WorldWideScience

Sample records for ii structural implications

  1. Structural Properties of MHC Class II Ligands, Implications for the Prediction of MHC Class II Epitopes

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Buus, Søren; Nielsen, Morten

    2010-01-01

    properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure......Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule...... of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC...

  2. Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer†

    Science.gov (United States)

    Fisher, S. Zoë; Kovalevsky, Andrey Y.; Domsic, John F.; Mustyakimov, Marat; McKenna, Robert; Silverman, David N.; Langan, Paul A.

    2010-01-01

    Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H–D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 Å resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D2O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented. PMID:20025241

  3. Neutron structure of human carbonic anhydrase II: implications for proton transfer.

    Science.gov (United States)

    Fisher, S Zoë; Kovalevsky, Andrey Y; Domsic, John F; Mustyakimov, Marat; McKenna, Robert; Silverman, David N; Langan, Paul A

    2010-01-26

    Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H-D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 A resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D(2)O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented.

  4. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation.

    Science.gov (United States)

    Brueckner, Florian; Cramer, Patrick

    2008-08-01

    To study how RNA polymerase II translocates after nucleotide incorporation, we prepared elongation complex crystals in which pre- and post-translocation states interconvert. Crystal soaking with the inhibitor alpha-amanitin locked the elongation complex in a new state, which was refined at 3.4-A resolution and identified as a possible translocation intermediate. The DNA base entering the active site occupies a 'pretemplating' position above the central bridge helix, which is shifted and occludes the templating position. A leucine residue in the trigger loop forms a wedge at the shifted bridge helix, but moves by 13 A to close the active site during nucleotide incorporation. Our results support a Brownian ratchet mechanism that involves swinging of the trigger loop between open, wedged and closed positions, and suggest that alpha-amanitin impairs nucleotide incorporation and translocation by trapping the trigger loop and bridge helix.

  5. Open access part II: the structure, resources, and implications for nurses.

    Science.gov (United States)

    Nick, Jan

    2011-11-23

    Electronic publishing has changed the landscape for broadcasting scholarly information. Now Open Access is globalizing scholarly work. Open Access facilitates lifelong learning habits; enhances dissemination and distribution of information; impacts the informatics curriculum; supports active learning; and provides areas for nursing informatics research. In the last 10 years the Open Access Movement has formalized into a distinct publishing paradigm. Many free, full-text resources are now available to guide nursing practice. This article describes the Open Access structure, and provides suggestions for using Open Access resources in classroom and practice settings. The nursing community is only beginning to accept and use Open Access. Yet all nurses should be aware of the unique opportunity to obtain free, current, and scholarly information through a variety of avenues and also to incorporate this information into their daily practice. The resources presented in this article can be used to increase nursing knowledge and support evidence-based practice.

  6. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    Science.gov (United States)

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  7. Synthesis, structure determination, and spectroscopic/computational characterization of a series of Fe(II)-thiolate model complexes: implications for Fe-S bonding in superoxide reductases.

    Science.gov (United States)

    Fiedler, Adam T; Halfen, Heather L; Halfen, Jason A; Brunold, Thomas C

    2005-02-16

    A combined synthetic/spectroscopic/computational approach has been employed to prepare and characterize a series of Fe(II)-thiolate complexes that model the square-pyramidal [Fe(II)(N(His))(4)(S(Cys))] structure of the reduced active site of superoxide reductases (SORs), a class of enzymes that detoxify superoxide in air-sensitive organisms. The high-spin (S = 2) Fe(II) complexes [(Me(4)cyclam)Fe(SC(6)H(4)-p-OMe)]OTf (2) and [FeL]PF(6) (3) (where Me(4)cyclam = 1,4,8,11-tetramethylcyclam and L is the pentadentate monoanion of 1-thioethyl-4,8,11-trimethylcyclam) were synthesized and subjected to structural, magnetic, and electrochemical characterization. X-ray crystallographic studies confirm that 2 and 3 possess an N(4)S donor set similar to that found for the SOR active site and reveal molecular geometries intermediate between square pyramidal and trigonal bipyramidal for both complexes. Electronic absorption, magnetic circular dichroism (MCD), and variable-temperature variable-field MCD (VTVH-MCD) spectroscopies were utilized, in conjunction with density functional theory (DFT) and semiemperical INDO/S-CI calculations, to probe the ground and excited states of complexes 2 and 3, as well as the previously reported Fe(II) SOR model [(L(8)py(2))Fe(SC(6)H(4)-p-Me)]BF(4) (1) (where L(8)py(2) is a tetradentate pyridyl-appended diazacyclooctane macrocycle). These studies allow for a detailed interpretation of the S-->Fe(II) charge transfer transitions observed in the absorption and MCD spectra of complexes 1-3 and provide significant insights into the nature of Fe(II)-S bonding in complexes with axial thiolate ligation. Of the three models investigated, complex 3 exhibits an absorption spectrum that is particularly similar to the one reported for the reduced SOR enzyme (SOR(red)), suggesting that this model accurately mimics key elements of the electronic structure of the enzyme active site; namely, highly covalent Fe-S pi- and sigma-interactions. These spectral

  8. Data structures II essentials

    CERN Document Server

    Smolarski, Dennis C

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Data Structures II includes sets, trees, advanced sorting, elementary graph theory, hashing, memory management and garbage collection, and appendices on recursion vs. iteration, alge

  9. Implications of social structure

    DEFF Research Database (Denmark)

    Brask, Josefine Bohr

    Social systems in nature are characterised by heterogeneous social structures. The pattern of social interactions or associations between individuals within populations (i.e. their social network) is typically non-random. Such structuring may have important implications for the expression......, we investigate empirically the role of the social environment of individuals for their communication patterns. Our study species is a song bird, the black-capped chickadee (Poecile atricapillus). The results suggest that individual communication in this species is influenced by features of the local...... social environment of the individual. In the last two studies, we investigate the role of social structure for cooperation in a classic natural system for behavioural research, the Trinidadian guppy (Poecilia reticulata), by means of computer simulations. Cooperation contradicts evolutionary theory...

  10. Dusty winds II. Observational Implications

    CERN Document Server

    Ivezic, Zeljko

    2010-01-01

    We compare observations of AGB stars and predictions of the Elitzur & Ivezic (2001) steady-state radiatively driven dusty wind model. The model results are described by a set of similarity functions of a single independent variable, and imply general scaling relations among the system parameters. We find that the model properly reproduces various correlations among the observed quantities and demonstrate that dust drift through the gas has a major impact on the structure of most winds. From data for nearby oxygen-rich and carbon-rich mass-losing stars we find that (1) the dispersion in grain properties within each group is rather small; (2) both the dust cross-section per gas particle and the dust-to-gas mass ratio are similar for the two samples even though the stellar atmospheres and grain properties are very different; (3) the dust abundance in both outflows is significantly below the Galactic average, indicating that most of the Galactic dust is not stardust - contrary to popular belief, but in suppor...

  11. High-Resolution Mn EXAFS of the Oxygen-Evolving Complex inPhotosystem II: Structural Implications for the Mn4Ca Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Pushkar, Yulia; Glatzel, Pieter; Lewis, Azul; Sauer,Kenneth; Messinger, Johannes; Bergmann, Uwe; Yachandra, Vittal

    2005-09-06

    The biological generation of oxygen by the oxygen-evolving complex in photosystem II (PS II) is one of natures most important reactions. The recent X-ray crystal structures, while limited by resolutions of 3.2 to 3.5 A, have located the electron density associated with the Mn4Ca complex within the multi-protein PS II complex. Detailed structures critically depend on input from spectroscopic techniques such as EXAFS and EPR/ENDOR, as the XRD resolution does not allow for accurate determination of the position of Mn/Ca or the bridging and terminal ligand atoms. The number and distances of Mn-Mn/Ca/ligand interactions determined from EXAFS provide important constraints for the structure of the Mn cluster. Here we present data from a high-resolution EXAFS method using a novel multi-crystal monochromator that show three short Mn-Mn distances between 2.7 and 2.8 A and hence the presence of three di-mu-oxobridged units in the Mn4Ca cluster. This result imposes clear limitations on the proposed structures based on spectroscopic and diffraction data and provides input for refining such structures.

  12. Implications of social structure

    DEFF Research Database (Denmark)

    Brask, Josefine Bohr

    social environment of the individual. In the last two studies, we investigate the role of social structure for cooperation in a classic natural system for behavioural research, the Trinidadian guppy (Poecilia reticulata), by means of computer simulations. Cooperation contradicts evolutionary theory......, we investigate empirically the role of the social environment of individuals for their communication patterns. Our study species is a song bird, the black-capped chickadee (Poecile atricapillus). The results suggest that individual communication in this species is influenced by features of the local...... and requires special explanations. Theory predicts that heterogeneous social structure can support and promote cooperation in populations. Our simulations suggest that social structure may not be able to explain the presence of cooperation in the guppy system. Overall the thesis provides new insights...

  13. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    Science.gov (United States)

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  14. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes.

    Science.gov (United States)

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J; Lenhert, Steven; Niyogi, Krishna K; Kirchhoff, Helmut

    2015-05-29

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion.

  15. Interstellar Turbulence II: Implications and Effects

    CERN Document Server

    Scalo, J

    2004-01-01

    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spe...

  16. Some Implications of Human-Structure Interaction

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2013-01-01

    On structures, humans may be active which may cause structural vibrations as human activity can excite structural vibration modes. However, humans may also be passive (sitting or standing on the structure). The paper addresses this subject and explores the implications of having passive humans pr...

  17. Complex II from a structural perspective.

    Science.gov (United States)

    Horsefield, Rob; Iwata, So; Byrne, Bernadette

    2004-04-01

    The super-macromolecular complex, succinate:quinone oxidoreductase (SQR, Complex II, succinate dehydrogenase) couples the oxidation of succinate in the matrix / cytoplasm to the reduction of quinone in the membrane. This function directly connects the Krebs cycle and the aerobic respiratory chain. Until the recent first report of the structure of SQR from Escherichia coli (E. coli) the structure-function relationships in SQR have been inferred from the structures of the homologous QFR, which catalyses the same reaction in the opposite direction. The structure of SQR from E. coli, analogous to the mitochondrial respiratory Complex II, has provided new insight into SQR's molecular design and mechanism, revealing the electron transport pathway through the enzyme. Comparison of the structures of SQR, QFR and other related flavoproteins shows how common amino acid residues at the interface of two domains facilitate the inter-conversion of succinate and fumarate. Additionally, the structure has provided a possible explanation as to why certain organisms utilise both SQR and QFR despite the fact that both can catalyse the inter-conversion of succinate and fumarate, in vitro and in vivo. Here we review how this structure has advanced our knowledge of this important enzyme and compare the structural information to other members of the Complex II superfamily and related flavoproteins.

  18. Implications of interaction between Humans and Structures

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2015-01-01

    as structural damping and therefore also structural vibration levels). The paper addresses this subject and explores implications of having passive humans present on the structure. In experimental tests with a laboratory floor it is examined to which degree the posture of humans passively sitting on the floor......Many civil engineering structures are occupied by humans, and often humans are considered as a static load in calculations. However, active humans on structures can cause structural vibrations. Passive humans might also be present on that structure and they do change the structural system (such...... influences the damping added to the floor. A numerical case study explores how passive humans may influence vibration levels of a floor....

  19. Potential Clinical Implications of the Urotensin II Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Emilie Kane

    2011-07-01

    Full Text Available Urotensin-II (UII, which binds to its receptor UT, plays an important role in the heart, kidneys, pancreas, adrenal gland and CNS. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, this constriction-dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in ACAT-1 activity leading to SMC proliferation and foam cell infiltration, insulin resistance (DMII, as well as inflammation, high blood pressure and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases.

  20. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase II)

    Energy Technology Data Exchange (ETDEWEB)

    Collard, François; Zhang, Jianye; Nemet, Ina; Qanungo, Kaustubha R.; Monnier, Vincent M.; Yee, Vivien C. (Case Western)

    2009-01-12

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6{angstrom} resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12{angstrom} deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates.

  1. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase II)*

    Science.gov (United States)

    Collard, François; Zhang, Jianye; Nemet, Ina; Qanungo, Kaustubha R.; Monnier, Vincent M.; Yee, Vivien C.

    2008-01-01

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6Å resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12Å deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates. PMID:18667417

  2. Crystal structure of the deglycating enzyme fructosamine oxidase (amadoriase II).

    Science.gov (United States)

    Collard, François; Zhang, Jianye; Nemet, Ina; Qanungo, Kaustubha R; Monnier, Vincent M; Yee, Vivien C

    2008-10-03

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6A resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12A deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates.

  3. Investigation of detergent effects on the solution structure of spinach Light Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T; O' Neill, Hugh, E-mail: hellerwt@ornl.gov, E-mail: oneillhm@ornl.gov [Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2010-11-01

    The properties of spinach light harvesting complex II (LHC II), stabilized in the detergents Triton X-100 (TX100) and n-Octyl-{beta}-D-Glucoside (BOG), were investigated by small-angle neutron scattering (SANS). The LHC II-BOG scattering curve overlaid well with the theoretical scattering curve generated from the crystal structure of LHC II indicating that the protein preparation was in its native functional state. On the other hand, the simulated LHC II curve deviated significantly from the LHC II-TX100 experimental data. Analysis by circular dichroism spectroscopy supported the SANS analysis and showed that LHC II-TX100 is inactivated. This investigation has implications for extracting and stabilizing photosynthetic membrane proteins for the development of biohybrid photoconversion devices.

  4. Structural basis of transcription initiation by RNA polymerase II.

    Science.gov (United States)

    Sainsbury, Sarah; Bernecky, Carrie; Cramer, Patrick

    2015-03-01

    Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.

  5. Structural basis of transcription initiation by RNA polymerase II.

    OpenAIRE

    Sainsbury, S.; Bernecky, C.; Cramer, P

    2015-01-01

    Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtaine...

  6. Persistent primitive hypoglossal artery associated with Chiari II malformation: Diagnosis and clinical implications

    Directory of Open Access Journals (Sweden)

    Gupta Mudit

    2010-01-01

    Full Text Available We present a case of persistent primitive hypoglossal artery (PPHA associated with Chiari II malformation and discuss the clinical implications. There has been one reported case of PPHA associated with Chiari 1 malformation, but none in association with Chiari II. Our patient also had a widened hypoglossal canal, with cerebrospinal fluid (CSF sac herniation through it.

  7. Structuralism: Its Implications for the Performance of Prose Fiction

    Science.gov (United States)

    Hopkins, Mary Francis

    1977-01-01

    Discusses the implications of structuralism by examining "Introduction to The Structural Analysis of Narrative", a contemporary writing by Roland Barthes. Explains Barthes' terms and concepts by using Virginia Woolf's Mrs. Dalloway character for an example. (MH)

  8. Structural visualization of the p53/RNA polymerase II assembly.

    Science.gov (United States)

    Singh, Sameer K; Qiao, Zhen; Song, Lihua; Jani, Vijay; Rice, William; Eng, Edward; Coleman, Robert A; Liu, Wei-Li

    2016-11-15

    The master tumor suppressor p53 activates transcription in response to various cellular stresses in part by facilitating recruitment of the transcription machinery to DNA. Recent studies have documented a direct yet poorly characterized interaction between p53 and RNA polymerase II (Pol II). Therefore, we dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. This study reveals that p53 binds Pol II via the Rpb1 and Rpb2 subunits, bridging the DNA-binding cleft of Pol II proximal to the upstream DNA entry site. In addition, the key DNA-binding surface of p53, frequently disrupted in various cancers, remains exposed within the assembly. Furthermore, the p53/Pol II cocomplex displays a closed conformation as defined by the position of the Pol II clamp domain. Notably, the interaction of p53 and Pol II leads to increased Pol II elongation activity. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription.

  9. Optimizing the structure of Tetracyanoplatinate(II)

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Møller, Klaus Braagaard; Sauer, Stephan P. A.

    2013-01-01

    The geometry of tetracyanoplatinate(II) (TCP) has been optimized with density functional theory (DFT) calculations in order to compare different computational strategies. Two approximate scalar relativistic methods, i.e. the scalar zeroth-order regular approximation (ZORA) and non-relativistic ca...

  10. TEXTILE STRUCTURES FOR AERONAUTICS (PART II

    Directory of Open Access Journals (Sweden)

    SOLER Miquel

    2014-05-01

    Full Text Available Three-dimensional (3D textile structures with better delamination resistance and damage impact tolerance to be applied in composites for structural components is one of the main goals of the aeronautical industry. Textile Research Centre in Canet de Mar has been working since 2008 in this field. Our staff has been designing, developing and producing different textile structures using different production methods and machinery to improve three-dimensional textile structures as fiber reinforcement for composites. This paper describes different tests done in our textile labs from unidirectional structures to woven, knitted or braided 3 D textile structures. Advantages and disadvantages of each textile structure are summarized. The second part of this paper deals with our know-how in the manufacturing and assessing of three-dimensional textile structures during this last five years in the field of textile structures for composites but also in the development of structures for other applications. In the field of composites for aeronautic sector we have developed textile structures using the main methods of textile production, that is to say, weaving, warp knitting, weft knitting and braiding. Comparing the advantages and disadvantages it could be said that braided fabrics, with a structure in the three space axes are the most suitable for fittings and frames.

  11. Structure and evolution of fossil H II regions

    Science.gov (United States)

    Mccray, R.; Schwarz, J.

    1971-01-01

    The structure and evolution of a fossil H II region created by a burst of ionizing radiation from a supernova is considered. The cooling time scale for the shell is about 10 to the 6th power years. Superposition of million-year-old fossil H II regions may account for the temperature and ionization of the interstellar medium. Fossil H II regions are unstable to growth of thermal condensations. Highly ionized filamentary structures form and dissipate in about 10,000 years. Partially ionized clouds form and dissipate in about 10 to the 6th power years.

  12. Synthesis, structural elucidation and carbon dioxide adsorption on Zn (II) hexacyanoferrate (II) Prussian blue analogue

    Science.gov (United States)

    Roque-Malherbe, R.; Lugo, F.; Polanco, R.

    2016-11-01

    In the course of the last years hexacyanoferrates have been widely studied; even though, the adsorption properties of Zn (II) hexacyanoferrate(II) (labelled here Zn-HII) have not been thoroughly considered. In addition, soft porous crystals, i.e., adsorbents that display structural flexibility have been, as well, extensively studied, however this property has not been reported for Zn (II) hexacyanoferrate(II). In this regard, the key questions addressed here were the synthesis and structural characterization of Zn-HII together with the investigation of their low (up to 1 bar) and high pressure (up to 30 bar) adsorption properties, to found if these materials show structural flexibility. Then, to attain the anticipated goals, structural characterizations were made with: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) and thermo-gravimetric analysis (TGA), simultaneously, with the investigation of the adsorption of carbon dioxide. As a result of the research process we concluded that the Zn-HII displayed Fm barm space group framework. Besides, the carbon dioxide adsorption investigation demonstrated the presence of the framework expansion effect together with an extremely high adsorption heat, properties that could be useful for the use of Zn(II) hexacyanoferrate(II) as an excellent adsorbent.

  13. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes

    NARCIS (Netherlands)

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J; Lenhert, Steven; Niyogi, Krishna K; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystall

  14. New variational bounds on convective transport. II. Computations and implications

    Science.gov (United States)

    Souza, Andre; Tobasco, Ian; Doering, Charles R.

    2016-11-01

    We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field u with intensity measured by the Péclet number Pe =h2 1/2 / κ (where is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu . Variational formulations of the problem are studied numerically and optimizing flow fields are computed over a range of Pe . Implications of this optimal wall-to-wall transport problem for the classical problem of Rayleigh-Bénard convection are discussed: the maximal scaling Nu Pe 2 / 3 corresponds, via the identity Pe2 = Ra (Nu - 1) where Ra is the usual Rayleigh number, to Nu Ra 1 / 2 as Ra -> ∞ . Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.

  15. Elasticity of some mantle crystal structures. II.

    Science.gov (United States)

    Wang, H.; Simmons, G.

    1973-01-01

    The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.

  16. A polymorph structure of copper(II hydrogenphosphite dihydrate

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2009-04-01

    Full Text Available The title compound, poly[[diaquacopper(II]-μ3-hydrogenphosphito], [Cu(HPO3(H2O2]n, (I, has been prepared by hydrothermal synthesis at 393 K. Its non-centrosymmetric polymorph structure, (II, was known previously and has been redetermined at 193 (2 K [El Bali & Massa (2002. Acta Cryst. E58, i29–i31]. The Cu atoms in (I and (II are square-pyramidal coordinated. A distorted octahedral geometry around the Cu atoms is considered by including the strongly elongated apical distances of 2.8716 (15 Å in (I and 3.000 (1 Å in (II. The Cu...Cu separation of the dimeric unit is 3.1074 (3 Å. The secondary building units (SBU (the Cu2O2 dimer and two HPO3 units in (I are inversion related and form a two-dimensional layered structure, with sheets parallel to the bc plane, whereas in the structure of (II, the chain elements are connected via screw-axis symmetry to form a three-dimensional microporous framework. In both polymorph structures, strong O—H...O hydrogen bonds are observed.

  17. Advances in Seabed Liquefaction and its Implications for Marine Structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2013-01-01

    A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave-flum......-flume results; Momentary liquefaction; Floatation of buried pipelines; Sinking of pipelines and marine objects; Liquefaction at gravity structures; Stability of rock berms in liquefied soils; and Impact of seismic-induced liquefaction.......A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave...

  18. Synthesis, Structure and Properties of Tetrakis (thiourea) mercury (II) Tetrakis (thiocyanato-N) zinc (II)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new nonlinear optical complex crystal tetrakis (thiourea) mercury (II) tetrakis (thiocyanato-N) zinc (II) was synthesized and its structure was determined. It belongs to the tetragonal system, Ispace group. The crystal structure consists of discrete [Zn(SCN)4]2- anions and [Hg(NH2CSNH2)4]2+ cations with slightly distorted coordination tetrahedra ZnN4 and HgS4. The second harmonic generation (SHG) of the crystal was found to be superior to that of urea.

  19. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Charles E. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Sainsbury, Sarah; Berrow, Nick S.; Alderton, David [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Stammers, David K. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  20. Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis.

    Science.gov (United States)

    Umehara, Takashi; Horikoshi, Masami

    2003-09-12

    Histones are thought to have specific roles in mammalian spermatogenesis, because several subtypes of histones emerge that are post-translationally modified during spermatogenesis. Though regular assembly of nucleosome is guaranteed by histone chaperones, their involvement in spermatogenesis is yet to be characterized. Here we identified a histone chaperone-related factor, which we designated as CCG1-interacting factor A-II (CIA-II), through interaction with bromodomains of TAFII250/CCG1, which is the largest subunit of human transcription initiation factor IID (TFIID). We found that human CIA-II (hCIA-II) localizes in HeLa nuclei and is highly expressed in testis and other proliferating cell-containing tissues. Expression of mouse CIA-II (mCIA-II) does not occur in the germ cell-lacking testes of adult WBB6F1-W/Wv mutant mice, indicating its expression in testis to be specific to germ cells. Fractionation of testicular germ cells revealed that mCIA-II transcripts accumulate in pachytene spermatocytes but not in spermatids. In addition, the mCIA-II transcripts in testis were present as early as 4 days after birth and decreased at 56 days after birth. These findings indicate that mCIA-II expression in testis is restricted to premeiotic to meiotic stages during spermatogenesis. Also, we found that hCIA-II interacts with histone H3 in vivo and with histones H3/H4 in vitro and that it facilitates supercoiling of circular DNA when it is incubated with core histones and topoisomerase I in vitro. These data suggest that CIA-II is a histone chaperone and is implicated in the regulation of mammalian spermatogenesis.

  1. HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L., E-mail: Paul.F.Goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  2. The HERA Dish II: Electromagnetic Simulations and Science Implications

    CERN Document Server

    Ewall-Wice, Aaron; DeBoer, David; Hewitt, Jacqueline; Parsons, Aaron; Aguirre, James; Ali, Zaki S; Bowman, Judd; Cheng, Carina; Neben, Abraham R; Patra, Nipanjana; Thyagarajan, Nithyanandan; Venter, Mariet; Acedo, Eloy de Lera; Dillon, Joshua S; Doolittle, Roger; Egan, Dennis; Hendrick, Mike; Klima, Patricia; Kohn, Saul; Schaffner, Patrick; Shelton, John; Saliwanchik, Benjamin; Tegmark, Max; Taylor, H A; Taylor, Rusty; Wirt, Butch

    2016-01-01

    We use time-domain electromagnetic simulations to assess the spectral characteristics of the dish antenna for the Hydrogen Epoch of Reionization Array (HERA). These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish's design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA's suspended feed and its parabolic dish reflector, at certain frequencies, with an amplitude of roughly $ -35$dB at 100 ns which can lead to some loss of measurable modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the dish is sufficiently smooth for delay filtering, a proven foreground isolation technique, to contain foreground emission at line-of-sight wave numbers below $k_\\parallel \\lesssim 0.2h$Mpc$^{-1}$, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we...

  3. Generalized propagation of light through optical systems. II. Numerical implications.

    Science.gov (United States)

    Tessmer, Manuel; Gross, Herbert

    2015-12-01

    We present an algorithm implemented in a MATLAB toolbox that is able to compute the wave propagation of coherent visible light through macroscopic lenses. The mathematical operations that complete the status at the end of the first paper of this sequence, where only limited configurations of the propagation direction were allowed toward arbitrarily directed input beam computations, are provided. With their help, high numerical aperture (NA) field tracing is made possible that is based on fast Fourier routines and is Maxwell exact in the limit of macroscopic structures and large curvature radii, including reflection and transmission. Whereas the curvature-dependent terms in the Helmholtz equation are under analytical control through the first perturbation order in the curvature, they are only included in the propagation distance in the current investigation for the sake of reasonable time consumption. We give a number of examples that demonstrate the strengths of our approach, describe essential differences from other approaches that were not obvious when Paper 1 was written, and list a number of drawbacks and possible simplifications to overcome them.

  4. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  5. Structural Basis of Analog Specificity in PKG I and II.

    Science.gov (United States)

    Campbell, James C; Henning, Philipp; Franz, Eugen; Sankaran, Banumathi; Herberg, Friedrich W; Kim, Choel

    2017-09-15

    Cyclic GMP analogs, 8-Br, 8-pCPT, and PET-cGMP, have been widely used for characterizing cellular functions of cGMP-dependent protein kinase (PKG) I and II isotypes. However, interpreting results obtained using these analogs has been difficult due to their low isotype specificity. Additionally, each isotype has two binding sites with different cGMP affinities and analog selectivities, making understanding the molecular basis for isotype specificity of these compounds even more challenging. To determine isotype specificity of cGMP analogs and their structural basis, we generated the full-length regulatory domains of PKG I and II isotypes with each binding site disabled, determined their affinities for these analogs, and obtained cocrystal structures of both isotypes bound with cGMP analogs. Our affinity and activation measurements show that PET-cGMP is most selective for PKG I, whereas 8-pCPT-cGMP is most selective for PKG II. Our structures of cyclic nucleotide binding (CNB) domains reveal that the B site of PKG I is more open and forms a unique π/π interaction through Arg285 at β4 with the PET moiety, whereas the A site of PKG II has a larger β5/β6 pocket that can better accommodate the bulky 8-pCPT moiety. Our structural and functional results explain the selectivity of these analogs for each PKG isotype and provide a starting point for the rational design of isotype selective activators.

  6. Structure and membrane organization of photosystem II in green plants

    NARCIS (Netherlands)

    Hankamer, B; Barber, J; Boekema, EJ

    1997-01-01

    Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as

  7. Implications of Subcortical structures in Aphasia.

    Directory of Open Access Journals (Sweden)

    Saleh Alamri

    2015-04-01

    Taken together, the results indicate that aphasia is a common outcome after a lesion to subcortical structures. Findings show that 110 out of 394 aphasic patients with lesion in the basal ganglia exhibited comprehension deficits, while 31 participants out of 288 with thalamic aphasia. Likewise, 129 aphasics of affected basal ganglia out of 394 had impaired naming, whereas 12 participants had impaired naming out of 288 individuals with thalamic aphasia. See figure 1. Figure 1: The percentage of language impairment in two sets of aphasic patients (the thalamus and the basal ganglia. Despite contradictory results and even cases of double dissociation (for an example of absence of language deficits in the event of thalamic lesions see Cappa et al., 1986, our literature review confirms the major role of subcortical structures in language processing.

  8. Implications of a Time-Varying Fine Structure Constant

    CERN Document Server

    Alfonso-Faus, A

    2002-01-01

    Much work has been done after the possibility of a fine structure constant being time-varying. It has been taken as an indication of a time-varying speed of light. Here we prove that this is not the case. We prove that the speed of light may or may not vary with time, independently of the fine structure constant being constant or not. Time variations of the speed of light, if present, have to be derived by some other means and not from the fine structure constant. No implications based on the possible variations of the fine structure constant can be imposed on the speed of light.

  9. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family.

    Science.gov (United States)

    Rehman, Shazia; Aziz, Ejaz; Akhtar, Wasim; Ilyas, Muhammad; Mahmood, Tariq

    2017-02-09

    Plant proteinase inhibitor-II (PI-II) proteins are one of the promising defensive proteins that helped the plants to resist against different kinds of unfavorable conditions. Different roles for PI-II have been suggested such as regulation of endogenous proteases, modulation of plant growth and developmental processes and mediating stress responses. The basic knowledge on genetic and molecular diversity of these proteins has provided significant insight into their gene structure and evolutionary relationships in various members of this family. Phylogenetic comparisons of these family genes in different plants suggested that the high rate of retention of gene duplication and inhibitory domain multiplication may have resulted in the expansion and functional diversification of these proteins. Currently, a large number of transgenic plants expressing PI-II genes are being developed for enhancing the defensive capabilities against insects, bacteria and pathogenic fungi. Much emphasis is yet to be given to exploit this ever expanding repertoire of genes for improving abiotic stress resistance in transgenic crops. This review presents an overview about the current knowledge on PI-II family genes, their multifunctional role in plant defense and physiology with their potential applications in biotechnology.

  10. Flower structures in the Ales coal basin - structural implications

    Energy Technology Data Exchange (ETDEWEB)

    Genna, A.; Debriette, P.J. (Bureau de Recherches Geologiques et Minieres, Orleans (France). Dept. de Geologie)

    1994-04-07

    The presence of flower structures in the Stephanian Ales (coal) basin has led the authors propose a new formation model for the basin, based on reverse strike-slip movement along N-S to NW-SE striking basement faults. This model confirms, through structural arguments, the recent questioning of the traditional explanation of the basin structure as thrust sheets. Such compressive strike-slip structures are not taken into account by the model of late Hercynian crustal extension in the French Massif Central.

  11. Lipoprotein (a: Structure, Pathophysiology and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Raul Cavalcante Maranhão

    2014-07-01

    Full Text Available The chemical structure of lipoprotein (a is similar to that of LDL, from which it differs due to the presence of apolipoprotein (a bound to apo B100 via one disulfide bridge. Lipoprotein (a is synthesized in the liver and its plasma concentration, which can be determined by use of monoclonal antibody-based methods, ranges from 1,000 mg/dL. Lipoprotein (a levels over 20-30 mg/dL are associated with a two-fold risk of developing coronary artery disease. Usually, black subjects have higher lipoprotein (a levels that, differently from Caucasians and Orientals, are not related to coronary artery disease. However, the risk of black subjects must be considered. Sex and age have little influence on lipoprotein (a levels. Lipoprotein (a homology with plasminogen might lead to interference with the fibrinolytic cascade, accounting for an atherogenic mechanism of that lipoprotein. Nevertheless, direct deposition of lipoprotein (a on arterial wall is also a possible mechanism, lipoprotein (a being more prone to oxidation than LDL. Most prospective studies have confirmed lipoprotein (a as a predisposing factor to atherosclerosis. Statin treatment does not lower lipoprotein (a levels, differently from niacin and ezetimibe, which tend to reduce lipoprotein (a, although confirmation of ezetimibe effects is pending. The reduction in lipoprotein (a concentrations has not been demonstrated to reduce the risk for coronary artery disease. Whenever higher lipoprotein (a concentrations are found, and in the absence of more effective and well-tolerated drugs, a more strict and vigorous control of the other coronary artery disease risk factors should be sought.

  12. Hyperfine Structure and Isotope Shifts in Dy II

    Directory of Open Access Journals (Sweden)

    Dylan F. Del Papa

    2017-01-01

    Full Text Available Using fast-ion-beam laser-fluorescence spectroscopy (FIBLAS, we have measured the hyperfine structure (hfs of 14 levels and an additional four transitions in Dy II and the isotope shifts (IS of 12 transitions in the wavelength range of 422–460 nm. These are the first precision measurements of this kind in Dy II. Along with hfs and IS, new undocumented transitions were discovered within 3 GHz of the targeted transitions. These atomic data are essential for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. Lanthanide abundances are important in diffusion modeling of stellar interiors, and in the mechanisms and history of nucleosynthesis in the universe. Hfs and IS also play an important role in the classification of energy levels, and provide a benchmark for theoretical atomic structure calculations.

  13. Structural basis of initial RNA polymerase II transcription.

    Science.gov (United States)

    Cheung, Alan C M; Sainsbury, Sarah; Cramer, Patrick

    2011-11-04

    During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.

  14. Crystal structure of bis(4-acetylanilinium tetrachloridocobaltate(II

    Directory of Open Access Journals (Sweden)

    Manickam Thairiyaraja

    2015-12-01

    Full Text Available The structure of the title salt, (C8H10NO2[CoCl4], is isotypic with the analogous cuprate(II structure. The asymmetric unit contains one 4-acetylanilinium cation and one half of a tetrachloridocobaltate(II anion for which the CoII atom and two Cl− ligands lie on a mirror plane. The Co—Cl distances in the distorted tetrahedral anion range from 2.2519 (6 to 2.2954 (9 Å and the Cl—Co—Cl angles range from 106.53 (2 to 110.81 (4°. In the crystal, cations are self-assembled by intermolecular N—H...O hydrogen-bonding interactions, leading to a C(8 chain motif with the chains running parallel to the b axis. π–π stacking interactions between benzene rings, with a centroid-to-centroid distance of 3.709 Å, are also observed along this direction. The CoCl42− anions are sandwiched between the cationic chains and interact with each other through intermolecular N—H...Cl hydrogen-bonding interactions, forming a three-dimensional network structure.

  15. Structure Learning and Statistical Estimation in Distribution Networks - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-13

    Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/or line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.

  16. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    the high-bendability regions position nucleosomes at the downstream end of the transcriptional start point, and consider the possibility of interaction between histone-like TAFs and this area. We also propose the use of this structural signature in computational promoter-finding algorithms.......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...

  17. Crystal structure of bis(4-acetylanilinium tetrachloridomercurate(II

    Directory of Open Access Journals (Sweden)

    Manickam Thairiyaraja

    2015-12-01

    Full Text Available The structure of the title salt, (C8H10NO2[HgCl4], is isotypic with that of the cuprate(II and cobaltate(II analogues. The asymmetric unit contains one 4-acetylanilinium cation and one half of a tetrachloridomercurate(II anion (point group symmetry m. The Hg—Cl distances are in the range 2.4308 (7–2.5244 (11 Å and the Cl—Hg—Cl angles in the range of 104.66 (2–122.94 (4°, indicating a considerable distortion of the tetrahedral anion. In the crystal, cations are linked by an intermolecular N—H...O hydrogen-bonding interaction, leading to a C(8 chain motif with the chains extending parallel to the b axis. There is also a π–π stacking interaction with a centroid-to-centroid distance of 3.735 (2 Å between neighbouring benzene rings along this direction. The anions lie between the chains and interact with the cations through intermolecular N—H...Cl hydrogen bonds, leading to the formation of a three-dimensional network structure.

  18. Structure of photosystem II and substrate binding at room temperature

    Science.gov (United States)

    Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S.; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G.; Stan, Claudiu A.; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A.; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T.; Andi, Babak; Orville, Allen M.; Glownia, James M.; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S.; Lane, Thomas J.; Aquila, Andy; Koglin, Jason E.; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Moriarty, Nigel W.; Liebschner, Dorothee; Afonine, Pavel V.; Waterman, David G.; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I.; Brunger, Axel T.; Zwart, Petrus H.; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K.; Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2016-01-01

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment-protein complex, couples the one-electron photochemistry at the reaction center with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC) (Fig. 1a, Extended Data Fig. 1). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4)1, where S1 is the dark stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution2,3. A detailed understanding of the O-O bond formation mechanism remains a challenge, and elucidating the structures of the OEC in the different S-states, as well as the binding of the two substrate waters to the catalytic site4-6, is a prerequisite for this purpose. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage free, room temperature (RT) structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å structure of PS II7 at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, RT measurements are required to study the structural landscape of proteins under functional conditions8,9, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analog, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states10. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site10-13. Thus, this approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms. PMID:27871088

  19. Synthesis and structure of linear hexanuclear manganese (II) benzoate cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From a reaction system including benzoic acid and Mn(NO3)2 in alkali medium, two hexanuclear manganese benzoate cluster compounds have been synthesized. A compound [Et4N]2[Mn6(PhCOO)14] has been structurally characterized, which contains hexanuclear MnII moie-ties extending unlimitedly to form one-dimensional linear structure. Carboxyl oxygen atoms are bridged in variety of modes to the Mn atoms, forming an arrangement like a sinusoid for the Mn atoms. The structural parameters of these compounds were compared with the data obtained from EXAFS determination for the Mn cluster in the OEC of PSII, supporting that the coordination sphere of the Mn site in the OEC may contain carboxyl bridges. The possible combination modes between the carboxyl group and the Mn atoms have been suggested. The NMR signals exhibit widening and shift produced by the influence of the paramagnetic MnII sites. The red-shift of the absorption in IR spectrum was observed to be attributed to the coordination of the carboxyl group to the Mn atom, supporting the result of the study on crystal structure.

  20. Pharmacological properties of angiotensin II antagonists: Examining all the therapeutic implications

    Directory of Open Access Journals (Sweden)

    Thomas Unger

    2001-06-01

    Full Text Available Angiotensin II (Ang II, the effector peptide of the renin-angiotensin system (RAS, exerts a variety of actions in physiological blood pressure and body fluid regulation, and is implicated as a major pathogenic factor in the development of cardiovascular disease. Inhibition of the RAS, via treatment with the angiotensin-converting enzyme inhibitors (ACE-I, or more recently the Ang II AT1-receptor blockers (ARBs, has been used as a therapeutic approach to the treatment of hypertension and other cardiovascular dysfunction. Evidence from animal and clinical studies shows that the antihypertensive and overall organ-protective actions of the ARBs are similar to those of ACE-I. However, as the ARBs selectively block the AT1-receptor, which is responsible for the known cardiovascular actions of Ang II, leave the AT2-receptor unopposed and do not interfere with the breakdown of bradykinin, there is the potential for beneficial effects in hypertensive patients with cardiovascular diseases such as left ventricular hypertrophy. Furthermore, there may be additional benefits when the ARBs are combined with ACE-I in such patients. Animal studies contribute to the elucidation and understanding of the role of AT1- and AT2-receptors in the cardiovascular system, and may help in the design of clinical studies aimed at investigating the effects of ACE-I, ARBs, and their combination, on cardiovascular outcomes in hypertensive patients.

  1. One-dimensional Co(II)/Ni(II) complexes of 2-hydroxyisophthalate: Structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004 (China); Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong [State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004 (China); Sun, Wei-Yin [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liang, Fu-Pei, E-mail: fliangoffice@yahoo.com [State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004 (China); College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China)

    2015-03-15

    The solvothermal reactions of 2-hydroxyisophthalic acid (H{sub 3}ipO) with M(NO{sub 3}){sub 2}∙6H{sub 2}O (M=Co, Ni) afforded two complexes [Co{sub 2}(HipO){sub 2}(Py){sub 2}(H{sub 2}O){sub 2}] (1) and [Ni(HipO)(Py)H{sub 2}O] (2) (Py=pyridine). They exhibit similar zig-zag chain structures with the adjacent two metal centers connected by a anti-syn bridging carboxylate group from the HipO{sup 2−} ligand. The magnetic measurements reveal the dominant antiferromagnetic interactions and spin-canting in 1 while ferromagnetic interactions in 2. Both of them exhibit magnetocaloric effect (MCE) with the resulting entropy changes (−ΔS{sub m}) of 12.51 J kg{sup −1} K{sup −1} when ΔH=50 kOe at 3 K for 1 and 11.01 J kg{sup −1} K{sup −1} when ΔH=50 kOe at 3 K for 2, representing the rare examples of one-dimensional complexes with MCE. - Graphical abstract: Synopsis: Two Co(II)/Ni(II) complexes with zig-zag chain structures have been reported. 1-Co shows cant-antiferromagnetism while 2-Ni shows ferromagnetism. Magnetocaloric effect is also found in both of them. - Highlights: • Two one-dimensional Co(II)/Ni(II) complexes were solvothermally synthesized. • The Co-complex exhibits canted antiferromagnetism. • The Ni-complex exhibits ferromagnetism. • Both of the complexes display magnetocaloric effect.

  2. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    Science.gov (United States)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  3. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  4. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Science.gov (United States)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  5. Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Touyz R.M.

    2004-01-01

    Full Text Available Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS. ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i, a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

  6. Synthesis, structural visualization, spectroscopic, and thermal studies of charge transfer Cu(II, Ni(II and Zn(II bromides-carbamide complexes at elevated temperature

    Directory of Open Access Journals (Sweden)

    Khlood Abou-Melha

    2015-09-01

    Full Text Available In the present study, the composition and structure of Cu(II, Ni(II and Zn(II compounds resulted from the chemical reactions of copper(II, nickel(II and zinc(II bromide salts with carbamide in aqueous media at 95 oC have been investigated, using IR, electron spin resonance ESR and x-ray powder diffraction spectroscopy as well as thermal analysis TG/DTG/DSC. The Cu2(OH3Br, [Ni2(NCO2(H2O2(Br2], and ZnCO3.xH2O compounds were achieved by a novel synthetic route through with a low cost precursor like carbamide. The infrared spectra of the results indicate absence of the individual bands of carbamide, but exhibited of the distinguished bands of hydroxyl, isocyanate, NCO, and ionic carbonate, CO32– for Cu(II, Ni(II and Zn(II compounds, respectively. Visualized investigations were performed to confirm crystal structure, validity and stability of the product compounds. A general reaction mechanisms describing the preparation of Cu(II, Ni(II, and Zn(II compounds were discussed.

  7. Synthesis and characterization of zinc(II, palladium(II and platinum(II complex with 2’-[1-(2-pyridinylethylidene] oxamohydrazide. The crystal structure of bis{2’-[1-(2-pyridinylethylidene]oxamohydrazido}zinc(II trihydrate

    Directory of Open Access Journals (Sweden)

    ROLAND TELLGREN

    2004-09-01

    Full Text Available Complexes of Zn(II, Pd(II and Pt(II with 2’-[1-(2-pyridinylethylidene]oxamohydrazide (Hapsox were synthesized and their structures were determined. All the complexes are of a neutral type with two apsox ligands coordinated to Zn(II and one apsox ligand coordinated to Pd(II or Pt(II. In each case, the polydentate was coordinated via pyridine and hydrazone nitrogens and a-oxyazine oxygen, forming an octahedral geometry around Zn(II, and a square planar one around Pd(II and Pt(II. The structure determination was performed by IR, 1H-NMR and 13C-NMR spectroscopy, and for the Zn(II complex by X-ray structure analysis.

  8. SOLVENCY II: THE IMPLICATIONS OF ITS APPLICATION ON THE ROMANIAN INSURANCE MARKET

    Directory of Open Access Journals (Sweden)

    Ioan Marius Ciotina

    2014-07-01

    Full Text Available Solvency II is a European directive whose purpose is to update the regulations concerning the insurance market. This is more than a set of rules on the solvency of insurance companies and is a comprehensive set of rules on the entire insurance market from solvency, liquidity and information asymmetry between actors to an insurance transaction. The aim of this article is to present the implications of applying Solvency II in Romania and the changes that will occur on the insurance market. We also present the advantages of moving from the current regulation, namely Solvency I to Solvency II Directive, both by comparative analysis between both directly and through analysis of test results QIS5 applied in Romania. We will also show the current situation of the insurance market by emphasizing evolution and the solvency margin of solvency for the last six years from 2007, the year before the financial crisis and in 2012, the year for which there last available data.

  9. The structure of Andromeda II dwarf spheroidal galaxy

    CERN Document Server

    del Pino, Andrés; Hidalgo, Sebastian L; Fouquet, Sylvain

    2016-01-01

    We analyze in detail the spatial distribution and kinematic properties of two different stellar populations in Andromeda II (And II) dwarf spheroidal galaxy. We obtained their detailed surface density maps, together with their radial density profiles. The two populations differ not only in age and metallicity, but also in their spatial distribution and kinematics. Old stars ($\\gtrsim 11$ Gyr) follow a round distribution well fitted by truncated density profiles. These stars rotate around the projected optical major axis of the galaxy with line-of-sight velocities $v_{los}(r_h) = 16 \\pm 3$ km s$^{-1}$ and a velocity gradient of $2.06 \\pm 0.21$ km s$^{-1}$ arcmin$^{-1}$. Intermediate-age stars ($\\lesssim 9$ Gyr) concentrate in the centre of the galaxy and form an elongated structure extending along the projected optical major axis. This structure appears to rotate with a steeper velocity gradient, $2.24 \\pm 0.22$ km s$^{-1}$ arcmin$^{-1}$, and around the optical minor axis. The centres of rotation and kinetic p...

  10. Structural mechanisms of the Ih–II and II → Ic transitions between the crystalline phases of aqueous ice

    Energy Technology Data Exchange (ETDEWEB)

    Zheligovskaya, E. A., E-mail: lmm@phyche.ac.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2015-09-15

    Structural mechanisms are proposed for experimentally observed phase transitions between crystalline modifications of aqueous ice, Ih and II, as well as II and Ic. It is known that the Ih–II transition occurs with the conservation of large structural units (hexagonal channels) common for these ices. It is shown that the Ih → II transition may occur with the conservation of 5/6 of all hydrogen bonds in crystal, including all hydrogen bonds in the retained channels (3/4 of the total number of bonds in crystal) and 1/3 of the bonds between these channels (1/12 of the total number). The transformation of other hydrogen bonds between the retained channels leads to the occurrence of proton order in ice II. A structural mechanism is proposed to explain the transformation of single crystals of ice Ih either into single crystals of ice II or into crystalline twins of ice II with c axes rotated by 180° with respect to each other, which is often observed at the Ih → II transition. It is established that up to 7/12 of all hydrogen bonds are retained at the irreversible cooperative II → Ic transition.

  11. Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption

    Energy Technology Data Exchange (ETDEWEB)

    Lefkowitz, Joshua P.; Elzinga, Evert J.

    2017-09-01

    We studied the impacts of aqueous Mn(II) (1 mM) on the sorption of Ni(II) (200 μM) by hexagonal birnessite (0.1 g L- 1) at pH 6.5 and 7.5 with batch experiments and XRD, ATR-FTIR and Ni K-edge EXAFS analyses. In the absence of Mn(II)aq, sorbed Ni(II) was coordinated predominantly as triple corner-sharing complexes at layer vacancies at both pH values. Introduction of Mn(II)aq into Ni(II)-birnessite suspensions at pH 6.5 caused Ni(II) desorption and led to the formation of edge-sharing Ni(II) complexes. This was attributed to competitive displacement of Ni(II) from layer vacancies by either Mn(II) or by Mn(III) formed through interfacial Mn(II)-Mn(IV) comproportionation, and/or incorporation of Ni(II) into the birnessite lattice promoted by Mn(II)-catalyzed recrystallization of the sorbent. Similar to Mn(II)aq, the presence of HEPES or MES caused the formation of edge-sharing Ni(II) sorption complexes in Ni(II)-birnessite suspensions, which was attributed to partial reduction of the sorbent by the buffers. At pH 7.5, interaction with aqueous Mn(II) caused reductive transformation of birnessite into secondary feitknechtite that incorporated Ni(II), enhancing removal of Ni(II) from solution. These results demonstrate that reductive alteration of phyllomanganates may significantly affect the speciation and solubility of Ni(II) in anoxic and suboxic environments.

  12. Tin( ii ) ketoacidoximates: synthesis, X-ray structures and processing to tin( ii ) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-10-21

    Tin(ii) ketoacidoximates of the type [HONCRCOO]Sn (R = Me 1, CHPh 2) and (MeONCMeCOO)Sn] NH·2HO 3 were synthesized by reacting pyruvate- and hydroxyl- or methoxylamine RONH (R = H, Me) with tin(ii) chloride dihydrate SnCl·2HO. The single crystal X-ray structure reveals that the geometry at the Sn atom is trigonal bipyramidal in 1, 2 and trigonal pyramidal in 3. Inter- or intramolecular hydrogen bonding is observed in 1-3. Thermogravimetric (TG) analysis shows that the decomposition of 1-3 to SnO occurs at ca. 160 °C. The evolved gas analysis during TG indicates complete loss of the oximato ligand in one step for 1 whereas a small organic residue is additionally removed at temperatures >400 °C for 2. Above 140 °C, [HONC(Me)COO]Sn (1) decomposes in air to spherical SnO particles of size 10-500 nm. Spin coating of 1 on Si or a glass substrate followed by heating at 200 °C results in a uniform film of SnO. The band gap of the produced SnO film and nanomaterial was determined by diffuse reflectance spectroscopy to be in the range of 3.0-3.3 eV. X-ray photoelectron spectroscopy indicates surface oxidation of the SnO film to SnO in ambient atmosphere.

  13. Electronic structure of nickel(II) and zinc(II) borohydrides from spectroscopic measurements and computational modeling.

    Science.gov (United States)

    Desrochers, Patrick J; Sutton, Christopher A; Abrams, Micah L; Ye, Shengfa; Neese, Frank; Telser, Joshua; Ozarowski, Andrew; Krzystek, J

    2012-03-05

    The previously reported Ni(II) complex, Tp*Ni(κ(3)-BH(4)) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate anion), which has an S = 1 spin ground state, was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy as a solid powder at low temperature, by UV-vis-NIR spectroscopy in the solid state and in solution at room temperature, and by paramagnetic (11)B NMR. HFEPR provided its spin Hamiltonian parameters: D = 1.91(1) cm(-1), E = 0.285(8) cm(-1), g = [2.170(4), 2.161(3), 2.133(3)]. Similar, but not identical parameters were obtained for its borodeuteride analogue. The previously unreported complex, Tp*Zn(κ(2)-BH(4)), was prepared, and IR and NMR spectroscopy allowed its comparison with analogous closed shell borohydride complexes. Ligand-field theory was used to model the electronic transitions in the Ni(II) complex successfully, although it was less successful at reproducing the zero-field splitting (zfs) parameters. Advanced computational methods, both density functional theory (DFT) and ab initio wave function based approaches, were applied to these Tp*MBH(4) complexes to better understand the interaction between these metals and borohydride ion. DFT successfully reproduced bonding geometries and vibrational behavior of the complexes, although it was less successful for the spin Hamiltonian parameters of the open shell Ni(II) complex. These were instead best described using ab initio methods. The origin of the zfs in Tp*Ni(κ(3)-BH(4)) is described and shows that the relatively small magnitude of D results from several spin-orbit coupling (SOC) interactions of large magnitude, but with opposite sign. Spin-spin coupling (SSC) is also shown to be significant, a point that is not always appreciated in transition metal complexes. Overall, a picture of bonding and electronic structure in open and closed shell late transition metal borohydrides is provided, which has implications for the use of these complexes in catalysis and

  14. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. Leigh; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, Buffalo, NY 14203 (United States)

    2014-06-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.

  15. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatecobalt(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-01-01

    Full Text Available The structure of the mononuclear title complex, [{(H3CS2C=NC[triple-bond] N}2CoCl2], consists of a CoII atom coordinated in a distorted tetrahedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H...Cl and C—H...S interactions and π–π stacking [centroid-to-centroid distance = 3.515 (su? Å]. Additional C—H...Cl and C—H...S interactions, as well as Cl...S contacts < 3.6 Å, consolidate the crystal packing.

  16. Crystal structure of bis(1-ethylpyridinium dioxonium hexacyanidoferrate(II

    Directory of Open Access Journals (Sweden)

    Rikako Tanaka

    2017-02-01

    Full Text Available The title compound, (C7H10N2(H3O2[Fe(CN6] or (Etpy2(H3O2[Fe(CN6] (Etpy+ is 1-ethylpyridinium, crystallizes in the space group Pnnm. The FeII atom of the [Fe(CN6]4− anion lies on a site with site symmetry ..2/m, and has an octahedral coordination sphere defined by six cyanido ligands. Both the Etpy+ and the oxonium cations are located on a mirror plane. In the crystal, electron-donor anions of [Fe(CN6]4− and electron-acceptor cations of Etpy+ are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional O—H...N hydrogen-bonding network between the oxonium ions and the cyanide ligands of [Fe(CN6]4−.

  17. Origins of Water Molecules in the Photosystem II Crystal Structure.

    Science.gov (United States)

    Sakashita, Naoki; Watanabe, Hiroshi C; Ikeda, Takuya; Saito, Keisuke; Ishikita, Hiroshi

    2017-06-20

    The cyanobacterial photosystem II (PSII) crystal structure includes more than 1300 water molecules in each monomer unit; however, their precise roles in water oxidation are unclear. To understand the origins of water molecules in the PSII crystal structure, the accessibility of bulk water molecules to channel inner spaces in PSII was investigated using the water-removed PSII structure and molecular dynamics (MD) simulations. The inner space of the channel that proceeds toward the D1-Glu65/D2-Glu312 pair (E65/E312 channel) was entirely filled with water molecules from the bulk region. In the same channel, a diamond-shaped cluster of water molecules formed near redox-active TyrZ in MD simulations. Reorientation of the D2-Leu352 side chain resulted in formation of a hexagonal water network at the Cl(-)2 binding site. Water molecules could not enter the main region of the O4-water chain, which proceeds from the O4 site of the Mn4CaO5 cluster. However, in the O4-water chain, the two water binding sites that are most distant from the protein bulk surface were occupied by water molecules that approached along the E65/E312 channel, one of which formed an H-bond with the O4 site. These findings provide key insights into the significance of the channel ends, which may utilize water molecules during the PSII photocycle.

