WorldWideScience

Sample records for ii particles excited

  1. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  2. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  3. New features of nuclear excitation by {alpha} particles scattering; Nouveaux aspects de l'excitation nucleaire par diffusion de particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Saudinos, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Inelastic scattering of medium energy a particles by nuclei is known to excite preferentially levels of collective character. We have studied the scattering of isotopically enriched targets of Ca, Fe, Ni, Cu, Zn. In part I, we discuss the theoretical features of the interaction. In part II, we describe the experimental procedure. Results are presented and analysed in part III. {alpha} particles scattering by Ca{sup 40} is showed to excite preferentially odd parity levels. In odd nuclei we have observed multiplets due to the coupling of the odd nucleon with the even-even core vibrations. For even-even nuclei, a few levels are excited with lower cross-sections between the well-known first 2{sup +} and 3{sup -} states. Some could be members of the two phonon quadrupole excitation and involve a double nuclear excitation process. (author) [French] On sait que la diffusion inelastique des particules alpha de moyenne energie excite preferentiellement des niveaux de caractere collectif. Nous avons etudie la diffusion des particules alpha de 44 MeV du cyclotron de Saclay par des isotopes separes de Ca, Fe, Ni, Cu, Zn. Dans la premiere partie nous exposons les theories de cette interaction. Dans la seconde nous decrivons le systeme experimental. Les resultats sont donnes dans la troisieme partie. Nous montrons que les niveaux excites preferentiellement pour {sup 40}Ca par diffusion ({alpha},{alpha}') sont de parite negative. Dans les noyaux pair-impair nous avons observe des multiplets dus au couplage du nucleon celibataire avec les vibrations du coeur pair-pair. Pour les noyaux pair-pair nous avons pu etudier entre le premier niveau 2{sup +} et le niveau 3{sup -} deja bien connus certains etats plus faiblement excites. Il semble qu'ils sont dus a une excitation quadrupolaire a deux phonons et impliquent un processus de double excitation nucleaire. (auteur)

  4. Nonlinear behavior of photoluminescence from silicon particles under two-photon excitation

    International Nuclear Information System (INIS)

    Xu Xingsheng; Yokoyama, Shiyoshi

    2011-01-01

    Two-photon excited fluorescence (TPEF) under continuous-wave excitation from silicon particles produced by a pulsed laser is investigated. Spectra and images of TPEF from silicon particles are studied under different excitation intensities and operation modes (continuous wave or pulse). It is found that the photoluminescence depends superlinearly on the excitation intensity and that the spectral shape and peaks vary with different silicon particles. The above phenomena show the nonlinear behavior of TPEF from silicon particles, and stimulated emission is a possible process.

  5. Electron-impact excitation of Zn II

    International Nuclear Information System (INIS)

    Msezane, A.Z.; Henry, R.J.W.

    1982-01-01

    Collision strengths are calculated for excitation of Zn II from the 4s ground state to excited states 4p, 3d 9 4s 2 , 5s, and 4d in a five-state close-coupling approximation for the electron-impact energy range 15 5 3d 10 4s 2 in a two-state close-coupling approximation for the same energy range. Accurate target functions are used in the expansion. Very good agreement with measurements of absolute emission cross sections of Rogers et al. is obtained for energy region 15< E<100 eV, when cascade contributions are included. Poorer agreement is obtained with experiment for excitation of the 5s state, owing to sensitivities in the close-coupling approximation

  6. Electromagnetic radiation of ultrarelativistic particles at scattering in excited medium

    International Nuclear Information System (INIS)

    Malyshevskij, V.S.

    1990-01-01

    The interaction between relativistic particles and a gaseous or condensed medium with a high density of nondegenerate excited quantum states involves the coherent conversion of atomic or molecular excitations into electromagnetic radiation

  7. Excitable particles in an optical torque wrench

    Science.gov (United States)

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Barland, Stephane; Dekker, Nynke H.

    2011-03-01

    The optical torque wrench is a laser trapping technique capable of applying and directly measuring torque on microscopic birefringent particles using spin momentum transfer, and has found application in the measurement of static torsional properties of biological molecules such as single DNAs. Motivated by the potential of the optical torque wrench to access the fast rotational dynamics of biological systems, a result of its all-optical manipulation and detection, we focus on the angular dynamics of the trapped birefringent particle, demonstrating its excitability in the vicinity of a critical point. This links the optical torque wrench to nonlinear dynamical systems such as neuronal and cardiovascular tissues, nonlinear optics and chemical reactions, all of which display an excitable binary (`all-or-none') response to input perturbations. On the basis of this dynamical feature, we devise and implement a conceptually new sensing technique capable of detecting single perturbation events with high signal-to-noise ratio and continuously adjustable sensitivity.

  8. Particle-hole excitations in N=50 nuclei

    International Nuclear Information System (INIS)

    Johnstone, I.P.; Skouras, L.D.

    1997-01-01

    Energy levels in N=50 nuclei are calculated allowing single-particle excitations from the p 1/2 and g 9/2 shells into the d 5/2 , s 1/2 , d 3/2 , and g 7/2 shells. Important parts of the interaction are determined by least-squares fits to known levels. Agreement with experiment is very good. The high-spin particle-hole states appear to be mainly yrast levels in mass 93 and higher, but are not in 90 Zr. copyright 1997 The American Physical Society

  9. Stacked dipole line source excitation of active nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    This work investigates electromagnetic properties of cylindrical active coated nano-particles excited by a stac- ked electric dipole line source. The nano-particles consist of a silica nano-core, layered by silver, gold, or copper nano-shell. Attention is devoted to the influence of the source...... location and dipole orientation, the gain constant, and the nano-particle material composition on the electromagnetic field distributions and radiated powers. The results are contrasted to those for the magnetic line source illumination of the nano-particles....

  10. One particle-hole excitations in p- and fp-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van.

    1982-01-01

    Results are presented of shell model calculations of medium and light atomic nuclei. The influence of the allowance of one particle-hole excitations is investigated. This enables improved descriptions of intermediate mass nuclei in the fp-shell. For light p-shell nuclei one particle-hole excitations create exclusively situations with abnormal parity. The description of situations with normal parity is not changed by enlarging the model space. In the first chapter shell-model calculations are performed on the light Ni-isotopes (A = 57-59). One nucleon is allowed to be excited from the fsub(7/2) orbit to one of the other fp-shell orbits. The general observation in the enlarged model space is that one can use operators that require a much weaker 'renormalization' and the calculation requires only a selected set of matrix elements of the Hamiltonian. An additional advantage of the inclusion of one particle-hole excitations is that it allows a description of several intruder states, i.e. states that cannot be produced with the assumption of a closed 56 Ni core. In the second chapter the nuclei with mass number A = 52-55, i.e. a small number of holes in the 56 Ni core, are investigated similarly. In the third chapter much lighter nuclei (A = 4-16) are discussed. For a theoretical description of nonnormal-parity states one has to admit the excitation of at least one nucleon to a higher harmonic-oscillator major-shell. (Auth.)

  11. Determination of charge on vertically aligned particles in a complex plasma using laser excitations

    CERN Document Server

    Prior, N J; Samarian, A A

    2003-01-01

    Experimental studies on vertical oscillations of few particle vertical structures are described. One and two particle strings were subjected to two types of vertically driven oscillations. The first was electrode driven, which excites the structure as a whole, while the second was laser driven, which excites one particle in the structure only. The latter experiments are highly original, enabling us to excite two vertical resonances in our two particle structures. From the close agreement between our experimental data and theoretical model, several important physical parameters have been estimated, including the charge ratio and the Debye length.

  12. Plasmon excitation in single wall carbon nanotubes by penetrating charged particles

    International Nuclear Information System (INIS)

    Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R; Mowbray, Duncan J; Mišković, Zoran L

    2012-01-01

    In this work we study the excitation of plasmons due to the incidence of a charged particle passing through a single wall carbon nanotube. We use a quantized hydrodynamic, in which the σ and π electrons characteristic of these carbonaceous structures are depicted as two interacting 2-dimensional fluids, to calculate the average number of plasmons excited. We analyze the contribution of the different plasmon modes in a variety of configurations, and study the energy lost by the incident particle.

  13. Studies on femtosecond fluorescence dynamics of photosystem II Particle complex at low temperature

    CERN Document Server

    Liu Xiao; He, Jun Fang; Cai, Xia; Peng Jun Fang; Kuang Ting Yun

    2004-01-01

    In order to understanding the diversity of energy transfer in PS II at different temperatures, PS II particle complex purified from spinach was investigated with femtosecond time-resolved fluorescence spectroscopy in the case of excitation 507 nm at 83 K, 160 K, 273 K. The data were analyzed by Gauss analysis and fluorescence decay time- fitting. Some results were achieved. (1) Increase of the temperature results in a broadening of the fluorescence emission spectra due to the temperature-dependent expressions for nonradiative transitions between two electronic states. (2) There are at least several characteristic Chl molecules exist in PS II particle complex, i.e. Chl b/sub 639//sup 640/, Chl b/sub 640//sup 645/, Chl a/sub 660//sup 663/, Chl a/sub 667//sup 668/, Chl a/sub 673//sup 676/, Chl a/sub 680 //sup 681/, Chl a/sub 680/681//sup 682/, Chl a/sub 684,685//sup 668 /689/, Chl a/sub 688//sup 698/, (Chl a/b/sub a//sup e/: a represents the peak of absorption, e represents the peak of emission). (3) Though the ...

  14. Single-particle and collective excitations in Ni-63

    OpenAIRE

    Albers, M.; Zhu, S.; Janssens, R. V. F.; Gellanki, Jnaneswari; Ragnarsson, Ingemar; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; Deacon, A. N.; Gade, A.; DiGiovine, B.; Hoffman, C. R.

    2013-01-01

    A study of excited states in Ni-63 up to an excitation energy of 28 MeV and a probable spin of 57/2 was carried out with the Mg-26(Ca-48,2 alpha 3n gamma)Ni-63 reaction at beam energies between 275 and 320 MeV. Three collective bands, built upon states of single-particle character, were identified. For two of the three bands, the transition quadrupole moments were extracted, herewith quantifying the deformation at high spin. The results have been compared with shell-model and cranked Nilsson-...

  15. Competition between excited core states and 1homega single-particle excitations at comparable energies in {sup 207}Pb from photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)

    2009-10-26

    The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.

  16. Is an elementary particle really: (i) a particle? (ii) elementary?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Is an elementary particle really: (i) a particle? (ii) elementary? Over centuries, naïve notions about this have turned out incorrect. Particles are not really pointlike. The word elementary is not necessarily well-defined. Notes:

  17. Quasi-particle excitations in low energy fission

    International Nuclear Information System (INIS)

    Ashgar, M.; Djebara, M.; Bocquet, J.P.; Brissot, R.; Maurel, M.; Nifenecker, H.; Ristori, C.

    1985-05-01

    Proton odd-even effect for 229 Th(nsub(th),f) and 232 U(nsub(th),f) has been determined with a ΔE-Esub(R) gas telescope. These data indicate that the qp-particle excitation probability at the saddle point is small and most of its results, when the nucleus moves from saddle to scission and the neck ruptures into final fragments. These results are discussed in terms of the different ideas and models

  18. Effects of Isospin on Pre-scission Particle Multiplicity of Heavy Systems and Its Excitation Energy Dependence

    Institute of Scientific and Technical Information of China (English)

    YE Wei; CHEN Na

    2004-01-01

    Isospin effects on particle emission of fissioning isobaric sources 202Fr, 202po, 202Tl and isotopic sources 189,202,212Po, and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.

  19. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  20. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    Science.gov (United States)

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  2. Creation and evolution of excited states in α particle tracks in anthracene crystals

    International Nuclear Information System (INIS)

    Klein, G.

    1977-01-01

    The kinematics of excited states in anthracene crystals bombarded by 5MeV α particles is studied. The elementary processes which account for the transitions from the primary excited states to the lowest singlet S 1 and triplet T 1 excited states is described. The equation governing the evolution of the S 1 and T 1 excitons in the α particle track are then solved, and the scintillation decay curve is calculated. This calculated result is in good agreement with all available experimental results. The experimental part of this work are scintillation decay curves measurements. The scintillation decay was measured between 0.5nsec and 40μsec. The influence of the initial very fast singlet excitons quenching by triplet excitons can be seen in the beginning of scintillation. The delayed component is described by the triplet excitons kinematics. The magnetic field effect on the scintillation was investigated. This effect is attributed to an effect on the T 1 -T 1 annihilation and an effect on the triplet excitons quenching by radicals which are formed in the α particle track

  3. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Directory of Open Access Journals (Sweden)

    Leoni S.

    2016-01-01

    Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  4. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Science.gov (United States)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  5. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Ilya D. Feranchuk

    2007-12-01

    Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  6. Excitation of atomic nuclei and atoms by relativistic charge particles bound in a one-dimensional potential

    International Nuclear Information System (INIS)

    Almaliev, A.N.; Batkin, I.S.; Kopytin, I.V.

    1987-01-01

    The process of exciting atoms and atomic nuclei by relativistic electrons and positrons bound in a one-dimensional potential is investigated theoretically. It is shown that a pole corresponding to the emergence of a virtual photon on a bulk surface occurs in the matrix interaction element under definite kinematic relationships. It is obtained that the probability of the excitation process depends on the lifetime of the level being excited, the virtual photon, and the charged particle in a definite energetic state. An estimate of the magnitude of the excitation section of low-lying nuclear states yields a value exceeding by several orders the section obtained for charged particles in the absence of a binding potential

  7. Few-valence-particle excitations around doubly magic 132Sn

    International Nuclear Information System (INIS)

    Daly, P.J.; Zhang, C.T.; Bhattacharyya, P.

    1996-01-01

    Prompt γ-ray cascades in neutron-rich nuclei around doubly-magic 132 Sn have been studied using a 248 Cm fission source. Yrast states located in the N = 82 isotones 134 Te and 135 I are interpreted as valence proton and neutron particle-hole core excitations with the help of shell model calculations employing empirical nucleon-nucleon interactions from both 132 Sn and 208 Pb regions

  8. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  9. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation.

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-14

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.

  10. Any light particle search II. Technical Design Report

    International Nuclear Information System (INIS)

    Baehre, Robin; Doebrich, Babette; Dreyling-Eschweiler, Jan

    2013-02-01

    This document constitutes an excerpt of the Technical Design Report for the second stage of the ''Any Light Particle Search'' (ALPS-II) at DESY as submitted to the DESY PRC in August 2012 and reviewed in November 2012. ALPS-II is a ''Light Shining through a Wall'' experiment which searches for photon oscillations into weakly interacting sub-eV particles. These are often predicted by extensions of the Standard Model and motivated by astrophysical phenomena. The first phases of the ALPS-II project were approved by the DESY management on February 21st, 2013.

  11. Any light particle search II. Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Baehre, Robin [Albert Einstein Institute, Hannover (Germany); Doebrich, Babette; Dreyling-Eschweiler, Jan [Deutsches Elektronen-Synchrotron, Hamburg (Germany); and others

    2013-02-15

    This document constitutes an excerpt of the Technical Design Report for the second stage of the ''Any Light Particle Search'' (ALPS-II) at DESY as submitted to the DESY PRC in August 2012 and reviewed in November 2012. ALPS-II is a ''Light Shining through a Wall'' experiment which searches for photon oscillations into weakly interacting sub-eV particles. These are often predicted by extensions of the Standard Model and motivated by astrophysical phenomena. The first phases of the ALPS-II project were approved by the DESY management on February 21st, 2013.

  12. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  13. Any light particle search II. Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Baehre, Robin [Albert Einstein Institute, Hannover (Germany); Doebrich, Babette; Dreyling-Eschweiler, Jan [Deutsches Elektronen-Synchrotron, Hamburg (Germany)] [and others

    2013-02-15

    This document constitutes an excerpt of the Technical Design Report for the second stage of the ''Any Light Particle Search'' (ALPS-II) at DESY as submitted to the DESY PRC in August 2012 and reviewed in November 2012. ALPS-II is a ''Light Shining through a Wall'' experiment which searches for photon oscillations into weakly interacting sub-eV particles. These are often predicted by extensions of the Standard Model and motivated by astrophysical phenomena. The first phases of the ALPS-II project were approved by the DESY management on February 21st, 2013.

  14. Two-particle excitations in the Hubbard model for high-temperature superconductors. A quantum cluster study

    International Nuclear Information System (INIS)

    Brehm, Sascha

    2009-01-01

    Two-particle excitations, such as spin and charge excitations, play a key role in high-T c cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility χ 0 including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides

  15. Gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations

    International Nuclear Information System (INIS)

    Bodenheimer, P.; Tenorio-Tagle, G.; Yorke, H.W.

    1979-01-01

    The evolution of H II regions is calculated with a two-dimensional hydrodynamic numerical procedure under the assumption that the exciting star is born within a cool molecular cloud whose density is about 10 3 particles cm -3 . As the ionization of the cloud's edge is completed, a large pressure gradient is set up and ionized cloud material expands into the ionized low-density (1 particle cm -3 ) intercloud medium, with velocities larger than 30 km s -1 .The calculations are made under the simplifying assumptions that (i) within the H II region, ionization equilibrium holds at all times, (ii) the ionization front is a discontinuity, thus its detailed structure is not calculated, (iii) the temperature of each region (H II region, neutral cloud, and intercloud medium) is constant in time, (iv) all ionizing photons come radially from the exciting star. Four cases are calculated and compared with observations: (1) the edge of the cloud is overrun by a supersonic ionization front, (2) the initial Stroemgren sphere surrounding the star lies deep inside the cloud, thus the cloud's edge is ionized by a subsonic ionization front, (3) the ionization front breaks through two opposite faces of the same cloud simultaneously, (4) the flow encounters an isolated globule of density 10 3 particles cm -3 shortly after emerging from the molecular cloud.The phenomena here considered show how evolving H II regions are an important input of kinetic energy to the interstellar medium

  16. Light particle emission as a probe of reaction mechanism and nuclear excitation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1989-01-01

    The central part of these lectures will be dealing with the problem of energy dissipation. A good understanding of the mechanisms for the dissipation requires to study both peripheral and central collisions or, in other words, to look at the impact paramenter dependence. This should also provide valuable information on the time scale. In order to probe the reaction mechanism and nuclear excitation, one of the most powerful tool is unquestionably the observation of light particle emission, including neutrons and charged particles. Several examples will be discussed related to peripheral collisions (the fate of transfer reactions, the excitation energy generation, the production of projectile-like fragments) as well as inner collisions for which extensive studies have demonstrated the strength of intermediate energy heavy ions for the production of very hot nuclei and detailed study of their decay properties

  17. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  18. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    Science.gov (United States)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  19. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Kexing [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  20. Interference effects in plasom excitation by particles reflected near a metal surface

    International Nuclear Information System (INIS)

    Denton, C.D.; Gervasoni, J.L.; Barrachina, R.O.; Arista, N.R.; Universidad Nacional de Cuyo, Mendoza

    1993-01-01

    Using the dielectric formalism and the specular reflection model, we evaluate the probability of surface and bulk plasmon excitation by particles reflected in the proximity of a metal surface. We obtain a strong oscillatory behaviour as a function of the penetration distance. (author)

  1. Type-II Weyl semimetals.

    Science.gov (United States)

    Soluyanov, Alexey A; Gresch, Dominik; Wang, Zhijun; Wu, QuanSheng; Troyer, Matthias; Dai, Xi; Bernevig, B Andrei

    2015-11-26

    Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.

