronary intervention (PCI) with stent implantation is limited. We retrospectively analyzed clinical outcomes by thienopyridine use in the 2,040 patients randomized to eptifibatide or placebo who underwent PCI in the ESPRIT trial. A total of 901 patients received a loading dose of thienopyridine before PCI (group 1), 123 received thienopyridine pretreatment without a loading dose (group 2), and 1,016 were not treated with thienopyridine before PCI (group 3). The composite incidence of death or myocardial infarction at 30 days was significantly lower in group 1 than in groups 2 and 3 combined (OR, 0.71 [95%CI, 0.52-0.99]; P = 0.0417). A similar trend was seen for the composite of death, myocardial infarction, or urgent target vessel revascularization (unadjusted OR, 0.77 [0.57-1.05]; P = 0.1025). After adjusting for baseline characteristics, these differences were no longer significant. No interactions were identified with eptifibatide assignment for any of the group comparisons. Pretreatment with a loading dose of thienopyridine lowers the rate of ischemic complications regardless of treatment with a GP IIb/IIIa inhibitor. Conversely, the efficacy of eptifibatide is maintained whether or not a loading dose of a thienopyridine is administered. Optimal outcomes are achieved in patients receiving thienopyridine pretreatment along with platelet GP IIb/IIIa inhibitor therapy. (c) 2007 Wiley-Liss, Inc.

  15. Increased platelet expression of glycoprotein IIIa following aspirin treatment in aspirin-resistant but not aspirin-sensitive subjects

    Science.gov (United States)

    Floyd, Christopher N; Goodman, Timothy; Becker, Silke; Chen, Nan; Mustafa, Agnesa; Schofield, Emma; Campbell, James; Ward, Malcolm; Sharma, Pankaj; Ferro, Albert

    2014-01-01

    Aims Aspirin is widely used as an anti-platelet agent for cardiovascular prophylaxis. Despite aspirin treatment, many patients experience recurrent thrombotic events, and aspirin resistance may contribute to this. We examined the prevalence of aspirin resistance in a healthy population, and investigated whether the platelet proteome differed in aspirin-resistant subjects. Methods Ninety-three healthy subjects received aspirin 300 mg daily for 28 days. Before and at the end of treatment, urine was taken to determine 11-dehydrothromboxane B2, and blood was taken to measure arachidonic acid (AA)-induced aggregation of platelet-rich plasma and to interrogate the platelet proteome by mass spectrometric analysis with further confirmation of findings using Western blotting. Results In two of the 93 subjects, neither AA-induced aggregation nor urinary 11-dehydrothromboxane B2 was effectively suppressed by aspirin, despite measurable plasma salicylate concentrations, suggesting the presence of true aspirin resistance. Despite no detectable differences in the platelet proteome at baseline, following aspirin a marked increase was seen in platelet glycoprotein IIIa expression in the aspirin-resistant but not aspirin-sensitive subjects. An increase in platelet glycoprotein IIIa expression with aspirin resistance was confirmed in a separate cohort of 17 patients with stable coronary artery disease on long term aspirin treatment, four of whom exhibited aspirin resistance. Conclusions In a healthy population, true aspirin resistance is uncommon but exists. Resistance is associated with an increase in platelet glycoprotein IIIa expression in response to aspirin. These data shed new light on the mechanism of aspirin resistance, and provide the potential to identify aspirin-resistant subjects using a novel biomarker. PMID:25099258

  16. Equipoise in the enhanced supression of the platelet IIb/IIIa receptor with integrilin trial (ESPRIT): a critical appraisal.

    Science.gov (United States)

    Mann, Howard; London, Alex John; Mann, Jeffrey

    2005-01-01

    Enhanced Supression of the Platelet IIb/IIIa Receptor with Integrilin Trial (ESPRIT) was a multicenter randomized controlled clinical trial in which participants were randomized between eptifibatide and placebo. A "clinical hold" was initially placed on the trial by the US Food and Drug Administration (FDA), which was concerned about the placebo-only control arm. The hold was lifted after additional information concerning the use of platelet glycoprotein IIb/IIIa inhibitors in clinical practice, derived from a survey of interventional cardiologists, was provided. The trial's principal investigator and colleagues have described how these issues were resolved, and advance a claim of equipoise for the trial. In this critical appraisal we examine the information and arguments proffered in support of the trial design and conclude that they evidence a misunderstanding of equipoise. We believe that a placebo-only control arm was not justified by the information provided by the trialists.

  17. Generation and structural characterization of aluminum cyanoacetylide

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Carlos; Peña, Isabel; Alonso, José L., E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, Paseo de Belén 5, 47011 Valladolid (Spain); Barrientos, Carmen; Largo, Antonio, E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid (Spain); Guillemin, Jean-Claude [Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Cernicharo, José [Group of Molecular Astrophysics, ICMM C/Sor Juana Ines de la Cruz N3 Cantoblanco, 28049 Madrid (Spain)

    2014-09-14

    Combined spectroscopy measurements and theoretical calculations bring to light a first investigation of a metallic cyanoacetylide, AlC{sub 3}N, using laser ablation molecular beam Fourier transform microwave spectroscopy. This molecule was synthesized in a supersonic expansion by the reaction of aluminum vapour with C{sub 3}N, produced from solid aluminum rods and BrCCCN in a newly constructed ablation-heating nozzle device. A set of accurate rotational and {sup 27}Al and {sup 14}N nuclear quadrupole coupling constants have been determined from the analysis of the rotational spectrum and compared with those predicted in a high-level ab initio study, conducting to the assignment of the observed species to linear AlCCCN. We have searched for this species towards the carbon-rich evolved star IRC + 10216 but only an upper limit to its abundance has been obtained.

  18. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  19. Light metal production

    Science.gov (United States)

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  20. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  1. Characteristics of the aluminum alloy plasma produced by a 1064 ...

    Indian Academy of Sciences (India)

    using the Boltzmann plot method with nine strong neutral aluminum lines. Due to the ... solids. At the same time, LIBS is considered a non-destructive technique because ... On the one hand, studying the spatial distribution of metal plasma ... sition probability ratios are in excellent agreement with the NIST database within.

  2. Biochemical Effects Of Aluminum On Some Selected Serum Enzymes Of Male Wistar Albino Rats

    Directory of Open Access Journals (Sweden)

    Ogueche

    2015-08-01

    Full Text Available Toxic metals are widely found in our environment and humans are exposed to them via water contaminated air food and soil. Aluminum AL belongs to this group of toxic metals. Its neurological effects are well documented but effects on acid and alkaline phosphatases are poorly studied and this the essence of this study. Toxicity of aluminum was investigated based on the elevation of acid and alkali phosphatases in serum of male Wistar albino rats after days 7 and 14 of aluminum 0.38 3.8 and 38mgkg body weight administration respectively. The results showed significant increase p0.05 in serum acid phosphatase in the test animals given 38kgkg after days 14 while serum alkali phosphatase increased significantly p 0.05 in the test animals given 3.8 and 38 mgkg after days 7 and 14 when compared to the control animals. However lower dose 0.38mgkg showed increase in both serum acid and alkali phosphatases respectively but were statistically non-significant p0.05 at 7 and 14 as compared to control animals.

  3. Auger electron spectroscopy and Rutherford backscattering studies of copper in 2024-T3 aluminum following electrochemical anodization in phosphoric acid

    Science.gov (United States)

    Solomon, J. S.

    1981-05-01

    The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.

  4. Experimental and numerical study on penetration of micro/nano diamond particle into metal by underwater shock wave

    Directory of Open Access Journals (Sweden)

    S Tanaka

    2016-09-01

    Full Text Available In order to develop composite materials, new attempting was conducted. When an explosive is exploded in water, underwater shock wave is generated. Metal plate is accelerated by the underwater shock wave and collided with diamond particles at high velocity. In this paper, pure aluminum and magnesium alloy plates are used as matrix. Micro and nano sized diamond particles were used as reinforcement. Micro diamond particles were closely coated on metal surface. Some of micro diamond particles were penetrated into aluminum. Improvement of base metal property (wearing resistance was verified by wear test for recovering metal plate. In order to confirm the deformation of the aluminum plate during the collision with diamond particles, simplified numerical simulation was conducted by using LS-DYNA software. From the result of numerical simulation, large deformation of aluminum and process of particle penetration were verified.

  5. Origin of 6-fold coordinated aluminum at (010-type pyrophyllite edges

    Directory of Open Access Journals (Sweden)

    M. Okumura

    2017-05-01

    Full Text Available To better understand the aqueous chemical reactivity of clay mineral edges we explored the relationships between hydration and the structure of (010-type edges of pyrophyllite. In particular, we used density functional theory and the quantum theory of atoms in molecules to evaluate the stability of 6-fold coordinated hydrated aluminum at the edge in terms of the electron density distribution. Geometrical optimization revealed an intra-edge hydrogen bond network between aluminol hydroxyls and water ligands completing the aluminum coordination shell. From the electron density isosurfaces one water ligand is not covalently bonded to aluminum. Bader charge analysis revealed that OH2 ligands have small negative charge. In addition, it is also found that the charge of the 6-fold coordinated aluminum is larger than one of the 5-fold aluminum. From these results, the charging of the OH2 ligands is interpreted as charge transfer originated from the formation of the hydrogen bond network and not from Al-OH2 interaction per se. This suggests that the weakly bound water ligand in question, and more generally 6-fold hydrated edge Al coordination, is stabilized primarily by the hydrogen bond network which in turn leads to weak ionic attraction to the aluminum center itself. The finding highlights the importance of cooperative effects between solvent structure and the coordination of metal cations exposed at clay mineral edges.

  6. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  7. An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2018-01-01

    Full Text Available Aluminum (Al metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries (RABs using Al metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase (SEI layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V2O5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency (CE. This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.

  8. Analysis of metallic pigments by ion microbeam

    International Nuclear Information System (INIS)

    Pelicon, P.; Klanjsek-Gunde, M.; Kunaver, M.; Simcic, J.; Budnar, M.

    2002-01-01

    Metallic paints consist of metallic flakes dispersed in a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flakes has been performed to determine the spatial distribution of the aluminum flakes in paint layer. The average sizes of the aluminum flakes were 23 μm (size distribution 10-37) and 49 μm (size distribution 34-75), respectively. The proton beam with the size of 2x2 μm 2 at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomograms of the flakes in uppermost 7 μm of the pigment layer. The series of point analysis aligned over the single flake reveal the flake angle in respect to the polymer matrix surface. The angular sensitivity is well below 1 angular degree

  9. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Sakaguchi, Y.; Saida, T.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  10. Oblique interactions of detonation waves with explosive/metal interfaces

    International Nuclear Information System (INIS)

    Walsh, J.M.

    1982-12-01

    The interaction of a detonation wave with an explosive/metal interface is considered. Theoretical models are discussed, and calculated results are given for PBX 9501 onto uranium, tantalum, copper, 304 stainless steel, aluminum, and nickel. For PBX 9501 onto aluminum and copper, regular shock reflection (in the PBX 9501) at small angles changes to regular rarefaction reflection (Prandtl-Meyer flow) at large angles, and the curve of metal-shock pressure vs incidence angle is smooth. For the other metals, there is a discontinuity in shock pressure where low-angle, regular reflection transists to Mach reflection, and a smaller discontinuity where the Mach reflection changes back to high-angle regular reflection

  11. Aluminum Oxide Nanoparticles for Highly Efficient Asphaltene Separation from Crude Oil Using Ceramic Membrane Technology

    Directory of Open Access Journals (Sweden)

    Rezakazemi Mashallah

    2017-11-01

    Full Text Available The effects of aluminum oxide nanoparticles on the removal of asphaltenes from an Iranian crude oil (Soroush using a ceramic membrane with pore size of 0.2 µm were investigated. In order to achieve superior asphaltene separation by ultrafiltration, it is essential to make some changes for destabilizing asphaltene in crude oil. The asphaltene destabilization was done using crude oil contact with an acid containing dissolved metal ions. Metal oxide nanoparticles adsorbed asphaltene molecules and increased their molecular size. The nanoparticle of aluminum oxide was applied to alter precipitation and peptization properties of asphaltenes. Dynamic Light Scattering (DLS was used to measurement of the asphaltene molecular size dissolved in toluene. Raman spectroscopy and the Tuinstra equation were used to determine the aromatic sheet diameter (La via the integrated intensities of the G and D1 modes. This revealed that the asphaltene particles react with nano aluminum oxide and the average molecular size of asphaltene was raised from 512.754 to 2949.557 nm and La from 5.482 to 13.787. The obtained results showed that using nano aluminum oxides, asphaltene separation increased from 60–85 wt% to 90–97 wt% based on the asphaltene content of crude oil.