  18. Homochiral Cu(II) and Ni(II) malates with tunable structural features

    Science.gov (United States)

    Zavakhina, Marina S.; Samsonenko, Denis G.; Virovets, Alexander V.; Dybtsev, Danil N.; Fedin, Vladimir P.

    2014-02-01

    Four new homochiral metal-organic frameworks (MOFs) based on S-malate anions and N-donor linkers of different length have been prepared under solvothermal conditions. [Cu(mal)(bpy)]·H2O (1), [Cu(mal)(bpe)]·2H2O (2), [Ni(mal)(bpy)]·1.3CH3OH (3) and [Ni(mal)(bpe)]·4H2O (4) (mal=S-malate, bpy=4,4‧-bipyridil, bpe=trans-1,2-bis(4-pyridyl)ethylene) were characterized by a number of analytical methods including powder X-ray diffraction, elemental, thermogravimetric analyses, IR spectroscopy. Compounds 1-3 were structurally characterized by X-ray crystallography. The absence of the chiral ligand racemization under synthetic conditions was unambiguously confirmed by polarimetry experiments. Compounds 1 and 2 contain metal-malate layered motives, connected by N-donor linkers and contribute to the family of isoreticular Cu(II) malates and tartrates [Cu(mal)L] and [Cu(tart)L], (tart=tartrate; L=ditopic rigid organic ligand). The Ni-based compounds 3 and 4 share 1D chiral {Ni(mal)} motives and possess novel type of the chiral framework, previously unknown for chiral carboxylates. The linear N-donor linkers connect these chiral chains, thus controlling the channel diameter and guest accessible volume of the homochiral structure, which exceeds 60 %.

  19. ``N'' structure for type-II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, Omer; Muti, Abdullah; Kutluer, Kutlu; Tansel, Tunay; Turan, Rasit; Ergun, Yuksel; Aydinli, Atilla

    2012-08-01

    In the quest to raise the operating temperature and improve the detectivity of type II superlattice (T2SL) photodetectors, we introduce a design approach that we call the "N structure." N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Unlike the symmetrical insertion of AlSb into GaSb layers, N design aims to exploit the shifting of the electron and hole wavefunctions under reverse bias. With cutoff wavelength of 4.3 μm at 77 K, temperature dependent dark current and detectivity measurements show that the dark current density is 3.6 × 10-9 A/cm2, under zero bias. Photodetector reaches background limited infrared photodetection (BLIP) condition at 125 K with the BLIP detectivity (D*BLIP) of 2.6 × 1010 Jones under 300 K background and -0.3 V bias voltage.

  20. Structure/Function/Dynamics of Photosystem II Plastoquinone Binding Sites

    Science.gov (United States)

    Lambreva, Maya D.; Russo, Daniela; Polticelli, Fabio; Scognamiglio, Viviana; Antonacci, Amina; Zobnina, Veranika; Campi, Gaetano; Rea, Giuseppina

    2014-01-01

    Photosystem II (PSII) continuously attracts the attention of researchers aiming to unravel the riddle of its functioning and efficiency fundamental for all life on Earth. Besides, an increasing number of biotechnological applications have been envisaged exploiting and mimicking the unique properties of this macromolecular pigment-protein complex. The PSII organization and working principles have inspired the design of electrochemical water splitting schemes and charge separating triads in energy storage systems as well as biochips and sensors for environmental, agricultural and industrial screening of toxic compounds. An intriguing opportunity is the development of sensor devices, exploiting native or manipulated PSII complexes or ad hoc synthesized polypeptides mimicking the PSII reaction centre proteins as bio-sensing elements. This review offers a concise overview of the recent improvements in the understanding of structure and function of PSII donor side, with focus on the interactions of the plastoquinone cofactors with the surrounding environment and operational features. Furthermore, studies focused on photosynthetic proteins structure/function/dynamics and computational analyses aimed at rational design of high-quality bio-recognition elements in biosensor devices are discussed. PMID:24678671

  1. Tensegrity II. How structural networks influence cellular information processing networks

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  2. Tin(II) ketoacidoximates: synthesis, X-ray structures and processing to tin(II) oxide.

    Science.gov (United States)

    Khanderi, Jayaprakash; Davaasuren, Bambar; Alshankiti, Buthainah Ameen; Rothenberger, Alexander

    2015-12-14

    Tin(II) ketoacidoximates of the type [HON=CRCOO]2Sn (R = Me 1, CH2Ph 2) and (MeON=CMeCOO)3Sn](-) NH4(+)·2H2O 3 were synthesized by reacting pyruvate- and hydroxyl- or methoxylamine RONH2 (R = H, Me) with tin(II) chloride dihydrate SnCl2·2H2O. The single crystal X-ray structure reveals that the geometry at the Sn atom is trigonal bipyramidal in 1, 2 and trigonal pyramidal in 3. Inter- or intramolecular hydrogen bonding is observed in 1-3. Thermogravimetric (TG) analysis shows that the decomposition of 1-3 to SnO occurs at ca. 160 °C. The evolved gas analysis during TG indicates complete loss of the oximato ligand in one step for 1 whereas a small organic residue is additionally removed at temperatures >400 °C for 2. Above 140 °C, [HON=C(Me)COO]2Sn (1) decomposes in air to spherical SnO particles of size 10-500 nm. Spin coating of 1 on Si or a glass substrate followed by heating at 200 °C results in a uniform film of SnO. The band gap of the produced SnO film and nanomaterial was determined by diffuse reflectance spectroscopy to be in the range of 3.0-3.3 eV. X-ray photoelectron spectroscopy indicates surface oxidation of the SnO film to SnO2 in ambient atmosphere.

  3. Crystal structure and encapsulation dynamics of ice II-structured neon hydrate.

    Science.gov (United States)

    Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C; Han, Jiantao; Germann, Timothy C; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S; Zhao, Yusheng

    2014-07-22

    Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms.

  4. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity.

    Directory of Open Access Journals (Sweden)

    Krishna Mohan Sepuru

    Full Text Available The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG, and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.

  5. The Latent Symptom Structure of the Beck Depression Inventory-II in Outpatients with Major Depression

    Science.gov (United States)

    Quilty, Lena C.; Zhang, K. Anne; Bagby, R. Michael

    2010-01-01

    The Beck Depression Inventory-II (BDI-II) is a self-report instrument frequently used in clinical and research settings to assess depression severity. Although investigators have examined the factor structure of the BDI-II, a clear consensus on the best fitting model has not yet emerged, resulting in different recommendations regarding how to best…

  6. Counterparty risk analysis using Merton's structural model under Solvency II

    Directory of Open Access Journals (Sweden)

    Luis Otero González

    2014-12-01

    Full Text Available The new solvency regulation in the European insurance sector, denominated Solvency II, will completely transform the system of capital requirements estimation. Recently it has introduced the latest quantitative impact study (QIS5, which provides the calculation method in the internal model for the determination of capital requirements. The aim of this paper is to analyze the adequacy of the calibration of the counterparty credit risk by the models proposed in recent quantitative impact reports (fourth and fifth. To do this we compare capital requirements obtained by the two alternatives, against which that results from applying a simulation model based on the structural approach. The results shows that the use of probabilities based on the methodology of Merton, which can be used in an internal model, compared to those based on ratings (standard model result in substantially higher capital requirements. In addition, the model proposed in QIS4 based on Vasicek distribution is not appropriate when the number of counterparties is reduced, a common situation in the European insurance sector. Moreover, the new proposal (QIS5 or Ter Berg model is more versatile and suitable than its predecessor but requires further research in order to improve the calibration hypothesis and, thus, to better approximate estimates to the risk actually assumed.

  7. Structure and evolution of low-mass Population II stars

    Science.gov (United States)

    Montalbán, J.; D'Antona, F.; Mazzitelli, I.

    2000-08-01

    The focus of the present paper is on the detailed description of the internal structures of low mass, population II stars, to clarify some issues about these stellar models and, mainly, their present reliability for observational comparisons. We then explore 1) the role of the local convective model; 2) the differences between "grey" and "non grey" models, and between models in which the photospheric boundary conditions are set at different optical depths (τph = 3 or 100); 3) the role of the equation of state (EoS), both in the atmospheric models and in the interior. One of the major conclusions of the paper is a cautionary note about the usage of the additive volume law in EoS calculations. The dependence of the HR diagram locations and mass luminosity relations on metal and helium content are also discussed. A few comparisons with globular cluster stars show that: 1) general consistency of distance scales and morphologies in the HR diagram is found, when comparing ground based measurements in the Johnson B and V bands and observations in the HST bands; 2) a discrepancy between models and observations may exist for more metal rich clusters; 3) the plausible hypothesis that the mass function in the globular cluster NGC 6397 behaves smoothly until the lower limit of the main sequence poses constraints on the mass-luminosity relation at the lowest end of the main sequence. The evolutionary tracks are available at the WEB location http://www.mporzio.astro.it.

  8. Metal-ion exchange induced structural transformation as a way of forming novel Ni(II)- and Cu(II)-salicylaldimine structures

    Science.gov (United States)

    Wu, Jing-Yun; Tsai, Chi-Jou; Chang, Ching-Yun; Wu, Yung-Yuan

    2017-02-01

    A Zn(II)-salicylaldimine complex [Zn(Lsalpyca)(H2O)]n (1, where H2Lsalpyca=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)-salicylaldimine complex [Ni(Lsalpyca)(H2O)3] (2) and an infinite Cu(II)-salicylaldimine complex {[Cu(Lsalpyca)]·3H2O}n (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1-3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere of metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis.

  9. Structural and Spectroscopic Aspects of Schiff Base Metal Complexes of Cobalt(II, Nickel(II and Copper(II

    Directory of Open Access Journals (Sweden)

    B.K. Rai

    2014-09-01

    Full Text Available The complexes of Co(II, Ni(II and Cu(II with Schiff base 2-butyl thioquinazoline 4(3H thiosemicarbazone were synthesized. The general formulae of the complexes are of the type {M(L2X2], L=2 – butyl thioquinazoline 4(3H thiosemicarbazone; x = Cl-, Br-, I- and NO3-. Elemental analyses and spectral (IR, electronic studies of the synthesized complexes suggest the presence of octahedral, environment around the central metal ion. These complexes were also subjected to study their antimicrobial screening against, Gram positive bacteria Candida albicans and gram negative bacteria Escherichia coli by disc diffusion technique.

  10. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes.

    Science.gov (United States)

    Murugesan, Sathiyamoorthy; Stöger, Berthold; Weil, Matthias; Veiros, Luis F; Kirchner, Karl

    2015-04-13

    The 15e square-planar complexes [Co(PCP(Me)-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCP(Me)-iPr)(η(2)-BH4)] (4a) and [Co(PCP-tBu)(η(2)-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η(2)-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d(7) low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCP(Me)-iPr)(η(2)-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCP(Me)-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCP(Me)-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η(2)-mode. [Ni(PCP(Me)-iPr)(η(2)-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCP(Me)-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCP(Me)-iPr)(η(2)-BH4)] (4a) and [Ni(PCP(Me)-iPr)(η(2)-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCP(Me)-iPr)H] and [Ni(PCP(Me)-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and

  11. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes

    Science.gov (United States)

    2015-01-01

    The 15e square-planar complexes [Co(PCPMe-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Co(PCP-tBu)(η2-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η2-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d7 low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCPMe-iPr)(η2-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCPMe-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCPMe-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η2-mode. [Ni(PCPMe-iPr)(η2-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCPMe-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCPMe-iPr)H] and [Ni(PCPMe-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co

  12. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    Science.gov (United States)

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  13. Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles.

    Science.gov (United States)

    Sánchez-Guadarrama, Obdulia; López-Sandoval, Horacio; Sánchez-Bartéz, Francisco; Gracia-Mora, Isabel; Höpfl, Herbert; Barba-Behrens, Noráh

    2009-09-01

    Herein we present the synthesis, structural and spectroscopic characterization of coordination compounds of cobalt(II), copper(II) and zinc(II) with 2-methylbenzimidazole (2mbz), 2-phenylbenzimidazole (2phbz), 2-chlorobenzimidazole (2cbz), 2-benzimidazolecarbamate (2cmbz) and 2-guanidinobenzimidazole (2gbz). Their cytotoxic activity was evaluated using human cancer cell lines, PC3 (prostate), MCF-7 (breast), HCT-15 (colon), HeLa (cervic-uterine), SKLU-1 (lung) and U373 (glioblastoma), showing that the zinc(II) and copper(II) compounds [Zn(2mbz)(2)Cl(2)].0.5H(2)O, [Zn(2cmbz)(2)Cl(2)].EtOH, [Cu(2cmbz)Br(2)].0.7H(2)O and [Cu(2gbz)Br(2)] had significant cytotoxic activity. The isostructural cobalt(II) complexes showed not significant activity. The cytotoxic activity is related to the presence of halides in the coordination sphere of the metal ion. Recuperation experiments with HeLa cells, showed that the cells recuperated after removing the copper(II) compounds and, on the contrary, the cells treated with the zinc(II) compounds did not. These results indicate that the mode of action of the coordination compounds is different.

  14. Nuclear structure far off stability -Implications for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Grawe, H.; Gorska, M. [GSI, Darmstadt (Germany); Blazhev, A. [GSI, Darmstadt (Germany); University of Sofia, Sofia (Bulgaria); Grzywacz, R. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Mach, H. [Uppsala University, ISV, Nykoeping (Sweden); Mukha, I. [GSI, Darmstadt (Germany); RRC Kurchatov Institute, Moscow (Russian Federation); Katholieke Universiteit Leuven, Leuven (Belgium)

    2006-03-15

    The single-particle structure and shell gap of {sup 100}Sn as inferred from previous in-beam {gamma}-ray spectroscopy has been confirmed in recent studies of seniority and spin-gap isomers by {gamma}{gamma}, {beta}{gamma}, {beta}p{gamma}, p{gamma} and 2p{gamma} spectroscopy. The results for {sup 94,} {sup 95}Ag, {sup 98}Cd and its N=50 isotones {sup 96}Pd and {sup 94}Ru stress the importance of large-scale shell model calculations employing realistic interactions for the isomerism, np-nh excitations, seniority mixing and E2 polarisation of the {sup 100}Sn core. The strong monopole interaction of the {delta}l=0,1 spin/isospin-flip partners {pi}g{sub 9/2}-{nu}g{sub 7/2} along the N=50 isotones and the {pi}f{sub 5/2}- {nu}g{sub 9/2} pair of nucleons along the Z=28 Ni isotopes are decisive for the evolution of the shell structure towards {sup 100}Sn and {sup 78}Ni. It can be traced back to the tensor force in the effective nucleon-nucleon interaction and provides a straightforward explanation for new shells in neutron-rich light nuclei, implying qualitative predictions for new N=32,34 subshells in Ca isotopes, persistence of the {sup 78}Ni proton and neutron shell gaps and non-equivalence of the g{sub 9/2} valence mirror Ni isotopes and N=50 isotones. This is corroborated by recent experimental data on {sup 56,58}Cr and {sup 70-76}Ni. The implication of monopole driven shell evolution for apparent spin-orbit splitting towards N>>Z and structure along the astrophysical r-path between N=50 and N=82 is discussed. (orig.)

  15. Examining the structure, reliability, and validity of the Chinese personal growth initiative scale-II: evidence for the importance of intentional self-change among Chinese.

    Science.gov (United States)

    Yang, Hongfei; Chang, Edward C

    2014-01-01

    We examined the factor structure, reliability, and validity of the Chinese version of the Personal Growth Initiative Scale-II (CPGIS-II) using data from a sample of 927 Chinese university students. Consistent with previous findings, confirmatory factor analyses supported a 4-factor model of the CPGIS-II. Reliability analyses indicated that the 4 CPGIS-II subscales, namely Readiness for Change, Planfulness, Using Resources, and Intentional Behavior, demonstrated good internal consistency reliability and adequate test-retest reliability across a 4-week period. In addition, evidence for convergent and incremental validity was found in relation to measures of positive and negative psychological adjustment. Finally, results of hierarchical regression analyses indicated that the 4 personal growth initiative dimensions, especially planfulness, accounted for additional unique variance in psychological adjustment beyond resilience. Some implications for using the CPGIS-II in Chinese are discussed.

  16. A Global View of Cognitive Structure and Implications for Instruction and Assessment

    OpenAIRE

    Terrel, Andy; Thacker, Beth

    2007-01-01

    We assert that models of cognitive structure all have the same basic features. These basic features, independent of the model, have important implications for instruction and assessment. We describe the basic features of models of cognitive structure, giving examples from our research. We then discuss the implications for instruction and assessment.

  17. Quantum Chemical Studies on the Prediction of Structures, Charge Distributions and Vibrational Spectra of Some Ni(II), Zn(II), and Cd(II) Iodide Complexes

    Science.gov (United States)

    Bardakci, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-06-01

    Transition metal complexes play an important role in coordination chemistry as well as in the formation of metal-based drugs. In order to obtain accurate results for studying these type of complexes quantum chemical studies are performed and especially density functional theory (DFT) has become a promising choice. This talk represents molecular structures, charge distributions and vibrational analysis of Ni(II), Zn(II), and Cd(II) iodide complexes of p-toluidine and m-toluidine by means of DFT. Stable structures of the ligands and the related complexes have been obtained in the gas phase at B3LYP/def2-TZVP level and calculations predict Ni(II) complexes as distorted polymeric octahedral whereas Zn(II) and Cd(II) complexes as distorted tetrahedral geometries. Charge distribution analysis have been performed by means of Mulliken, NBO and APT methods and physically most meaningful method for our compounds is explained. Vibrational spectra of the title compounds are computed from the optimized geometries and theoretical frequencies are compared with the previously obtained experimental data. Since coordination occurs via nitrogen atoms of the free ligands, N-H stretching bands of the ligands are shifted towards lower wavenumbers in the complexes whereas NH_2 wagging and twisting vibrations are shifted towards higher wavenumbers.

  18. Structures of polynuclear complexes of palladium(II) and platinum(II) formed by slow hydrolysis in acidic aqueous solution.

    Science.gov (United States)

    Torapava, Natallia; Elding, Lars I; Mändar, Hugo; Roosalu, Kaspar; Persson, Ingmar

    2013-06-07

    The aqua ions of palladium(II) and platinum(II) undergo extremely slow hydrolysis in strongly acidic aqueous solution, resulting in polynuclear complexes. The size and structures of these species have been determined by EXAFS and small angle X-ray scattering, SAXS. For palladium(II), the EXAFS data show that the Pd-O and Pd···Pd distances are identical to those of crystalline palladium(II) oxide, but the intensities of the Pd···Pd distances in the Fourier transform at 3.04 and 3.42 Å are significantly lower compared to those of crystalline PdO. Furthermore, no Pd···Pd distances beyond 4 Å are observed. These observations strongly indicate that the polynuclear palladium(II) complexes are oxido- and hydroxido-bridged species with the same core structure as solid palladium(II) oxide. Based on the number of Pd···Pd distances, as derived from the EXAFS data, their size can be estimated to be approximately two unit cells, or ca. 1.0 nm(3). For platinum(II), EXAFS data of the polynuclear species formed in the slow hydrolysis process show Pt-O and Pt···Pt distances identical to those of amorphous platinum(II) oxide, precipitating from the solution studied. The Pt···Pt distances are somewhat different from those reported for crystalline platinum(II) oxide. The polynuclear platinum(II) complexes have a similar structure to the palladium ones, but they are somewhat larger, with an estimated diameter of 1.5-3.0 nm. It has not been possible to precipitate any of these species by ultracentrifugation. They are detectable by SAXS, indicating diameters between 0.7 and 2 nm, in excellent agreement with the EXAFS observations. The number of oxido- relative to hydroxido bridges will increase with increasing size of the complex. The charge of the complexes will remain about the same, +4, at growth, with approximate formulas [Pd10O4(OH)8(H2O)12](4+) and [Pt14O8(OH)8(H2O)12](4+) for complexes with a size of 2 and 3 unit cells of the corresponding solid metal oxide

  19. New Mn(II, Ni(II, Cd(II, Pb(II complexes with 2-methylbenzimidazole and other ligands. Synthesis, spectroscopic characterization, crystal structure, magnetic susceptibility and biological activity studies

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2016-11-01

    Full Text Available Synthesis and characterization of Mn(II, Ni(II, Cd(II and Pb(II mixed ligand complexes of 2-methylbenzimidazole with other ligands have been reported. The structure of the ligands and their complexes was investigated using elemental analysis, IR, UV–Vis, (1H, 13C NMR spectroscopy, molar conductivity and magnetic susceptibility measurements. In all the studies of complexes, the 2-methylbenzimidazole behaves as a neutral monodentate ligand which is coordinated with the metal ions through the N atom. While benzotriazole behaves as a neutral bidentate ligand which is coordinated with the Ni(II ion through the two N atoms. Moreover, the N-acetylglycine behaves as a bidentate ligand which is coordinated with the Mn(II, Ni(II and Pb(II ions through the N atom and the terminal carboxyl oxygen atom. The magnetic and spectral data indicate the tetrahedral geometry for Mn(II complex, irregular tetrahedral geometry for Pb(II complex and octahedral geometry for Ni(II complex. The X-ray single crystal diffraction method was used to confirm a centrosymmetric dinuclear Cd(II complex as each two metal ions are linked by a pair of thiocyanate N = S bridge. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square pyramid geometry around the Cd atom. Besides, different cell types were used to determine the inhibitory effect of Mn(II, Ni(II, Cd(II and Pb(II complexes on cell growth using MTT assay. Cd(II complex showed cytotoxic effect on various types of cancer cell lines with different EC50 values.

  20. Synthesis, antimicrobial activity, structural and spectral characterization and DFT calculations of Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile.

    Science.gov (United States)

    Mohamed, Tarek A; Shaaban, Ibrahim A; Farag, Rabei S; Zoghaib, Wajdi M; Afifi, Mahmoud S

    2015-01-25

    Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile (APC) have been synthesized and characterized using elemental analysis, magnetic susceptibility, mass spectrometry, infrared (4000-200 cm(-1)), UV-Visible (200-1100 nm), (1)H NMR and ESR spectroscopy as well as TGA analysis. The molar conductance measurements in DMSO imply non-electrolytic complexes, formulated as [M(APC)2Cl2] where M=Co(II), Ni(II), Cu(II) and Pd(II). The infrared spectra of Co(II), Ni(II) and Cu(II) complexes indicate a bidentate type of bonding for APC through the exocyclic amino and adjacent pyrimidine nitrogen as donors whereas APC coordinated to Pd(II) ion as a monodentated ligand via a pyrimidine nitrogen donor. The magnetic measurements and the electronic absorption spectra support distorted octahedral geometries for Co(II), Ni(II) and Cu(II) complexes however a square planar complex was favored for the Pd(II) complex (C2h skeleton symmetry). In addition, we carried out B3LYP and ω-B97XD geometry optimization at 6-31G(d) basis set except for Pd(II) where we implemented LanL2DZ/6-31G(d) combined basis set. The computational results favor all trans geometrical isomers where amino N, pyrimidine N and Cl are trans to each other (structure 1). Finally, APC and its divalent metal ion complexes were screened for their antibacterial activity, and the synthesized complexes were found to be more potent antimicrobial agents than APC against one or more microbial species.

  1. Interaction between the H II region and AFGL 333-Ridge: Implications for the star formation scenario

    Science.gov (United States)

    Nakano, Makoto; Soejima, Takashi; Chibueze, James O.; Nagayama, Takumi; Omodaka, Toshihiro; Handa, Toshihiro; Sunada, Kazuyoshi; Kamezaki, Tatsuya; Burns, Ross A.

    2017-02-01

    We investigated the star formation activities in the AFGL 333 region, which is in the vicinity of the W 4 expanding bubble, by conducting NH3 (1,1), (2,2), and (3,3) mapping observations with the 45 m Nobeyama Radio Telescope an angular resolution of 75″. The morphology of the NH3 (1,1) map shows a bow-shaped structure with the size of 2.0 × 0.6 pc as seen in the dust continuum. At the interface between the W 4 bubble and the dense NH3 cloud, the compact H II region G134.2+0.8, associated with IRAS 02245+6115, is located. Interestingly, just at the north and south of G134.2+0.8 we found NH3 emission exhibiting large velocity widths of ˜2.8 km s-1, compared to 1.8 km s-1 at the other positions. As the possibility of mechanical energy injection through the activity of young stellar objects (YSOs) is low, we considered the origin of the large turbulent gas motion as an indication of interaction between the compact H II region and the periphery of the dense molecular cloud. We also found expanding motion of the CO emission associated with G134.2+0.8. The overall structure of the AFGL 333-Ridge might have been formed by the expanding bubble of W 4. However, the small velocity widths observed to the west of IRAS 02245+6115, around the center of the dense molecular cloud, suggest that interaction with the compact H II region is limited. Therefore the YSOs (dominantly Class 0/I) in the core of the AFGL 333-Ridge dense molecular cloud most likely formed in quiescent mode. As previously suggested for the large-scale star formation in the W 3 giant molecular cloud, our results show an apparent coexistence of induced and quiescent star formations in this region. It appears that star formation in the AFGL 333 region has proceeded without significant external triggers, but accompanying stellar feedback environment.

  2. Synthesis, structure and properties of {M4O4} cubanes containing nickel(II) and cobalt(II).

    Science.gov (United States)

    Isele, Katharina; Gigon, Fabienne; Williams, Alan F; Bernardinelli, Gérald; Franz, Patrick; Decurtins, Silvio

    2007-01-21

    A survey of the crystal structures containing simple {M4O4} cubane units is reported. It shows that the average M-M distance in these complexes is relatively constant for a given metal ion M. The structures are all distorted from the idealised cube to a T(d) structure, and most show a further distortion which, however, usually maintains some elements of symmetry. A system for classifying the different types of ligand in these complexes is proposed. Two new cubanes of cobalt(II) and nickel(II) with the ligand (R,R)-bis-1,2-(1-methylbenzimidazol-2-yl)ethane-1,2-diol, (R,R)- or its enantiomer have been isolated and the crystal structure of the cobalt(II) complex confirms the cubane structure. Electronic, CD and (1)H NMR spectra and magnetic susceptibility data are reported. The magnetic data for these and other compounds in the literature are discussed in terms of the structural parameters.

  3. Three pyridyl modified Cu(II)/Cd(II)-diphosphonates: Syntheses, crystal structures and properties

    Science.gov (United States)

    Ma, Kui-Rong; Cao, Li; Cong, Ming-Hui; Kan, Yu-He; Li, Rong-Qing

    2017-07-01

    Three examples of M(II)-diphosphonates, [Cu3(H3Lsbnd H)4]·2(OH)·2H2O 1, [Cu3(H2L)2(H2O)2] 2, and [Cd(H2Lsbnd H)]·H2O 3 based on 1-hydroxy-2-(3-pyridyl)ethylidene-1,1-diphosphonic acid (HxL/HxLsbnd H: x = 0-5, H5L = (H4C5N)CH2C(OH)(PO3H2)2, H5L-H = (H4C5Nsbnd H)CH2C(OH)(PO3H2)2), have been hydrothermally obtained and characterized by powder X-ray diffraction, elemental analysis, TG-DSC and IR. The single-crystal X-ray diffractions reveal that compounds 1 and 3 are one-dimensional chain structures (linear for 1 and ladderlike for 3) constructed by binuclear units [M2O2]n, simultaneously organic pyridine-ring suspending both sides, and compound 2 shows a two-dimensional inorganic-organic alternate arrangement layer built from 1-D ladderlike inorganic chain with trinuclear units [Cu3(OPO)4]nvia pyridine-ring linker. The results of electrochemical measurements indicate that both 2 and 3 are significant negatively shifted by 0.17 V and 0.13 V (0.33 V for 2 and 0.37 V for 3), respectively, while 1 was red-shifted by 0.87 V (1.37 V), compared with the ligand H5L (0.50 V). Moreover fluorescent measurements reveal that compounds 1-3 display fluorescent emission bands, 383 nm and 425 nm for 1, 382 nm and 425 nm for 2 and 311 nm, 378 nm and 422.5 nm for 3 (λex = 235 nm), caused by intraligand π*-π emission state of the ligand H5L (λex = 233 nm). Magnetic data indicate that compound 1 exhibits weak ferromagnetic interactions within 1-D linear chain, but compound 2 gives an antiferromagnetic behavior within 1-D ladderlike chain. The energy levels of the frontier molecular orbitals of 1∼3 are obtained from DFT calculations (EHOMO1: -15.23 eV, 2: = -9.74 eV, 3: -11.5 eV), and the low HOMO-LUMO gaps of 1 (0.38 eV), 2 (0.20 eV) and 3 (0.38 eV) mean that high chemical reactivity for three compounds.

  4. Crystal structures of μ-oxalato-bis[azido(histaminecopper(II] and μ-oxalato-bis[(dicyanamido(histaminecopper(II

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2015-11-01

    Full Text Available The title compounds, μ-oxalato-κ4O1,O2:O1′,O2′-bis[[4-(2-aminoethyl-1H-imidazole-κ2N3,N4](azido-κN1copper(II], [Cu2(C2O4(N32(C5H9N32], (I, and μ-oxalato-κ4O1,O2:O1′,O2′-bis[[4-(2-aminoethyl-1H-imidazole-κ2N3,N4](dicyanamido-κN1copper(II], [Cu2(C2O4(C2N32(C5H9N32], (II, are two oxalate-bridged dinuclear copper complexes. Each CuII ion adopts a five-coordinate square-pyramidal coordination sphere where the basal N2O2 plane is formed by two O atoms of the oxalate ligand and two N atoms of a bidentate chelating histamine molecule. The apical coordination site in compound (I is occupied by a monodentate azide anion through one of its terminal N atoms. The apical coordination site in compound (II is occupied by a monodentate dicyanamide anion through one of its terminal N atoms. The molecules in both structures are centrosymmetric. In the crystals of compounds (I and (II, the dinuclear complexes are linked through N—H...X and C—H...X (X = N, O hydrogen bonds where the donors are provided by the histamine ligand and the acceptor atoms are provided by the azide, dicyanamide, and oxalate ligands. In compound (I, the coordinatively unsaturated copper ions interact with the histamine ligand via a C—H...Cu interaction. The coordinatively unsaturated copper ions in compound (II interact via a weak N...Cu interaction with the dicyanamide ligand of a neighboring molecule. The side chain of the histamine ligand is disordered over three sets of sites in (II.

  5. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.

    Science.gov (United States)

    Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha

    2012-10-01

    The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p

  6. Structure of a forested urban park: implications for strategic management.

    Science.gov (United States)

    Millward, Andrew A; Sabir, Senna

    2010-11-01

    Informed management of urban parks can provide optimal conditions for tree establishment and growth and thus maximize the ecological and aesthetic benefits that trees provide. This study assesses the structure, and its implications for function, of the urban forest in Allan Gardens, a 6.1 ha downtown park in the City of Toronto, Canada, using the Street Tree Resource Analysis Tool for Urban Forest Managers (STRATUM). Our goal is to present a framework for collection and analysis of baseline data that can inform a management strategy that would serve to protect and enhance this significant natural asset. We found that Allan Garden's tree population, while species rich (43), is dominated by maple (Acer spp.) (48% of all park trees), making it reliant on very few species for the majority of its ecological and aesthetic benefits and raising disease and pest-related concerns. Age profiles (using size as a proxy) showed a dominance of older trees with an inadequate number of individuals in the young to early middle age cohort necessary for short- to medium-term replacement. Because leaf area represents the single-most important contributor to urban tree benefits modelling, we calculated it separately for every park tree, using hemispheric photography, to document current canopy condition. These empirical measurements were lower than estimates produced by STRATUM, especially when trees were in decline and lacked full canopies, highlighting the importance of individual tree condition in determining leaf area and hence overall forest benefits. Stewardship of natural spaces within cities demands access to accurate and timely resource-specific data. Our work provides an uncomplicated approach to the acquisition and interpretation of these data in the context of a forested urban park.

  7. Synthesis, Structural Characterization, and Biological Activity Studies of Ni(II) and Zn(II) Complexes

    Science.gov (United States)

    Kavitha, Palakuri; Laxma Reddy, K.

    2014-01-01

    Ni(II) and Zn(II) complexes were synthesized from tridentate 3-formyl chromone Schiff bases such as 3-((2-hydroxyphenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino)benzoic acid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3), and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). All the complexes were characterized in the light of elemental analysis, molar conductance, FTIR, UV-VIS, magnetic, thermal, powder XRD, and SEM studies. The conductance and spectroscopic data suggested that, the ligands act as neutral and monobasic tridentate ligands and form octahedral complexes with general formula [M(L1–4)2]·nH2O (M = Ni(II) and Zn(II)). Metal complexes exhibited pronounced activity against tested bacteria and fungi strains compared to the ligands. In addition metal complexes displayed good antioxidant and moderate nematicidal activities. The cytotoxicity of ligands and their metal complexes have been evaluated by MTT assay. The DNA cleavage activity of the metal complexes was performed using agarose gel electrophoresis in the presence and absence of oxidant H2O2. All metal complexes showed significant nuclease activity in the presence of H2O2. PMID:24948904

  8. Synthesis, Structural Characterization, and Biological Activity Studies of Ni(II and Zn(II Complexes

    Directory of Open Access Journals (Sweden)

    Palakuri Kavitha

    2014-01-01

    Full Text Available Ni(II and Zn(II complexes were synthesized from tridentate 3-formyl chromone Schiff bases such as 3-((2-hydroxyphenyliminomethyl-4H-chromen-4-one (HL1, 2-((4-oxo-4H-chromen-3-ylmethylneaminobenzoic acid (HL2, 3-((3-hydroxypyridin-2-yliminomethyl-4H-chromen-4-one (HL3, and 3-((2-mercaptophenyliminomethyl-4H-chromen-4-one (HL4. All the complexes were characterized in the light of elemental analysis, molar conductance, FTIR, UV-VIS, magnetic, thermal, powder XRD, and SEM studies. The conductance and spectroscopic data suggested that, the ligands act as neutral and monobasic tridentate ligands and form octahedral complexes with general formula [M(L1–42]·nH2O (M = Ni(II and Zn(II. Metal complexes exhibited pronounced activity against tested bacteria and fungi strains compared to the ligands. In addition metal complexes displayed good antioxidant and moderate nematicidal activities. The cytotoxicity of ligands and their metal complexes have been evaluated by MTT assay. The DNA cleavage activity of the metal complexes was performed using agarose gel electrophoresis in the presence and absence of oxidant H2O2. All metal complexes showed significant nuclease activity in the presence of H2O2.

  9. Synthesis, structural and magnetic characterisation of iron(II/III), cobalt(II) and copper(II) cluster complexes of the polytopic ligand: N-(2-pyridyl)-3-carboxypropanamide.

    Science.gov (United States)

    Russell, Mark E; Hawes, Chris S; Ferguson, Alan; Polson, Matthew I J; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S; Kruger, Paul E

    2013-10-07

    Herein we describe the synthesis, structural and magnetic characterisation of three transition metal cluster complexes that feature the polytopic ligand N-(2-pyridyl)-3-carboxypropanamide (H2L): [Fe3(III)Fe2(II)(HL)6(O)(H2O)3][ClO4]5·3MeCN·4H2O, 1, [Co8(HL)8(O)(OH)4(MeOH)3(H2O)]-[ClO4]3·5MeOH·2H2O, 2, and [Cu6(L(ox))4(MeOH)(H2O)3]·MeOH, 3. Complex 1 is a mixed valence penta-nuclear iron cluster containing the archetypal {Fe3(III)O} triangular basic carboxylate cluster at its core, with two Fe(II) ions above and below the core coordinated to three bidentate pyridyl-amide groups. The structure of the octanuclear Co(II) complex, 2, is based upon a central Co4 square with the remaining four Co(II) centres at the 'wing-tips' of the complex. The cluster core is replete with bridging oxide, hydroxide and carboxylate groups. Cluster 3 contains an oxidised derivative of the ligand, L(ox), generated in situ through hydroxylation of an α-carbon atom. This hexanuclear cluster has a 'barrel-like' core and contains Cu(II) ions in both square planar and square-based pyramidal geometries. Bridging between Cu(II) centres is furnished by alkoxide and carboxylate groups. Magnetic studies on 1-3 reveals dominant antiferro-magnetic interactions for 1 and 2, leading to small non-zero spin ground states, while 3 shows ferro-magnetic exchange between the Cu(II) centres to give an S = 3 spin ground state.

  10. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    Science.gov (United States)

    Jin, Jing; Han, Xiao; Meng, Qin; Li, Dan; Chi, Yu-Xian; Niu, Shu-Yun

    2013-01-01

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz)2(H2O)]n (1), [Cd1Cd2(btec)(H2O)6]n (2), [Cd(3,4-pdc) (H2O)]n (3), [Zn(2,5-pdc)(H2O)4]·2H2O (4) and {[Zn(2,5-pdc)(H2O)2]·H2O}n (5) (H2bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H4btec=1,2,4,5-benzenetetracarboxylic acid, H2pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexes were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response.

  11. Structures of dioxobipyridil-12-crown-4 and its complexes with silver (I) and copper (II) cations

    Science.gov (United States)

    Starova, Galina L.; Denisova, Anna S.; Dem'yanchuk, Evgeniya M.

    2008-02-01

    The structures of dioxobipyridil-12-crown-4 ( bpy-CO-crown) and its complexes with copper (II) and silver (I) cations have been determined using single crystal X-ray-diffraction. The results have been compared with the literature data on the complexes of dcmbpy and its complex with silver (I) and copper (II) cations.

  12. Quinolones and non-steroidal anti-inflammatory drugs interacting with copper(II), nickel(II), cobalt(II) and zinc(II): structural features, biological evaluation and perspectives.

    Science.gov (United States)

    Psomas, George; Kessissoglou, Dimitris P

    2013-05-14

    The structural features of copper(II), nickel(II), cobalt(II) and zinc(II) complexes with the antimicrobial drugs quinolones and non-steroidal anti-inflammatory drugs (NSAIDs) as ligands are discussed. The binding properties of these complexes to biomolecules (calf-thymus DNA, bovine or human serum albumin) are presented and evaluated. The biological activity (antimicrobial, antioxidant and antiproliferative) of selected complexes is investigated. Further perspectives concerning the synthesis and the biological activity of novel complexes with quinolones or NSAIDs attractive to synthetic chemists, biochemists and/or biologists are presented.

  13. Structure of the PLP-Form of the Human Kynurenine Aminotransferase II in a Novel Spacegroup at 1.83 Å Resolution

    Directory of Open Access Journals (Sweden)

    Alireza Nematollahi

    2016-03-01

    Full Text Available Kynurenine aminotransferase II (KAT-II is a 47 kDa pyridoxal phosphate (PLP-dependent enzyme, active as a homodimer, which catalyses the transamination of the amino acids kynurenine (KYN and 3-hydroxykynurenine (3-HK in the tryptophan pathway, and is responsible for producing metabolites that lead to kynurenic acid (KYNA, which is implicated in several neurological diseases such as schizophrenia. In order to fully describe the role of KAT-II in the pathobiology of schizophrenia and other brain disorders, the crystal structure of full-length PLP-form hKAT-II was determined at 1.83 Å resolution, the highest available. The electron density of the active site reveals an aldimine linkage between PLP and Lys263, as well as the active site residues, which characterize the fold-type I PLP-dependent enzymes.

  14. Crystal structure of tin(II perchlorate trihydrate

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The title compound, [Sn(H2O3](ClO42, was synthesized by the redox reaction of copper(II perchlorate hexahydrate and metallic tin in perchloric acid. Both the trigonal–pyramidal [Sn(H2O3]2+ cations and tetrahedral perchlorate anions lie on crystallographic threefold axes. In the crystal, the cations are linked to the anions by O—H...O hydrogen bonds, generating (001 sheets.

  15. An analysis of the secondary structure of spider spidroins I and II belonging to different species

    NARCIS (Netherlands)

    Ragulina, LE; Makeev, VY; Esipova, NG; Tumanyan, VG; Vlasov, PK; Bogush, VG; Debabov, VG

    2004-01-01

    We have analyzed the secondary structure of spidroin proteins of I and II types, related to spiders of different species. We used standard methods of secondary structure prediction NNPREDICT and JPRED and also analyzed the occurrences of oligopeptides with a preferred secondary structure with the

  16. An analysis of the secondary structure of spider spidroins I and II belonging to different species

    NARCIS (Netherlands)

    Ragulina, LE; Makeev, VY; Esipova, NG; Tumanyan, VG; Vlasov, PK; Bogush, VG; Debabov, VG

    2004-01-01

    We have analyzed the secondary structure of spidroin proteins of I and II types, related to spiders of different species. We used standard methods of secondary structure prediction NNPREDICT and JPRED and also analyzed the occurrences of oligopeptides with a preferred secondary structure with the he

  17. Crystal structure of bis(N,N,N′,N′-tetramethylguanidinium tetrachloridocuprate(II

    Directory of Open Access Journals (Sweden)

    Mamadou Ndiaye

    2016-07-01

    Full Text Available In the structure of the title salt, (C5H14N32[CuCl4], the CuII atom in the anion lies on a twofold rotation axis. The tetrachloridocuprate(II anion adopts a flattened tetrahedral coordination environment and interacts electrostatically with the tetramethylguanidinium cation. The crystal packing is additionally consolidated through N—H...Cl and C—H...Cl hydrogen bonds, resulting in a three-dimensional network structure.

  18. Synthesis and processing of intelligent cost-effective structures phase II (SPICES II): smart materials aircraft applications evaluation

    Science.gov (United States)

    Dunne, James P.; Jacobs, Steven W.; Baumann, Erwin W.

    1998-06-01

    The second phase of the synthesis and processing of intelligent cost effective structures (SPICES II) program sought to identify high payoff areas for both naval and aerospace military systems and to evaluate military systems and to evaluate the benefits of smart materials incorporation based on their ability to redefine the mission scenario of the candidate platforms in their respective theaters of operation. The SPICES II consortium, consisting of The Boeing Company, Electric Boat Corporation, United Technologies Research Center, and Pennsylvania State University, surveyed the state-of-the-art in smart structures and evaluated potential applications to military aircraft, marine and propulsion systems components and missions. Eleven baseline platforms comprising a wide variety of missions were chosen for evaluation. Each platform was examined in its field of operation for areas which can be improved using smart materials insertion. Over 250 smart materials applications were proposed to enhance the platforms. The applications were examined and, when possible, quantitatively analyzed for their effect on mission performance. The applications were then ranked for payoff, risk, and time frame for development and demonstration. Details of the efforts made in the SPICES II program pertaining to smart structure applications on military and transport aircraft will be presented. A brief discussion of the core technologies will be followed by presentation of the criteria used in ranking each application. Thereafter, a selection of the higher ranking proposed concepts are presented in detail.

  19. Structure of ruthenium(II) complexes with coproporphyrin I tetraethyl ester

    Science.gov (United States)

    Zverev, S. A.; Andreev, S. V.; Zamilatskov, I. A.; Kurochkina, N. M.; Tyurin, V. S.; Senchikhin, I. N.; Ponomarev, G. V.; Erzina, D. R.; Chernyshev, V. V.

    2017-08-01

    The reaction between coproporphyrin I tetraethyl ester and ruthenium(II) dodecacarbonyl in toluene is investigated. The formation of two different products, complexes 2 and 3 of ruthenium(II) with coproporphyrin I tetraethyl ester, studied by means of mass spectrometry, electronic absorption spectroscopy, NMR, X-ray diffraction, and thermogravimetric analysis, is revealed. Structures are proposed for the products, of which ( 2) is a monocarbonyl complex of ruthenium(II) porphyrin that exists as a coordination polymer formed owing to intermolecular axial bonding between the oxygen atoms of carboethoxyl groups and ruthenium(II). The structure proposed for second product ( 3) is in the form of the corresponding monomer of a monocarbonyl complex of ruthenium(II) porphyrin. It is established that polymeric complex 2 transforms into monomeric complex 3 when it is heating in pyridine.

  20. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    Science.gov (United States)

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  1. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  2. Cost Characteristics of Telecom Networks and their Implications for Market Structures

    DEFF Research Database (Denmark)

    Falch, Morten

    1997-01-01

    The paper analyses the cost structure of telecom operators and test the hypotheses of economies of scale and economies of density. The impact of new technologies and the regulatory implications are analysed.......The paper analyses the cost structure of telecom operators and test the hypotheses of economies of scale and economies of density. The impact of new technologies and the regulatory implications are analysed....

  3. Cost Characteristics of Telecom Networks and their Implications for Market Structures

    DEFF Research Database (Denmark)

    Falch, Morten

    1997-01-01

    The paper analyses the cost structure of telecom operators and test the hypotheses of economies of scale and economies of density. The impact of new technologies and the regulatory implications are analysed.......The paper analyses the cost structure of telecom operators and test the hypotheses of economies of scale and economies of density. The impact of new technologies and the regulatory implications are analysed....

  4. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Robbins, Julianne; Zhang, Z. John [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Yin, Hong-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Wang, Yu-Hua [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  5. Structural, spectroscopic and quantum chemical studies of acetyl hydrazone oxime and its palladium(II) and platinum(II) complexes

    Science.gov (United States)

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T.; Buyukgungor, Orhan

    2015-09-01

    Acetyl hydrazone oxime, [(1E,2E)-2-(hydroxyimino)-1-phenylethylidene]acetohydrazone (hipeahH2) and its palladium(II) and platinum(II) complexes, [M(hipeahH)2] (M = PdII and PtII), have been synthesized and characterized by elemental analysis, UV-vis IR, NMR and LC-MS techniques. X-ray diffraction analysis of [Pd(hipeahH)2] shows that the two hipeahH2 ligands are not equal; one of the ligands loses the hydrazone proton, while the other one loses the oxime proton, resulting in a different coordination behavior to form five- and six-membered chelate rings. The molecular geometries from X-ray experiments in the ground state were compared using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set for the ligand and the LanL2DZ basis set for the complexes. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. In addition, the isomer studies of ligand and its complexes were made by DFT.

  6. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8.

    Science.gov (United States)

    Bagautdinov, Bagautdin; Ukita, Yoko; Miyano, Masashi; Kunishima, Naoki

    2008-05-01

    The beta-ketoacyl-(acyl carrier protein) synthases (beta-keto-ACP synthases; KAS) catalyse the addition of two-carbon units to the growing acyl chain during the elongation phase of fatty-acid synthesis. As key regulators of bacterial fatty-acid synthesis, they are promising targets for the development of new antibacterial agents. The crystal structure of 3-oxoacyl-ACP synthase II from Thermus thermophilus HB8 (TtKAS II) has been solved by molecular replacement and refined at 2.0 A resolution. The crystal is orthorhombic, space group P2(1)2(1)2, with unit-cell parameters a = 72.07, b = 185.57, c = 62.52 A, and contains one homodimer in the asymmetric unit. The subunits adopt the well known alpha-beta-alpha-beta-alpha thiolase fold that is common to ACP synthases. The structural and sequence similarities of TtKAS II to KAS I and KAS II enzymes of known structure from other sources support the hypothesis of comparable enzymatic activity. The dimeric state of TtKAS II is important to create each fatty-acid-binding pocket. Closer examination of KAS structures reveals that compared with other KAS structures in the apo form, the active site of TtKAS II is more accessible because of the ;open' conformation of the Phe396 side chain.

  7. Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity.

    Science.gov (United States)

    Geeta, B; Shravankumar, K; Reddy, P Muralidhar; Ravikrishna, E; Sarangapani, M; Reddy, K Krishna; Ravinder, V

    2010-11-01

    A binucleating new Schiff-base ligand with a phenylene spacer, afforded by the condensation of glycyl-glycine and o-phthalaldehyde has been served as an octadentate N₄O₄ ligand in designing some binuclear complexes of cobalt(II), nickel(II), copper(II), and palladium(II). The binding manner of the ligand to the metal and the composition and geometry of the metal complexes were examined by elemental analysis, conductivity measurements, magnetic moments, IR, ¹H, ¹³C NMR, ESR and electronic spectroscopies, and TGA measurements. There are two different coordination/chelation environments present around two metal centers of each binuclear complex. The composition of the complexes in the coordination sphere was found to be [M₂(L)(H(2)O)₄] (where M=Co(II) and Ni(II)) and [M₂(L)] (where M=Cu(II) and Pd(II)). In the case of Cu(II) complexes, ESR spectra provided further information to confirm the binuclear structure and the presence of magnetic interactions. All the above metal complexes have shown moderate to good antibacterial activity against Gram-positive and Gram-negative bacteria.

  8. Coordinate-free Classic Geometries II. Conformal Structure

    CERN Document Server

    Anan'in, Sasha; Grossi, Carlos H

    2009-01-01

    We study grassmannian classic geometries in the spirit of the previous paper. The interrelation between a (pseudo-)riemannian projective classic geometry and the conformal structure on its absolute is explained.

  9. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes

    Science.gov (United States)

    Şenol, Cemal; Hayvali, Zeliha; Dal, Hakan; Hökelek, Tuncer

    2011-06-01

    New Schiff base derivatives ( L 1 and L 2) were prepared by the condensation of 2-hydroxy-3-methoxybenzaldehyde ( o-vanillin) and 3-hydroxy-4-methoxybenzaldehyde ( iso-vanillin) with 5-methylfurfurylamine. Two new complexes [Ni(L 1) 2] and [Cu(L 1) 2] have been synthesized with bidentate NO donor Schiff base ligand ( L 1). The Ni(II) and Cu(II) atoms in each complex are four coordinated in a square planar geometry. Schiff bases ( L 1 and L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] were characterized by elemental analyses, FT-IR, UV-vis, mass and 1H, 13C NMR spectroscopies. The crystal structures of the ligand ( L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] have also been determined by using X-ray crystallographic technique.

  10. Structural response of phyllomanganates to wet aging and aqueous Mn(II)

    Science.gov (United States)

    Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.

    2016-11-01

    Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates were studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. Such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems

  11. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8

    Energy Technology Data Exchange (ETDEWEB)

    Bagautdinov, Bagautdin, E-mail: bagautdi@spring8.or.jp; Ukita, Yoko [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Miyano, Masashi [Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2008-05-01

    The crystal structure of 3-oxoacyl-(acyl-carrier protein) synthase II from T. thermophilus HB8 has been determined at 2.0 Å resolution and compared with the structures of β-keto-ACP synthases from other sources. The β-ketoacyl-(acyl carrier protein) synthases (β-keto-ACP synthases; KAS) catalyse the addition of two-carbon units to the growing acyl chain during the elongation phase of fatty-acid synthesis. As key regulators of bacterial fatty-acid synthesis, they are promising targets for the development of new antibacterial agents. The crystal structure of 3-oxoacyl-ACP synthase II from Thermus thermophilus HB8 (TtKAS II) has been solved by molecular replacement and refined at 2.0 Å resolution. The crystal is orthorhombic, space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.07, b = 185.57, c = 62.52 Å, and contains one homodimer in the asymmetric unit. The subunits adopt the well known α-β-α-β-α thiolase fold that is common to ACP synthases. The structural and sequence similarities of TtKAS II to KAS I and KAS II enzymes of known structure from other sources support the hypothesis of comparable enzymatic activity. The dimeric state of TtKAS II is important to create each fatty-acid-binding pocket. Closer examination of KAS structures reveals that compared with other KAS structures in the apo form, the active site of TtKAS II is more accessible because of the ‘open’ conformation of the Phe396 side chain.

  12. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jing; Han Xiao; Meng Qin; Li Dan; Chi Yuxian [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Niu Shuyun, E-mail: syniu@sohu.com [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)

    2013-01-15

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexes were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands affect SPS

  13. Structure-preserving algorithms for oscillatory differential equations II

    CERN Document Server

    Wu, Xinyuan; Shi, Wei

    2015-01-01

    This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods.  The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and sc...

  14. Dimers on surface graphs and spin structures. II

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai

    2009-01-01

    In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function of the di......In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function...... of the dimer model on Γ. In the present article, we generalize these results to the case of compact oriented surfaces with boundary. We also show how the operations of cutting and gluing act on discrete spin structures and how they change the partition function. These operations allow to reformulate the dimer...

  15. A new Mannich base and its transition metal (II) complexes - Synthesis, structural characterization and electrochemical study

    Indian Academy of Sciences (India)

    N Raman; S Esthar; C Thangaraja

    2004-06-01

    new Mannich base, N-(1-morpholinobenzyl) semicarbazide (MBS), formed by the condensation of morpholine, semicarbazide and benzaldehyde, and its Cu(II), Ni(II), Co(II) and Zn(II) complexes have been synthesized. Their structures have been elucidated on the basis of analytical, magnetic, electrical conductivity and spectral study as well as elemental analyses. The complexes exhibit square-planar geometry. The monomeric and non-electrolytic nature of the complexes is evidenced by their magnetic susceptibility and low conductance data. The electrochemical property of the ligand and its complexes in acetonitrile solution was studied by cyclic voltammetry. The X-band ESR spectra of the Cu(II) complex in DMSO at 300 and 77 K were recorded and their salient features are reported.