  2. Wobbling excitations in odd-A nuclei with high-j aligned particles

    International Nuclear Information System (INIS)

    Hamamoto, Ikuko

    2002-01-01

    Using the particle-rotor model in which one high-j quasiparticle is coupled to the core of triaxial shape, wobbling excitations are studied. The family of wobbling phonon excitations can be characterized by: (a) very similar intrinsic structure while collective rotation shows the wobbling feature; (b) strong B(E2;I→I-1) values for Δn w =1 transitions where n w expresses the number of wobbling phonons. For the Fermi level lying below the high-j shell with the most favorable triaxiality γ≅+20 deg., the wobbling phonon excitations may be more easily identified close to the yrast line, compared with the Fermi level lying around the middle of the shell with γ≅-30 deg. The spectroscopic study of the yrast states for the triaxial shape with -60 deg. <γ<0 are illustrated by taking a representative example with γ=-30 deg., in which a quantum number related with the special symmetry is introduced to help the physics understanding

  3. Systematics of excitation functions for (n, charged particle) reactions

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Zhou Delin

    1986-06-01

    On the bases of evaporation model considering the preequilibrium emission under some approximations, the analytical expressions including two adjustable parameters have been derived for excitation functions of (n, charged particle) reactions. Fitting these expressions to the available measured data, these parameters have been extracted and the systematic behaviour of the parameters have been studied. More accurate predictions than before could be obtained by using these expressions and systematic parameters. In the present work the neutron energy is considered up to about 20 MeV and the target mass region is 23< A<197

  4. Quasi-particle excitations and dynamical structure function of trapped Bose-condensates in the WKB approximation

    OpenAIRE

    Csordás, András; Graham, Robert; Szépfalusy, Péter

    1997-01-01

    The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...

  5. Full nuclear field theory treatment of two-particle-one-hole-excitations

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Liotta, R.J.

    1981-01-01

    The nuclear field theory series is summed up to all orders of perturbation theory including only Tamm-Dancoff vertices for the case of two-particle-one-hole-excitations. It is found that the theory gives the same results as those provided by the shell-model method, but only if all possible basis states are included in the formalism. Applicability of the theory is discussed in a simple model

  6. Uniform magnetic excitations in NiO nanoparticles

    DEFF Research Database (Denmark)

    Bahl, C.R.H.; Kuhn, L.T.; Lefmann, K.

    2006-01-01

    A sample of isolated disc shaped NiO nanoparticles was studied at the RITA-II triple axis spectrometer at SINQ (PSI) using the newly implemented multi-analyser blade imaging mode. The particles were 13 nm in diameter and had a thickness of about 2.5 nm. A non-dispersive spin excitation was observed...... at the antiferromagnetic ((1)/(2) (1)/(2) (1)/(2)) reflection at a scattering vector of kappa = 1.30 angstrom(-1), at an energy of 2 0.51 +/- 0.02 meV. This is shown to be due to uniform magnetic excitations in the nanoparticles. (c) 2006 Elsevier B.V. All rights reserved....

  7. Study of atomic excitations in sputtering with the use of composite targets

    International Nuclear Information System (INIS)

    Kierkegaard, K.; Ludvigsen, S.; Petterson, B.; Veje, E.

    1985-01-01

    Some Li- and Na-compounds have been bombarded with 80 keV Ar + ions, and excitation of sputtered particles has been studied with optical spectrometry. Very strong excitation of Li I and Na I was observed, but essentially no excitation of electronegative elements. For levels in Li I and also in Na I with n 8, the relative level populations fall noticeably above the extrapolation of such power law behaviors. This is discussed and tentatively interpreted in terms of two-step processes. (i) The projectile excites a target electron from the valence band to the conduction band. (ii) Such an excitation is transferred resonantly to the sputtered atom on its way out. (orig.)

  8. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.

    Directory of Open Access Journals (Sweden)

    Stewart Heitmann

    2017-01-01

    Full Text Available Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.

  9. Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole — resonance and transparency effects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2010-01-01

    The present work investigates the optical properties of active coated spherical nano-particles excited by an arbitrarily located electric Hertzian dipole. The nano-particles are made of specific dielectric and plasmonic materials. The spatial near-field distribution as well as the normalized...

  10. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes?

    Science.gov (United States)

    Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert

    2016-04-07

    We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.

  11. Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, E.T.; Scheck, M.; Chapman, R.; Gaffney, L.P.; Keatings, J.; Mashtakov, K.R.; O' Donnell, D.; Smith, J.F.; Spagnoletti, P.; Wiseman, C. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); SUPA, Scottish Universities Physics Alliance, Glasgow (United Kingdom); Thuerauf, M.; Werner, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2017-03-15

    For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment. (orig.)

  12. Experimental system to measure excitation cross-sections by electron impact. Measurements for ArI and ArII

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Aguilera, J.A.; Campos, J.

    1989-01-01

    An experimental set-up to measure excitation cross-section of atomic and molecular levels by electron impact based on the optical method is reported. We also present some measurements on the excitation cross-section for ArI 5p'(1/2)0 level, and for simultaneous ionization and excitation of Ar leading to ArII levels belonging to the 3p 4 4p and 3p 4 4d configurations. (Author)

  13. Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, K.; Trinkunas, G.; Hoek, van A.; Croce, R.; Amerongen, van H.

    2008-01-01

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  14. Determination of the excitation migration time in Photosystem II - Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  15. Determination of the excitation migration time in Photosystem II. Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  16. Higher order mode excitation in eccentric active nano-particles for tailoring of the near-field radiation

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We examine the excitation of resonant modes inside eccentrically layered cylindrical active nano-particles. The nano-particle is a three-layer structure comprised of a silica core, a free-space middle layer, and an outer shell of silver. It is shown that a concentric configuration, initially desi...... of the gain constant, is shown to be controlled by the direction of the core displacement. The present eccentric active nano-particles may provide alternative strategies for directive near-field radiation relative to the existing designs....

  17. Bibliography of atomic and molecular excitation in heavy particle collisions, 1950--1975

    International Nuclear Information System (INIS)

    Hawthorne, S.W.; Thomas, E.W.; Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Kirkpatrick, M.I.; McDaniel, E.W.; Phaneuf, R.A.

    1979-02-01

    This annotated bibliography lists published work on atomic and molecular excitation in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactions and authors

  18. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    International Nuclear Information System (INIS)

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-01-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission

  19. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, M. [Universidade Federal de Itajubá, Rua Doutor Pereira Cabral 1303, 37500-903, Itajubá, MG (Brazil); Rodríguez-Ardila, A.; Garcia-Rissmann, A. [Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, Itajubá, MG, 37504-364 (Brazil); Sigut, T. A. A. [The University of Western Ontario, London, ON N6A 3K7 (Canada); Pradhan, A. K., E-mail: murilo.marinello@gmail.com [McPherson Laboratory, The Ohio State University, 140 W. 18th Ave., Columbus, OH 43210-1173 (United States)

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  20. On the acceleration of charged particles by strong longitudinal plasma wake fields excited by electron bunches

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Elbakyan, S.S.; Sekhpossyan, E.V.

    1985-01-01

    The possibility of the use of longitudinal field excited in a plasma by electron bunches to accelerate charged particles is investigated. It is shown that the highets value of accelerating fields proportional to the square root of factor of electrons in the bunch is achieved in the case when bunch particle density approaches a limit equal to the half of the the plasma electron equilibrium density

  1. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  2. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    Science.gov (United States)

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris

    International Nuclear Information System (INIS)

    Savitch, L.V.; Maxwell, D.P.; Huner, N.P.A.

    1996-01-01

    Chlorella vulgaris grown at 5 degrees C/150 micromoles m -2 s -1 mimics cells grown under high irradiance (27 degrees C/2200 micromoles m -2 s -1 ). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feedback mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6 phosphate and sucrose/starch indicated that cells grown at 27 degrees C/2200 micromoles m -2 s -1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5 degrees C/150 micromoles-1 m -2 s -1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feedback on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed

  4. Alpha particle emission as a probe of the level density in highly excited A∼200 nuclei

    International Nuclear Information System (INIS)

    Fabris, D.; Fioretto, E.; Viesti, G.; Cinausero, M.; Gelli, N.; Hagel, K.; Lucarelli, F.; Natowitz, J.B.; Nebbia, G.; Prete, G.; Wada, R.

    1994-01-01

    The alpha particle emission from 90 to 140 MeV 19 F+ 181 Ta fusion-evaporation reactions has been studied. The comparisons of the experimental spectral shapes and multiplicities with statistical model predictions indicate a need to use an excitation energy dependent level-density parameter a=A/K in which K increases with excitation energy. This increase is more rapid than that in lower mass nuclei. The effect of this change in level density on the prescission multiplicities in fission is significant

  5. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  6. Excitation of an instability by neutral particle ionization induced fluxes in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Bachmann, P.; Sunder, D.

    1991-01-01

    Strong density and potential fluctuations in the edge plasma of toroidal nuclear fusion devices can lead to anomalously fast particle and energy transport. There are some reasons to assume the level of these fluctuations to be connected with neutral particles which enter the plasma by gas puffing or recycling processes. The influence of neutral particles on the behaviour of electrostatic drift modes was investigated. Using the ballooning transformation the excitation of dissipative drift waves in tokamak was studied taking ionization and charge exchange into consideration. Ionization driven drift wave turbulence was analyzed. The higher the neutral particle density is the more important the plasma-wall interaction and the less important the action of the limiter becomes. Instabilities localized in the edge plasma and far from the limiter can be one of the reasons of such a phenomenon. In the present paper we show that such an instability may exist. Usually the neutral particle density is large in the vicinity of the limiter and decreases rapidly with the distance from it. Plasma particles generated by ionization of these neutrals outside the limiter shadow, move along the magnetic field lines into a region without neutrals and diffuse slowly across the magnetic field. We solve the stability problem for modes with a perpendicular wave length that is much larger than the ion Larmor radius with electron temperature, and much smaller than the minor plasma radius. The excitation of such modes localized far from the limiter is investigated. A one-dimensional differential equation is derived in the cold ion approximation without taking shear and toroidal effects into consideration. In the case of low flow velocities a nearly aperiodic instability is found analytically. Its growth rate is proportional to the equilibrium plasma velocity at the boundary of the neutral particle's free region and to the inverse of the extension of this zone. This mode is localized in the edge

  7. Advanced Technology Cloud Particle Probe for UAS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II SPEC will design, fabricate and flight test a state-of-the-art combined cloud particle probe called the Hawkeye. Hawkeye is the culmination of two...

  8. Novel collective excitations and the quasi-particle picture of quarks coupled with a massive boson at finite temperature

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Kunihiro, Teiji; Nemoto, Yukio

    2007-01-01

    Motivated by the observation that there may exist hadronic excitations even in the quark-gluon plasma (QGP) phase, we investigate how the properties of quarks, especially within the quasi-particle picture, are affected by the coupling with bosonic excitations at finite temperature (T), employing Yukawa models with a massive scalar (pseudoscalar) and vector (axial-vector) boson of mass m. The quark spectral function and the quasi-dispersion relations are calculated at one-loop order. We find that there appears at three-peak structure in the quark spectral function with a collective nature when T is comparable with m, irrespective of the type of boson considered. Such a multi-peak structure was first found in a chiral model yielding scalar composite bosons with a decay width. We elucidate the mechanism through which the new quark collective excitations are realized in terms of the Landau damping of a quark (an antiquark) induced by scattering with the thermally excited boson, which gives rise to mixing and hence a level repulsion between a quark (antiquark) and an antiquark-hole (quark-hole) in the thermally excited antiquark (quark) distribution. Our results suggest that the quarks in the QGP phase can be described within an interesting quasi-particle picture with a multi-peak spectral function. Because the models employed here are rather generic, our findings may represent a universal phenomenon for fermions coupled to a massive bosonic excitation with a vanishing or small width. The relevance of these results to other fields of physics, such as neutrino physics, is also briefly discussed. In addition, we describe a new aspect of the plasmino excitation obtained in the hard-thermal loop approximation. (author)

  9. Stable transformation of Hi-II maize using the particle inflow gun

    CSIR Research Space (South Africa)

    O'Kennedy, MM

    1998-04-01

    Full Text Available Focuses on the transformation of the embryogenic type II callus, initiated from cultured immature zygotic embryos of the maize line Hi-II, by microprojectile bombardment using a particle inflow gun. Use of the plasmid pAHC25; Tissue culture...

  10. Optical properties and quantum confinement of nanocrystalline II-IV semiconductor particles

    NARCIS (Netherlands)

    Dijken, Albert van

    1999-01-01

    In this thesis, experiments are described that were performed on suspensions of nanocrystalline II-IV semiconductor particles.The object of this research is to study quantum size effects in relation to the luminescence properties of these particles. A pre-requisite for performing studies of

  11. Quantum deformation of the angular distributions of synchrotron radiation. Emission from particles in the first excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); SB RAS, Tomsk Institute of High Current Electronics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Burimova, A.N. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M.; Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)

    2012-02-15

    The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory. (orig.)

  12. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  13. Charge exchange in a divertor plasma with excited particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Lisitsa, V.S.; Pigarov, A.Y.

    1988-01-01

    A model is constructed for the dynamics of neutral atoms and multicharged ions in a tokamak plasma. The influence of cascade excitation on charge exchange and ionization is taken into account. The effective rates of the resonant charge exchange of a proton with a hydrogen atom, the nonresonant charge exchange of a helium atom with a proton, and that of an α particle with atomic hydrogen are calculated as functions of the parameters of the divertor plasma in a tokamak. The charge exchange H + +He→H+He + can represent a significant fraction (∼30%) of the total helium ionization rate. Incorporating the charge exchange of He 2+ with atomic hydrogen under the conditions prevailing in the divertor plasma of the INTOR reactor can lead to substantial He 2+ →He + conversion and thereby reduce the sputtering of the divertor plates by helium ions

  14. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  15. Computer simulation of the spatial distribution of optical radiation arising from knocked-out excited particles

    International Nuclear Information System (INIS)

    Gokov, S.P.; Gritsyna, V.V.; Koval', A.G.; Kovtunenko, Yu.I.; Shevchenko, D.I.

    2004-01-01

    The new approach for the explanation of the spatial distribution of the optical radiation arising from knocked-out excited particles is given. Calculated and experimental data for Al (λ=396.1 nm) and Mg (λ=383.8 nm) knocked-out by Ar + (20 keV) beam from MgAl 2 O 4 surface are compared [ru

  16. A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation

    OpenAIRE

    Starkey, N. A.; Franchi, I. A.; Alexander, C. M. O'D.

    2013-01-01

    Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at diff...

  17. Plasma opening switch development for the Particle Beam Fusion Accelerator II (PBFA II)

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McDaniel, D.H.; Rochau, G.E.

    1987-01-01

    The authors conducted plasma opening switch (POS) experiments on Sandia National Laboratories' new Particle Beam Fusin Accelerator II (PBFA II) (12 MV, 100 TW, 50 ns), on the Supermite accelerator (2 MV, 2 TW, 50 ns) and on the Naval Research Laboratory's Gamble II accelerator (1.8 MV, 1.6 TW, 70 ns). The POS systems on the PBFA II and Supermite accelerators use a newly developed flashboard plasma source to provide the plasma necessary to conduct the large (> 1 MA) currents produced byu these accelerators. In the Supermite experiments, the plasma opening switch conducted currents up to 1 MA before opening in less than 10 ns into an electron beam load. These experiments achieved significant voltage gain relative to the voltage across a matched load. In experiments on Gamble II, power gains of up to 1.7 were achieved using a POS in a strongly coaxial geometry (r/sub outer//r/sub inner/ = 2) with a large magnetic field at the cathode. The POS system on PBFA II is unique because of its size and voltage. This POS system is designed to conduct over 6 MA before opening. In present experiments it has conducted currents of 4-5 MA for over 50 ns

  18. The Mobile Limiters of TJ-II: Power and Particle Control

    International Nuclear Information System (INIS)

    Cal, E. de la

    1998-01-01

    For mobile limiters have been designed for the TJ-II stellerator to reduce thermal loads on the vacuum vessel and its protections at the region of the central hard core (groove) and to characterise the scrap off layer plasma. The role of the mobile limiters for particle and thermal load control is analysed for the different operating phases of TJ-II. The task of impurity control will be treated in a future report. A simplified model has been used to estimate the termal loads on the limiters. The conclusion is that a new design for the limiter heads will be necessary for the neutral beam injection (NBI)-phase at high power density, if acceptable efficiencies of thermal removal is desired. The rexperimental measurements which will be made in the first phase (ECH) with the temperature and Lagmuir probes installed in the diagnosed limiter-heads will be essential for the optimisation of the future limiter-shape. For particle control it will be absolutely necessary to use first wall conditioning techniques (e.g. boronization), since no active pumping method is foreseen for TJ-II. Again, this point will be more critical in the NBI-phase, due to the large particle fluxes to the first wall and due to possible thermal gas, desorption caused by local overheating of plasma-facing surfaces. The role of magnetic topology on plasma-wall interaction is finally analysed. A configuration has been found in which the limiters act as divertor plates (Natural Island Divertor). This inherent flexibility for changing the magnetic topology of TJ-II should be exploited in order to find the most favourable operating scenarios for the high powder injection phase

  19. Electron-impact excitation autoionization of Ga II

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Griffin, D.C.; Bottcher, C.

    1982-01-01

    The general-reaction theory of Feshbach is applied, within the framework of the distorted-wave approximation, to the calculation of excitation-autoionization resonances in the electron-impact ionization of Ga + . Although the spectrum of autoionizing levels for Ga + is quite complex, we focus our attention on the important 3d 10 4s 2 → 3d 9 4s 2 4p inner-shell excitations. For excitation of the 3d 9 4s 2 4p 1 P 1 autoionizing level we make a general-reaction-theory calculation for the dominant partial-wave cross section and compute a typical resonance profile in the ejected-electron differential cross section. We find that the quantum-mechanical interference between the direct and indirect processes has a small effect on the total ionization cross section. Employing an independent-processes approximation we calculate excitation-autoionization contributions to all twelve levels of the 3d 9 4s 2 4p configuration. Using the results of our calculations and their comparison with a recent crossed-beam experiment by Rogers et al., we discuss the accuracy of the distorted-wave method and the effects of configuration interaction on energy levels and excitation cross sections

  20. Pairing and deformation effects in nuclear excitation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Repko, A. [Slovak Academy of Sciences, Institute of Physics, Bratislava (Slovakia); Kvasil, J. [Charles University, Institute of Particle and Nuclear Physics, Prague (Czech Republic); Nesterenko, V.O. [Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Dubna (Russian Federation); State University ' ' Dubna' ' , Dubna (Russian Federation); Reinhard, P.G. [Universitaet Erlangen, Institut fuer Theoretische Physik II, Erlangen (Germany)

    2017-11-15

    We investigate effects of pairing and of quadrupole deformation on two sorts of nuclear excitations, γ-vibrational K{sup π} = 2{sup +} states and dipole resonances (isovector dipole, pygmy, compression, toroidal). The analysis is performed within the quasiparticle random phase approximation (QRPA) based on the Skyrme energy functional using the Skyrme parametrization SLy6. Particular attention is paid to i) the role of the particle-particle (pp) channel in the residual interaction of QRPA, ii) comparison of volume pairing (VP) and surface pairing (SP), iii) peculiarities of deformation splitting in the various resonances. We find that the impact of the pp-channel on the considered excitations is negligible. This conclusion applies also to any other excitation except for the K{sup π} = 0{sup +} states. Furthermore, the difference between VP and SP is found small (with exception of peak height in the toroidal mode). In the low-energy isovector dipole (pygmy) and isoscalar toroidal modes, the branch K{sup π} = 1{sup -} is shown to dominate over the K{sup π} = 0{sup -} one in the range of excitation energy E < 8-10 MeV. The effect becomes impressive for the toroidal resonance whose low-energy part is concentrated in a high peak of almost pure K{sup π} = 1{sup -} nature. This peculiarity may be used as a fingerprint of the toroidal mode in future experiments. The interplay between pygmy, toroidal and compression resonances is discussed, the interpretation of the observed isoscalar giant dipole resonance is partly revised. (orig.)

  1. Excited states configurations of the quantum Toda lattice

    International Nuclear Information System (INIS)

    Matsuyama, A.