  12. Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing

    International Nuclear Information System (INIS)

    Sridharan, Niyanth; Wolcott, Paul; Dapino, Marcelo; Babu, S.S.

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique. In this work characterization using electron back scatter diffraction was performed on aluminum–titanium dissimilar metal welds made using a 9 kW ultrasonic additive manufacturing system. The results showed that the aluminum texture at the interface after ultrasonic additive manufacturing is similar to aluminum texture observed during accumulative roll bonding of aluminum alloys. It is finally concluded that the underlying mechanism of bond formation in ultrasonic additive manufacturing primarily relies on severe shear deformation at the interface.

  13. [The effect of alternating administration of aluminum chloride and sodium fluoride in drinking water on the concentration of fluoride in serum and its content in bones of rats].

    Science.gov (United States)

    Lubkowska, Anna; Chlubek, Dariusz; Machoy-Mokrzyniska, Anna

    2006-01-01

    Fluorine and aluminum remain a very interesting research topic due to equivocal and relatively unknown toxic action, role in the etiology of various diseases, and interactions of both elements. Fluorine and aluminum compounds are absorbed by organisms through the gastric and respiratory systems, although the latter route operates only at very high concentrations in air. Chronic exposure to fluorine and aluminum leads to accumulation of both elements, especially in bones and teeth, but also in lung, brain, kidney, and liver. Organisms excrete these elements with urine, faeces, and to a minor extent with sweat and bile. In the light of reports suggesting that aluminum has protective properties against fluorine toxicity during exposure to both elements, we decided to examine the effect of alternating doses of aluminum fluoride and sodium fluoride in drinking water on rats. Four female groups received: I--100 ppm fluorine ions during one month; II--100 ppm fluorine ions alternating every two days with 300 ppm aluminum ions during one month; III--100 ppm fluoride ions during four months; IV--100 ppm fluorine ions alternating every two days with 300 ppm aluminum ions during four months. The respective male groups called IA, IIA, IIIA, and IVA were treated identically. Subsequently, the animals were anesthetized and sacrificed. Blood was sampled from the heart and the right femur was removed for fluorine determination. Fluorine content in the femur and serum was determined with an ion-selective electrode (Orion). The results were analyzed statistically (Statistica 6). We observed higher fluoride concentrations in serum as compared with control values in all groups of female and male rats exposed to sodium fluoride only. Longer exposure time (4 months) did not result in further increase in serum fluoride concentration. However, longer exposure increased fluoride accumulation in the femur (p Fluorine content in the femur of rats exposed to NaF and AlCI3 for four months was

  14. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.

  15. 78 FR 57444 - Eagle Fund III-A, L.P.; Notice Seeking Exemption Under the Small Business Investment Act...

    Science.gov (United States)

    2013-09-18

    ... the Small Business Investment Act of 1958, as amended (the ``Act''), in connection with the financing..., Financings which Constitute Conflicts of Interest, of the Small Business Administration (``SBA'') Rules and... SMALL BUSINESS ADMINISTRATION [License No. 07/07-0117] Eagle Fund III-A, L.P.; Notice Seeking...

  16. Processing of aluminum matrix composites by electroless plating and melt infiltration

    International Nuclear Information System (INIS)

    Leon, C.A.; Bourassa, A.-M.; Drew, R.A.L.

    2000-01-01

    Reduction of the SiC/ Al interaction and enhancement of wetting between reinforcements and molten aluminum was obtained by modifying the ceramic surface with deposition of nickel and copper coatings. The preparation of nickel- and copper-coated ceramic particles as precursors for MMC fabrication was studied. Al 2 O 3 and SiC powders were successfully coated with Ni and Cu using electroless metal plating. Uniform and continuous metal films were deposited on both, alumina and silicon carbide powders XRD showed that the Ni-P deposit was predominantly amorphous, while the copper deposit was essentially polycrystalline. Infiltration results showed that the use of the coated powders enhances the wettability between the matrix and ceramic phase when processing particulate MMCs by a vacuum infiltration technique, giving a porosity-free composite with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterpart samples XRD microstructural analysis of the composites indicates the formation of intermetallic phases such as CuAl 2 , in the case of copper coating, and NiAl and NiAl 3 when nickel-coated powders are infiltrated. Metallization of the ceramics minimizes the interfacial reaction of the SiC/Al composites and promotes wetting of Al 2 O 3 reinforcements with liquid aluminum. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  17. Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb(III) at aluminum cathodes

    International Nuclear Information System (INIS)

    Hakansson, M.; Jiang, Q.; Spehar, A.-M.; Suomi, J.; Kotiranta, M.; Kulmala, S.

    2005-01-01

    Cathodic DC polarization of oxide-covered aluminum produces electrogenerated chemiluminescence from hydrated and chelated Tb(III) ions in aqueous electrolyte solutions. At the moment of cathodic voltage onset, a strong cathodic flash is observed, which is attributed to a tunnel emission of hot electrons into the aqueous electrolyte solution and the successive chemical reactions with the luminophores. However, within a few milliseconds the insulating oxide film is damaged and finally dissolved due to (i) indiffusion of protons or alkali metal ions into the thin oxide film, (ii) subsequent hydrogen evolution at the aluminum/oxide interface and (iii) alkalization of the electrode surface induced by hydrogen evolution reaction. When the alkalization of the electrode surface has proceeded sufficiently, chemiluminescence is generated with increasing intensity. Aluminum metal, short-lived Al(II), Al(I) or atomic hydrogen and its conjugated base form, hydrated electron, can act as highly reducing species in addition to the less energetic heterogeneously transferred electrons from the aluminum electrode. Tb(III) added as a hydrated ion in the solution probably luminesces in the form of Tb(OH) 3 or Tb(OH) 4 - by direct redox reactions of the central ion whereas multidentate aromatic ligand chelated Tb(III) probably luminesces by ligand sensitized chemiluminescence mechanism in which ligand is first excited by one-electron redox reactions, which is followed by intramolecular energy transfer to the central ion which finally emits light

  18. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  19. Variability and exposure classification of urinary levels of non-essential metals aluminum, antimony, barium, thallium, tungsten and uranium in healthy adult men.

    Science.gov (United States)

    Wang, Yi-Xin; Pan, An; Feng, Wei; Liu, Chong; Huang, Li-Li; Ai, Song-Hua; Zeng, Qiang; Lu, Wen-Qing

    2017-12-21

    Arsenic, cadmium and lead are well-known toxic metals, and there are substantial studies on variability of these metals in urine to optimize design of exposure assessment. For urinary levels of other nonessential metals such as aluminum (Al), antimony (Sb), barium (Ba), thallium (Tl), tungsten (W) and uranium (U), however, their within-individual and between-individual variability are unclear. Therefore, we collected 529 samples from 11 healthy adult men on 8 days during a 3-month period. We measured urinary metals and creatinine (Cr) levels, assessed the reproducibility using intraclass correlation coefficients (ICCs), and performed sensitivity and specificity analyses to assess how well 1, 2 or 3 specimens could classify exposure. Al, Sb, Ba, W and U levels measured from spot samples varied greatly over days and months (Cr-adjusted ICCs = 0.01-0.14). Serial measures of Tl levels measured from spot samples had fair-to-good reproducibility over 5 consecutive days (Cr-adjusted ICC = 0.40), but worsened when the specimens were collected months apart (Cr-adjusted ICC = 0.16). To identify men who were highly exposed (top 33%) based on their 3-month averages, tests of single spot samples and tests of first-morning voids had high specificities (0.73-0.85) but relatively low sensitivities (0.27-0.60). Collection of repeated urine specimens from each individual improved the classification.

  20. Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    Science.gov (United States)

    Larssen, P. A.; Miller, E. L.

    1968-01-01

    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.

  1. Processes and procedures for a thin film multilevel hybrid circuit metallization system based on W--Au/SiO2/Al/SiO2

    International Nuclear Information System (INIS)

    Hampy, R.E.; Knauss, G.L.; Komarek, E.E.; Kramer, D.K.; Villanueva, J.

    1976-04-01

    The processes and procedures developed for the deposition and photodefinition of a W-Au/SiO 2 /Al/SiO 2 hybrid circuit metallization system for the SLL Micro Actuator are described. The metallization system affords a high degree of miniaturization and permits effective interconnection of a mixture of semiconductor devices and passive components with both gold and aluminum terminations without creating undesirable gold-aluminum interfaces. Sputtered tungsten-gold is the first level conductor except at crossovers where tungsten only is used and aluminum is the second level conductor. Silicon dioxide serves as an insulator between the tungsten and aluminum for crossovers. Vias in the insulating layer permit tungsten-aluminum interconnections where desired. A second layer of silicon dioxide is deposited over the metallization and opened for all gold and aluminum bonding pads. Substrates used were polished sapphire and fine grained alumina. The metallization is capable of withstanding processing temperatures up to 400 0 C for short times

  2. An electrochemical investigation of the corrosion behavior of aluminum alloys in chloride containing solutions

    International Nuclear Information System (INIS)

    Campos Filho, Jorge Eustaquio de

    2005-01-01

    Aluminum alloys have been used as cladding materials for nuclear fuel in research reactors due to its corrosion resistance. Aluminum owes its good corrosion resistance to a protective barrier oxide film formed and strongly bonded to its surface. In pool type TRIGA IPR-R1 reactor, located at Centro de Desenvolvimento da Tecnologia Nuclear in Belo Horizonte, previous immersion coupon tests revealed that aluminum alloys suffer from pitting corrosion, in spite of high quality of water control. Corrosion attack is initiated by breaking the protective oxide film on aluminum alloy surface. Chloride ions can break this oxide film and stimulate metal dissolution. In this study the aluminum alloys 1050, 5052 and 6061 were used to evaluate their corrosion behavior in chloride containing solutions. The electrochemical techniques used were potentiodynamic anodic polarization and cyclic polarization. Results showed that aluminum alloys 5052 and 6061 present similar corrosion resistance in low chloride solutions (0,1 ppm NaCl) and in reactor water but both alloys are less resistant in high chloride solution (1 ppm NaCl). Aluminum alloy 1050 presented similar behavior in the three electrolytes used, regarding to pitting corrosion, indicating that the concentration of the chloride ions was not the only variable to influence its corrosion susceptibility. (author)

  3. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    Science.gov (United States)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was

  4. [Longjintonglin Capsules for type IIIA prostatitis accompanied by abnormal semen liquefaction: A clinical observation].

    Science.gov (United States)

    Cai, Hong-cai; Wan, Chang-chun; Geng, Qiang; Liu, Wei; Zhang, Guo-wei; Shang, Xue-jun; Huang, Yu-feng

    2016-01-01

    To evaluate the therapeutic effect of Longjintonglin Capsules on type IIIA prostatitis accompanied by abnormal semen liquefaction. We selected 140 patients with type IIIA prostatitis accompanied by abnormal semen liquefaction according to the diagnostic standards of the American Institutes of Health (NIH) and treated them with Longjintonglin Capsules orally 3 capsules once tid for 12 weeks. We obtained the NIH Chronic Prostatitis Symptom Indexes (NIH-CPSI), traditional Chinese medicine (TCM) syndrome scores, leukocyte count in the expressed prostatic secretion (EPS), semen liquefaction time, and the results of semen analysis and compared these indicators before and after the treatment. Of the 140 cases, 132 were included in this study, excluding 8 due to their incomplete case histories. Before and after 4, 8 and 12 weeks of medication, the total NIH-CPSI scores were 24.52 ± 5.43, 21.28 ± 4.85, 18.01 ± 4.28, and 14.49 ± 3.65 (P prostatitis were cured and another 72 well responded, with an overall response rate of 78.0%. Of those with abnormal semen liquefaction, 61 were cured, 39 well responded, and 32 failed to respond, with an overall effectiveness rate of 75.8%. Semen analysis showed significantly increased percentage of progressively motile sperm after 4, 8 and 12 weeks of medication as compared with the baseline (P prostatitis accompanied by abnormal semen liquefaction.