  16. Angiotensin II (de)sensitization: Fluid intake studies with implications for cardiovascular control.

    Science.gov (United States)

    Daniels, Derek

    2016-08-01

    Cardiovascular disease is the leading cause of death worldwide and hypertension is the most common risk factor for death. Although many anti-hypertensive pharmacotherapies are approved for use in the United States, rates of hypertension have increased over the past decade. This review article summarizes a presentation given at the 2015 meeting of the Society for the Study of Ingestive Behavior. The presentation described work performed in our laboratory that uses angiotensin II-induced drinking as a model system to study behavioral and cardiovascular effects of the renin-angiotensin system, a key component of blood pressure regulation, and a common target of anti-hypertensives. Angiotensin II (AngII) is a potent dipsogen, but the drinking response shows a rapid desensitization after repeated injections of AngII. This desensitization appears to be dependent upon the timing of the injections, requires activation of the AngII type 1 (AT1) receptor, requires activation of mitogen-activated protein (MAP) kinase family members, and involves the anteroventral third ventricle (AV3V) region as a critical site of action. Moreover, the response does not appear to be the result of a more general suppression of behavior, a sensitized pressor response to AngII, or an aversive state generated by the treatment. More recent studies suggest that the treatment regimen used to produce desensitization in our laboratory also prevents the sensitization that occurs after daily bolus injections of AngII. Our hope is that these findings can be used to support future basic research on the topic that could lead to new developments in treatments for hypertension.

  17. Calmodulin kinase II inhibition protects against structural heart disease.

    Science.gov (United States)

    Zhang, Rong; Khoo, Michelle S C; Wu, Yuejin; Yang, Yingbo; Grueter, Chad E; Ni, Gemin; Price, Edward E; Thiel, William; Guatimosim, Silvia; Song, Long-Sheng; Madu, Ernest C; Shah, Anisha N; Vishnivetskaya, Tatiana A; Atkinson, James B; Gurevich, Vsevolod V; Salama, Guy; Lederer, W J; Colbran, Roger J; Anderson, Mark E

    2005-04-01

    Beta-adrenergic receptor (betaAR) stimulation increases cytosolic Ca(2+) to physiologically augment cardiac contraction, whereas excessive betaAR activation causes adverse cardiac remodeling, including myocardial hypertrophy, dilation and dysfunction, in individuals with myocardial infarction. The Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a recently identified downstream element of the betaAR-initiated signaling cascade that is linked to pathological myocardial remodeling and to regulation of key proteins involved in cardiac excitation-contraction coupling. We developed a genetic mouse model of cardiac CaMKII inhibition to test the role of CaMKII in betaAR signaling in vivo. Here we show CaMKII inhibition substantially prevented maladaptive remodeling from excessive betaAR stimulation and myocardial infarction, and induced balanced changes in excitation-contraction coupling that preserved baseline and betaAR-stimulated physiological increases in cardiac function. These findings mark CaMKII as a determinant of clinically important heart disease phenotypes, and suggest CaMKII inhibition can be a highly selective approach for targeting adverse myocardial remodeling linked to betaAR signaling.

  18. Crystal structure of bis(acetonyltriphenylphosphonium tetrachloridocobaltate(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2015-12-01

    Full Text Available The complex title salt, (C21H20OP2[CoCl4], is the reaction product of CoCl2 with acetonyltriphenylphosphonium chloride in acetonitrile. In the anion, the CoII atom exhibits a typical tetrahedral environment, with Co—Cl distances ranging from 2.2721 (6 to 2.2901 (6 Å, and with Cl—Co—Cl angles ranging from 106.12 (2 to 112.24 (2°. The two phosphonium cations likewise show the expected tetrahedral configuration, with P—C distances ranging from 1.785 (2 to 1.8059 (18 Å and C—P—C angles ranging from 106.98 (8 to 112.85 (15°. The molecules interact in the lattice mainly through Coulombic and van der Waals forces because there is no particular polarity to the charges carried by the cations or anion. In the crystal, the cations and anions are arranged in sheets parallel to (001.

  19. I. Structural studies of termite defense secretions. II. Structural studies of natural products of marine nudibranchs. [Kempene, tridachione

    Energy Technology Data Exchange (ETDEWEB)

    Solheim, B.A.

    1977-12-01

    Three families of termites have the ability to produce a sticky secretion that envelopes and immobilizes the enemy. In the family Termitidae the secretion contains the diterpenoid hydrocarbons, kempene I and kempene II. The molecular structure of kempene II from the termite, Nasutitermes kempae, is described in detail. Another species of termite, Cubitermes umbratus, contained the diterpenoid hydrocarbon biflora-4,10-19,15-triene in the secretion and this compound is described. Studies were also conducted on the mucous secretion of the pedal gland of the marine nudibranch, Tidachiella diomedea. Tridachione, a substituted ..gamma..-pyrone, was isolated in the pure state and its molecular structure is described in detail. (HLW)

  20. I. Structural studies of termite defense secretions. II. Structural studies of natural products of marine nudibranchs. [Kempene, tridachione

    Energy Technology Data Exchange (ETDEWEB)

    Solheim, B.A.

    1977-12-01

    Three families of termites have the ability to produce a sticky secretion that envelopes and immobilizes the enemy. In the family Termitidae the secretion contains the diterpenoid hydrocarbons, kempene I and kempene II. The molecular structure of kempene II from the termite, Nasutitermes kempae, is described in detail. Another species of termite, Cubitermes umbratus, contained the diterpenoid hydrocarbon biflora-4,10-19,15-triene in the secretion and this compound is described. Studies were also conducted on the mucous secretion of the pedal gland of the marine nudibranch, Tidachiella diomedea. Tridachione, a substituted ..gamma..-pyrone, was isolated in the pure state and its molecular structure is described in detail. (HLW)

  1. Self-discrepancy: structural differences between clinical and non-clinical populations evaluated with MCMI-II

    Directory of Open Access Journals (Sweden)

    Ângela Brandão

    2014-10-01

    Full Text Available This research addresses the personality as a complex and dynamic structure and it relates the self-discrepancy theory with Millon's theory of personality. Self-discrepancy theory predicts that Ideal and Ought discrepancies originate different negative emotions. Millon's bipsychosocial theoty emphasizes the interaction between organism, environment and social learning, making salient the circularity of the interaction. The present study refers to the Real-Self (RS, Ideal-Self (IS and Ought-Self (OS discrepancies, evaluated using the MCMI-II in two different samples (clinical and non-clinical. The RSs results are different in the two samples and they were analized scale by scale. The RS-IS and RS-OS discrepancies results for each trait scale analyzes were mixed. It was given greater emphasis to RS-RI discrepancies and implications for personality theories and case conceptualization are taken into consideration.

  2. P-cadherin counteracts myosin II-B function: implications in melanoma progression

    Directory of Open Access Journals (Sweden)

    De Wever Olivier

    2010-09-01

    Full Text Available Abstract Background Malignant transformation of melanocytes is frequently attended by a switch in cadherin expression profile as shown for E- and N-cadherin. For P-cadherin, downregulation in metastasizing melanoma has been demonstrated, and over-expression of P-cadherin in melanoma cell lines has been shown to inhibit invasion. The strong invasive and metastatic nature of cutaneous melanoma implies a deregulated interplay between intercellular adhesion and migration-related molecules Results In this study we performed a microarray analysis to compare the mRNA expression profile of an invasive BLM melanoma cell line (BLM LIE and the non-invasive P-cadherin over-expression variant (BLM P-cad. Results indicate that nonmuscle myosin II-B is downregulated in BLM P-cad. Moreover, myosin II-B plays a major role in melanoma migration and invasiveness by retracting the tail during the migratory cycle, as shown by the localization of myosin II-B stress fibers relative to Golgi and the higher levels of phosphorylated myosin light chain. Analysis of P-cadherin and myosin II-B in nodular melanoma sections and in a panel of melanoma cell lines further confirmed that there is an inverse relationship between both molecules. Conclusions Therefore, we conclude that P-cadherin counteracts the expression and function of myosin II-B, resulting in the suppression of the invasive and migratory behaviour of BLM melanoma cells

  3. Implications of infalling Fe II - emitting clouds in AGN: anisotropic properties

    CERN Document Server

    Ferland, Gary J; Wang, Jian-Min; Baldwin, Jack A; Porter, Ryan L; van Hoof, Peter A M; Williams, R J R

    2009-01-01

    We investigate consequences of the discovery that Fe II emission in quasars, one of the spectroscopic signatures of "Eigenvector 1", may originate in infalling clouds. Eigenvector 1 correlates with the Eddington ratio L/L_Edd so that Fe II/Hbeta increases as L/L_Edd increases. We show that the "force multiplier", the ratio of gas opacity to electron scattering opacity, is ~ 10^3 - 10^4 in Fe II emitting gas. Such gas would be accelerated away from the central object if the radiation force is able to act on the entire cloud. Infall requires that the clouds have large column densities so that a substantial amount of shielded gas is present. The critical column density required for infall to occur depends on L/L_Edd, establishing a link between Eigenvector 1 and the Fe II/Hbeta ratio. We see predominantly the shielded face of the infalling clouds rather than the symmetric distribution of emitters that has been assumed. The Fe II spectrum emitted by the shielded face is in good agreement with observations thus so...

  4. Type-II Quantum Dot Nanowire Structures with Large Oscillator Strengths for Optical Quantum Gating Applications

    DEFF Research Database (Denmark)

    Taherkhani, Masoomeh; Gregersen, Niels; Willatzen, Morten

    2017-01-01

    The exciton oscillator strength (OS) in type-II quantum dot (QD) nanowires is calculated by using a fast and efficient method. We propose a new structure in Double-Well QD (DWQD) nanowire that considerably increases OS of type-II QDs which is a key parameter in optical quantum gating...... in the stimulated Raman adiabatic passage (STIRAP) process [1] for implementing quantum gates....

  5. Structural Basis for Ubiquitin Recognition by the Human ESCRT-II EAP45 GLUE Domain

    Energy Technology Data Exchange (ETDEWEB)

    Alam,S.; Langelier, C.; Whitby, F.; Koirala, S.; Robinson, H.; Hill, C.; Sundquist, W.

    2006-01-01

    ESCRT-IESCRT-IIGLUEEAP45VPS36The ESCRT-I and ESCRT-II complexes help sort ubiquitinated proteins into vesicles that accumulate within multivesicular bodies (MVBs). Crystallographic and biochemical analyses reveal that the GLUE domain of the human ESCRT-II EAP45 (also called VPS36) subunit is a split pleckstrin-homology domain that binds ubiquitin along one edge of the {beta}-sandwich. The structure suggests how human ESCRT-II can couple recognition of ubiquitinated cargoes and endosomal phospholipids during MVB protein sorting.

  6. Syntheses, structural characterization, luminescence and optical studies of Ni(II) and Zn(II) complexes containing salophen ligand

    Science.gov (United States)

    More, M. S.; Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2017-01-01

    Some Ni(II) (1a-d) and Zn(II) (2a-d) salophen complexes were prepared by the treatment of 5-bromosalicylaldehyde, 5-(trimethylsilylethynyl)salicylaldehyde, 5-(4-nitrophenyl)ethynylsalicylaldehyde or 5-(4-methoxyphenyl)ethynylsalicylaldehyde with nickel acetate or zinc acetate followed by addition of 2,3-diamino-5-bromopyridine. All complexes were characterized by elemental analyses, IR, 1H NMR and mass spectral studies. X-ray powder diffraction of representative complexes 1c and 2b and SEM studies of 1b and 2d are used to elucidate the crystal structure and morphology of the complexes. The electrochemical behavior reveals that the redox responses of Ni(II) complexes shifted to more negative potential in order to increase the π-conjugation in the complexes. Room temperature luminescence is observed for all complexes corresponding to π→π* ILCT transition with some MLCT character in DMF and is finely tuned by the degree of extended π-conjugation and variation of the substituent group with different electronic effects in the complexes. The second harmonic generation (SHG) efficiency of the complexes was screened by Kurtz-powder technique indicating that all complexes possesses promising potential for the application as a useful nonlinear optical material.

  7. Zinc(II) and Cadmium(II) complexes with N4-coordinate pyrazole based ligand: Syntheses, characterization and structure

    Science.gov (United States)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran; Mitra, Partho

    2014-11-01

    A series of six new mononuclear zinc(II) complexes of the type [Zn(X)(dbdmp)]Y (1-6) (X = N3-/NCO-/NCS-, Y = ClO4-/PF6-, and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine), two binuclear cadmium(II) complexes [{Cd(dbdmp)}2(μ-N3)2](Y)2 (7-8) and three mononuclear cadmium(II) complexes [Cd(NCO)(dbdmp)]Y (Y = ClO4-/PF6-) (9-10) and [Cd(NCS)2(dbdmp)] (11) have been synthesized and characterized by physico-chemical methods. Crystal structures of the complexes [Zn(N3)(dbdmp)]ClO4 (1), [{Cd(dbdmp)}2(μ-N3)2](ClO4)2 (7), [Cd(NCO)(dbdmp)]ClO4 (9) and [Cd(NCS)2(dbdmp)] (11) have been solved by single crystal X-ray diffraction studies and showed that [Zn(N3)(dbdmp)]ClO4 (1) and [Cd(NCO)(dbdmp)]ClO4 (9) have distorted trigonal bipyramidal geometry, [Cd(NCS)2(dbdmp)] (11) and [(dbdmp)Cd(μ-N3)]2(ClO4)2 (7) have distorted octahedral geometry.

  8. Crystal structure of lead(II tartrate: a redetermination

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2015-01-01

    Full Text Available Single crystals of poly[μ4-tartrato-κ6O1,O3:O1′:O2,O4:O4′-lead], [Pb(C4H4O6]n, were grown in a gel medium. In comparison with the previous structure determination of this compound from laboratory powder X-ray diffraction data [De Ridder et al. (2002. Acta Cryst. C58, m596–m598], the redetermination on the basis of single-crystal data reveals the absolute structure, all atoms with anisotropic displacement parameters and a much higher accuracy in terms of bond lengths and angles. It could be shown that a different space group or incorporation of water as reported for similarly gel-grown lead tartrate crystals is incorrect. In the structure, each Pb2+ cation is bonded to eight O atoms of five tartrate anions, while each tartrate anion links four Pb2+ cations. The resulting three-dimensional framework is stabilized by O—H...O hydrogen bonds between the OH groups of one tartrate anion and the carboxylate O atoms of adjacent anions.

  9. Crystal structure of lead(II) tartrate: a redetermination.

    Science.gov (United States)

    Weil, Matthias

    2015-01-01

    Single crystals of poly[μ4-tartrato-κ(6) O (1),O (3):O (1'):O (2),O (4):O (4')-lead], [Pb(C4H4O6)] n , were grown in a gel medium. In comparison with the previous structure determination of this compound from laboratory powder X-ray diffraction data [De Ridder et al. (2002 ▶). Acta Cryst. C58, m596-m598], the redetermination on the basis of single-crystal data reveals the absolute structure, all atoms with anisotropic displacement parameters and a much higher accuracy in terms of bond lengths and angles. It could be shown that a different space group or incorporation of water as reported for similarly gel-grown lead tartrate crystals is incorrect. In the structure, each Pb(2+) cation is bonded to eight O atoms of five tartrate anions, while each tartrate anion links four Pb(2+) cations. The resulting three-dimensional framework is stabilized by O-H⋯O hydrogen bonds between the OH groups of one tartrate anion and the carboxyl-ate O atoms of adjacent anions.

  10. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-01-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (X-max), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the d

  11. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-01-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (X-max), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the d

  12. The welfare implications of large litter size in the domestic pig II: management factors

    DEFF Research Database (Denmark)

    Baxter, E.M.; Rutherford, K.M.D.; D'Eath, R.B.

    2013-01-01

    Increasing litter size has long been a goal of pig (Sus scrofa domesticus) breeders and producers in many countries. Whilst this has economic and environmental benefits for the pig industry, there are also implications for pig welfare. Certain management interventions are used when litter size ro...

  13. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II.

    Science.gov (United States)

    Han, Qian; Cai, Tao; Tagle, Danilo A; Robinson, Howard; Li, Jianyong

    2008-08-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  14. Substrate Specificity and Structure of Human Aminoadipate Aminotransferase/kynurenine Aminotransferase II

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Cai, T.; Tagle, D.; Robinson, H.; Li, J.

    2008-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to a-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested a-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with a-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  15. Substrate Specificity and Structure of Human aminoadipate aminotransferase/kynurenine aminotransferase II

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Cai, T; Tagle, D; Robinson, H; Li, J

    2009-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  16. Bright but slow - Type II supernovae from OGLE-IV - Implications for magnitude limited surveys

    OpenAIRE

    Poznanski, Dovi; Kostrzewa-Rutkowska, Zuzanna; Wyrzykowski, Lukasz; Blagorodnova, Nadejda

    2015-01-01

    We study a sample of 11 Type II supernovae (SNe) discovered by the OGLE-IV survey. All objects have well sampled I-band light curves, and at least one spectrum. We find that 2 or 3 of the 11 SNe have a declining light curve, and spectra consistent with other SNe II-L, while the rest have plateaus that can be as short as 70d, unlike the 100d typically found in nearby galaxies. The OGLE SNe are also brighter, and show that magnitude limited surveys find SNe that are different than usually found...

  17. Organizational Structures for International Universities: Implications for Campus Autonomy, Academic Freedom, Collegiality, and Conflict

    Science.gov (United States)

    Edwards, Ron; Crosling, Glenda; Lim, Ngat-Chin

    2014-01-01

    One significant form of transnational higher education is the International Branch Campus (IBC), in effect an "outpost" of the parent institution located in another country. Its organizational structure is alignable with offshore subsidiaries of multinational corporations (MNCs). The implications of organizational structure for academic…

  18. Organizational Structures for International Universities: Implications for Campus Autonomy, Academic Freedom, Collegiality, and Conflict

    Science.gov (United States)

    Edwards, Ron; Crosling, Glenda; Lim, Ngat-Chin

    2014-01-01

    One significant form of transnational higher education is the International Branch Campus (IBC), in effect an "outpost" of the parent institution located in another country. Its organizational structure is alignable with offshore subsidiaries of multinational corporations (MNCs). The implications of organizational structure for academic…

  19. Structural basis of transcription: Backtracked RNA polymerase II at 3.4 Å resolution

    OpenAIRE

    Wang, Dong; Bushnell, David A; Huang, Xuhui; Westover, Kenneth D.; Levitt, Michael; Kornberg, Roger D

    2009-01-01

    X-ray crystal structure determination of RNA polymerase II in the reverse translocated, or “backtracked” state completes the picture of the transcribing enzyme. The notable feature of the backtracked structure is a binding pocket for the first backtracked nucleotide, but no significant interaction with additional backtracked residues. The structure in the presence of the elongation factor TFIIS reveals a rearrangement whereby cleavage of the RNA may occur, with the release of a dinucleotide. ...

  20. Spiral structure in nearby galaxies II. comparative analysis and conclusions

    CERN Document Server

    Kendall, S; Kennicutt, R C

    2014-01-01

    This paper presents a detailed analysis of two-armed spiral structure in a sample of galax- ies from the Spitzer Infrared Nearby Galaxies Survey (SINGS), with particular focus on the relationships between the properties of the spiral pattern in the stellar disc and the global struc- ture and environment of the parent galaxies. Following Paper I we have used a combination of Spitzer Space Telescope mid-infrared imaging and visible multi-colour imaging to isolate the spiral pattern in the underlying stellar discs, and we examine the systematic behaviours of the observed amplitudes and shapes (pitch angles) of these spirals. In general, spiral morphology is found to correlate only weakly at best with morphological parameters such as stellar mass, gas fraction, disc/bulge ratio, and vflat. In contrast to weak correlations with galaxy structure a strong link is found between the strength of the spiral arms and tidal forcing from nearby companion galaxies. This appears to support the longstanding suggestion that ei...

  1. Preheating after multifield inflation with nonminimal couplings, II: Resonance Structure

    CERN Document Server

    DeCross, Matthew P; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I

    2016-01-01

    This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the single-field attractor, which is a generic feature of these models. We construct the Floquet charts to find regions of parameter space in which particle production is efficient for both the adiabatic and isocurvature modes, and analyze the resonance structure using analytic and semi-analytic techniques. Particle production in the adiabatic direction is characterized by the existence of an asymptotic scaling solution at large values of the nonminimal couplings, $\\xi_I \\gg 1$, in which the dominant instability band arises in the long-wavelength limit, for comoving wavenumbers $k \\rightarrow 0$. However, the large-$\\xi_I$ regime is not reached until $\\xi_I \\geq {\\cal O} (100)$. In the intermediate regime, with $\\xi_I \\sim {\\cal O}(10)$, the resonance structure depend...

  2. [Dermoscopy for beginners (ii): Dermoscopic structures and diagnostic methods].

    Science.gov (United States)

    Palacios-Martínez, D; Díaz-Alonso, R A

    Dermoscopy (DS) is an in vivo non-invasive diagnostic technique developed to study skin lesions. It improves the diagnostic accuracy of hyperpigmented lesions and early diagnosis of potentially malignant lesions, especially melanoma. It uses a device called a dermoscope to display deeper skin structures not visible to the naked eye, called dermoscopic structures. Only some of them have histological significance, basing them on DS. Many, more or less complex, dermoscopic methods have been developed to aid in the differential diagnosis of skin cancer. The most widespread is 2-step algorithm dermoscopy. But there are some more simple methods, designed to be operated by non-medical experts in DS. Two of them are useful in primary care: the 3-point checklist of DS, and the BLINCK algorithm. This paper focuses on describing the dermoscopic parameters needed to implement these algorithms, as well as their interpretation. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  3. The Atom in a Molecule: Implications for Molecular Structure and Properties

    Science.gov (United States)

    2016-05-23

    Briefing Charts 3. DATES COVERED (From - To) 01 February 2016 – 23 May 2016 4. TITLE AND SUBTITLE The atom in a molecule: Implications for molecular...For presentation at American Physical Society - Division of Atomic , Molecular, and Optical Physics (May 2016) PA Case Number: #16075; Clearance Date...10 Energy (eV) R C--H (au) R C--H(au) The Atom in a Molecule: Implications for Molecular Structures and Properties P. W. Langhoff, Chemistry

  4. Structural Insights into Substrate Binding of Brown Spider Venom Class II Phospholipases D.

    Science.gov (United States)

    Coronado, M A; Ullah, A; da Silva, L S; Chaves-Moreira, D; Vuitika, L; Chaim, O M; Veiga, S S; Chahine, J; Murakami, M T; Arni, R K

    2015-01-01

    Phospholipases D (PLDs), the major dermonecrotic factors from brown spider venoms, trigger a range of biological reactions both in vitro and in vivo. Despite their clinical relevance in loxoscelism, structural data is restricted to the apo-form of these enzymes, which has been instrumental in understanding the functional differences between the class I and II spider PLDs. The crystal structures of the native class II PLD from Loxosceles intermedia complexed with myo-inositol 1-phosphate and the inactive mutant H12A complexed with fatty acids indicate the existence of a strong ligand-dependent conformation change of the highly conserved aromatic residues, Tyr 223 and Trp225 indicating their roles in substrate binding. These results provided insights into the structural determinants for substrate recognition and binding by class II PLDs.

  5. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  6. Template Syntheses, Crystal Structures and Supramolecular Assembly of Hexaaza Macrocyclic Copper(II) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehyung; Kim, Ju Chang [Pukyong National Univ., Busan (Korea, Republic of); Lough, Alan J. [Univ. of Toronto, Toronto (Canada)

    2013-06-15

    Two new hexaaza macrocyclic copper(II) complexes were prepared by a template method and structurally characterized. In the solid state, they were self-assembled by intermolecular interactions to form the corresponding supramolecules 1 and 2, respectively. In the structure of 1, the copper(II) macrocycles are bridged by a tp ligand to form a macrocyclic copper(II) dimer. The dimer extends its structure by intermolecular forces such as hydrogen bonds and C-H···π interactions, resulting in the formation of a double stranded 1D supramolecule. In 2, the basic structure is a monomeric copper(II) macrocycle with deprotonated imidazole pendants. An undulated 1D hydrogen bonded array is achieved through hydrogen bonds between imidazole pendants and secondary amines, where the imidazole pendants act as a hydrogen bond acceptor. The 1D hydrogen bonded supramolecular chain is supported by C-H···π interactions between the methyl groups of acetonitrile ligands and imidazole pendants of the copper(II) macrocycles. In both complexes, the introduction of imidazoles to the macrocycle as a pendant plays an important role for the formation of supramolecules, where they act as intermolecular hydrogen bond donors and/or acceptors, C-H···π and π-π interactions.

  7. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-07-01

    Full Text Available The RNA polymerase II (Pol II is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  8. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Science.gov (United States)

    Zhang, Lu; Silva, Daniel-Adriano; Pardo-Avila, Fátima; Wang, Dong; Huang, Xuhui

    2015-07-01

    The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP) substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD) simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  9. Electronic Structure of Rare-Earth Metals. II. Positron Annihilation

    DEFF Research Database (Denmark)

    Williams, R. W.; Mackintosh, Allan

    1968-01-01

    The angular correlation of the photons emitted when positrons annihilate with electrons has been studied in single crystals of the rare-earth metals Y, Gd, Tb, Dy, Ho, and Er, and in a single crystal of an equiatomic alloy of Ho and Er. A comparison of the results for Y with the calculations...... of Loucks shows that the independent-particle model gives a good first approximation to the angular distribution, although correlation effects probably smear out some of the structure. The angular distributions from the heavy rare-earth metals are very similar to that from Y and can be understood...... qualitatively in terms of the relativistic augmented-plane-wave calculations by Keeton and Loucks. The angular distributions in the c direction in the paramagnetic phases are characterized by a rapid drop at low angles followed by a hump, and these features are associated with rather flat regions of Fermi...

  10. Castable thermoplastic urethane elastomers. II. Structure property correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.; Wischmann, K.B.

    1977-01-01

    A liquid casting approach has been used to encapsulate electronic assemblies with specially-developed, soluble urethane elastomers. As a continuation of this work, the present paper correlates macromolecular morphology with both high strain ultimate and low strain dynamic mechanical properties of these thermoplastic elastomers. Although the morphology-property correlations are shown to fit within the general framework of a domain model, the possibility is raised that the liquid casting procedure might give rise to slightly different structural features than the more conventional fabrication methods (e.g., melt processing). It is anticipated that the results of this investigation will help to increase our fundamental understanding of liquid castable elastomers, which have been heretofore neglected to a significant extent.

  11. Epigenetic stochasticity, nuclear structure and cancer: the implications for medicine.

    Science.gov (United States)

    Feinberg, A P

    2014-07-01

    The aim of this review is to summarize an evolution of thinking about the epigenetic basis of human cancer, from the earliest studies of altered DNA methylation in cancer to the modern comprehensive epigenomic era. Converging data from epigenetic studies of primary cancers and from experimental studies of chromatin in development and epithelial-mesenchymal transition suggest a role for epigenetic stochasticity as a driving force of cancer, with Darwinian selection of tumour cells at the expense of the host. This increased epigenetic stochasticity appears to be mediated by large-scale changes in DNA methylation and chromatin in domains associated with the nuclear lamina. The implications for diagnosis include the potential to identify stochastically disrupted progenitor cells years before cancer develops, and to target drugs to epigenetic drivers of gene expression instability rather than to mean effects per se. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  12. Supramolecular complexes of Co(II), Ni(II) and Zn(II) p-hydroxybenzoates with caffeine: Synthesis, spectral characterization and crystal structure

    Science.gov (United States)

    Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali

    2016-09-01

    Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.

  13. New macrocyclic schiff base complexes incorporating a homopiperazine unit: Synthesis of some Co(II), Ni(II),Cu(II) and Zn(II) complexes and crystal structure and theoretical studies

    Science.gov (United States)

    Keypour, Hassan; Rezaeivala, Majid; Ramezani-Aktij, Ameneh; Bayat, Mehdi; Dilek, Nefise; Ünver, Hüseyin

    2016-07-01

    A new macrocyclic Schiff base ligand, L, was synthesized by condensation reaction of 1,4-bis(2-formylphenyl)homopiperazine and 1,4-diaminobutane in acetonitrile. The Schiff base ligand was characterized by using elemental analyses, FT-IR, 1H, 13C NMR and mass spectroscopic techniques. The metal (II) complexes [ML], were synthesized from the reaction of MCl2.nH2O (M: Co, Ni, Cu and Zn) with Schiff base ligand, L and characterized by elemental analyses and FT-IR. X-ray crystal structure of [CoLCl]+ distorted square pyramidal geometry with an N4Cl core, arising from coordination by the four donor nitrogen atoms from the macrocyclic framework and one Cl atom. It crystallizes triclinic space group, P-1 with a = 7.1777(1) Å, b = 11.0357 (2) Å, c = 15.1520(2) Å, V = 1183.14(3), Z = 2, Dc = 1.556 g cm-3, μ (MoKα) = 0.156 mm-1. Also, the bonding situation between the [MCl]+ and Ligand (L) fragments in [MLCl]ClO4 (M = Co(II), Ni(II), Cu(II), Zn(II)) complexes were carried out by energy-decomposition analysis (EDA). The results showed that there is an increasing trend in the case of ΔEelstat of the complexes by changing the M from Co(II) to Zn(II).

  14. A new stepped tetranuclear copper(II) complex: synthesis, crystal structure and photoluminescence properties.

    Science.gov (United States)

    Gungor, Elif

    2017-05-01

    Binuclear and tetranuclear copper(II) complexes are of interest because of their structural, magnetic and photoluminescence properties. Of the several important configurations of tetranuclear copper(II) complexes, there are limited reports on the crystal structures and solid-state photoluminescence properties of `stepped' tetranuclear copper(II) complexes. A new Cu(II) complex, namely bis{μ3-3-[(4-methoxy-2-oxidobenzylidene)amino]propanolato}bis{μ2-3-[(4-methoxy-2-oxidobenzylidene)amino]propanolato}tetracopper(II), [Cu4(C11H13NO3)4], has been synthesized and characterized using elemental analysis, FT-IR, solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction. The crystal structure determination shows that the complex is a stepped tetranuclear structure consisting of two dinuclear [Cu2(L)2] units {L is 3-[(4-methoxy-2-oxidobenzylidene)amino]propanolate}. The two terminal Cu(II) atoms are four-coordinated in square-planar environments, while the two central Cu(II) atoms are five-coordinated in square-pyramidal environments. The solid-state photoluminescence properties of both the complex and 3-[(2-hydroxy-4-methoxybenzylidene)amino]propanol (H2L) have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong blue emission at 469 nm and H2L displays a green emission at 515 nm.

  15. Theoretical implications of complement structure acquisition in Korean.

    Science.gov (United States)

    Kim, Y J

    1989-10-01

    The acquisition of complement phrasal constructions in Korean is examined in spontaneous speech data from two children, who were observed from one and a half to three years of age. In spite of typological differences between English and Korean, both syntactic and semantic characteristics are found to be shared by children acquiring complement constructions in the two languages. However, certain language-specific features of Korean complement structures make it possible to address theoretical points concerning the structure of infinitival complements which cannot be resolved with the acquisition data on English. The error pattern in the acquisition of certain 'subject-equi' verbs in Korean poses problems both for LFG and GB accounts of the constituent structure of infinitival complements and the acquisition of those constructions. On the basis of the Korean data, I propose that base-generated VP complements are acquired first, with semantically motivated reanalysis of previously acquired infinitival complement structures occurring at a later stage.

  16. From network structure to network reorganization: implications for adult neurogenesis

    Science.gov (United States)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  17. The Hercules supercluster. II - Analysis. [of galactic structure

    Science.gov (United States)

    Tarenghi, M.; Chincarini, G.; Rood, H. J.; Thompson, L. A.

    1980-01-01

    The almost complete sample of more than 150 redshifts for galaxies brighter than m sub p = 15.8 mag in a 28 square degree field in Hercules by Tarenghi et al. is used to examine the cosmography of a 60,000 cubic Mpc conical volume of space. It contains a supercluster of Abell clusters with a depth of about 100 Mpc, a vacant 'void' also with a depth of about 100 Mpc, and a structure wider than 12 Mpc which could be part of a more extensive system of small groups of galaxies. Properties of individual rich clusters in the Hercules supercluster are derived, but they are uncertain because the clusters merge into one another, so that it is difficult to identify them and their member galaxies unambiguously. However, those regions in Hercules containing the largest proportion of early-type galaxies show the least evidence for gravitational relaxation. A difference may exist between the luminosity function of clusters of galaxies and the luminosity function of the foreground sheet.

  18. A Century of Solar Ca ii Measurements and Their Implication for Solar UV Driving of Climate

    Science.gov (United States)

    Foukal, Peter; Bertello, Luca; Livingston, William C.; Pevtsov, Alexei A.; Singh, Jagdev; Tlatov, Andrey G.; Ulrich, Roger K.

    2009-04-01

    Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.

  19. Coordination chemistry and solution structure of Fe(II)-peplomycin. Two possible coordination geometries.

    Science.gov (United States)

    Li, Yang; Lehmann, Teresa

    2012-06-01

    The solution structure of Fe(II)-peplomycin was determined from NMR data collected for this molecule. As found previously for Fe(II)- and Co(II)-bound bleomycin; the coordination sphere of the metal is composed of the primary and secondary amines in β-aminoalanine, the pyrimidine and imidazole rings in the pyrimidinylpropionamide, and β-hydroxyhistidine moieties, respectively, the amine nitrogen in β-hydroxyhistidine, and either the carbamoyl group in mannose or a solvent molecule. The two most discussed coordination geometries for the aforementioned ligands in metallo-bleomycins have been tested against the NMR data generated for Fe(II)-peplomycin. The interpretation of the experimental evidence obtained through molecular dynamics indicates that both geometries are equally likely in solution for this compound in the absence of DNA, but arguments are offered to explain why one of these geometries is preferred in the presence of DNA.

  20. Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases.

    Science.gov (United States)

    Wang, Yue-Yue; Li, Yu-Dong; Liu, Jian-Bo; Ran, Xin-Xin; Guo, Yuan-Yang; Ren, Ni-Ni; Chen, Xin; Jiang, Hui; Li, Yong-Quan

    2014-01-01

    Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.

  1. Structural mapping of the voltage-dependent sodium channel. Distance between the tetrodotoxin and Centruroides suffusus suffusus II beta-scorpion toxin receptors.

    Science.gov (United States)

    Darbon, H; Angelides, K J

    1984-05-25

    A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.

  2. The Structure of Lombricine Kinase: Implications for Phosphagen Conformational Changes

    Energy Technology Data Exchange (ETDEWEB)

    Bush, D. Jeffrey; Kirillova, Olga; Clark, Shawn A.; Davulcu, Omar; Fabiola, Felcy; Xie, Qing; Somasundaram, Thayumanasamy; Ellington, W. Ross; Chapman, Michael S. (Oregon HSU); (FSU)

    2012-05-29

    Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free. The two structures are similar to each other and more similar to the substrate-free forms of homologs than to the substrate-bound forms of the other phosphagen kinases. Active site specificity loop 309-317, which is disordered in substrate-free structures of homologs and is known from the NMR of arginine kinase to be inherently dynamic, is resolved in both lombricine kinase structures, providing an improved basis for understanding the loop dynamics. Phosphagen kinases undergo a segmented closing on substrate binding, but the lombricine kinase ADP complex is in the open form more typical of substrate-free homologs. Through a comparison with prior complexes of intermediate structure, a correlation was revealed between the overall enzyme conformation and the substrate interactions of His{sup 178}. Comparative modeling provides a rationale for the more relaxed specificity of these kinases, of which the natural substrates are among the largest of the phosphagen substrates.

  3. γ-Protocadherin structural diversity and functional implications

    Science.gov (United States)

    Goodman, Kerry Marie; Rubinstein, Rotem; Thu, Chan Aye; Mannepalli, Seetha; Bahna, Fabiana; Ahlsén, Göran; Rittenhouse, Chelsea; Maniatis, Tom; Honig, Barry; Shapiro, Lawrence

    2016-01-01

    Stochastic cell-surface expression of α-, β-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code. DOI: http://dx.doi.org/10.7554/eLife.20930.001 PMID:27782885

  4. γ-Protocadherin structural diversity and functional implications

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Kerry Marie; Rubinstein, Rotem; Thu, Chan Aye; Mannepalli, Seetha; Bahna, Fabiana; Ahlsén, Göran; Rittenhouse, Chelsea; Maniatis, Tom; Honig, Barry; Shapiro, Lawrence

    2016-10-26

    Stochastic cell-surface expression of α-, β-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealingtrans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depictcis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. Thetrans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mappedcis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formedcisdimers, whereas γA isoforms did not, but both γA and γB isoforms could interact inciswith α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdhtransinterface, and suggest that subfamily- or isoform-specificcis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.

  5. A Wide-Field View of Leo II -- A Structural Analysis Using the SDSS

    CERN Document Server

    Coleman, Matthew G; Rix, Hans-Walter; Grebel, Eva K; Koch, Andreas

    2007-01-01

    Using SDSS I data, we have analysed the stellar distribution of the Leo II dwarf spheroidal galaxy (distance of 233 kpc) to search for evidence of tidal deformation. The existing SDSS photometric catalogue contains gaps in regions of high stellar crowding, hence we filled the area at the centre of Leo II using the DAOPHOT algorithm applied to the SDSS images. The combined DAOPHOT-SDSS dataset contains three-filter photometry over a 4x4 square degree region centred on Leo II. By defining a mask in three-filter colour-magnitude space, we removed the majority of foreground field stars. We have measured the following Leo II structural parameters: a core radius of r_c = 2.64 +/- 0.19 arcmin (178 +/- 13 pc), a tidal radius of r_t = 9.33 +/- 0.47 arcmin (632 +/- 32 pc) and a total V-band luminosity of L_V = (7.4 +/- 2.0) times 10^5 L_sun (M_V = -9.9 +/- 0.3). Our comprehensive analysis of the Leo II structure did not reveal any significant signs of tidal distortion. The internal structure of this object contains onl...

  6. Activation Induces Structural Changes in the Liganded Angiotensin II Type 1 Receptor*

    Science.gov (United States)

    Clément, Martin; Cabana, Jérôme; Holleran, Brian J.; Leduc, Richard; Guillemette, Gaétan; Lavigne, Pierre; Escher, Emanuel

    2009-01-01

    The octapeptide hormone angiotensin II (AngII) binds to and activates the human angiotensin II type 1 receptor (hAT1) of the G protein-coupled receptor class A family. Several activation mechanisms have been proposed for this family, but they have not yet been experimentally validated. We previously used the methionine proximity assay to show that 11 residues in transmembrane domain (TMD) III, VI, and VII of the hAT1 receptor reside in close proximity to the C-terminal residue of AngII. With the exception of a single change in TMD VI, the same contacts are present on N111G-hAT1, a constitutively active mutant; this N111G-hAT1 is a model for the active form of the receptor. In this study, two series of 53 individual methionine mutations were constructed in TMD I, II, IV, and V on both receptor forms. The mutants were photolabeled with a neutral antagonist, 125I-[Sar1,p-benzoyl-l-Phe8]AngII, and the resulting complexes were digested with cyanogen bromide. Although no new contacts were found for the hAT1 mutants, two were found in the constitutively active mutants, Phe-77 in TMD II and Asn-200 in TMD V. To our knowledge, this is the first time that a direct ligand contact with TMD II and TMD V has been reported. These contact point differences were used to identify the structural changes between the WT-hAT1 and N111G-hAT1 complexes through homology-based modeling and restrained molecular dynamics. The model generated revealed an important structural rearrangement of several TMDs from the basal to the activated form in the WT-hAT1 receptor. PMID:19635801

  7. Formation of a unique zinc carbamate by CO2 fixation: implications for the reactivity of tetra-azamacrocycle ligated Zn(II) complexes.

    Science.gov (United States)

    Notni, Johannes; Schenk, Stephan; Görls, Helmar; Breitzke, Hergen; Anders, Ernst

    2008-02-18

    The macrocyclic ligand [13]aneN 4 ( L1, 1,4,7,10-tetra-azacyclotridecane) was reacted with Zn(II) perchlorate and CO 2 in an alkaline methanol solution. It was found that, by means of subtle changes in reaction conditions, two types of complexes can be obtained: (a) the mu 3 carbonate complex 1, {[Zn( L1)] 3(mu 3-CO 3)}(ClO 4) 4, rhombohedral crystals, space group R3 c, with pentacoordinate zinc in a trigonal bipyramidal enviroment, and (b) an unprecedenced dimeric Zn(II) carbamate structure, 2, [Zn( L2)] 2(ClO 4) 2, monoclinic crystals, space group P2 1/ n. The ligand L2 (4-carboxyl-1,4,7,10-tetra-azacyclotridecane) is a carbamate derivative of L1, obtained by transformation of a hydrogen atom of one of the NH moieties into carbamate by means of CO 2 uptake. In compound 2, the distorted tetrahedral Zn(II) coordinates to the carbamate moiety in a monodentate manner. Most notably, carbamate formation can occur upon reaction of CO 2 with the [Zn L1] (2+) complex, which implicates that a Zn-N linkage is cleaved upon attack of CO 2. Since complexes of tetra-azamacrocycles and Zn(II) are routinely applied for enzyme model studies, this finding implies that the Zn-azamacrocycle moiety generally should no longer be considered to play always only an innocent role in reactions. Rather, its reactivity has to be taken into account in respective investigations. In the presence of water, 2 is transformed readily into carbonate 1. Both compounds have been additionally characterized by solid-state NMR and infrared spectroscopy. A thorough comparison of 1 with related azamacrocycle ligated zinc(II) carbonates as well as a discussion of plausible reaction paths for the formation of 2 are given. Furthermore, the infrared absorptions of the carbamate moiety have been assigned by calculating the vibrational modes of the carbamate complex using DFT methods and the vibrational spectroscopy calculation program package SNF.

  8. Twist decomposition of Drell-Yan structure functions: phenomenological implications

    Science.gov (United States)

    Brzemiński, Dawid; Motyka, Leszek; Sadzikowski, Mariusz; Stebel, Tomasz

    2017-01-01

    The forward Drell-Yan process in pp scattering at the LHC at √{S} = 14 TeV is considered. We analyze the Drell-Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small x gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell-Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat-Wüsthoff model and the dipole cross section obtained from the Balitsky-Fadin-Kuraev-Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell-Yan structure functions for all Drell-Yan pair masses M, and the higher twist effects become important for M ≲ 10GeV. It is found that the structure function W TT related to the A 2 angular coefficient and the Lam-Tung observable A 0 - A 2 are particularly sensitive to the gluon k T effects and to the higher twist effects. A procedure is suggested how to disentangle the higher twist effects from the gluon transverse momentum effects.

  9. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  10. Divorce, Single Parenthood and Stepfamilies: Structural Implications of These Transactions.

    Science.gov (United States)

    Schulman, Gerda L.

    1981-01-01

    Focuses on change in the family structure during divorce as well as stages of single parenthood and the reconstituted family. Special characteristics of these families and tasks to be undertaken to enable the new unit to function are discussed. Suggests family therapy is helpful during the crisis stage. (Author)

  11. Synthesis, structure and fluorescence properties of a novel 3D Sr(II) coordination polymer

    Science.gov (United States)

    Tan, Yu-Hui; Xu, Qing; Gu, Zhi-Feng; Gao, Ji-Xing; Wang, Bin; Liu, Yi; Yang, Chang-Shan; Tang, Yun-Zhi

    2016-09-01

    Solvothermal reaction of 2,2‧-bipyridine-5,5‧-dicarboxylic acid (H2bpdc) and SrCl2 affords a novel coordination polymer [Sr(Hbpdc)2]n1. X-ray structure determination shows that 1 exhibits a novel three-dimensional network. The unique Sr II cation sits on a two-fold axis and coordinated by four O-atom donors from four Hbptc- ligands and four N-atom donors from two Hbptc- ligands in distorted dodecahedral geometry. In 1 each Sr II cation connects to six different Hbptc- ligands and each Hbptc- ligand bridges three different Sr II cations which results in the formation of a three-dimensional polymeric structure. Corresponding to the free ligand, the fluorescent emission of complex 1 display remarkable "Einstain" shifts, which may be attributed to the coordination interaction of Sr atoms, thus reduce the rigidity of pyridyl rings.

  12. 3D Temperature Mapping of Solar Photospheric Fine Structure Using Ca II H Filtergrams

    CERN Document Server

    Henriques, V M J

    2012-01-01

    Context. The wings of the Ca II H and K lines provide excellent photospheric temperature diagnostics. At the Swedish 1-meter Solar Telescope the blue wing of Ca II H is scanned with a narrowband interference filter mounted on a rotation stage. This provides up to 0"10 spatial resolution filtergrams at high cadence that are concurrent with other diagnostics at longer wavelengths. Aims. The aim is to develop observational techniques that provide the photospheric temperature stratification at the highest spatial resolution possible and use those to compare simulations and observations at different heights. Methods. We use filtergrams in the Ca II H blue wing obtained with a tiltable interference filter at the SST. Synthetic observations are produced from 3D HD and 3D MHD numerical simulations and degraded to match the observations. The temperature structure obtained from applying the method to the synthetic data is compared with the known structure in the simulated atmospheres and with observations of an active ...

  13. Three-dimensional structure of photosystem II from Thermosynechococcus elongates in complex with terbutryn

    Energy Technology Data Exchange (ETDEWEB)

    Gabdulkhakov, A. G., E-mail: azat@vega.protes.ru; Dontsova, M. V. [Russian Academy of Sciences, Institute of Protein Research (Russian Federation); Saenger, W. [Free University of Berlin, Institute for Chemistry and Biochemistry/Crystallography (Germany)

    2011-11-15

    Photosystem II is a key component of the photosynthetic pathway producing oxygen at the thylakoid membrane of cyanobacteria, green algae, and plants. The three-dimensional structure of photosystem II from the cyanobacterium Thermosynechococcus elongates in a complex with herbicide terbutryn (a photosynthesis inhibitor) was determined for the first time by X-ray diffraction and refined at 3.2 Angstrom-Sign resolution (R{sub factor} = 26.9%, R{sub free} = 29.9%, rmsd for bond lengths is 0.013 Angstrom-Sign , and rmsd for bond angles is 2.2 Degree-Sign ). The terbutryn molecule was located in the binding pocket of the mobile plastoquinone. The atomic coordinates of the refined structure of photosystem II in a complex with terbutryn were deposited in the Protein Data Bank.

  14. PREREM: an interactive data preprocessing code for INREM II. Part I: user's manual. Part II: code structure

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.T.; Fields, D.E.

    1981-05-01

    PREREM is an interactive computer code developed as a data preprocessor for the INREM-II (Killough, Dunning, and Pleasant, 1978a) internal dose program. PREREM is intended to provide easy access to current and self-consistent nuclear decay and radionuclide-specific metabolic data sets. Provision is made for revision of metabolic data, and the code is intended for both production and research applications. Documentation for the code is in two parts. Part I is a user's manual which emphasizes interpretation of program prompts and choice of user input. Part II stresses internal structure and flow of program control and is intended to assist the researcher who wishes to revise or modify the code or add to its capabilities. PREREM is written for execution on a Digital Equipment Corporation PDP-10 System and much of the code will require revision before it can be run on other machines. The source program length is 950 lines (116 blocks) and computer core required for execution is 212 K bytes. The user must also have sufficient file space for metabolic and S-factor data sets. Further, 64 100 K byte blocks of computer storage space are required for the nuclear decay data file. Computer storage space must also be available for any output files produced during the PREREM execution. 9 refs., 8 tabs.

  15. Palladium(II) and platinum(II) complexes containing benzimidazole ligands: Molecular structures, vibrational frequencies and cytotoxicity

    Science.gov (United States)

    Abdel Ghani, Nour T.; Mansour, Ahmed M.

    2011-04-01

    (1H-benzimidazol-2-ylmethyl)-(4-methoxyl-phenyl)-amine (L 1), (1H-benzimidazol-2-ylmethyl)-(4-methyl-phenyl)-amine (L 2) and their Pd(II) and Pt(II) complexes have been synthesized as potential anticancer compounds and their structures were elucidated using a variety of physico-chemical techniques. Theoretical calculations invoking geometry optimization, vibrational assignments, 1H NMR, charge distribution and molecular orbital description HOMO and LUMO were done using density functional theory. Natural bond orbital analysis (NBO) method was performed to provide details about the type of hybridization and the nature of bonding in the studied complexes. Strong coordination bonds (LP(1)N11 → σ *(M sbnd Cl22)) and (LP(1)N21 → σ *(M sbnd Cl23)) (M = Pd or Pt) result from donation of electron density from a lone pair orbital on the nitrogen atoms to the acceptor metal molecular orbitals. The experimental results and the calculated molecular parameters revealed square-planar geometries around the metallic centre through the pyridine-type nitrogen of the benzimidazole ring and secondary amino group and two chlorine atoms. The activation thermodynamic parameters were calculated using non-isothermal methods. The synthesized ligands, in comparison to their metal complexes were screened for their antibacterial activity. In addition, the studied complexes showed activity against three cell lines of different origin, breast cancer (MCF-7), Colon Carcinoma (HCT) and human heptacellular carcinoma (Hep-G2) comparable to cis-platin.

  16. Electrochemical Synthesis and Structural Characterization of a Novel Mixed-valence Copper (I)-copper (II) Complex: {[Bis(ethylenediamine) Copper (II)] Bis[diiodocuprate (I)]}

    OpenAIRE

    Mahboobeh Dashti Ardakani; Majid M. Heravi; Saeed Dehghanpour; Lida Fotouhi

    2007-01-01

    A novel, mixed-valent copper(I)-copper(II) complex, {[bis(ethylene-diamine)copper(II)] bis[diiodocuprate(I)]} (1), has been prepared by electrochemicaldissolution of a sacrificial copper anode in a solution of ethylenediamine (en), I2 andtetraethylammoniumperchlorate (TEAP) as supporting electrolyte in acetonitrile (AcN)and characterized by single-crystal X-ray structure determination. The crystal structure ofthe complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridgi...

  17. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  18. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex

    NARCIS (Netherlands)

    Kern, Jan; Zouni, Athina; Guskov, Albert; Krauss, Norbert; Wada, Hajime; Murata, Norio

    2009-01-01

    This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome b6

  19. Diamino-ligated platinum(II) and platinum(IV) phenoxide complexes; syntheses and crystal structures

    NARCIS (Netherlands)

    Koten, G. van; Kapteijn, G.M.; Meijer, M.D.; Grove, D.M.; Veldman, N.; Spek, A.L.

    1997-01-01

    The reaction of the diamino-ligated dimethylplatinum(II) complex [Pt(Me){2}(bpy)] (bpy=2, 2'-bipyridyl) with phenol affords the new complex [Pt(Me)(OPh)(bpy)] (1). The X-ray crystal structure of square-planar 1 is reported: orthorhombic, space group P2{1}2{1}2{1} (No. 19), a = 9.1625(12), b =

  20. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution

    NARCIS (Netherlands)

    Broser, Matthias; Gabdulkhakov, Azat; Kern, Jan; Guskov, Albert; Müh, Frank; Saenger, Wolfram; Zouni, Athina

    2010-01-01

    The membrane-embedded photosystem II core complex (PSIIcc) uses light energy to oxidize water in photosynthesis. Information about the spatial structure of PSIIcc obtained from x-ray crystallography was so far derived from homodimeric PSIIcc of thermophilic cyanobacteria. Here, we report the first c

  1. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex

    NARCIS (Netherlands)

    Kern, Jan; Zouni, Athina; Guskov, Albert; Krauss, Norbert; Wada, Hajime; Murata, Norio

    2009-01-01

    This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome

  2. Photosystem II Supercomplexes Of Higher Plants : Isolation And Determination Of The Structural And Functional Organization

    NARCIS (Netherlands)

    Caffarri, Stefano; Broess, Koen L.; Kereiche, Sami; Trinkunas, Gediminas; Boekema, Egbert J.; Amerongen, Herbert van; Croce, Roberta

    2009-01-01

    Photosystem II is a supercomplex composed of 27-28 different subunits and it represents the most important machinery of the plants photosynthetic appara- tus, having the ability to split water into oxygen, protons and electrons. In the last few years the structures of most of the photosynthetic

  3. Structural basis of cyanobacterial photosystem II Inhibition by the herbicide terbutryn

    NARCIS (Netherlands)

    Broser, Matthias; Glöckner, Carina; Gabdulkhakov, Azat; Guskov, Albert; Buchta, Joachim; Kern, Jan; Müh, Frank; Dau, Holger; Saenger, Wolfram; Zouni, Athina

    2011-01-01

    Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the Q(B) site in the D1 subunit and thus block the electron transfer from Q(A) to Q(B). Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3

  4. Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System.

    Science.gov (United States)

    Ka, Donghyun; Lee, Hasup; Jung, Yi-Deun; Kim, Kyunggon; Seok, Chaok; Suh, Nayoung; Bae, Euiyoung

    2016-01-01

    CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems.

  5. Possible Cosmological Implications of Time Varying Fine Structure Constant

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2001-01-01

    We make use of Dirac LNH and results for a time varying fine structure constant in order to derive possible laws of variation for speed of light, the number of nucleons in the Universe, energy density and gravitational constant. By comparing with experimental bounds on G variation, we find that the deceleration paramenter of the present Universe is negative. This is coherent with recent Supernovae observations.

  6. Sequence analysis and structural implications of rotavirus capsid proteins.

    Science.gov (United States)

    Parbhoo, N; Dewar, J B; Gildenhuys, S

    Rotavirus is the major cause of severe virus-associated gastroenteritis worldwide in children aged 5 and younger. Many children lose their lives annually due to this infection and the impact is particularly pronounced in developing countries. The mature rotavirus is a non-enveloped triple-layered nucleocapsid containing 11 double stranded RNA segments. Here a global view on the sequence and structure of the three main capsid proteins, VP2, VP6 and VP7 is shown by generating a consensus sequence for each of these rotavirus proteins, for each species obtained from published data of representative rotavirus genotypes from across the world and across species. Degree of conservation between species was represented on homology models for each of the proteins. VP7 shows the highest level of variation with 14-45 amino acids showing conservation of less than 60%. These changes are localised to the outer surface alluding to a possible mechanism in evading the immune system. The middle layer, VP6 shows lower variability with only 14-32 sites having lower than 70% conservation. The inner structural layer made up of VP2 showed the lowest variability with only 1-16 sites having less than 70% conservation across species. The results correlate with each protein's multiple structural roles in the infection cycle. Thus, although the nucleotide sequences vary due to the error-prone nature of replication and lack of proof reading, the corresponding amino acid sequence of VP2, 6 and 7 remain relatively conserved. Benefits of this knowledge about the conservation include the ability to target proteins at sites that cannot undergo mutational changes without influencing viral fitness; as well as possibility to study systems that are highly evolved for structure and function in order to determine how to generate and manipulate such systems for use in various biotechnological applications.