    2001-01-01

    Excited states configurations of the quantum Toda lattice are studied by the direct diagonalization of the Hamiltonian. The most probable configurations of one-hole and one-particle excitations are shown to be similar to the profiles of classical phonon and soliton excitations, respectively. One-hole excitation states, which are always ground states of definite E m -symmetry of the dihedral group D N , change those structures abruptly with the potential range varied. One-particle excitations, which are buried in complicated excitation spectra, have well-defined configurations similar to the conoidal profile of the classical periodic Toda lattice. The relationship that the hole (particle) excitations in quantum mechanics correspond to the phonon (soliton) excitations in classical mechanics, which has been suggested based on the similarity of dispersion relations, is confirmed in a geometrically understandable way. Based on the study of one-soliton and two-soliton states, the structure of multi-soliton states in quantum mechanics can be conjectured

  2. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  3. Theory of resistive magnetohydrodynamic instabilities excited by energetic trapped particles in large-size tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.

    1987-01-01

    A theory describing excitation of resistive magnetohydrodynamic instabilities due to a population of energetic particles, trapped in region of adverse curvature on energetic particles, trapped in region of adverse curvature in tokamaks, is presented. Theory's principal motivation is observation that high magnetic-field strengths and large geometric dimensions characteristic of present-generation thermonuclear fusion devices, places them in a frequency regime whereby processional drift frequency of auxiliary hot-ion species, in order of magnitude, falls below a typical inverse resistive interchange time scale, so that inclusion of resistive dissipation effects becomes important. Destabilization of the resistive internal kink mode by these suprathermal particles is first investigated. Using variational techniques, a generalized dispersion relation governing such modes, which recovers ideal theory in its appropriate limit, is derived and analyzed using Nyquist-diagrammatic techniques. An important implication of theory for present-generation fusion devices is that they will be stable to fishbone activity. Interaction of energetic particles with resistive interchange-ballooning modes is taken up. A population of hot particles, deeply trapped on adverse curvature side in tokamaks, can resonantly destabilize resistive interchange mode, which is stable in their absence because of favorable average curvature. Both modes are different from their usual resistive magnetohydrodynamic counterparts in their destabilization mechanism

  4. Relative excitation functions for singly-excited and core-excited levels of S V--S IX populated by the beam-foil interaction

    International Nuclear Information System (INIS)

    Moenke, D.; Bengtsson, P.; Engstroem, L.; Hutton, R.; Jupen, C.; Kirm, M.; Westerlind, M.

    1994-01-01

    We have investigated the relative excitation functions for low-lying singly excited and low-lying core-excited levels in S V (S 4+ ) to S IX (S 8+ ) after beam-foil excitation using ions in the energy range 2--10 MeV. The spectral line intensities have been normalized to the same number of particles at each ion energy and corrections for the level lifetimes have been made. The overall accuracy of the measured relative excitation function at each energy and charge state is estimated to be better than 2%. A comparison of the relative excitation functions for singly excited and core-excited lines shows a difference in S VII, but not in S VI

  5. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  6. Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    CERN Document Server

    De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L

    1999-01-01

    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.

  7. Review of Physics Results from the Tevatron: Searches for New Particles and Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Toback, David [Texas A-M; ŽIvković, Lidija [Belgrade U.

    2015-02-17

    We present a summary of results for searches for new particles and interactions at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include results from Run I as well as Run II for the time period up to July 2014. We focus on searches for supersymmetry, as well as other models of new physics such as new fermions and bosons, various models of excited fermions, leptoquarks, technicolor, hidden-valley model particles, long-lived particles, extra dimensions, dark matter particles, and signature-based searches.

  8. TOP counter for particle identification at the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Inami, Kenji

    2014-12-01

    Ring imaging Cherenkov counter, named TOP counter, utilizing precise photon detection timing has been developed as a particle identification detector for the Belle II experiment. The real size prototype has been produced and tested with 2 GeV positrons at Spring-8 LEPS beam line. The quartz radiator production and assembling with microchannel plate photomultipliers was successfully carried out. The beam test data shows good agreement with full Monte-Carlo simulation results in the ring image and the distribution of number of detected photons and timing information. - Highlights: • TOP counter was developed as a particle identification detector for the Belle II experiment. • The real size prototype was produced and tested with 2 GeV positrons. • The quartz radiator production and assembling with MCP-PMT was successfully carried out. • The beam test data shows good agreement with full Monte-Carlo simulation results.

  9. Trace analysis by measurements of charged particle-excited X-rays

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Morita, Susumu; Kaji, Harumi

    1974-01-01

    Following the introduction on the theory of analysis by charged particle x-ray excitation, experimental methods are explained together with actual examples of quantitative analysis. Protons or particles of 3 He are allowed to hit samples as ion beam. On one target, 4 samples are installed. Therefore, it is possible to analyze 4 samples without breaking vacuum. The x-ray is detected with an Si(Li) detector. The resolving power of this detector was 205 eV for the x-ray of 5.9 KeV. The most important thing is the preparation of samples in thin state. Metals of minerals are easily prepared in films by means of vacuum evaporation. In case of the samples that are hard to prepare in thin films, carbon foils are often used as backing material to support the samples. The limit of determination is about 10 -12 g, but the theoretical limit is about 10 -14 g. The demerits of this method is that the resolving power is not good enough for the determination of light elements. The improvement of S/N ratio is also important for the increase of sensitivity. The development of backing materials is the most important thing in this view. The merits of this method are that the amount of samples may be very small, and that a number of elements are simultaneously determined to very small contents. (Fukutomi, T.)

  10. Electron impact excitation of the iron peak element Fe II

    International Nuclear Information System (INIS)

    Ramsbottom, C.A.; Scott, M.P.; Bell, K.L.; McLaughlin, B.M.; Burke, P.G.; Keenan, F.P.; Sunderland, A.G.; Burke, V.M.; Noble, C.J.

    2002-01-01

    Effective collision strengths for electron-impact excitation of Fe II are presented for all sextet-to-quartet transitions among the 38 LS states formed from the basis configurations 3d 6 4s, 3d 7 and 3d 6 4p. A total of 112 individual transitions are considered at electron temperatures in the range 30-100,000 K, encompassing values of importance for applications in astrophysics as well as laboratory plasmas. A limited comparison is made with earlier theoretical work and large differences are found to occur at the temperatures considered. In particular, it is found that the inclusion or omission of some (N+1)-bound configurations in the Hamiltonian matrices describing the collision process can have a huge effect on the resulting effective collision strengths, by up to a factor of four in some cases. (author)

  11. Charge-exchange processes in a divertor plasma with account for excited particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Lisitsa, V.S.; Pigarov, A.Yu.

    1988-01-01

    A model describing dynamics of neutral atoms and multicharge ions in tokamak plasma, taking account of cascade excitation effect on charge exchange and ionization processes, is constructed. Dependences of effective rate of processes of proton charge exchange on hydrogen atom and non-resonance helium atom charge exchange on proton and α-particle- on atomic hydrogen on tokamak divertor plasma parameters are calculated. It is shown that H + +He→H-He + charge exchange can make up a notable shave (∼30%) in full helium ionization rate. Accounting for Ge 2+ charge exchange on atomic hydrogen under INTOR reactor divertor plasma conditions can lead to substantial He 2+ →He + conversion and thus increase diverter plate sputtering by helium ions

  12. Spectroscopy of Orbitally Excited $B_{s}$ Mesons with the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Heck, Martin [Karlsruhe Inst. of Technology (KIT) (Germany)

    2009-07-17

    The aim of particle physics is to understand the properties of matter on the most fundamental level. The two main questions are: ’What are the constituents of matter?’ and ’How do those constituents interact with one another?’ One approach used throughout the experimental testing of theories of matter, that aim to answer these questions, is the study of the energy spectrum of excited states. Especially in cases of simple configurations as found in the hydrogenium atom, the potential energy related to an interaction can be studied. In chapter 2 I describe basics of the Standard Model related to the study of orbitally excited mesons made of a b- and an s-quark [Bs], theoretical predictions, and results of previous experiments. In chapter 3 one can find a description of the experiment used to collect the data. In chapter 4 the important tools used in my analysis are explained. The following chapter 5 describes the first core of the analysis, the reconstruction and selection, before in chapter 6 the fits to the data, and the considered systematic uncertainties are presented.

  13. Luminescence of BaCl2:Eu2+ particles dispersed in the NaCl host excited by synchrotron radiation

    International Nuclear Information System (INIS)

    Pushak, A.S.; Savchyn, P.V.; Vistovskyy, V.V.; Demkiv, T.M.; Dacyuk, J.R.; Myagkota, S.V.; Voloshinovskii, A.S.

    2013-01-01

    BaCl 2 :Eu 2+ microcrystals embedded in the NaCl host have been obtained in the NaCl–BaCl 2 (1 mol%)–EuCl 3 (0.02 mol%) crystalline system. The influence of the annealing conditions on the formation of such particles has been studied. In particular, long-term annealing (at 200 °S during 100 h) promotes the microcrystals formation in the NaCl–BaCl 2 –Eu crystalline system. The subsequent heat treatment (annealed at 600 °S during 72 h and quenched to room temperature) is shown to lead to the destruction of the majority of these particles. The luminescent-kinetic properties of BaCl 2 :Eu 2+ microcrystals have been studied upon the ultra-violet excitation by the synchrotron radiation. The X-ray excited luminescence has been measured in order to estimate the distribution of europium ions between microcrystals and the NaCl host. The excitation mechanisms of Eu 2+ ions in the NaCl–BaCl 2 –Eu crystalline system are discussed. - Highlights: ► The formation of BaCl 2 :Eu 2+ microcrystals of 1–100 μm size embedded in the NaCl host is revealed. ► Annealing at 600 °C leads to the destruction of significant number of embedded microcrystals. ► The luminescent parameters of microcrystals is similar to ones of single crystal analogs.

  14. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  15. Analytical formulation for modulation of time-resolved dynamical Franz-Keldysh effect by electron excitation in dielectrics

    Science.gov (United States)

    Otobe, T.

    2017-12-01

    Analytical formulation of subcycle modulation (SCM) of dielectrics including electron excitation is presented. The SCM is sensitive to not only the time-resolved dynamical Franz-Keldysh effect (Tr-DFKE) [T. Otobe et al., Phys. Rev. B 93, 045124 (2016), 10.1103/PhysRevB.93.045124], which is the nonlinear response without the electron excitation, but also the excited electrons. The excited electrons enhance the modulation with even harmonics of pump laser frequency, and generate the odd-harmonics components. The new aspect of SCM is a consequence of (i) the interference between the electrons excited by the pump laser and those excited by the probe-pulse laser and (ii) oscillation of the generated wave packed by the pump laser. When the probe- and pump-pulse polarizations are parallel, the enhancement of the even harmonics and the generation of the odd-harmonics modulation appear. However, if the polarizations are orthogonal, the effect arising from the electron excitations becomes weak. By comparing the parabolic and cosine band models, I found that the electrons under the intense laser field move as quasifree particles.

  16. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  17. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  18. Energy dispersive soft X-ray fluorescence analysis by radioisotopic α-particle excitation

    International Nuclear Information System (INIS)

    Robertson, R.

    1977-01-01

    A Si(Li) X-ray detector system and 210 Po α-particle excitation source are combined to form a spectrometer for low energy X-rays. Its response in terms of Ksub(α) X-ray rate is shown for thick targets of elements from fluorine to copper. Potential applications of the equipment to useful quantitative elemental analysis of geological, biological and organic materials are explored. The results of analyses for oxygen and silicon in rocks and potassium in vegetation samples are included. A semi-empirical method of correcting for absorption and enhancement effects is employed. This is based upon X-ray production and photon absorption cross-sections taken from the literature and upon a minimal number of experimentally derived coefficients. (Auth.)

  19. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  20. Particle Transport in ECRH Plasmas of the TJ-II

    International Nuclear Information System (INIS)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-01-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T e (Thomson Scattering TS) and electron density, n e , (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 ≤n e > (10 1 9m - 3) ≤0.80) there are two regions of confinement separated by a threshold density, e > ∼0.65 10 1 9m - 3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D e , which in the range of validity of this study, 0.5 e are flat for ≥0,63(10 1 9m - 3). (Author) 35 refs

  1. Effect of Particle Damping on an Acoustically Excited Curved Vehicle Panel Structure with varied Equipment Assemblies

    Science.gov (United States)

    Parsons, David; Smith, Andrew; Knight, Brent; Hunt, Ron; LaVerde, Bruce; Craigmyle, Ben

    2012-01-01

    Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from trials to determine how effective use of these dampers might be for equipment mounted to a curved orthogrid vehicle panel. Trends for damping are examined for variations in damper fill level, component mass, and excitation energy. A significant response reduction at the component level would suggest that comparatively small, thoughtfully placed, particle dampers might be advantageously used in vehicle design. The results of this test will be compared with baseline acoustic response tests and other follow-on testing involving a range of isolation and damping methods. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.

  2. Charge-Exchange Neutral Particle Analyzer Diagnostic of TJ-II

    International Nuclear Information System (INIS)

    Fontdecaba, J.M.; Balbin, R.; Petrov, S.; TJ-II team

    2003-01-01

    A description of the Charge Exchange Neutral Particle Analyzers in operation in the heliac flexible TJ-II is reported. A description of the detectors, as well as the operation characteristics, hardware and software used in the control and analysis of the data obtained with the diagnostic is detailed. Two NPAs are in operation in TJ-II. One of them is a 5-channel analyzer and another one is an Acord-12. The 5-channel analyzer provides measurements of charge exchange neutral fluxes at five energy channels, whereas the Acord-12 can measure simultaneously two different hydrogen isotopes (H and D) at six energy channels. Their lines of sight can be varied poloidally in order to observe the different sections of the plasma. (Author) 10 refs

  3. Charge-Exchange Neutral Particle Analyzer Diagnostic of TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fontdecaba, J. M.; Balbin, R.; Petrov, S.; TJ-II team

    2003-07-01

    A description of the Charge Exchange Neutral Particle Analyzers in operation in the heliac flexible TJ-II is reported. A description of the detectors, as well as the operation characteristics, hardware and software used in the control and analysis of the data obtained with the diagnostic is detailed. Two NPAs are in operation in TJ-II. One of them is a 5-channel analyzer and another one is an Acord-12. The 5-channel analyzer provides measurements of charge exchange neutral fluxes at five energy channels, whereas the Acord-12 can measure simultaneously two different hydrogen isotopes (H and D) at six energy channels. Their lines of sight can be varied poloidally in order to observe the different sections of the plasma. (Author) 10 refs.

  4. Experimental investigation of particle-hole excitations in 91Nb

    International Nuclear Information System (INIS)

    Singh, Purnima; Palit, R.; Choudhury, D.

    2014-01-01

    Investigation of high-spin states in nuclei near N = 50 shell closure have attracted considerable attention in recent years. These nuclei provide a suitable laboratory for testing the residual interactions of the spherical shell model. Studies of N = 50, Z ∼ 40 nuclei, revealed that the low-lying states in these nuclei arise from proton excitations within the f 5/2 , p 3/2 , p 1/2 , and g 9/2 orbits. The higher angular momentum states were observed to have dominant contribution of 1p - 1h configurations involving a single g 9/2 neutron excitation across the N = 50 shell gap into the d 5/2 orbit. A comprehensive study of multiparticle-multihole (mp-mh) excitations in these nuclei may provide necessary insight into the evolution of shell structure above N = 50 shell gap. However, till date there is no experimental evidence of states involving two or more neutron excitations across the N = 50 shell gap in N = 50, Z ∼ 40 nuclei. The present work investigates high-spin states in the N = 50 nucleus, 91 Nb, with the purpose to search for states involving 2p - 2h excitations across the N = 50 shell closure

  5. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  6. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    Science.gov (United States)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  7. Dopamine Neurons Change the Type of Excitability in Response to Stimuli

    Science.gov (United States)

    Gutkin, Boris S.; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    The dynamics of neuronal excitability determine the neuron’s response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I

  8. Nonlinear stability of spin-flip excitations

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1975-01-01

    A rather complete discussion of the nonlinear electrodynamic behavior of a negative-temperature spin system is presented. The method presented here is based on a coupled set of master equations, one describing the time evolution of the photon (i.e., the spin-flip excitation) distribution function and the other describing the time evolution of the particle distribution function. It is found that the initially unstable (i.e., growing) spin-flip excitations grow to such a large amplitude that their nonlinear reaction on the particle distribution function becomes important. It is then shown that the initially totally inverted two-level spin system evolves rapidly (through this nonlinear photon-particle coupling) towards a quasilinear steady state where the populations of the spin-up and the spin-down states are equal to each other. Explicit expressions for the time taken to reach this quasilinear steady state and the energy in the spin-flip excitations at this state are also presented

  9. Particle excitation, airglow and H2 vibrational disequilibrium in the atmosphere of Jupiter

    International Nuclear Information System (INIS)

    Shemansky, D.E.

    1984-09-01

    The extreme ultraviolet EUV emission produced by particle excitation of the hydrogen atmospheres of Jupiter and Saturn is examined using model calculations to determine the nature of the energy deposition process and the effect of such processes on atmospheric structure. Tasks ranging from examination of phenomenologically related processes on Saturn and Titan to analysis of experimental laboratory data required to allow accurate modeling of emissions from hydrogenic atmospheres are investigated. An explanation of the hydrogen H Ly(alpha) bulge in Jupiter's emission from the equatorial region is presented. It is proposed that Saturn, rather than Titan is the major source of the extended hydrogen cloud. The atomic hydrogen detected at the rings of Saturn may originate predominantly from the same source. A cross calibration is obtained between the Pioneer 10 EUV photometer and the Voyager EUV spectrometers, thus providing a direct measure of the temporal morphology of Jupiter between a minimum and a maximum in solar activity. Atomic and molecular data required for the research program are analyzed. An extrapolation of conditions in the upper atmospheres of Jupiter and Saturn produces a predicted condition at Uranus in terms of excitation and hydrogen escape rates that may be observed at Voyager-Uranus encounter

  10. Excitation of autoionizing states of helium by 100 keV proton impact: II. Excitation cross sections and mechanisms of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L. [Department of Physics, Tulane University, New Orleans, LA 70118-5698 (United States); Ivanov, P.B.; Schipakov, V.A. [Troitsk Institute of Innovation and Fusion Research Troitsk, Moscow region, 142092 (Russian Federation); Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS-Universite Paul Sabatier, 31062 Toulouse Cedex (France)

    2000-03-14

    Mechanisms of two-electron excitation of the (2s{sup 2}){sup 1} S, (2p{sup 2} ){sup 1} D and (2s2p){sup 1} P autoionizing states of helium are studied both experimentally and theoretically. It is shown that an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive parametrization of experimental cross sections of ionization, allowing one to extract cross sections of excitation of autoionizing states. Using a new fitting procedure together with the proposed parametrization made it possible to obtain the excitation cross sections and magnetic sublevel population from electron spectra as well as, for the first time, to resolve the contribution of resonance and interference components to resonance profiles. Interference with direct ionization is shown to contribute significantly into resonance formation even for backward ejection angles. We demonstrate theoretically that the excitation cross sections thus extracted from experimental electron spectra hold information about the interaction of autoionizing states with an adjacent continuum. (author)

  11. Surface and bulk excitations in condensed matter

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs

  12. Symmetry characterization of electrons and lattice excitations

    Directory of Open Access Journals (Sweden)

    Schober H.

    2012-03-01

    Full Text Available Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external periodic potential while phonons exemplify a decoupled system of interacting particles. The way we develop the argument gives as by-product a short account of molecular orbitals and molecular vibrations.