  5. Transformation and fragmentation behavior of molten metal drop in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Kinoshita, Izumi; Zhang, Zhi-gang; Sugiyama, Ken-ichiro

    2006-01-01

    In order to clarify the fragmentation mechanism of a metallic alloy (U-Pu-Zr) fuel on liquid phase formed by metallurgical reactions (liquefaction temperature =650degC), which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum (m.p.=660degC) and sodium mainly under the condition that the boiling of sodium does not occur. When the instantaneous contact interface temperature (T i ) between molten aluminum drop and sodium is lower than the boiling point of sodium (T c,bp ), the molten aluminum drop can be fragmented and the mass median diameter (D m ) of aluminum fragments becomes small with increasing T i . When T i is roughly equivalent to or higher than T c,bp , the fragmentation of aluminum drop is promoted by thermal interaction caused by the boiling of sodium on the surface of the drop. Furthermore, even under the condition that the boiling of sodium does not occur and the solid crust is formed on the surface of the drop, it is found from an analytical evaluation that the thermal fragmentation of molten aluminum drop with solid crust is caused by the transient pressurization within the melt confined by the crust. These results indicate the possibility that the metallic alloy fuel on liquid phase formed by the metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt. (author)

  6. Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple

    International Nuclear Information System (INIS)

    Cheng Ting-Hai; Gao Han; Bao Gang

    2011-01-01

    A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal. Compared to the test results without vibrations, the static friction force of a chloroprene rubber/aluminum couple decreases observably, leading to the ultimate displacement of rubber. The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations, respectively. (fundamental areas of phenomenology(including applications))

  7. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  8. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  9. The effect of global oil price shocks on China's metal markets

    International Nuclear Information System (INIS)

    Zhang, Chuanguo; Tu, Xiaohua

    2016-01-01

    This paper investigated the impacts of global oil price shocks on the whole metal market and two typical metal markets: copper and aluminum. We applied the autoregressive conditional jump intensity (ARJI) model, combining with the generalized conditional heteroscedasticity (GRACH) method, to describe the volatility process and jump behavior in the global oil market. We separated the oil price shocks into positive and negative parts, to analyze whether oil price volatility had symmetric impacts on China’s metal markets. We further used the likelihood ratio test to examine the symmetric effect of oil price shocks. In addition, we considered the jump behavior in oil prices as an input factor to investigate how China’s metal markets are affected when jumps occur in the global oil market, in contrast to the existing research paying little attention to this issue. Our results indicate that crude oil price shocks have significant impacts on China's metal markets and the impacts are symmetric. When compared with aluminum, copper is more easily affected by oil price shocks. - Highlights: • We investigated the effect of oil price shocks on China’s metal markets. • The oil price shocks had significant impacts on China's metal markets • The oil price shocks on China's metal markets were symmetric. • Copper is more easily affected by oil price shocks than aluminum.

  10. A nomogram to predict the survival of stage IIIA-N2 non-small cell lung cancer after surgery.

    Science.gov (United States)

    Mao, Qixing; Xia, Wenjie; Dong, Gaochao; Chen, Shuqi; Wang, Anpeng; Jin, Guangfu; Jiang, Feng; Xu, Lin

    2018-04-01

    Postoperative survival of patients with stage IIIA-N2 non-small cell lung cancer (NSCLC) is highly heterogeneous. Here, we aimed to identify variables associated with postoperative survival and develop a tool for survival prediction. A retrospective review was performed in the Surveillance, Epidemiology, and End Results database from January 2004 to December 2009. Significant variables were selected by use of the backward stepwise method. The nomogram was constructed with multivariable Cox regression. The model's performance was evaluated by concordance index and calibration curve. The model was validated via an independent cohort from the Jiangsu Cancer Hospital Lung Cancer Center. A total of 1809 patients with stage IIIA-N2 NSCLC who underwent surgery were included in the training cohort. Age, sex, grade, histology, tumor size, visceral pleural invasion, positive lymph nodes, lymph nodes examined, and surgery type (lobectomy vs pneumonectomy) were identified as significant prognostic variables using backward stepwise method. A nomogram was developed from the training cohort and validated using an independent Chinese cohort. The concordance index of the model was 0.673 (95% confidence interval, 0.654-0.692) in training cohort and 0.664 in validation cohort (95% confidence interval, 0.614-0.714). The calibration plot showed optimal consistency between nomogram predicted survival and observed survival. Survival analyses demonstrated significant differences between different subgroups stratified by prognostic scores. This nomogram provided the individual survival prediction for patients with stage IIIA-N2 NSCLC after surgery, which might benefit survival counseling for patients and clinicians, clinical trial design and follow-up, as well as postoperative strategy-making. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  11. Colorimetric properties of TiN coating implanted by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhouqg99@mails.tsinghua.edu.cn; Bai, X.D. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xue, X.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen, X.W. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, J. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China); Wang, D.R. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China)

    2005-04-05

    TiN coating was prepared by cathodic arc deposition and implanted aluminum using a metal vacuum vapor arc ion source with doses ranging from 5 x 10{sup 16} to 2 x 10{sup 17} ions/cm{sup 2}. The purpose of this work was to determine the dependence of the colorimetric properties of TiN films on the implanting conditions, especially by the aluminum ion implantation. The colorimetry of coatings was evaluated quantitatively in terms of CIE L * a * b *. The color coordinate values L *, a *, and b * provide a numerical representation of the color of the surface. With the dose increasing, the surface color has no obvious change but the surface turns brighter, and a * as well as b * values all decline. The X-ray diffraction patterns showed that the aluminum implantation induced a slight shift of diffraction peaks. X-ray photoemission spectroscopy was employed to analyze the surface valence states. The oxygen in surface top layer does not decrease a * and b * values, it partially combined with nitrogen.

  12. Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts

    Science.gov (United States)

    Ishikuro, Tomoaki; Matsuoka, Shin-Ichi

    This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.

  13. Method of preparing an electrode material of lithium-aluminum alloy

    Science.gov (United States)

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  14. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Wen-ming Tian; Song-mei Li; Bo Wang; Xin Chen; Jian-hua Liu; Mei Yu

    2016-01-01

    Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sinter-ing (SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide (Al4C3) is not formed during SPS processing. Further addition of graphene (above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.

  15. Radiation Therapy-First Strategy After Surgery With or Without Adjuvant Chemotherapy in Stage IIIA-N2 Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Lee, Hyun Woo; Noh, O Kyu; Oh, Young-Taek; Choi, Jin-Hyuk; Chun, Mison; Kim, Hwan-Ik; Heo, Jaesung; Ahn, Mi Sun; Park, Seong Yong; Park, Rae Woong; Yoon, Dukyong

    2016-03-01

    Postoperative radiation therapy (PORT) and postoperative chemotherapy (POCT) can be administered as adjuvant therapies in patients with non-small cell lung cancer (NSCLC). The aim of this study was to present the clinical outcomes in patients treated with PORT-first with or without subsequent POCT in stage IIIA-N2 NSCLC. From January 2002 to November 2014, the conditions of 105 patients with stage IIIA-N2 NSCLC who received PORT-first with or without subsequent POCT were analyzed. PORT was initiated within 4 to 6 weeks after surgical resection. Platinum-based POCT was administered 3 to 4 weeks after the completion of PORT. We analyzed the outcomes and the clinical factors affecting survival. Of 105 patients, 43 (41.0%) received POCT with a median of 4 cycles (range, 2-6 cycles). The follow-up times ranged from 3 to 123 months (median, 30 months), and the 5-year overall survival (OS) was 40.2%. The 5-year OS of patients treated with PORT and POCT was significantly higher than that of patients with PORT (61.3% vs 29.2%, Ptreatment of stage IIIA-N2 NSCLC. The benefit of POCT on OS was preserved even in the PORT-first setting. Further studies are warranted to compare the sequencing of PORT and POCT, guaranteeing the proper use of POCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Quantitative Determination of Aluminum in Deodorant Brands: A Guided Inquiry Learning Experience in Quantitative Analysis Laboratory

    Science.gov (United States)

    Sedwick, Victoria; Leal, Anne; Turner, Dea; Kanu, A. Bakarr

    2018-01-01

    The monitoring of metals in commercial products is essential for protecting public health against the hazards of metal toxicity. This article presents a guided inquiry (GI) experimental lab approach in a quantitative analysis lab class that enabled students' to determine the levels of aluminum in deodorant brands. The utility of a GI experimental…

  17. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  18. [Resected non-small cell bronchogenic carcinoma stage pIIIA-N2. Which patients will benefit most from adjuvant therapy?].

    Science.gov (United States)

    Gómez, Ana M; Jarabo, José Ramón; Fernandez, Cristina; Calatayud, Joaquín; Fernández, Elena; Torres, Antonio J; Balibrea, José L; Hernando, Florentino

    2014-04-01

    Controversy persists as regards the indications and results of surgery in the treatment of patients with stage pIIIA-N2 non-small cell lung cancer (NSCLC). The objective of this study was to analyze the overall survival of a multicentre series of these patients and the role of adjuvant treatment, looking for factors that may define subgroups of patients with an increased benefit from this treatment. A retrospective study was conducted on 287 patients, with stage pIIIA-N2 NSCLC subjected to complete resection, taken from a multi-institutional database of 2.994 prospectively collected consecutive patients who underwent surgery for lung cancer. Adjuvant treatment was administered in 238 cases (82.9%). Analyses were made of the age, gender, histological type, administration of induction and adjuvant chemotherapy and/or radiation therapy treatments. The 5-year survival was 24%, with a median survival of 22 months. Survival was 26.5% among patients receiving with adjuvant treatment, versus 10.7% for those without it (P=.069). Age modified the effect of adjuvant treatment on survival (interaction P=.049). In patients under 70 years of age with squamous cell carcinoma, adjuvant treatment reduced the mortality rate by 37% (hazard ratio: 0,63; 95% CI; 0,42-0,95; P=.036). Completely resected patients with stage pIIIA-N2 NSCLC receiving adjuvant treatment reached higher survival rates than those who did not. Maximum benefit was achieved by the subgroup of patients under 70 years of age with squamous cell carcinoma. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  19. Theoretical studies on the thermodynamic properties and detonation properties of cyclotrimethylene trinitramine (RDX with aluminum and boron metals.

    Directory of Open Access Journals (Sweden)

    Nilgün Şen

    2016-10-01

    Full Text Available The B3LYP/6-311++G(2df,2p density functional theory (DFT method was used to investigate molecular geometry and thermodynamic properties of RDX and RDX derivatives containing Al and B metals. The detonation velocity (D and detonation pressure (P, estimated by using Kamlet–Jacobs and in literature equations, respectively. Total energies (Et, frontier orbital energy (EHOMO, ELOMO, energy gap (ΔELUMO–HOMO and theoretical molecular density (ρ were calculated with Spartan 14 software package program. It was shown that the presence of aluminum and boron atoms affects the good thermal stabilities. The results show that the composite RDX-Al, RDX-B derivatives have higher detonation performance and higher density than RDX. RDX-Al derivatives appeared to be superior to RDX-B mixtures in terms of these parameters. These results provide information on the moleculer design of new energetic materials.

  20. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  1. Role of manufacturing process parameters on the characteristics of aluminum matrix composites

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2003-01-01

    Metal matrix composites, (MMC), are engineered combinations of two or more materials (one of which is a metal) in which tailored properties are achieved by systematic combinations consisting of continuous or discontinuous fibers, whiskers, or particles in a metal result in combinations of very high specific strength. Furthermore, systematic design and procedures can be developed to achieve unique combinations of engineering properties such as high elevated-temperature strengths, damping or electrical properties. In this paper, the theory and practice of MMC are reviewed and discussed. The different techniques used in the manufacturing of MMC in general and aluminum matrix composites in particular e.g. unidirectional solidification, squeeze casting, vortex method and compocasting are presented and discussed. The parameters involved in these techniques and their effects on the characteristics of MMC product are also given and discussed. These include: crucible size and shape, melt temperature, size and shape of the impeller, stirring speed, rate of addition of the particles, the degree of agitation and cooling rate. Furthermore, the effect of these parameters on the mechanical strength and machinability are also presented and discussed. Finally, recent research results in aluminum matrix composites and their future developments are outlined and discussed. (author)

  2. Secondary malignancies in patients with stage IA-IIIA Hodgkin's lymphoma after radiation (chemoradiation) therapy using accelerated dose fractionation

    International Nuclear Information System (INIS)

    Sinajko, V.V.; Minajlo, I.I.; Veyakin, I.V.