  7. Twist decomposition of Drell-Yan structure functions: phenomenological implications

    CERN Document Server

    Brzeminski, Dawid; Sadzikowski, Mariusz; Stebel, Tomasz

    2016-01-01

    The forward Drell--Yan process in $pp$ scattering at the LHC at $\\sqrt{S}=14$ TeV is considered. We analyze the Drell--Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small $x$ gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell--Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat--W\\"{u}sthoff model and the dipole cross section obtained from the Balitsky--Fadin--Kuraev--Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell--Yan structure functions for all Drell--Yan pair masses $M$, and the higher twist effects become important for $M \\lesssim 10$ GeV. It is found that...

  8. Spatial structuring within a reservoir fish population: implications for management

    Science.gov (United States)

    Stewart, David R.; Long, James M.; Shoup, Daniel E.

    2014-01-01

    Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.

  9. Implications of population structure and ancestry on asthma genetic studies.

    Science.gov (United States)

    Ortega, Victor E; Meyers, Deborah A

    2014-10-01

    The frequency and severity of asthma differ between different racial and ethnic groups. An understanding of the genetic basis for these differences could constitute future genetic biomarker panels for predicting asthma risk and progression in individuals from different ethnic groups. The recent mixing of different ancestries during the European colonization of the Americas and the African slave trade has resulted in the complex population structures identified in different ethnic groups. These population structures represent varying degrees of genetic diversity which impacts the allele frequency of individual variants and, thus, how the gene variation is utilized in genetic association studies. In this review, we will discuss the basis for the complex population structures of modern human genomes and the impact of genetic diversity on genetic studies in different ethnic groups. We will also highlight the potential for admixture and rare variant-based genetic studies to identify novel genetic loci for asthma susceptibility and severity. The ability to account for the consequences of genetic diversity in different racial and ethnic groups will be critical in developing genetic profiles for personalized or precision medicine approaches tailored to asthmatic patients from different ethnic groups.

  10. The depositional environments of Schöningen 13 II-4 and their archaeological implications.

    Science.gov (United States)

    Stahlschmidt, Mareike C; Miller, Christopher E; Ligouis, Bertrand; Goldberg, Paul; Berna, Francesco; Urban, Brigitte; Conard, Nicholas J

    2015-12-01

    Geoarchaeological research at the Middle Pleistocene site of Schöningen 13 II-4, often referred to as the Speerhorizont, has focused on describing and evaluating the depositional contexts of the well-known wooden spears, butchered horses, and stone tools. These finds were recovered from the transitional contact between a lacustrine marl and an overlying organic mud, originally thought to be a peat that accumulated in place under variable moisture conditions. The original excavators proposed that hominin activity, including hunting and butchery, occurred on a dry lake shore and was followed by a rapid sedimentation of organic deposits that embedded and preserved the artifacts. Our geoarchaeological analysis challenges this model. Here, we present evidence that the sediments of Schöningen 13 II-4 were deposited in a constantly submerged area of a paleolake. Although we cannot exclude the possibility that the artifacts were deposited during a short, extreme drying event, there are no sedimentary features indicative of surface exposure in the sediments. Accordingly, this paper explores three main alternative models of site formation: anthropogenic disposal of materials into the lake, a geological relocation of the artifacts, and hunting or caching on lake-ice. These models have different behavioral ramifications concerning hominin knowledge and exploitation of the landscape and their subsistence strategies.

  11. Phylogeographic structure of Terminalia franchetii (combretaceae) in southwest China and its implications for drainage geological history.

    Science.gov (United States)

    Zhang, Ticao; Sun, Hang

    2011-01-01

    Following the rapid uplift of the Qinghai-Tibetan Plateau, the reorganization of the major river drainages in southwest China was primarily caused by river capture events. However, the impact of these past changes in drainage patterns on the current distribution and genetic structure of the endemic flora of this region remains largely unknown. Here we report a survey of amplified fragment length polymorphism (AFLP) in Terminalia franchetii, an endemic shrub or small tree of the deep and dry-hot river valleys of this region. We surveyed AFLP variation within and among 21 populations (251 individuals) of T. franchetii, distributed disjunctively between northern and southern drainage systems. Using STRUCTURE, principal coordinates analysis, and genetic distance methods, we identified two main population genetic groups (I and II) and four subgroups within the species, as follows: (I) the Upper Jinshajiang Valley (subgroup I((north))) and the Honghe drainage area (subgroup I((south))); (II) the Middle and Lower Jinshajiang and Yalongjiang Valleys (subgroup II((north))) and the Nanpanjiang drainage area (subgroup II((south))). Genetic diversity was lower in group I than in group II. According to the genetic diversity and genetic structure results, we suggest that the modern disjunctive distribution and associated patterns of genetic structure of T. franchetii result from vicariance caused by several historical drainage capture events, involving the separation of the Upper Jinshajiang, Yalongjiang and Daduhe from the Honghe or Nanpanjiang in southwest China.

  12. Identification of a mechanism of transformation of clathrate hydrate structures I to II or H.

    Science.gov (United States)

    Yoshioki, Shuzo

    2012-07-01

    Binary mixed-gas hydrates including methane and other guest gases demonstrate a structural transition between the sI and sII phases. Under increasing pressure pure methane hydrate exhibits a phase transition first from sI to sII and then to sH. But the mechanism of the transformation from sI to sII or sH has not yet been identified. Recently, molecular dynamics simulations of methane hydrates suggest there may exist uncommon 15-hedral cages (5¹²6³), linking the sI and sII cages. In addition, xenon hydrate involving 15-hedral cages has been synthesized and named an hsI hydrate. Based on the hsI cages, we propose a mechanism for the transition of sI to sII or sH at atomic level resolution. The sI hydrate is first transformed to hsI, and hsI is further transformed to sII. Upon compression, hsI is transformed to sH owing to depletion of atomic layers. The mechanism of transformation speculated here calls for experimental verification.

  13. Structural basis of gate-DNA breakage and resealing by type II topoisomerases.

    Directory of Open Access Journals (Sweden)

    Ivan Laponogov

    Full Text Available Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg(2+ ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics.

  14. A one-dimensional chain structure based on unusual tetranuclear manganese(II) clusters.

    Science.gov (United States)

    Che, Guang Bo; Wang, Jian; Liu, Chun Bo; Li, Xiu Ying; Liu, Bo

    2008-11-01

    The title coordination polymer, poly[bis(mu(4)-biphenyl-2,2'-dicarboxylato)(dipyrido[3,2-a:2',3'-c]phenazine)manganese(II)], [Mn(2)(C(14)H(8)O(4))(2)(C(18)H(10)N(4))](n), was obtained through the reaction of MnCl(2).4H(2)O, biphenyl-2,2'-dicarboxylic acid (H(2)dpdc) and dipyrido[3,2-a:2',3'-c]phenazine (L) under hydrothermal conditions. The asymmetric unit contains two crystallographically unique Mn(II) ions, one unique L ligand and two unique dpdc ligands. One Mn ion is six-coordinated by four O atoms from three different dpdc ligands and two N atoms from one L ligand, adopting a distorted octahedral coordination geometry. The distortions from ideal octahedral geometry are largely due to the presence of chelating ligands and the resulting acute N-Mn-N and O-Mn-O angles. The second Mn ion is coordinated in a distorted trigonal bipyramidal fashion by five O atoms from four distinct dpdc ligands. Four Mn(II) ions are bridged by the carboxylate groups of the dpdc ligands to form an unusual tetranuclear Mn(II) cluster. Clusters are further connected by the aromatic backbone of the dicarboxylate ligands, forming a one-dimensional chain structure along the b axis. The title compound is the first example of a chain structure based on a tetranuclear Mn(II) cluster.

  15. Structural and spectroscopic characterization of iron(II), cobalt(II), and nickel(II) ortho-dihalophenolate complexes: insights into metal-halogen secondary bonding.

    Science.gov (United States)

    Machonkin, Timothy E; Boshart, Monica D; Schofield, Jeremy A; Rodriguez, Meghan M; Grubel, Katarzyna; Rokhsana, Dalia; Brennessel, William W; Holland, Patrick L

    2014-09-15

    Metal complexes incorporating the tris(3,5-diphenylpyrazolyl)borate ligand (Tp(Ph2)) and ortho-dihalophenolates were synthesized and characterized in order to explore metal-halogen secondary bonding in biorelevant model complexes. The complexes Tp(Ph2)ML were synthesized and structurally characterized, where M was Fe(II), Co(II), or Ni(II) and L was either 2,6-dichloro- or 2,6-dibromophenolate. All six complexes exhibited metal-halogen secondary bonds in the solid state, with distances ranging from 2.56 Å for the Tp(Ph2)Ni(2,6-dichlorophenolate) complex to 2.88 Å for the Tp(Ph2)Fe(2,6-dibromophenolate) complex. Variable temperature NMR spectra of the Tp(Ph2)Co(2,6-dichlorophenolate) and Tp(Ph2)Ni(2,6-dichlorophenolate) complexes showed that rotation of the phenolate, which requires loss of the secondary bond, has an activation barrier of ~30 and ~37 kJ/mol, respectively. Density functional theory calculations support the presence of a barrier for disruption of the metal-halogen interaction during rotation of the phenolate. On the other hand, calculations using the spectroscopically calibrated angular overlap method suggest essentially no contribution of the halogen to the ligand-field splitting. Overall, these results provide the first quantitative measure of the strength of a metal-halogen secondary bond and demonstrate that it is a weak noncovalent interaction comparable in strength to a hydrogen bond. These results provide insight into the origin of the specificity of the enzyme 2,6-dichlorohydroquinone 1,2-dioxygenase (PcpA), which is specific for ortho-dihalohydroquinone substrates and phenol inhibitors.

  16. Karstic slope "breathing": morpho-structural influence and hazard implications

    Science.gov (United States)

    Devoti, Roberto; Falcucci, Emanuela; Gori, Stefano; Eliana Poli, Maria; Zanferrari, Adriano; Braitenberg, Carla; Fabris, Paolo; Grillo, Barbara; Zuliani, David

    2016-04-01

    The study refers to the active slope deformation detected by GPS and tiltmeter stations in the Cansiglio karstic plateau located in the western Carnic Prealps (NE Italy). The observed transient deformation clearly correlates with the rainfall, so that the southernmost border of the Plateau reacts instantly to heavy rains displaying a "back and forth" deformation up to a few centimeters wide, with different time constants, demonstrating a response to different catchment volumes. We carried out a field survey along the southern Cansiglio slope, to achieve structural characterization of the relief and to verify the possible relation between structural features and the peculiar geomorphological setting dominated by widespread karstic features. The Cansiglio plateau develops on the frontal ramp anticline of the Cansiglio thrust, an about ENE-WSW trending, SSE-verging, low angle thrust, belonging to the Neogene-Quaternary front of the eastern Southern Alps. The Cansiglio thrust outcrops at the base of the Cansiglio plateau, where it overlaps the Mesozoic carbonates on the Miocene-Quaternary terrigenous succession. All along its length cataclastic limestone largely outcrop. The Cansiglio thrust is bordered by two transfer zones probably inherited from the Mesozoic paleogeography: the Caneva fault in the west and the Col Longone fault in the east. The carbonatic massif is also characterized by a series of about northward steeply dipping reverse minor faults and a set of subvertical joints parallel to the axes of the Cansiglio anticline. Other NNW-SSE and NNE-SSW conjugate faults and fractures perpendicular to the Cansiglio southern slope are also identified. This structural setting affect pervasively the whole slope and may determine centimetre- to metre-scale rock prisms. Interestingly, along the topmost portion of the slope, some dolines and swallow holes show an incipient coalescence, that trends parallel to the massif front and to the deformation zones related to the

  17. Development of a structured undergraduate research experience: Framework and implications.

    Science.gov (United States)

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016.

  18. Principles of crop modelling and simulation: II. the implications of the objective in model development

    Directory of Open Access Journals (Sweden)

    Dourado-Neto D.

    1998-01-01

    Full Text Available With the purpose of presenting to scientists the implications of the objective in model development and a basic vision of modeling, with its potential applications and limitations in agriculture, an integration of crop modeling professionals with agricultural professionals is suggested. Models mean modernization of the information, of the measurement process and of an efficient way to learn more about complex systems. They are one of the best mechanisms of transforming information in useful knowledge and of transferring this knowledge to others. One of the problems that impede a larger progress in modeling is the lack of communication between modelers and a frequent appearance of modelers without a global vision of reality.

  19. Tax Implication of Structuring and Financing Mergers and Acquisitions

    Directory of Open Access Journals (Sweden)

    Cristian Ianca

    2008-09-01

    Full Text Available The structuring and financing of mergers and acquisitions has substantial tax consequences. The decision to acquire the assets or the shares of the target company should take into consideration, on one hand, the capital gains taxation at the transaction time and, on the other hand, the tax planning opportunities for the future. The tax burden can also be minimized by an optimum selection of the acquisition vehicle. The choice of a financing alternative should take into account the interest deductibility and the specific tax regulations of each jurisdiction concerned.

  20. Structural and legal implications of e-health.

    Science.gov (United States)

    Terry, N P

    2000-01-01

    Web and attendant e-Commerce phenomena are irretrievably at odds with the traditional structure and hence legal regulation of health delivery. E-Health delivers healthcare information, diagnosis, treatment, care, and prescribing of drugs in a nonlinear, nonhierarchical manner that encourages patients to "enter" the system at an infinite number of points, thus defying current regulatory constructs. Similarly, e-Commerce fundamentals such as disintermediation and disaggregation result in medical information being delivered through unfamiliar channels, creating immensely difficult questions for health lawyers.

  1. Retinal structure and function in achromatopsia: implications for gene therapy.

    Science.gov (United States)

    Sundaram, Venki; Wilde, Caroline; Aboshiha, Jonathan; Cowing, Jill; Han, Colin; Langlo, Christopher S; Chana, Ravinder; Davidson, Alice E; Sergouniotis, Panagiotis I; Bainbridge, James W; Ali, Robin R; Dubra, Alfredo; Rubin, Gary; Webster, Andrew R; Moore, Anthony T; Nardini, Marko; Carroll, Joseph; Michaelides, Michel

    2014-01-01

    To characterize retinal structure and function in achromatopsia (ACHM) in preparation for clinical trials of gene therapy. Cross-sectional study. Forty subjects with ACHM. All subjects underwent spectral domain optical coherence tomography (SD-OCT), microperimetry, and molecular genetic testing. Foveal structure on SD-OCT was graded into 5 distinct categories: (1) continuous inner segment ellipsoid (ISe), (2) ISe disruption, (3) ISe absence, (4) presence of a hyporeflective zone (HRZ), and (5) outer retinal atrophy including retinal pigment epithelial loss. Foveal and outer nuclear layer (ONL) thickness was measured and presence of hypoplasia determined. Photoreceptor appearance on SD-OCT imaging, foveal and ONL thickness, presence of foveal hypoplasia, retinal sensitivity and fixation stability, and association of these parameters with age and genotype. Forty subjects with a mean age of 24.9 years (range, 6-52 years) were included. Disease-causing variants were found in CNGA3 (n = 18), CNGB3 (n = 15), GNAT2 (n = 4), and PDE6C (n = 1). No variants were found in 2 individuals. In all, 22.5% of subjects had a continuous ISe layer at the fovea, 27.5% had ISe disruption, 20% had an absent ISe layer, 22.5% had an HRZ, and 7.5% had outer retinal atrophy. No significant differences in age (P = 0.77), mean retinal sensitivity (P = 0.21), or fixation stability (P = 0.34) across the 5 SD-OCT categories were evident. No correlation was found between age and foveal thickness (P = 0.84) or between age and foveal ONL thickness (P = 0.12). The lack of a clear association of disruption of retinal structure or function in ACHM with age suggests that the window of opportunity for intervention by gene therapy is wider in some individuals than previously indicated. Therefore, the potential benefit for a given subject is likely to be better predicted by specific measurement of photoreceptor structure rather than simply by age. The ability to directly assess cone photoreceptor

  2. Structural and electronic implications for carrier injection into organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Mauro [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Salzmann, Ingo; Yu, Shuwen; Koch, Norbert [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Bugnon, Philippe [Ecole Polytechnique Federale de Lausanne (Switzerland). Institut des Materiaux; Oehzelt, Martin [Johannes Kepler Universitaet Linz (Austria). Institut fuer Experimentalphysik

    2009-10-15

    We report on the structural and electronic interface formation between ITO (indium-tin-oxide) and prototypical organic small molecular semiconductors, i.e., CuPc (copper phthalocyanine) and {alpha}-NPD (N,N'-di(naphtalen-1-yl)-N,N'-diphenyl-benzidine). In particular, the effects of in situ oxygen plasma pretreatment of the ITO surface on interface properties are examined in detail: Organic layer-thickness dependent Kelvin probe measurements revealed a good alignment of the ITO work function and the highest occupied electronic level of the organic material in all samples. In contrast, the electrical properties of hole-only and bipolar organic diodes depend strongly on the treatment of ITO prior to organic deposition. This dependence is more pronounced for diodes made of polycrystalline CuPc than for those of amorphous {alpha}-NPD layers. X-ray diffraction and atomic force microscopic (AFM) investigations of CuPc nucleation and growth evidenced a more pronounced texture of the polycrystalline film structure on the ITO substrate that was oxygen plasma treated prior to organic layer deposition. These findings suggest that the anisotropic electrical properties of CuPc crystallites, and their orientation with respect to the substrate, strongly affect the charge carrier injection and transport properties at the anode interface. (orig.)

  3. Evidence of Second-Order Factor Structure in a Diagnostic Problem Space: Implications for Medical Education.

    Science.gov (United States)

    Papa, Frank J.; And Others

    1997-01-01

    Chest pain was identified as a specific medical problem space, and disease classes were modeled to define it. Results from a test taken by 628 medical residents indicate a second-order factor structure that suggests that chest pain is a multidimensional problem space. Implications for medical education are discussed. (SLD)

  4. Epistemic Contradictions in Counseling Theories: Implications for the Structure of Human Experience and Counseling Practice

    Science.gov (United States)

    Hansen, James T.

    2007-01-01

    Theories of counseling process are founded on a logical contradiction in that they are simultaneously objectivist and constructivist in nature. Because this epistemic tension is present across diverse theories and has persisted throughout the history of counseling theorizing, the author argues that it has implications for the structure of human…

  5. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  6. Flash-induced structural dynamics in photosystem II membrane fragments of green plants.

    Science.gov (United States)

    Pieper, Jörg; Renger, Gernot

    2009-07-07

    Time-resolved quasielastic neutron scattering with laser excitation is a promising novel pump-probe approach, which opens up new perspectives for the study of protein-membrane dynamics in specific functional states of even complex systems. This is demonstrated here for the case of photosystem II membrane fragments with inhibited electron transfer. In contrast to the case of the model system bacteriorhodopsin, a transient reduction of the dynamics is observed approximately 160 micros after the actinic laser flash. This effect is the first observation of a modulated structural dynamics in photosystem II membrane fragments.

  7. Synthesis and Structure of bis(Dibutyldithiocarbamatezinc(II: Zn2[(n-Bu2NCSS]4

    Directory of Open Access Journals (Sweden)

    Kaibei Yu

    2003-05-01

    Full Text Available The binuclear zinc (II complex Zn2[(n-Bu2NCSS]4 has been prepared, and its crystal and molecular structure have been determined by x-ray diffraction. The crystal is monoclinic, space group C2/c, with a=23.329(3Å, b=17.090(2Å, c=16.115(2Å, α =90°, β=127.560(10°, γ=90°, z=4, V=5039.1(11Å3, F(000=2016, R=0.0450, and Rw=0.1192. The crystal structure shows that two S-N-S atom chains, belonging to the different dibutyldithiocarbamate ligands, bridge two zinc (II ions. Each zinc (II ion coordinates to four S atoms. The coordination geometry around the zinc (II is a tetrahedron, however, the coordination sphere of two zinc ions in the dimer is best described as a distorted octagon. The X-ray photoelectron spectra, IR and UV data have been used to study the structure and spectra properties of the complex.

  8. The interiors of Pluto and Charon: Structure, composition, and implications

    Energy Technology Data Exchange (ETDEWEB)

    Simonelli, D.P. (NASA Ames Research Center, IA (USA) Cornell Univ., Ithaca, NY (USA)); Reynolds, R.T. (NASA Ames Research Center, IA (USA))

    1989-11-01

    The authors review recent models of the internal structure of Pluto and Charon made possible by analysis of the Pluto/Charon mutual events. At a mean density of just over 2 g cm{sup {minus}3} and a predicted rock mass fraction of roughly 0.7, the Pluto/Charon system is significantly rockier than the icy satellites of the giant planets, a contrast which may reflect its formation in a CO-rich outer solar nebula rather than a circumplanetary nebula. Pluto and Charon may in fact be so rocky that they lost volatiles early in their history (possibly during a Charon-forming impact event), although this is still an open issue. Finally, they review the outlook for future study of the Pluto and Charon interiors.

  9. Crystal Structure of [Bis(L-AlaninatoDiaqua]Nickel(II Dihydrate

    Directory of Open Access Journals (Sweden)

    Awni Khatib

    2009-01-01

    Full Text Available The title complex, [Ni(C3H6O2N2(H2O2]⋅2H2O, has been prepared from nickel(II chloride in aqueous solution by adding L-alanine and potassium hydroxide. It has been crystallized from aqueous solution, and its structure was determined by X-ray structure analysis. The nickel(II ion adopts distorted octahedral coordination geometry with two bidentate L-alanine molecules and two water molecules. The complex is neutral and dihydrated. The crystal structure shows the hydrogen bonding between water and amide hydrogens within the lattice, and each fragment of the complex contains two water molecules as hydrated water. The L-alaninato ligand skeleton of the compound adopts the most stable trans-III configuration in the solid state. The alternating two five-membered chelate rings are in the stable gauche conformation.

  10. Structure II gas hydrates found below the bottom-simulating reflector

    Science.gov (United States)

    Paganoni, M.; Cartwright, J. A.; Foschi, M.; Shipp, R. C.; Van Rensbergen, P.

    2016-06-01

    Gas hydrates are a major component in the organic carbon cycle. Their stability is controlled by temperature, pressure, water chemistry, and gas composition. The bottom-simulating reflector (BSR) is the primary seismic indicator of the base of hydrate stability in continental margins. Here we use seismic, well log, and core data from the convergent margin offshore NW Borneo to demonstrate that the BSR does not always represent the base of hydrate stability and can instead approximate the boundary between structure I hydrates above and structure II hydrates below. At this location, gas hydrate saturation below the BSR is higher than above and a process of chemical fractionation of the migrating free gas is responsible for the structure I-II transition. This research shows that in geological settings dominated by thermogenic gas migration, the hydrate stability zone may extend much deeper than suggested by the BSR.

  11. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  12. The structural network of Interleukin-10 and its implications in inflammation and cancer

    OpenAIRE

    Acuner-Özbabacan, Ece Saliha; Engin, Billur Hatice; Güven-Maiorov, Emine; Kuzu, Güray; Muratçıoğlu, Serena; Başpınar, Alper; Gürsoy, Attila; Chen, Zhong; Van Waes, Carter; Nussinov, Ruth

    2014-01-01

    RESEARCH Open Access The structural network of Interleukin-10 and its implications in inflammation and cancer Ece Saliha Acuner-Ozbabacan1, Billur Hatice Engin1, Emine Guven-Maiorov1, Guray Kuzu1, Serena Muratcioglu1, Alper Baspinar1, Zhong Chen3, Carter Van Waes3, Attila Gursoy1, Ozlem Keskin1, Ruth Nussinov2,4* From SNP-SIG 2013: Identification and annotation of genetic variants in the context of structure, function, and disease Berlin, Germany. 19 July 2013 Abstract...

  13. Designing a heterotrinuclear Cu(II)-Ni(II)-Cu(II) complex from a mononuclear Cu(II) Schiff base precursor with dicyanamide as a coligand: synthesis, crystal structure, thermal and photoluminescence properties.

    Science.gov (United States)

    Hopa, Cigdem; Cokay, Ismail

    2016-08-01

    Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido-1κN(1))bis(dimethyl sulfoxide)-2κO,3κO-bis{μ-2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ(6)O,O':O,N,N',O';1:3κ(6)O,O':O,N,N',O'-dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155-2269 cm(-1), which clearly proves the presence of terminal bonding dca groups. A single-crystal X-ray study revealed that two [CuL] units coordinate to an Ni(II) atom through the phenolate O atoms, with double phenolate bridges between Cu(II) and Ni(II) atoms. Two terminal dca groups complete the distorted octahedral geometry around the central Ni(II) atom. According to differential thermal analysis-thermogravimetric analysis (DTA-TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π-π*) transitions and fluorescence quenching is observed on complexation of H2L with Cu(II).

  14. Nickel(II), copper(II) and zinc(II) metallo-intercalators: structural details of the DNA-binding by a combined experimental and computational investigation.

    Science.gov (United States)

    Lauria, Antonino; Bonsignore, Riccardo; Terenzi, Alessio; Spinello, Angelo; Giannici, Francesco; Longo, Alessandro; Almerico, Anna Maria; Barone, Giampaolo

    2014-04-28

    We present a thorough characterization of the interaction of novel nickel(II) (1), copper(II) (2) and zinc(II) (3) Schiff base complexes with native calf thymus DNA (ct-DNA), in buffered aqueous solution at pH 7.5. UV-vis absorption, circular dichroism (CD) and viscometry titrations provided clear evidence of the intercalative mechanism of the three square-planar metal complexes, allowing us to determine the intrinsic DNA-binding constants (K(b)), equal to 1.3 × 10(7), 2.9 × 10(6), and 6.2 × 10(5) M(-1) for 1, 2 and 3, respectively. Preferential affinity, of one order of magnitude, toward AT compared to GC base pair sequences was detected by UV-vis absorption titrations of 1 with [poly(dG-dC)]2 and [poly(dA-dT)]2. Structural details of the intercalation site of the three metal complexes within [dodeca(dA-dT)]2 were obtained by molecular dynamics (MD) simulations followed by density functional theory/molecular mechanics (DFT/MM) calculations. The calculations revealed that three major intermolecular interactions contribute to the strong affinity between DNA and the three metal complexes: (1) the electrostatic attraction between the two positively charged triethylammoniummethyl groups of the metal complexes and the negatively charged phosphate groups of the DNA backbone; (2) the intercalation of the naphthalene moiety within the four nitrogen bases of the intercalation site; (3) the metal coordination by exocyclic donor atoms of the bases, specifically the carbonyl oxygen and amine nitrogen atoms. Remarkably, the Gibbs formation free energy calculated for the intercalation complexes of 1, 2 and 3 with [dodeca(dA-dT)]2 in the implicit water solution is in agreement with the experimental Gibbs free energy values obtained from the DNA-binding constants as ΔG° = -RT ln(K(b)). In particular, the DNA-binding affinity trend, 1 > 2 > 3, is reproduced. Finally, the first shell coordination distances calculated for the intercalation complex 3/[dodeca(dA-dT)]2 are in

  15. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution

    OpenAIRE

    Cramer, P; Bushnell, D; Kornberg, R

    2001-01-01

    Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding ...

  16. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    Science.gov (United States)

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  17. Nearest-neighbor nitrogen and oxygen distances in the iron(II)-DNA complex studied by extended X-ray absorption fine structure.

    Science.gov (United States)

    Bertoncini, Clelia R A; Meneghini, Rogerio; Tolentino, Helio

    2010-11-01

    In mammalian cells, DNA-bound Fe(II) reacts with H₂O₂ producing the highly reactive hydroxyl radical (OH) in situ. Since ·OH attacks nearby DNA residue generating oxidative DNA damage, many questions have arisen regarding iron-DNA complex formations and their implication in pre-malignant mutations and aging. In this work, a solid sample of Fe(II)-DNA complex containing one Fe(II) per 10 nucleotides was analyzed from extended X-ray absorption fine structure (EXAFS) spectra collected in a synchrotron radiation light source. Best fitting parameters of the EXAFS signal for the first two shells provide evidence of five oxygen atoms at 1.99 ± 0.02 Å and one nitrogen atom at 2.20 ± 0.02 Å in the inner coordination sphere of the Fe(II)-DNA complex. Considering that both purine base moieties bearing nitrogen atoms are prone to chelate iron, these results are consistent with the previously observed lower levels of DNA damage in cytosine nucleotides relative to adenine and guanine sites in cells under more physiological conditions of Fe(II) Fenton reaction.

  18. Patterns of DNA structural polymorphism and their evolutionary implications.

    Science.gov (United States)

    Keene, M A; Elgin, S C

    1984-01-01

    The pattern of sites within purified DNA that are highly susceptible to double-stranded cleavage by micrococcal nuclease has been analyzed in the vicinity of over 20 genes from widely separated loci in Drosophila. These genes have uniformly exhibited a distinctive organization of cleavage sites such that at early times of digestion major sites are observed in the spacer regions surrounding the genes, but not within the protein coding regions themselves. Examples examined include Drosophila genes for heat-shock proteins, cytoplasmic actin, ribosomal protein 49, alcohol dehydrogenase, Sgs 4 glue protein, and other developmentally regulated transcripts, a human beta-globin gene, and mouse alpha 3-globin pseudogene. It seems probable that this gene/spacer pattern will be a general one in the genomes of eucaryotes, but not in the genomes of procaryotes, since neither pBR322 nor phage lambda DNA display such a pattern. One observes a nonrandom spacing of strong cleavage sites in Drosophila DNA, with the most frequent intervals being 195 bp and 411 bp. Such a pattern of variation in DNA structure may have evolved to facilitate the packaging of eucaryotic DNA into chromatin.

  19. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  20. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A.; et al.

    2014-12-31

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  1. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  2. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration*

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax ), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  3. Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots

    Science.gov (United States)

    Klenovský, Petr; Steindl, Petr; Geffroy, Dominique

    2017-01-01

    In this work we study theoretically and experimentally the multi-particle structure of the so-called type-II quantum dots with spatially separated electrons and holes. Our calculations based on customarily developed full configuration interaction ap- proach reveal that exciton complexes containing holes interacting with two or more electrons exhibit fairly large antibinding energies. This effect is found to be the hallmark of the type-II confinement. In addition, an approximate self-consistent solution of the multi-exciton problem allows us to explain two pronounced phenomena: the blue-shift of the emission with pumping and the large inhomogeneous spectral broadening, both of those eluding explanation so far. The results are confirmed by detailed intensity and polarization resolved photoluminescence measurements on a number of type-II samples. PMID:28358120

  4. Hydrogen bonds as structural directive towards unusual polynuclear complexes: synthesis, structure, and magnetic properties of copper(II) and nickel(II) complexes with a 2-aminoglucose ligand.

    Science.gov (United States)

    Burkhardt, Anja; Spielberg, Eike T; Simon, Sascha; Görls, Helmar; Buchholz, Axel; Plass, Winfried

    2009-01-01

    The reaction of benzyl 2-amino-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside (HL) with the metal salts Cu(ClO(4))(2)6 H(2)O and Ni(NO(3))(2)6 H(2)O affords via self-assembly a tetranuclear mu(4)-hydroxido bridged copper(II) complex [(mu(4)-OH)Cu(4)(L)(4)(MeOH)(3)(H(2)O)](ClO(4))(3) (1) and a trinuclear alcoholate bridged nickel(II) complex [Ni(3)(L)(5)(HL)]NO(3) (2), respectively. Both complexes crystallize in the acentric space group P2(1). The X-ray crystal structure reveals the rare (mu(4)-OH)Cu(4)O(4) core for complex 1 which is mu(2)-alcoholate bridged. The copper(II) ions possess a distorted square-pyramidal geometry with an [NO(4)] donor set. The core is stabilized by hydrogen bonding between the coordinating amino group of the glucose backbone and the benzylidene protected oxygen atom O4 of a neighboring {Cu(L)} fragment as hydrogen-bond acceptor. For complex 2 an [N(4)O(2)] donor set is observed at the nickel(II) ions with a distorted octahedral geometry. The trinuclear isosceles Ni(3) core is bridged by mu(3)-alcoholate O3 oxygen atoms of two glucose ligands. The two short edges are capped by mu(2)-alcoholate O3 oxygen atoms of the two ligands coordinated at the nickel(II) ion at the vertex of these two edges. Along the elongated edge of the triangle a strong hydrogen bond (244 pm) between the O3 oxygen atoms of ligands coordinating at the two relevant nickel(II) ions is observed. The coordinating amino groups of the these two glucose ligands are involved in additional hydrogen bonds with O4 oxygen atoms of adjacent ligands further stabilizing the trinuclear core. The carbohydrate backbones in all cases adopt the stable (4)C(1) chair conformation and exhibit the rare chitosan-like trans-2,3-chelation. Temperature dependent magnetic measurements indicate an overall antiferromagnetic behavior for complex 1 with J(1)=-260 and J(2)=-205 cm(-1) (g=2.122). Compound 2 is the first ferromagnetically coupled trinuclear nickel(II) complex with J(A)=16.4 and J

  5. Nitrate binding to Limulus polyphemus subunit type II hemocyanin and its functional implications

    NARCIS (Netherlands)

    Hazes, B; Magnus, KA; Kalk, KH; Bonaventura, C; Hol, WGJ

    1996-01-01

    The horseshoe crab, Limulus polyphemus, employs hemocyanin as an oxygen carrier in its hemolymph. This hemocyanin displays cooperative oxygen binding and heterotropic allosteric regulation by protons, chloride ions and divalent cations. Here, we report the crystal structure of Limulus polyphemus sub

  6. Water proton configurations in structures I, II, and H clathrate hydrate unit cells.

    Science.gov (United States)

    Takeuchi, Fumihito; Hiratsuka, Masaki; Ohmura, Ryo; Alavi, Saman; Sum, Amadeu K; Yasuoka, Kenji

    2013-03-28

    Position and orientation of water protons need to be specified when the molecular simulation studies are performed for clathrate hydrates. Positions of oxygen atoms in water are experimentally determined by X-ray diffraction analysis of clathrate hydrate structures, but positions of water hydrogen atoms in the lattice are disordered. This study reports a determination of the water proton coordinates in unit cell of structure I (sI), II (sII), and H (sH) clathrate hydrates that satisfy the ice rules, have the lowest potential energy configuration for the protons, and give a net zero dipole moment. Possible proton coordinates in the unit cell were chosen by analyzing the symmetry of protons on the hexagonal or pentagonal faces in the hydrate cages and generating all possible proton distributions which satisfy the ice rules. We found that in the sI and sII unit cells, proton distributions with small net dipole moments have fairly narrow potential energy spreads of about 1 kJ∕mol. The total Coulomb potential on a test unit charge placed in the cage center for the minimum energy∕minimum dipole unit cell configurations was calculated. In the sI small cages, the Coulomb potential energy spread in each class of cage is less than 0.1 kJ∕mol, while the potential energy spread increases to values up to 6 kJ∕mol in sH and 15 kJ∕mol in the sII cages. The guest environments inside the cages can therefore be substantially different in the sII case. Cartesian coordinates for oxygen and hydrogen atoms in the sI, sII, and sH unit cells are reported for reference.

  7. Environmental control implications of generating electric power from coal. Technology status report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    This is the first in a series of reports evaluating environmental control technologies applicable to the coal-to-electricity process. The technologies are described and evaluated from an engineering and cost perspective based upon the best available information obtained from utility experience and development work in progress. Environmental control regulations and the health effects of pollutants are also reviewed. Emphasis is placed primarily upon technologies that are now in use. For SO/sub 2/ control, these include the use of low sulfur coal, cleaned coal, or flue-gas desulfurization systems. Electrostatic precipitators and fabric filters used for the control of particulate matter are analyzed, and combustion modifications for NO/sub x/ control are described. In each area, advanced technologies still in the development stage are described briefly and evaluated on the basis of current knowledge. Fluidized-bed combustion (FBC) is a near-term technology that is discussed extensively in the report. The potential for control of SO/sub 2/ and NO/sub x/ emissions by use of FBC is analyzed, as are the resulting solid waste disposal problems, cost estimates, and its potential applicability to electric utility systems. Volume II presents the detailed technology analyses complete with reference citations. This same material is given in condensed form in Volume I without references. A brief executive summary is also given in Volume I.

  8. Mg II Absorber Number Density at z~0.05 Implications for Omega_DLA Evolution

    CERN Document Server

    Churchill, C W

    2001-01-01

    [Abridged] A 147 quasar/AGN spectra, obtained with FOS/HST, have been searched for Mg II absorbers for 0 = 0.06, yielding dN/dz = 0.22(+0.12)(-0.09) for absorbers with W_r > 0.6 Ang. This is consistent with the value expected if these systems do not evolve from higher redshifts (z = 2.2). (2) No systems with W_r 0.2 galaxies. (3) Three systems are candidates for damped Lyman-alpha absorbers (DLAs). Based upon the results of Rao & Turnshek (2000, ApJS, 130, 1), this translates to dN/dz = 0.08(+0.09)(-0.05) for DLAs at z ~ 0. This would suggest that dN/dz for DLAs does not evolve from z = 4 to z = 0. However, because of the distribution of H I mass in 21-cm selected galaxies, the Rao & Turnshek finding that the cosmological H I mass density, Omega_DLA, decreases either rapidly from z = 0.5 to z = 0, or more gradually from z = 1.5, still holds.

  9. Evaluation of ISLSCP Initiative II FASIR and GIMMS NDVI Products and Implications for Carbon Cycle Science

    Science.gov (United States)

    Hall, F. G.; Masek, J. G.; Collatz, G. J.

    2006-12-01

    Integration of NDVI data into ecological and biogeochemical modeling has placed more stringent requirements on the accuracy and stability of the measurement. We compare two recent AVHRR NDVI datasets included as part of ISLSCP Initiative II: (1) The Fourier-Adjusted, Sensor and Solar zenith angle corrected, Interpolated, Reconstructed (FASIR) monthly time series and (2) The Global Inventory Modeling and Mapping Studies (GIMMS) monthly time series. Although both started with nearly identical composited AVHRR GAC datasets, each dataset has been processed differently to reduce sensor, atmospheric, and illumination effects that vary over time. We find that the resulting absolute NDVI data records differ substantially and consistently between the two records for large parts of the globe. These differences also propagate into the NDVI anomaly record (e.g. deviations from monthly or annual means) particularly in the 1984-1985, 1994 periods. To assess the effect of these differences on predictions of land surface CO2 fluxes, the fraction of absorbed photosynthetically active radiation (FPAR) was calculated from each record, and used to drive a biogeochemical model (CASA). On a global basis, calculated net ecosystem exchange shows large variability inherited from the NDVI records. However, these variations do not match global CO2 fluxes derived from atmospheric inversion of CO2 concentration measurements. We conclude that other processes (burning, physiologic response to stress) are likely responsible for major anomalies in the observed global land net carbon fluxes to the atmosphere during the period 1982-1998.

  10. Synthesis and Crystal Structures of Ni(II)/(III) and Zn(II) Complexes with Schiff Base Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon Kweon [Catholic Univ., of Daegu, Daegu (Korea, Republic of)

    2013-12-15

    Coordination polymers are of great interest due to their intriguing structural motifs and potential applications in optical, electronic, magnetic, and porous materials. The most commonly used strategy for designing such materials relies on the utilization of multidentate N- or Odonor ligands which have the capacity to bridge between metal centers to form polymeric structures. The Schiff bases with N,O,S donor atoms are an useful source as they are readily available and easily form stable complexes with most transition metal ions. Schiff bases are also important intermediates in synthesis of some bioactive compounds and are potent anti-bacterial, anti-fungal, anticancer and antiviral compounds. In this work, the Schiff bases, Hapb and Hbpb, derived from 2-acetylpyridene or 2-benzoylpyridine and benzhydrazide were taken as trifunctional (N,N,O) monobasic ligand (Scheme 1). This ligand is of important because the π-delocalization of charge and the configurational flexibility of their molecular chain can give rise to a great variety of coordination modes. Although many metal.Schiff base complexes have been reported, the 1D, 2D, and 3D networks of coordination polymers linked through the bridging of ligands such as dicyanamide, N(CN){sub 2}{sup -} as coligand have been little published. In the process of working to extend the dimensionality of the metal-Schiff base complexes using benzilic acid as a bridging ligand, we obtained three simple metal (II)/(III) complexes of acetylpyridine/2-benzoyl pyridine based benzhydrazide ligand. Therefore, we report here the synthesis and crystal structures of the complexes.

  11. Characterization of structural features controlling the receptiveness of empty class II MHC molecules.

    Directory of Open Access Journals (Sweden)

    Bernd Rupp

    Full Text Available MHC class II molecules (MHC II play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying "non-receptiveness." Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting

  12. STUDY ON SYNTHESIS AND CRYSTAL STRUCTURE OF TETRAKIS-(μ2-ACETATO-DIHYDRATE-DICOPPER(II

    Directory of Open Access Journals (Sweden)

    LI-HUA WANG

    2015-10-01

    Full Text Available A new binuclear Cu(II complex, tetrakis-(μ2-acetato-dihydrate-dicopper (II, has been prepared by the reaction of Cu(OAc2·H2O with 2-formyl-benzenesulfonate-hydrazine in the CH3CH2OH/H2O (v : v = 1 : 1. It was characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The crystal of the Cu(II complex belongs to monoclinic, space group C2/c with a = 13.162(3 Å, b = 8.5572(17 Å, c = 13.860(3 Å, β = 117.06(3 º, V = 1390.1(5 Å3, Z = 4, Dc = 1.889 μg·m-3, μ = 3.103 mm-1, F(000 = 792, and final R1 = 0.0548, wR2 = 0.1410. Two Cu(II centers are bridged by oxygen atoms of carboxylato groups. Each Cu(II center is five-coordinated with four O donor atoms of acetate and a O donor of coordinated water molecule. The molecules form three dimensional network structures by the inaction of π-π stacking and hydrogen bonds.

  13. Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: applications in secondary structure analyses.

    Science.gov (United States)

    Lopes, Jose L S; Miles, Andrew J; Whitmore, Lee; Wallace, B A

    2014-12-01

    Circular dichroism (CD) spectroscopy is a valuable method for defining canonical secondary structure contents of proteins based on empirically-defined spectroscopic signatures derived from proteins with known three-dimensional structures. Many proteins identified as being "Intrinsically Disordered Proteins" have a significant amount of their structure that is neither sheet, helix, nor turn; this type of structure is often classified by CD as "other", "random coil", "unordered", or "disordered". However the "other" category can also include polyproline II (PPII)-type structures, whose spectral properties have not been well-distinguished from those of unordered structures. In this study, synchrotron radiation circular dichroism spectroscopy was used to investigate the spectral properties of collagen and polyproline, which both contain PPII-type structures. Their native spectra were compared as representatives of PPII structures. In addition, their spectra before and after treatment with various conditions to produce unfolded or denatured structures were also compared, with the aim of defining the differences between CD spectra of PPII and disordered structures. We conclude that the spectral features of collagen are more appropriate than those of polyproline for use as the representative spectrum for PPII structures present in typical amino acid-containing proteins, and that the single most characteristic spectroscopic feature distinguishing a PPII structure from a disordered structure is the presence of a positive peak around 220nm in the former but not in the latter. These spectra are now available for inclusion in new reference data sets used for CD analyses of the secondary structures of soluble proteins. © 2014 The Protein Society.

  14. COLLISIONAL EXCITATION OF THE [C II] FINE STRUCTURE TRANSITION IN INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Velusamy, T., E-mail: Paul.F.Goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-11-15

    We analyze the collisional excitation of the 158 {mu}m (1900.5 GHz) fine structure transition of ionized carbon in terms of line intensities produced by simple cloud models. The single C{sup +} fine structure transition is a very important coolant of the atomic interstellar medium (ISM) and of photon-dominated regions in which carbon is partially or completely in ionized form. The [C II] line is widely used as a tracer of star formation in the Milky Way and other galaxies. Excitation of the [C II] fine structure transition can be via collisions with hydrogen molecules, atoms, and electrons. Analysis of [C II] observations is complicated by the fact that it is difficult to determine the optical depth of the line. We discuss the excitation of the [C II] line, deriving analytic results for several limiting cases and carry out numerical solutions using a large velocity gradient model for a more inclusive analysis. For antenna temperatures up to 1/3 of the brightness temperature of the gas kinetic temperature, the antenna temperature is linearly proportional to the column density of C{sup +} irrespective of the optical depth of the transition. This is appropriately referred to as the effectively optically thin approximation. We review the critical densities for excitation of the [C II] line by various collision partners, briefly analyze C{sup +} absorption, and conclude with a discussion of C{sup +} cooling and how the considerations for line intensities affect the behavior of this important coolant of the ISM.

  15. Structural determinants for ligand capture by a class II preQ1 riboswitch.

    Science.gov (United States)

    Kang, Mijeong; Eichhorn, Catherine D; Feigon, Juli

    2014-02-11

    Prequeuosine (preQ1) riboswitches are RNA regulatory elements located in the 5' UTR of genes involved in the biosynthesis and transport of preQ1, a precursor of the modified base queuosine universally found in four tRNAs. The preQ1 class II (preQ1-II) riboswitch regulates preQ1 biosynthesis at the translational level. We present the solution NMR structure and conformational dynamics of the 59 nucleotide Streptococcus pneumoniae preQ1-II riboswitch bound to preQ1. Unlike in the preQ1 class I (preQ1-I) riboswitch, divalent cations are required for high-affinity binding. The solution structure is an unusual H-type pseudoknot featuring a P4 hairpin embedded in loop 3, which forms a three-way junction with the other two stems. (13)C relaxation and residual dipolar coupling experiments revealed interhelical flexibility of P4. We found that the P4 helix and flanking adenine residues play crucial and unexpected roles in controlling pseudoknot formation and, in turn, sequestering the Shine-Dalgarno sequence. Aided by divalent cations, P4 is poised to act as a "screw cap" on preQ1 recognition to block ligand exit and stabilize the binding pocket. Comparison of preQ1-I and preQ1-II riboswitch structures reveals that whereas both form H-type pseudoknots and recognize preQ1 using one A, C, or U nucleotide from each of three loops, these nucleotides interact with preQ1 differently, with preQ1 inserting into different grooves. Our studies show that the preQ1-II riboswitch uses an unusual mechanism to harness exquisite control over queuosine metabolism.

  16. HSDP II Drill Core: Preliminary Rock Strength Results and Implications to Flank Stability, Mauna Kea Volcano

    Science.gov (United States)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2004-12-01

    Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.

  17. Molecular structure identification and position of a dopant ion in diaqua(2,2‧-bipyridine)malonatozinc(II) by spectroscopic studies - II: VO(II)

    Science.gov (United States)

    Parthipan, Krishnan; Ramesh, Hema; Sambasiva Rao, P.

    2011-04-01

    Single crystal EPR, optical, FT-IR and powder XRD studies of VO(II) ion doped diaqua(2,2'-bipyridine) malonato zinc complex were carried out at room temperature to ascertain the structural properties. In EPR, the angular variation of vanadium hyperfine lines indicated a single site, with spin Hamiltonian parameters as: g xx = 1.968, g yy = 1.964, g zz = 1.928, A xx = 7.54 mT, A yy = 6.36 mT and A zz = 18.81 mT. In addition, the dopant had entered the lattice in an interstitial position and the position had been identified with the help of atom positions of the host lattice. The EPR and optical data was corroborated to obtain various bonding parameters, from which the nature of the bonding in the complex was discussed. FT-IR and powder XRD studies were used to observe the effect of dopant on structural parameters of the host lattice.

  18. Metal complexes derived from hydrazoneoxime ligands: V. Spectral and structural studies on diacetylmonoxime n-alkanoylhydrazones and their nickel(II) and copper(II) complexes

    Science.gov (United States)

    Salem, Nahed M. H.; El Sayed, Laila; Haase, Wolfgang; Iskander, Magdi F.

    2015-01-01

    A series of diacetylmonoxime n-alkanoylhydrazones (H2Ln, n = 4, 5, 6, 12 and 16) were prepared by the condensation of diacetylmonoxime with the corresponding n-alkanoylhydrazine in ethanol. The X-ray crystal structure of diacetylmonoxime octadecanoyl hydrazone has been solved and its molecular and supramolecular structures have been discussed. Both neutral dinuclear Cu(II) and Ni(II) complexes, [{M(Ln)}2] (M = Cu, Ni and n = 4, 5, 6, 12 and 16) as well as cationic dinuclear Cu(II) complexes, [Cu2(Ln)(HLn)]NO3 (n = 12 and 16) have been also prepared and characterized by elemental analyses, FD- and ESI-mass spectra as well as IR, UV-Vis, 1H NMR, 13C NMR spectra. Variable temperature magnetic susceptibility measurements for dinuclear Cu(II) complexes have been also discussed.

  19. Electronic structure aspects of the complete O2 transfer reaction between Ni(II) and Mn(II) complexes with cyclam ligands.

    Science.gov (United States)

    Zapata-Rivera, Jhon; Caballol, Rosa; Calzado, Carmen J

    2015-01-28

    This work explores the electronic structure aspects involving the complete intermolecular O2 transfer between Ni(ii) and Mn(ii) complexes, both containing N-tetramethylated cyclams (TMC). The energy of the low-lying states of reactants, intermediates and products is established at the CASSCF level and also the DDCI level when possible. The orthogonal valence bond analysis of the wave functions obtained from CASSCF and DDCI calculations indicates the dominant superoxide nature of all the adducts participating in the reaction, and consequently that the whole reaction can be described as the transfer of the superoxide O2(-) between Ni(ii) and Mn(ii) complexes, without any additional change in the electronic structure of the fragments.

  20. A study on the use of nano/micro structured goethite and hematite as adsorbents for the removal of Cr(III, Co(II, Cu(II, Ni(II, and Zn(II metal ions from aqueous solutions.

    Directory of Open Access Journals (Sweden)

    Hala Hafez

    2012-06-01

    Full Text Available Numerous adsorbents for the removal of heavy metals from aqueous solutions are in various stages of research. The main goal for most of this research is to develop low-cost and environmentally friendly materials for the removal of heavy metals from contaminated groundwater, surface water, and drinking water. Materials that have ion exchange sites are expected to be able to efficiently remove heavy metals from water. Iron oxides, especially in the micro/nano structured forms, are good candidates for the removal of toxic heavymetal ions from water due to their structural properties. In the present work the efficiency of synthesized micro/nano particles of goethite and hematite for the removal of Cr(III, Co(II , Cu(II, Ni(II and Zn(II ions from water was compared. The absorbent capability of goethite as a function of pH, contact time, and initialmetal ion concentration was studied. The results showed that maximum absorption for all metal ions using goethite occurred at a pH=5.3, which was a common trend for all metal ions. At this pH and after one hour contact time goethite was able to adsorb about 100% of the Cu ions (50mg/g, 85% (42.5 mg/g of the Ni ions, 70% (35mg/g of the Cr and Co ions and 60% (30 mg/g of Zn ions from the solutions. Whereas and under the same conditions hematite was able to adsorb 20% (10mg/g of the Cu ions, 85% (42.5mg/g of the Ni ions, 95% (47.5mg/g of the Cr ions, 80% (40mg/g of the Zn ions, and 70% (35mg/g of the Co ions. Both oxides are equally efficient for the removal of Co(II and Ni(II from water. However, goethite is a much more efficient candidate than hematite for the removal of Cu(II,while hematite is more efficient adsorbent for Zn(II and Cr(III. The adsorption affinity of the five metallic cations to goethite is Cu > Ni > Co ~ Cr > Zn, whereas the adsorption affinity of the cations to hematite is Cr > Ni > Zn > Co > Cu. Under the conditions used in the batch experiments (mass of goethite 2g/l maximumadsorption of

  1. WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures

    Directory of Open Access Journals (Sweden)

    Kenyon Colin

    2009-05-01

    on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.

  2. Structure of intermediate phase II of LiNH2 under high pressure.

    Science.gov (United States)

    Yamawaki, Hiroshi; Fujihisa, Hiroshi; Gotoh, Yoshito; Nakano, Satoshi

    2014-08-21

    A new intermediate phase (phase II) was found between phases I and III in LiNH2 in the pressure range of 10 to 13 GPa through the analysis of infrared and powder X-ray diffraction measurements to 25 GPa at room temperature. This result agreed with the prediction of a stable phase between phases I and III through theoretical calculations. Powder X-ray diffraction measurement and DFT calculation showed that this phase has a monoclinic structure with space group C2/c (Z = 8), which is the same structure as that of a slightly tilted crystal lattice of the Fddd structural model. The enthalpy of the C2/c structure was also found to be almost the same as that of the Fddd structure.

  3. Structure analysis of interstellar clouds: II. Applying the Delta-variance method to interstellar turbulence

    CERN Document Server

    Ossenkopf, V; Stutzki, J

    2008-01-01

    The Delta-variance analysis is an efficient tool for measuring the structural scaling behaviour of interstellar turbulence in astronomical maps. In paper I we proposed essential improvements to the Delta-variance analysis. In this paper we apply the improved Delta-variance analysis to i) a hydrodynamic turbulence simulation with prominent density and velocity structures, ii) an observed intensity map of rho Oph with irregular boundaries and variable uncertainties of the different data points, and iii) a map of the turbulent velocity structure in the Polaris Flare affected by the intensity dependence on the centroid velocity determination. The tests confirm the extended capabilities of the improved Delta-variance analysis. Prominent spatial scales were accurately identified and artifacts from a variable reliability of the data were removed. The analysis of the hydrodynamic simulations showed that the injection of a turbulent velocity structure creates the most prominent density structures are produced on a sca...