  13. Quasi-particle entanglement: redefinition of the vacuum and reduced density matrix approach

    International Nuclear Information System (INIS)

    Samuelsson, P; Sukhorukov, E V; Buettiker, M

    2005-01-01

    A scattering approach to entanglement in mesoscopic conductors with independent fermionic quasi-particles is discussed. We focus on conductors in the tunnelling limit, where a redefinition of the quasi-particle vacuum transforms the wavefunction from a many-body product state of non-interacting particles to a state describing entangled two-particle excitations out of the new vacuum (Samuelsson, Sukhorukov and Buettiker 2003 Phys. Rev. Lett. 91 157002). The approach is illustrated with two examples: (i) a normal-superconducting system, where the transformation is made between Bogoliubov-de Gennes quasi-particles and Cooper pairs, and (ii) a normal system, where the transformation is made between electron quasi-particles and electron-hole pairs. This is compared to a scheme where an effective two-particle state is derived from the manybody scattering state by a reduced density matrix approach

  14. The excitation of an independent-particle gas - classical or quantal - by a time-dependent potential well

    International Nuclear Information System (INIS)

    Blocki, J.; Skalski, J.; Swiatecki, W.J.

    1995-01-01

    A systematic numerical investigation of the excitation of a classical or quantal gas of non-interacting particles in a time-dependent potential well is described. The excitation energy was followed in time for one oscillation around the sphere for six types of deformation: spheroidal shapes and Legendre polynomial ripples P 2 , P 3 , P 4 , P 5 , P 6 , with relative rms amplitudes of 0.2. Ten different speeds of deformation and eleven different values of the diffuseness of the potential well were studied, making altogether 660 quantal and 660 classical time-dependent calculations. In the upper range of deformation speeds the quantal results for the non-integrable shapes P 3 -P 6 agree approximately with the wall formula for dissipation, the deviations being largely accounted for by the wave-mechanical suppression factor of Koonin et al. For low deformation speeds the dissipation becomes dominated by one or two avoided level crossings. (orig.)

  15. Simulation of Particle Fluxes at the DESY-II Test Beam Facility

    International Nuclear Information System (INIS)

    Schuetz, Anne

    2015-05-01

    In the course of this Master's thesis ''Simulation of Particle Fluxes at the DESY-II Test Beam Facility'' the test beam generation for the DESY test beam line was studied in detail and simulated with the simulation software SLIC. SLIC uses the Geant4 toolkit for realistic Monte Carlo simulations of particles passing through detector material.After discussing the physics processes relevant for the test beam generation and the principles of the beam generation itself, the software used is introduced together with a description of the functionality of the Geant4 Monte Carlo simulation. The simulation of the test beam line follows the sequence of the test beam generation. Therefore, it starts with the simulation of the beam bunch of the synchrotron accelerator DESY-II, and proceeds step by step with the single test beam line components. An additional benefit of this thesis is the provision of particle flux and trajectory maps, which make fluxes directly visible by following the particle tracks through the simulated beam line. These maps allow us to see each of the test beam line components, because flux rates and directions change rapidly at these points. They will also guide the decision for placements of future test beam line components and measurement equipment.In the end, the beam energy and its spread, and the beam rate of the final test beam in the test beam area were studied in the simulation, so that the results can be compared to the measured beam parameters. The test beam simulation of this Master's thesis will serve as a key input for future test beam line improvements.

  16. Use of modulated excitation signals in ultrasound. Part II: Design and performance for medical imaging applications

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    ultrasound presents design methods of linear FM signals and mismatched filters, in order to meet the higher demands on resolution in ultrasound imaging. It is shown that for the small time-bandwidth (TB) products available in ultrasound, the rectangular spectrum approximation is not valid, which reduces....... The method is evaluated first for resolution performance and axial sidelobes through simulations with the program Field II. A coded excitation ultrasound imaging system based on a commercial scanner and a 4 MHz probe driven by coded sequences is presented and used for the clinical evaluation of the coded...... excitation/compression scheme. The clinical images show a significant improvement in penetration depth and contrast, while they preserve both axial and lateral resolution. At the maximum acquisition depth of 15 cm, there is an improvement of more than 10 dB in the signal-to-noise ratio of the images...

  17. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis

    International Nuclear Information System (INIS)

    Yuan, Dong-hai; Guo, Xu-jing; Wen, Li; He, Lian-sheng; Wang, Jing-gang; Li, Jun-qi

    2015-01-01

    Fluorescence excitation-emission matrix (EEM) spectra coupled with parallel factor analysis (PARAFAC) was used to characterize dissolved organic matter (DOM) derived from macrophyte decomposition, and to study its complexation with Cu (II) and Cd (II). Both the protein-like and the humic-like components showed a marked quenching effect by Cu (II). Negligible quenching effects were found for Cd (II) by components 1, 5 and 6. The stability constants and the fraction of the binding fluorophores for humic-like components and Cu (II) can be influenced by macrophyte decomposition of various weight gradients in aquatic plants. Macrophyte decomposition within the scope of the appropriate aquatic phytomass can maximize the stability constant of DOM-metal complexes. A large amount of organic matter was introduced into the aquatic environment by macrophyte decomposition, suggesting that the potential risk of DOM as a carrier of heavy metal contamination in macrophytic lakes should not be ignored. - Highlights: • Macrophyte decomposition increases fluorescent DOM components in the upper sediment. • Protein-like components are quenched or enhanced by adding Cu (II) and Cd (II). • Macrophyte decomposition DOM can impact the affinity of Cu (II) and Cd (II). • The log K M and f values showed a marked change due to macrophyte decomposition. • Macrophyte decomposition can maximize the stability constant of DOM-Cu (II) complexes. - Macrophyte decomposition DOM can influence on the binding affinity of metal ions in macrophytic lakes

  18. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  19. On the spectrum emitted by excited particles ejected from the surface of a calcium target by a beam of Ar+ ions

    International Nuclear Information System (INIS)

    Kiyan, T.S.; Gritsyna, V.V.; Fogel, Ya.M.

    1976-01-01

    The spectrum of the luminous aureole near the calcium target radiated by excited particles ejected from its surface by a beam of Ar + (energy 30 keV, current density 200 μA/cm 2 ) was investigated. This spectrum contains lines of the singlet and triplet systems of the one-and-two-electron excited states of the calcium atom and some bands of CaO and O + 2 molecules. The width of a conductivity band of CaO was measured. Some information on oxidation processes on calcium in a residual gas and rarefied nitrogen atmosphere was obtained. (Auth.)

  20. Alpha particle excited x-ray fluorescence analysis for trace elements in cervical spinal cords of amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Iwata, Shiro; Sasajima, Kazuhisa; Yase, Yoshio; Yoshida, Shohei.

    1980-01-01

    The mean contents of trace elements in anterior gray horn section of cervical spinal cords of six amyotrophic lateral sclerosis (ALS) cases were relatively determined against those of six control cases by α-particle excited X-ray fluorescence analysis. The anterior gray horn section of cervical spinal cord samples were excited by 1.6 MeV α-particle beam of 2 mm diameter accelerated with a Van de Graaff accelerator, and characteristic X-ray spectra were measured with a Si(Li) detector. From the peak areas on the X-ray spectra, the relative mean contents of the trace elements in cervical spinal cords of ALS and control cases were determined. As a result, the X-ray peaks of Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Cu and Zn were detected. The contents of Al, Si, P, Ca, Ti, V, Mn and Fe in ALS cases were higher than those in control cases. The contents of S, Cl, K, Cu and Zn in ALS and in control cases were equal to each other within standard deviation. The precipitation mechanisms of Al, Si, P, Ca, Ti, V, Mn and Fe into cervical spinal cord of ALS cases are discussed on the basis of the previous studies. (author)

  1. Use of alpha-particle excited x-rays to measure the thickness of thin films containing low-Z elements

    International Nuclear Information System (INIS)

    Hanser, F.A.; Sellers, B.; Ziegler, C.A.

    1976-01-01

    The thickness of thin surface films containing low Z elements can be determined by measuring the K X-ray yields from alpha particle excitation. The samples are irradiated in a helium atmosphere by a 5 mCi polonium-210 source, and the low energy X-rays detected by a flow counter with a thin-stretched polypropylene window. The flow counter output is pulse height sorted by a single channel analyzer (SCA) and counted to give the X-ray yield. Best results have been obtained with Z = 6 to 9 (C, N, O, and F), but usable yields are obtained even for Z = 13 or 14 (Al and Si). The low energy of the X-rays (0.28 to 1.74 keV) limits the method to films of several hundred nm thickness or less and to situations where the substrate does not produce interfering X-rays. It is possible to determine the film thickness with 50 percent accuracy by direct calculation using the measured alpha-particle spectrum and known or calculated K X-ray excitation cross sections. By calibration with known standards the accuracy can be increased substantially. The system has thus far been applied to SiO 2 on Si, Al 2 O 3 on Al, and CH 2 on Al

  2. Investigations of fluctuation phenomena in the excitation functions of the cross-section by means of polarized particles

    International Nuclear Information System (INIS)

    Henneck, R.

    1976-01-01

    The present work concerns theoretical and experimental investigations of fluctuation phenomena, which appear in the excitation functions of the diff. cross-section and of the analyzing power, when bombarding nuclei with polarized particles in the energy range of strongly overlapping levels. We could show theoretically that model-dependent calculations (or assumptions), necessary for the determination of the relative amount of direct interaction contribution within the statistical model of Ericson, are not necessary for the elastic scattering of polarized spin-1/2- particles from spin-zero-target nuclei, if the additional observable analyzing power is included in the analysis. The proposed, new method hence presents an independent test for the consistency of the Hauser-Feshbach theory and its validity in the domain of strongly overlapping levels. (orig./WL) [de

  3. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    International Nuclear Information System (INIS)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-01-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N 4 ). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S ^2 〉 are also developed and tested

  4. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  5. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    International Nuclear Information System (INIS)

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-01-01

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na_3MnPO_4CO_3 and MnCO_3 were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N_2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g"−"1 adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na_3MnPO_4CO_3_. Results suggested the complexity of natural microbe-mediated Mn transformation.

  6. Search for excited charged leptons in electron positron collisions

    CERN Document Server

    Vachon, Brigitte Marie Christine; Sobie, Randall

    2002-01-01

    A search for evidence that fundamental particles are made of smaller subconstituents is performed. The existence of excited states of fundamental particles would be an unambiguous indication of their composite nature. Experimental signatures compatible with the production of excited states of charged leptons in electron-positron collisions are studied. The data analysed were collected by the OPAL detector at the LEP collider. No evidence for the existence of excited states of charged leptons was found. Upper limits on the product of the cross-section and the electromagnetic branching fraction are inferred. Using results from the search for singly produced excited leptons, upper limits on the ratio of the excited lepton coupling constant to the compositeness scale are calculated. From pair production searches, 95% confidence level lower limits on the masses of excited electrons, muons and taus are determined to be 103.2 GeV.

  7. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    Directory of Open Access Journals (Sweden)

    Valdré S.

    2014-03-01

    Indeed, in this mass region (A ~ 100 models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  8. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ganse, Urs; Kilian, Patrick; Spanier, Felix [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Wuerzburg (Germany); Vainio, Rami, E-mail: uganse@astro.uni-wuerzburg.de [Department of Physics, University of Helsinki, Helsinki (Finland)

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  9. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    International Nuclear Information System (INIS)

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-01-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  10. Lecture II. Charmed particle spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The discussion of charmed particle spectroscopy covers the particle properties and interrelations from a charmed quark composition point of view including SU(4)-symmetry generalities, mesons, baryons, charmed particle masses, and decays of charmed particles. 6 references

  11. Modeling Lost-Particle Accelerator Backgrounds in PEP-II Using LPTURTLE

    CERN Document Server

    Fieguth, Theodore; Kozanecki, Witold

    2005-01-01

    Background studies during the design, construction, commissioning, operation and improvement of BaBar and PEP-II have been greatly influenced by results from a program referred to as LPTURTLE (Lost Particle TURTLE a modified version of Decay TURTLE) which was originally conceived for the purpose of studying gas background for SLC. This venerable program is still in use today. We describe its use, capabilities and improvements and refer to current results now being applied to BaBar.

  12. On the particle excitations in the XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, A.A., E-mail: ovch@ms2.inr.ac.ru

    2013-12-09

    We continue to study the excited states for the XXZ spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to π/2. We propose the particle–hole symmetry which relates the eigenstates build up from the two different pseudovacuum states. We find the XXX spin chain limit for the eigenstates with the complex roots. We also comment on the low-energy excited states for the XXZ spin chain.

  13. Selective Coherent Excitation of Charged Density Waves

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Sagar, D.M.; Loosdrecht, P.H.M. van; Marel, D. van der

    2003-01-01

    Real time femtosecond pump-probe spectroscopy is used to study collective and single particle excitations in the charge density wave state of the quasi-1D metal, blue bronze. Along with the previously observed collective amplitudon excitation, the spectra show several additional coherent features.

  14. The excitation of an independent-particle gas by a time dependent potential well

    Directory of Open Access Journals (Sweden)

    J. P. Błocki

    2010-09-01

    Full Text Available The order-to-chaos transition in the dynamics of independent classical particles gas was studied by means of the numerical simulations. The excitation of the gas for containers whose surfaces are rippled according to Legendre polynomials P2 , P3, P4 , P5 , P6 was followed for ten periods of oscillations. Spheroidal deformations were also considered. Poincare sections and Lyapunov exponents have been calculated showing different degrees of chaoticity depending on the shape and amplitude of oscillations. For 2 P polynomial the reaction of a gas to the periodic container deformation is mostly elastic as 2 P deformation especially for not very big deformations is almost like an integrable spheroid. For other polynomials the situation is more or less chaotic with a chaoticity increasing with the increasing order of the polynomial.

  15. Gamma rays from the de-excitation of 12C*(15.11MeV) and 12C*(4.44MeV) as probes of energetic particle spectra

    International Nuclear Information System (INIS)

    Crannell, C.J.; Ramaty, R.; Crannell, H.

    1977-01-01

    The flux of 15.11 MeV γ rays relative to the flux 4.44 MeV γ rays has been calculated from measured cross sections for excitation of the corresponding states of 12 C and from experimental determinations of the branching ratios for direct de-excitation of these states to the ground state. Because of the difference in threshold energies for excitation of these two levels, the relative intensities in the two lines are particularly sensitive to the spectral distribution of energetic particles which excite the corresponding nuclear levels. For both solar and cosmic emission, the observability of the 15.11 MeV line is expected to be enhanced by low source-background continuum in this ener

  16. Excitation methods for energy dispersive analysis

    International Nuclear Information System (INIS)

    Jaklevic, J.M.

    1976-01-01

    The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed

  17. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Prusa, Petr; Nikl, Martin; Mares, Jiri A.; Nitsch, Karel; Beitlerova, Alena; Kucera, Miroslav

    2009-01-01

    Y 3 Al 5 O 12 :Ce (YAG:Ce) thin films were grown from PbO-,BaO-, and MoO 3 -based fluxes using the liquid phase epitaxy (LPE) method. Photoelectron yield, its time dependence within 0.5-10 μs shaping time, and energy resolution of these samples were measured under α-particle excitation. For comparison a sample of the Czochralski grown bulk YAG:Ce single crystal was measured as well. Photoelectron yield values of samples grown from the BaO-based flux were found superior to other LPE films and comparable with that of the bulk single crystal. The same is valid also for the time dependence of photoelectron yield. Obtained results are discussed taking into account the influence of the flux and technology used. Additionally, α particle energy deposition in very thin films is modelled and discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Search for 2νββ excited state transitions and HPGe characterization for surface events in GERDA phase II

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern

    2016-03-01

    The search for the neutrinoless double beta (0νββ) decay is one of the most active fields in modern particle physics. This process is not allowed within the Standard Model and its observation would imply lepton number violation and would lead to the Majorana nature of neutrinos. The experimentally observed quantity is the half-life of the decay, which can be connected to the effective Majorana neutrino mass via nuclear matrix elements. The latter can only be determined theoretically and are currently affected by large uncertainties. To reduce these uncertainties one can investigate the well established two-neutrino double beta (2νββ) decay into the ground and excited states of the daughter isotope. These similar processes are allowed within the Standard Model. In this dissertation, the search for 2νββ decays into excited states is performed in {sup 110}Pd, {sup 102}Pd and {sup 76}Ge. Three gamma spectroscopy setups at the Felsenkeller (Germany), HADES (Belgium) and LNGS (Italy) underground laboratories are used to search for the transitions in {sup 110}Pd and {sup 102}Pd. No signal is observed leading to lower half-live bounds (90% C.I.) of 2.9 . 10{sup 20} yr, 3.9 . 10{sup 20} yr and 2.9 . 10{sup 20} yr for the 0/2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2} transitions in {sup 110}Pd and 7.9 . 10{sup 18} yr, 9.2 . 10{sup 18} yr and 1.5 . 10{sup 19} yr for the 0/2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2} transitions in {sup 102}Pd, respectively. This is a factor of 1.3 to 3 improvement compared to previous limits. The data of Phase I (Nov 2011 - May 2013) of the 0νββ decay experiment GERDA at LNGS is used to search for excited state transitions in {sup 76}Ge. The analysis is based on coincidences between two detectors and finds no signal. Lower half-life limits (90 % C.L.) of 1.6.10{sup 23} yr, 3.7.10{sup 23} yr and 2.3.10{sup 23} yr are obtained for the 2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2

  19. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Pan, Haixia [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Xu, Jianqiang [School of Life Science and Medicine, Dalian University of Technology, Panjin 124221 (China); Xu, Weiping; Liu, Lifen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China)

    2016-03-05

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na{sub 3}MnPO{sub 4}CO{sub 3} and MnCO{sub 3} were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N{sub 2} adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g{sup −1} adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na{sub 3}MnPO{sub 4}CO{sub 3.} Results suggested the complexity of natural microbe-mediated Mn transformation.

  20. Dynamical Simulation of Recycling and Particle Fueling in TJ-II Plasmas

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.; Ferreira, J. A.; Tabares, F. L.; Castejon, F.; Guasp, J.

    2007-01-01

    With the aim of improving the calculation tools for transport analysis in TJ-II plasmas, in this work we analyze the simplified model for a kinetic equation that ASTRA uses to calculate the neutral particle distribution in the plasma. Next, we act on the boundary conditions for this kinetic equation (particularly on the neutral density in the plasma boundary) so we can simulate the recycling conditions for the TJ-II in a simple way. With the resulting transport models we can easily analyze the sensibility of these plasmas to the cold gas puffing depending on the recycling conditions. These transport models evidence the problem of density control in the TJ-II. Likewise, we estimate the importance of recycling in the plasmas heated by energetic neutral beam injection. The experimentally observed increments in density when the energetic neutrals are injected would respond, according to the calculations here presented, to a large increment of the neutrals influx that cannot be explained by the beam itself. (Author) 22 refs

  1. Excited TBA equations I: Massive tricritical Ising model

    International Nuclear Information System (INIS)

    Pearce, Paul A.; Chim, Leung; Ahn, Changrim

    2001-01-01

    We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II

  2. Particle decay of (12)Be excited states

    NARCIS (Netherlands)

    Charity, R. J.; Komarov, S. A.; Sobotka, L. G.; Clifford, J.; Bazin, D.; Gade, A.; Lee, Jenny; Lukyanov, S. M.; Lynch, W. G.; Mocko, M.; Lobastov, S. P.; Rogers, A. M.; Sanetullaev, A.; Tsang, M. B.; Wallace, M. S.; Hudan, S.; Metelko, C.; Famiano, M. A.; Wuosmaa, A. H.; van Goethem, M. J.

    2007-01-01

    The breakup of E/A=50 MeV (12)Be fragments following inelastic scattering off of hydrogen and carbon target nuclei has been studied. The breakup channels alpha+(8)He, (6)He+(6)He, t+(9)Li, and p+(11)Li were observed. Two doublets at excitation energies of 12.8 and 15.5 MeV were found for the

  3. Very low-excitation Herbig-Haro objects

    International Nuclear Information System (INIS)

    Boehm, K.H.; Brugel, E.W.; Mannery, E.

    1980-01-01

    Spectrophotometric observations show that H-H 7 and H-H 11 belong to a class of very low-excitation Herbig-Haro objects of which H-H 47 has been the only known example. Typical properties include line flux ratios [N I] (lambda5198+lambda5200)/Hβ and [S II] lambda/6717/Hα, which are both considerably larger than 1, very strong [O I] and [C I] lines, as well as relatively faint [O II] lines. So far no shock-wave models are available for these low-excitation objects. H-H 7 and H-H 11 have electron densities which are lower by about one order of magnitude, and electron temperatures which are slightly lower than those for high-excitation objects like H-H 1 and H-H 2. H-H 11 has a filling factor of about 1, much higher than other H-H objects

  4. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.