    2010-01-01

    The incidence of secondary malignancies was investigated in 367 patients with stage IA-IIIA Hodgkin's lymphoma after radiation therapy using accelerated fractionation. For 20 years of the observation 24 of them developed 27(7.4%) tumors, besides their frequency did not depend on the disease stage and method of treatment.

  3. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates

    Science.gov (United States)

    Liu, Yanxiong; Liaw, Benjamin

    2010-02-01

    Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.

  4. Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates

    NARCIS (Netherlands)

    Sadighi, M.; Pärnänen, T.; Alderliesten, R.C.; Sayeaftabi, M.; Benedictus, R.

    2012-01-01

    The impact response of fiber metal laminates (FMLs), has been investigated with experiments and numerical simulations, which is reported in this article. Low-velocity impacts were carried out to study the effects of metal type and thickness within FMLs. Glare5-3/2 laminates with two aluminum layer

  5. Metal tissue levels in Steller sea lion (Eumetopias jubatus) pups

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Amie L.; Wise, Sandra S. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth Street, Portland, ME 04104 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth Street, Portland, ME 04104 (United States); Goertz, Caroline E.C. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth Street, Portland, ME 04104 (United States); Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664 (United States); Dunn, J. Lawrence [Department of Research and Veterinary Care, Mystic Aquarium, 55 Coogan Boulevard, Mystic, CT 06355 (United States); Gulland, Frances M.D. [Marine Mammal Center, 1065 Fort Cronkhite, Sausalito, CA 94965 (United States); Gelatt, Tom [National Marine Fisheries Service, Alaska Fisheries Science Center, National Marine Mammal Lab, 7600 Sand Point Way NE, Seattle, WA 98115 (United States); Beckmen, Kimberlee B. [Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK 99701 (United States); Burek, Kathy [Veterinary Pathology Services, 23834 The Clearing Drive, Eagle River, AK 99577 (United States); Atkinson, Shannon; Bozza, Mary [Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664 (United States); Taylor, Robert [Department of Veterinary Integrative Biosciences, Texas A and M University, Highway 60, College Station, TX 77843 (United States); Zheng Tongzhang; Zhang Yawei [School of Epidemiology and Public Health, Yale University, 60 College Street, New Haven, CT 06520 (United States); Aboueissa, AbouEl-Makarim [Department of Mathematics and Statistics, University of Southern Maine, 96 Falmouth Street, Portland, ME 04104 (United States)] (and others)

    2008-08-15

    The endangered Western population of the Steller sea lion declined for three decades for uncertain reasons. We present baseline data of metal concentrations in pups as a first step towards investigating the potential threat of developmental exposures to contaminants. Seven metals were investigated: arsenic, cadmium, silver, aluminum, mercury, lead and vanadium. Vanadium was detected in only a single blubber sample. Mercury appears to be the most toxicologically significant metal with concentrations in the liver well above the current action level for mercury in fish. The concentrations of aluminum, arsenic, silver, cadmium and lead were present in one-fourth to two-thirds of all samples and were at either comparable or below concentrations previously reported. Neither gender nor region had a significant effect on metal burdens. Future work should consider metal concentrations in juveniles and adults and toxicological studies need to be performed to begin to assess the toxicity of these metals.

  6. Metal tissue levels in Steller sea lion (Eumetopias jubatus) pups.

    Science.gov (United States)

    Holmes, Amie L; Wise, Sandra S; Goertz, Caroline E C; Dunn, J Lawrence; Gulland, Frances M D; Gelatt, Tom; Beckmen, Kimberlee B; Burek, Kathy; Atkinson, Shannon; Bozza, Mary; Taylor, Robert; Zheng, Tongzhang; Zhang, Yawei; Aboueissa, Abouel-Makarim; Wise, John Pierce

    2008-08-01

    The endangered Western population of the Steller sea lion declined for three decades for uncertain reasons. We present baseline data of metal concentrations in pups as a first step towards investigating the potential threat of developmental exposures to contaminants. Seven metals were investigated: arsenic, cadmium, silver, aluminum, mercury, lead and vanadium. Vanadium was detected in only a single blubber sample. Mercury appears to be the most toxicologically significant metal with concentrations in the liver well above the current action level for mercury in fish. The concentrations of aluminum, arsenic, silver, cadmium and lead were present in one-fourth to two-thirds of all samples and were at either comparable or below concentrations previously reported. Neither gender nor region had a significant effect on metal burdens. Future work should consider metal concentrations in juveniles and adults and toxicological studies need to be performed to begin to assess the toxicity of these metals.

  7. Metal tissue levels in Steller sea lion (Eumetopias jubatus) pups

    International Nuclear Information System (INIS)

    Holmes, Amie L.; Wise, Sandra S.; Goertz, Caroline E.C.; Dunn, J. Lawrence; Gulland, Frances M.D.; Gelatt, Tom; Beckmen, Kimberlee B.; Burek, Kathy; Atkinson, Shannon; Bozza, Mary; Taylor, Robert; Zheng Tongzhang; Zhang Yawei; Aboueissa, AbouEl-Makarim

    2008-01-01

    The endangered Western population of the Steller sea lion declined for three decades for uncertain reasons. We present baseline data of metal concentrations in pups as a first step towards investigating the potential threat of developmental exposures to contaminants. Seven metals were investigated: arsenic, cadmium, silver, aluminum, mercury, lead and vanadium. Vanadium was detected in only a single blubber sample. Mercury appears to be the most toxicologically significant metal with concentrations in the liver well above the current action level for mercury in fish. The concentrations of aluminum, arsenic, silver, cadmium and lead were present in one-fourth to two-thirds of all samples and were at either comparable or below concentrations previously reported. Neither gender nor region had a significant effect on metal burdens. Future work should consider metal concentrations in juveniles and adults and toxicological studies need to be performed to begin to assess the toxicity of these metals

  8. Measurement of internal defects in aluminum using a nano-granular in-gap magnetic sensor

    Science.gov (United States)

    Ozawa, T.; Yabukami, S.; Totsuka, J.; Koyama, S.; Hayasaka, J.; Wako, N.; Arai, K. I.

    2015-05-01

    Techniques for identifying defects in metals are very important in a wide variety of manufacturing areas. The present paper reports an eddy current testing method that employs a nano-granular in-gap magnetic sensor (GIGS) to detect internal defects in aluminum boards. The GIGS consists of a tunnel magnetoresistive film with nanometer sized grains and two yokes. In the presence of an external magnetic field, the nano-granular film exhibits only a small change in resistance due to the tunnel magnetoresistive effect. However, by placing it between two yokes, the magnetic flux can be greatly concentrated, thus increasing the change in resistance. The GIGS is a magnetic-field sensor that exploits this principle to achieve enhanced sensitivity. Moreover, because it has a cross-sectional yolk area of just 80 μm × 0.5 μm, it achieves outstanding spatial resolution. In the present study, it is used in combination with an eddy-current method in order to detect internal defects in aluminum. In this method, an excitation coil is used to apply an AC magnetic field perpendicular to the aluminum surface. This induces eddy currents in the metal, which in turn give rise to an AC magnetic field, which is then measured by the GIGS. The presence of defects in the aluminum distorts the eddy current flow, causing a change in the magnitude and distribution of the magnetic field. Such changes can be detected using the GIGS. In the present study, the proposed method was used to successfully detect indentations with diameters of 5 mm on the rear surface of an aluminum plate.

  9. Comparative Analysis of Serum Levels of Aluminum and Lead in Dialysis Patients, Pre and post Dialysis

    OpenAIRE

    Atieh Makhlough; Mohammad Shokrzadeh; Maryam Shaliji; Siyavash Abedi

    2014-01-01

    Background: Accumulation or deficiency of trace elements can occur in hemodialysis patients and it increases risk of cardiovascular or other organs disorders. Special ions levels such as sodium and bicarbonate in dialysis fluid are accurately regulated but the remaining elements are not regularly measured. Aluminum and lead belong to the biologic performance free heavy metals .They also has a tendency to accumulate in hemodialysis patients. This study aims to compare serum aluminum and lead l...

  10. The Chinese nonferrous metals industry-energy use and CO2 emissions

    International Nuclear Information System (INIS)

    Wang Yanjia; Chandler, William

    2010-01-01

    China is the largest nonferrous metals producer in the world and largest consumer for six kinds of common nonferrous metals including copper, aluminum, zinc, lead, nickel and tin. This paper provides an overview of the nonferrous metals industry in China, from a CO 2 emissions reduction perspective. It addresses energy use disaggregated by energy carrier and by province. It focuses on an analysis of energy efficiency in the production of aluminum, copper and nickel. A few large-scale enterprises produce most of the aluminum, copper and nickel in China, and use manufacturing facilities that were built within the last 20 years or have recently upgraded their main production equipment and processes. The energy efficiency of these operations is not particularly low compared to international practice. A large number of small and medium-sized enterprises (SME) operate nonferrous metals production facilities which rank low in energy efficiency and therefore are highly energy intensive per unit of physical output. Backward production capacity would be phased out continuously by enforcing the energy intensity norms.

  11. Hard template synthesis of metal nanowires

    OpenAIRE

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production o...

  12. Effect of zirconium addition on welding of aluminum grain refined by titanium

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2011-01-01

    Aluminum and its alloys solidify in large grains columnar structure which tends to reduce their mechanical behaviour and surface quality. Therefore, they are industrially grain refined by titanium or titanium + boron. Furthermore, aluminum oxidizes in ordinary atmosphere which makes its weldability difficult and weak. Therefore, it is anticipated that the effect of addition of zirconium at a weight percentages of 0.1% (which proved to be an effective grain refiner on the weldability of aluminum grain refined by Ti) is worthwhile investigating. This formed the objective of this research work. In this paper, the effect of zirconium addition at a weight percentage of 0.1%, which corresponds to the peritctic limit on the aluminum-zirconium phase diagram, on the weldability of aluminum grain refined by Ti is investigated. Rolled sheets of commercially pure aluminum, Al grain refined Ti of 3 mm thickness were welded together using Gas Tungsten Arc Welding method (GTAW), formerly known as TIG. A constant air gap was maintained at a constant current level, 30 ampere AC, was used because it removes the oxides of the welding process under the same process parameters. Metallographic examination of weldments of the different combinations of aluminum and its microalloys at the heat affected zone, HAZ, and base metal was carried out and examined for width, porosity, cracks and microhardness. It was found that grain refining of commercially pure aluminum by Ti resulted in enhancement of its weldability. Similarly, addition of zirconium to Al grain refined by Ti resulted in further enhancement of the weldment. Photomicrographs of the HAZ regions are presented and discussed. (author)

  13. Oxidation of zirconium-aluminum alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1967-10-01

    Examination of the processes occurring during the oxidation of Zr-1% A1, Zr-3% A1, and Zr-1.5% A1-0.5% Mo alloys has shown that in steam rapid oxidation occurs predominantly around the Zr 3 A1 particles, which at low temperatures appear to be relatively unattacked. The unoxidised particles become incorporated in the oxide, and become fully oxidised as the film thickens. This rapid localised oxidation is preceded by a short period of uniform film growth, during which the oxide film thickness does not exceed ∼200A-o. Thus the high oxidation rates can probably be ascribed to aluminum in solution in the zirconium matrix, although its precise mode of operation has not been determined. Once the solubility limit of aluminum is exceeded, the size, distribution and number of intermetallic particles affects the oxidation rate merely by altering the distribution of regions of metal giving high oxidation rates. The controlling process during the early stages of oxidation is electron transport and not ionic transport. Thus, the aluminum in the oxide film is presumably increasing the ionic conductivity more than the electronic. The oxidation rates in atmospheric pressure steam are very high and their irregular temperature dependence suggests that the oxidation rate will be pressure dependent. This was confirmed, in part, by a comparison with oxidation in moist air. It was found that the rate of development of white oxide around intermetallic particles was considerably reduced by the decrease in the partial pressure of H 2 O; the incubation period was not much different, however. (author)

  14. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-01-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  15. Low Temperature Curing of Hydrogen Silsesquioxane Surface Coatings for Corrosion Protection of Aluminum

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette Hindhede; Møller, Per

    2016-01-01

    Hydrogen Silsesquioxane (HSQ) has shown to be a promising precursor for corrosion protective glass coatings for metallic substrates due to the excellent barrier properties of the films, especially in the application of protective coatings for aluminum in the automotive industry where high chemica...