  4. Structure and function of Cu(I)- and Zn(II)-ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Grønberg, Christina; Autzen, Henriette

    2015-01-01

    membranes at the expense of ATP. Recent biochemical studies and crystal structures have significantly improved our understanding of the transport mechanisms of these proteins, but many details about their structure and function remain elusive. Here we compare the Cu(I)- and Zn(II)-ATPases, scrutinizing......Copper and zinc are micronutrients essential for the function of many enzymes while also being toxic at elevated concentrations. Cu(I)- and Zn(II)-transporting P-type ATPases of subclass 1B are of key importance for the homeostasis of these transition metals, allowing ion transport across cellular...... the molecular differences that allow transport of these two distinct metal types, and discuss possible future directions of research in the field....

  5. Crystal structure of pseudo-six-fold carbon dioxide phase II at high pressures and temperatures

    Science.gov (United States)

    Yoo, C. S.; Kohlmann, H.; Cynn, H.; Nicol, M. F.; Iota, V.; Lebihan, T.

    2002-03-01

    The crystal structure of CO2-II is determined to be tetragonal P42/mnm with z=2, with evidence of some tetragonal-to-orthorhombic (Pnnm) disorder in the ab plane. In this structure, carbon atoms are pseudo-sixfold-coordinated by oxygens; two oxygens are at an elongated intramolecular C=O bond distance, 1.331(3) Å, and four are at a collapsed intermolecular distance, 2.377(2) Å, at the apices of highly distorted octahedral. Strong intermolecular association results in a large splitting of the symmetric stretching ν1 mode and in a high bulk modulus 131.5 GPa. At 11 GPa, CO2-II is about 6.8% denser than CO2-III (Cmca).

  6. STRUCTURAL AND COHESION FUNDS VERSUS THE IMF LOANS: IMPLICATIONS AND CHALLENGES FOR THE ROMANIAN FINANCIAL SYSTEM

    OpenAIRE

    VASILE COCRIS; CORINA BERICA; ANCA ELENA NUCU

    2012-01-01

    The Structural and Cohesion Funds as well as the loans obtained by our country from the IMF have significant implications upon the Romanian financial system. This article is a comparative approach structured on five parts as it follows: the second part is a review of the specific literature regarding the theme of our work, the third part is an analysis of the absorption stage of the Structural Funds and the evolution of the stand by agreements between Romania and IMF, the fourth part is a SWO...

  7. Synthesis and crystal structure of a trihydrate of dinuclear benzimidazole-2-pyridine-carboxylate-cadmium(II

    Directory of Open Access Journals (Sweden)

    Jia Jun Wang

    2009-12-01

    Full Text Available A new compound, [Cd2(C7H6N23(C6H4O2N4]•3H2O (1, has been prepared under mild hydrothermal conditions and structurally characterized by single crystal X-ray diffraction. The two cadmium(II ions are bridged by a carboxyl group from one 2-pyridinecarboxylate ligand. The thermal gravimetry (TG data indicate three steps of decomposition, and the final thermal decomposition product is CdO.

  8. Diamino-ligated platinum(II) and platinum(IV) phenoxide complexes; syntheses and crystal structures

    NARCIS (Netherlands)

    Koten, G. van; Kapteijn, G.M.; Meijer, M.D.; Grove, D.M.; Veldman, N.; Spek, A.L.

    1997-01-01

    The reaction of the diamino-ligated dimethylplatinum(II) complex [Pt(Me){2}(bpy)] (bpy=2, 2'-bipyridyl) with phenol affords the new complex [Pt(Me)(OPh)(bpy)] (1). The X-ray crystal structure of square-planar 1 is reported: orthorhombic, space group P2{1}2{1}2{1} (No. 19), a = 9.1625(12), b = 12.392

  9. Stellar irradiated discs and implications on migration of embedded planets II: accreting-discs

    CERN Document Server

    Bitsch, Bertram; Lega, Elena; Crida, Aurélien

    2014-01-01

    The strength and direction of migration of embedded low mass planets depends on the disc's structure. It has been shown that, in discs with viscous heating and radiative transport, the migration can be directed outwards. In this paper we investigate the influence of a constant dM/dt-flux through the disc, as well as the influence of the disc's metallicity on the disc's thermodynamics. We focus on dM/dt discs, which have a net mass flux through them. Utilizing the resulting disc structure, we determine the regions of outward migration in the disc. We perform numerical hydrosimulations of dM/dt discs with viscous heating, radiative cooling and stellar irradiation in 2D in the r-z-plane. We use the explicit/implicit hydrodynamical code FARGOCA that includes a full tensor viscosity and stellar irradiation, as well as a two temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration of embedded planets is studied by using torque formulae. For a disc of gas surfac...

  10. Fine-Structure FeII* Emission and Resonant MgII Emission in z = 1 Star-Forming Galaxies

    CERN Document Server

    Kornei, K A; Martin, C L; Coil, A L; Lotz, J M; Weiner, B J

    2013-01-01

    We present a study of the prevalence, strength, and kinematics of ultraviolet FeII and MgII emission lines in 212 star-forming galaxies at z = 1 selected from the DEEP2 survey. We find FeII* emission in composite spectra assembled on the basis of different galaxy properties, indicating that FeII* emission is prevalent at z = 1. In these composites, FeII* emission is observed at roughly the systemic velocity. At z = 1, we find that the strength of FeII* emission is most strongly modulated by dust attenuation, and is additionally correlated with redshift, star-formation rate, and [OII] equivalent width, such that systems at higher redshifts with lower dust levels, lower star-formation rates, and larger [OII] equivalent widths show stronger FeII* emission. We detect MgII emission in at least 15% of the individual spectra and we find that objects showing stronger MgII emission have higher specific star-formation rates, smaller [OII] linewidths, larger [OII] equivalent widths, lower dust attenuations, and lower st...

  11. Synthesis, properties and supramolecular structure of di(aqua)bis(ethylenediamine)nickel(II) bis(4-nitrobenzoate)

    Indian Academy of Sciences (India)

    Bikshandarkoil R Srinivasan; Gayatri K Rane

    2009-03-01

    The reaction of the sodium salt of 4-nitrobenzoic acid (4-nbaH) with [Ni(H2O)6]Cl2 or [Ni(en)3]Cl2.2H2O (en is ethylenediamine) results in the formation of the known octahedral compound [Ni(H2O)4(1-4-nba)2].2H2O (4-nba = 4-nitrobenzoate) 1 or the title compound di(aqua)bis(ethylenediamine) nickel(II) bis(4-nitrobenzoate) 2 respectively. Compounds 1 and 2 were characterized by elemental analysis, infrared spectra, DSC thermograms, weight loss studies and the structure of 2 was determined. Both 1 and 2 can be thermally decomposed to green NiO. The title compound [Ni(H2O)2(en)2](4-nba)2 2 crystallizes in the centrosymmetric monoclinic space group 21/ with the Ni(II) situated on an inversion center. The crystal structure of 2 consists of a hexacoordinated Ni(II) complex cation and an uncoordinated 4-nba anion. In the octahedral complex cation, the central metal is linked to two symmetry related bidentate en ligands and two water molecules. In the crystal structure, the cations and anions are linked by three varieties of hydrogen bonding interactions. A comparative study of seven nickel 4-nitrobenzoate compounds is described.

  12. Fine and Superfine Structure of the Decameter-Hectometer Type II Burst on 7 June 2011

    Science.gov (United States)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Brazhenko, A. I.; Panchenko, M.; Poedts, S.; Mykhaylov, V. A.

    2015-07-01

    The characteristics of a type II burst with a herringbone structure observed both with ground-based radio telescopes (UTR-2 and URAN-2) and space-borne spectrometers (STEREO-A and B) are discussed. The burst was recorded on 7 June 2011 in the frequency band 3 - 33 MHz. It was characterized by extremely rich fine structure. Statistical analysis of more than 300 herringbone sub-bursts constituting the burst was performed separately for the positively (reverse) and negatively (forward) drifting sub-bursts. The sense and the degree of circular polarization of the herringbone sub-bursts were measured in a wide frequency band (16 - 32 MHz). A second-order fine frequency structure of the herringbone sub-bursts was observed and studied for the first time. Using STEREO/COR1 and SOHO/LASCO-C2 images, we determined the direction and radial speed of the coronal mass ejection responsible for the studied type II burst. The possible location of the type II burst source on the flank of the shock was found.

  13. Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions.

    Science.gov (United States)

    Bochicchio, Brigida; Tamburro, Antonio Mario

    2002-11-01

    In the last years polyproline II (PPII) structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response. The polyproline left-handed helical structure was nearly unknown until now and often confused with unordered, disordered, irregular, unstructured, extended, or random coil conformations because it is neither alpha-helical nor beta-turn nor beta-sheet, i.e., a classical structure. In spite of the regularity of the PPII structure and, more precisely, its well-defined dihedral angle values, a typical feature of PPII structure is the absence of any intramolecular hydrogen bonds that renders the PPII structure indistinguishable from an irregular backbone structure by (1)H-NMR spectroscopy. The only way to unambiguously reveal PPII structure in solution is to use spectroscopies based on optical activity, such as circular dichroism (CD), vibrational circular dichroism (VCD), and Raman optical activity (ROA). Herein we focus on the identification of PPII structure by CD, widely considered to be the most reliable methodology. Then we report on VCD and ROA spectroscopies as tools in the identification of PPII structure. A third section is dedicated to the analysis of the stabilization of PPII conformation in aqueous solution. Finally, the significance of PPII in self-assembly processes, in elasticity of elastomeric proteins, and in proteins-(peptides) proteins molecular recognition processes are considered.

  14. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2014-03-01

    Full Text Available Human carbonic anhydrases (CAs are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type of a variant of CA II in which His64 is replaced with Ala (H64A CA II can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations the activity of H64A CA II.

  15. Copper(II) complexes with pyrazole derivatives - Synthesis, crystal structure, DFT calculations and cytotoxic activity

    Science.gov (United States)

    Kupcewicz, Bogumiła; Ciolkowski, Michal; Karwowski, Boleslaw T.; Rozalski, Marek; Krajewska, Urszula; Lorenz, Ingo-Peter; Mayer, Peter; Budzisz, Elzbieta

    2013-11-01

    The series of pyrazole derivatives (1a-4a) were used as bidentate N,N' ligands to obtain neutral Cu(II) complexes of ML2Cl2 type (1b-4b). The molecular structures of ligand 1a and Cu(II) complex 4b were determined by X-ray crystallography and theoretical DFT calculations. In this study, three functionals B3LYP, BP86 and mPW1PW91 with different basis sets and two effective core potentials Los Alamos and Stuttgart/Dresden were performed. The DFT study disclosed the usefulness of BP86 functional with SDD-ECP for Cu(II) ion and dedicated D95 basis set for other non-transition metal atoms, with the exclusion of Cl for which 6-31++G(2df,2pd) were used. The structural analysis shows that the presence of phenyl substituent in a pyrazole ring contributed to Cu-N bond elongation, which can result in different reactivity of complexes 1b and 3b. The cytotoxicity of the obtained compounds was evaluated on three cancer cells lines: HL-60, NALM-6 and WM-115. The complexes have exhibited similar moderate antiproliferative activity. All the complexes, except for 1b, were found to be more active against three cancer cell lines than uncomplexed pyrazoles. The lipophilicity and electrochemical properties of ligands and complexes was also studied. For complexes with ligand 1a and 3a only one reduction process at the metal centre occurs (Cu(II) → Cu(I)) with oxidization of Cu(I)-Cu(II) in the backward step.

  16. Electronic structure of the valence band of II--VI wide band gap semiconductor interfaces

    OpenAIRE

    1996-01-01

    In this work we present the electronic band structure for (001)--CdTe interfaces with some other II--VI zinc blende semiconductors. We assume ideal interfaces. We use tight binding Hamiltonians with an orthogonal basis ($s p^3 s^*$). We make use of the well--known Surface Green's Function Matching method to calculate the interface band structure. In our calculation the dominion of the interface is constituted by four atomic layers. We consider here anion--anion interfaces only. We have includ...

  17. Comparative modeling of the three-dimensional structure of type II antifreeze protein.

    OpenAIRE

    Sönnichsen, F D; Sykes, B D; Davies, P. L.

    1995-01-01

    Type II antifreeze proteins (AFP), which inhibit the growth of seed ice crystals in the blood of certain fishes (sea raven, herring, and smelt), are the largest known fish AFPs and the only class for which detailed structural information is not yet available. However, a sequence homology has been recognized between these proteins and the carbohydrate recognition domain of C-type lectins. The structure of this domain from rat mannose-binding protein (MBP-A) has been solved by X-ray crystallogr...

  18. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds.

  19. Zn(II), Cd(II) and Cu(II) complexes of 2,5-bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrole: synthesis, structures and their high catalytic activity for efficient cyclic carbonate synthesis.

    Science.gov (United States)

    Vignesh Babu, Heeralal; Muralidharan, Krishnamurthi

    2013-01-28

    The syntheses of Zn(II), Cd(II) and Cu(II) complexes of 2,5-bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrole (DIP(2)pyr)H 1 and their catalytic activities in CO(2) fixation are reported. The structures of these complexes were characterized by IR, (1)H, (13)C NMR and single crystal X-ray diffraction techniques. The catalytic activities of these complexes for the cycloaddition of CO(2) to an epoxide under one atmosphere of pressure and mild temperature conditions to yield cyclic carbonate have been studied. Among the four complexes synthesized, the Zn(II) and Cu(II) complexes were found to be versatile whereas the Cu(II) complex was more selective in the conversion. They were highly effective for the conversion of monosubstituted terminal epoxides, disubstituted terminal and internal epoxides to their corresponding cyclic carbonates with good to high yields.

  20. Hydrothermal syntheses and single crystal structural characterization of M(H2O)6(OPTA)2 [M = Co(II), Ni(II), Zn(II); OPTA = 1-oxopyridinium-2-thioacetato

    Indian Academy of Sciences (India)

    S Kumaresan; P Ramadevi; R D Walsh; A McAneny; C H Lake

    2006-05-01

    A new class of compounds of the family M(H2O)6(OPTA)2 (where M = Co(II), Ni(II), and Zn(II); OPTA = 1-oxopyridinium-2-thioacetato) was prepared from the appropriate metal acetates, 1-oxopyridinium-2-thioacetic acid (OPTAH), and potassium hydroxide in hydrothermal media and structurally characterized. The structure is constructed from M(H2O)$_{6}^{2+}$ and two anions of OPTAH (C7H6NO3S) linked through hydrogen bonding into an extended network.

  1. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  2. Crystal structures of unsymmetrically mixed β-pyrrole substituted nickel(II)-meso-tetraphenylporphyrins

    Indian Academy of Sciences (India)

    BHYRAPPA PUTTAIAH; VELKANNAN VEERAPANDIAN; SARANGI UJWAL KUMAR

    2016-07-01

    Crystal structures of solvated unsymmetrically substituted meso-tetraphenylporphyrins, 2,3,12,13, 17-pentachloro-5,7,8,10,15,18,20-hepta-phenylporphyrin, H₂TPP(Ph)₃(Cl)₅, 1 and its nickel(II), NiTPP(Ph)₃(Cl)₅, 2 were determined by single crystal XRD analysis. In addition, a new unsymmetricallysubstituted porphyrin, 2,3,12,13,17-pentacyano-5,7,8,10,15,18,20-heptaphenyl-porphinato nickel(II) complex, NiTPP(Ph)₃(CN)₅, 3 complex was synthesized and its solvated structure was examined by crystallography. These porphyrins exhibited dramatic nonplanar conformation of the macrocycle as evidenced from the averagedisplacement of the β-pyrrole carbon (±ΔCβ ) from the mean plane of the porphyrin ring and the trend in nonplanarity varies in the order: 2 (1.189(5) Å) > 1 (1.036(6) Å) > 3 (0.895(6) Å). The normal-coordinate structural decomposition analysis of these structures revealed mainly saddle distortion of the macrocycle combined with small degree of ruffled or domed distortions. The Hirshfeld surface analysis of structures 1-3 revealed solvate dependent intermolecular contacts with varying degree of H. . .H (43–49%), C. . .H (17–19%), H. . .Cl (25–30%) and N. . .H (~19%) contact contributions.

  3. Coordination structure of adsorbed Zn(II) at Water-TiO2 interfaces

    Energy Technology Data Exchange (ETDEWEB)

    He, G.; Pan, G.; Zhang, M.; Waychunas, G.A.

    2011-01-15

    The local structure of aqueous metal ions on solid surfaces is central to understanding many chemical and biological processes in soil and aquatic environments. Here, the local coordination structure of hydrated Zn(II) at water-TiO{sub 2} interfaces was identified by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopy combined with density functional theory (DFT) calculations. A nonintegral coordination number of average {approx}4.5 O atoms around a central Zn atom was obtained by EXAFS analysis. DFT calculations indicated that this coordination structure was consistent with the mixture of 4-coordinated bidentate binuclear (BB) and 5-coordinated bidentate mononuclear (BM) metastable equilibrium adsorption (MEA) states. The BB complex has 4-coordinated Zn, while the monodentate mononuclear (MM) complex has 6-coordinated Zn, and a 5-coordinated adsorbed Zn was found in the BM adsorption mode. DFT calculated energies showed that the lower-coordinated BB and BM modes were thermodynamically more favorable than the higher-coordinated MM MEA state. The experimentally observed XANES fingerprinting provided additional direct spectral evidence of 4- and 5-coordinated Zn-O modes. The overall spectral and computational evidence indicated that Zn(II) can occur in 4-, 5-, and 6-oxygen coordinated sites in different MEA states due to steric hindrance effects, and the coexistence of different MEA states formed the multiple coordination environments.

  4. Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Hökelek, Tuncer

    2017-02-01

    Three new cadmium(II)-metal(II) cyanide complexes, [Cd(4aepy)2(H2O)2][Ni(CN)4] (1), [Cd(4aepy)2(H2O)2][Pd(CN)4] (2) and [Cd(4aepy)2(H2O)2][Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine], have been synthesized and characterized by elemental, thermal, FT-IR and Raman spectral analyses. The crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction technique, in which they crystallize in the monoclinic system and C2/c space group. The M(II) [M(II) = Ni(II), Pd(II) and Pt(II)] ions are coordinated with the carbon atoms of the four cyanide groups in the square planar geometries and the [M(CN)4]2- ions act as counter ions. The Cd(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. 3D supramolecular structures of 1 and 2 were occurred by M⋯π and hydrogen bonding (Nsbnd H⋯N and Osbnd H⋯N) interactions. Vibrational assignments of all the observed bands were given and the spectral properties were also supported the crystal structures of the complexes. A possible decompositions of the complexes were investigated in the temperature range 30-800 °C in the static atmosphere.

  5. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution.

    Science.gov (United States)

    Wang, Dong; Bushnell, David A; Huang, Xuhui; Westover, Kenneth D; Levitt, Michael; Kornberg, Roger D

    2009-05-29

    Transcribing RNA polymerases oscillate between three stable states, two of which, pre- and posttranslocated, were previously subjected to x-ray crystal structure determination. We report here the crystal structure of RNA polymerase II in the third state, the reverse translocated, or "backtracked" state. The defining feature of the backtracked structure is a binding site for the first backtracked nucleotide. This binding site is occupied in case of nucleotide misincorporation in the RNA or damage to the DNA, and is termed the "P" site because it supports proofreading. The predominant mechanism of proofreading is the excision of a dinucleotide in the presence of the elongation factor SII (TFIIS). Structure determination of a cocrystal with TFIIS reveals a rearrangement whereby cleavage of the RNA may take place.

  6. Carborane-containing urea-based inhibitors of glutamate carboxypeptidase II: Synthesis and structural characterization.

    Science.gov (United States)

    Youn, Sihyun; Kim, Kyung Im; Ptacek, Jakub; Ok, Kiwon; Novakova, Zora; Kim, YunHye; Koo, JaeHyung; Barinka, Cyril; Byun, Youngjoo

    2015-11-15

    Glutamate carboxypeptidase II (GCPII) is a zinc metalloprotease on the surface of astrocytes which cleaves N-acetylaspartylglutamate to release N-acetylaspartate and glutamate. GCPII inhibitors can decrease glutamate concentration and play a protective role against apoptosis or degradation of brain neurons. Herein, we report the synthesis and structural analysis of novel carborane-based GCPII inhibitors. We determined the X-ray crystal structure of GCPII in complex with a carborane-containing inhibitor at 1.79Å resolution. The X-ray analysis revealed that the bulky closo-carborane cluster is located in the spacious entrance funnel region of GCPII, indicating that the carborane cluster can be further structurally modified to identify promising lead structures of novel GCPII inhibitors.

  7. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis.

    Science.gov (United States)

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-09-21

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts.

  8. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis

    Science.gov (United States)

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-01-01

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. PMID:27650485

  9. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    Science.gov (United States)

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. © 2014 McNeil and Zimmerly; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Cu(II) coordination structure determinants of the fibrillization switch in Abeta peptides

    Science.gov (United States)

    Hernandez-Guzman, Jessica; Sun, Li; Mehta, Anil; Lynn, David; Warncke, Kurt

    2010-03-01

    Alzheimer's Disease (AD) is associated with the aggregation and fibrillization of the beta-amyloid protein (Abeta). The coordination of Cu(II) by peptide histidine imidazole sidechains is proposed to play an important role in determining the fibrillization ``switch'' [1]. We have developed techniques of powder X-band electron spin echo envelope modulation (ESEEM) spectroscopy to determine the 3D molecular structure of the Cu(II)-histidine imidazole coordination in cryotrapped soluble and fibrillar forms of Abeta peptides, in order to gain insight into the factors that govern fibrillization. We use hybrid optimization-based OPTESIM [2] simulation of the double quantum harmonic feature to determine the mutual orientation of the imidazole rings in Cu(II)--bis-imidazole complexes and in Abeta(13-21) peptides. The Cu(II) coordination mode and assembly constraints in fibrils are revealed. [1] Dong , J., et al., Proc. Natl. Acad. Sci., 2007, 104, 13313. [2] Sun, L., et al., J. Magn. Reson. 2009, 200, 21.

  11. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues

    DEFF Research Database (Denmark)

    Xu, Liang; Butler, Kyle Vincent; Chong, Jenny

    2014-01-01

    The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open...... II. This study reveals novel insights into understanding the molecular basis of TL conformational transition upon substrate binding during Pol II transcription. This synthetic chemical biology approach may be extended to understand the mechanisms of other RNA polymerases as well as other nucleic acid...... state to a closed active state to facilitate nucleotide addition upon the binding of the cognate substrate to the Pol II active site. However, a comprehensive understanding of the specific chemical interactions and substrate structural signatures that are essential to this TL conformational change...

  12. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga.

    Science.gov (United States)

    Ago, Hideo; Adachi, Hideyuki; Umena, Yasufumi; Tashiro, Takayoshi; Kawakami, Keisuke; Kamiya, Nobuo; Tian, Lirong; Han, Guangye; Kuang, Tingyun; Liu, Zheyi; Wang, Fangjun; Zou, Hanfa; Enami, Isao; Miyano, Masashi; Shen, Jian-Ren

    2016-03-11

    Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ', a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ' subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ' were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII.

  13. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga*

    Science.gov (United States)

    Ago, Hideo; Adachi, Hideyuki; Umena, Yasufumi; Tashiro, Takayoshi; Kawakami, Keisuke; Kamiya, Nobuo; Tian, Lirong; Han, Guangye; Kuang, Tingyun; Liu, Zheyi; Wang, Fangjun; Zou, Hanfa; Enami, Isao; Miyano, Masashi; Shen, Jian-Ren

    2016-01-01

    Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ′, a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ′ subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ′ were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII. PMID:26757821

  14. An n→π* interaction in aspirin: implications for structure and reactivity.

    Science.gov (United States)

    Choudhary, Amit; Kamer, Kimberli J; Raines, Ronald T

    2011-10-07

    Stereoelectronic effects modulate molecular structure, reactivity, and conformation. We find that the interaction between the ester and carboxyl moieties of aspirin has a previously unappreciated quantum mechanical character that arises from the delocalization of an electron pair (n) of a donor group into the antibonding orbital (π*) of an acceptor group. This interaction affects the physicochemical attributes of aspirin and could have implications for its pharmacology.

  15. Syntheses, crystal structures, spectral and DFT studies of copper(II) and nickel(II) complexes with N‧-(pyridine-2-ylmethylene)acetohydrazide

    Science.gov (United States)

    Patel, Ram N.; Singh, Yogendra Pratap; Singh, Yogendra; Butcher, Ray J.; Zeller, Matthias; Singh, R. K. Bhubon; U-wang, Oinam

    2017-05-01

    Three new metal(II) complexes (copper(II)/nickel(II)) with N'-(pyridine-2-ylmethylene) acetohydrazide [Cu(HL)2]·(ClO4)21, [Ni(HL)2]·NO3·ClO4·0.5H2O 2 and [Cu(μ-CH3COO)(L)]2·4H2O 3 have been synthesized form N‧-(pyridine-2-ylmethylene) acetohydrazide (HL/L). The synthesized complexes were characterized by means of elemental analysis, spectroscopic, magnetic susceptibility and cyclic voltammetric measurements. Single crystal X-ray analysis of complexes has revealed the presence of a distorted octahedral geometry around mononuclear copper(II) and nickel(II) complex (1 and 2) and distorted square pyramidal geometry around copper(II) centers of complex 3. In the solid state Schiff base remains in its keto-tautomeric form. On complexation with Cu(II)/Ni(II) ions in natural or slightly acidic medium it coordinates through ketonic oxygen (keto form, HL) whereas in basic medium it acts as monoprotic (enol form, L) ligand. Variable-temperature magnetic susceptibility data of the compound 3 indicates the presence of weak antiferromagnetic interaction with J = -12.3 cm-1. The cyclic voltammograms of homobinuclear complex 3 in DMSO gave two irreversible waves which correspond to the Cu(II,II)/Cu(II,I) and Cu(II,I)/Cu(I,I) redox processes. On the other hand, the mononuclear complex 1 exhibited M(II)/M(I) quasireversible wave E1/2 = 0.06 V vs Ag/AgCl. X-band electron paramagnetic resonance (epr) data of copper(II) mononuclear and binuclear complexes 1 and 3 have been collected to investigate magnetic properties of the complexes in detail. The electronic structures, spectral properties of the ligands and the complexes have been explained by DFT and TD-DFT calculations. In addition, biological activity ranking of present complexes 1-3 are investigated theoretically. Complexes catalyzed the dismutation of superoxide (O2▪-) at biological pH in alkaline nitroblue tetrazolium chloride assay and IC50 values were evaluated.

  16. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.

    Science.gov (United States)

    Frierdich, Andrew J; Catalano, Jeffrey G

    2012-10-16

    The reduction of trace elements and contaminants by Fe(II) at Fe(III) oxide surfaces is well documented. However, the effect of aqueous Fe(II) on the fate of redox-active trace elements structurally incorporated into iron oxides is unknown. Here, we investigate the fate of redox-active elements during Fe(II)-activated recrystallization of Cu-, Co-, and Mn-substituted goethite and hematite. Enhanced release of Cu, Co, and Mn to solution occurs upon exposure of all materials to aqueous Fe(II) relative to reactions in Fe(II)-free fluids. The quantity of trace element release increases with pH when Fe(II) is present but decreases with increasing pH in the absence of Fe(II). Co and Mn release from goethite is predicted well using a second-order kinetic model, consistent with the release of redox-inactive elements such as Ni and Zn. However, Cu release and Co and Mn release from hematite require the sum of two rates to adequately model the kinetic data. Greater uptake of Fe(II) by Cu-, Co-, and Mn-substituted iron oxides relative to analogues containing only redox-inactive elements suggests that net Fe(II) oxidation occurs. Reduction of Cu, Co, and Mn in all materials following reaction with Fe(II) at pHs 7.0-7.5 is confirmed by X-ray absorption near-edge structure spectroscopy. This work shows that redox-sensitive elements structurally incorporated within iron oxides are reduced and repartitioned into fluids during Fe(II)-mediated recrystallization. Such abiotic reactions likely operate in tandem with partial microbial and abiotic iron reduction or during the migration of Fe(II)-containing fluids, mobilizing structurally bound contaminants and micronutrients in aquatic systems.

  17. Planetary perturbations for Oort cloud comets: II. Implications for the origin of observable comets

    Science.gov (United States)

    Fouchard, M.; Rickman, H.; Froeschlé, Ch.; Valsecchi, G. B.

    2014-03-01

    assumptions regarding the initial structure of the Oort cloud, which is isotropic in shape and has a relatively steep energy distribution. We also find that they depend on the details of the past history of external perturbations including GMC encounters, and we provide special discussions of those issues.

  18. Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling.

    Science.gov (United States)

    Andreeva, Antonina

    2016-06-15

    The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling.

  19. Constructing kinetic models to elucidate structural dynamics of a complete RNA polymerase II elongation cycle

    Science.gov (United States)

    Yu, Jin; Da, Lin-Tai; Huang, Xuhui

    2015-02-01

    The RNA polymerase II elongation is central in eukaryotic transcription. Although multiple intermediates of the elongation complex have been identified, the dynamical mechanisms remain elusive or controversial. Here we build a structure-based kinetic model of a full elongation cycle of polymerase II, taking into account transition rates and conformational changes characterized from both single molecule experimental studies and computational simulations at atomistic scale. Our model suggests a force-dependent slow transition detected in the single molecule experiments corresponds to an essential conformational change of a trigger loop (TL) opening prior to the polymerase translocation. The analyses on mutant study of E1103G and on potential sequence effects of the translocation substantiate this proposal. Our model also investigates another slow transition detected in the transcription elongation cycle which is independent of mechanical force. If this force-independent slow transition happens as the TL gradually closes upon NTP binding, the analyses indicate that the binding affinity of NTP to the polymerase has to be sufficiently high. Otherwise, one infers that the slow transition happens pre-catalytically but after the TL closing. Accordingly, accurate determination of intrinsic properties of NTP binding is demanded for an improved characterization of the polymerase elongation. Overall, the study provides a working model of the polymerase II elongation under a generic Brownian ratchet mechanism, with most essential structural transition and functional kinetics elucidated.

  20. Doubly chloro bridged dimeric copper(II) complex: magneto-structural correlation and anticancer activity.

    Science.gov (United States)

    Sikdar, Yeasin; Modak, Ritwik; Bose, Dipayan; Banerjee, Saswati; Bieńko, Dariusz; Zierkiewicz, Wiktor; Bieńko, Alina; Das Saha, Krishna; Goswami, Sanchita

    2015-05-21

    We have synthesized and structurally characterized a new doubly chloro bridged dimeric copper(II) complex, [Cu2(μ-Cl)2(HL)2Cl2] (1) based on a Schiff base ligand, 5-[(pyridin-2-ylmethylene)-amino]-pentan-1-ol). Single crystal X-ray diffraction shows the presence of dinuclear copper(II) centres in a square pyramidal geometry linked by obtuse double chloro bridge. The magnetic study illustrated that weak antiferromagnetic interactions (J = -0.47 cm(-1)) prevail in complex 1 which is well supported by magneto-structural correlation. This compound adds to the library of doubly chloro bridged copper(ii) complexes in the regime of spin state cross over. DFT calculations have been conducted within a broken-symmetry (BS) framework to investigate the exchange interaction further which depicts that the approximate spin projection technique yields the best corroboration of the experimental J value. Spin density plots show the presence of an ∼0.52e charge residing on the copper atom along with a substantial charge on bridging and peripheral chlorine atoms. The potential of complex1 to act as an anticancer agent is thoroughly examined on a series of liver cancer cell lines and screening shows the HepG2 cell line exhibits maximum cytotoxicity by phosphatidyl serine exposure in the outer cell membrane associated with ROS generation and mitochondrial depolarization with increasing time in the in vitro model system.

  1. Inhibition Kinetics and Emodin Cocrystal Structure of a Type II Polyketide Ketoreductase†,‡

    Science.gov (United States)

    Korman, Tyler Paz; Tan, Yuhong; Wong, Justin; Luo, Rui; Tsai, Shiou-Chuan

    2008-01-01

    Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5–10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP+ and the inhibitor emodin were solved with the wild type and P94L mutant of actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns. PMID:18205400

  2. Inhibition kinetics and emodin cocrystal structure of a type II polyketide ketoreductase.

    Science.gov (United States)

    Korman, Tyler Paz; Tan, Yu-Hong; Wong, Justin; Luo, Ray; Tsai, Shiou-Chuan

    2008-02-19

    Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5-10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP+ and the inhibitor emodin were solved with the wild type and P94L mutant of actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns.

  3. Structures of intermediate transport states of ZneA, a Zn(II)/proton antiporter

    Science.gov (United States)

    Pak, John Edward; Ekendé, Elisabeth Ngonlong; Kifle, Efrem G.; O’Connell, Joseph Daniel; De Angelis, Fabien; Tessema, Meseret B.; Derfoufi, Kheiro-Mouna; Robles-Colmenares, Yaneth; Robbins, Rebecca A.; Goormaghtigh, Erik; Vandenbussche, Guy; Stroud, Robert M.

    2013-01-01

    Efflux pumps belonging to the ubiquitous resistance–nodulation–cell division (RND) superfamily transport substrates out of cells by coupling proton conduction across the membrane to a conformationally driven pumping cycle. The heavy metal-resistant bacteria Cupriavidus metallidurans CH34 relies notably on as many as 12 heavy metal efflux pumps of the RND superfamily. Here we show that C. metallidurans CH34 ZneA is a proton driven efflux pump specific for Zn(II), and that transport of substrates through the transmembrane domain may be electrogenic. We report two X-ray crystal structures of ZneA in intermediate transport conformations, at 3.0 and 3.7 Å resolution. The trimeric ZneA structures capture protomer conformations that differ in the spatial arrangement and Zn(II) occupancies at a proximal and a distal substrate binding site. Structural comparison shows that transport of substrates through a tunnel that links the two binding sites, toward an exit portal, is mediated by the conformation of a short 14-aa loop. Taken together, the ZneA structures presented here provide mechanistic insights into the conformational changes required for substrate efflux by RND superfamily transporters. PMID:24173033

  4. Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma.

    Science.gov (United States)

    Anderson, Jan M; Chow, Wah Soon; De Las Rivas, Javier

    2008-01-01

    Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and

  5. Crystal structure of Zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates.

    Science.gov (United States)

    Hamming, Ole Jensen; Lutfalla, Georges; Levraud, Jean-Pierre; Hartmann, Rune

    2011-08-01

    Interferons (IFNs) play a major role in orchestrating the innate immune response toward viruses in vertebrates, and their defining characteristic is their ability to induce an antiviral state in responsive cells. Interferons have been reported in a multitude of species, from bony fish to mammals. However, our current knowledge about the molecular function of fish IFNs as well as their evolutionary relationship to tetrapod IFNs is limited. Here we establish the three-dimensional (3D) structure of zebrafish IFNϕ1 and IFNϕ2 by crystallography. These high-resolution structures offer the first structural insight into fish cytokines. Tetrapods possess two types of IFNs that play an immediate antiviral role: type I IFNs (e.g., alpha interferon [IFN-α] and beta interferon [IFN-β]) and type III IFNs (lambda interferon [IFN-λ]), and each type is characterized by its specific receptor usage. Similarly, two groups of antiviral IFNs with distinct receptors exist in fish, including zebrafish. IFNϕ1 and IFNϕ2 represent group I and group II IFNs, respectively. Nevertheless, both structures reported here reveal a characteristic type I IFN architecture with a straight F helix, as opposed to the remaining class II cytokines, including IFN-λ, where helix F contains a characteristic bend. Phylogenetic trees derived from structure-guided multiple alignments confirmed that both groups of fish IFNs are evolutionarily closer to type I than to type III tetrapod IFNs. Thus, these fish IFNs belong to the type I IFN family. Our results also imply that a dual antiviral IFN system has arisen twice during vertebrate evolution.

  6. Structure of tagatose-1,6-bisphosphate aldolase. Insight into chiral discrimination, mechanism, and specificity of class II aldolases.

    Science.gov (United States)

    Hall, David R; Bond, Charles S; Leonard, Gordon A; Watt, C Ian; Berry, Alan; Hunter, William N

    2002-06-14

    Tagatose-1,6-bisphosphate aldolase (TBPA) is a tetrameric class II aldolase that catalyzes the reversible condensation of dihydroxyacetone phosphate with glyceraldehyde 3-phosphate to produce tagatose 1,6-bisphosphate. The high resolution (1.45 A) crystal structure of the Escherichia coli enzyme, encoded by the agaY gene, complexed with phosphoglycolohydroxamate (PGH) has been determined. Two subunits comprise the asymmetric unit, and a crystallographic 2-fold axis generates the functional tetramer. A complex network of hydrogen bonds position side chains in the active site that is occupied by two cations. An unusual Na+ binding site is created using a pi interaction with Tyr183 in addition to five oxygen ligands. The catalytic Zn2+ is five-coordinate using three histidine nitrogens and two PGH oxygens. Comparisons of TBPA with the related fructose-1,6-bisphosphate aldolase (FBPA) identifies common features with implications for the mechanism. Because the major product of the condensation catalyzed by the enzymes differs in the chirality at a single position, models of FBPA and TBPA with their cognate bisphosphate products provide insight into chiral discrimination by these aldolases. The TBPA active site is more open on one side than FBPA, and this contributes to a less specific enzyme. The availability of more space and a wider range of aldehyde partners used by TBPA together with the highly specific nature of FBPA suggest that TBPA might be a preferred enzyme to modify for use in biotransformation chemistry.

  7. Six Zn(II) and Cd(II) coordination polymers assembled from a similar binuclear building unit: tunable structures and luminescence properties.

    Science.gov (United States)

    Zhang, Liyan; Rong, Lulu; Hu, Guoli; Jin, Suo; Jia, Wei-Guo; Liu, Ji; Yuan, Guozan

    2015-04-21

    Six Zn(ii) and Cd(ii) coordination polymers were constructed by treating a 2-substituted 8-hydroxyquinolinate ligand containing a pyridyl group with zinc or cadmium salts, and characterized by a variety of techniques. Interestingly, based on a similar binuclear Zn(ii) or Cd(ii) building unit, the supramolecular structures of the six coordination polymers () exhibit an unprecedented structural diversification due to the different choices of metal salts. and represent a novel 2D framework containing 1D infinite right- and left-handed helical chains. and are 2D coordination frameworks based on binuclear Cd(ii) building units. For and , the L ligands can bridge binuclear building units forming a 1D infinite chain. Interestingly, the adjacent Cd2O2 planes of the 1D chain in are in parallel with each other, while the dihedral angle between the two Zn2O2 planes in is 83.43°. Photoluminescence properties revealed that the six coordination polymers exhibit redshifted emission maximum compared with the free ligand HL, which can be ascribed to an increased conformational rigidity and the fabrication of coplanar binuclear building units M2L2 in . Coordination polymers also display distinct fluorescence lifetimes and quantum yields because of their different metal centers and supramolecular structures.

  8. Synthesis, characterization, and crystal structure of mercury(II) complex containing new phosphine oxide salt

    Science.gov (United States)

    Samiee, Sepideh; Kooti, Nadieh; Gable, Robert W.

    2017-02-01

    The reaction of new phosphonium-phosphine oxide salt [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]Br (1) with mercury(II) iodide in a methanolic solution yielded [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]2[Hg2I5Br](2). These two compounds were fully characterized by elemental analysis, IR, 1H, 31P, and 13C NMR spectra. Crystal and molecular structure of 2 has been determined by means of X-ray diffraction. In mercury compound, the phosphine oxide salt is found as a counter ion letting the mercury(II) ion to bound halides to all four coordination sites and to give dimermercurate(II) ions as the structure-constructing species. The neighboring [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]2+cations are joined together by intramolecular Csbnd H⋯O hydrogen bonds to give a 1-D chain structure along the crystallographic b-axis. The [Hg2I5Br]2-anions act as cross-linkers between neighbouring strands extending the supramolecular structure into 2D layers in (110) planes as well as balances the charge of the complex. The significant effects of Csbnd H⋯X (Xdbnd O, Br and I) and π⋯π aromatic interactions play a major role in the crystal packing of compound 2.

  9. Phase Structure of Weak MgII Absorbers Star Forming Pockets Outside of Galaxies

    CERN Document Server

    Charlton, J C; Ding, J; Zonak, S G; Bond, N; Rigby, J R; Charlton, Jane C.; Churchill, Christopher W.; Ding, Jie; Zonak, Stephanie; Bond, Nicholas; Rigby, Jane R.

    2001-01-01

    A new and mysterious class of object has been revealed by the detection of numerous weak MgII doublets in quasar absorption line spectra. The properties of these objects will be reviewed. They are not in close proximity to luminous galaxies, yet they have metallicities close to the solar value; they are likely to be self-enriched. A significant fraction of the weak MgII absorbers are constrained to be less than 10 parsecs in size, yet they present a large cross-section for absorption, indicating that there are more than a million times more of them than there are luminous galaxies. They could be remnants of Population III star clusters or tracers of supernova remnants in a population of "failed dwarf galaxies" expected in cold dark matter structure formation scenarios.

  10. Tetranuclear manganese(II) complexes of sulfonylcalix[4]arene macrocycles: synthesis, structure, spectroscopic and magnetic properties.

    Science.gov (United States)

    Lamouchi, Meriem; Jeanneau, Erwann; Pillonnet, Anne; Brioude, Arnaud; Martini, Matteo; Stéphan, Olivier; Meganem, Faouzi; Novitchi, Ghenadie; Luneau, Dominique; Desroches, Cédric

    2012-03-07

    Two tetranuclear manganese(II) complexes {K(+)[Mn(4)(ThiaSO(2))(2)(OH)](-)} (1) and {K(+)[Mn(4)(ThiaSO(2))(2)(F)](-)} (2) have been synthesized under solvothermal conditions in methanol with p-tert-butylsulfonylcalix[4]arene (ThiaSO(2)). For both complexes, the structure has been established from single-crystal X-ray diffraction. The two complexes are best described as manganese squares sandwiched between two thiacalixarene macrocycles. In both complexes, in the center of the square formed by the four manganese(II) atoms, the unexpected presence of μ(4)-OH(-) or μ(4)-F(-) gives a negative charge to the cluster. The two tetranuclear complexes exhibit strong orange luminescence behavior resulting from the symbiosis between the ThiaSO(2) and the Mn(2+). Despite similar chemical formulation, (1) and (2) present difference in emission intensity and lifetime τ.

  11. Characterization of structural features controlling the receptiveness of empty class II MHC molecules

    DEFF Research Database (Denmark)

    Rupp, Bernd; Günther, Sebastian; Makhmoor, Talat;

    2011-01-01

    MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC...... known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues aQ9 and ßN82. Mutagenesis experiments confirmed that replacement of either one of the two......-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study....

  12. Microscopic model for the neutron dynamic structure factor of solid methane in phase II

    Energy Technology Data Exchange (ETDEWEB)

    Shin Yunchang, E-mail: yunchang.shin@yale.ed [Department of Physics, Indiana University Bloomington, IN 47408 (United States); Department of Physics, Yale University, New Haven, CT 06520 (United States); Mike Snow, W.; Liu, C.Y.; Lavelle, C.M.; Baxter, David V. [Department of Physics, Indiana University Bloomington, IN 47408 (United States)

    2010-08-21

    We have constructed a microscopic model for the neutron dynamic structure factor S(Q,{omega}) of solid methane in phase II. We expect this model to apply for neutron energies below 1 eV at pressures near 1 bar and temperatures below 20 K where methane possesses both free rotation and hindered rotation modes of the tetrahedral molecules in the unit cell. The model treats the motions of molecular translations, intra-molecular vibrations and the free and hindered rotations of methane molecule as independent. Total scattering cross-sections calculated from the model agree with the cross-section measurements for incident neutron energies of 0.5 meV-1 eV. The effective density of states is extracted from the model. We also present the quantitative calculation of the separate contributions of the two different rotational modes to the inelastic cross-section for different methane temperatures in phase II.

  13. Ternary complexes of copper(II) and cobalt(II) involving nitrite/pyrazole and tetradentate N4-coordinate ligand: Synthesis, characterization, structures and antimicrobial activity

    Science.gov (United States)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran

    2015-12-01

    Five new mononuclear mixed ligand complexes of the type [Cu(NCCH3)(dbdmp)](ClO4)2, [M(ONO)(dbdmp)]ClO4, [M(pz) (dbdmp)](ClO4)2 where M = Cu(II) and Co(II), pz = 3,5-dimethylpyrazole and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine have been synthesized and characterized by physico-chemical and spectroscopy studies. The crystal structures of three copper(II) complexes [Cu(NCCH3)(dbdmp)](ClO4)2, [Cu(ONO)(dbdmp)]ClO4 and [Cu(pz)(dbdmp)](ClO4)2 have been determined by single crystal X-ray diffraction studies. Structural analyses reveal the geometry of [Cu(pz)(dbdmp)](ClO4)2 is distorted square pyramidal and other two copper(II) complexes have distorted trigonal bipyramidal geometry. Molecular composition of cobalt(II) complexes have been determined by mass spectral data. The EPR spectra of copper(II) complexes in frozen acetonitrile solution exhibit axial spectra, characteristic of dx2-y2 ground state. Electrochemical studies of copper(II) complexes using glassy carbon as working electrode in acetonitrile solution show Cu(II)/Cu(I) couple with quasi reversible electron transfer versus Ag/Ag+ reference electrode. Antimicrobial activity of all the synthesized complexes were investigated against two Gram positive and two Gram negative bacterial strains.

  14. Inhibition of carbonic anhydrase II by thioxolone: a mechanistic and structural study.

    Science.gov (United States)

    Barrese, Albert A; Genis, Caroli; Fisher, S Zoe; Orwenyo, Jared N; Kumara, Mudalige Thilak; Dutta, Subodh K; Phillips, Eric; Kiddle, James J; Tu, Chingkuang; Silverman, David N; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; McKenna, Robert; Tripp, Brian C

    2008-03-11

    This paper examines the functional mechanism of thioxolone, a compound recently identified as a weak inhibitor of human carbonic anhydrase II by Iyer et al. (2006) J. Biomol. Screening 11, 782-791 . Thioxolone lacks sulfonamide, sulfamate, or hydroxamate functional groups that are typically found in therapeutic carbonic anhydrase (CA) inhibitors, such as acetazolamide. Analytical chemistry and biochemical methods were used to investigate the fate of thioxolone upon binding to CA II, including Michaelis-Menten kinetics of 4-nitrophenyl acetate esterase cleavage, liquid chromatography-mass spectrometry (LC-MS), oxygen-18 isotope exchange studies, and X-ray crystallography. Thioxolone is proposed to be a prodrug inhibitor that is cleaved via a CA II zinc-hydroxide mechanism known to catalyze the hydrolysis of esters. When thioxolone binds in the active site of CA II, it is cleaved and forms 4-mercaptobenzene-1,3-diol via the intermediate S-(2,4-thiophenyl)hydrogen thiocarbonate. The esterase cleavage product binds to the zinc active site via the thiol group and is therefore the active CA inhibitor, while the intermediate is located at the rim of the active-site cavity. The time-dependence of this inhibition reaction was investigated in detail. Because this type of prodrug inhibitor mechanism depends on cleavage of ester bonds, this class of inhibitors may have advantages over sulfonamides in determining isozyme specificity. A preliminary structure-activity relationship study with a series of structural analogues of thioxolone yielded similar estimates of inhibition constants for most compounds, although two compounds with bromine groups at the C1 carbon of thioxolone were not inhibitory, suggesting a possible steric effect.

  15. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Liu, Wen; Xu, Nan [Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055 (China); Ni, Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2013-04-15

    Highlights: ► Satisfactory reuse of TNTs due to easy regeneration of tubular structures. ► TNTs regeneration using only 2% of NaOH needed for virgin TNTs preparation. ► Excellent regeneration attributed to steady TNTs skeleton and complex form of TNTs-OCd{sup +}OH{sup −} onto adsorbed TNTs. -- Abstract: Efficient regeneration of desorbed titanate nanotubes (TNTs) was investigated with cycled Cd(II) adsorption and desorption processes. After desorption of Cd (II) from TNTs using 0.1 M HNO{sub 3}, regeneration could be simply achieved with only 0.2 M NaOH at ambient temperature, i.e. 2% of the NaOH needed for virgin TNTs preparation at 130 °C. The regenerated TNTs displayed similar adsorption capacity of Cd(II) even after six recycles, while significant reduction could be detected for desorbed TNTs without regeneration. The virgin TNTs, absorbed TNTs, desorbed TNTs and regenerated TNTs were systematically characterized. As results, the ion-exchange mechanism with Na{sup +} in TNTs was convinced with obvious change of -TiO(ONa){sub 2} by FTIR spectroscopy. The easy recovery of the damaged tubular structures proved by TEM and XRD was ascribed to asymmetric distribution of H{sup +} and Na{sup +} on the surface side and interlayer region of TNTs. More importantly, the cost-effective regeneration was found possibly related to complex form of TNTs-OCd{sup +}OH{sup −} onto the adsorbed TNTs, which was identified with help of X-ray photoelectron spectroscopy, and further indicated due to high relevance to an unexpected mole ratio of 1:1 between exchanged Na{sup +} and absorbed Cd(II)

  16. Electrochemical synthesis and structural characterization of a novel mixed-valence copper(I)-copper(II) complex: {[bis(ethylenediamine)copper(II)] bis[diiodocuprate(I)]}.

    Science.gov (United States)

    Fotouhi, Lida; Dehghanpour, Saeed; Heravi, Majid M; Ardakani, Mahboobeh Dashti

    2007-07-12

    A novel, mixed-valent copper(I)-copper(II) complex, {[bis(ethylene-diamine)copper(II)] bis[diiodocuprate(I)]} (1), has been prepared by electrochemical dissolution of a sacrificial copper anode in a solution of ethylenediamine (en), I2 and tetraethylammoniumperchlorate (TEAP) as supporting electrolyte in acetonitrile (AcN)and characterized by single-crystal X-ray structure determination. The crystal structure of the complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridging Cu(I) ions, with a nearly square planar geometry of bivalent Cu(II) atoms chelated by two ethylenediamine ligands. The results also show that direct electrosynthesis of the complex had high current efficiency, purity and electrolysis yield.

  17. Electrochemical Synthesis and Structural Characterization of a Novel Mixed-valence Copper (I-copper (II Complex: {[Bis(ethylenediamine Copper (II] Bis[diiodocuprate (I]}

    Directory of Open Access Journals (Sweden)

    Mahboobeh Dashti Ardakani

    2007-07-01

    Full Text Available A novel, mixed-valent copper(I-copper(II complex, {[bis(ethylene-diaminecopper(II] bis[diiodocuprate(I]} (1, has been prepared by electrochemicaldissolution of a sacrificial copper anode in a solution of ethylenediamine (en, I2 andtetraethylammoniumperchlorate (TEAP as supporting electrolyte in acetonitrile (AcNand characterized by single-crystal X-ray structure determination. The crystal structure ofthe complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridgingCu(I ions, with a nearly square planar geometry of bivalente Cu(II atoms chelated by twoethylenediamine ligands. The results also show that direct electrosynthesis of the complexhad high current efficiency, purity and electrolysis yield.

  18. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.

    Science.gov (United States)

    Cramer, P; Bushnell, D A; Kornberg, R D

    2001-06-08

    Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.

  19. Crystal structure of cis-diamminebis(nitrito-κN)platinum(II).

    Science.gov (United States)

    Kahlenberg, Volker; Gelbrich, Thomas; Tessadri, Richard; Klauser, Frederik

    2015-04-01

    Single crystals of cis-[Pt(NO2)2(NH3)2], were obtained by means of hyper-saturation directly out of a plating electrolyte. The square-planar coordination environment of the divalent Pt(II) atom is formed by four N atoms belonging to two ammine and two monodentate nitrite ligands. The ligands adopt a cis configuration. The crystal structure contains stacks of close-packed mol-ecules which run parallel to [001]. There are nine crystallographically independent inter-molecular N-H⋯O hydrogen bonds, resulting in a hydrogen-bonded hxl-type framework in which each mol-ecule serves as an eight-connected node. Four of the nine distinct hydrogen bonds connect complexes which belong to the same close-packed column parallel to [001]. In contrast to the previously reported crystal structure of the trans isomer, the title structure does not display intra-molecular hydrogen bonding.

  20. Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure

    Energy Technology Data Exchange (ETDEWEB)

    Mafra, Carlos R., E-mail: crmafra@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Potsdam (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Schlotterer, Oliver, E-mail: olivers@mppmu.mpg.de [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany)

    2013-08-21

    Using the pure spinor formalism in part I (Mafra et al., preprint [1]) we compute the complete tree-level amplitude of N massless open strings and find a striking simple and compact form in terms of minimal building blocks: the full N-point amplitude is expressed by a sum over (N−3)! Yang–Mills partial subamplitudes each multiplying a multiple Gaussian hypergeometric function. While the former capture the space–time kinematics of the amplitude the latter encode the string effects. This result disguises a lot of structure linking aspects of gauge amplitudes as color and kinematics with properties of generalized Euler integrals. In this part II the structure of the multiple hypergeometric functions is analyzed in detail: their relations to monodromy equations, their minimal basis structure, and methods to determine their poles and transcendentality properties are proposed. Finally, a Gröbner basis analysis provides independent sets of rational functions in the Euler integrals.

  1. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex.

    Science.gov (United States)

    Chung, Wen-Hsiang; Craighead, John L; Chang, Wei-Hau; Ezeokonkwo, Chukwudi; Bareket-Samish, Avital; Kornberg, Roger D; Asturias, Francisco J

    2003-10-01

    The structure of an RNA polymerase II/general transcription factor TFIIF complex was determined by cryo-electron microscopy and single particle analysis. Density due to TFIIF was not concentrated in one area but rather was widely distributed across the surface of the polymerase. The largest subunit of TFIIF interacted with the dissociable Rpb4/Rpb7 polymerase subunit complex and with the mobile "clamp." The distribution of the second largest subunit of TFIIF was very similar to that previously reported for the sigma subunit in the bacterial RNA polymerase holoenzyme, consisting of a series of globular domains extending along the polymerase active site cleft. This result indicates that the second TFIIF subunit is a true structural homolog of the bacterial sigma factor and reveals an important similarity of the transcription initiation mechanism between bacteria and eukaryotes. The structure of the RNAPII/TFIIF complex suggests a model for the organization of a minimal transcription initiation complex.