    Science.gov (United States)

    Sheng, Jennifer J; Sirois, Paul J; Dressman, Jennifer B; Amidon, Gordon L

    2008-11-01

    This work was to investigate the effects of particle size and paddle speed on the particle diffusional layer thickness h(app) in a USP dissolution apparatus II. After the determination of the powder dissolution rates of five size fractions of fenofibrate, including <20, 20-32, 32-45, 63-75, and 90-106 microm, the present work shows that the dependence of h(app) on particle size follows different functions in accordance with the paddle speed. At 50 rpm, the function of h(app) is best described by a linear plot of h{app} = 9.91sqrt d-23.31 (R(2) = 0.98) throughout the particle diameter, d, from 6.8 to 106 microm. In contrast, at 100 rpm a transitional particle radius, r, of 23.7 microm exists, under which linear relationship h(app) = 1.59r (R(2) = 0.98) occurs, but above which h(app) becomes a constant of 43.5 microm. Thus, h(app) changes not only with particle size, but also with the hydrodynamics under standard USP configurations, which has been overlooked in the past. Further, the effects of particle size and paddle speed on h(app) were combined using dimensionless analysis. Within certain fluid velocity/particle regime, linear correlation of h(app)/d with the square-root of Reynolds number (d\\varpi/upsilon){1/2}, that is, h{app}/d = 1.5207 - 9.25 x 10{- 4} (d\\varpi/n){1/2} (R(2) = 0.9875), was observed.

  5. Spectrochemical analysis using laser plasma excitation

    International Nuclear Information System (INIS)

    Radziemski, L.J.

    1989-01-01

    This paper reports on analyses of gases, liquids, particles, and surfaces in which laser plasma is used to vaporize and excite a material. The authors present a discussion of the interaction between laser radiation and a solid and some recent analytical results using laser plasma excitation on metals. The use of laser plasmas as an ablation source is also discussed

  6. Photosystem II excitation pressure and development of resistance to photoinhibition. II. Adjustment of photosynthetic capacity in winter wheat and winter rye

    International Nuclear Information System (INIS)

    Gray, G.R.; Savitch, L.V.; Ivanov, A.G.; Huner, N.P.A.

    1996-01-01

    Winter wheat (Triticum aestivum L. cv Monopol), spring wheat (Triticum aestivum L. cv Katepwa), and winter rye (Secale cereale L. cv Musketeer) grown at 5 degrees C and moderate irradiance (250 micromoles m -2 s -1 ) (5/250) exhibit an increased tolerance to photoinhibition at low temperature in comparison to plants grown at 20 degrees C and 250 micromoles m -2 s -1 (20/250). However, 5/250 plants exhibited a higher photosystem II (PSII) excitation pressure (0.32-0.63) than 20/250 plants (0.18-0.21), measured as 1 - q p , the coefficient of photochemical quenching. Plants grown at 20 degrees C and a high irradiance (800 micromoles m -2 s -1 ) (20/800) also exhibited a high PSII excitation pressure (0.32-0.48). Similarly, plants grown at 20/800 exhibited a comparable tolerance to photoinhibition relative to plants grown at 5/250. In contrast to a recent report for Chlorella vulgaris (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694), this tolerance to photoinhibition occurs in winter rye with minimal adjustment to polypeptides of the PSII light-harvesting complex, chlorophyll a/b ratios, or xanthophyll cycle carotenoids. However, Monopol winter wheat exhibited a 2.5-fold stimulation of sucrose-phosphate synthase activity upon growth at 5/250, in comparison to Katepwa spring wheat. We demonstrate that low-temperature-induced tolerance to photoinhibition is not a low-temperature-growth effect per se but, instead, reflects increased photosynthetic capacity in response to elevated PSII excitation pressure, which may be modulated by either temperature or irradiance

  7. Requirements and specifications for a particle database

    International Nuclear Information System (INIS)

    2015-01-01

    One of the tasks of WPEC Subgroup 38 (SG38) is to design a database structure for storing the particle information needed for nuclear reaction databases and transport codes. Since the same particle may appear many times in a reaction database (produced by many different reactions on different targets), one of the long-term goals for SG38 is to move towards a central database of particle information to reduce redundancy and ensure consistency among evaluations. The database structure must be general enough to describe all relevant particles and their properties, including mass, charge, spin and parity, half-life, decay properties, and so on. Furthermore, it must be broad enough to handle not only excited nuclear states but also excited atomic states that can de-excite through atomic relaxation. Databases built with this hierarchy will serve as central repositories for particle information that can be linked to from codes and other databases. It is hoped that the final product is general enough for use in other projects besides SG38. While this is called a 'particle database', the definition of a particle (as described in Section 2) is very broad. The database must describe nucleons, nuclei, excited nuclear states (and possibly atomic states) in addition to fundamental particles like photons, electrons, muons, etc. Under this definition the list of possible particles becomes quite large. To help organize them the database will need a way of grouping related particles (e.g., all the isotopes of an element, or all the excited levels of an isotope) together into particle 'groups'. The database will also need a way to classify particles that belong to the same 'family' (such as 'leptons', 'baryons', etc.). Each family of particles may have special requirements as to what properties are required. One important function of the particle database will be to provide an easy way for codes and external databases to look up any particle stored inside. In order to make access as

  8. Excitation energy transfer in ruthenium (II)-porphyrin conjugates led to enhanced emission quantum yield and 1O2 generation

    International Nuclear Information System (INIS)

    Pan, Jie; Jiang, Lijun; Chan, Chi-Fai; Tsoi, Tik-Hung; Shiu, Kwok-Keung; Kwong, Daniel W.J.; Wong, Wing-Tak; Wong, Wai-Kwok; Wong, Ka-Leung

    2017-01-01

    Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.

  9. Excitation temperature of a solution plasma during nanoparticle synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Genki, E-mail: genki@eng.hokudai.ac.jp; Nakasugi, Yuki; Akiyama, Tomohiro [Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo 060-8628 (Japan)

    2014-08-28

    Excitation temperature of a solution plasma was investigated by spectroscopic measurements to control the nanoparticle synthesis. In the experiments, the effects of edge shielding, applied voltage, and electrode material on the plasma were investigated. When the edge of the Ni electrode wire was shielded by a quartz glass tube, the plasma was uniformly generated together with metallic Ni nanoparticles. The emission spectrum of this electrode contained OH, H{sub α}, H{sub β}, Na, O, and Ni lines. Without an edge-shielded electrode, the continuous infrared radiation emitted at the edge created a high temperature on the electrode surface, producing oxidized coarse particles as a result. The excitation temperature was estimated from the Boltzmann plot. When the voltages were varied at the edge-shielded electrode with low average surface temperature by using different electrolyte concentrations, the excitation temperature of current-concentration spots increased with an increase in the voltage. The size of the Ni nanoparticles decreased at high excitation temperatures. Although the formation of nanoparticles via melting and solidification of the electrode surface has been considered in the past, vaporization of the electrode surface could occur at a high excitation temperature to produce small particles. Moreover, we studied the effects of electrodes of Ti, Fe, Ni, Cu, Zn, Zr, Nb, Mo, Pd, Ag, W, Pt, Au, and various alloys of stainless steel and Cu–Ni alloys. With the exception of Ti, the excitation temperatures ranged from 3500 to 5500 K and the particle size depended on both the excitation temperature and electrode-material properties.

  10. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  11. Excited quark production at hadron colliders

    International Nuclear Information System (INIS)

    Baur, U.; Hinchliffe, I.; Zeppenfeld, D.

    1987-06-01

    Composite models generally predict the existence of excited quark and lepton states. We consider the production and experimental signatures of excited quarks Q* of spin and isospin 1/2 at hadron colliders and estimate the background for those channels which are most promising for Q* identification. Multi-TeV pp-colliders will give access to such particles with masses up to several TeV

  12. Sum-rule analysis of long-wavelength excitations in electron liquids

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo; Totsuji, Hiroo; Tange, Toshio; Pines, D.

    1975-01-01

    The properties of the plasma oscillations, the single-particle excitations and the collisional excitations in the classical one-component plasma are investigated in the long-wave-length domain with the aid of moment sum rules. The frequency moments of the dynamic form factor are calculated up to that term which involves the ternary correlation function. The dispersion in the plasma-wave frequency and the strengths of the single-particle and collisional excitations are computed over the thermodynamically stable domain of the plasma parameter, epsilon<=10. It is emphasized that inclusion of the collisional excitations plays a vital part in satisfying various moment-sum rules and in securing agreement with known boundary conditions such as the Vlasov description and molecular-dynamics computations. (auth.)

  13. Physical Improvements in Exciter/Igniter Units, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 2 project consists of the physical integration of our Phase 1 small, compact exciter with a "flight like" igniter or spark plug capable of...

  14. Revised constraints and Belle II sensitivity for visible and invisible axion-like particles

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Kahlhoefer, Felix

    2017-09-01

    Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV to GeV mass region from colliders, beam dump experiments and astrophysics. We furthermore provide a detailed calculation of the expected sensitivity of Belle II, which can search for visibly and invisibly decaying ALPs, as well as long-lived ALPs. The Belle II sensitivity is found to be substantially better than previously estimated, covering wide ranges of relevant parameter space. In particular, Belle II can explore an interesting class of dark matter models, in which ALPs mediate the interactions between the Standard Model and dark matter. In these models, the relic abundance can be set via resonant freeze-out, leading to a highly predictive scenario consistent with all existing constraints but testable with single-photon searches at Belle II in the near future.

  15. Revised constraints and Belle II sensitivity for visible and invisible axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [Melbourne Univ. (Australia). ARC Centre of Excellence for Particle Physics at the Terascale; Ferber, Torben [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy; Hearty, Christopher [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy; Institute of Particle Physics, Vancouver, BC (Canada); Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); RWTH Aachen Univ. (Germany). Inst. for Theoretical Particle Physics and Cosmology; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV to GeV mass region from colliders, beam dump experiments and astrophysics. We furthermore provide a detailed calculation of the expected sensitivity of Belle II, which can search for visibly and invisibly decaying ALPs, as well as long-lived ALPs. The Belle II sensitivity is found to be substantially better than previously estimated, covering wide ranges of relevant parameter space. In particular, Belle II can explore an interesting class of dark matter models, in which ALPs mediate the interactions between the Standard Model and dark matter. In these models, the relic abundance can be set via resonant freeze-out, leading to a highly predictive scenario consistent with all existing constraints but testable with single-photon searches at Belle II in the near future.

  16. Single-particle states vs. collective modes: friends or enemies ?

    Science.gov (United States)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-05-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.

  17. PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies.

    Science.gov (United States)

    Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B; Renger, G

    2011-02-01

    Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10s for all actinic flash energies (the maximum energy of 7.5 × 10¹⁶ photons/(cm²flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4×10¹⁴ photons/(cm²flash) to 7.5×10¹⁶ photons/(cm²flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (³Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe(-)) and P680(+) by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant. The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the

  18. Fusion de-excitation process in heavy ion interactions

    International Nuclear Information System (INIS)

    Fleury, A.

    1979-01-01

    Various aspects of compound nucleus formation and de-excitation are analysed with particular emphasis on de-excitation by particle emission and fission. Calculations of level densities are described and the validity of various approximations studied. The explanatory and predictive possibilities of the statistical model are pointed out [fr

  19. Particle hole excitations coupled to complex states in heavy-ion collisions

    International Nuclear Information System (INIS)

    Jolos, R.V.; Schmidt, R.

    1982-01-01

    The excitation of uncorrelated 1p-1h states in one nucleus due to the action of the time-dependent mean field of the other nucleus was studied earlier. No statistical assumptions or average procedures were made. Such a mechanism can be responsible for an appreciable excitation of the two nuclei during the short approach phase of the reaction (E* approximately> 100 MeV). The reversibility of the equations of motion leads to a deexcitation of the initially stored excitation energy into that of the relative motion for later times. This feedback behaviour of the internal excitation energy which results in particular to the deexcitation of high energetic 1p-1h pairs is probably not realistic due to the coupling of this states to more complex states with high density. It is studied the influence of this coupling due to the residual interaction between the nucleons on the dynamics of two colliding heavy ions

  20. Computer simulation of electronic excitation in atomic collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Duvenbeck, A.

    2007-04-05

    The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation

  1. Computer simulation of electronic excitation in atomic collision cascades

    International Nuclear Information System (INIS)

    Duvenbeck, A.

    2007-01-01

    The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation

  2. Statistical density of nuclear excited states

    Directory of Open Access Journals (Sweden)

    V. M. Kolomietz

    2015-10-01

    Full Text Available A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* < m is used. The approach provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small temperatures T ≤ 1 MeV but reduce strongly the results for the excitation energy at high temperatures. By use of standard Woods - Saxon potential and nucleon effective mass m* = 0.7m the A-dependency of the statistical level density parameter K was evaluated in a good qualitative agreement with experimental data.

  3. Fine-structure excitation of Fe II and Fe III due to collisions with electrons

    Science.gov (United States)

    Wan, Yier; Qi, Yueying; Favreau, Connor; Loch, Stuart; Stancil, P.; Ballance, Connor; McLaughlin, Brendan

    2018-06-01

    Atomic data of iron peak elements are of great importance in astronomical observations. Among all the ionization stages of iron, Fe II and Fe III are of particular importance because of the high cosmic abundance, relatively low ionization potential and complex open d-shell atomic structure. Fe II and Fe III emission are observed from nearly all classes of astronomical objects over a wide spectral range from the infrared to the ultraviolet. To meaningfully interpret these spectra, astronomers have to employ highly complex modeling codes with reliable collision data to simulate the astrophysical observations. The major aim of this work is to provide reliable atomic data for diagnostics. We present new collision strengths and effective collisions for electron impact excitation of Fe II and Fe III for the forbidden transitions among the fine-structure levels of the ground terms. A very fine energy mesh is used for the collision strengths and the effective collision strengths are calculated over a wide range of electron temperatures of astrophysical importance (10-2000 K). The configuration interaction state wave functions are generated with a scaled Thomas-Fermi-Dirac-Amaldi (TFDA) potential, while the R-matrix plus intermediate coupling frame transformation (ICFT), Breit-Pauli R-matrix and Dirac R-matrix packages are used to obtain collision strengths. Influences of the different methods and configuration expansions on the collisional data are discussed. Comparison is made with earlier theoretical work and differences are found to occur at the low temperatures considered here.This work was funded by NASA grant NNX15AE47G.

  4. Results on light dark matter particles with a low-threshold CRESST-II detector

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, G.; Iachellini, N.F.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L.; Strauss, R.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Pagliarone, C.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Defay, X.; Feilitzsch, F. von; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Schoenert, S.; Trinh Thi, H.H.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Erb, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Guetlein, A.; Kluck, H.; Schieck, J.; Tuerkoglu, C. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Atominstitut, Vienna University of Technology, Wien (Austria); Jochum, J.; Loebell, J.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Tuebingen (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Reindl, F. [Max-Planck-Institut fuer Physik, Munich (Germany)

    2016-01-15

    The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO{sub 4} crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub- GeV/c{sup 2} region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles. (orig.)

  5. Excitation energy transfer to luminescence centers in M{sup II}MoO{sub 4} (M{sup II}=Ca, Sr, Zn, Pb) and Li{sub 2}MoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D.A., E-mail: deris2002@mail.ru [Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld.2, 119991 Moscow (Russian Federation); National University of Science and Technology (MISiS), Leninsky Prospekt 4, 119049 Moscow (Russian Federation); Kozlova, N.S. [National University of Science and Technology (MISiS), Leninsky Prospekt 4, 119049 Moscow (Russian Federation); Nagirnyi, V. [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Savon, A.E. [Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld.2, 119991 Moscow (Russian Federation); Hizhnyi, Yu.A.; Nedilko, S.G. [Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv (Ukraine)

    2017-06-15

    Based on the results of spectroscopy studies and electronic band structure calculations, the analysis of excitation energy transformation into luminescence is performed for a set of molybdates M{sup II}MoO{sub 4} (M{sup II}=Ca, Sr, Zn, Pb) and Li{sub 2}MoO{sub 4}. The bandgap energies were determined from comparison of experimental and calculated reflectivity spectra as 3.3 eV for PbMoO{sub 4}, 4.3 eV for ZnMoO{sub 4}, 4.4 eV for CaMoO{sub 4}, 4.7 eV for SrMoO{sub 4}, and 4.9 eV for Li{sub 2}MoO{sub 4}. It is shown that photoluminescence excitation spectra of these materials reveal the specific features of their conduction bands. The threshold of separated charge carriers’ creation is shown to be by 1.3–1.9 eV higher than the bandgap energy in CaMoO{sub 4}, SrMoO{sub 4} and ZnMoO{sub 4}. The effect is explained by the peculiarities of conduction band structure, namely to the presence of gap between the subbands of the conduction band and to the low mobility of electrons in the lower sub-band of the conduction band.

  6. Excitation of the Roper resonance and study of higher baryon resonances

    International Nuclear Information System (INIS)

    Morsch, H.P.; Forschungszentrum Juelich GmbH

    1992-01-01

    The region of the P 11 resonance N(1440) is investigated in inelastic α-scattering on hydrogen using alpha-particles from Saturne with a beam momentum of 7 GeV/c. In the missing mass spectra of the scattered α-particles two effects are observed, excitation of the projectile, preferentially excited to the Δ-resonance, and excitation of the Roper resonance. The large differential cross sections indicate a structure of a compression mode. From this the compressibility of the nucleon K N may be extracted. The Roper resonance excitation corresponds to a surface mode which may be related to an oscillation of the meson cloud. The other monopole mode which corresponds to a vibration of the valence quarks should lie at about 800 MeV of excitation or above. This is the region of the P 11 (1710 MeV) resonance. Therefore experiments are important to measure the monopole strength in this energy region. Another interesting aspect is the scalar polarizability which can be extracted from inelastic dipole excitations (squeezing modes) as excitation energies above 500 MeV

  7. Charged particle traps II applications

    CERN Document Server

    Werth, Günther; Major, Fouad G

    2009-01-01

    This, the second volume of Charged Particle Traps, is devoted to applications, complementing the first volume’s comprehensive treatment of the theory and practice of charged particle traps, their many variants and refinements. In recent years, applications of far reaching importance have emerged ranging from the ultra-precise mass determinations of elementary particles and their antiparticles and short-lived isotopes, to high-resolution Zeeman spectroscopy on multiply-charged ions, to microwave and optical spectroscopy, some involving "forbidden" transitions from metastable states of such high resolution that optical frequency standards are realized by locking lasers to them. Further the potential application of trapped ions to quantum computing is explored, based on the extraordinary quantum state coherence made possible by the particle isolation. Consideration is given to the Paul and Penning traps as potential quantum information processors.

  8. Hyperon excitation in nuclear coulomb field

    International Nuclear Information System (INIS)

    Vanyashin, A.V.; Nikitin, Yu.P.; Shan'gin, A.A.

    1981-01-01

    A possibility is studied to measure radiative decay partial widths from the 3/2 + decuplet hyperon resonances by means of the Coulomb excitation method of the octet hyperons. The expected contributions from the strong and electromagnetic interactions in the coherence range to the hyperon excitation cross sections on heavy nuclei and on the 4 He nucleus are estimated. The particle angular distributions in the reactions Σ-+A→Σ-(1385)+A and Λ+A→Σ 0 (1385)+A are analysed in order to determine the energy range where the background conditions are the most favorable to extract the electromagnetic mechanism of the hyperon excitation [ru

  9. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  10. Excitation of global Alfven Eigenmodes by RF heating in JET

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W; Borba, D; Gormezano, C; Huysmans, G; Porcelli, F; Start, D [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Fasoli, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Sharapov, S [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The alpha-particle confinement of future D-T experiments at JET can be severely degraded by Global Alfven Eigenmodes (AE). Scenarios for the excitation of Alfven Eigenmodes in usual (e.g. D-D) plasmas are proposed, which provide a MHD diagnostic and allow the study of the transport of super-Alfvenic ions. Active studies with separate control of TAE amplitude and energetic particle destabilization, measuring the plasma response, give more information than passive studies, in particular concerning the damping mechanisms. The TAE excitation can be achieved by means of the saddle coil and the ICRH antenna. The experimental method is introduced together with a theoretical model for RF excitation. (authors). 6 refs., 3 figs.