  16. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2016-11-01

    Full Text Available Aluminum is a neurotoxic metal with known health effects in animals and humans. Glutathione-S-transferase (GST genes and enzymes play a major role in detoxification of several heavy metals. Besides a direct relationship with oxidative stress; aluminum decreases GST enzyme activities. Using data from 116 Jamaican children; age 2–8 years; with Autism Spectrum Disorder (ASD and 116 sex- and age-matched typically developing (TD children; we investigated the association of polymorphisms in three GST genes (GSTP1; GSTM1; and GSTT1 with mean blood aluminum concentrations in children with and without ASD. Using log-transformed blood aluminum concentration as the dependent variable in a linear regression model; we assessed the additive and interactive effects of ASD status and polymorphisms in the three aforementioned GST genes in relation to blood aluminum concentrations. Although none of the additive effects were statistically significant (all p > 0.16; we observed a marginally significant interaction between GSTP1 Ile105Val (rs1695 and ASD status (p = 0.07; even after controlling for parental education level and consumption of avocado; root vegetables; and tuna (canned fish. Our findings indicate a significantly lower (p < 0.03 adjusted geometric mean blood aluminum concentration for TD children who had the Val/Val genotype (14.57 µg/L; compared with those with Ile/Ile or Ile/Val genotypes who had an adjusted geometric mean of 23.75 µg/L. However; this difference was not statistically significant among the ASD cases (p = 0.76. Our findings indicate that ASD status may be a potential effect modifier when assessing the association between GSTP1 rs1695 and blood aluminum concentrations among Jamaican children. These findings require replication in other populations.

  17. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  18. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  19. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  20. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  1. Classification of criticality calculations with correlation coefficient method and its application to OECD/NEA burnup credit benchmarks phase III-A and II-A

    International Nuclear Information System (INIS)

    Okuno, Hiroshi

    2003-01-01

    A method for classifying benchmark results of criticality calculations according to similarity was proposed in this paper. After formulation of the method utilizing correlation coefficients, it was applied to burnup credit criticality benchmarks Phase III-A and II-A, which were conducted by the Expert Group on Burnup Credit Criticality Safety under auspices of the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development (OECD/NEA). Phase III-A benchmark was a series of criticality calculations for irradiated Boiling Water Reactor (BWR) fuel assemblies, whereas Phase II-A benchmark was a suite of criticality calculations for irradiated Pressurized Water Reactor (PWR) fuel pins. These benchmark problems and their results were summarized. The correlation coefficients were calculated and sets of benchmark calculation results were classified according to the criterion that the values of the correlation coefficients were no less than 0.15 for Phase III-A and 0.10 for Phase II-A benchmarks. When a couple of benchmark calculation results belonged to the same group, one calculation result was found predictable from the other. An example was shown for each of the Benchmarks. While the evaluated nuclear data seemed the main factor for the classification, further investigations were required for finding other factors. (author)

  2. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  3. Transformation and fragmentation behavior of molten metal drop in sodium pool

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Zhang Zhigang; Sugiyama, Ken-Ichiro; Kinoshita, Izumi

    2007-01-01

    In order to clarify the fragmentation mechanism of a metallic alloy (U-Pu-Zr) fuel on liquid phase formed by metallurgical reactions (liquefaction temperature = 650 deg. C), which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum (melting point 660 deg. C) and sodium mainly under the condition that the boiling of sodium does not occur. When the instantaneous contact interface temperature (T i ) between molten aluminum drop and sodium is lower than the boiling point of sodium (T c,bp ), the molten aluminum drop can be fragmented and the mass median diameter (D m ) of aluminum fragments becomes small with increasing T i . When T i is roughly equivalent to or higher than T c,bp , the fragmentation of aluminum drop is promoted by thermal interaction caused by the boiling of sodium on the surface of the drop. Furthermore, even under the condition that the boiling of sodium does not occur and the solid crust is formed on the surface of the drop, it is confirmed from an analytical evaluation that the thermal fragmentation of molten aluminum drop with solid crust has a potential to be caused by the transient pressurization within the melt confined by the crust. These results indicate the possibility that the metallic alloy fuel on liquid phase formed by the metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt

  4. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  5. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  6. An investigation for structure transformation in electric pulse modified liquid aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jingang, E-mail: Qijingang1974@sina.co [School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001 (China); Wang Jianzhong; He Lijia; Zhao Zuofu; Du Huiling [School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001 (China)

    2011-02-15

    The electric pulse (EP) modification of liquid metal is a novel method for grain refinement. In this work, the structure tests of EP-modified liquid aluminum were conducted and investigated using high-temperature X-ray diffractometer by virtue of the outstanding structural heredity of EP-modified liquid aluminum. The results show that the EP-modified liquid structure tends to be slack and unordered with increasing temperature similar to that of the unmodified. Nevertheless, the quantitative characterization denoted by the liquid structural parameters exhibits its discrepancy. At the modifying temperature of 750 {sup o}C, the order of degree of EP-modified liquid aluminum is remarkably strengthened and the value of average atomic number per cluster changes from 119 (no EP) up to 174 (EP) by an increase of 46%. These tests experimentally testified Wang's electric pulse modification (EPM) model that was built only by phenomenology, and hereby the mechanism of grain refinement resulting from EPM is further elucidated.

  7. Higher aluminum concentration in Alzheimer's disease after Box-Cox data transformation.

    Science.gov (United States)

    Rusina, Robert; Matěj, Radoslav; Kašparová, Lucie; Kukal, Jaromír; Urban, Pavel

    2011-11-01

    Evidence regarding the role of mercury and aluminum in the pathogenesis of Alzheimer's disease (AD) remains controversial. The aims of our project were to investigate the content of the selected metals in brain tissue samples and the use of a specific mathematical transform to eliminate the disadvantage of a strong positive skew in the original data distribution. In this study, we used atomic absorption spectrophotometry to determine mercury and aluminum concentrations in the hippocampus and associative visual cortex of 29 neuropathologically confirmed AD and 27 age-matched controls. The Box-Cox data transformation was used for statistical evaluation. AD brains had higher mean aluminum concentrations in the hippocampus than controls (0.357 vs. 0.090 μg/g; P = 0.039) after data transformation. Results for mercury were not significant. Original data regarding microelement concentrations are heavily skewed and do not pass the normality test in general. A Box-Cox transformation can eliminate this disadvantage and allow parametric testing.

  8. N-terminal sequence of human leukocyte glycoprotein Mo1: conservation across species and homology to platelet IIb/IIIa.

    Science.gov (United States)

    Pierce, M W; Remold-O'Donnell, E; Todd, R F; Arnaout, M A

    1986-12-12

    Mo1 and gp160-gp93 are two surface membrane glycoprotein heterodimers present on granulocytes and monocytes derived from humans and guinea pigs, respectively. We purified both antigens and found that their alpha subunits had identical N-termini which were significantly homologous to the alpha subunit of the human adhesion platelet glycoprotein IIb/IIIa.

  9. 77 FR 22186 - Removal of Category IIIa, IIIb, and IIIc Definitions; Delay of Effective Date and Reopening of...

    Science.gov (United States)

    2012-04-13

    ...: Direct final rule; delay of effective date and reopening of comment period. SUMMARY: This action delays... possible to do so without incurring expense or delay. The agency may change this rule in light of the...-0019; Amdt. No. 1-67] RIN 2120-AK03 Removal of Category IIIa, IIIb, and IIIc Definitions; Delay of...

  10. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander

    2016-01-01

    Full Text Available Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB2, Al\\Mg alloy, Fe, Ti and Zr in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber.

  11. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  12. Study of Henna (Lawsonia inermis) as Natural Corrosion Inhibitor for Aluminum Alloy in Seawater

    International Nuclear Information System (INIS)

    Nik, W B Wan; Zulkifli, F; Sulaiman, O; Samo, K B; Rosliza, R

    2012-01-01

    Commercial henna (Lawsonia inermis) was investigated to inhibit the corrosion of aluminum alloy through immersion in seawater. The aluminum alloy (5083) was prepared in size of 25mm × 25mm × 3mm. The immersion test was conducted in seawater with different concentration of henna, 100ppm, 300ppm, 500ppm for duration of 60 days. Four characterizations were performed in this study which was weight loss study, Fourier Transform Infrared (FTIR), Electrochemical Impedance Spectroscopy (EIS) and adsorption isotherm. The results indicated that henna has major constituents of lawsone which contributed to the chemisorptions or adsorption process by forming an isolation layers on the aluminum alloy surface which follows the Langmuir adsorption isotherm. It was found that the protection layer attached on metal was not permanent and precipitation occurred as the time increases. The highest inhibition efficiency was found at 88% (500ppm). This research found that henna is an excellent natural inhibitor for aluminum alloy in seawater.

  13. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  14. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  15. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  16. Electrochemical Impedance Study of Zinc Yellow Polypropylene-Coated Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhi-hua Sun

    2010-01-01

    Full Text Available Performance of zinc yellow polypropylene-coated aluminum alloy 7B04 during accelerated degradation test is studied using electrochemical impedance spectroscopy (EIS. It has been found that the zinc yellow polypropylene paint has few flaw and acts as a pure capacitance before accelerated test. After 336-hour exposure to the test, the impedance spectroscopy shows two time constants, and water has reached to the aluminum alloy/paint interface and forms corrosive microcell. For the scratched samples, the reaction of metal corrosion and the hydrolysis of zinc yellow ion can occur simultaneously. The impedance spectroscopy indicates inductance after 1008-hour exposure to the test, but the inductance disappears after 1344-hour exposure and the passivation film has pitting corrosion.

  17. Copper-carbon and aluminum-carbon composites fabricated by powder metallurgy processes

    International Nuclear Information System (INIS)

    Silvain, Jean-François; Veillère, Amélie; Lu, Yongfeng

    2014-01-01

    The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal- expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers and diamond-reinforced copper and aluminum matrix composites among them are considered very promising as a next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon fibers and copper/diamond and aluminum/carbon fibers composite films by powder metallurgy and hot pressing. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermomechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between metal and carbon, enhancing all the desired thermal properties while minimizing the deleterious effect.

  18. Technique for in-place welding of aluminum backed up by a combustible material

    Science.gov (United States)

    Spagnuolo, A. C.

    1971-01-01

    Welding external aluminum jacket, tightly wrapped around inner layer of wood composition fiberboard, in oxygen free environment prevents combustion and subsequent damage to underlying fiberboard. Technique also applies to metal cutting in similar assemblies without disassembly to remove combustible materials from welding heat proximity.

  19. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  20. Gas Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum

    Science.gov (United States)

    2015-11-01

    strength Al, with tough, ductile , weld joints may provide improved protection and crash safety by means of a rigid vehicle structure. This...characteristics and ballistic protection, with V50 statistics of 5083 and 7039 aluminum and RHA steel . Aberdeen Proving Ground (MD): Army Research...633. 9. McQueen H, Leo P, Cerri E. Al-Zn-Mg for extrusion– hot workability. In TMS 2009, Al Alloys: Fabrication, Characterization and Applications II

  1. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  2. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 Integrin Mediates Interaction of Melanoma Cells with Platelets

    Science.gov (United States)

    Lonsdorf, Anke S.; Krämer, Björn F.; Fahrleitner, Manuela; Schönberger, Tanja; Gnerlich, Stephan; Ring, Sabine; Gehring, Sarah; Schneider, Stefan W.; Kruhlak, Michael J.; Meuth, Sven G.; Nieswandt, Bernhard; Gawaz, Meinrad; Enk, Alexander H.; Langer, Harald F.