  2. Ultrasonic-assisted synthesis and structural characterization of two new nano-structured Hg(II) coordination polymers.

    Science.gov (United States)

    Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali

    2015-11-01

    Two new Hg(II) coordination polymers containing N,N'-Bis-pyridin-3-ylmethylene-naphtalene-1,5-diamine ligand were synthesized by conventional and sonochemical methods, characterized by spectroscopic techniques (FT-IR and elemental analysis), and their X-ray crystallographic structures were determined. The crystal packing and supramolecular features of these coordination polymers were studied using geometrical analysis and Hirshfeld surface analysis. The crystal structure analysis revealed that H⋯H contacts, C-H⋯π and C-H⋯X (X = Cl for 1 and X = Br for 2) hydrogen bonding interactions are strong enough to govern the supramolecular architecture. The BFDH analysis helps us to compare the predicted morphology to that obtained under ultrasonication. This study may provide further insight into discovering the role of weak intermolecular interactions in the context of nano-supramolecular assembly.

  3. Diversity, mobility, and structural and functional evolution of group II introns carrying an unusual 3' extension

    Directory of Open Access Journals (Sweden)

    Tourasse Nicolas J

    2011-12-01

    Full Text Available Abstract Background Group II introns are widespread genetic elements endowed with a dual functionality. They are catalytic RNAs (ribozymes that are able of self-splicing and they are also mobile retroelements that can invade genomic DNA. The group II intron RNA secondary structure is typically made up of six domains. However, a number of unusual group II introns carrying a unique extension of 53-56 nucleotides at the 3' end have been identified previously in bacteria of the Bacillus cereus group. Methods In the present study, we conducted combined sequence comparisons and phylogenetic analyses of introns, host gene, plasmid and chromosome of host strains in order to gain insights into mobility, dispersal, and evolution of the unusual introns and their extension. We also performed in vitro mutational and kinetic experiments to investigate possible functional features related to the extension. Results We report the identification of novel copies of group II introns carrying a 3' extension including the first two copies in bacteria not belonging to the B. cereus group, Bacillus pseudofirmus OF4 and Bacillus sp. 2_A_57_CT2, an uncharacterized species phylogenetically close to B. firmus. Interestingly, the B. pseudofirmus intron has a longer extension of 70 bases. From sequence comparisons and phylogenetic analyses, several possible separate events of mobility involving the atypical introns could be identified, including both retrohoming and retrotransposition events. In addition, identical extensions were found in introns that otherwise exhibit little sequence conservation in the rest of their structures, with the exception of the conserved and catalytically critical domains V and VI, suggesting either separate acquisition of the extra segment by different group II introns or a strong selection pressure acting on the extension. Furthermore, we show by in vitro splicing experiments that the 3' extension affects the splicing properties differently in

  4. Structure and compressibility of the high-pressure molecular phase II of carbon dioxide

    Science.gov (United States)

    Datchi, Frédéric; Mallick, Bidyut; Salamat, Ashkan; Rousse, Gwenaëlle; Ninet, Sandra; Garbarino, Gaston; Bouvier, Pierre; Mezouar, Mohamed

    2014-04-01

    The structure and equation of state of the crystalline molecular phase II of carbon dioxide have been investigated at room temperature from 15.5 to 57.5 GPa using synchrotron x-ray diffraction methods. The CO2 samples were embedded in neon pressure medium in order to provide quasihydrostatic conditions. The x-ray diffraction patterns of phase II are best described by a tetragonal structure, with space group P42/mnm and 2 molecules per unit cell, in accordance with a previous study [Yoo et al., Phys. Rev. B 65, 104103 (2002), 10.1103/PhysRevB.65.104103]. There is however a large (15%) difference in the intramolecular C=O bond length between the present study, 1.14(3) Å, and the latter work (1.329-1.366 Å). The present value is similar to that of the free molecule and is in very good agreement with predictions based on density functional theory. The compressibility of CO2-II determined here also disagrees with the previous study: our value for the zero-pressure bulk modulus, B0=8.5(3) GPa [with B0'=(∂B/∂P)0=6.29], is 15.5 times smaller. These findings oppose the view that CO2-II is an intermediate state between the low-pressure molecular phases and the high-pressure nonmolecular forms, consistent with our previous results for phase IV [Datchi et al., Phys. Rev. Lett. 103, 185701 (2009), 10.1103/PhysRevLett.103.185701]. The x-ray diffraction patterns of CO2-II above 15 GPa indicate the presence of a large orthorhombic microstrain. Carrying out density functional theory calculations of the elastic tensor and stress-strain relation, we interpret this as due to the softness of the crystal against deviatoric stress in the [110] and symmetry-related directions. Unlike the other dioxides of the group-14 elements, there is however no mechanical or dynamical instability of the P42/mnm structure in CO2 up to 57.5 GPa at 295 K, and therefore no symmetry lowering to Pnnm.

  5. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michelle [Univ. of Iowa, Iowa City, IA (United States)

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations using a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.

  6. Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria.

    Science.gov (United States)

    Picard, Aude; Kappler, Andreas; Schmid, Gregor; Quaroni, Luca; Obst, Martin

    2015-02-18

    Twisted stalks are organo-mineral structures produced by some microaerophilic Fe(II)-oxidizing bacteria at O2 concentrations as low as 3 μM. The presence of these structures in rocks having experienced a diagenetic history could indicate microbial Fe(II)-oxidizing activity as well as localized abundance of oxygen at the time of sediment deposition. Here we use spectroscopy and analytical microscopy to evaluate if--and what kind of--transformations occur in twisted stalks through experimental diagenesis. Unique mineral textures appear on stalks as temperature and pressure conditions increase. Haematite and magnetite form from ferrihydrite at 170 °C-120 MPa. Yet the twisted morphology of the stalks, and the organic matrix, mainly composed of long-chain saturated aliphatic compounds, are preserved at 250 °C-140 MPa. Our results suggest that iron minerals might play a role in maintaining the structural and chemical integrity of stalks under diagenetic conditions and provide spectroscopic signatures for the search of ancient life in the rock record.

  7. Mixed-ligand mononuclear copper(II) complex: crystal structure and anticancer activity.

    Science.gov (United States)

    Qin, Xiu-Ying; Liu, Ya-Nan; Yu, Qian-Qian; Yang, Li-Cong; Liu, Ying; Zhou, Yan-Hui; Liu, Jie

    2014-08-01

    A novel copper(II) complex with mixed ligands including β-[(3-formyl-5-methyl-2-hydroxy-benzylidene)amino]propionic acid anion and 1,10'-phenanthroline was synthesized, and its crystal structure was thoroughly characterized. It exerted excellent inducing apoptosis, anti-angiogenesis and antiproliferative properties in vitro. The complex can bind human serum albumin (HSA) at physiological pH conditions. Remarkably, it can induce formation of the mixed parallel/antiparallel G-quadruplex structures in the G-rich sequence of the proximal vascular endothelial growth factor (VEGF) promoter, and stabilize these G-quadruplex structures, which provide an opportunity for anti-angiogenesis chemotherapeutics. Furthermore, the complex showed a strong uptake, and exhibited multiple anticancer functions by inhibiting the expression of p-Akt and p-Erk1/2 proteins and by upregulating the levels of reactive oxygen species (ROS). Because of the reported results, this new copper(II) complex qualifies itself as a potential anticancer drug candidate.

  8. Structure of the minor pseudopilin XcpW from the Pseudomonas aeruginosa type II secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Laura P.; Douzi, Badreddine; Durand, Eric; Dyer, David H.; Voulhouxd, Romé; Forest, Katrina T. (CNRS-UMR); (CNRS-CRMD); (UW)

    2012-01-13

    Pseudomonas aeruginosa utilizes the type II secretion machinery to transport virulence factors through the outer membrane into the extracellular space. Five proteins in the type II secretion system share sequence homology with pilin subunits of type IV pili and are called the pseudopilins. The major pseudopilin X{sub cp}T{sub G} assembles into an intraperiplasmic pilus and is thought to act in a piston-like manner to push substrates through an outer membrane secretin. The other four minor pseudopilins, X{sub cp}U{sub H}, X{sub cp}V{sub I}, X{sub cp}W{sub J} and X{sub cp}X{sub K}, play less well defined roles in pseudopilus formation. It was recently discovered that these four minor pseudopilins form a quaternary complex that is presumed to initiate the formation of the pseudopilus and to localize to its tip. Here, the structure of X{sub cp}W{sub J} was refined to 1.85 {angstrom} resolution. The structure revealed the type IVa pilin fold with an embellished variable antiparallel {beta}-sheet as also found in the X{sub cp}W{sub J} homologue enterotoxigenic Escherichia coli G{sub sp}J{sub W} and the X{sub cp}U{sub H} homologue Vibrio cholerae E{sub ps}U{sub H}. It is proposed that the exposed surface of this sheet may cradle the long N-terminal 1 helix of another pseudopilin. The final 31 amino acids of the X{sub cp}W{sub J} structure are instrinsically disordered. Deletion of this unstructured region of X{sub cp}W{sub J} did not prevent type II secretion in vivo.

  9. Palladium(II) complex with thiazole containing tridentate ONN donor ligand: Synthesis, X-ray structure and DFT computation

    Science.gov (United States)

    Biswas, Sujan; Pramanik, Ajoy Kumar; Mondal, Tapan Kumar

    2015-05-01

    New palladium(II) complex with 2-(2-thiazolyl)-4-methylphenol (TAC) having general formula [Pd(TAC)Cl) (1) has been synthesized and characterized. The complex has been characterized by various spectroscopic techniques. Single crystal X-ray structure shows distorted square planar geometry around palladium(II). Cyclic voltammetric studies shows ligand based irreversible oxidation and reduction peaks. The electronic structure, redox properties and electronic excitations in the complex are interpreted by DFT and TDDFT calculations.

  10. A porous Cu(II) metal-organic framework: Synthesis, crystal structure and gas adsorption properties

    Science.gov (United States)

    Li, Wu-Wu; Guo, Ying; Zhang, Wei-Hong

    2017-09-01

    Presented here is a new porous Cu(II) metal-organic framework, namely [Cu(tdc)(H2O)]n·n(DMA) (1 H2tdc = thiophene-2,5-dicarboxylic acid, DMA = N,N‧-dimethylacetamide), which was obtained by the self-assembly reaction of CuCl2 and H2tdc under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D chain structure subunits, and the 1D rhombohedral channels are occupied by the lattice DMA molecules. Gas adsorption studies reveal that this desolvated sample exhibit high uptake capacity for light hydrocarbons.

  11. Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Å resolution

    OpenAIRE

    Gnatt, A; Cramer, P; Fu, J.; Bushnell, D; Kornberg, R

    2001-01-01

    The crystal structure of RNA polymerase II in the act of transcription was determined at 3.3  resolution. Duplex DNA is seen entering the main cleft of the enzyme and unwinding before the active site. Nine base pairs of DNA-RNA hybrid extend from the active center at nearly right angles to the entering DNA, with the 39 end of the RNA in the nucleotide addition site. The 39 end is positioned above a pore, through which nucleotides may enter and through which RNA may be extruded during back-tr...

  12. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II.

    Science.gov (United States)

    Westover, Kenneth D; Bushnell, David A; Kornberg, Roger D

    2004-02-13

    The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.

  13. Reducing democratic type II supergravity on SU(3) x SU(3) structures

    CERN Document Server

    Cassani, Davide

    2008-01-01

    Type II supergravity on backgrounds admitting SU(3) x SU(3) structure and general fluxes is considered. Using the generalized geometry formalism, we study dimensional reductions leading to N=2 gauged supergravity in four dimensions, possibly with tensor multiplets. In particular, a geometric formula for the full N=2 scalar potential is given. Then we implement a truncation ansatz, and derive the complete N=2 bosonic action. While the NSNS contribution is obtained via a direct dimensional reduction, the contribution of the RR sector is computed starting from the democratic formulation and demanding consistency with the reduced equations of motion.

  14. Hyperfine structure constants for singly ionized manganese (Mn II) using Fourier transform spectroscopy

    Science.gov (United States)

    Townley-Smith, Keeley; Nave, Gillian; Pickering, Juliet C.; Blackwell-Whitehead, Richard J.

    2016-09-01

    We expand on the comprehensive study of hyperfine structure (HFS) in Mn II conducted by Holt et al. (1999) by verifying hyperfine magnetic dipole constants (A) for 20 levels previously measured by Holt et al. (1999) and deriving A constants for 47 previously unstudied levels. The HFS patterns were measured in archival spectra from Fourier transform (FT) spectrometers at Imperial College London and the National Institute of Standards and Technology. Analysis of the FT spectra was carried out in XGREMLIN. Our A constant for the ground level has a lower uncertainty by a factor of 6 than that of Blackwell-Whitehead et al.

  15. SYNTHESIS AND CRYSTAL STRUCTURE OF A NEW Fe(II α-DIOXIMATE WITH TRIAZINE

    Directory of Open Access Journals (Sweden)

    О. Ciobanica

    2013-06-01

    Full Text Available The interaction of [Fe(DfgH2Py2] (where DfgH=monodeprotonated diphenylglyioxime, Py-pyridune and 1,3,5-triazine (Trz in chloroform resulted in a new coordination compound with the composition [Fe(DfgH2(Trz2]·2CHCl3 (1. The crystal structure of 1, determined by single crystal X-ray diffraction, revealed that Fe(II atom is coordinated by four oximic nitrogen atoms of two DfgH and two nitrogen atoms of two Trz ligands resulting in octahedral surrounding.

  16. Crystal structure of the coordination polymer [FeIII2{PtII(CN4}3

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2015-01-01

    Full Text Available The title complex, poly[dodeca-μ-cyanido-diiron(IIItriplatinum(II], [FeIII2{PtII(CN4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN4]2− anions (point group symmetry 2/m bridging cationic [FeIIIPtII(CN4]+∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN4]+∞ layers corresponds to the length a/2 = 8.0070 (3 Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN4]2− groups corresponds to the length of the c axis [7.5720 (2 Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

  17. Growth, structure, crystalline perfection and characterization of Mg(II)-incorporated tris(thiourea)Zn(II) sulfate crystals: Enhanced second harmonic generation (SHG) efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, K. [Department of Chemistry, Annamalai University, Annamalainagar-608 002 (India); Bhagavannarayana, G. [Crystal Growth and X-ray Analysis Activity, Council of Scientific and Industrial Research, National Physical Laboratory, New Delhi-110 012 (India); Meenakshisundaram, S.P., E-mail: aumats2009@gmail.com [Department of Chemistry, Annamalai University, Annamalainagar-608 002 (India)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer A small quantity incorporation of Mg(II)- enhances the SHG efficiency of ZTS. Black-Right-Pointing-Pointer Crystal stress is observed. Black-Right-Pointing-Pointer Structure of Mg(II)-incorporated ZTS is elucidated. Black-Right-Pointing-Pointer Crystalline perfection is evaluated by HRXRD. - Abstract: Single crystals of Mg(II)-incorporated tris(thiourea)Zn(II) sulfate (MZTS) have been grown from aqueous solution at room temperature by slow evaporation solution growth technique. The incorporation of Mg(II)- into the crystalline lattice was well confirmed by energy dispersive X-ray spectroscopy (EDS) and by single crystal X-ray diffraction technique. The reduction in the intensities observed in powder X-ray diffraction patterns of doped specimen and slight shifts in vibrational frequencies in FT-IR indicate the lattice stress as a result of doping. Thermal studies reveal the purity of the material and no decomposition is observed up to the melting point. High transmittance is observed in the visible region and the band gap energy is estimated by Kubelka-Munk algorithm. Surface morphology of doped material was observed by scanning electron microscopy (SEM). Decreased crystalline perfection by doping observed by high-resolution X-ray diffraction (HRXRD) analysis is justified by the crystal stress. Even a small quantity incorporation of Mg(II)- enhances the SHG efficiency significantly. The as-grown crystal is further characterized by microhardness and dielectric studies.

  18. Zinc(II) complexes of carboxamide derivatives: Crystal structures and interaction with calf thymus DNA

    Indian Academy of Sciences (India)

    Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2015-10-01

    Two mononuclear zinc(II) complexes of newly designed carboxamide derivatives, formulated as [Zn(L1)3](ClO4)2 (1) and [Zn(L2)3](ClO4)2 (2) [where L1 = -(furan-2-ylmethyl)-2-pyridinecarboxamide and L2 = -(thiophen-2-ylmethyl)-2-pyridine-carboxamide], have been isolated in pure form in the reaction of perchlorate salts of Zn(II) with ligands L1 and L2, respectively. The two complexes were characterized by physicochemical and spectroscopic tools, and by X-ray crystal structures of both ligands and the complex 1. In complex 1, zinc(II) is chelated by three ligands with a distorted octahedral geometry. The DNA-binding properties of zinc complexes 1 and 2 have been investigated by spectroscopic methods and viscosity measurements. The results suggest that both complexes 1 and 2 bind to DNA in an intercalation mode between the uncoordinated furan or thiophene chromophore and the base pairs of DNA.

  19. Crystal Structures and Antifungal Activities of Fluorine-Containing Thioureido Complexes with Nickel(II

    Directory of Open Access Journals (Sweden)

    Chun Li

    2013-12-01

    Full Text Available Ni(II complexes with N-2-fluorobenzoylpiperidine-1-carbothioimidate (L2−, N-4-fluorobenzoylpiperidine-1-carbothioimidate (L3−, N-2-fluorobenzoylmorpholine- 1-carbothioimidate (L5− and N-4-fluorobenzoylmorpholine-1-carbothioimidate (L6−  have been synthesized and characterized by elemental analysis, FTIR and 1H-NMR. The crystal structures of three ligands (HL2, HL3 and HL6 and the corresponding Ni(II complexes ([Ni(L22], [Ni(L32] and [Ni(L62] have been determined by X-ray diffraction. The antifungal activities of the Ni(II complexes together and the corresponding ligands against the fungi Botrytis cinerea, Trichoderma spp., Myrothecium and Verticillium spp. have been investigated. The experimental results showed that the ligands and their complexes have antifungal abilities. When the fluorine was substituted on the para-benzoyl moiety, the antifungal activity of the ligands was obviously increased. Moreover, the ligands were stronger than their complexes in inhibiting fungal activities. The antifungal ability of HL6 is especially strong, and similar to that of the commercial fungicide fluconazole.

  20. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong; (Houston)

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  1. Synthesis, crystal structure and Thermogravimetry of ortho-phthalic acid bridged coordination polymer of Copper(II)

    Indian Academy of Sciences (India)

    BABITA SARMA; SAURAV BHARALI; DIGANTA KUMAR DAS

    2016-06-01

    Coordination polymer of Cu(II) bridged by o-phthalic acid alone is not known. The reaction of$CuCl_{2}.2H_{2}O$ with (2-butoxycarbonyl)benzoic acid yielded three dimensional coordination polymer bridged byo-phthalic acid. X-ray crystal structure shows structure with monoclinic P21/c space group. o-Phthalic acidmolecules act as bridge between two Cu(II), one carboxylate binds to one Cu(II) as bidentate while the othercarboxylate binds to another Cu(II) as monodentate. The four planar co-ordination positions of Cu(II) aresatisfied by two chelated carboxylates while fifth and sixth co-ordination positions are satisfied by monodentatecarboxylates. EPR and TGA of the coordination polymer are also reported.

  2. Magnetic Structure of Continental Crust:Implications for Crustal Structure and Evolution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance for crustal tectonics, composition, metamorphic facies, crust-mantle interaction and magnetization of deep crust. Further studies are suggested according to the basic principles of rock and mineral magnetism in terms of petrology, geochemistry and structural geol ogy. Emphasis is placed on new geological ideas and synthetic studies of the relationship between deep geological processes and interpretation of gravity, magnetic, electrical and seismic data. The relationships between magnetic, density, electricity, velocity, geothermal structures and deep geodynamic processes are taken as a system for the research into the deep geology.

  3. Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff's base ligand

    Science.gov (United States)

    Ammar, Reda A.; Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Al-Bedair, Lamia A.

    2017-08-01

    Tridentate Schiff's base (HL) ligand was synthesized via condensation of salicylaldehyde and 3-hydroxypyridin-2-yliminomethyl-4H-chromen-4-one and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR), magnetic moment, EPR, and thermal measurements. The IR spectra showed that HL was coordinated to the metal ions in tridentate manner with O2N donor sites of the azomethine N, deprotonated phenolic-OH and carbonyl-O. The activation of thermodynamic parameters are calculated using Coast-Redfern and Horowitz-Metzger (HM). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations, UV-Vis and magnetic moment measurements, ESR and ligand field parameters. Antioxidant activities have also been performed for all the compounds. The investigated ligand and metal complexes were screened for their in-vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data assert on the inspected compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated towards human liver Carcinoma (HepG2) cell line.

  4. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum--implications for Precambrian Fe(II) oxidation.

    Science.gov (United States)

    Wu, Wenfang; Swanner, Elizabeth D; Hao, Likai; Zeitvogel, Fabian; Obst, Martin; Pan, Yongxin; Kappler, Andreas

    2014-06-01

    Anoxygenic phototrophic Fe(II)-oxidizing bacteria (photoferrotrophs) are suggested to have contributed to the deposition of banded iron formations (BIFs) from oxygen-poor seawater. However, most studies evaluating the contribution of photoferrotrophs to Precambrian Fe(II) oxidation have used freshwater and not marine strains. Therefore, we investigated the physiology and mineral products of Fe(II) oxidation by the marine photoferrotroph Rhodovulum iodosum. Poorly crystalline Fe(III) minerals formed initially and transformed to more crystalline goethite over time. During Fe(II) oxidation, cell surfaces were largely free of minerals. Instead, the minerals were co-localized with EPS suggesting that EPS plays a critical role in preventing cell encrustation, likely by binding Fe(III) and directing precipitation away from cell surfaces. Fe(II) oxidation rates increased with increasing initial Fe(II) concentration (0.43-4.07 mM) under a light intensity of 12 μmol quanta m(-2) s(-1). Rates also increased as light intensity increased (from 3 to 20 μmol quanta m(-2) s(-1)), while the addition of Si did not significantly change Fe(II) oxidation rates. These results elaborate on how the physical and chemical conditions present in the Precambrian ocean controlled the activity of marine photoferrotrophs and confirm the possibility that such microorganisms could have oxidized Fe(II), generating the primary Fe(III) minerals that were then deposited to some Precambrian BIFs. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Palladium(II) complexes with tris(2-carboxyethyl)phosphine, structure, reactions and cytostatic activity.

    Science.gov (United States)

    Pruchnik, Hanna; Lis, Tadeusz; Latocha, Małgorzata; Zielińska, Aleksandra; Pruchnik, Florian P

    2016-03-01

    Water soluble and air stable P(RCOOH)3 (R=C2H4) (TCEP) is an efficient reducing agent used in biochemistry to break S-S bond in peptides, proteins and other compounds containing S-S bonds. The similarity between the coordination chemistry of Pd(II) and Pt(II) led to the investigations of antitumor activity of palladium(II) compounds however the Pd(II) complexes with TCEP were not investigated. New palladium(II) complexes with (TCEP): trans-[PdCl2(TCEP)2] (1) and trans-[Pd2(μ-Cl)2Cl2(TCEP)2] (2) were fully characterized by (1)H, (13)C, (31)P NMR, IR and ESI-MS spectroscopic techniques. Complexes are stable in non-aqueous DMSO and DMF. In aqueous solutions Cl ligands are substituted by COO groups of phosphines. Complex 2, after crystallization from water gives polymeric compound with bridging phosphine ligand [PdCl{P(RCOO-κO-μ-O')(RCOOH)2-κP}] (3). Structures of trans-[PdCl2{P(RCOOD)3}2] (1a), trans-[Pd2(μ-Cl)2PdCl2{P(RCOOD)3}2] (2a), and [PdCl{P(RCOO-κO-μ-O')(RCOOD)2-κP}]n (3a) have been determined by X-ray crystallography. NMR and ESI-MS spectra reveal that [PdP2(RCOO-κO)2(RCOO)n(RCOOH)4-n](n)(-) complexes are formed in aqueous solution of 1. Geometry optimization in the gas phase at the B3LYP/3-21G** level indicated that complex 2 with butterfly structure is more stable than that with coplanar coordination. In aqueous solution of 2, the main products [Pd2{P(RCOO-κO-μ-O')(RCOO-κO)(RCOOH)}2] and [Pd{P(RCOO-κO)2(RCOOH)}(H2O)] exist in equilibrium which depends on temperature: content of mononuclear compound increases as the temperature is raised. Complexes 1 and 2 are active agents against melanoma and breast cancer cells.

  6. Synthesis, NMR spectral and structural studies on mixed ligand complexes of Pd(II) dithiocarbamates: First structural report on palladium(II) dithiocarbamate with SCN-ligand

    Science.gov (United States)

    Prakasam, Balasubramaniam Arul; Lahtinen, Manu; Peuronen, Anssi; Muruganandham, Manickavachagam; Kolehmainen, Erkki; Haapaniemi, Esa; Sillanpää, Mika

    2016-03-01

    Three new mixed ligand complexes of palladium(II) dithiocarbamates; [Pd(4-dpmpzdtc)(PPh3)(SCN)] (1), [Pd(4-dpmpzdtc)(PPh3)Cl] (2) and [Pd(bzbudtc)(PPh3)Cl] (3), (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bzbudtc = N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine) have been synthesized from their respective parent dithiocarbamates by ligand exchange reactions and characterized by IR and NMR (1H, 13C and 31P) spectroscopy. IR and NMR spectral data support the isobidentate coordination of the dithiocarbamate ligands in all complexes (1-3) in solid and in solution, respectively. Single crystal diffraction analysis of complexes 1-3 evidences that all three complexes are exhibiting distorted square planar geometry. The Pd-S distances in 1-3 vary in accordance with the differences in trans influences of PPh3, SCN- and Cl- and it is in the order of PPh3 > SCN- > and Cl-. Interchange of the anionic auxiliary ligand (SCN- to Cl-) induces asymmetry to the dithiocarbamate-metal bonds. Thioureide C-N bond distances are short in 1-3, supporting a contribution of thioureide form to the structures. The observed distortions in the square planar geometry for 1-3, are in the order of 1 > 2 > 3.

  7. Isolation of four new CoII/CoIII and NiII complexes with a pentadentate Schiff base ligand: syntheses, structural descriptions and magnetic studies.

    Science.gov (United States)

    Banerjee, Sambuddha; Nandy, Madhusudan; Sen, Soma; Mandal, Sandip; Rosair, Georgina M; Slawin, Alexandra M Z; Gómez García, Carlos J; Clemente-Juan, Juan M; Zangrando, Ennio; Guidolin, Nicol; Mitra, Samiran

    2011-02-28

    In this paper we report the temperature and pH dependent syntheses and systematic characterization of four new Co(II)/Co(III) and Ni(II) complexes with a pentadentate Schiff base ligand H(3)L obtained by condensing 1,3,-diaminopropan-2-ol with 2-hydroxyacetophenone in 1:2 molar ratio. The room temperature syntheses involving Co(II) and Ni(II) nitrates and the ligand H(3)L lead to the isolation of the dinuclear species [Co(2)L(2)(H(2)O)] (1), and the mononuclear complex [Ni(LH)] (3), respectively, whereas refluxing at basic pH leads to the tetranuclear complexes, [Co(II)(2)Co(III)(2)L(2)(μ(3)-OMe)(2)(NO(3))(H(2)O)(2)]NO(3)·2(H(2)O) (2), and [Ni(4)L(2)(μ(3)-OMe)(2)(H(2)O)(2)]·2H(2)O (4). 1 is found to be a simple mono alkoxo-bridged Co(III) dinuclear species, whereas 2 and 4 are both rhomb-like tetrameric complexes with double oxo bridges and μ(3)-methoxo bridges, derived from the methanol solvent, in an open dicubane arrangement. Moreover 2 shows six coordinate ordered Co(II) and Co(III) ions and 4 has both six- and five-coordinate Ni(II) centers. Compound 3 is assigned a tentative mononuclear structure based on IR, UV-Vis spectroscopic, (1)H-NMR and ESI mass study results and is supposed to have one Ni(II) center coordinated with a ligand fragment in square planar geometry. The variable temperature magnetic susceptibility study for 2 and 4 is performed which indicate for both 2 and 4 the presence of intracluster dominant ferromagnetic interactions.

  8. Six missense mutations associated with type I and type II protein C deficiency and implications obtained from molecular modelling.

    Science.gov (United States)

    Zheng, Y Z; Sakata, T; Matsusue, T; Umeyama, H; Kato, H; Miyata, T

    1994-10-01

    The molecular basis of protein C deficiency was studied in three type I and three type II heterozygotes. Three probands showed thrombotic complications. All the exons and intron/exon junctions of the protein C gene were studied using a strategy combining by the polymerase chain reaction (PCR) amplification, single-strand conformational polymorphism (SSCP) analysis, and DNA sequencing of the PCR-amplified fragments. Six missense mutations were identified, including three novel ones. One was located in exon II, in which the initiating translation codon (ATG) encoding for Met at position -42 was replaced by ACG encoding for Thr. The other five were located in exon IX, and included TAC(Tyr399)-->CAC(His), CCG(Pro327)-->CTG(Leu), GAC(Asp359)-->AAC(Asn) in two cases, and GGG(Gly350)-->AGG(Arg). Four of the six missense mutations occurred in CG dinucleotide. Sequence analysis of the other exons excluded additional mutations. By restriction enzyme analysis, co-segregation of the mutation with protein C deficiency was observed in four families. The other two mutations at amino acid positions -42 and 350 were also considered to be associated with protein C deficiency due to the absence of these mutations in 50 normal individuals. A structural model of the protease domain of mutant activated protein C was constructed by the chimeric modelling method, and the resultant model suggested conformational changes due to each missense mutation identified in protein C deficiency. The present data also provide some evidence regarding the genetic heterogeneity of protein C deficiency.

  9. Nucleon spin structure II: Spin structure function $g_1^p$ at small $x$

    CERN Document Server

    Zhu, Wei

    2015-01-01

    The spin structure function $g_1^p$ of the proton is studied in a two component framework, where the perturbative evolution of parton distributions and nonperturbative vector meson dominance model are used. We predict the $g_1^p$ asymmetric behavior at small $x$ from lower $Q^2$ to higher $Q^2$. We find that the contribution of the large gluon helicity dominates $g_1^p$ at $x>10^{-3}$ but mixed with nonperturbative component which complicates the asymptomatic behavior of $g_1^p$ at $x<10^{-3}$. The results are compatible with the data including the HERA early estimations and COMPASS new results. The predicted strong $Q^2$- and $x$-dependence of $g_1^p$ at $0.01

  10. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    Science.gov (United States)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  11. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration.

    Science.gov (United States)

    Endtmann, Cathleen; Ebrahimian, Talin; Czech, Thomas; Arfa, Omar; Laufs, Ulrich; Fritz, Mathias; Wassmann, Kerstin; Werner, Nikos; Petoumenos, Vasileios; Nickenig, Georg; Wassmann, Sven

    2011-09-01

    Endothelial progenitor cells (EPCs) contribute to endothelial regeneration. Angiotensin II (Ang II) through Ang II type 1 receptor (AT(1)-R) activation plays an important role in vascular damage. The effect of Ang II on EPCs and the involved molecular mechanisms are incompletely understood. Stimulation with Ang II decreased the number of cultured human early outgrowth EPCs, which express both AT(1)-R and Ang II type 2 receptor, mediated through AT(1)-R activation and induction of oxidative stress. Ang II redox-dependently induced EPC apoptosis through increased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase phosphorylation; decreased Bcl-2 and increased Bax expression; and activation of caspase 3 but had no effect on the low cell proliferation. In addition, Ang II impaired colony-forming and migratory capacities of early outgrowth EPCs. Ang II infusion diminished numbers and functional capacities of EPCs in wild-type (WT) but not AT(1)a-R knockout mice (AT(1)a(-/-)). Reendothelialization after focal carotid endothelial injury was decreased during Ang II infusion. Salvage of reendothelialization by intravenous application of spleen-derived progenitor cells into Ang II-treated WT mice was pronounced with AT(1)a(-/-) cells compared with WT cells, and transfusion of Ang II-pretreated WT cells into WT mice without Ang II infusion was associated with less reendothelialization. Transplantation of AT(1)a(-/-) bone marrow reduced atherosclerosis development in cholesterol-fed apolipoprotein E-deficient mice compared with transplantation of apolipoprotein E-deficient or WT bone marrow. Randomized treatment of patients with stable coronary artery disease with the AT(1)-R blocker telmisartan significantly increased the number of circulating CD34/KDR-positive EPCs. Ang II through AT(1)-R activation, oxidative stress, and redox-sensitive apoptosis signal-regulating kinase 1-dependent proapoptotic pathways impairs EPCs in

  12. Structural synaptic plasticity in the hippocampus induced by spatial experience and its implications in information processing.

    Science.gov (United States)

    Carasatorre, M; Ramírez-Amaya, V; Díaz Cintra, S

    2016-10-01

    Long-lasting memory formation requires that groups of neurons processing new information develop the ability to reproduce the patterns of neural activity acquired by experience. Changes in synaptic efficiency let neurons organise to form ensembles that repeat certain activity patterns again and again. Among other changes in synaptic plasticity, structural modifications tend to be long-lasting which suggests that they underlie long-term memory. There is a large body of evidence supporting that experience promotes changes in the synaptic structure, particularly in the hippocampus. Structural changes to the hippocampus may be functionally implicated in stabilising acquired memories and encoding new information. Copyright © 2012 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. On the polymorphism of benzocaine; a low-temperature structural phase transition for form (II).

    Science.gov (United States)

    Chan, Eric J; Rae, A David; Welberry, T Richard

    2009-08-01

    A low-temperature structural phase transition has been observed for form (II) of benzocaine (BZC). Lowering the temperature doubles the b-axis repeat and changes the space group from P2(1)2(1)2(1) to P112(1) with gamma now 99.37 degrees. The structure is twinned, the twin rule corresponding to a 2(1) screw rotation parallel to a. The phase transition is associated with a sequential displacement parallel to a of zigzag bi-layers of ribbons perpendicular to b*. No similar phase transition was observed for form (I) and this was attributed to the different packing symmetries of the two room-temperature polymorphic forms.

  14. Dynamics of zonal flow-like structures in the edge of the TJ-II stellarator

    CERN Document Server

    Alonso, J A; Arévalo, J; Hidalgo, C; Pedrosa, M A; Van Milligen, B Ph; Carralero, D

    2012-01-01

    The dynamics of fluctuating electric field structures in the edge of the TJ-II stellarator, that display zonal flow-like traits, is studied. These structures have been shown to be global and affect particle transport dynamically [J.A. Alonso et al., Nucl. Fus. 52 063010 (2012)]. In this article we discuss possible drive (Reynolds stress) and damping (Neoclassical viscosity, geodesic transfer) mechanisms for the associated ExB velocity. We show that: (a) while the observed turbulence-driven forces can provide the necessary perpendicular acceleration, a causal relation could not be firmly established, possibly because of the locality of the Reynolds stress measurements, (b) the calculated neoclassical viscosity and damping times are comparable to the observed zonal flow relaxation times, and (c) although an accompanying density modulation is observed to be associated to the zonal flow, it is not consistent with the excitation of pressure side-bands, like those present in geodesic acoustic oscillations, caused b...

  15. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  16. Magnetic properties of copper(II) complexes containing peptides. Crystal structure of [Cu(phe-leu)

    Science.gov (United States)

    Sanchiz, J.; Kremer, C.; Torre, M. H.; Facchin, G.; Kremer, E.; Castellano, E. E.; Ellena, J.

    2006-09-01

    A novel copper(II) complex containing the peptide phe-leu has been prepared and characterized. The crystal structure of [Cu(phe-leu)] ( 1) was determined by X-ray diffraction. The presence of carboxylate and amido bridges allows the formation of an extended 2D arrangement. This structure is similar to those found in [Cu(gly-val)] · 1/2H 2O ( 2), [Cu(val-gly)] ( 3), [Cu(val-phe)] ( 4), and [Cu(phe-phe)] ( 5). The magnetic properties of compounds 1- 5 were studied and analyzed comparatively. The experimental data show that the magnetic interactions are mainly transmitted through μ 2-COO - bridges, being ferromagnetic for 1 and 3, and antiferromagnetic for 2, 4 and 5.

  17. Gender moderates the impact of need for structure on social beliefs: implications for ethnocentrism and authoritarianism.

    Science.gov (United States)

    Kemmelmeier, Markus

    2010-06-01

    The present research examines the interplay between individual differences in need for structure, social beliefs, and gender. It is well documented that need for structure, that is, a preference for structure and simplicity in one's thinking, predicts authoritarianism and ethnocentrism. Further, women tend to score lower in authoritarianism and ethnocentrism than men. Although there seem to be no gender differences in need for structure, the present research hypothesizes that the association between need for structure and social beliefs is stronger for men than for women. This hypothesis comes from the observation that, all else being equal, men tend to think more about the domain of beliefs such as authoritarianism and ethnocentrism, which should strengthen the relationship between men's cognitive needs and their social beliefs. The hypothesis is also motivated by the finding that, more than men, women often give priority to caring and compassion when forming beliefs about outgroups. This should weaken the link between women's cognitive needs and their social beliefs. Three studies conducted in the USA (n = 398) and one study conducted in Germany (n = 112) examined whether gender moderated the influence of need for structure on authoritarianism and racism. Using a variety of measures, need for structure predicted authoritarianism and racism for men, but not for women. The discussion focuses on the implications of the present findings for the relationship between cognitive orientations and social beliefs. It is argued that research on cognitive orientation and social beliefs needs to take gender into account to improve its accuracy of prediction.

  18. Structural changes of the oxygen-evolving complex in photosystem II during the catalytic cycle.

    Science.gov (United States)

    Glöckner, Carina; Kern, Jan; Broser, Matthias; Zouni, Athina; Yachandra, Vittal; Yano, Junko

    2013-08-02

    The oxygen-evolving complex (OEC) in the membrane-bound protein complex photosystem II (PSII) catalyzes the water oxidation reaction that takes place in oxygenic photosynthetic organisms. We investigated the structural changes of the Mn4CaO5 cluster in the OEC during the S state transitions using x-ray absorption spectroscopy (XAS). Overall structural changes of the Mn4CaO5 cluster, based on the manganese ligand and Mn-Mn distances obtained from this study, were incorporated into the geometry of the Mn4CaO5 cluster in the OEC obtained from a polarized XAS model and the 1.9-Å high resolution crystal structure. Additionally, we compared the S1 state XAS of the dimeric and monomeric form of PSII from Thermosynechococcus elongatus and spinach PSII. Although the basic structures of the OEC are the same for T. elongatus PSII and spinach PSII, minor electronic structural differences that affect the manganese K-edge XAS between T. elongatus PSII and spinach PSII are found and may originate from differences in the second sphere ligand atom geometry.

  19. Determination of the structure of P II protein from H. seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Benelli, M.; Souza, E.M.; Delboni, F.; Pedrosa, F.O. [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica; Buck, M. [Imperial Coll. of Science and Technology and Medicine, London (United Kingdom). Dept. of Biology; Moore, M.; Harper, A. [New York Univ., NY (United States). Dept. of Chemistry

    1997-12-31

    Full text. The P II protein, the product of the glnB gene is involved in a signal transducing cascade that controls nitrogen fixation in diazotrophs. The PII protein of H. seropedicae was over-produced in Escherichia coli RB9065 (glnB, glnD mutant), as PII-His from the plasmid pEMB101.7 and native PII from the plasmid pEMB101.8. Both plasmids yielded soluble proteins which were purified, the PII protein was crystallized and its structure solved at 3.0 A resolution by molecular replacement, using the E. coli PII structure as a model. The protein is a trimer and the monomer has a double bab motif. Comparison of the PII proteins of both organisms showed that the main structural difference was in the C-terminal. The T loop that contains the Tyr 51 residue was not visible in the H. seropedicae PII crystal structure. To determine the T loop structure and improve the resolution, the PII protein from H. seropedicae is being co-crystallized in the presence of small ligands, ATP and 2-ketoglutarate. (author)

  20. Assignment of PolyProline II conformation and analysis of sequence--structure relationship.

    Science.gov (United States)

    Mansiaux, Yohann; Joseph, Agnel Praveen; Gelly, Jean-Christophe; de Brevern, Alexandre G

    2011-03-31

    Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein-protein interactions. A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined. The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence-structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field.

  1. Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship

    Science.gov (United States)

    Gelly, Jean-Christophe; de Brevern, Alexandre G.

    2011-01-01

    Background Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein – protein interactions. Methodology/Principal Findings A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined. Conclusions/Significance The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence – structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field. PMID

  2. Nuclear structure and the fate of core collapse (Type II) supernova

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Moshe [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097 (United States); Wright Lab, Dept. of Physics, Yale University, New Haven, CT 06520-8124 (United States)

    2014-08-15

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low as 17–18M{sub ⊙} (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M{sub ⊙}, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear inputs to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector of the {sup 12}C(α,γ){sup 16}O reaction that determines the C/O ratio in stellar helium burning.

  3. Stabilization of acyclic water tetramer in a copper(II) malonate framework structure.

    Science.gov (United States)

    Deshpande, Megha S; Kumbhar, Avinash S; Näther, Christian

    2010-10-14

    Copper(II) complex [Cu(dpq)(mal)(H(2)O)]·3H(2)O (1) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline, mal = malonato) was synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and single-crystal X-ray crystallography. The single-crystal X-ray structure of 1 reveals a square pyramidal structure, with the dipyrido-[3,2-d:2',3'-f]-quinoxaline and malonato at the equatorial positions and a water molecule at the axial position. The molecule acts as a building block generating a supramolecular three-dimensional metal-organic framework (MOF) encapsulating metal linked acyclic water tetramer. The H-bonding capacity of malonato and the π-π stacking interactions of dipyrido-[3,2-d:2',3'-f]-quinoxaline further reinforce the framework. The copper(II) bound hydroxyl group is demonstrated to mediate hydrolytic cleavage of plasmid pBR322 DNA under dark conditions.

  4. Synthesis, structure and some properties of a manganese(II) benzoate containing diimine

    Science.gov (United States)

    Paul, Pranajit; Roy, Subhadip; Sarkar, Sanjoy; Chowdhury, Shubhamoy; Purkayastha, R. N. Dutta; Raghavaiah, Pallepogu; McArdle, Patrick; Deb, Lokesh; Devi, Sarangthem Indira

    2015-12-01

    A new monomeric manganese(II) benzoate complex containing nitrogen donor 2,2‧-bipyridine, [Mn(OBz)2(bipy)(H2O)] (OBz = benzoate, bipy = 2,2‧-bipyridine) has been synthesized from aqueous methanol medium and characterized by analytical, spectroscopic and single crystal X-ray diffraction studies. The compound exhibits moderate to appreciable antimicrobial activity. The complex crystallizes in space group P21/n. Mn(II) atom is ligated by two N atoms of bipyridine, three O atoms from a monodentate and a bidentate benzoate ligand and a water molecule forming distorted octahedral structure. The coordinated water molecule forms intramolecular hydrogen bonds and links the monomer molecules into hydrogen bonded dimer. The hydrogen bonded dimers are involved in intermolecular C-H···O and π-π stacking interactions. Density functional theory (DFT) computation was carried out to compute the frequencies of relevant vibrational modes and electronic properties, the results are in compliance with the experimentally obtained structural and spectral data.

  5. Synthesis and structure of copper(II) complexes: Potential cyanide sensor and oxidase model'

    Indian Academy of Sciences (India)

    PALASH MONDAL; SANKAR PRASAD PARUA; POULAMI PATTANAYAK; UTTAM DAS; SURAJIT CHATTOPADHYAY

    2016-05-01

    The new complexes of compositions $[(L_{a})_{2}Cu]$ and $[(L_{b})_{2}Cu]$ were prepared by treating with2-hydroxy-5-methyl-3-(2-aryldiazenyl)phenylimino) methyl) benzaldehyde $(HL_{a})$ and ethyl-2-cyano-3-(2-hydroxy-5-methyl-3-(-(2-aryldiazenyl) phenylimino) methyl) phenyl) acrylate $(HL_{b})$ ligands [where aryl isphenyl for $HL_{a}^{1}$ and $HL_{b}^{1}$ ; p-methyl phenyl for $HL_{a}^{2}$ and $HL_{b}^{2}$ ; and p-chloro phenyl for $HL_{a}^{3}$ and $HL_{b}^{3}$ ] with $Cu(OAc)_{2}.H_{2}O$, respectively. Both the bis copper(II) complexes consist of tridentate (N,N,O) anionic ligands, $L^{-}_a$ or $L^{-}_b$ . X-ray structures of the representative complexes $[(L^{1}_{a})_{2}Cu]$ and $[(L^{2}_{b})_{2}Cu]$ were determined toconfirm the molecular species unequivocally. The molecular structure of copper complexes exhibited tetragonallydistorted (Jahn-Teller) geometry consistent with the $d^{9}$ configuration of Cu(II) metal ion. Oxidation ofbenzyl alcohols using the newly synthesized complexes as catalyst has been studied. Photoluminescence propertiesof $[(L^{2}_{a})_{2}Cu]$ and $[(L^{2}_{b})_{2}Cu]$ were exploited for selective cyanide recognition. The $[(L_{b})_{2}Cu], complexesdisplayed antibacterial activity toward gram positive and gram negative bacteria

  6. Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Suparna; Lou, Xiaohua; Hwang, Peter; Rajashankar, Kanagalaghatta R.; Wang, Xiaoping; Gustafsson, Jan-Åke; Fletterick, Robert J.; Jacobson, Raymond H.; Webb, Paul [MDACC; (HMRI); (Cornell); (UCSF); (Houston)

    2014-07-01

    Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1–TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1–TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.

  7. Nuclear Structure and the Fate of Core Collapse (Type II) Supernova

    CERN Document Server

    Gai, Moshe

    2014-01-01

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low a 17-18M$_\\odot$ (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M$_\\odot$, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear input to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector the 12C(a,g)16O reaction that determines the C/O rat...

  8. Synthesis, Crystal Structure, and Thermal Decomposition of the Cobalt(II Complex with 2-Picolinic Acid

    Directory of Open Access Journals (Sweden)

    Di Li

    2014-01-01

    Full Text Available The cobalt(II complex of 2-picolinic acid (Hpic, namely, [Co(pic2(H2O2]·2H2O, was synthesized with the reaction of cobalt acetate and 2-picolinic acid as the reactants by solid-solid reaction at room temperature. The composition and structure of the complex were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC. The crystal structure of the complex belongs to monoclinic system and space group P2(1/n, with cell parameters of a=9.8468(7 Å, b=5.2013(4 Å, c=14.6041(15 Å, β=111.745(6°, V=747.96(11 Å3, Z=2, Dc=1.666 g cm−3, R1=0.0297, and wR2=0.0831. In the title complex, the Co(II ion is six-coordinated by two pyridine N atoms and two carboxyl O atoms from two 2-picolinic acid anions, and two O atoms from two H2O molecules, and forming a slightly distorted octahedral geometry. The thermal decomposition processes of the complex under nitrogen include dehydration and pyrolysis of the ligand, and the final residue is cobalt oxalate at about 450°C.

  9. Discrete and polymeric Cu(II) complexes featuring substituted indazole ligands: their synthesis and structural chemistry.

    Science.gov (United States)

    Hawes, Chris S; Kruger, Paul E

    2014-11-21

    Reported here are the syntheses of four indazole-based ligands and the structural characterisation of four Cu(II) complexes derived from them. The ligands 1-(2-pyridyl)-1H-indazole, L1, and 2-(2-pyridyl)-2H-indazole, L2, have been characterised by single crystal X-ray diffraction methods for the first time. The intramolecular structural changes within L1 and L2 that result from the transition from the 1H to the 2H electronic configuration have been delineated. The synthesis of 1H-indazole-6-carboxylic acid, H2L3, and 1H-indazole-7-carboxylic acid, H2L4, is fully described and the structure of H2L4·H2O determined. The structures of two discrete mononuclear complexes {[Cu(L1)2(NO3)]·NO3·1.5H2O}, 1, and {[Cu(L2)2(NO3)]·NO3}, 2, have been determined and their molecular compositions corroborated by solution-based methods. Reaction of Cu(II) with H2L3 generates a 2D coordination polymer, [Cu3(HL3)4(NO3)2(EtOH)2]·3(C6H6)·2(H2O), 3, that features the archetypal [Cu2(OAc)4] paddlewheel motif and 1D channels; whereas reaction with H2L4 gives a discrete complex [Cu(HL4)2]·H2O·MeOH, 4, in which hydrogen bonding interactions link indazole dimers via a water molecule to yield a 1D network.

  10. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fueyo, Elena [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Acebes, Sandra [Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona (Spain); Ruiz-Dueñas, Francisco J.; Martínez, María Jesús; Romero, Antonio; Medrano, Francisco Javier, E-mail: fjmedrano@cib.csic.es [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Guallar, Victor, E-mail: fjmedrano@cib.csic.es [Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona (Spain); ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Martínez, Angel T., E-mail: fjmedrano@cib.csic.es [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2014-12-01

    The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their

  11. Syntheses, Structures, and Characterization of Two Novel Copper(II) and Cadmium(II) Compounds Based on Pyridyl Conjugated 1,2,3-Triazole

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinlong; Wang, Gaigai; Zhao, Hong [Southeast Univ., Nanjing (Korea, Republic of); Qu, Zhirong; Ma Huajun [Hangzhou Normal Univ., Hangzhou (China)

    2014-05-15

    Two new complexes with 5-methyl-1-(pyridine-3-yl)-1H-1,2,3-triazole-4-carboxylic acid ligand: [Cd(mptc){sub 2}(H{sub 2}O){sub 4}] and [Cu(mptc){sub 4}·2H{sub 2}O]{sub n} were prepared and their crystal structures were determined by single crystal X-ray diffraction analyses. In complex, the Cd(II) ions coordinates with the pyridyl nitrogen atom from the ligand, forming a mononuclear Cd(II) compound. Complex exhibits a novel two-dimensional (2D) polymer in which four ligands stabilize the Cu(II) atom. And the coordination involves one nitrogen atom of the triazole, one oxygen atom of the carboxylic acid and the pyridyl nitrogen atom. In addition, FT-IR and solid-state fluorescent emission spectroscopy of two compounds have been determined.

  12. Structural Features of Human Memapsin 2 (β-Secretase) and Their Biological and Pathological Implications

    Institute of Scientific and Technical Information of China (English)

    Lin HONG; Xiangyuan HE; Xiangping HUANG; Wanpin CHANG; Jordan TANG

    2004-01-01

    Memapsin 2 (β-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of β-amyloid precursor protein (APP) leading to the production of amyloid-β (Aβ), a major factor in the pathogenesis of Alzheimer's disease (AD). Since memapsin 2 is a major target for the development of inhibitor drugs for AD, it has been intensively studied during the past five years. Here we discuss the structural features of the catalytic/specificity apparatus, transmembrane domain, cytosolic domain and the implications of these features in the physiological and pathological roles of this protease.

  13. Bion's ego psychology: implications for an intersubjective view of psychic structure.

    Science.gov (United States)

    Brown, Lawrence J

    2009-01-01

    Of all Freud's writings, Bion was most deeply influenced by "Formulations on the Two Principles of Mental Functioning" (1911), and the author asserts that much of Bion's major theoretical thinking may be seen as an elaboration of this paper. Bion's introduction of the concept of alpha function, which "may be regarded as a structure" (Bion 1962, p. 26), constitutes what the author calls "Bion's ego psychology". A clinical implication of Bion's ego psychology is a focus upon the unconscious interaction between the analyst's and the patient's communicating alpha functions. Clinical material from the analysis of an adolescent is offered to illustrate the author's points.

  14. Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): Implications for Pest Management.

    Science.gov (United States)

    Silva-Brandão, Karina L; Santos, Thiago V; Cônsoli, Fernando L; Omoto, Celso

    2015-02-01

    The sugarcane borer, Diatraea saccharalis (F.), is the main pest of sugarcane in Brazil. Genetic variability and gene flow among 13 Brazilian populations of the species were evaluated based on mitochondrial DNA sequences to estimate the exchange of genetic information within and among populations. We found high genetic structure among sampled localities (ΦST=0.50923), and pairwise genetic distances were significantly correlated to geographic distances. Demographic analysis and genealogical network of mitochondrial sequences indicate population growth and admixture of D. saccharalis populations, events likely related to the sequential expansion of the corn and sugarcane crops in Brazil. The implications of these findings for pest management are discussed.

  15. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde

    Science.gov (United States)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Elerman, Yalcin; Buyukgungor, Orhan

    2013-01-01

    A new potentially hexadentate N2O4 Schiff base ligand, H2L derived from condensation reaction of an aromatic diamine and salicylaldehyde, and its metal complexes were characterized by elemental analyses, IR, UV-Vis, EI-MS, 1H and 13C NMR spectra, as well as conductance measurements. It has been originated that the Schiff base ligand with Cu(II), Ni(II), Co(II), Cd(II) and Zn(II) ions form mononuclear complexes on 1:1 (metal:ligand) stoichiometry. The conductivity data confirm the non-electrolytic nature of the complexes. Also the crystal structures of the complexes [ZnL] and [CoL] have also been determined by using X-ray crystallographic technique. The Zn(II) and Co(II) complexes show a tetrahedral configuration. Electronic absorption spectra of the Cu(II) and Ni(II) complexes suggest a square-planar geometry around the central metal ion. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Bacillus cereus, Enterococcus faecalis and Listeria monocytogenes and also against the three Gram-negative bacteria: Salmonella paraB, Citrobacter freundii and Enterobacter aerogenes. The results showed that in some cases the antibacterial activity of complexes were more than nalidixic acid and amoxicillin as standards.