  11. Nanoshells for in vivo imaging using two-photon excitation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gao Liang; Nammalvar, Vengadesan [Department of Bioengineering, Rice University, Houston, TX 77005 (United States); Vadakkan, Tegy J, E-mail: lg3@rice.edu, E-mail: venkyn@rice.edu [Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 (United States)

    2011-09-07

    Gold nanoshells have been intensively investigated and applied to various biomedical fields because of their flexible optical tunability and biological compatibility. They hold great potential to serve as luminescent contrast agents excitable with near-infrared (NIR) lasers. In this paper, we describe the development of nanoshells with a peak of plasmon resonance at 800 nm and their subsequent use for in vivo blood vessel imaging using two-photon excitation microscopy at an excitation wavelength of 750 nm. We were able to image single nanoshell particles in blood vessels and generate optical contrast for blood vessel structure using luminescent signals. These results confirm the feasibility of engineering nanoshells with controlled optical properties for single-particle-based in vivo imaging.

  12. REVEAL II: Seasonality and spatial variability of particle and visibility conditions in the Fraser Valley

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    This paper presents data collected during a year-long field experiment (REVEAL II) in the Fraser Valley, British Columbia. The data are used to provide information regarding ambient visibility conditions and fine particle concentrations in the valley. Although average fine mass measured during RE...... taken at a number of sites during REVEAL II are used to evaluate a simple method for obtaining (classed) quantitative estimates of visual range from this medium without requiring access to specialized instrumentation. (C) 2000 Elsevier Science B.V. All rights reserved....

  13. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  14. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  15. Assessment of the excitation temperatures and Mg II:I line ratios of the direct current (DC) arc source for the analysis of radioactive materials

    International Nuclear Information System (INIS)

    Manard, B.T.; Matonic, John; Montoya, Dennis; Jump, Robert; Castro, Alonso; Ning Xu

    2017-01-01

    The direct current (DC) arc plasma has been assessed with an emphasis on excitation temperature (T_e_x_e) and ionization/excitation efficiency by monitoring magnesium ionic:atomic ratios (Mg II:I). The primary goal is to improve the analytical performance of the DC arc instrumentation such that more sensitive and reproducible measurements can be achieved when analyzing trace impurities in nuclear materials. Due to the variety of sample types requiring DC arc analysis, an understanding of the plasma's characteristics will significantly benefit the experimental design when moving forward with LANL's capabilities for trace metal analysis of plutonium metals. (author)

  16. Modifications of poly (vinilydene fluoride) under electronic excitations produced by charged particles (heavy ions and electrons)

    International Nuclear Information System (INIS)

    Fina, A.

    1990-04-01

    Some of the physico-chemical properties of organic solids like conductivity or permeation can be improved by irradiation. The aim of this work is to characterize modifications induced in poly (vinylidene fluoride) films (PVDF) by charged particles (ions and electrons), with electronic stopping power, for doses ranging from zero to twenty G-Grays. Influence of dose, density of electronic excitations, and flux (in particles per square centimeter), and the nature of defects induced by the beam, were studied with two methods: X-ray Photoelectron Spectroscopy (or XPS) for surface analysis, and electron Spin Resonance (or ESR) to probe the bulk of the film. Three ranges of doses are revealed in view of experimental results. At lower doses, PVDF undergoes deshydrofluorination induced by desorption; it is a low modifications regime. For intermediate range doses, conjugated carbon backbones of polyene compounds are produced. At higher doses, intermolecular interactions between the resulting fragments give a crosslinked network. For the upper limit of doses used, bond breaking results in a non reversible degradation of PVDF. In this last situation, direct atomic displacement of target atoms, is not negligible [fr

  17. A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation

    International Nuclear Information System (INIS)

    Koch, L.

    1959-12-01

    In the first part is studied the properties of atoms excited by the passage of α particles through the various rare gases at atmospheric pressure. A spectral analysis of the emitted light showed that certain impurities play an important part in producing the fluorescence, and it has led to the conclusion that the light emission contains at least two components - one very short - lived due to the direct deexcitation of the rare gas, the other relatively slower due to the energy transfers to the impurity. The measurement of the life-time of the excited states has confirmed this foregoing hypothesis, the rapid part of the impulse is extremely short: less than 2,25.10 -9 s in the case of xenon; the slower part has a life-time depending directly on the nitrogen concentration, nitrogen being the impurity giving the largest effect in all cases. The study of rare gases under the influence of an electric field has made it possible to show that the amount of light produced by an α particle can be multiplied (by 60, for example, in a field of 600 V:cm) so that the luminescent efficiency is greater than in the case of INaTI. In the second part the characteristics of the rare gases acting as scintillators is examined, the most important property being the absence of fluorescence saturation when the intensity of the excitation incident on the gas is very large. This, together with the very short time of scintillation has made it possible to study a certain number of nuclear physical applications (heavy particle energy-measurements, kinetic studies on nuclear reactors, neutron spectroscopy). (author) [fr

  18. Particle Transport in ECRH Plasmas of the TJ-II; Transporte de Particulas en Plasmas ECRH del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-07-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T{sub e} (Thomson Scattering TS) and electron density, n{sub e}, (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 {<=}n{sub e}> (10{sup 1}9m{sup -}3) {<=}0.80) there are two regions of confinement separated by a threshold density, {approx}0.65 10{sup 1}9m{sup -}3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D{sub e}, which in the range of validity of this study, 0.5 <{rho}<0.9 being {rho} normalized plasma radius, decreased significantly above the threshold density. The profiles of D{sub e} are flat for {>=}0,63(10{sup 1}9m{sup -}3). (Author) 35 refs.

  19. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  20. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  1. The giant-dipole-resonance effect in coulomb excitation of 10B

    International Nuclear Information System (INIS)

    Vermeer, W.J.; Zabel, T.H.; Esat, M.T.; Kuehner, J.A.; Spear, R.H.; Baxter, A.M.

    1982-04-01

    Coulomb excitation of the 0.718-MeV, Jsup(π) = 1 + , first excited state of 10 B has been studied using projectile excitation by 208 Pb and observing the backward scattered particles. The results give a clear indication of the virtual excitation of the giant dipole resonance as a second-order effect. The observed magnitude is consistent with the usual hydrodynamic model estimate and with a recent shell-model calculation

  2. Goldstone mode and pair-breaking excitations in atomic Fermi superfluids

    Science.gov (United States)

    Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.

    2017-10-01

    Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.

  3. Effect of interchain coupling on the excited polaron in conjugated polymers

    International Nuclear Information System (INIS)

    Li, Xiao-xue; Chen, Gang

    2017-01-01

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  4. Effect of interchain coupling on the excited polaron in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn; Chen, Gang, E-mail: ss_cheng@ujn.edu.cn

    2017-02-05

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  5. Collisional activation by the fast particle

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1996-01-01

    Collisional activation of the matter induced by the bombardment of the fast particle is summarized. The particle with the velocity higher than the Bohr velocity (transit time through 5A shorter than 2.5x10 -16 s) experiences the electronic stopping power when it passes through the matter and induces dense electronic excitations and ionizations which results in the heavy sputtering of the matter. This kind of activation is usefully applied in the PDMS. When the particle velocity becomes lower than the Bohr velocity, the energy is mainly deposited to the matter by the nuclear stopping power, i.e., energy loss is governed by the screened Coulombic collisions of the atoms giving rise to the momentum transfer to the target nuclei. When the transit time of the particle through 5A is between 2.5x10 -16 -10 -14 s, the electronic excitation and ionization take place by the collision. These phenomena are fully utilized in the FAB/SIMS and CID techniques. With the transit time in the range of 10 -14 -2.5x10 -13 s, the velocity is not high enough for the electronic excitation and the particle loses its energy mainly by the vibrational and phonon excitation of the target. This range of the velocity corresponds to that of the massive cluster impact ionization. With the velocity equal to or lower than 2.5x10 -13 s, the energy of the incident particle is consumed mainly by the phonon excitation and the collision results in the modest heating of the colliding interface between the projectile and the target. This range of the velocity is successfully used in the ionized cluster beam technique developed by Takagi of the Kyoto University. (author). 59 refs

  6. Excitation function of alpha-particle-induced reactions on {sup nat}Ni from threshold to 44 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.S. [Atomic Energy Research Establishment, Tandem Accelerator Facilities, Institute of Nuclear Science and Technology, Savar, Dhaka (Bangladesh); Kim, K.S.; Nadeem, M.; Kim, G.N. [Kyungpook National University, Department of Physics, Buk-gu, Daegu (Korea, Republic of); Sudar, S. [Debrecen University, Institute of Experimental Physics, Debrecen (Hungary)

    2017-05-15

    Excitation functions of the {sup nat}Ni(α,x){sup 62,63,65}Zn, {sup nat}Ni(α,x){sup 56,57}Ni and {sup nat}Ni(α,x){sup 56,57,58m+g}Co reactions were measured from the respective thresholds to 44MeV using the stacked-foil activation technique. The tests for the beam characterization are described. The radioactivity was measured using HPGe γ-ray detectors. Theoretical calculations on α-particles-induced reactions on {sup nat}Ni were performed using the nuclear model code TALYS-1.8. A few results are new, the others strengthen the database. Our experimental data were compared with results of nuclear model calculations and described the reaction mechanism. (orig.)

  7. Search for alpha particles emitted at rest in the break-up of the 12C-α-12C molecule-like configuration

    International Nuclear Information System (INIS)

    Scheurer, J.N.; Bertault, D.; Caussanel, M.; Quebert, J.L.; Fouan, J.P.

    1978-01-01

    A yield of alpha particles emitted at rest is clearly observed in 16 O+ 12 C at several incident energies. These alpha particles are detected by two methods: i) the alpha particle is considered as a missing mass in the detection of two 12 C nuclei in coincidence; ii) the alpha particle is detected at zero degree with a velocity due to centre of mass motion. Such a yield is assigned to a linear chain formation of the type 12 C-α- 12 C and an excitation function between 40 and 65 MeV is given. The emission due to Coulomb effects is emphasized in the discussion to give the chief explanation of the coincidence results

  8. The effects of tonal and broadband acoustic excitation on the transition process within a laminar separation bubble

    Science.gov (United States)

    Yarusevych, Serhiy; Kurelek, John; Kotsonis, Marios

    2017-11-01

    The effects of controlled acoustic excitation on the transition process in a laminar separation bubble formed on the suction side of a NACA 0018 airfoil at a chord Reynolds number of 125,000 and an angle of attack of 4 degrees are studied experimentally. The investigation is carried out using time-resolved, planar, two-component Particle Image Velocimetry. Two types of excitation are considered: (i) tonal excitation at the frequency of the most unstable disturbances in the natural flow, and (ii) broadband excitation consisting bandpass filtered to the natural unstable frequency range, modelling two common types of airfoil self-noise production. For equal energy input levels, the results show that tonal and broadband types of excitation have equivalent effects on the mean flow field. Specifically, both cause the streamwise extent and height of the bubble to decrease. However, further analysis reveals notable differences in the underlying physics. For the tonal case, the transition process is dominated by the growth of disturbances at the excitation frequency that damps the growth of all other disturbances, leading to the formation of strongly coherent vortices in the aft portion of the separation bubble. On the other hand, broadband excitation promotes more moderate growth of all disturbances within the unstable frequency band, producing less coherent shear layer structures that experience earlier breakdown. Thus, the frequency content of acoustic excitation has a strong influence on the transition process in laminar separation bubbles. The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding this work.

  9. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  10. Excitation energy transfer in ruthenium (II)-porphyrin conjugates led to enhanced emission quantum yield and {sup 1}O{sub 2} generation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jie; Jiang, Lijun; Chan, Chi-Fai [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Tsoi, Tik-Hung [Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong Special Administrative Region (Hong Kong); Shiu, Kwok-Keung; Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Wong, Wing-Tak [Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong Special Administrative Region (Hong Kong); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Wong, Ka-Leung, E-mail: klwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2017-04-15

    Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.

  11. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  12. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-01-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core–shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field. (paper)

  13. Multi-particle excitations in the superdeformed {sup 149}Gd nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires]|[Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada)]|[AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Hackman, G. [Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada); Ragnarsson, I. [Department of Mathematical Physics, Lund institute of Technology, Box 118 S-221, Lund (Sweden); Theisen, C. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Andrews, H.R. [AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Ball, G.C. [AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Beausang, C.W. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX (United Kingdom); Beck, F.A. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Belier, G. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Bentley, M.A. [Staffordshire University, Stoke on Trent (United Kingdom); Byrski, T. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Curien, D. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; France, G. de [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Disdier, D. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Duchene, G. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Haas, B. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Haslip, D.S. [Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada); Janzen, V.P. [Department of Physics and Astronomy, McMaster, University, Hamilton ON L8S 4M1 (Canada)]|[AECL Research, Chalk River Laboratories, Chalk River ON K0J 1J0 (Canada); Jones, P.M. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX (United Kingdom); Kharraja, B.

    1995-02-20

    Six rotational bands built on superdeformed intrinsic configurations have been observed in the {sup 149}Gd nucleus with the Eurogam spectrometer. Orbital configuration assignments have been suggested on the basis of their effective alignments calculated with the Nilsson-Strutinsky cranking model. Most of the excited bands have identical partners in neighboring nuclei including one case differing by four mass units. Measurements of feeding patterns indicate that the {sup 149}Gd yrast superdeformed band is fed over a wider range of angular momentum than other yrast superdeformed bands in this mass region whereas weaker excited bands in the same nucleus are populated in narrower spin windows. ((orig.))

  14. Search for lightly ionizing particles using CDMS-II data and fabrication of CDMS detectors with improved homogeneity in properties

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kunj Bihari [Texas A & M Univ., College Station, TX (United States)

    2013-12-01

    Fundamental particles are always observed to carry charges which are integral multiples of one-third charge of electron, e/3. While this is a well established experimental fact, the theoretical understanding for the charge quantization phenomenon is lacking. On the other hand, there exist numerous theoretical models that naturally allow for existence of particles with fractional electromagnetic charge. These particles, if existing, hint towards existence of physics beyond the standard model. Multiple high energy, optical, cosmological and astrophysical considerations restrict the allowable mass-charge parameter space for these fractional charges. Still, a huge unexplored region remains. The Cryogenic Dark Matter Search (CDMS-II), located at Soudan mines in northern Minnesota, employs germanium and silicon crystals to perform direct searches for a leading candidate to dark matter called Weakly Interacting Massive Particles (WIMPs). Alternately, the low detection threshold allows search for fractional electromagnetic-charged particles, or Lightly Ionizing Particles (LIPs), moving at relativistic speed. Background rejection is obtained by requiring that the magnitude and location of energy deposited in each detector be consistent with corresponding \\signatures" resulting from the passage of a fractionally charged particle. In this dissertation, the CDMS-II data is analyzed to search for LIPs, with an expected background of 0.078 0.078 events. No candidate events are observed, allowing exclusion of new parameter space for charges between e/6 and e/200.

  15. Effects of the radial electric field resonances on the particle orbits and loss cones in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1997-07-01

    The effects of the radial electric field resonances on the trapping and confinement of low and intermediate energy ions (0.1-1 keV) for the Reference configuration of TJ-II have been analysed. In TJ-II these resonances appear for electric potentials that grow with pitch and with the square root of the initial kinetic energy and are placed inside strips whose width increases with the initial radius and with the absolute value of initial pitch. The 0-Resonance is the most important one for particle trapping, it appears for high electric potential (between 1000 and 3000 V for 0.5 keV ions) with the same sign than pitch, inside very wide strips (several thousands of V). Along these band periphery, for potential intensities below the central resonant values, there exists a very strong increase of particle trapping. Instead, around the resonance center, the trapping is inhibited and a very strong increase of the passing particle population appears. This increase is higher for the torus external side (Theta approximately 0 degree centigree) and for small initial radius. For peripherical particles wide loss strips appear along the border of the resonant band corresponding to more positive potential. The 2-Resonance has small effect on trapping but affects strongly to the of peripherical passing particles. It appears for moderate electric potential (between 400 and 1000 V for 0.5 keV ions) with sign opposite than pitch and inside narrow bands than the 0-Resonance. In this case a loss of peripherical passing particles appears, placed also along the more positive potential band side. The other Resonances (except the -4) have much less effect on particle trapping and confinement. All these phenomena have been explained by the action of magnetic barriers and different mechanisms for particle orbit modification. (Author) 8 refs

  16. Type II shell evolution in A=70 isobars from the N≥40 island of inversion

    Directory of Open Access Journals (Sweden)

    A.I. Morales

    2017-02-01

    Full Text Available The level structures of 70Co and 70Ni, populated from the β decay of 70Fe, have been investigated using β-delayed γ-ray spectroscopy following in-flight fission of a 238U beam. The experimental results are compared to Monte-Carlo Shell-Model calculations including the pf+g9/2+d5/2 orbitals. The strong population of a (1+ state at 274 keV in 70Co is at variance with the expected excitation energy of ∼1 MeV from near spherical single-particle estimates. This observation indicates a dominance of prolate-deformed intruder configurations in the low-lying levels, which coexist with the normal near spherical states. It is shown that the β decay of the neutron-rich A=70 isobars from the new island of inversion to the Z=28 closed-shell regime progresses in accordance with a newly reported type of shell evolution, the so-called Type II, which involves many particle-hole excitations across energy gaps.

  17. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  18. Particle-gamma and particle-particle correlations in nuclear reactions using Monte Carlo Hauser-Feshback model

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Watanabe, Takehito [Los Alamos National Laboratory; Chadwick, Mark [Los Alamos National Laboratory

    2010-01-01

    Monte Carlo simulations for particle and {gamma}-ray emissions from an excited nucleus based on the Hauser-Feshbach statistical theory are performed to obtain correlated information between emitted particles and {gamma}-rays. We calculate neutron induced reactions on {sup 51}V to demonstrate unique advantages of the Monte Carlo method. which are the correlated {gamma}-rays in the neutron radiative capture reaction, the neutron and {gamma}-ray correlation, and the particle-particle correlations at higher energies. It is shown that properties in nuclear reactions that are difficult to study with a deterministic method can be obtained with the Monte Carlo simulations.

  19. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  20. Language identification using excitation source features

    CERN Document Server

    Rao, K Sreenivasa

    2015-01-01

    This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different modes: (i) Implicit processing of linear prediction (LP) residual and (ii) Explicit parameterization of linear prediction residual. The book discusses how in implicit processing approach, excitation source features are derived from LP residual, Hilbert envelope (magnitude) of LP residual and Phase of LP residual; and in explicit parameterization approach, LP residual signal is processed in spectral domain to extract the relevant language specific features. The authors further extract source features from these modes, which are combined for enhancing the performance of LID systems. The proposed excitation source features are also investigated for LID in background noisy environments. Each chapter of this book provides the motivatio...

  1. Discussion of the origin of secondary photon and secondary ion emission during energetic particle irradiation of solids. I. The collision cascade

    International Nuclear Information System (INIS)

    Wright, R.B.; Gruen, D.M.