    2012-01-01

    A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis. PMID:22102277

  3. Diffusion of interstitials in metallic systems, illustration of a complex study case: aluminum

    Science.gov (United States)

    David, Matthieu; Connétable, Damien

    2017-11-01

    While diffusion mechanisms of interstitial elements in fcc systems are generally well-known, especially in the case of H atoms, we show in this work that even in the case of a simple metallic system (aluminum), the diffusion of interstitials exhibits a wide variety of paths and mechanisms that depend on the specie. We used an approach based on first-principles calculations associated with kinetic Monte-Carlo simulations and a multi-state diffusion formalism to compute the diffusion coefficients of five interstitial elements: hydrogen, boron, carbon, nitrogen and oxygen. For instance, at the atomic scale, whilst we find that C atoms prefer to be located in octahedral sites (labeled o) rather than in tetrahedral positions (labeled t), we find one additional stable position in the lattice (M). The diffusion through these three stable positions are thus studied in detail. In the case of B atoms, for which the tetrahedral site is found unstable, the diffusion path is between o-o sites. Similarly, in the case of oxygen, t positions are found to be the only stable positions (o are unstable) and the path of migration, along t-t direction, is found through a twice degenerated asymmetric transition state. In the case of H and N atoms for which t and o sites are stable, we explain why the only path is along the t-o direction. Finally, we discuss explicit formulas to compute coefficients of diffusion of interstitials in fcc structures.

  4. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy

    Science.gov (United States)

    Meng, Deshuo; Zhao, Nanjing; Wang, Yuanyuan; Ma, Mingjun; Fang, Li; Gu, Yanhong; Jia, Yao; Liu, Jianguo

    2017-11-01

    The enrichment method of heavy metal in water with graphite and aluminum electrode was studied, and combined with plasma restraint device for improving the sensitivity of detection and reducing the limit of detection (LOD) of elements. For aluminum electrode enrichment, the LODs of Cd, Pb and Ni can be as low as several ppb. For graphite enrichment, the measurement time can be less than 3 min. The results showed that the graphite enrichment and aluminum electrode enrichment method can effectively improve the LIBS detection ability. The graphite enrichment method combined with plasma spatial confinement is more suitable for on-line monitoring of industrial waste water, the aluminum electrode enrichment method can be used for trace heavy metal detection in water. A LIBS method and device for soil heavy metals analysis was also developed, and a mobile LIBS system was tested in outfield. The measurement results deduced from LIBS and ICP-MS had a good consistency. The results provided an important application support for rapid and on-site monitoring of heavy metals in soil. (Left: the mobile LIBS system for analysis of heavy metals in soils. Top right: the spatial confinement device. Bottom right: automatic graphite enrichment device for on0line analysis of heavy metals in water).

  5. 77 FR 65671 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Science.gov (United States)

    2012-10-30

    ... Nanhai Hongjia Aluminum Alloy Co., Ltd. (Hongjia) and Tianjin Ganglv Nonferrous Metal Materials Co., Ltd..., ``Electrolux'') withdrew its request for review of Alnan Aluminium Co., Ltd. (Alnan), Clear Sky Inc. (Clear Sky...

  6. Structure determination of a novel metal-organic compound synthesized from aluminum and 2,5-pyridinedicarboxylic acid

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Brink, Bastian; Andersen, Jonas

    2011-01-01

    .979(1)°. The structure consists of aluminum ions coordinating N and O in distorted octahedra, sharing an edge through two hydroxide ions. These dinuclear complexes are connected by pydc ions, which at one end coordinate by nitrogen and oxygen and only by oxygen at the other end. The pydc orientation is reversed...... in the neighboring pydc, forming double stranded chains interconnected by the aluminum dinuclear complexes in a ladder-like arrangement along [001]....

  7. Inclusion Detection in Aluminum Alloys Via Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2018-04-01

    Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.

  8. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle

    2014-01-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  9. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle, E-mail: dilermando.travessa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  10. Selective binding behavior of humic acid removal by aluminum coagulation.

    Science.gov (United States)

    Jin, Pengkang; Song, Jina; Yang, Lei; Jin, Xin; Wang, Xiaochang C

    2018-02-01

    The reactivity characteristics of humic acid (HA) with aluminium coagulants at different pH values was investigated. It revealed that the linear complexation reaction occurred between aluminum and humic acid at pH aluminum existed in the form of free aluminum and remained unreacted in the presence of HA until the concentration reached to trigger Al(OH) 3(s) formation. Differentiating the change of functional groups of HA by 1 H nuclear magnetic resonance spectroscopy and X-ray photoelectron spectra analysis, it elucidated that there was a selective complexation between HA and Al with lower Al dosage at pH 5, which was probably due to coordination of the activated functional groups onto aluminium. While almost all components were removed proportionally by sweep adsorption without selectivity at pH 7, as well as that with higher Al dosage at pH 5. This study provided a promising pathway to analyse the mechanism of the interaction between HA and metal coagulants in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Corrosion mechanisms of aluminum alloys in waters of low conductivity

    International Nuclear Information System (INIS)

    Haddad, Roberto E; Lanazani, Liliana; Rodriguez, Sebastian

    2006-01-01

    After completing their burn cycle, nuclear fuels in experimental reactors made with aluminum alloys have to remain for long periods in distilled water, in interim storage. While aluminum alloys are resistant to corrosion in pure water, severe deterioration occurs in elements that have been immersed for periods of up to 30 years. Pitting-like surface alterations can even occur in nuclear quality waters (conductivity below 5 μS/cm and dissolved ions content below detection thresholds) in time periods of less than one year. An important factor that could become a potential promoter of this phenomena is the presence of dust particles and others, that could settle on the metallic surface, generating a locally aggressive medium. A simple immersion experiment demonstrates that these points can become initiation sites for pitting with very low concentrations of chlorides (under 10 ppm), especially if the electrochemical potential is increased by contact with another metallic material, even staying below the pitting potential in this medium. There are several corrosion mechanisms acting simultaneously, depending on the nature of the deposits. Pitting under glass particles has been detected, which may be related to a simple crevice corrosion process. In the case of iron oxides, however, the results depend on the type of oxide. Pits more than 100 microns deep have been obtained in 7 day immersion tests, so in spent fuel storage sites these mechanisms could easily cause penetration of the 500 micron aluminum plates during the time covering the interim storage under water, which could be decades, with similar chemical conditions (CW)

  12. Ordered metal nanotube arrays fabricated by PVD.

    Science.gov (United States)

    Marquez, F; Morant, C; Campo, T; Sanz, J M; Elizalde, E

    2010-02-01

    In this work we report a simple method to fabricate ordered arrays of metal nanotubes. This method is based on the deposition of a metal by PVD onto an anodized aluminum oxide (AAO) template. The dimensions of the synthesized nanotubes depend both on the AAO template and on the deposited metal. In fact, it is observed that the aspect ratios of the nanotubes clearly depend significantly on the metal, ranging from 0.6 (Fe) to at least 3 (Zr).

  13. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  14. Gallium--A smart metal

    Science.gov (United States)

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  15. Estimation on separation efficiency of aluminum from base-cap of spent fluorescent lamp in hammer crusher unit.

    Science.gov (United States)

    Rhee, Seung-Whee

    2017-09-01

    In order to separate aluminum from the base-cap of spent fluorescent lamp (SFL), the separation efficiency of hammer crusher unit is estimated by introducing a binary separation theory. The base-cap of SFL is composed by glass fragment, binder, ferrous metal, copper and aluminum. The hammer crusher unit to recover aluminum from the base-cap consists of 3stages of hammer crusher, magnetic separator and vibrating screen. The optimal conditions of rotating speed and operating time in the hammer crusher unit are decided at each stage. At the optimal conditions, the aluminum yield and the separation efficiency of hammer crusher unit are estimated by applying a sequential binary separation theory at each stage. And the separation efficiency between hammer crusher unit and roll crush system is compared to show the performance of aluminum recovery from the base-cap of SFL. Since the separation efficiency can be increased to 99% at stage 3, from the experimental results, it is found that aluminum from the base-cap can be sufficiently recovered by the hammer crusher unit. Copyright © 2017. Published by Elsevier Ltd.

  16. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  17. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    Directory of Open Access Journals (Sweden)

    Kittima Sillapasa

    2017-02-01

    Full Text Available Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1 = 1.68 HV (σa is in MPa and HV has no unit. It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  18. Development of metallic molds for the large volume plastic scintillator fabrication

    International Nuclear Information System (INIS)

    Calvo, Wilson A.P.; Vieira, Jose M.; Rela, Paulo R.; Bruzinga, Wilson A.; Araujo, Eduardo P.; Costa Junior, Nelson P.; Hamada, Margarida M.

    1997-01-01

    The plastic scintillators are radiation detectors made of organic fluorescent compounds dissolved in a solidified polymer matrix. The manufacturing process of large volume detectors (55 liters) at low cost, by polymerization of the styrene monomer plus PPO and POPOP scintillators, was studied in this paper. Metallic molds of ASTM 1200 aluminum and AISI 304 stainless steel were produced by TIG welding process since the polymerization reaction is very exothermic. The measurements of transmittance, luminescence, X-ray fluorescence and light output were carried out in the plastic scintillators made using different metallic molds. The characterization results of the detectors produced in an open system using ASTM 1200 aluminum mold show that there is not quality change in the scintillator, even with aluminum being considered as unstable for styrene monomer. Therefore, the ASTM 1200 aluminum was found to be the best alternative to produce the detector by an open system polymerization. (author). 11 refs., 8 figs., 1 tab

  19. Investigations on dry sliding of laser cladded aluminum bronze

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2016-01-01

    Full Text Available The aim of this study was to investigate the tribological behaviour of laser cladded aluminum bronze tool surfaces for dry metal forming. In a first part of this work a process window for cladding aluminum bronze on steel substrate was investigated to ensure a low dilution. Therefore, the cladding speed, the powder feed rate, the laser power and the distance between the process head and the substrate were varied. The target of the second part was to investigate the influence of different process parameters on the tribological behaviour of the cladded tracks. The laser claddings were carried out on both aluminum bronze and cold work tool steel as substrate materials. Two different particle sizes of the cladding powder material were used. The cladding speed was varied and a post-processing laser remelting treatment was applied. It is shown that the tribological behaviour of the surface in a dry oscillating ball-on-plate test is highly dependent on the substrate material. In the third part a deep drawing tool was additively manufactured by direct laser deposition. Furthermore, the tool was applied to form circular cups with and without lubrication.

  20. Chemisorption on size-selected metal clusters: activation barriers and chemical reactions for deuterium and aluminum cluster ions

    International Nuclear Information System (INIS)

    Jarrold, M.F.; Bower, J.E.

    1988-01-01

    The authors describe a new approach to investigating chemisorption on size-selected metal clusters. This approach involves investigating the collision-energy dependence of chemisorption using low-energy ion beam techniques. The method provides a direct measure of the activation barrier for chemisorption and in some cases an estimate of the desorption energy as well. They describe the application of this technique to chemisorption of deuterium on size-selected aluminum clusters. The activation barriers increase with cluster size (from a little over 1 eV for Al 10 + to around 2 eV for Al 27 + ) and show significant odd-even oscillations. The activation barriers for the clusters with an odd number of atoms are larger than those for the even-numbered clusters. In addition to chemisorption of deuterium onto the clusters, chemical reactions were observed, often resulting in cluster fragmentation. The main products observed were Al/sub n-1/D + , Al/sub n-2/ + , and Al + for clusters with n + and Al/sub n-1/D + for the larger clusters

  1. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  2. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  3. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  4. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  5. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  6. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation.