  16. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  17. Factor structure of the Beck Depression Inventory-Second Edition (BDI-II) with Puerto Rican elderly.

    Science.gov (United States)

    Rodríguez-Gómez, José R; Dávila-Martínez, Mariel G; Collazo-Rodríguez, Luis C

    2006-06-01

    The Beck Depression Inventory-Second Edition (BDI-II; (1) is one of the most useful measures for depressive symptomatology in many countries (2). The psychometric properties of this inventory, however, have not been reported with Puerto Rican elderly. This paper reports, exploratory psychometric results with a sample of 410 elderly Puerto Rican (65 years and older; men=94, women=316). The assessment of the construct validity of the BDI-II yielded four factors accounting for 52% of total variance and an internal reliability coefficient (alpha Cronbach) of .89. A factor analysis with the 21 items of the BDI-II was performed using principal component analysis as the extraction method and Varimax rotation. This analysis revealed that the BDI-II was a good measure of the dimensions of depressive symptomatology in the present sample, which resembled prior findings reported with the general Puerto Rican Population (3). This study also reports further data supporting the reliability, validity, and practical utility of the BDI-II for the Puerto Rican population including elders. Implications for potential research with minorities and clinical uses of the BDI-II are also discussed.

  18. N-benzoylated 1,4,8,11-tetraazacyclotetradecane and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies

    Science.gov (United States)

    Nirmala, G.; Rahiman, A. Kalilur; Sreedaran, S.; Jegadeesh, R.; Raaman, N.; Narayanan, V.

    2010-09-01

    A series of N-benzoylated cyclam ligands incorporating three different benzoyl groups 1,4,8,11-tetra-(benzoyl)-1,4,8,11-tetraazacyclotetradecane (L 1), 1,4,8,11-tetra-(2-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 2) and 1,4,8,11-tetra-(4-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 3) and their nickel(II) and copper(II) complexes are described. Crystal structure of L 1 is also reported. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-benzoylation causes red shift in the λmax values of the complexes. The cyclic voltammogram of the complexes of ligand L 1 show one-electron, quasi-reversible reduction wave in the region -1.00 to -1.04 V, whereas that of L 2 and L 3 show two quasi-reversible reduction peaks. Nickel complexes show one-electron quasi-reversible oxidation wave at a positive potential in the range +1.05 to +1.15 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment values μeff 1.70-1.73 BM which is close to the spin-only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. All the ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.

  19. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    Science.gov (United States)

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  20. Heterotrimetallic coordination polymers: {Cu(II)Ln(III)Fe(III)} chains and {Ni(II)Ln(III)Fe(III)} layers: synthesis, crystal structures, and magnetic properties.

    Science.gov (United States)

    Alexandru, Maria-Gabriela; Visinescu, Diana; Andruh, Marius; Marino, Nadia; Armentano, Donatella; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2015-03-27

    The use of the [Fe(III) (AA)(CN)4](-) complex anion as metalloligand towards the preformed [Cu(II) (valpn)Ln(III)](3+) or [Ni(II) (valpn)Ln(III) ](3+) heterometallic complex cations (AA=2,2'-bipyridine (bipy) and 1,10-phenathroline (phen); H2 valpn=1,3-propanediyl-bis(2-iminomethylene-6-methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[Cu(II) (valpn)Ln(III) (H2O)3 (μ-NC)2 Fe(III) (phen)(CN)2 {(μ-NC)Fe(III) (phen)(CN)3}]NO3 ⋅7 H2O}n (Ln=Gd (1), Tb (2), and Dy (3)) and the trinuclear complex [Cu(II) (valpn)La(III) (OH2 )3 (O2 NO)(μ-NC)Fe(III) (phen)(CN)3 ]⋅NO3 ⋅H2O⋅CH3 CN (4) were obtained with the [Cu(II) (valpn)Ln(III)](3+) assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[Ni(II) (valpn)Ln(III) (ONO2 )2 (H2 O)(μ-NC)3 Fe(III) (bipy)(CN)]⋅2 H2 O⋅2 CH3 CN}n (Ln=Gd (5), Tb (6), and Dy (7)) resulted with the related [Ni(II) (valpn)Ln(III) ](3+) precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [Cu(II) (valpn)La(III) (OH2)3 (O2 NO)(μ-NC)Fe(III) (phen)(CN)3 ](+), nitrate counterions, and non-coordinate water and acetonitrile molecules. The heteroleptic {Fe(III) (bipy)(CN)4} moiety in 5-7 acts as a tris-monodentate ligand towards three {Ni(II) (valpn)Ln(III)} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the Cu(II)-Ln(III) (1-3) and Ni(II)-Ln(III) (5-7) units, as well as through the single cyanide bridge between the Fe(III) and either Ni(II) (5-7) or Cu(II) (4) account for the overall ferromagnetic behavior observed in 1-7. DFT-type calculations were performed to substantiate the magnetic interactions in 1, 4, and 5. Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out-of-phase ac signals below 4.0 K in the lack of a dc field, the values of the pre

  1. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    Science.gov (United States)

    Buschow, Sonja I; van Balkom, Bas W M; Aalberts, Marian; Heck, Albert J R; Wauben, Marca; Stoorvogel, Willem

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of this compartment with the plasma membrane. We have previously shown that in contrast to the sorting of MHC II at lysosomally targeted multivesicular bodies, sorting of MHC II into exosomes does not rely on MHC II ubiquitination. In search for proteins that drive the incorporation of MHC II into exosomes or functionally discriminate exosomal from plasma membrane MHC II, we first analyzed the total proteome of highly purified B cell-derived exosomes using sensitive and accurate mass spectrometry (MS), and identified 539 proteins, including known and not previously identified constituents. Using quantitative MS, we then identified a small subset of proteins that were specifically co-immunoprecipitated with MHC II from detergent-solubilized exosomes. These include HSC71, HSP90, 14-3-3ɛ, CD20 and pyruvate kinase type M2 (PKM2), and we speculate on the functionality of their interaction with exosomal MHC II.

  2. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode.

    Science.gov (United States)

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-03-22

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.

  3. Structure of the Human Angiotensin II Type 1 (AT1) Receptor Bound to Angiotensin II from Multiple Chemoselective Photoprobe Contacts Reveals a Unique Peptide Binding Mode*

    Science.gov (United States)

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-01-01

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs. PMID:23386604

  4. Structural organization of an intact phycobilisome and its association with photosystem II.

    Science.gov (United States)

    Chang, Leifu; Liu, Xianwei; Li, Yanbing; Liu, Cui-Cui; Yang, Fan; Zhao, Jindong; Sui, Sen-Fang

    2015-06-01

    Phycobilisomes (PBSs) are light-harvesting antennae that transfer energy to photosynthetic reaction centers in cyanobacteria and red algae. PBSs are supermolecular complexes composed of phycobiliproteins (PBPs) that bear chromophores for energy absorption and linker proteins. Although the structures of some individual components have been determined using crystallography, the three-dimensional structure of an entire PBS complex, which is critical for understanding the energy transfer mechanism, remains unknown. Here, we report the structures of an intact PBS and a PBS in complex with photosystem II (PSII) from Anabaena sp. strain PCC 7120 using single-particle electron microscopy in combination with biochemical and molecular analyses. In the PBS structure, all PBP trimers and the conserved linker protein domains were unambiguously located, and the global distribution of all chromophores was determined. We provide evidence that ApcE and ApcF are critical for the formation of a protrusion at the bottom of PBS, which plays an important role in mediating PBS interaction with PSII. Our results provide insights into the molecular architecture of an intact PBS at different assembly levels and provide the basis for understanding how the light energy absorbed by PBS is transferred to PSII.

  5. One-dimensional chiral copper (II) complexes with novel nano-structures and superior antitumor activity.

    Science.gov (United States)

    Zhang, Wei Chuan; Tang, Xue; Lu, Xiaoming

    2016-03-01

    Three novel copper(II) compounds of formulas {[Cu(Phen)(Ala)]·NO3·H2O}n (1), {[Cu(Phen)(Ala)]·NO3}n (2) and [Cu(Ala)2]n (3) have been synthesized and determined by X-ray diffraction. 1 and 2 are shown in one dimensional long-chain chiral structures, and 3 is a two dimensional checkerboard-type structure. Both 1 and 2 displayed a higher anticancer activity than 3 against various cancer cells, even higher than the similar mononuclear complexes and clinical anticancer drug 5-fluorouracil. The noncancerous cell lines (CCC-HEL-1) have showed that complexes 1-3 have hardly any cytotoxicity. Transmission electron microscopy was studied to show the nano-structure and π function of two complexes. The ligand 1,10-phenanthroline inserted into its enantiomer lead complex 1 stable, and the π-π interaction outside the chain made complex 2 active, which is easy to crack and pile up together. In addition, the energy gaps, UV-vis, luminescent and cyclic voltammetry were experimented to show the stable one dimensional long-chain chiral structure and the π function of two complexes.

  6. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution.

    Science.gov (United States)

    Broser, Matthias; Gabdulkhakov, Azat; Kern, Jan; Guskov, Albert; Müh, Frank; Saenger, Wolfram; Zouni, Athina

    2010-08-20

    The membrane-embedded photosystem II core complex (PSIIcc) uses light energy to oxidize water in photosynthesis. Information about the spatial structure of PSIIcc obtained from x-ray crystallography was so far derived from homodimeric PSIIcc of thermophilic cyanobacteria. Here, we report the first crystallization and structural analysis of the monomeric form of PSIIcc with high oxygen evolution capacity, isolated from Thermosynechococcus elongatus. The crystals belong to the space group C222(1), contain one monomer per asymmetric unit, and diffract to a resolution of 3.6 A. The x-ray diffraction pattern of the PSIIcc-monomer crystals exhibit less anisotropy (dependence of resolution on crystal orientation) compared with crystals of dimeric PSIIcc, and the packing of the molecules within the unit cell is different. In the monomer, 19 protein subunits, 35 chlorophylls, two pheophytins, the non-heme iron, the primary plastoquinone Q(A), two heme groups, 11 beta-carotenes, 22 lipids, seven detergent molecules, and the Mn(4)Ca cluster of the water oxidizing complex could be assigned analogous to the dimer. Based on the new structural information, the roles of lipids and protein subunits in dimer formation of PSIIcc are discussed. Due to the lack of non-crystallographic symmetry and the orientation of the membrane normal of PSIIcc perpendicular ( approximately 87 degrees ) to the crystallographic b-axis, further information about the structure of the Mn(4)Ca cluster is expected to become available from orientation-dependent spectroscopy on this new crystal form.

  7. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  8. Di- and tetra-nuclear copper(II), nickel(II), and cobalt(II) complexes of four bis-tetradentate triazole-based ligands: synthesis, structure, and magnetic properties.

    Science.gov (United States)

    Olguín, Juan; Kalisz, Marguerite; Clérac, Rodolphe; Brooker, Sally

    2012-05-07

    Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state

  9. Structures of trihydroxynaphthalene reductase-fungicide complexes: implications for structure-based design and catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Basarab, G.S.; Gatenby, A.A.; Valent, B.; Jordan, D.B. (DuPont)

    2010-03-08

    Trihydroxynaphthalene reductase catalyzes two intermediate steps in the fungal melanin biosynthetic pathway. The enzyme, a typical short-chain dehydrogenase, is the biochemical target of three commercial fungicides. The fungicides bind preferentially to the NADPH form of the enzyme. Three X-ray structures of the Magnaporthe grisea enzyme complexed with NADPH and two commercial and one experimental fungicide were determined at 1.7 {angstrom} (pyroquilon), 2.0 {angstrom} (2,3-dihydro-4-nitro-1H-inden-1-one, 1), and 2.1 {angstrom} (phthalide) resolutions. The chemically distinct inhibitors occupy similar space within the enzyme's active site. The three inhibitors share hydrogen bonds with the side chain hydroxyls of Ser-164 and Tyr-178 via a carbonyl oxygen (pyroquilon and 1) or via a carbonyl oxygen and a ring oxygen (phthalide). Active site residues occupy similar positions among the three structures. A buried water molecule that is hydrogen bonded to the NZ nitrogen of Lys-182 in each of the three structures likely serves to stabilize the cationic form of the residue for participation in catalysis. The pro S hydrogen of NADPH (which is transferred as a hydride to the enzyme's naphthol substrates) is directed toward the carbonyl carbon of the inhibitors that mimic an intermediate along the reaction coordinate. Modeling tetrahydroxynaphthalene and trihydroxynaphthalene in the active site shows steric and electrostatic repulsion between the extra hydroxyl oxygen of the former substrate and the sulfur atom of Met-283 (the C-terminal residue), which accounts, in part, for the 4-fold greater substrate specificity for trihydroxynaphthalene over tetrahydroxynaphthalene.

  10. Structural basis of transcription: α-Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution

    OpenAIRE

    Bushnell, David A; Cramer, Patrick; Kornberg, Roger D

    2002-01-01

    The structure of RNA polymerase II in a complex with the inhibitor α-amanitin has been determined by x-ray crystallography. The structure of the complex indicates the likely basis of inhibition and gives unexpected insight into the transcription mechanism.

  11. Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution.

    Science.gov (United States)

    Bushnell, David A; Cramer, Patrick; Kornberg, Roger D

    2002-02-05

    The structure of RNA polymerase II in a complex with the inhibitor alpha-amanitin has been determined by x-ray crystallography. The structure of the complex indicates the likely basis of inhibition and gives unexpected insight into the transcription mechanism.

  12. Site distortions created by the stereoactive lone pair of Tin(II) in highly symmetric structures

    Science.gov (United States)

    Dénès, Georges; Madamba, M. Cecilia; Merazig, Hocine; Muntasar, Abdualhafed; Zhu, Zhimeng

    2016-10-01

    Several fluoride compounds containing divalent tin that have a fluorite (CaF2-type) unit cell have been prepared and studied. Some are stoichiometric compounds while others are solid solutions. The cubic symmetry of the unit-cell (no lattice distortion and no superstructure) and the unique metal ion site of the fluorite structure make it that tin and the other metal have to be disordered on the normal metal site of the fluorite unit-cell. However, that site has the m3m-Oh point symmetry, and the metal ion is located in the center of a cube having fluoride ions in all its corners. Therefore, the same coordination should apply to tin. However, tin(II) possesses a non-bonding pair of electrons called a "lone pair", and in order for tin(II) to have a cubic symmetry, its lone pair has to be located on the unhybridized 5s orbital, that is spherical and thus does not distort the coordination. In such a case, the lone pair is said to be "non-stereoactive". This would make tin present in the form of the Sn2+ stannous ion, and therefore Sn-F bonding must be ionic. However, tin(II) fluorides are known to be always covalent with a hybridized lone pair on tin, which has therefore a reduced coordination number and therefore a highly distorted polyhedron of coordination. Such a hybridized lone pair is said to be "stereoactive". Tin-119 Mössbauer spectroscopy was used to probe the bonding type and it showed that bonding is covalent, the lone pair is hybridized and the tin coordination is dramatically distorted. A model based on a double disorder was made that accounts for the apparent contradiction between the crystallographic and the Mössbauer results.

  13. Structures in the Deep Mantle: Implications for the Onset of Plate Tectonics and the Viscosity Structure

    Science.gov (United States)

    Stein, Claudia; Hansen, Ulrich

    2016-04-01

    Recently deep structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume. In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. In a systematic 2D parameter study of thermochemical convection we discuss the resulting viscosity structure and time of plate initiation.

  14. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    NARCIS (Netherlands)

    Buschow, S.I.; Balkom, B.W.M. van; Aalberts, M.; Heck, A.J.R. van; Wauben, M.; Stoorvogel, W.

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of th

  15. STRUCTURAL AND COHESION FUNDS VERSUS THE IMF LOANS: IMPLICATIONS AND CHALLENGES FOR THE ROMANIAN FINANCIAL SYSTEM

    Directory of Open Access Journals (Sweden)

    VASILE COCRIS

    2012-05-01

    Full Text Available The Structural and Cohesion Funds as well as the loans obtained by our country from the IMF have significant implications upon the Romanian financial system. This article is a comparative approach structured on five parts as it follows: the second part is a review of the specific literature regarding the theme of our work, the third part is an analysis of the absorption stage of the Structural Funds and the evolution of the stand by agreements between Romania and IMF, the fourth part is a SWOT analysis of the Structural Funds versus the IMF loans and the last section is dedicated to the econometric quantification of the efficiency of the two financing opportunities. The IMF loans ensure the coordinates of the financial stability but the structural funds represent the link between stability and the development that Romania needs. We consider and claim that Romania needs European funds. We do not ask to give up entirely to the IMF loans but we plead for having an equilibrium which could support the economical development.

  16. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan

    2015-01-01

    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  17. Enhancement of carrier lifetimes in type-II quantum dot/quantum well hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Couto, O. D. D., E-mail: odilon@ifi.unicamp.br; Almeida, P. T. de; Santos, G. E. dos; Balanta, M. A. G.; Andriolo, H. F.; Brum, J. A.; Brasil, M. J. S. P.; Iikawa, F. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Liang, B. L., E-mail: bliang@cnsi.ucla.edu; Huffaker, D. L. [California NanoSystems Institute, UCLA, Los Angeles, California 90095 (United States)

    2016-08-28

    We investigate optical transitions and carrier dynamics in hybrid structures containing type-I GaAs/AlGaAs quantum wells (QWs) and type-II GaSb/AlGaAs quantum dots (QDs). We show that the optical recombination of photocreated electrons confined in the QWs with holes in the QDs and wetting layer can be modified according to the QW/QD spatial separation. In particular, for low spacer thicknesses, the QW optical emission can be suppressed due to the transference of holes from the QW to the GaSb layer, favoring the optical recombination of spatially separated carriers, which can be useful for optical memory and solar cell applications. Time-resolved photoluminescence (PL) measurements reveal non-exponential recombination dynamics. We demonstrate that the PL transients can only be quantitatively described by considering both linear and quadratic terms of the carrier density in the bimolecular recombination approximation for type-II semiconductor nanostructures. We extract long exciton lifetimes from 700 ns to 5 μs for QDs depending on the spacer layer thickness.

  18. Three Dimensional Structure and Time Evolution of a Transition Region Explosive Event Observed in He II

    Science.gov (United States)

    Fox, J. L.; Kankelborg, C. C.; Thomas, R. J.; Longcope, D.

    2007-12-01

    Transition Region Explosive Events (TREEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548A,1550A) and Si IV (1393A, 1402A). We report what we believe to be the first observation of a TREE in He II 304A. With the MOSES sounding rocket, a novel type of imaging spectrograph, we are able to see the spatial and spectral structure of the event. It consists of a bright core expelling two jets, oppositely directed but not collinear, which curve away from the axis of the core. The jets have both line-of-sight and sky-plane motion. The core is a region of high non-thermal doppler broadening, characteristic of TREEs. It is possible to resolve the core broadening into red and blue line-of-sight components. MOSES captured approximately 150 sec of time evolution before the rocket flight ended. We see the beginning (core activation) and middle (jet ejection), but not the end. It is clear from our data-set that TREEs in He II 304A are much less common than observed in other wavelengths.

  19. Structural characterization of copper(II) binding to α-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease

    OpenAIRE

    Rasia, Rodolfo M.; Carlos W Bertoncini; Marsh, Derek; Hoyer, Wolfgang; Cherny, Dmitry; Zweckstetter, Markus; Griesinger, Christian; Jovin, Thomas M.; Fernández, Claudio O

    2005-01-01

    The aggregation of α-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. We demonstrate here that Cu(II) ions are effective in accelerating AS aggregation at physiologically relevant concentrations without altering the resultant fibrillar structures. By using numerous spectroscopic techniques (absorption, CD, EPR, and NMR), we have located the primary binding for Cu(II) to a specific site in the N terminus, involving His-50 as the anchoring r...

  20. Structural characterization of copper(II) binding to α-Synuclein: Insights into the bioinorganic chemistry of Parkinson's disease

    OpenAIRE

    Rasia, R.; BERTONCINI, C; Marsh, D; Hoyer, W.; Cherny, D; Zweckstetter, M.; Griesinger, C; Jovin, T.; Fernandez, C.

    2005-01-01

    The aggregation of α -synuclein (AS) is characteristic of Parkinson’s disease and other neurodegenerative synucleinopathies. We demonstrate here that Cu(II) ions are effective in accelerating AS aggregation at physiologically relevant concentrations without altering the resultant fibrillar structures. By using numerous spectroscopic techniques (absorption, CD, EPR, and NMR), we have located the primary binding for Cu(II) to a specific site in the N terminus, involving His-50 as the anchoring ...

  1. Modelling the metal atom positions of the Photosystem II water oxidising complex: a density functional theory appraisal of the 1.9 Å resolution crystal structure.

    Science.gov (United States)

    Petrie, Simon; Gatt, Phillip; Stranger, Rob; Pace, Ron J

    2012-08-28

    Density functional theory (DFT) calculations are reported for a set of model compounds intended to represent the structure of the Photosystem II (PSII) water oxidising complex (WOC) as determined by the recent 1.9 Å resolution single crystal X-ray diffraction (XRD) study of Umena et al. In contrast with several other theoretical studies addressing this structure, we find that it is not necessary to invoke photoreduction of the crystalline sample below the S(1)'resting state' in order to rationalise the observed WOC geometry. Our results are consistent with crystallised PSII in the S(1) state, with S(1) corresponding to either (Mn(III))(4) or (Mn(III))(2)(Mn(IV))(2) as required by the two competing paradigms for the WOC oxidation state pattern. Of these two paradigms, the 'low-oxidation-state' paradigm provides a better match for the crystal structure, with the comparatively long Mn(2)-Mn(3) distance in particular proving difficult to reconcile with the 'high-oxidation-state' model. Best agreement with the set of metal-metal distances is obtained with a S(1) model featuring μ-O, μ-OH bridging between Mn(3) and Mn(4) and deprotonation of one water ligand on Mn(4). Theoretical modelling of the 1.9 Å structure is an important step in assessing the validity of this recent crystal structure, with implications for our understanding of the mechanism of water oxidation by PSII.

  2. Effect of verapamil on ischemia and ventricular arrhythmias after an acute myocardial infarction: prognostic implications. The Danish Verapamil Infarction Trial II Study Group

    DEFF Research Database (Denmark)

    Vaage-Nilsen, M; Rasmussen, Verner; Hansen, J F

    1991-01-01

    This article is a review of presented subsets of the Danish Verapamil Infarction Trial II (DAVIT II) regarding the effect of verapamil on postinfarction ischemia, ventricular arrhythmias, and heart rate (HR), and the prognostic implications of these findings. Patients underwent Holter monitoring...... for 24-48 h at 1 week, i.e., before randomization to long-term treatment with placebo or verapamil, and after 1 month and about 1 year of study treatment. Ischemia: 18% of the patients had transient ST-segment deviation before randomization; 24% of the placebo- and 8% of the verapamil-treated patients (p......: In the placebo group the prevalence and incidence of many ventricular ectopic beats (VEBs), i.e., more than 10 VEBs/h, increased significantly during the first years after infarction; this was not the case in the verapamil patients group. The mean HR was significantly reduced by verapamil treatment after 1 month...

  3. Crystal structure of a new hybrid compound based on an iodido-plumbate(II) anionic motif.

    Science.gov (United States)

    Mokhnache, Oualid; Boughzala, Habib

    2016-01-01

    Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis-(piperazine-1,4-diium) [[tetra-iodido-plumbate(II)]-μ-iodido] iodide monohydrate], (C4N2H12)2[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H12)(2+) cations, water mol-ecules of crystallization and isolated I(-) anions are connected through N-H⋯·I, N-H⋯OW and OW-H⋯I hydrogen-bond inter-actions. Zigzag chains of corner-sharing [PbI6](4-) octa-hedra with composition [PbI4/1I2/2](3-) running parallel to the a axis are present in the structure packing.

  4. Optical probing of spin-dependent interactions in II-VI semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Gaj, J.A.; Golnik, A.; Goryca, M.; Kossacki, P.; Kowalik, K.; Kudelski, A.; Maslana, W.; Nawrocki, M.; Pacuski, W.; Plochocka, P.; Senellart, P. [Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warszawa (Poland); Cibert, J.; Ferrand, D.; Tatarenko, S. [CNRS-CEA-UJF Joint Group ' ' Nanophysique et semiconducteurs' ' , Laboratoire de Spectrometrie Physique, BP 87, 38402 Saint Martin d' Heres Cedex (France); Karczewski, G.; Kossut, J.; Kutrowski, M. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Krebs, O.; Lemaitre, A.; Voisin, P. [Laboratoire de Photonique et Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis (France); Wojtowicz, T.

    2006-03-15

    We present a selection of optical experiments, providing information on several spin-dependent interactions in II-VI semiconductor structures. Exciton-exciton and exciton-carrier interactions were studied by time-resolved picosecond pump-probe measurements. Several examples of recent studies involving ion-carrier exchange interaction in quantum wells and layers are discussed, concerning the quest for room temperature ferromagnetic semiconductors, spin temperature of Mn ions in (Cd,Mn)Te quantum wells, and spin relaxation in such wells under pulsed magnetic field. Finally, anisotropic electron-hole exchange in semiconductor quantum dots is discussed in the context of efforts to obtain generation of entangled photon pairs in a biexciton-exciton cascade in a semiconductor quantum dot. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Crystal structure of bis-(1-ethyl-pyridinium) dioxonium hexa-cyanidoferrate(II).

    Science.gov (United States)

    Tanaka, Rikako; Matsushita, Nobuyuki

    2017-02-01

    The title compound, (C7H10N)2(H3O)2[Fe(CN)6] or (Etpy)2(H3O)2[Fe(CN)6] (Etpy(+) is 1-ethyl-pyridinium), crystallizes in the space group Pnnm. The Fe(II) atom of the [Fe(CN)6](4-) anion lies on a site with site symmetry ..2/m, and has an octa-hedral coordination sphere defined by six cyanido ligands. Both the Etpy(+) and the oxonium cations are located on a mirror plane. In the crystal, electron-donor anions of [Fe(CN)6](4-) and electron-acceptor cations of Etpy(+) are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional O-H⋯N hydrogen-bonding network between the oxonium ions and the cyanide ligands of [Fe(CN)6](4-).

  6. Crystal structure of a new hybrid compound based on an iodidoplumbate(II anionic motif

    Directory of Open Access Journals (Sweden)

    Oualid Mokhnache

    2016-01-01

    Full Text Available Crystals of the one-dimensional organic–inorganic lead iodide-based compound catena-poly[bis(piperazine-1,4-diium [[tetraiodidoplumbate(II]-μ-iodido] iodide monohydrate], (C4N2H122[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H122+ cations, water molecules of crystallization and isolated I− anions are connected through N—H...·I, N—H...OW and OW—H...I hydrogen-bond interactions. Zigzag chains of corner-sharing [PbI6]4− octahedra with composition [PbI4/1I2/2]3− running parallel to the a axis are present in the structure packing.

  7. Crystal structure of dichloridobis(N,N′-dimethylthiourea-κSmercury(II

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Shaheen

    2015-09-01

    Full Text Available The molecular structure of the title compound, [HgCl2(C3H8N2S2], has point group symmetry 2, with the twofold rotation axis passing through the HgII atom. The latter is coordinated by two Cl atoms and two N,N′-dimethylthiourea (Dmtu ligands through their S atoms, defining a distorted tetrahedral coordination sphere with bond angles in the range 102.47 (4–118.32 (4°. Intra- and intermolecular hydrogen bonds of the type N—H...Cl with S(6 and R22(12 ring motifs are present. The intermolecular contacts make up polymeric chains extending parallel to [101].

  8. The new structure powder diffractometer at the FRM-II in Garching

    Science.gov (United States)

    Gilles, R.; Artus, G.; Saroun, J.; Boysen, H.; Fuess, H.

    2000-03-01

    SPODI, the structure powder diffractometer, will be installed on beamline SR 8 at the FRM-II in Garching. The instrument has been designed to achieve an ideal compromise of good resolution up to very high 2 θ (by using a monochromator take-off angle of 155°) and high flux with special emphasis on ‘good’ profile shapes and low background. To optimise the parameters of the optical components like coatings of neutron guides, monochromator and soller collimators, Monte Carlo simulations were carried out. To check the results of the simulation calculations two different independent programs (MCSTAS and RESTRAX) were applied. An option for using a small-angle neutron scattering (SANS) device will eventually be included to perform Bragg scattering, SANS and diffuse scattering simultaneously on the sample.

  9. Crystal structure of bis{μ-2-[(dimethylaminomethyl]ferroceneselenolato}bis[chloridopalladium(II

    Directory of Open Access Journals (Sweden)

    Esther M. Takaluoma

    2014-10-01

    Full Text Available The dinuclear title compound, [PdCl{Se[(C5H5Fe(C5H32CH2N(CH32]}]2 was obtained by the reaction of [PdCl2(NCPh2] with 2-[(N,N′-dimethylaminomethyl]ferroceneselenolate and the crystals for the structure determination were grown from a mixture of THF and n-hexane. Both PdII atoms are coordinated by the bridging Se atoms and by the amino N atoms of the bidentate 2-[(N,N′-dimethylaminomethyl]ferroceneselenolate ligand, as well as by Cl atoms, and show a distorted square-planar coordination. The angle between the Pd—Se—Se planes of the two Pd atoms is 149.31 (3°. Weak Cl...H hydrogen bonds link the binuclear complexes into a three-dimensional network.

  10. Magneto-structural correlations in trinuclear Cu(II) complexes: a density functional study

    CERN Document Server

    Rodríguez-Forteá, A; Alvarez, S; Centre-De Recera-En-Quimica-Teorica; Alemany, P A; Centre-De Recera-En-Quimica-Teorica

    2003-01-01

    Density functional theoretical methods have been used to study magneto-structural correlations for linear trinuclear hydroxo-bridged copper(II) complexes. The nearest-neighbor exchange coupling constant shows very similar trends to those found earlier for dinuclear compounds for which the Cu-O-Cu angle and the out of plane displacement of the hydrogen atoms at the bridge are the two key structural factors that determine the nature of their magnetic behavior. Changes in these two parameters can induce variations of over 1000 cm sup - sup 1 in the value of the nearest-neighbor coupling constant. On the contrary, coupling between next-nearest neighbors is found to be practically independent of structural changes with a value for the coupling constant of about -60 cm sup - sup 1. The magnitude calculated for this coupling constant indicates that considering its value to be negligible, as usually done in experimental studies, can lead to considerable errors, especially for compounds in which the nearest-neighbor c...

  11. Low-energy fine-structure resonances in photoionization of O ii

    Science.gov (United States)

    Nahar, Sultana N.; Montenegro, Maximiliano; Eissner, Werner; Pradhan, Anil K.

    2010-12-01

    Resonant features in low-energy photoionization cross sections are reported in coupled-channel calculations for O ii including relativistic fine structure. The calculations reveal extensive near-threshold resonant structures in the small energy region between the fine structure levels of the ground state 2p2(3P0,1,2) of the residual ion O iii. Although the resonances have not yet been observed, they are similar to other experimentally observed features. They are expected to significantly enhance the very-low-temperature dielectronic recombination rates, potentially leading to the resolution of an outstanding nebular abundances anomaly. Higher energy partial and total photoionization cross sections of the ground configuration levels 2p3(4S3/2o,2D3/2,5/2o,2P1/2,3/2o) are found to be in agreement with experimental measurements on synchrotron-based photon sources [1-3], thereby identifying the excited O iii levels present in the ion beams. These are also the first results from a recently developed version of Breit-Pauli R-matrix (BPRM) codes, with inclusion of two-body magnetic interaction terms. The improved relativistic treatment could be important for other astrophysical applications and for more precise benchmarking of experimental measurements.

  12. Structural investigation of PsbO from plant and cyanobacterial photosystem II.

    Science.gov (United States)

    Slowik, Daria; Rossmann, Maxim; Konarev, Petr V; Irrgang, Klaus-D; Saenger, Wolfram

    2011-03-18

    The manganese-stabilizing protein PsbO is associated with the luminal side of thylakoids close to the redox-active Mn(4)Ca cluster at the catalytically active site of photosystem II (PSII). PsbO is believed to increase the efficiency of oxygen evolution and to stabilize the Mn(4)Ca cluster against photoinhibition. Using small-angle X-ray scattering, we investigated the low-resolution structure of wild-type spinach PsbO and that of chimeric spinach PsbO fused with maltose-binding protein. Small-angle X-ray scattering data revealed that both proteins are monomeric in solution, and that plant and cyanobacterial PsbO have similar structures. We show a highly efficient expression system that allows recombinant production of the active wild type and the chimeric PsbO from spinach and cyanobacteria, with yields compatible with biophysical and structural studies. The binding of spinach PsbO fused with maltose-binding protein to PSII depleted of extrinsic subunits (PSII-ΔpsbO,P,Q) was confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The reconstituted PSII was shown to have similar oxygen evolution rates as obtained with wild-type spinach PsbO.

  13. Damage Detection Technique for Cold-Formed Steel Beam Structure Based on NSGA-II

    Directory of Open Access Journals (Sweden)

    Byung Kwan Oh

    2015-01-01

    Full Text Available Cold-formed steel is uniform in quality, suitable for mass production, and light in weight. It is widely used for both structural and nonstructural members in buildings. When it is used in a bending structural member, damage such as local buckling is considered to be more important than general steel members in terms of failure mode. However, preceding studies on damage detection did not consider the failure characteristics of cold-formed beam members. Hence, this paper proposes a damage detection technique that considers the failure mode of local buckling for a cold-formed beam member. The differences between the dynamic characteristics from vibration-based measurements and those from finite element model are set to error functions. The error functions are minimized by the optimization technique NSGA-II. In the damage detection, the location of local damage and the severity of damage are considered variables. The proposed technique was validated through a simulation of damage detection for a cold-formed steel beam structure example.

  14. Validity evidence based on internal structure of scores on the Spanish version of the Self-Description Questionnaire-II.

    Science.gov (United States)

    Ingles, Cándido J; Torregrosa, María S; Hidalgo, María D; Nuñez, Jose C; Castejón, Juan L; García-Fernández, Jose M; Valles, Antonio

    2012-03-01

    The aim of this study was to analyze the reliability and validity evidence of scores on the Spanish version of Self-Description Questionnaire II (SDQ-II). The instrument was administered in a sample of 2022 Spanish students (51.1% boys) from grades 7 to 10. Confirmatory factor analysis (CFA) was used to examine validity evidence based on internal structure drawn from the scores on the SDQ-II. CFA replicated the correlated II first-order factor structure. Furthermore, hierarchical confirmatory factor analysis (HCFA) was used to examine the hierarchical ordering of self-concept, as measured by scores on the Spanish version of the SDQ-II. Although a series of HCFA models were tested to assess academic and non-academic components organization, support for those hierarchical models was weaker than for the correlated 11 first-order factor structure. Results also indicated that scores on the Spanish version of the SDQ-II had internal consistency and test-retest reliability estimates within an acceptable range.

  15. Understanding natural semiquinone radicals--multifrequency EPR and relativistic DFT studies of the structure of Hg(II) complexes.

    Science.gov (United States)

    Witwicki, Maciej; Jerzykiewicz, Maria; Ozarowski, Andrzej

    2015-01-01

    Multifrequency EPR spectroscopy and DFT calculations were used to investigate Hg(II) complexes with semiquinone radical ligands formed in a direct reaction between the metal ions and tannic acid (a polyphenol closely related to tannins). Because of the intricate structure of tannic acid a vast array of substituted phenolic compounds were tested to find a structural model mimicking its ability to react with Hg(II) ions. The components of the g matrix (the g tensor) determined from the high field (208 GHz) EPR spectra of the Hg(II) complexes with the radical ligands derived from tannic acid and from the model compounds were analogous, indicating a similar coordination mode in all the studied Hg(II) complexes. Since catechol (1,2-dihydroxybenzene) was the simplest compound undergoing the reaction with Hg(II) it was selected for DFT studies which were aimed at providing an insight into the structural properties of the investigated complexes. Various coordination numbers and different conformations and protonation states of the ligands were included in the theoretical analyses. g Matrices were computed for all the DFT optimized geometries. A good agreement between the theoretical and experimental values was observed only for the model with the Hg(II) ion tetracoordinated by two ligands, one of the ligands being monoprotonated with the unpaired electron mainly localized on it.

  16. Factor structure of the Beck Depression Inventory-II among South Africans receiving antiretroviral therapy.

    Science.gov (United States)

    Kagee, Ashraf; Nel, Adriaan; Saal, Wylene

    2014-02-01

    Considerable evidence suggests that mood disturbance is common among patients living with HIV and may be an important barrier to anti-retroviral therapy (ART) adherence. Thus the assessment of depressed mood is an important and necessary aspect of the experience of persons living with HIV as it may impact the health status of individuals directly and indirectly. We sought to determine the factor structure of the Beck Depression Inventory (BDI) among a sample of 185 South Africans living with HIV and receiving ART. The mean BDI score was 16.5 (SD 12.15) with a range from 0-50 (out of a possible 63), indicating on average moderate levels of depression. Cronbach's alpha for the total scale was 0.90. Although the four factors had eigenvalues that were technically above 1.0, only three factors could logically be extracted, the combination of which accounted for 47.29% of the variance. These three factors were Cognitive, Affective and Somatic. The results indicate that the BDI-II is a reliable measure of symptoms of depression among persons living with HIV. The factor structure among South Africans receiving ART is similar to that of other samples, although surprisingly, the item assessing appetite disturbance did not load on any factor. The results of the study suggest that the BDI-II is a useful measure among South Africans living with HIV. In the context of the need to rapidly identify depressed mood among persons receiving ART in public health clinics, the BDI may be a useful instrument. We end the paper with certain cautions associated with routine screening.

  17. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    Science.gov (United States)

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  18. Co(II) and Cd(II) complexes derived from heterocyclic Schiff-Bases: synthesis, structural characterisation, and biological activity.

    Science.gov (United States)

    Ahmed, Riyadh M; Yousif, Enaam I; Al-Jeboori, Mohamad J

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L¹) and N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L²) are reported. Schiff-base ligands L¹ and L² were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)₂]Cl₂ (where M = Co(II) or Cd(II), L = L¹ or L²) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, ¹H, and ¹³C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G-) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands.

  19. Synthesis, crystal structures and properties of two novel macrocyclic nickel(II) and copper(II) complexes

    Science.gov (United States)

    Su, Yan-Hui; Liu, Jie; Li, Jia; Si, Xue-Zhi

    2007-06-01

    Two new 14-membered hexaaza macrocyclic complexes with the formulae [NiL](ClO 4) 2·CH 3COCH 3 ( 1) and [CuL](ClO 4) 2·CH 3COCH 3 ( 2), where L = 3,10-bis(2-thiophenemethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, have been synthesized and characterized by elemental analyses, single-crystal X-ray diffraction analyses, electronic spectra, IR and TG-DTA. In 1, the nickel(II) ion is four-coordinated with four nitrogen atoms from the macrocycle and forms a square-planar coordination geometry. In 2, the copper(II) ion is six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two oxygen atoms from the perchlorate anions in the axial position exhibiting an elongated octahedron coordination geometry. The two complexes present two different molecular arrangements in which the [ML] 2+ (M = Ni, Cu) cation arrays in the manner of M(1)M(2)M(1)… in sequence. The pendant thiophene groups of the neighboring macrocycles have no π⋯π interactions. All the ClO4- anions and acetone molecules are involved in hydrogen-bonding interactions with the macrocyclic ligand.

  20. Spin crossover iron(II) coordination polymer chains: syntheses, structures, and magnetic characterizations of [Fe(aqin)2(μ2-M(CN)4)] (M = Ni(II), Pt(II), aqin = quinolin-8-amine).

    Science.gov (United States)

    Setifi, Fatima; Milin, Eric; Charles, Catherine; Thétiot, Franck; Triki, Smail; Gómez-García, Carlos J

    2014-01-06

    New Fe(II) coordination polymeric neutral chains of formula [Fe(aqin)2(μ2-M(CN)4)] (M = Ni(II) (1) and Pt(II) (2)) (aqin = Quinolin-8-amine) have been synthesized and characterized by infrared spectroscopy, X-ray diffraction, and magnetic measurements. The crystal structure determinations of 1-2 reveal in both cases a one-dimensional structure in which the planar [M(CN)4](2-) (M = Ni(II) (1) and Pt(II) (2)) anion acts as a μ2-bridging ligand, and the two aqin molecules as chelating coligands. Examination of the intermolecular contacts in the two compounds reveals that the main contacts are ascribed to hydrogen bonding interactions involving the amine groups of the aqin chelating ligands and the nitrogen atoms of the two non bridging CN groups of the [M(CN)4](2-) (M = Ni(II) (1) and Pt(II) (2)) anion. The average values of the six Fe-N distances observed respectively at room temperature (293 K) and low temperature (120 K), that is, 2.142(3) and 2.035(2) Å for 1, and 2.178(3) and 1.990(2) Å for 2, and the thermal variation of the cell parameters (performed on 2) are indicative of the presence of an abrupt HS-LS spin crossover (SCO) transition in both compounds. The thermal dependence of the product of the molar magnetic susceptibility times the temperature (χmT), in cooling and warming modes, confirms the SCO behavior at about 145 and 133 K in 1 and 2, respectively, and reveals the presence of a small thermal hysteresis of about 2 K for each compound.

  1. Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)-irbesartan complex: structure-antihypertensive activity relationships in Cu(II)-sartan complexes.

    Science.gov (United States)

    Islas, María S; Luengo, Alicia; Franca, Carlos A; Merino, Mercedes Griera; Calleros, Laura; Rodriguez-Puyol, Manuel; Lezama, Luis; Ferrer, Evelina G; Williams, Patricia A M

    2016-10-01

    The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV-visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand. No antioxidant effects were displayed by both compounds, though CuIrb behaved as a weak 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(·)) scavenger (IC50 = 425 μM). The measurements of the contractile capacity on human mesangial cell lines showed that CuIrb improved the antihypertensive effects of the parent medication. In vitro cell growth inhibition against prostate cancer cell lines (LNCaP and DU 145) was measured for CuIrb, irbesartan and copper(II). These cell lines have been selected since the angiotensin II type 1 (AT1) receptor (that was blocked by the angiotensin receptor blockers, ARB) has been identified in them. The complex exerted anticancer behavior (at 100 μM) improving the activity of the ligand. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. Experimental and DFT characterization of an irbesartan copper(II) complex has been performed. The complex exhibits low scavenging activity against DPPH(·) and significant growth inhibition of LNCaP and DU 145 prostate cancer cell lines. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. This compound improved the antihypertensive effect of irbesartan. This effect was observed earlier for the mononuclear Cu-candesartan complex, but not in structurally modified sartans forming dinuclear or octanuclear Cu-sartan compounds.

  2. Topology optimization of support structure of telescope skin based on bit-matrix representation NSGA-II

    Institute of Scientific and Technical Information of China (English)

    Liu Weidong; Zhu Hua; Wang Yiping; Zhou Shengqiang; Bai Yalei; Zhao Chunsheng

    2013-01-01

    Non-dominated sorting genetic algorithm II (NSGA-II) with multiple constraints han-dling is employed for multi-objective optimization of the topological structure of telescope skin, in which a bit-matrix is used as the representation of a chromosome, and genetic algorithm (GA) operators are introduced based on the matrix. Objectives including mass, in-plane performance, and out-of-plane load-bearing ability of the individuals are obtained by finite element analysis (FEA) using ANSYS, and the matrix-based optimization algorithm is realized in MATLAB by han-dling multiple constraints such as structural connectivity and in-plane strain requirements. Feasible configurations of the support structure are achieved. The results confirm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.

  3. Educational achievement, personality, and behavior: assessment, factor structure and implications for theory and practice.

    Science.gov (United States)

    Gaffney, Tim W; Perryman, Cassandra

    2012-01-01

    The purposes of this research were to first examine the evidence regarding the factor structure of educational achievement tests in the context of two theoretical models of cognitive ability (psychometric g and mutualism) that have been proposed to explain this structure as well as the underlying processes that may be responsible for its emergence in dimensionality studies. Then, the factor structure underlying a sample of the standardized educational achievement tests used by California in its statewide school accountability program was compared to those emerging from a selection of behavioral and personality assessments. As expected, the educational achievement tests exhibited a strong and uniformly positive manifold resulting in greater unidimensionality as evidenced by a dominant general factor in bi-factor analysis then either the personality or behavioral assessments. The implications of these structural differences are discussed with respect to the two theoretical perspective as well as in the context of formative and summative educational inferences in particular, and the school accountability and reform movement in general.

  4. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    Science.gov (United States)

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data.

  5. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  6. Reduction of mercury(II) by tropical river humic substances (Rio Negro)-Part II. Influence of structural features (molecular size, aromaticity, phenolic groups, organically bound sulfur).

    Science.gov (United States)

    Rocha, Julio Cesar; Sargentini, Ezio; Zara, Luiz Fabricio; Rosa, André Henrique; Dos Santos, Ademir; Burba, Peter

    2003-12-04

    The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F(1)>100 kDa and F(2): 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F(5): 5-10 kDa, F(6): F(2)>F(1)>F(3)>F(4)>F(6)). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested.

  7. Syntheses, structures and properties of Zn(II) and Cu(II) complexes based on N2-2-methylenepyridinyl 1,2,3-triazole ligand

    Science.gov (United States)

    Chen, Yunfeng; Wu, Jun; Ma, Shan; Zhou, Shilei; Meng, Xianggao; Jia, Lihui; Pan, Zhiquan

    2015-06-01

    Four new Zn(II) and Cu(II) coordinated polymers ([ZnL2N3]ClO4 (1), [Cu2L2(CH3CN)]Cl4 (2) [CuL](NO3)2 (3), [Cu(H2O)L](SO4) (4) L = 2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl) pyridine (ptmp)) have been reported. All the compounds have been characterized by IR spectrum, elemental analyses and X-ray crystallography diffraction. Single-crystal X-ray diffraction analyses show that one-dimensional polymers are formed in these four complexes. Chain-like structures are formed in complex 1, 2 and 3, which are connected by azide, chloride and nitrate anions, respectively. In complex 4, one-dimensional left-handed polymer is formed by a μ2-SO4 bridge. The fluorescent and electrochemical properties of these four complexes were investigated. It was found that these three Cu(II) complexes displayed a quenching of fluorescence, while Zn(II) complex exhibited a clear enhanced fluorescence.

  8. Structural analysis and physico-chemical characterization of mononuclear manganese(II) and polynuclear copper(II) complexes with pyridine-based alcohol

    Science.gov (United States)

    Zienkiewicz-Machnik, Małgorzata; Masternak, Joanna; Kazimierczuk, Katarzyna; Barszcz, Barbara

    2016-12-01

    Two novel manganese(II) and copper(II) complexes, mononuclear [Mn(H2O)2(2-(CH2)2OHpy)2](NO3)2 (1) and polynuclear [Cu(SO4)(2-(CH2)2OHpy)2]n (2), based on 2-(hydroxyethyl)pyridine (2-(CH2)2OHpy) were synthesised and fully characterised using X-ray structure analysis as well as spectroscopic, magnetic and thermal methods. Both central metal ions Mn(1) and Cu(1) are coordinated by two N,O-donor 2-(CH2)2OHpy ligands and possess an almost perfect octahedral geometry (a chromophore of {MN2O4} type). The coordination sphere of Mn(II) is completed by two molecules of water, whereas, in polynuclear complex 2, Cu(II) atoms are linked along the a crystallographic direction by bridging sulfate ligands in a μ2-κ2 binding mode to form chains. The intermolecular interactions in 1 and 2 have been interpreted in view of the 3D Hirshfeld surface analysis and associated 2D fingerprint plots. Furthermore, the complexes have been tested with ABTSrad + assay in order to assess their antioxidant activity. In addition, the IC50 values calculated for 1 and 2 revealed that the complexes show a higher antioxidant activity than corresponding ligand.

  9. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)

    2015-11-10

    This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.

  10. Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS.

    Science.gov (United States)

    Mei, Kunrong; Jin, Zhe; Ren, Fangli; Wang, Yinying; Chang, Zhijie; Wang, Xinquan

    2014-01-01

    CREPT and p15RS are two recently identified homologous proteins that regulate cell proliferation in an opposite way and are closely related to human cancer development. Both CREPT and p15RS consist of an N-terminal RPR domain and a C-terminal domain with high sequence homology. The transcription enhancement by CREPT is attributed to its interaction with RNA polymerase II (Pol II). Here we provide biochemical and structural evidence to support and extend this molecular mechanism. Through fluorescence polarization analysis, we show that the RPR domains of CREPT and p15RS (CREPT-RPR and p15RS-RPR) bind to different Pol II C-terminal domain (CTD) phosphoisoforms with similar affinity and specificity. We also determined the crystal structure of p15RS-RPR. Sequence and structural comparisons with RPR domain of Rtt103, a homolog of CREPT and p15RS in yeast, reveal structural basis for the similar binding profile of CREPT-RPR and p15RS-RPR with Pol II CTD. We also determined the crystal structure of the C-terminal domain of CREPT (CREPT-CTD), which is a long rod-like dimer and each monomer adopts a coiled-coil structure. We propose that dimerization through the C-terminal domain enhances the binding strength between CREPT or p15RS with Pol II by increasing binding avidity. Our results collectively reveal the respective roles of N-terminal RPR domain and C-terminal domain of CREPT and p15RS in recognizing RNA Pol II.

  11. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    Science.gov (United States)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the

  12. 1D zigzag chain and 0D monomer Cd(II)/Zn(II) compounds based on flexible phenylenediacetic ligand: Synthesis, crystal structures and fluorescent properties

    Science.gov (United States)

    Yang, Fang; Ren, Yixia; Li, Dongsheng; Fu, Feng; Qi, Guangcai; Wang, Yaoyu

    2008-12-01

    Three novel Cd(II)/Zn(II) compounds, [Cd 2(poda) 2(phen) 3(H 2O)] n· nEtOH·3 nH 2O (1), [Zn(poda) 2(bpy)(H 2O)] n(2) and [Zn(Hpoda) 2(bpy)] (3) (H 2poda = 1,2-phenylenediacetic acid, phen = 1,10-phenanthroline, bpy = 2,2'-bipyridyl), have been synthesized and characterized by IR, TG, fluorescent spectrum and single-crystal X-ray diffraction techniques. In 1, poda 2- anions link the adjacent Cd(II) centers to generate a 1D zigzag chain. Furthermore, an unprecedented four-footed "8-shaped" mixed water-ethanol (H 2O) 6(C 2H 5OH) 2 cluster connects four double chains based on 1D zigzag chain into 3D supramolecular architecture. By bis(chelate-monodentate) fashion of poda 2- ligand, compound 2 exhibits 1D zigzag chains, which forming a dense zipper-like 2D structure via strong π-π stacking interactions. Differed from 1 and 2, compound 3 has a mononuclear motif, and displays a 3D 6-connected α-Po net hydrogen-bonded topology. The structure-related solid-state fluorescence spectra of compounds 1 and 2 have been determined.

  13. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.

    Science.gov (United States)

    Mastropietro, Teresa F; Armentano, Donatella; Grisolia, Ettore; Zanchini, Claudia; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni

    2008-01-28

    Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].

  14. Crystal structure of bis(thiocyanato-κSbis(thiourea-κSmercury(II

    Directory of Open Access Journals (Sweden)

    A. Baskaran

    2015-02-01

    Full Text Available In the title complex, [Hg(NCS2(CH4N2S2], the HgII atom is four-coordinated having an irregular four-coordinate geometry composed of four thione S atoms of two thiocyanate groups and two thiourea groups. The S—Hg—S angles are 172.02 (9° for the trans-thiocyanate S atoms and 90.14 (5° for the cis-thiourea S atoms. The molecular structure is stabilized by an intramolecular N—H...S hydrogen bond, which forms an S(6 ring motif. In the crystal, molecules are linked by a number of N—H...N and N—H...S hydrogen bonds, forming a three-dimensional framework. The first report of the crystal structure of this compound appeared in 1966 [Korczynski (1966. Rocz. Chem. 40, 547–569] with an extremely high R factor of 17.2%, and no mention of how the data were collected.

  15. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution.

    Science.gov (United States)

    Gnatt, A L; Cramer, P; Fu, J; Bushnell, D A; Kornberg, R D

    2001-06-08

    The crystal structure of RNA polymerase II in the act of transcription was determined at 3.3 A resolution. Duplex DNA is seen entering the main cleft of the enzyme and unwinding before the active site. Nine base pairs of DNA-RNA hybrid extend from the active center at nearly right angles to the entering DNA, with the 3' end of the RNA in the nucleotide addition site. The 3' end is positioned above a pore, through which nucleotides may enter and through which RNA may be extruded during back-tracking. The 5'-most residue of the RNA is close to the point of entry to an exit groove. Changes in protein structure between the transcribing complex and free enzyme include closure of a clamp over the DNA and RNA and ordering of a series of "switches" at the base of the clamp to create a binding site complementary to the DNA-RNA hybrid. Protein-nucleic acid contacts help explain DNA and RNA strand separation, the specificity of RNA synthesis, "abortive cycling" during transcription initiation, and RNA and DNA translocation during transcription elongation.

  16. Synthesis, structure, spectroscopic and electrochemical properties of bis(histamine-saccharinate) copper(II) complex

    Science.gov (United States)

    Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet

    2007-05-01

    Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.

  17. Generalized N=1 and N=2 structures in M-theory and type II orientifolds

    CERN Document Server

    Graña, Mariana

    2012-01-01

    We consider M-theory and type IIA reductions to four dimensions with N=2 and N=1 supersymmetry and discuss their interconnection. Our work is based on the framework of Exceptional Generalized Geometry (EGG), which extends the tangent bundle to include all symmetries in M-theory and type II string theory, covariantizing the local U-duality group E7. We describe general N=1 and N=2 reductions in terms of SU(7) and SU(6) structures on this bundle and thereby derive the effective four-dimensional N=1 and N=2 couplings, in particular we compute the Kahler and hyper-Kahler potentials as well as the triplet of Killing prepotentials (or the superpotential in the N=1 case). These structures and couplings can be described in terms of forms on an eight-dimensional tangent space where SL(8) contained in E7 acts, which might indicate a description in terms of an eight-dimensional internal space, similar to F-theory. We finally discuss an orbifold action in M-theory and its reduction to O6 orientifolds, and show how the pr...