    1980-01-01

    Secondary photon and secondary ion emission during energetic particle irradiation of solid surfaces is assumed to arise due to excitation and de-excitation of sputtered particles originating from a collision cascade induced by the incident projectile. The excitation is postulated to occur by two alternative mechanisms: path (a), where excitation occurs at or very near the surface of the solid due to atom--atom or atom--electron collisions; and path (b), where excitation occurs as the sputtered particle leaves the solid, but is still under its influence so that electron exchange processes are permitted. Once the excited and/or ionized sputtered particle is formed nonradiative de-excitation processes are then included in the discussion which allow the excited and/or ionized particle to be de-excited and/or neutralized. The result of these nonradiative de-excitation processes is shown to provide a possible channel for the formation of new excited ''daughters'' by the de-excitation of the initial excited ''parent''. Depending on the initial excitation probability of the parent the new excited daughters are shown to contribute to various energy regions of the excited and/or ionized secondary particle energy distribution. A mathematical formalism is developed based on the neutral sputtered atom energy and velocity distributions assuming a collision cascade origin for these sputtered particles. By including various models for the excitation probability, and the survival probability for excited particles once formed to not undergo nonradiative de-excitation the resulting energy and velocity distributions of the sputtered excited and/or ionized secondary particles are calculated. These distributions are found to be a function of the emission angle depending on the model assumed for the initial excitation. From this formalism the total excited secondary particle yield may be calculated

  2. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  3. Scintillation of sapphire under particle excitation at low temperature

    International Nuclear Information System (INIS)

    Amare, J; Beltran, B; Cebrian, S; Coron, N; Dambier, G; GarcIa, E; Gomez, H; Irastorza, I G; Leblanc, J; Luzon, G; Marcillac, P de; Martinez, M; Morales, J; Ortiz de Solorzano, A; Pobes, C; Puimedon, J; Redon, T; RodrIguez, A; Ruz, J; Sarsa, M L; Torres, L; Villar, J A

    2006-01-01

    The scintillation properties of undoped sapphire at very low temperature have been studied in the framework of the ROSEBUD (Rare Objects SEarch with Bolometers UnDerground) Collaboration devoted to dark matter searches. We present an estimation of its light yield under gamma, alpha and neutron excitation

  4. Excitation functions for alpha-particle-induced reactions with natural antimony

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. L.; Shah, D. J.; Mukherjee, S.; Chintalapudi, S. N. [Vadodara, M. S. Univ. of Baroda (India). Fac. of Science. Dept. of Physics

    1997-07-01

    Stacked-foil activation technique and {gamma} - rays spectroscopy were used for the determination of the excitation functions of the {sup 121}Sb [({alpha}, n); ({alpha}, 2n); ({alpha},4 n); ({alpha}, p3n); ({alpha}, {alpha}n)]; and Sb [({alpha}, 3n); ({alpha}, 4n); ({alpha}, {alpha}3n)] reactions. The excitation functions for the production of {sup 124}I, {sup 123}I, {sup 121}I, {sup 121}Te and {sup 120}Sb were reported up to 50 MeV. The reactions {sup 121} Sb ({alpha}, {alpha}n) + {sup 123} Sb ({alpha}, {alpha}3n) are measured for the first time. Since natural antimony used as the target has two odd mass stable isotopes of abundances 57.3 % ({sup 121}Sb), their activation in some cases gives the same product nucleus through different reaction channels but with very different Q-values. In such cases, the individual reaction cross-sections are separated with the help of theoretical cross-sections. The experimental cross-sections were compared with the predictions based on hybrid model of Blann. The high-energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism and the initial exciton number n{sub 0} = 4 (4 p 0 h) gives fairly good agreement with presently measured results.

  5. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  6. Wave-particle Interactions in Space and Laboratory Plasmas

    Science.gov (United States)

    An, Xin

    This dissertation presents a study of wave-particle interactions in space and in the laboratory. To be concrete, the excitation of whistler-mode chorus waves in space and in the laboratory is studied in the first part. The relaxation of whistler anisotropy instability relevant to whistler-mode chorus waves in space is examined. Using a linear growth rate analysis and kinetic particle-in-cell simulations, the electron distributions are demonstrated to be well-constrained by the whistler anisotropy instability to a marginal-stability state, consistent with measurements by Van Allen Probes. The electron parallel beta beta ∥e separates the excited whistler waves into two groups: (i) quasi-parallel whistler waves for beta∥e > 0.02 and (ii) oblique whistler waves close to the resonance cone for beta∥e cell simulations. Motivated by the puzzles of chorus waves in space and by their recognized importance, the excitation of whistler-mode chorus waves is studied in the Large Plasma Device by the injection of a helical electron beam into a cold plasma. Incoherent broadband whistler waves similar to magnetospheric hiss are observed in the laboratory plasma. Their mode structures are identified by the phase-correlation technique. It is demonstrated that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. To account for the finite size effect of the electron beam, linear unstable eigenmodes of whistler waves are calculated by matching the eigenmode solution at the boundary. It is shown that the perpendicular wave number inside the beam is quantized due to the constraint imposed by the boundary condition. Darwin particle-in-cell simulations are carried out to study the simultaneous excitation of Langmuir and whistler waves in a beam-plasma system. The electron beam is first slowed down and relaxed by the rapidly growing Langmuir wave parallel to the background magnetic field. The tail of the core electrons

  7. A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation

    Science.gov (United States)

    Starkey, N. A.; Franchi, I. A.; Alexander, C. M. O'd.

    2013-10-01

    Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at different excitation wavelengths displaying conformable relationships, in contrast to type 2 chondrites. These findings indicate homogeneity in the structural nature of type 3 chondrite IOM, while organic matter (OM) in type 2 chondrites appears to be inherently more heterogeneous. If type 2 and type 3 chondrite IOM shares a common source, then thermal metamorphism may have a homogenizing effect on the originally more heterogeneous OM. IDP Raman G bands fall on an extension of the trend displayed by chondrite IOM, with all IDPs having Raman parameters indicative of very disordered carbon, with almost no overlap with IOM. The dispersion effect displayed by IDPs is most similar to CMs for the G band, but intermediate between CMs and CRs for the D band. The existence of some overlapping Raman features in the IDPs and IOM indicates that their OM may share a common origin, but the IDPs preserve more pristine OM that may have been further disordered by ion irradiation. H, C, and N isotopic data for the IDPs reveal that the disordered carbon in IDPs corresponds with higher δ15N and lower δ13C.

  8. Exciplex formation accompanied with excitation quenching.

    Science.gov (United States)

    Fedorenko, Stanislav G; Burshtein, Anatoly I

    2010-04-08

    The competence of the reversible exciplex formation and parallel quenching of excitation (by electron or energy transfer) was considered using a non-Markovian pi-forms approach, identical to integral encounter theory (IET). General equations accounting for the reversible quenching and exciplex formation are derived in the contact approximation. Their general solution was obtained and adopted to the most common case when the ground state particles are in great excess. Particular cases of only photoionization or just exciplex formation separately studied earlier by means of IET are reproduced. In the case of the irreversible excitation quenching, the theory allows specifying the yields of the fluorescence and exciplex luminescence, as well as the long time kinetics of excitation and exciplex decays, in the absence of quenching. The theory distinguishes between the alternative regimes of (a) fast equilibration between excitations and exciplexes followed by their decay with a common average rate and (b) the fastest and deep excitation decay followed by the weaker and slower delayed fluorescence, backed by exciplex dissociation.

  9. New particle-hole symmetries and the extended interacting boson model

    CERN Document Server

    De Coster, C; Decroix, B; Heyde, Kris L G; Oros, A M

    1998-01-01

    We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently $SU(4)$ multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the $U(5)$-$SU(3)$ dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes.

  10. Searches for Particle Dark Matter with gamma-rays.

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this contribution I review the present status and discuss some prospects for indirect detection of dark matter with gamma-rays. Thanks to the Fermi Large Area Telescope, searches in gamma-rays have reached sensitivities that allow to probe the most interesting parameter space of the weakly interacting massive particles (WIMP) paradigm. This gain in sensitivity is naturally accompanied by a number of detection claims or indications, the most recent being the claim of a line feature at a dark matter particle mass of ∼ 130 GeV at the Galactic Centre, a claim which requires confirmation from the Fermi-LAT collaboration and other experiments, for example HESS II or the planned Gamma-400 satellite. Predictions for the next generation air Cherenkov telescope, Cherenkov Telescope Array (CTA), together with forecasts on future Fermi-LAT constraints arrive at the exciting possibility that the cosmological benchmark cross-section could be probed from masses of a few GeV to a few TeV. Consequently, non-detection wou...

  11. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture

    International Nuclear Information System (INIS)

    Bondarenko, G G; Fisher, M R; Kristya, V I

    2012-01-01

    Simulation of the electron, ion and metastable excited atom transport in the argon-mercury mixture low-current discharge is fulfilled. Distributions of the particle densities along the discharge gap under different mixture temperatures are obtained and it is demonstrated that the principal mechanism of mercury ion generation is the Penning ionization of mercury atoms by argon metastables, which contribution grows sharply with the mixture temperature due to mercury density increase. Calculations show that the mercury and argon ion flow densities near the cathode are of the same order already under the relative mercury content of about 10 −4 corresponding at the argon pressure 10 3 Pa to the mixture temperature 30 C. Therefore, at the room temperature the electrodes of mercury illuminating lamps at the stage of their ignition are sputtered predominantly by mercury ions.

  12. Bioinformatic Analysis of Plasma Apolipoproteins A-I and A-II Revealed Unique Features of A-I/A-II HDL Particles in Human Plasma

    Science.gov (United States)

    Kido, Toshimi; Kurata, Hideaki; Kondo, Kazuo; Itakura, Hiroshige; Okazaki, Mitsuyo; Urata, Takeyoshi; Yokoyama, Shinji

    2016-01-01

    Plasma concentration of apoA-I, apoA-II and apoA-II-unassociated apoA-I was analyzed in 314 Japanese subjects (177 males and 137 females), including one (male) homozygote and 37 (20 males and 17 females) heterozygotes of genetic CETP deficiency. ApoA-I unassociated with apoA-II markedly and linearly increased with HDL-cholesterol, while apoA-II increased only very slightly and the ratio of apoA-II-associated apoA-I to apoA-II stayed constant at 2 in molar ratio throughout the increase of HDL-cholesterol, among the wild type and heterozygous CETP deficiency. Thus, overall HDL concentration almost exclusively depends on HDL with apoA-I without apoA-II (LpAI) while concentration of HDL containing apoA-I and apoA-II (LpAI:AII) is constant having a fixed molar ratio of 2 : 1 regardless of total HDL and apoA-I concentration. Distribution of apoA-I between LpAI and LpAI:AII is consistent with a model of statistical partitioning regardless of sex and CETP genotype. The analysis also indicated that LpA-I accommodates on average 4 apoA-I molecules and has a clearance rate indistinguishable from LpAI:AII. Independent evidence indicated LpAI:A-II has a diameter 20% smaller than LpAI, consistent with a model having two apoA-I and one apoA-II. The functional contribution of these particles is to be investigated. PMID:27526664

  13. Study of orbitally excited $B$ mesons and evidence for a new $B\\pi$ resonance

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Marchese, Luigi; Deninno, Maria Maddalena; Devoto, Francesco; D'Errico, Maria; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; D'Onofrio, Monica; Donati, Simone; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Farrington, Sinead Marie; Feindt, Michael; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Barreiro Guimaraes da Costa, Joao; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Soo Bong; Kim, Shin-Hong; Kim, Young-Kee; Kim, Young-Jin; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Heck, Martin; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucà, Alessandra; Lucchesi, Donatella; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Prokoshin, Fedor; Pranko, Aliaksandr Pavlovich; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Tecker-Shreyber, Irina; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Sorin, Maria Veronica; Song, Hao; Stancari, Michelle Dawn; St Denis, Richard Dante; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2014-07-28

    Using the full CDF Run II data sample, we report evidence for a new resonance, which we refer to as B(5970), found simultaneously in the $B^0\\pi^+$ and $B^+\\pi^-$ mass distributions with a significance of 4.4 standard deviations. We further report the first study of resonances consistent with orbitally excited $B^{+}$ mesons and an updated measurement of the properties of orbitally excited $B^0$ and $B_s^0$ mesons. Using samples of approximately 8400 $B^{**0}$, 3300 $B^{**+}$, 1350 $B^{**0}_s$, 2600 $B(5970)^0$, and 1400 $B(5970)^+$ decays, we measure the masses and widths of all states, as well as the product of the relative production rate of $B_1$ and $B_2^*$ states times the branching fraction into a $B^{0,+}$ meson and a charged particle. Furthermore, we measure the branching fraction of the $B_{s2}^{*0} \\rightarrow B^{*+} K^-$ decay relative to the $B_{s2}^{*0} \\rightarrow B^{+} K^-$ decay, the production rate times the branching fraction of the B(5970) state relative to the $B_{2}^{*0,+}$ state, and th...

  14. Studies of spin excitations with electromagnetic and hadronic probes

    International Nuclear Information System (INIS)

    Lindgren, R.A.; Petrovich, F.

    1982-01-01

    Excitation of unnatural parity states, predominantly of high spin, using electromagnetic and hadronic probes, is discussed. Spectroscopic strengths are deduced from studies of (e,e'), (p,p'), (π.π'), and (p,n) for states whose doorway is the stretched particle-hole configuration. These levels are excited primarily through the isovector electromagnetic-nucleon magnetization coupling, nucleon-nucleon tensor coupling, and pion-nucleon spin-orbit coupling. The extracted isovector spectroscopic strength is typically 38% of the extreme single particle-hole model and about 66% of that predicted by more realistic nuclear structure calculations. The observed isoscalar strength is only about one half of the isovector strength. The results obtained with the three different probes are quite consistent. The primary conclusion is that the missing strength for these high spin excitations is at least as large as for the low spin M1 and GT excitations. This implies the existence of other important quenching mechanisms since the Δ-N -1 mechanism involved in the discussion of the low spin excitation affects only the isovector transitions and contributes little to high spin excitations. A method for using (e,e') and π + /π - cross section ratios to separate and determine the absolute isoscalar and isovector spin densities for T 0 to T 0 transitions in N is not equal to Z nuclei is also discussed and some comments on extracting information from (e,e') and (p,p') studies at high q on low spin 1 + and 2 - levels are presented. 78 references

  15. Boltzmann equation analysis of electrons swarm parameters and properties of excited particle number densities in Xe/Ne plasmas. Laser absorption effect; Xe/Ne plasma chudenshi yuso keisu narabi ni reiki ryushisu mitsudo tokusei no Boltzmann hoteishiki kaiseki. Laser ko kyushu koka

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, S.; Sugawara, H.; Ventzek, P.; Sakai, Y. [Hokkaido University, Sapporo (Japan)

    1998-06-01

    Xe/Ne plasmas are important for plasma display panels and VUV light sources. However, reactions between electrons and excited particles in the mixtures are so complicated that influence of the reactions on the plasma properties is not understood well. In this work, taking account of reactions through which electrons are produced, such as cumulative and Penning ionization, and of transition between excited levels, the electron and excited particle properties in Xe/Ne plasmas are calculated using the Boltzmann equation. The ionization coefficient and electron drift velocity agreed with experimental data. The influence of laser absorption in Xe/Ne plasmas on the plasma properties is also discussed. 25 refs., 15 figs.

  16. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  17. Particle Systems and PDEs II

    CERN Document Server

    Soares, Ana

    2015-01-01

    This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second meeting on Particle Systems and PDEs was to bring together renowned researchers working actively in the respective fields, to discuss their topics of expertise and to present recent scientific results in both areas. Further, the meeting was intended to present the subject of interacting particle systems, its roots in and impacts on the field of physics, and its relation with PDEs to a vast and varied public, including young researchers. The book also includes the notes from two mini-courses presented at the conference, allowing readers who are less familiar with these areas of mathematics to more easily approach them. The contributions will be of interest to mathematicians, theoretical physicists and other researchers...

  18. Systematics in Rydberg state excitations for ion-atom collisions

    International Nuclear Information System (INIS)

    Andresen, B.; Jensen, K.; Petersen, N.B.; Veje, E.

    1976-01-01

    Rydberg state excitations in the Ne + , Mg + -He collisions have been studied in the projectile energy range 10-75 keV by means of optical spectrometry in a search for systematic trends. The relative excitation cross sections for levels of a Rydberg term series are found to follow a general (nsup(x))sup(P) behaviour with P < approximately -3 varying with collision energy and particles, regardless of whether the excited state population results from direct excitation, single electron transfer, or double electron transfer. At higher collision energies P is approximately -3 as predicted by theory. Polarization of the emitted line radiation indicates that there is no general rule for the relative excitation of the different magnetic substates of the same level. A statistical distribution of excitation is found for levels within the same term when the fine structure splitting is small. (Auth.)

  19. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    Science.gov (United States)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  20. Giant dipole resonances built on excited states

    International Nuclear Information System (INIS)

    Snover, K.A.

    1983-01-01

    The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references

  1. States of light positive particles in metals

    International Nuclear Information System (INIS)

    Klamt, A.G.

    1987-01-01

    The states of light positively charged particles in metals are treated in tight-binding approximation. The polaron states of the particles are investigated. The 'molecular crystal model' and an interstitial model' are treated. Moreover, the particle-lattice coupling of excited particles is treated for fcc and bcc lattices. (BHO)

  2. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  3. Collective excitations in itinerant spiral magnets

    International Nuclear Information System (INIS)

    Kampf, A.P.

    1996-01-01

    We investigate the coupled charge and spin collective excitations in the spiral phases of the two-dimensional Hubbard model using a generalized random-phase approximation. Already for small doping the spin-wave excitations are strongly renormalized due to low-energy particle-hole excitations. Besides the three Goldstone modes of the spiral state the dynamical susceptibility reveals an extra zero mode for low doping and strong coupling values signaling an intrinsic instability of the homogeneous spiral state. In addition, near-zero modes are found in the vicinity of the spiral pitch wave number for out-of-plane spin fluctuations. Their origin is found to be the near degeneracy with staggered noncoplanar spiral states which, however, are not the lowest energy Hartree-Fock solutions among the homogeneous spiral states. copyright 1996 The American Physical Society

  4. Transient Particle Transport Analysis on TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Eguilior, S.; Castejon, F.; Guasp, J.; Estrada, T.; Medina, F.; Tabares, F.L.; Branas, B.

    2006-12-18

    Particle diffusivity and convective velocity have been determined in ECRH plasmas confined in the stellarator TJ-II by analysing the evolving density profile. This is obtained from an amplitude modulation reflectometry system in addition to an X-ray tomographic reconstruction. The source term, which is needed as an input for transport equations, is obtained using EIRENE code. In order to discriminate between the diffusive and convective contributions, the dynamics of the density evolution has been analysed in several perturbative experiments. This evolution has been considered in discharges with injection of a single pulse of H2 as well as in those that present a spontaneous transition to an enhanced confinement mode and whose confinement properties are modified by inducing an ohmic current. The pinch velocity and diffusivity are parameterized by different expressions in order to fit the experimental time evolution of density profile. The profile evolution is very different from one case to another due to the different values of convective velocities and diffusivities, besides the different source terms. (Author) 19 refs.

  5. Destabilizing effect of alpha particles in a Maxwellian plasma

    International Nuclear Information System (INIS)

    Wang, M.Y.