    Science.gov (United States)

    Hirao, Makoto; Sugamoto, Kazuomi; Tamai, Noriyuki; Oka, Kunihiro; Yoshikawa, Hideki; Mori, Yusuke; Sasaki, Takatomo

    2005-05-01

    Porous coatings have been applied to the surface of prosthetic devices to foster stable device fixation. The coating serves as a source of mechanical interlocking and may stimulate healthy bone growth through osseointegrated load transfer in cementless arthroplasty. Joint arthroplasty by porous-coated prostheses is one of the most common surgical treatments, and has provided painless and successful joint mobility. However, long-term success is often impaired by the loss of fixation between the prosthesis and bone. Porous-coated prostheses are associated with several disadvantages, including metal debris from porous coatings (third body wear particles) and irregular micro-texture of metal surfaces. Consequently, quantitative histological analysis has been very difficult. These issues arise because the porous coating treatment is based on addition of material and is not precisely controllable. We recently developed a precisely controllable porous texture technique based on material removal by yttrium-aluminum-garnet laser. Free shapes can be applied to complex, three-dimensional hard metal surfaces using this technique. In this study, tartan check shapes made by crossing grooves and dot shapes made by forming holes were produced on titanium (Ti6A14V) or cobalt chrome (CoCr) and evaluated with computer-assisted histological analysis and measurement of bone-metal interface shear strength. Width of grooves or holes ranged from 100 to 800 mum (100, 200, 500, and 800 microm), with a depth of 500 microm. When the cylindrical porous-texture-treated metal samples (diameter, 5 mm; height, 15 mm) were implanted into a rabbit femoral condyle, bone tissue with bone trabeculae formed in the grooves and holes after 2 or 4 weeks, especially in 500-microm-wide grooves. Abundant osteoconduction was consistently observed throughout 500-microm-wide grooves in both Ti6A14V and CoCr. Speed of osteoconduction was faster in Ti6A14V than in CoCr, especially in the tartan check shape made of

  7. Increased risk for vascular complications due to GP IIb/IIIa-antagonists in patients with cardiogenic shock supported by intraaortic balloon pump (IABP

    Directory of Open Access Journals (Sweden)

    Jens Röther

    2015-08-01

    Conclusion: Vascular events with the use of IABP are common but in our study, not significantly associated with a higher mortality. Treatment with GP IIb/IIIa-antagonists is associated with a higher risk of vascular events.

  8. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  9. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  10. Investigation of aluminum gate CMP in a novel alkaline solution

    International Nuclear Information System (INIS)

    Feng Cuiyue; Liu Yuling; Sun Ming; Zhang Wenqian; Zhang Jin; Wang Shuai

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO 2 abrasive) contains 1 wt.% H 2 O 2 ,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H 2 O 2 , 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution. (paper)

  11. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Krawczak Ewelina

    2017-01-01

    Full Text Available The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  12. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  13. A study on the manufacturing conditions of metal matrix composites by low pressure infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Jo; Hessian, Md Anowar; Park, Sung Ho [Gyeongsang National University, Tongyoung (Korea, Republic of); Huh, Sun Chul [Gyeongsang National University, JinJu (Korea, Republic of)

    2007-10-15

    Metal fiber preform reinforced aluminum alloy composite as made by the infiltration of molten metal under low pressure casting process. The infiltration behavior of filling pattern and the velocity profile with low-pressure casting process was investigated. The thermocouple was inserted into the preform in order to observe the infiltration behavior. The infiltration of applied pressure time, 1, 2 and 5 s under constant pressure of 0.4 MPa was completely filled during 0.4 s. In these conditions, molten aluminum alloy has successfully infiltrated to FeCrSi metal fiber preform by low-pressure casting process. It was observed the porosity of composites for reliability of composites. The automobile piston was developed with FeCrSi reinforced aluminum alloy that is 0% porosity by the optimal applied pressure and applied pressure time.

  14. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, T. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Numerous applications could exist for superplastic formable, weldable aluminum alloys in the automotive, aerospace, architectural, and construction industries. In this project, LLNL and Kaiser worked with the Institute for Metals Superplasticity Problems to develop and evaluate weldable superplastic alloys.

  15. DNA Modified with Metal Nanoparticles: Preparation and Characterization of Ordered Metal-DNA Nanostructures in a Solution and on a Substrate

    Directory of Open Access Journals (Sweden)

    Nina Kasyanenko

    2016-01-01

    Full Text Available DNA interaction with silver and aluminum nanoparticles in a solution has been investigated with the AFM, SEM, dynamic light scattering, viscometry, and spectral methods. The comparison of DNA interaction with nanoparticles synthesized by the reduction of Ag+ ions and with nanoparticles obtained by the electric discharge plasma method was done. DNA metallization in a solution and on n-silicon surface with metal nanoparticles or by the reduction of silver ions after their binding to DNA was executed and studied. It was shown that DNA strands with regular location of silver or aluminum nanoparticles can be prepared. The conditions for the formation of silver nanoparticles and silver nanoclusters on DNA were analyzed.

  16. Fiscal 2000 achievement report. Venture business assisting type regional consortium - Minor business creation base type (Development of aluminum alloy casting system using aluminum titanate ceramic member); 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Chitansan aluminium ceramics buzai wo shiyoshita aluminium gokin chuzo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An automatic liquid metal charging system driven by a linear induction type electromagnetic pump is developed, with its members to be in contact with liquid aluminum alloy being constituted of aluminum titanate ceramics not to be wetted by liquid aluminum alloy and highly resistant to thermal impact. Technologies for casting aluminum titanate ceramic members in plaster molds, CIP (cold isostatic pressing) molding, and burning were established. The mechanism of wettability of liquid aluminum alloy on aluminum titanate ceramic members was elucidated, and an aluminum titanate ceramic member with a dense spinel layer formed thereon in situ was developed for improvement on non-wettability. The developed member remained non-wettable more than six times longer than conventional members. A special electronic counter mechanism was developed by installing in a conduit an aluminum titanate ceramic made impeller whose revolution was converted into electric signals for the measurement of the amount of charged liquid. A non-asbestos polycrystalline alumina-silica fiber was selected as the insulator for the melting/holding furnace, which enabled 30% energy conservation as compared with the conventional type. (NEDO)

  17. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  18. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus.

    Science.gov (United States)

    Guan, Jing; Wang, Wanying; Sun, Baolin

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCC mec ). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5' tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCE Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCC mec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive

  19. Comparison of electrocoagulation and chemical coagulation for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Akbal, F.; Camci, S. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, Kurupelit, Samsun (Turkey)

    2010-10-15

    Copper (Cu), chromium (Cr), and nickel (Ni) removal from metal plating wastewater by electrocoagulation and chemical coagulation was investigated. Chemical coagulation was performed using either aluminum sulfate or ferric chloride, whereas electrocoagulation was done in an electrolytic cell using aluminum or iron electrodes. By chemical coagulation, Cu-, Cr-, and Ni-removal of 99.9 % was achieved with aluminum sulfate and ferric chloride dosages of 500, 1000, and 2000 mg L{sup -1}, respectively. Removal of metals by electrocoagulation was affected by the electrode material, wastewater pH, current density, number of electrodes, and electrocoagulation time. Electrocoagulation with iron electrodes at a current density of 10 mA cm{sup -2}, electrocoagulation time of 20 min, and pH 3.0 resulted in 99.9 % Cu-, 99.9 % Cr-, and 98 % Ni-removal. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    Science.gov (United States)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  1. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  2. Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints

    Science.gov (United States)

    Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.

    2017-03-01

    Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  3. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    International Nuclear Information System (INIS)

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS

  4. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  5. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  6. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  7. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  8. Genomic clone encoding the α chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules

    International Nuclear Information System (INIS)

    Cosgrove, L.J.; Sandrin, M.S.; Rajasekariah, P.; McKenzie, I.F.C.

    1986-01-01

    LFA-1, an antigen involved in cytolytic T lymphocyte-mediated killing, and Mac-1, the receptor for complement component C3bi, constitute a family of structurally and functionally related cell surface glycoproteins involved in cellular interactions. In both mouse and man, Mac-1 (OKM1) and LFA-1 share a common 95-kDa β subunit but are distinguished by their α chains, which have different cellular distributions, apparent molecular masses (165 and 177 kDa, respectively), and peptide maps. The authors report the isolation of a genomic clone from a human genomic library that on transfection into mouse fibroblasts produced a molecule(s) reactive with monoclonal antibodies to OKM1, to LFA-1, and to platelet glycoprotein IIb-IIIa. This gene was cloned by several cycles of transfection of L cells with a human genomic library cloned in λ phase Charon 4A and subsequent rescue of the λ phage. Transfection with the purified recombinant λ DNA yielded a transfectant that expressed the three human α chains of OKM1, LFA-1, and glycoprotein IIb-IIIa, presumably in association with the murine β chain

  9. Aluminum-air research and development program. Summary report for FY 1982

    Science.gov (United States)

    Cooper, J. F.

    1983-04-01

    The aluminum-air program focused on the following research areas: (1) experimental investigation of alternative cell configurations; (2) testing of specific configurations in multicell stacks; (3) long term testing of air electrodes under simulated vehicle duty cycles; (4) determination of kinetic of aluminum trihydroxide crystallization under candidate battery operating conditions; and (5) studies of anode behavior of alloys containing minor impurities such as iron, manganese, gallium, and phosphorus. The major achievements were: the operation of six celled and two cell stacks without degration of performance compared to laboratory baseline cells, redesign of solution side current collection grid and successful application to wedge shaped cells on the engineering scale (600 cm(2)); demonstration of ability of such cells for continuous anode feed and rapid refueling, fabrication and testing of air electrodes catalyzed with certain macrocyclic complexes; extension of cycle life to above 1000 standard drive cycles using nonnoble metal catalysts, determination of role of minor electrolye additions and precipitated Al(OH)3 on air electrode life, development of a comprehensive mathematical model of aluminum trihydroxide precipitation under battery conditions.

  10. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  11. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  12. FY 1999 report on the results of the technology development of super metal (R and D of the undersea oil production support system). Development of technology of aluminum-base high corrosion resistant fine structure controlling metal materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Kaitei sekiyu seisan shien system kenkyu kaihatsu (aluminium kei kotaishokusei bisai kozo seigyo kinzoku zairyo gijutsu kaihtsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing aluminum materials excellent in industrial characteristics, a study was conducted to create large-sized aluminum materials having mesoscopic crystal structure, and the FY 1999 results were summarized. In this fiscal year, to create the fine crystal grain structure, the following were conducted: fundamental study of high strain accumulation process, study of a mechanism of fine crystal grain formation, development of the processing method, and development of evaluation technology. In the study of high strain accumulation process, effects were examined of conditions of molten metal rolling on castability. Fundamental studies were also made of innovative technologies such as ECAP method, pre-forged structure controlling rolling, accumulative roll bonding and thermomechanical treatment. In the study of the mechanism of fine crystal grain structure formation, the following were conducted: Al-Mn base alloys produced by molten metal rolling, 6061 alloys by warm rolling with different peripheral speed rolling, and 7000 group alloys by warm rolling. As to the processing method, study was made on low-temperature rolling technology and rapid heat treatment technology. As to the evaluation technology, study was made on evaluation of crystal grain diameter by EBSP. (NEDO)

  13. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  14. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    Science.gov (United States)

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-04

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs Manufactured by the Power Metallurgy(PM Methods- Improved PM Techniques

    Directory of Open Access Journals (Sweden)

    Xu Lina

    2016-01-01

    Full Text Available Aluminum metal matrix composites (Al-MMCs with Al2O3 particulates as reinforcement fabricated by the power metallurgy (PM methods have gained much attention due to their unique characteristics of the wide range of Al2O3 particles addition, easy-operating process and effectiveness. The improved PM techniques, such as the high energy ball milling, powder extruder and high pressure torsion were applied to further strengthening the properties or/and diminishing the agglomeration of strength particles. The formation of liquid phase assisted densification of compacts to promote the sintering of composites. Complex design of Al2O3 particles with other particles was another efficient method to tailor the properties of Al-MMCs.

  16. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  17. Reynolds Metals Company, Massena, NY

    Science.gov (United States)

    The 1,600-acre former Reynolds Metals Facility is located on the St. Lawrence River, approximately eight miles east of the Village of Massena, New York. The facility, which was constructed in 1958 for the production of aluminum, closed in 2014. It is owned

  18. 21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-Aluminum 4-Vandium Alloy,” (ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-Chromium-Molybdenum Casting Alloy...

  19. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    OpenAIRE

    Korotkikh, Aleksandr Gennadievich; Glotov, Oleg; Sorokin, Ivan

    2016-01-01

    Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB[2], Al\\Mg alloy, Fe, Ti and Zr) in HEMs composition leads to the reduce of the specific impulse and comb...