  18. Synthesis and Crystal Structure of Tetraaquacopper(II) Bis(5-fluorouracil-1-acetate) Tetrahydrate

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Dong; HU Mao-Lin

    2006-01-01

    The title compound, [Cu(C6H4N2O4F)2(H2O)4]·4(H2O) I, has been hydrothermally synthesized and structurally determined by single-crystal X-ray diffraction method. It crystallizes in monoclinic, space group P21/c with a = 8.3041(17), b = 12.045(2), c = 11.077(2) (A), β = 92.567(3)o, V = 1106.8(4)(A)3, Mr = 581.89, Z = 2, Dc = 1.746 g/cm3, F(000) = 598, μ(MoKα) = 1.090 mm-1, the final R = 0.0296 and wR = 0.0806 for 3195 observed reflections with I > 2σ(I). In the centrosymme- tric compound I, each Cu(II) ion is coordinated by six O atoms from two 5-fluorouracil-1-acetate anions and four water molecules, forming a six-coordinated octahedral environment. N-H…O and O-H…O hydrogen-bonding interactions are observed in the structure, leading to the formation of a three-dimensional network.

  19. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure . Part II; Severe Damage

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.

  20. The first 3-D LaIII-SrII heterometallic complex: Synthesis, structure and luminescent properties

    Science.gov (United States)

    Hong, Zhiwei; Ran, Jingwen; Li, Tao; Chen, Yanmei

    2016-10-01

    The first 3-D LaIII-SrII heterometallic complex, namely [La2Sr(pda)4(H2O)4]n·6nH2O (1, H2pda = pyridine-2,6-dicarboxylic acid), has been successfully synthesized under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that complex 1 features a 3-D porous framework and displays a new topology. The crystal structure can be simplified to a 4,6-connected 3-D network with Schläfli symbol of {34·42·88·9}2{34·42}. The crystals also have been characterized by X-ray powder diffraction, elemental analysis, thermal analysis, and IR spectroscopy. The infrared spectral analysis indicates that complex 1 is a carboxylate coordinated compound, several water molecules exist in the compound. The thermal study shows that there are ten water molecules in the crystal structure. The luminescent property has also been investigated. It shows a blue-purple fluorescence emission.

  1. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Barinka, Cyril; Byun, Youngjoo; Dusich, Crystal L.; Banerjee, Sangeeta R.; Chen, Ying; Castanares, Mark; Kozikowski, Alan P.; Mease, Ronnie C.; Pomper, Martin G.; Lubkowski, Jacek (NCI); (JHMI); (UIC)

    2009-01-21

    Urea-based, low molecular weight ligands of glutamate carboxypeptidase II (GCPII) have demonstrated efficacy in various models of neurological disorders and can serve as imaging agents for prostate cancer. To enhance further development of such compounds, we determined X-ray structures of four complexes between human GCPII and urea-based inhibitors at high resolution. All ligands demonstrate an invariant glutarate moiety within the S1{prime} pocket of the enzyme. The ureido linkage between P1 and P1{prime} inhibitor sites interacts with the active-site Zn{sub 1}{sup 2+} ion and the side chains of Tyr552 and His553. Interactions within the S1 pocket are defined primarily by a network of hydrogen bonds between the P1 carboxylate group of the inhibitors and the side chains of Arg534, Arg536, and Asn519. Importantly, we have identified a hydrophobic pocket accessory to the S1 site that can be exploited for structure-based design of novel GCPII inhibitors with increased lipophilicity.

  2. Synthesis and crystal structure of catena-bis(nicotinamide)aqua({mu}-phthalato)copper(II) hemihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Koksharova, T. V. [Odessa National University (Ukraine); Antsyshkina, A. S. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Gritsenko, I. S. [Odessa National University (Ukraine); Sergienko, V. S. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2008-07-15

    The copper(II) phthalate complex with nicotinamide [CuL{sub 2}({mu}-Pht)(H{sub 2}O)] . 0.5H{sub 2}O(I) (where L is nicotinamide and Pht{sup 2-} is an anion of phthalic acid) is synthesized and investigated using IR spectroscopy and X-ray diffraction. The crystals of compound I are monoclinic, a = 13.368(2) A, b = 7.891(3) A, c = 20.480(2) A, {beta} = 108.69(2){sup o}, Z = 4, and space group P2{sub 1}/c. The structural units of crystal I are linear chains formed by bridging phthalate anions and crystallization water molecules. The copper atom is coordinated by two pyridine nitrogen atoms of two nicotinamide ligands (Cu-N, 2.001 and 2.045 A), two oxygen atoms of different phthalate anions (Cu-O, 1.964 and 2.235 A), and the oxygen atom of the H{sub 2} O molecule (Cu-O, 2.014 A). The coordination polyhedron of the copper atom is completed to an elongated (4 + 1 + 1) tetragonal bipyramid by the second (chelating) oxygen atom of the carboxyl group (Cu-O, 2.587 A), which is one of the anions of phthalic acid. The linear polymer molecules are joined into complex macromolecular dimers with the closest internal contacts of the specific type. The macromolecular dimers are the main supramolecular ensembles of the crystal structure.

  3. Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II

    Directory of Open Access Journals (Sweden)

    Kentaro eIfuku

    2016-02-01

    Full Text Available Photosystem II (PSII, which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The PSII extrinsic proteins shield the catalytic Mn4CaO5 cluster from the outside bulk solution and enhance binding of inorganic cofactors, such as Ca2+ and Cl-, in the oxygen-evolving center (OEC of PSII. Among PSII extrinsic proteins, PsbO is commonly found in all oxygenic organisms, while PsbP and PsbQ are specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP exist in cyanobacteria. In addition, red algae and diatoms have unique PSII extrinsic proteins, such as PsbQ’ and Psb31, suggesting functional divergence during evolution. Recent studies with reconstitution experiments combined with Fourier transform infrared spectroscopy have revealed how the individual PSII extrinsic proteins affect the structure and function of the OEC in different organisms. In this review, we summarize our recent results and discuss changes that have occurred in the structural coupling of extrinsic proteins with the OEC during evolutionary history.

  4. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    Energy Technology Data Exchange (ETDEWEB)

    He, Tian [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Zhao, Yi-xing; Chen, San-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Zhou, Chun-sheng, E-mail: slzhoucs@126.com.cn [Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000 (China); Yan, Ni [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China)

    2016-07-15

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC

  5. Synthesis, structures, and magnetic properties of tetranuclear CuII-LnIII complexes.

    Science.gov (United States)

    Costes, Jean-Pierre; Auchel, Magali; Dahan, Françoise; Peyrou, Viviane; Shova, Sergiu; Wernsdorfer, Wolfgang

    2006-03-06

    The copper(II)-gadolinium(III) and copper(II)-terbium(III) complexes studied in this report derive from disymmetric trianionic ligands abbreviated H3Li (i = 4-6). These ligands are obtained through reaction of different aldehydes with "half-units" having an amide function, the latter resulting from the monocondensation of different diamines with phenyl 2-hydroxy-3-methoxybenzoate. Upon deprotonation, the Li ligands (i = 4-10) possess an inner N2O2 coordination site with one amido, one imine, and two phenoxo functions, an outer O2O2 or O2O coordination site, and an amido oxygen atom positioned out of these two sites. The trianionic character of such ligands yields original anionic complexes in the presence of copper(II) or nickel(II) ions, with a 1/1 L/M stoichiometry. The crystal and molecular structures of four complexes, two 3d (1, 5) and two 3d-4f (12, 13) complexes, have been determined. Complex 1 crystallizes in the monoclinic space group C2/c: a = 27.528(2) A, b = 7.0944(7) A, c = 22.914(2) A, beta = 92.130(6) degrees , V = 4471.9(7) A(3), Z = 8 for C(21.5)H(27)CuKN(2)O(6.5). Complex 5 crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 11.0760(9) A, b = 21.454(2) A, c = 15.336(1) A, beta = 101.474(1) degrees , V = 3571.5(5) A(3), Z = 4. Complex 12 crystallizes in the triclinic space group P (No. 2): a = 8.682(2) A, b = 11.848(2) A, c = 11.928(2) A, alpha = 81.77(3) degrees , beta = 89.17(3) degrees , gamma = 85.49(3) degrees , V = 1210.6(4) A(3), Z = 2 for C20H22CuN5O11Tb. Complex 13 belongs to the monoclinic space group C2/c: a = 25.475(5)A, b = 12.934(3)A, c = 15.023(3) A, beta = 91.06(3) degrees , V = 4949.02A3, Z = 8 for C21H25CuN4O12Tb. The structural determinations confirm that the dinuclear entities involved in 12 and 13 are disposed in a head-to-tail arrangement to give tetranuclear complexes in which the copper and lanthanide ions are positioned at the vertexes of a rectangle. In the [Cu-Gd]2 species, there are two different

  6. The genetic population structure of northern Sweden and its implications for mapping genetic diseases.

    Science.gov (United States)

    Einarsdottir, Elisabet; Egerbladh, Inez; Beckman, Lars; Holmberg, Dan; Escher, Stefan A

    2007-11-01

    The northern Swedish population has a history of admixture of three ethnic groups and a dramatic population growth from a relatively small founder population. This has resulted in founder effects that together with unique resources for genealogical analyses provide excellent conditions for genetic mapping of monogenic diseases. Several recent examples of successful mapping of genetic factors underlying susceptibility to complex diseases have suggested that the population of northern Sweden may also be an important tool for efficient mapping of more complex phenotypes. A potential factor contributing to these effects may be population sub-isolates within the large river valleys, constituting a central geographic characteristic of this region. We here provide evidence that marriage patterns as well as the distribution of gene frequencies in a set of marker loci are compatible with this notion. The possible implications of this population structure on linkage- and association based strategies for identifying genes contributing risk to complex diseases are discussed.

  7. Gravitational-wave implications for structure formation: a second-order approach

    CERN Document Server

    Pazouli, Despoina

    2015-01-01

    Gravitational waves are propagating undulations in the spacetime fabric, which interact very weakly with their environment. In cosmology, gravitational-wave distortions are produced by most of the inflationary scenarios and their anticipated detection should open a new window to the early universe. Motivated by the relative lack of studies on the potential implications of gravitational radiation for the large-scale structure of the universe, we consider its coupling to density perturbations during the post-recombination era. We do so by assuming an Einstein-de Sitter background cosmology and by employing a second-order perturbation study. At this perturbative level and on superhorizon scales, we find that gravitational radiation adds a distinct and faster growing mode to the standard linear solution for the density contrast. Given the expected weakness of cosmological gravitational waves, however, the effect of the new mode is currently subdominant and it could start becoming noticeable only in the far future...

  8. Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa

    Science.gov (United States)

    Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao

    2016-09-01

    The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between ‑35 and ‑10 elements.

  9. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    Science.gov (United States)

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay.

  10. Genetic structure and evolution of the Vps25 family, a yeast ESCRT-II component

    Directory of Open Access Journals (Sweden)

    Slater Ruth

    2006-08-01

    Full Text Available Abstract Background Vps25p is the product of yeast gene VPS25 and is found in an endosomal sorting complex required for transport (ESCRT-II, along with Vps22p and Vps36p. This complex is essential for sorting of ubiquitinated biosynthetic and endosomal cargoes into endosomes. Results We found that VPS25 is a highly conserved and widely expressed eukaryotic gene, with single orthologs in chromalveolate, excavate, amoebozoan, plant, fungal and metazoan species. Two paralogs were found in Trichomonas vaginalis. An ortholog was strikingly absent from the Encephalitozoon cuniculi genome. Intron positions were analyzed in VPS25 from 36 species. We found evidence for five ancestral VPS25 introns, intron loss, and single instances of intron gain (a Paramecium species and intron slippage (Theileria species. Processed pseudogenes were identified in four mammalian genomes, with a notable absence in the mouse genome. Two retropseudogenes were found in the chimpanzee genome, one more recently inserted, and one evolving from a common primate ancestor. The amino acid sequences of 119 Vps25 orthologs are aligned, compared with the known secondary structure of yeast Vps25p, and used to carry out phylogenetic analysis. Residues in two amino-terminal PPXY motifs (motif I and II, involved in dimerization of Vps25p and interaction with Vps22p and Vps36p, were closely, but not absolutely conserved. Specifically, motif I was absent in Vps25 homologs of chromalveolates, euglenozoa, and diplomonads. A highly conserved carboxy-terminal lysine was identified, which suggests Vps25 is ubiquitinated. Arginine-83 of yeast Vps25p involved in Vps22p interaction was highly, but not absolutely, conserved. Human tissue expression analysis showed universal expression. Conclusion We have identified 119 orthologs of yeast Vps25p. Expression of mammalian VPS25 in a wide range of tissues, and the presence in a broad range of eukaryotic species, indicates a basic role in eukaryotic cell

  11. Synthesis and structural characterization of Pd(II) complexes derived from perimidine ligand and their in vitro antimicrobial studies

    Science.gov (United States)

    Azam, Mohammad; Warad, Ismail; Al-Resayes, Saud I.; Alzaqri, Nabil; Khan, Mohammad Rizwan; Pallepogu, Raghavaiah; Dwivedi, Sourabh; Musarrat, Javed; Shakir, Mohammad

    2013-09-01

    A novel series of Pd(II) complexes derived from 2-thiophenecarboxaldehyde and 1,8-diaminonaphthalene has been synthesized and characterized by various physico-chemical and spectroscopic techniques viz., elemental analyses, IR, UV-vis, 1H and 13C NMR spectroscopy, and ESI-mass spectrometry. The structure of ligand, 2-(2-thienyl)-2,3-dihydro-1H-perimidine has been ascertained on the basis of single crystal X-ray diffraction. All Pd(II) complexes together with the corresponding ligand have been evaluated for their ability to suppress the in vitro growth of microbes, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Citrobacter sp., Bacillus subtilis and Stenotrophomonas acidaminiphila and results show that Pd(II) complexes have more significant antimicrobial activity than their corresponding ligand. Fluorescence spectroscopic measurements clearly support that both of the Pd(II) complexes show significant DNA binding with calf thymus DNA.

  12. Structural Basis for Reduced FGFR2 Activity in LADD Syndrome: Implications for FGFR Autoinhibition and Activation

    Energy Technology Data Exchange (ETDEWEB)

    Lew,E.; Bae, J.; Rohmann, E.; Wollnik, B.; Schlessinger, J.

    2007-01-01

    Mutations in fibroblast growth factor receptor 2 (FGFR2) and its ligand, FGF10, are known to cause lacrimo-auriculo-dento-digital (LADD) syndrome. Multiple gain-of-function mutations in FGF receptors have been implicated in a variety of severe skeletal disorders and in many cancers. We aimed to elucidate the mechanism by which a missense mutation in the tyrosine kinase domain of FGFR2, described in the sporadic case of LADD syndrome, leads to reduced tyrosine kinase activity. In this report, we describe the crystal structure of a FGFR2 A628T LADD mutant in complex with a nucleotide analog. We demonstrate that the A628T LADD mutation alters the configuration of key residues in the catalytic pocket that are essential for substrate coordination, resulting in reduced tyrosine kinase activity. Further comparison of the structures of WT FGFR2 and WT FGFR1 kinases revealed that FGFR2 uses a less stringent mode of autoinhibition than FGFR1, which was also manifested in faster in vitro autophosphorylation kinetics. Moreover, the nearly identical conformation of WT FGFR2 kinase and the A628T LADD mutant to either the phosphorylated FGFR2 or FGFR2 harboring pathological activating mutations in the kinase hinge region suggests that FGFR autoinhibition and activation are better explained by changes in the conformational dynamics of the kinase rather than by static crystallographic snapshots of minor structural variations.

  13. Structural insights into human angiogenin variants implicated in Parkinson’s disease and Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Bradshaw, William J.; Rehman, Saima; Pham, Tram T. K.; Thiyagarajan, Nethaji; Lee, Rebecca L.; Subramanian, Vasanta; Acharya, K. Ravi

    2017-01-01

    Mutations in Angiogenin (ANG), a member of the Ribonuclease A superfamily (also known as RNase 5) are known to be associated with Amyotrophic Lateral Sclerosis (ALS, motor neurone disease) (sporadic and familial) and Parkinson’s Disease (PD). In our previous studies we have shown that ANG is expressed in neurons during neuro-ectodermal differentiation, and that it has both neurotrophic and neuroprotective functions. In addition, in an extensive study on selective ANG-ALS variants we correlated the structural changes to the effects on neuronal survival and the ability to induce stress granules in neuronal cell lines. Furthermore, we have established that ANG-ALS variants which affect the structure of the catalytic site and either decrease or increase the RNase activity affect neuronal survival. Neuronal cell lines expressing the ANG-ALS variants also lack the ability to form stress granules. Here, we report a detailed experimental structural study on eleven new ANG-PD/ALS variants which will have implications in understanding the molecular basis underlying their role in PD and ALS. PMID:28176817

  14. Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52.

    Science.gov (United States)

    Erler, Axel; Wegmann, Susanne; Elie-Caille, Celine; Bradshaw, Charles Richard; Maresca, Marcello; Seidel, Ralf; Habermann, Bianca; Muller, Daniel J; Stewart, A Francis

    2009-08-21

    Single-strand annealing proteins, such as Redbeta from lambda phage or eukaryotic Rad52, play roles in homologous recombination. Here, we use atomic force microscopy to examine Redbeta quaternary structure and Redbeta-DNA complexes. In the absence of DNA, Redbeta forms a shallow right-handed helix. The presence of single-stranded DNA (ssDNA) disrupts this structure. Upon addition of a second complementary ssDNA, annealing generates a left-handed helix that incorporates 14 Redbeta monomers per helical turn, with each Redbeta monomer annealing approximately 11 bp of DNA. The smallest stable annealing intermediate requires 20 bp DNA and two Redbeta monomers. Hence, we propose that Redbeta promotes base pairing by first increasing the number of transient interactions between ssDNAs. Then, annealing is promoted by the binding of a second Redbeta monomer, which nucleates the formation of a stable annealing intermediate. Using threading, we identify sequence similarities between the RecT/Redbeta and the Rad52 families, which strengthens previous suggestions, based on similarities of their quaternary structures, that they share a common mode of action. Hence, our findings have implications for a common mechanism of DNA annealing mediated by single-strand annealing proteins including Rad52.

  15. Implications of the atmosphere-soil interaction for the design of earth retaining structures

    Directory of Open Access Journals (Sweden)

    Ruge Juan Carlos

    2016-01-01

    Full Text Available The performance of most geotechnical structures is highly governed by environmental factors, particularly in tropical regions where there are very pronounced dry and wet seasons. Design of earth retaining structures generally tend to be too conservative due to the uncertainty generated by the incorporation of environmental variables. Those variables control the soil unsaturated response and in addition to the known insufficiency of the basic models used in traditional designs they are responsible for conservative designs. Rainfall is the main aspect that affects the soil properties of a particular site. It modifies the soil suction potential, according to the degree of saturation caused by the soil-atmosphere interaction. Currently, state-of-the-art numerical tools allow to simulate the influence of those variables in the behaviour of earth retaining structures. This paper analyses the possible implications of the use of numerical simulations for the design, which include, in the mathematical formulation, the suction as a main parameter. The hypoplastic model for unsaturated response was used. Numerical simulations performed with the use of traditional and modern constitutive models obtained encouraging results that reveal the importance of include suction in design processes.

  16. Structure and function of REP34 implicates carboxypeptidase activity in Francisella tularensis host cell invasion.

    Science.gov (United States)

    Feld, Geoffrey K; El-Etr, Sahar; Corzett, Michele H; Hunter, Mark S; Belhocine, Kamila; Monack, Denise M; Frank, Matthias; Segelke, Brent W; Rasley, Amy

    2014-10-31

    Francisella tularensis is the etiological agent of tularemia, or rabbit fever. Although F. tularensis is a recognized biothreat agent with broad and expanding geographical range, its mechanism of infection and environmental persistence remain poorly understood. Previously, we identified seven F. tularensis proteins that induce a rapid encystment phenotype (REP) in the free-living amoeba, Acanthamoeba castellanii. Encystment is essential to the pathogen's long term intracellular survival in the amoeba. Here, we characterize the cellular and molecular function of REP34, a REP protein with a mass of 34 kDa. A REP34 knock-out strain of F. tularensis has a reduced ability to both induce encystment in A. castellanii and invade human macrophages. We determined the crystal structure of REP34 to 2.05-Å resolution and demonstrate robust carboxypeptidase B-like activity for the enzyme. REP34 is a zinc-containing monomeric protein with close structural homology to the metallocarboxypeptidase family of peptidases. REP34 possesses a novel topology and substrate binding pocket that deviates from the canonical funnelin structure of carboxypeptidases, putatively resulting in a catalytic role for a conserved tyrosine and distinct S1' recognition site. Taken together, these results identify REP34 as an active carboxypeptidase, implicate the enzyme as a potential key F. tularensis effector protein, and may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells.

  17. Crystal structure of the pilotin from the enterohemorrhagic Escherichia coli type II secretion system.

    Science.gov (United States)

    Korotkov, Konstantin V; Hol, Wim G J

    2013-05-01

    Bacteria contain several sophisticated macromolecular machineries responsible for translocating proteins across the cell envelope. One prominent example is the type II secretion system (T2SS), which contains a large outer membrane channel, called the secretin. These gated channels require specialized proteins, so-called pilotins, to reach and assemble in the outer membrane. Here we report the crystal structure of the pilotin GspS from the T2SS of enterohemorrhagic Escherichia coli (EHEC), an important pathogen that can cause severe disease in cases of food poisoning. In this four-helix protein, the straight helix α2, the curved helix α3 and the bent helix α4 surround the central N-terminal helix α1. The helices of GspS create a prominent groove, mainly formed by side chains of helices α1, α2 and α3. In the EHEC GspS structure this groove is occupied by extra electron density which is reminiscent of an α-helix and corresponds well with a binding site observed in a homologous pilotin. The residues forming the groove are well conserved among homologs, pointing to a key role of this groove in this class of T2SS pilotins. At the same time, T2SS pilotins in different species can be entirely different in structure, and the pilotins for secretins in non-T2SS machineries have yet again unrelated folds, despite a common function. It is striking that a common complex function, such as targeting and assembling an outer membrane multimeric channel, can be performed by proteins with entirely different folds. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Synthesis, crystal structure and luminescent properties of one coordination polymer of cadmium(II) with mixed thiocyanate and hexamethylenetetramine ligands.

    Science.gov (United States)

    Bai, Yan; Shang, Wei-Li; Dang, Dong-Bin; Sun, Ji-De; Gao, Hui

    2009-03-01

    A novel Cd(II) coordination polymer [Cd(SCN)(2)(hmt)(1/2)(H(2)O)](2).H(2)O (hmt=hexamethylenetetramine) has been synthesized and characterized by IR, elemental analysis, TG technique and X-ray crystallography. Cd(II) atom has an distorted octahedral environment with an N(3)S(2)O donor set. Every six Cd(II) centers are linked by hmt and thiocyanato bridges to form a planar 2D coordination polymer containing hexagonal metallocyclic rings [Cd(6)(SCN)(8)(hmt)(2)]. A 2D layer structure is held together with its neighboring ones via a set of hydrogen-bonding interactions to form a 3D supramolecular structure. The luminescent properties of the title complex in the solid state were investigated.

  19. An optical spectroscopic survey of the 3CR sample of radio galaxies with z < 0.3. V. Implications for the unified model for FR IIs

    Science.gov (United States)

    Baldi, Ranieri D.; Capetti, Alessandro; Buttiglione, Sara; Chiaberge, Marco; Celotti, Annalisa

    2013-12-01

    We explore the implications of our optical spectroscopic survey of 3CR radio sources with z edge-brightened" (FR II) radio morphology. The sample contains 33 high ionization galaxies (HIGs) and 18 broad line objects (BLOs). According to the UM, HIGs, the narrow line sources, are the nuclearly obscured counterparts of BLOs. The fraction of HIGs indicates a covering factor of the circumnuclear matter of 65% that corresponds, adopting a torus geometry, to an opening angle of 50° ± 5. No dependence on redshift and luminosity on the torus opening angle emerges. We also consider the implications for a "clumpy" torus. The distributions of total radio luminosity of HIGs and BLOs are not statistically distinguishable, as expected from the UM. Conversely, BLOs have a radio core dominance, R, more than ten times larger with respect to HIGs, as expected in case of Doppler boosting when the jets in BLOs are preferentially oriented closer to the line of sight than in HIGs. Modeling the R distributions leads to an estimate of the jet bulk Lorentz factor of Γ ~ 3-5. The test of the UM based on the radio source size is not conclusive due to the limited number of objects and because the size distribution is dominated by the intrinsic scatter rather than by projection effects. The [O II] line luminosities in HIGs and BLOs are similar but the [O III] and [O I] lines are higher in BLOs by a factor of ~2. We ascribe this effect to the presence of a line emitting region located within the walls of the obscuring torus, visible in BLOs but obscured in HIGs, with a density higher than the [O II] critical density. We find evidence that BLOs have broader [O I] and [O III] lines than HIGs of similar [O II] width, as expected in the presence of high density gas in the proximity of the central black hole. In conclusion, the radio and narrow line region (NLR) properties of HIGs and BLOs are consistent with the UM predictions when the partial obscuration of the NLR is taken into account. We

  20. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    Science.gov (United States)

    He, Tian; Yue, Ke-Fen; Zhao, Yi-xing; Chen, San-Ping; Zhou, Chun-sheng; Yan, Ni

    2016-07-01

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H2O}n (1), {[Zn(bib)(atbip)]·H2O}n (2), [Zn(bib)(2,2‧-tda)]}n (3) and {[Zn(bib)(5-tbipa)]·EtOH}n (4), (H2atibdc=5-amino-2,4,6-triiodoisophthalic acid, H2atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2‧-H2tad=2,2‧-thiodiacetic acid, 5-H2tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1-4. The fluorescent properties of complexes 1-4 were studied. In addition, the thermal decompositions properties of 1-4 were investigated by simultaneous TG/DTG-DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1-4 are calculated by the integral Kissinger's method and Ozawa-Doyle's method. The activation energy E (E1=209.658 kJ·mol-1, E2=250.037 kJ mol-1, E3=225.300 kJ mol-1, E4=186.529 kJ·mol-1) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH‡, ΔG‡ and ΔS‡) at the peak temperatures of the DTG curves were also calculated. ΔG‡>0 indicates that the skeleton collapse is not spontaneous. ΔHd>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics.

  1. Electronic Structure and Reactivity of a Well-Defined Mononuclear Complex of Ti(II).

    Science.gov (United States)

    Wijeratne, Gayan B; Zolnhofer, Eva M; Fortier, Skye; Grant, Lauren N; Carroll, Patrick J; Chen, Chun-Hsing; Meyer, Karsten; Krzystek, J; Ozarowski, Andrew; Jackson, Timothy A; Mindiola, Daniel J; Telser, Joshua

    2015-11-02

    A facile and high-yielding protocol to the known Ti(II) complex trans-[(py)4TiCl2] (py = pyridine) has been developed. Its electronic structure has been probed experimentally using magnetic susceptibility, magnetic circular dichroism, and high-frequency and high-field electron paramagnetic resonance spectroscopies in conjunction with ligand-field theory and computational methods (density functional theory and ab initio methods). These studies demonstrated that trans-[(py)4TiCl2] has a (3)Eg ground state (dxy(1)dxz,yz(1) orbital occupancy), which, as a result of spin–orbit coupling, yields a ground-state spinor doublet that is EPR active, a first excited-state doublet at ∼60 cm(–1), and two next excited states at ∼120 cm(–1). Reactivity studies with various unsaturated substrates are also presented in this study, which show that the Ti(II) center allows oxidative addition likely via formation of [Ti(η(2)-R2E2)Cl2(py)n] E = C, N intermediates. A new Ti(IV) compound, mer-[(py)3(η(2)-Ph2C2)TiCl2], was prepared by reaction with Ph2C2, along with the previously reported complex trans-(py)3Ti═NPh(Cl)2, from reaction with Ph2N2. Reaction with Ph2CN2 also yielded a new dinuclear Ti(IV) complex, [(py)2(Cl)2Ti(μ2:η(2)-N2CPh2)2Ti(Cl)2], in which the two Ti(IV) ions are inequivalently coordinated. Reaction with cyclooctatetraene (COT) yielded a new Ti(III) complex, [(py)2Ti(η(8)-COT)Cl], which is a rare example of a mononuclear “piano-stool” titanium complex. The complex trans-[(py)4TiCl2] has thus been shown to be synthetically accessible, have an interesting electronic structure, and be reactive toward oxidation chemistry.

  2. Physical-chemistry of radionuclide/mineral surface interaction: II - Structural aspect; Physico-chimie de l`interaction radionucleides/surfaces minerales: II - Aspect structural

    Energy Technology Data Exchange (ETDEWEB)

    Cavallec, R.; Drot, R.; Hubert, S.; Simoni, E. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Denauwer, Ch. [Direction du Cycle du Combustible, CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France); Ehrhardt, J.J. [Centre de Cinetique Physique et Chimique, Centre National de la Recherche Scientifique (CNRS), 54 - Villers-les-Nancy (France)

    1999-11-01

    Most of the studies on sorption processes takes into account only the thermodynamical approach and does not have paid attention to the structural aspect (i.e. structure of the surface complex, sorption mechanism). We have here considered this structural point of view using various spectroscopic methods such as photoelectron spectroscopy (XPS), laser induced fluorescence and extended X-ray absorption fine structure (EXAFS). (authors) 1 tab.

  3. Left-handed DNA crossovers. Implications for DNA-DNA recognition and structural alterations.

    Science.gov (United States)

    Timsit, Y; Shatzky-Schwartz, M; Shakked, Z

    1999-02-01

    The close approach of DNA segments participates in many biological functions including DNA condensation and DNA processing. Previous crystallographic studies have shown that B-DNA self-fitting by mutual groove-backbone interaction produces right-handed DNA crossovers. These structures have opened new perspectives on the role of close DNA-DNA interactions in the architecture and activity the DNA molecule. In the present study, the analysis of the crystal packing of two B-DNA decamer duplexes d(CCIIICCCGG) and d(CCGCCGGCGG) reveals the existence of new modes of DNA crossing. Symmetric left-handed crossovers are produced by mutual fitting of DNA grooves at the crossing point. New sequence patterns contribute to stabilize longitudinal fitting of the sugar-phosphate backbone into the major groove. In addition, the close approach of DNA segments greatly influences the DNA conformation in a sequence dependent manner. This study provides new insights into the role of DNA sequence and structure in DNA-DNA recognition. In providing detailed molecular views of DNA crossovers of opposite chirality, this study can also help to elucidate the role of symmetry and chirality in the recognition of complex DNA structures by protein dimers or tetramers, such as topoisomerase II and recombinase enzymes. These results are discussed in the context of the possible relationships between DNA condensation and DNA processing.

  4. Water- and Temperature-Triggered Reversible Structural Transformation of Tetranuclear Cobalt(II) Cores Sandwiched by Polyoxometalates.

    Science.gov (United States)

    Kuriyama, Yosuke; Kikukawa, Yuji; Suzuki, Kosuke; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-03-14

    Although stimuli-responsive structural transformations of inorganic materials have attracted considerable attention because of their potential use as functional switchable materials, multinuclear metal cores frequently suffer from unexpected dissociation of metal cations and/or irreversible transformations into infinite structures. In this study, we describe the successful demonstration of the water- and temperature-triggered reversible structural transformation between cubane- and planar-type tetranuclear Co(II) cores sandwiched by polyoxometalates. The arrangements and coordination geometries of the Co(II) cations were interconverted by simple hydration and dehydration, resulting in the manipulation of the magnetic and optical properties of these compounds. Moreover, this system showed unique thermochromism through temperature-dependent reversible structural interconversion.

  5. Synthesis and characterization of different zinc(II) oxide nano-structures from two new zinc(II)-Quinoxaline coordination polymers

    Science.gov (United States)

    Molaei, Fatemeh; Bigdeli, Fahime; Morsali, Ali; Joo, Sang Woo; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2015-09-01

    Two new zinc(II) coordination polymers, [Zn(Quinoxaline)(NO3)2(H2O)2]nṡQuinoxaline·H2O (1) and [Zn(Quinoxaline)2(Br)2]n (2), Quinoxaline = Benzopyrazine, have been synthesized and characterized by IR spectroscopy. Compounds 1 and 2 were structurally characterized by single crystal X-ray diffraction and are one-dimensional coordination polymers with coordination environment of octahedral and tetrahedral respectively. Nanostructures of zinc(II) oxide were obtained by thermolyses of compound 1 in oleic acid, calcination of compound 1 at 500 °C under air atmosphere and sol-gel processes. Also, nanopowders of zinc(II) oxide were obtained by calcination of compound 2 at 450 and 550 °C. The nanomaterials were characterized by scanning electron microscopy and X-ray powder diffraction (XRD). The thermal stability of compounds 1 and 2 both their bulk were studied by thermo-gravimetric (TGA) and differential thermal analyses (DTA). This study demonstrates the coordination polymers may be suitable precursors for the preparation of nanoscale materials.

  6. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications.

    Science.gov (United States)

    Maisano Delser, Pierpaolo; Fuselli, Silvia

    2013-05-01

    genes. The population structure defined by PGx loci supports the presence of six genetic clusters reflecting geographic location of samples. In particular, the results of the DAPC analyses show that 27 SNPs substantially contribute to the first three discriminant functions. Among these SNPs, some, such as the intronic rs1403527 of NR1I2 and the non-synonymous rs699 of AGT, are known to be associated with specific drug responses. Their substantial variation between different groups of populations may have important implications for PGx practical applications.

  7. Photosystem II Photochemistry and Phycobiliprotein of the Red Algae Kappaphycus alvarezii and Their Implications for Light Adaptation

    Directory of Open Access Journals (Sweden)

    Xiangyu Guan

    2013-01-01

    Full Text Available Photosystem II photochemistry and phycobiliprotein (PBP genes of red algae Kappaphycus alvarezii, raw material of κ-carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (Ik of this algal species was less than 115 μmol m−2 s−1. Its actual PSII efficiency (yield II increased when light intensity enhanced and decreased when light intensity reached 200 μmol m−2 s−1. Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.

  8. Photosystem II photochemistry and phycobiliprotein of the red algae Kappaphycus alvarezii and their implications for light adaptation.

    Science.gov (United States)

    Guan, Xiangyu; Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng

    2013-01-01

    Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ -carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k) of this algal species was less than 115 μmol m(-2) s(-1). Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200 μmol m(-2) s(-1). Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.

  9. EXAFS of Poly [μ-hexakis(2-methylimidazolato-N,N')triiron( II)]: Implications for Metalloprotein Studies

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Feiters, M.C.; Navaratnam, S.; Al-Hakim, M.; Allen, J.C.; Spek, A.L.; Veldink, G.A.

    1988-01-01

    EXAFS data at the Fe K-edge of the coordination compound poly[mu-hexakis(2-methylimidazolato-N,N3triiron(II)] are presented. Single-scattering analysis of the EXAFS gives good agreement with the crystallographic data for the first two shells of atoms around the iron, but beyond that, multiple-scatte

  10. A Test of Three Basic Assumptions of Situational Leadership® II Model and Their Implications for HRD Practitioners

    Science.gov (United States)

    Zigarmi, Drea; Roberts, Taylor Peyton

    2017-01-01

    Purpose: This study aims to test the following three assertions underlying the Situational Leadership® II (SLII) Model: all four leadership styles are received by followers; all four leadership styles are needed by followers; and if there is a fit between the leadership style a follower receives and needs, that follower will demonstrate favorable…

  11. Structure of the C-terminal domain of AspA (antigen I/II-family protein from Streptococcus pyogenes

    Directory of Open Access Journals (Sweden)

    Michael Hall

    2014-01-01

    Full Text Available The pathogenic bacteria Streptococcus pyogenes can cause an array of diseases in humans, including moderate infections such as pharyngitis (strep throat as well as life threatening conditions such as necrotizing fasciitis and puerperal fever. The antigen I/II family proteins are cell wall anchored adhesin proteins found on the surfaces of most oral streptococci and are involved in host colonization and biofilm formation. In the present study we have determined the crystal structure of the C2–3-domain of the antigen I/II type protein AspA from S. pyogenes M type 28. The structure was solved to 1.8 Å resolution and shows that the C2–3-domain is comprised of two structurally similar DEv-IgG motifs, designated C2 and C3, both containing a stabilizing covalent isopeptide bond. Furthermore a metal binding site is identified, containing a bound calcium ion. Despite relatively low sequence identity, interestingly, the overall structure shares high similarity to the C2–3-domains of antigen I/II proteins from Streptococcus gordonii and Streptococcus mutans, although certain parts of the structure exhibit distinct features. In summary this work constitutes the first step in the full structure determination of the AspA protein from S. pyogenes.

  12. Synthesis, spectroscopic and DNA binding ability of Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex.

    Science.gov (United States)

    Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L)2]·l2H2O, [Ni(L)Cl·(H2O)2].5H2O, [Cu(L)Cl] and [Zn(L)(CH3COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, (1)H &(13)C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (Kb). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. From forced collapse to H ii region expansion in Mon R2: Envelope density structure and age determination with Herschel⋆

    Science.gov (United States)

    Didelon, P.; Motte, F.; Tremblin, P.; Hill, T.; Hony, S.; Hennemann, M.; Hennebelle, P.; Anderson, L. D.; Galliano, F.; Schneider, N.; Rayner, T.; Rygl, K.; Louvet, F.; Zavagno, A.; Könyves, V.; Sauvage, M.; André, Ph.; Bontemps, S.; Peretto, N.; Griffin, M.; González, M.; Lebouteiller, V.; Arzoumanian, D.; Bernard, J.-P.; Benedettini, M.; Di Francesco, J.; Men'shchikov, A.; Minier, V.; Nguyên Luong, Q.; Palmeirim, P.; Pezzuto, S.; Rivera-Ingraham, A.; Russeil, D.; Ward-Thompson, D.; White, G. J.

    2015-12-01

    Context. The surroundings of H ii regions can have a profound influence on their development, morphology, and evolution. This paper explores the effect of the environment on H ii regions in the MonR2 molecular cloud. Aims: We aim to investigate the density structure of envelopes surrounding H ii regions and to determine their collapse and ionisation expansion ages. The Mon R2 molecular cloud is an ideal target since it hosts an H ii region association, which has been imaged by the Herschel PACS and SPIRE cameras as part of the HOBYS key programme. Methods: Column density and temperature images derived from Herschel data were used together to model the structure of H ii bubbles and their surrounding envelopes. The resulting observational constraints were used to follow the development of the Mon R2 ionised regions with analytical calculations and numerical simulations. Results: The four hot bubbles associated with H ii regions are surrounded by dense, cold, and neutral gas envelopes, which are partly embedded in filaments. The envelope's radial density profiles are reminiscent of those of low-mass protostellar envelopes. The inner parts of envelopes of all four H ii regions could be free-falling because they display shallow density profiles: ρ(r) ∝ r- q with q ≤slant 1.5. As for their outer parts, the two compact H ii regions show a ρ(r) ∝ r-2 profile, which is typical of the equilibrium structure of a singular isothermal sphere. In contrast, the central UCH ii region shows a steeper outer profile, ρ(r) ∝ r-2.5, that could be interpreted as material being forced to collapse, where an external agent overwhelms the internal pressure support. Conclusions: The size of the heated bubbles, the spectral type of the irradiating stars, and the mean initial neutral gas density are used to estimate the ionisation expansion time, texp ~ 0.1 Myr, for the dense UCH ii and compact H ii regions and ~ 0.35 Myr for the extended H ii region. Numerical simulations with and

  14. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenchuan [Univ. of California, Berkeley, CA (United States)

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  15. Supramolecular architectures in luminescent Zn(II) and Cd(II) complexes containing imidazole derivatives: Crystal structures, vibrational and thermal properties, Hirshfeld surface analysis and electrostatic potentials

    Science.gov (United States)

    Di Santo, Alejandro; Echeverría, Gustavo A.; Piro, Oscar E.; Pérez, Hiram; Ben Altabef, Aida; Gil, Diego M.

    2017-04-01

    Three novel zinc and cadmium complexes with 1-methylimidazole and 2-methylimidazole as ligands, mono-nuclear dichloro-bis(1-methylimidazole) zinc(II) and dibromo-bis(2-methylimidazole)cadmium(II) monohydrate complexes, and poly-nuclear bis(1-methylimidazole)-di-(μ2-bromo)cadmium(II) complex, namely, compounds 1-3, respectively, have been synthesized. The complexes were characterized by IR and Raman spectroscopies, thermal analysis and fluorescence. All the compounds exhibit interesting luminescent properties in solid state originated from intra-ligand (π→π*) transitions. Crystal structures of 1-3 were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in P21/n space group, the Zn(II) ion lies at a crystal general position in a tetrahedral environment, and the mono-nuclear units are weakly bonded to one another by Csbnd H⋯Cl hydrogen bonds. Compound 2 crystallizes in Pnma space group, and mirror-related tetrahedral units around Cd(II) ion are H-bonded through a water molecule. Compound 3 crystallizes in P21/c space group, and the Cd(II) ion presents a centrosymmetric octahedral coordination. Neighboring and equatorial edge-sharing octahedra conform a polymeric arrangement that extends along the crystal a-axis. Weak hydrogen bonds are the major driving forces in the crystal packing of the three complexes. Hirshfeld surface analysis reveals a detailed scrutiny of intermolecular interactions experienced by each complex. The surfaces mapped over dnorm property highlight the X···H (X = Cl, Br) as the main intermolecular contacts for the three complexes, being also relevant the presence of O⋯H contacts for complex 2. The surfaces mapped over Shape index and curvedness properties for the two Cd complexes allow identify π … π stacking interactions which are absent in the Zn complex. 2D fingerprint plots have been used to quantify the relative contribution of the intermolecular contacts to crystal stability of compounds, showing

  16. Crystal Structures of Diaryliodonium Fluorides and their Implications for Fluorination Mechanisms.

    Science.gov (United States)

    Lee, Yong Sok; Chun, Joong-Hyun; Hodošček, Milan; Pike, Victor

    2017-01-31

    The radiofluorination of diaryliodonium salts is of value for producing radiotracers for positron emission tomography. We report crystal structures for two diaryliodonium fluorides. Whereas diphenyliodon um fluoride (1a) exists as a tetramer bridged by four fluoride ions, 2-methylphenyl(phenyl)iodonium fluoride (2a) forms a fluoride-bridged dimer that is further halogen-bonded to two other monomers. We discuss the topological relationships between the two and their implications for fluorination in solution. Both radiofluorination and NMR spectroscopy show that thermolysis of 2a gives 2-fluorotoluene and fluorobenzene in a 2 to 1 ratio that is in good agreement with the ratio observed from the radiofluorination of 2-methylphenyl(phenyl)iodonium chloride (2b). The constancy of the product ratio affirms that the fluorinations occur via the same two rapidly interconverting transition states whose energy difference dictates chemoselectivity. The quantum chemical studies with density functional theory at the level of B3LYP/DGDZVP provide deeper insight into the role of 'ortho effect' in the mechanism of fluorination. By utilizing the crystal structures of 1a and 2a, the mechanisms of fluoroarene formation from diaryliodonium fluorides in their monomeric, homodimeric, heterodimeric, and tetrameric states were also investigated. According to this analysis, we propose that oligomerization energy dictates whether the fluorination occurs through a monomeric or an oligomeric pathway.

  17. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms.

    Science.gov (United States)

    Bushnell, David A; Westover, Kenneth D; Davis, Ralph E; Kornberg, Roger D

    2004-02-13

    The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.

  18. The Curiosity and Exploration Inventory-II: Development, Factor Structure, and Psychometrics

    Science.gov (United States)

    Kashdan, Todd B.; Gallagher, Matthew W.; Silvia, Paul J.; Winterstein, Beate P.; Breen, William E.; Terhar, Daniel; Steger, Michael F.

    2009-01-01

    Given curiosity’s fundamental role in motivation, learning, and well-being, we sought to refine the measurement of trait curiosity with an improved version of the Curiosity and Exploration Inventory (CEI; Kashdan, Rose, & Fincham, 2004). A preliminary pool of 36 items was administered to 311 undergraduate students, who also completed measures of emotion, emotion regulation, personality, and well-being. Factor analyses indicated a two factor model—motivation to seek out knowledge and new experiences (Stretching; 5 items) and a willingness to embrace the novel, uncertain, and unpredictable nature of everyday life (Embracing; 5 items). In two additional samples (ns = 150 and 119), we cross-validated this factor structure and provided initial evidence for construct validity. This includes positive correlations with personal growth, openness to experience, autonomy, purpose in life, self-acceptance, psychological flexibility, positive affect, and positive social relations, among others. Applying item response theory (IRT) to these samples (n = 578), we showed that the items have good discrimination and a desirable breadth of difficulty. The item information functions and test information function were centered near zero, indicating that the scale assesses the mid-range of the latent curiosity trait most reliably. The findings thus far provide good evidence for the psychometric properties of the 10-item CEI-II. PMID:20160913

  19. Plausible molecular and crystal structures of chitosan/HI type II salt.

    Science.gov (United States)

    Lertworasirikul, Amornrat; Noguchi, Keiichi; Ogawa, Kozo; Okuyama, Kenji

    2004-03-15

    Chitosan/HI type II salt prepared from crab tendon was investigated by X-ray fiber diffraction. Two polymer chains and 16 iodide ions (I(-)) crystallized in a tetragonal unit cell with lattice parameters of a = b = 10.68(3), c (fiber axis) = 40.77(13) A, and a space group P4(1). Chitosan forms a fourfold helix with a 40.77 A fiber period having a disaccharide as the helical asymmetric unit. One of the O-3... O-5 intramolecular hydrogen bonds at the glycosidic linkage is weakened by interacting with iodide ions, which seems to cause the polymer to take the 4/1-helical symmetry rather than the extended 2/1-helix. The plausible orientations of two O-6 atoms in the helical asymmetric unit were found to be gt and gg. Two chains are running through at the corner and the center of the unit cell along the c-axis. They are linked by hydrogen bonds between N-21 and O-61 atoms. Two out of four independent iodide ions are packed between the corner chains while the other two are packed between the corner and center chains when viewing through the ab-plane. The crystal structure of the salt is stabilized by hydrogen bonds between these iodide ions and N-21, N-22, O-32, O-61, O-62 of the polymer chains.

  20. Structural, physicochemical characterization and antimicrobial activities of a new Tetraaqua bismaleato Iron(II) complex

    Indian Academy of Sciences (India)

    Badiaa Essghaier; Jawher Abdelhak; Amani Naouar; Nourchene Toukebri; Mohamed Faouzi Zid; Najla Sadfi-Zouaoui

    2015-12-01

    Tetraaqua bismaleato iron(II) [Fe(C4H3O4)2 (H2O)4], (1) is a new synthetic antimicrobial agent. Thermal analysis shows that the dehydration of the compound occurs in agreement with the structure. The single crystal salt crystallizes in the triclinic space group -1 with = 5.171(2) Å, = 7.309(3) Å, = 9.731(3) Å, = 109.15(2)°, = 115.02(2)°, = 92.42(1)°, = 313.6(3) Å3 and Z = 1. Three dimensional network is formed by strong intermolecular O – H . . . O hydrogen bonds. Magnetic susceptibility measurements of 1 in the range 2–300 K exhibited paramagnetic behavior at high temperature. However, at low temperature, the susceptibility data showed weak antiferromagnetic interactions between the local spins. Antimicrobial activity of 1 was tested. It showed high response against gram-positive and gram-negative bacteria as well as fungi and the MIC and IC50 values ranged from 8 to 256 g.mL−1 and from 1.38 to 22.19 g.mL−1, respectively.

  1. A novel embeddable spherical smart aggregate for structural health monitoring: part II. Numerical and experimental verifications

    Science.gov (United States)

    Kong, Qingzhao; Fan, Shuli; Mo, Y. L.; Song, Gangbing

    2017-09-01

    The newly developed spherical smart aggregate (SSA) based on a radially polarized spherical piezoceramic shell element has unique omnidirectional actuating and sensing capabilities that can greatly improve the detection aperture and provide additional functionalities in health monitoring applications in concrete structures. Detailed fabrication procedures and electrical characterization of the SSA have been previously studied (Part I). In this second paper (Part II), the functionalities of the SSA used in both active sensing and passive sensing approaches were investigated in experiments and numerical simulations. One SSA sample was embedded in a 1 ft3 concrete specimen. In the active sensing approach, the SSA was first utilized as an actuator to generate stress waves and six conventional smart aggregates (SA) mounted on the six faces of the concrete cube were utilized as sensors to detect the wave response. Conversely, the embedded SSA was then utilized as a sensor to successively detect the wave response from each SA. The experimentally obtained behavior of the SSA was then compared with the numerical simulation results. Further, a series of impact tests were conducted to verify the performance of the SSA in the detection of the impact events from different directions. Comparison with the wave response associated with different faces of the cube verified the omnidirectional actuating and sensing capabilities of the SSA.

  2. Structural basis of cyanobacterial photosystem II Inhibition by the herbicide terbutryn.

    Science.gov (United States)

    Broser, Matthias; Glöckner, Carina; Gabdulkhakov, Azat; Guskov, Albert; Buchta, Joachim; Kern, Jan; Müh, Frank; Dau, Holger; Saenger, Wolfram; Zouni, Athina

    2011-05-01

    Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the Q(B) site in the D1 subunit and thus block the electron transfer from Q(A) to Q(B). Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the Q(B) site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of Q(A), which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334-342). This discovery is discussed in the context of proton transfer to the lumen.

  3. Molecular structure and spectroscopic properties of novel manganese(II) complex with sulfamethazine drug

    Science.gov (United States)

    Mansour, Ahmed M.

    2013-03-01

    [MnLCl(H2O)3]·H2O complex (HL = 4-amino-N-(4,6-dimethyl-2-pyrimidinyl)benzenesulfonamide, sulfamethazine) has been synthesized and characterized by elemental analysis, TG/DTA, MS, FT-IR, UV-Vis, magnetic, electrochemical, and X-ray powder diffraction. The experimental studies were complemented by quantum chemical calculations at DFT/B3LYP level of theory. Sulfamethazine behaves as a mono-negatively bidentate ligand and interacts with Mn(II) ion through sulfonamidic (N15) and pyrimidic (N23) nitrogen atoms. Electronic structures were investigated using TD-DFT method and the descriptions of frontier molecular orbitals and the relocation of the electron density were determined. The voltammogram of NaL shows one irreversible one-electron process due to oxidation of p-amino group, and one anodic peak characteristic of reduction of sbnd SO2 group. The synthesized complex, in comparison to the parent drug, was screened for its antibacterial activity.

  4. Structural properties of platinum(II) biphenyl complexes containing 1,10-phenanthroline derivatives

    Science.gov (United States)

    Rillema, D. Paul; Cruz, Arvin J.; Tasset, Brandon J.; Moore, Curtis; Siam, Khamis; Huang, Wei

    2013-06-01

    Seven platinum(II) complexes formulated as Pt(bph)L, where bph is the 2,2'-biphenyl dianion and L = 4-methyl-1,10-phenanthroline (4-Mephen), 5-methyl-1,10-phenanthroline (5-Mephen), 5-chloro-1,10-phenanthroline (5-Clphen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 4,7-diphenyl-1,10-phenanthroline (4,7-Ph2phen) and 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-Me4phen) are reported. Protons attached to the phen ligand resonate downfield from those attached to the bph ligand and two proton signals are split by interaction with 195Pt. Pt(bph)(3,4,7,8-Me4phen), Pt(bph)(4,7-Me2phen), Pt(bph)(5,6-Me2phen), Pt(bph)(4,7-Ph2phen) and Pt(bph)(5-Mephen) crystallize in the space groups Pna21, P21/n, P21/c, P - 1 and Pca21, respectively. The structures of the complexes deviate from true planarity and divide themselves into two groups where the bph and phen ligands cross in an X configuration or bow out in a butterfly (B) configuration. Circular dichroism revealed two different spectra with respect to the X and B configurations.

  5. Spectroscopic, structural and theoretical studies of copper(II) complexes of tridentate NOS Schiff bases

    Science.gov (United States)

    Olalekan, Temitope E.; Ogunlaja, Adeniyi S.; VanBrecht, Bernardus; Watkins, Gareth M.

    2016-10-01

    Two newly synthesized Schiff bases (L4 and L5) were derived from the condensation reaction of 2-(methylthiomethyl)anilines and 4-methoxysalicylaldehyde. Coordination complexes of these and four previously reported NOS Schiff bases, Cu(L1)2-Cu(L6)2, were synthesized via the reflux reaction of the various Schiff base ligands with CuCl2·2H2O. The compounds were characterized by means of elemental analysis, FTIR and UV-Vis. The crystal structures of Cu(L1)2 and Cu(L2)2 were obtained by X-ray diffraction. The Schiff bases were coordinated to copper ion as monobasic tridentate ligands through the phenolic oxygen, azomethine nitrogen and thioether sulfur. The microanalyses of the coordination complexes were agreeable with bimolar binding of the ligands to the copper metal ion. The crystal structures of the copper complexes confirmed an octahedral geometry around the metal centre and showed they are mononuclear. The magnetic moment values indicated the presence of a lone electron in each copper(II) orbital and confirmed the mononuclearity of the complexes. The electronic spectra of the coordination compounds consist of the intraligand, charge transfer and d→d bands. Molecular modeling studies on the complexes (Cu(L1)2-Cu(L6)2) by employing DFT revealed that complex Cu(L5)2 possessed the smallest optimization energy as well as a small HOMO-LUMO energy gap which may best explain its higher polarizability as well as reactivity in comparison to the other complexes.