  20. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    Science.gov (United States)

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  1. Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints

    Science.gov (United States)

    Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav

    2018-04-01

    Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.

  2. Corrosion inhibition of aluminum 6063 using some pharmaceutical compounds

    International Nuclear Information System (INIS)

    Fouda, A.S.; Al-Sarawy, A.A.; Ahmed, F.Sh.; El-Abbasy, H.M.

    2009-01-01

    The corrosion inhibition characteristics of some pharmaceutical compounds on aluminum 6063 in 0.5 mol l -1 H 3 PO 4 has been studied using weight loss and galvanostatic polarization techniques. Results showed that the inhibition occurs through adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency increased with increasing inhibitor concentration, but decreased with increasing temperature. The adsorption of first group pharmaceutical compounds on the metal surface is found to obey Frumkin's adsorption isotherm, but the adsorption of second group pharmaceutical compounds is found to obey Temkin's adsorption isotherm. Thermodynamic parameters for adsorption process were determined. Galvanostatic polarization studies showed that first and second groups' pharmaceutical compounds are mixed-type inhibitors and the results obtained from the two techniques are in good agreement

  3. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    Science.gov (United States)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  4. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  5. Solvent effects on extraction of aluminum(III), gallium(III), and indium(III), with decanoic acid

    International Nuclear Information System (INIS)

    Yamada, Hiromichi; Hayashi, Hisao; Fujii, Yukio; Mizuta, Masateru

    1986-01-01

    Extraction of aluminum(III) and indium(III) with decanoic acid in 1-octanol was carried out at 25 deg C and at an aqueous ionic strength of 0.1 mol dm -3 (NaClO 4 ). Monomeric and tetrameric aluminum(III) decanoates and monomeric indium(III) decanoate are responsible for the extraction. From a comparison of the present results with those obtained from the previous works, the polymerization of the extracted species was found to be more extensive in benzene than in 1-octanol, and the metal decanoates were highly polymerized in the following order in both solvents: Al > Ga > In. (author)

  6. Stent parameters predict major adverse clinical events and the response to platelet glycoprotein IIb/IIIa blockade: findings of the ESPRIT trial.

    Science.gov (United States)

    Tcheng, James E; Lim, Ing Haan; Srinivasan, Shankar; Jozic, Joseph; Gibson, C Michael; O'Shea, J Conor; Puma, Joseph A; Simon, Daniel I

    2009-02-01

    Only limited data describe relationships between stent parameters (length and diameter), adverse events after percutaneous coronary intervention, and effects of platelet glycoprotein IIb/IIIa blockade by stent parameters. In this post hoc analysis of the 1983 patients receiving a stent in the Enhanced Suppression of the Platelet Glycoprotein IIb/IIIa Receptor with Integrilin Therapy randomized percutaneous coronary intervention trial of eptifibatide versus placebo, rates of the major adverse cardiac event (MACE) end point (death, myocardial infarction, urgent target-vessel revascularization, or thrombotic bailout) at 48 hours and 1 year were correlated with stent parameters and then analyzed by randomization to eptifibatide versus placebo. In the placebo group, MACE increased with number of stents implanted, total stent length (by quartiles of or=30 mm), and total stented vessel area (by quartiles of area or=292 mm(2)). By stent parameters, MACE at 48 hours was reduced in the eptifibatide group at stent lengths of 18 to or=30 mm (OR, 0.43; 95% CI, 0.25 to 0.75; P=0.003), stent diameters of >2.5 to <3.5 mm (OR, 0.56; 95% CI, 0.39 to 0.82; P=0.002), and with 2 stents implanted (OR, 0.39; 95% CI, 0.22 to 0.69; P=0.001). In the placebo group, near-linear relationships were observed between both increasing stent length and increasing stented vessel area and MACE at 48 hours and 1 year (all, P<0.001); these gradients were flattened in the eptifibatide group (P=0.005 for stent length). Stent parameters predict MACE after percutaneous coronary intervention. Glycoprotein IIb/IIIa blockade mitigates much of the hazard of increasing procedural complexity.

  7. Radiation Therapy–First Strategy After Surgery With or Without Adjuvant Chemotherapy in Stage IIIA-N2 Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Woo [Department of Hematology-Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Noh, O Kyu, E-mail: okyu.noh@gmail.com [Department of Radiation Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Oh, Young-Taek [Department of Radiation Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Choi, Jin-Hyuk [Department of Hematology-Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Chun, Mison; Kim, Hwan-Ik; Heo, Jaesung [Department of Radiation Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Ahn, Mi Sun [Department of Hematology-Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Park, Seong Yong [Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon (Korea, Republic of); Park, Rae Woong; Yoon, Dukyong [Department of Biomedical Informatics, Ajou University School of Medicine, Suwon (Korea, Republic of)

    2016-03-01

    Purpose: Postoperative radiation therapy (PORT) and postoperative chemotherapy (POCT) can be administered as adjuvant therapies in patients with non-small cell lung cancer (NSCLC). The aim of this study was to present the clinical outcomes in patients treated with PORT-first with or without subsequent POCT in stage IIIA-N2 NSCLC. Methods and Materials: From January 2002 to November 2014, the conditions of 105 patients with stage IIIA-N2 NSCLC who received PORT-first with or without subsequent POCT were analyzed. PORT was initiated within 4 to 6 weeks after surgical resection. Platinum-based POCT was administered 3 to 4 weeks after the completion of PORT. We analyzed the outcomes and the clinical factors affecting survival. Results: Of 105 patients, 43 (41.0%) received POCT with a median of 4 cycles (range, 2-6 cycles). The follow-up times ranged from 3 to 123 months (median, 30 months), and the 5-year overall survival (OS) was 40.2%. The 5-year OS of patients treated with PORT and POCT was significantly higher than that of patients with PORT (61.3% vs 29.2%, P<.001). The significant prognostic factors affecting OS were the use of POCT (hazard ratio [HR] = 0.453, P=.036) and type of surgery (pneumonectomy/lobectomy; HR = 2.845, P<.001). Conclusions: PORT-first strategy after surgery appeared not to compromise the clinical outcomes in the treatment of stage IIIA-N2 NSCLC. The benefit of POCT on OS was preserved even in the PORT-first setting. Further studies are warranted to compare the sequencing of PORT and POCT, guaranteeing the proper use of POCT.

  8. Evaluation of liquid metal embrittlement of stainless steel 304 by cadmium and cadmium-aluminum solutions

    International Nuclear Information System (INIS)

    Iyer, N.C.; Peacock, H.B.; Thomas, J.K.; Begley, J.A.

    1994-01-01

    The susceptibility of stainless steel 304 (SS304) to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The safety rod test data and destructive examination of the specimens indicated that LME was not the failure mode. The available literature data also suggest that austenitic stainless steels are not particularly susceptible to LME by Cd or Cd-Al solutions. However, the literature data is not conclusive and an experimental study was therefore conducted to examine the susceptibility of SS304 to LME by Cd and Cd-Al solutions. Temperatures from 325 to 600 C and strain rates from 1x10 -6 to 5x10 -5 s -1 were of interest in this evaluation. Tensile tests carried out in molten Cd-Al and Cd solutions over these temperatures and strain rates with both smooth bar and notched specimens showed no evidence of LME. U-bend tests conducted in liquid Cd at 500 and 600 C also showed no evidence of LME. It is concluded that SS304 is not subject to LME by Cd or Cd-Al solutions over the range of temperatures and strain rates of interest. ((orig.))

  9. Effect of some grain refiners on the mechanical properties of aluminum

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2001-01-01

    It is well established that aluminum and its alloys are grain refined by some refractory metals to enhance their surface qualities and mechanical strengths. In this paper, the literature on grain refining, and its mechanism is reviewed and discussed. Also, the effect of grain refining of commercially pure aluminum by the addition of titanium, boron, vanadium, molybdenum, and zirconium is investigated. The effect of each of these elements on grain size, hardness and mechanical behavior is presented and discussed. It was found that the addition of any of these elements except zirconium resulted in enhancement of grain size, hardness and mechanical strength. An increase of 2.1 % in flow stress of Al grain refined by Ti+B was achieved by addition of 0.1 % V at 0.2 strain. (author)

  10. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid

    2012-01-01

    Aluminum 1060 and titanium alloy Ti–6Al–4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: ► FSW with cutting pin was successfully employed to form Al/Ti lap joint. ► Swirl-like structures formed due to mechanical mixing were found at the interface. ► High-strength joints fractured at Al suffered thermal cycle were produced.

  11. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    Science.gov (United States)

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  12. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  13. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  14. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

    Science.gov (United States)

    Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.

    2018-04-01

    Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

  15. 21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...),” (iii) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone... 5832-3:1996 “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-aluminum 4-vandium Alloy,” (ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-chromium-molybdenum...

  16. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, A., E-mail: arjun_venu@hotmail.com [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Srinath, J. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Rama Krishna, L. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 (India); Ramesh Narayanan, P.; Sharma, S.C.; Venkitakrishnan, P.V. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India)

    2016-04-13

    Alumina coating was deposited on AA7020 aluminum alloy by plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviors were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. Potentiodynamic polarization (PP) was used to evaluate the corrosion resistance of the coating and slow strain rate test (SSRT) was used for evaluating the environmental cracking resistance in 3.5% NaCl solution. The mechanical properties (hardness and elastic modulus) were obtained from each indentation as a function of the penetration depth across the coating cross section. The above results were compared with similar PEO coated aluminum and magnesium alloys. Results indicated that PEO coating on AA7020 alloy significantly improved the corrosion resistance. However the environmental cracking resistance was found to be only marginal. The hardness and elastic modulus values were found to be much higher when compared to the base metal and similar PEO coated 7075 aluminum alloys. The fabricated coating also exhibited good adhesive strength with the substrate similar to other PEO coated aluminum alloys reported in the literature.

  17. Function of all-metal separators for waste fuels. Phase 1; Funktion av allmetallseparatorer foer avfallsbraenslen. Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, Juergen; Wrangensten, Lars

    2004-08-01

    Various waste incineration facilities, which use different types of waste fuels, have difficulties with a high content of non-magnetic metal, especially aluminum in their fuels. Aluminum may melt on the grate and can lead to corrosion or fouling in the furnace. Additionally, a high content of aluminum in the flyash may cause difficulties in terms of storage or further use of the ash as e.g. construction material. The industrial demand for efficient separators for non-magnetic metals from a fuel stream is rather large. There is however some uncertainty in the performance and efficiency of metal separators. Two types of separators can be found, the first type is called eddy current separator, the other type is based upon a metal detector with a sorting unit in the form of a chute or similar afterwards. An eddy current separator consists of a fast rotating drum containing several permanent magnets with alternating polarity. Due to the rotation, the change in the magnetic field induces eddy currents in conducting materials. The eddy currents cause a force in non-magnetic metal, the Lorentz force, which repels the material away from the rotating drum while all other material follows the systems flow direction. Systems equipped with a metal detector activate a mechanical sorting device, separate chute or air nozzles, when a metal particle is detected. In contrast to eddy current separators all types of metals can be detected and sorted out by systems based on metal detector. Several technical solutions for metal separation supplied by various manufacturers are described in the report. The companies have been asked to supply product information on the working principle, technical data, efficiency and limits for different types of metals. Two reference power plants have been visited and their experiences with all-metal separators are described. Haendeloeverket in Norrkoeping uses eddy current separators for separation of non-magnetic metals from household waste

  18. Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH

    Directory of Open Access Journals (Sweden)

    C. B. Porciúncula

    2012-06-01

    Full Text Available The objective of this work is to investigate the production of hydrogen as an energy source by means of the reaction of aluminum with water. This reaction only occurs in the presence of NaOH and KOH, which behave as catalysts. The main advantages of using aluminum for indirect energy storage are: recyclability, non-toxicity and easiness to shape. Alkali concentrations varying from 1 to 3 mol.L-1 were applied to different metallic samples, either foil (0.02 mm thick or plates (0.5 and 1 mm thick, and reaction temperatures between 295 and 345 K were tested. The results show that the reaction is strongly influenced by temperature, alkali concentration and metal shape. NaOH commonly promotes faster reactions and higher real yields than KOH.

  19. System and process for aluminization of metal-containing substrates

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  20. System and process for aluminization of metal-containing substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2017-12-12

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.