    1976-01-01

    Various plasma waves which are possibly excited by MeV alphas have been investigated. For a delta birth distribution it is found that: a) The right-circularly polarized Alfven wave can be excited. Its growth rate is linearly proportional to the α-particle density. b) The drift Alfven wave is stable against α-particles. c) For a uniform temperature, the plasma wave spectrum changes from three branches with n/sub α/ = 0 to four branches for n/sub α/ not equal to 0 case. d) α-particles can destabilize the ion drift acoustic wave even with uniform temperature. However, the ion acoustic wave appears to be stable against fusion products in a fusion grade plasma. e) If their effect on the background plasma spectrum is neglected, α-particles can excite the electromagnetic cyclotron wave in a range of harmonics (band structure). The growth rate is proportional to the square root of α-particle density. f) If the effect of α-particle on the plasma spectrum is included, we find that electromagnetic cyclotron wave is stable

  6. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    Science.gov (United States)

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  7. The interference effects in the alignment and orientation of the Kr II 4p45p states following Kr I 3d9np resonance excitation

    International Nuclear Information System (INIS)

    Lagutin, B M; Petrov, I D; Sukhorukov, V L; Demekhin, Ph V; Zimmermann, B; Mickat, S; Kammer, S; Schartner, K-H; Ehresmann, A; Shutov, Yu A; Schmoranzer, H

    2003-01-01

    The energy dependence of the alignment parameter A 20 for the Kr II 4p 4 5p(E 1 J 1 ) states following excitation in the Raman regime with the exciting-photon energy passing through the Kr I 3dJ 9 barnpjbar resonances was investigated theoretically and experimentally. Interference between the resonance and direct photoionization channels explains the dependence of A 20 on the excitation energy. Experimentally, A 20 was determined after the analysis of 5p-5s fluorescence decay of the 4p 4 5p(E 1 J 1 ) states excited with monochromatized synchrotron radiation. The band pass of the synchrotron radiation was set to 10 meV which is smaller than the natural width of the 3d 9 np resonances (∼83 meV). Additionally, a strong energy dependence was predicted for the orientation parameter O 10 as well as for the angular distribution parameter of photoelectrons, β e , for several 4p 4 5p(E 1 J 1 ) ionic states

  8. Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability

    International Nuclear Information System (INIS)

    Dr. Norbert Pietralla

    2006-01-01

    The research project ''Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability'' with sponsor ID ''DE-FG02-04ER41334'' started late-summer 2004 and aims at the investigation of highly excited low-spin states of selected key-nuclei in the vicinity of the particle separation threshold by means of high-resolution gamma-ray spectroscopy in electromagnetic excitation reactions. This work addresses nuclear structures with excitation energies close to the binding energy or highly excited off-yrast states in accordance with the NSAC milestones. In 2005 the program was extended towards additional use of virtual photons and theoretical description of the low-lying collective excitations in the well deformed nuclei

  9. Elementary spin excitations in ultrathin itinerant magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, Khalil, E-mail: zakeri@mpi-halle.de

    2014-12-10

    Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons

  10. Transition rate diagrams and excitation of titanium in a glow discharge in argon and neon

    Science.gov (United States)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2018-06-01

    Emission spectra of titanium in a Grimm-type glow discharge in argon and neon were studied using the formalism of transition rate diagrams. Ti I spectra in argon and neon discharges are similar, without signs of selective excitation, and populations of Ti I levels exhibit a decreasing trend as function of energy, except for some scatter. A major excitation process of Ti II in argon discharge is charge transfer from argon ions to neutral titanium. In neon discharge, a strong selective excitation was observed of Ti II levels at ≈13.3-13.4 eV relative to the Ti I ground state. It was attributed to charge transfer from doubly charged titanium ions to neutral titanium, while the Ti++ ions are produced by charge transfer and ionization of neutral titanium by neon ions. Cascade excitation is important for Ti II levels up to an energy of ≈13 eV relative to the Ti I ground state, both in argon and neon discharges.

  11. Two beautiful new particles

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In beautiful agreement with the Standard Model, two new excited states (see below) of the Λb beauty particle have just been observed by the LHCb Collaboration. Similarly to protons and neutrons, Λb is composed of three quarks. In the Λb’s case, these are up, down and… beauty.   Although discovering new particles is increasingly looking like a routine exercise for the LHC experiments (see previous features), it is far from being an obvious performance, particularly when the mass of the particles is high. Created in the high-energy proton-proton collisions produced by the LHC, these new excited states of the Λb particle have been found to have a mass of, respectively, 5912 MeV/c2 and 5920 MeV/c2. In other words, they are over five times heavier than the proton or the neutron. Physicists only declare a discovery when data significantly show the relevant signal. In order to do that, they often have to analyse large samples of data. To ...

  12. Distribution of radiative strength with excitation energy: the E1 and M1 giant resonances

    International Nuclear Information System (INIS)

    Brown, G.E.; Speth, J.

    1979-01-01

    Calculations of the giant dipole resonance in the particle-hole model, employing empirical values for the unperturbed particle and hole energies, have been unsuccessful in pushing the dipole state to a sufficiently high energy. it is argued that unperturbed levels correspondign to an effective mass of m*/m approx. 0.6 to 0.7 should be employed. The couplings of particles and holes to vibrations are the crucial ingredients in these considerations. More generally, it is argued that the effective mass relevant to excitations near the Fermi surface is that corresponding to empirical single-particle levels, m*/m greater than or equal to 1.0. For particle-hole excitations above the Fermi surface, it is a decreasing function of excitation energy, reaching the above values 0.6 to 0.7 for E greater than or equal to 2 dirac constant/b omega, dirac constant/sub omega/ being the shell spacing. This has the consequence of spreading out the M1 strength. A new interpretation of experimental strengths is proposed

  13. Review of particle properties. Particle Data Group

    International Nuclear Information System (INIS)

    1978-04-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available

  14. Analysis and treatment of diametral tolerance of exciter shaft of the 650 MW nuclear power plant

    International Nuclear Information System (INIS)

    Liu Qiang

    2010-01-01

    The generator and exciter has three support connection in Qinshan II, i.e. there are two bearings for the generator rotor and one for the exciter. This structure results in difficulty to meet the standard when checking the exciter bearing's diametral tolerance. In the fifth outage of unit 2 turbo-generator in Qinshan II, the diametral tolerance failed to meet the standard. There were several reasons, such as the alignment of generator and exciter coupling, the angular moment of generator and exciter coupling bolt, the end surface condition of generator and exciter coupling, the fitting dimension of the coupling bolt hole and the sleeve in it. After analysis and screening of all factors, it was confirmed that the radical reason was the abnormal condition of the generator coupling end surface, and the problem was solved by machining the end surface. (author)

  15. Working group report on ion-impact excitation: Recommended database for ion-impact excitation of atomic hydrogen

    International Nuclear Information System (INIS)

    Fritsch, W.; Olson, R.E.; Schartner, K.H.; Belkic, D.S.

    1989-01-01

    This report discusses (i) proton impact excitation, and (ii) excitation by ion collisions (from helium ions to iron ions) of atomic hydrogen, both for H(1s) and H(n>1), where where n = the principal quantum number, in the energy range from 1 keV/amu to 2 MeV/amu and 10 MeV/amu, respectively. For the range of ions considered, a few generic plots are given for the total cross section as a function of E/q, where E is the beam energy, for different values q (ion charge in units of proton charge) and different final principal quantum numbers. 12 refs, 3 figs

  16. Excitation equilibria in plasmas; a classification

    International Nuclear Information System (INIS)

    Mullen, J.A.M. van der

    1990-01-01

    This review gives a classification of the excitation kinetics ruled by electrons in plasmas. It is a study on the atomic state distribution function (ASDF) and its relation with underlying processes, which, for the case of an electron excitation kinetics (EEK) plasma, is merely a competition between free and bound electrons, the same particles in different circumstances. In a quasi steady state the population density of an atomic state results from production-destruction balances in equilibrium. If all balances are proper, i.e., consist of each other's inverse processes, then the ASDF is described by the Boltzmann-Saha relation. In other cases the balance will be denoted as improper, the ASDF will deviate from the equilibrium shape, but reflecting the underlying improper balances, it may give information about the plasma. Four improper balances and their impact on the ASDF are dealt with. An important feature is that improper balances are associated with particle transport. Special attention is paid to the distribution function of the excitation saturation balance in which the overpopulated bound electrons are subjected to frequent interactions with free electrons and the energy distribution of the free electrons is taken over. This distribution, denoted as the bound Maxwell distribution, is experimentally found in several ionizing plasmas. Its recombining counterpart, the deexcitation saturation balance, creates under certain conditions inversion in the ASDF, the basis for the recombination laser. (orig.)

  17. Field theories with multiple fermionic excitations

    International Nuclear Information System (INIS)

    Crawford, J.P.

    1978-01-01

    The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation

  18. Reminiscences a journey through particle physics

    CERN Document Server

    Melissinos, Adrian

    2013-01-01

    A personal recount in areas of particle physics and related fields as a research physicist for over 50 years, Adrian Melissinos' insights into the ways that general research was carried out, as well as the evolution of particle physics from 1958 to 2008 will prove valuable to science history enthusiasts, as well as particle physicists. Be it conventional accelerator experiments, the use of microwave techniques in search of cosmic axions, or taking advantage of high power lasers to observe light-by-light scattering, the excitement of searching for something new in the face of failures and then successes is enriching, and the collaboration with gifted and outstanding colleagues and students proves insightful. A hybrid of personal reminiscences and a professional journey, readers get to relive the joy and excitement of researching and teaching in small groups during those early years while gaining a partial historical perspective of particle physics since 1958 - all in "Reminiscences: A Journey through Particle ...

  19. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    International Nuclear Information System (INIS)

    Berardo, Enrico; Hu, Han-Shi; Van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-01-01

    We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes' shift

  20. Experimental study on the kinetically induced electronic excitation in atomic collisional cascades

    International Nuclear Information System (INIS)

    Meyer, S.

    2006-01-01

    the present thesis deals with the ion-collision-induced electronic excitation of metallic solids. For this for the first time metal-insulator-metal layer systems are used for the detection of this electronic excitation. The here applied aluminium/aluminium oxide/silver layer sytems have barrier heights of 2.4 eV on the aluminium respectively 3.3 eV on the silver side. With the results it could uniquely be shown that the electronic excitation is generated by kinetic processes, this excitation dependenc on the kinetic energy of the colliding particles, and the excitation dependes on the charge state of the projectile

  1. Excitation of beta Alfven eigenmodes in Tore-Supra

    International Nuclear Information System (INIS)

    Nguyen, C; Garbet, X; Sabot, R; Goniche, M; Maget, P; Basiuk, V; Decker, J; Elbeze, D; Huysmans, G T A; Macor, A; Segui, J-L; Schneider, M; Eriksson, L-G

    2009-01-01

    Modes oscillating at the acoustic frequency and identified as beta Alfven eigenmodes (BAEs) have been observed in Tore-Supra under ion cyclotron resonant heating. In this paper, the linear excitation threshold of these modes, thought to be driven by suprathermal ions, is calculated and compared with Tore-Supra observations. Similar studies of the linear excitation threshold of energetic particles driven modes were carried out previously for toroidal Alfven eigenmodes or fishbones. In the case of BAEs, the main point is to understand whether the energetic particle drive is able to exceed ion Landau damping, which is expected to be important in the acoustic frequency range. For this, the BAE dispersion relation is computed and simplified in order to derive a tractable excitation criterion suitable for comparison with experiments. The observation of BAEs in Tore-Supra is found to be in agreement with the calculated criterion and confirms the possibility to trigger these modes in the presence of ion Landau damping. Moreover, the conducted analysis clearly puts forward the role of the global tunable parameters which play a role in the BAE excitation (the magnetic field, the density etc), as well as the role of some plasma profiles. In particular, the outcome of a modification of the shear or of the heating localization is found to be non-negligible and it is discussed in the paper.

  2. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  3. Starlight excitation of permitted lines in gaseous nebulae

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    The weak heavy element permitted lines observed in the spectra of gaseous nebula have, with only a few exceptions, been thought to be excited only by recombination. The accuracy of this assumption for individual lines in nebula spectra is investigated in detail via model nebula calculations. First, approximations and techniques of calculation are considered for the three possible excitation mechanisms: recombination, resonance fluorescence by the starlight continuum, and resonance fluorescence by other nebular emission lines. Next, the permitted lines of O I as observed in gaseous nebulae are discussed. Thirdly, it is shown that varying combinations of recombination, resonance fluorescence by starlight, and resonance fluorescence by other nebula lines can successfully account for the observed strengths in the Orion Nebula of lines of the following ions: C II, N I, N II, N III, O II, Ne II, Si II, Si III, and S III. A similar analysis is performed for the lines in the spectra of the planetary nebulae NGC7662 and NGC7027, and, with some exceptions, satisfactory agreement between the observed and predicted line strengths is found. Finally, observations of the far red spectra of the Orion Nebula, the planetary nebulae NGC3242, NGC6210, NGC2392, IC3568, IC4997, NGC7027, and MGC7662, and the reflection nebulae IC431 and NGC2068 are reported

  4. Multi-quasi-particle states in 173Hf

    International Nuclear Information System (INIS)

    Fabricius, B.; Dracoulis, G.D.; Kibedi, T.; Stuchbery, A.E.; Baxter, A.M.

    1991-01-01

    Rotational bands built on 1, 3 and 5 quasi-particle (qp) states in 173 Hf have been populated to medium and high spins through the 160 Gd( 18 O, 5n) reaction. The 1qp bands, previously identified as the 1/2 - [521], 5/2 - [512] and 7/2 + [633] (mixed i 13/2 ) Nilsson configurations, have been extended past the first back-bend and show different alignment properties, possibly originating from deformation differences. The multi-particle states were identified from excitation energies, the properties of their associated band structures and decay patterns. The 3qp states are the previously known K π =19/2 + and 23/2 - isomeric states originating from the 7/2 + [633] quasi-neutron coupled to the 6 + and 8 - , 2-quasi-proton excitations and a K π =(13/2 + ) state possibly containing the three lowest quasi-neutrons. A 5qp state with K π =(29/2 - ) was identified as the same three lowest lying quasi-neutrons coupled to the 8 - , 2-quasi-proton excitation. The low excitation energies of these two related 3- and 5-quasi-particle states implies a reduced neutron pairing gap, which can be attributed to the effect of blocking. (orig.)

  5. Oscillating microbubbles for selective particle sorting in acoustic microfluidic devices

    Science.gov (United States)

    Rogers, Priscilla; Xu, Lin; Neild, Adrian

    2012-05-01

    In this study, acoustic waves were used to excite a microbubble for selective particle trapping and sorting. Excitation of the bubble at its volume resonance, as necessary to drive strong fluid microstreaming, resulted in the particles being either selectively attracted to the bubble or continuing to follow the local microstreamlines. The operating principle exploited two acoustic phenomena acting on the particle suspension: the drag force arising from the acoustic microstreaming and the secondary Bjerknes force, i.e. the attractive radiation force produced between an oscillating bubble and a non-buoyant particle. It was also found that standing wave fields within the fluid chamber could be used to globally align bubbles and particles for local particle sorting by the bubble.

  6. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  7. Electric excitations in liquid He4 and their role in neutron scattering spectrum

    International Nuclear Information System (INIS)

    Poluehktov, Yu.M.; Karnatsevich, L.V.

    2001-01-01

    Data of experiments on excitation spectrum in liquid He 4 by inelastic neutron scattering method are discussed. Exact solution of particle scattering in ideal Bose-gas is given. Influence of inter-particle interactions on the structure of many-particle Bose system is analysed qualitatively. 55 refs., 1 figs

  8. Study of excitation energy dependence of nuclear level density parameter

    International Nuclear Information System (INIS)

    Mohanto, G.; Nayak, B.K.; Saxena, A.

    2016-01-01

    In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei

  9. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part II Particle Response

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available In this paper the numerical model, which was presented in the first paper (Mohanarangam & Tu; 2009 of this series of study, is employed to study the different particle responses under the influence of two carrier phases namely the gas and the liquid. The numerical model takes into consideration the turbulent behaviour of both the carrier and the dispersed phases, with additional equations to take into account the combined fluid particle behaviour, thereby effecting a two-way coupling. The first paper in this series showed the distinct difference in particulate response both at the mean as well as at the turbulent level for two varied carrier phases. In this paper further investigation has been carried out over a broad range of particle Stokes number to further understand their behaviour in turbulent environments. In order to carry out this prognostic study, the backward facing step geometry of Fessler and Eaton (1999 has been adopted, while the inlet conditions for the carrier as well as the particle phases correspond to that of the experiments of Founti and Klipfel (1998. It is observed that at the mean velocity level the particulate velocities increased with a subsequent increase in the Stokes number for both the GP (Gas-Particle as well as the LP (Liquid-Particle flow. It was also observed that across the Stokes number there was a steady increase in the particulate turbulence for the GP flows with successive increase in Stokes number. However, for the LP flows, the magnitude of the increase in the particulate turbulence across the increasing of Stokes number is not as characteristic as the GP flow. Across the same sections for LP flows the majority of the trend shows a decrease after which they remain more or less a constant.

  10. Electromagnetics of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2013-01-01

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, t......, the optical gain constant and the nano-particle material composition on the electric and magnetic near fields, the power flow density, the radiated power as well as the directivities. Resonant as well as quasi-transparent states will be emphasized in the discussion.......This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation...

  11. Excitation of giant resonances through inelastic scattering

    International Nuclear Information System (INIS)

    Kailas, S.

    1981-01-01

    In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)

  12. Experimental determination of fragment excitation energies in multifragmentation events

    Energy Technology Data Exchange (ETDEWEB)

    Marie, N.; Natowitz, J.B. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst.; Chbihi, A.; Le Fevre, A.; Salou, S.; Wieleczko, J.P.; Gingras, L.; Auger, G. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France); Assenard, M. [Nantes Univ., 44 (France); Bacri, Ch.O. [Centre National de la Recherche Scientifique, CNRS, 91 - Orsay (France)] [and others

    1998-03-17

    For 50 MeV/nucleon {sup 129}Xe + {sup nat}Sn multifragmentation events, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source are determined. The relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate are also derived. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, it is concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, the average charges of the hot fragments and are reconstructed their mean excitation energies are estimated. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. (author) 25 refs.

  13. Experimental determination of fragment excitation energies in multifragmentation events

    International Nuclear Information System (INIS)

    Marie, N.; Natowitz, J.B.; Assenard, M.; Bacri, Ch.O.

    1998-01-01

    For 50 MeV/nucleon 129 Xe + nat Sn multifragmentation events, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source are determined. The relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate are also derived. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, it is concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, the average charges of the hot fragments and are reconstructed their mean excitation energies are estimated. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. (author)

  14. Excite fermions in polarized eγ collisions

    International Nuclear Information System (INIS)

    Eboli, O.J.P.

    1994-01-01

    We investigate some consequences of excite leptons with 1/2 and 3/2 spins predicted by compound models in eγ collisions. Also we examine the possibility of the next generation of linear accelerators, with polarized beams, to provide information on the spin and these particle coupling

  15. Nuclear Excitations by Antiprotons and Antiprotonic Atoms

    CERN Multimedia

    2002-01-01

    The proposal aims at the investigation of nuclear excitations following the absorption and annihilation of stopped antiprotons in heavier nuclei and at the same time at the study of the properties of antiprotonic atoms. The experimental arrangement will consist of a scintillation counter telescope for the low momentum antiproton beam from LEAR, a beam degrader, a pion multiplicity counter, a monoisotopic target and Ge detectors for radiation and charged particles. The data are stored by an on-line computer.\\\\ \\\\ The Ge detectors register antiprotonic x-rays and nuclear @g-rays which are used to identify the residual nucleus and its excitation and spin state. Coincidences between the two detectors will indicate from which quantum state the antiprotons are absorbed and to which nuclear states the various reactions are leading. The measured pion multiplicity characterizes the annihilation process. Ge&hyphn. and Si-telescopes identify charged particles and determine their energies.\\\\ \\\\ The experiment will gi...

  16. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    Science.gov (United States)

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at

  17. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Directory of Open Access Journals (Sweden)

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  18. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime.

    Science.gov (United States)

    Nezamzadeh-Ejhieh, Alireza; Kabiri-Samani, Mehdi

    2013-09-15

    In this work an Iranian natural clinoptilolite tuff was pre-treated and changed to the micro (MCP) and nano (NCP) particles by mechanical method. Modification of micro and nano particles and also their Ni-exchanged forms were done by dimethylglyoxime (DMG). The raw and modified samples were characterized by XRD, FT-IR, SEM, BET, TG-DTG and energy dispersive analysis X-ray spectroscopy (EDAX). Removal of Ni(II) by modified and unmodified samples was investigated in batch procedure. It was found that NCP-DMG has higher capacity for removal of Ni(II). The effects of analytical parameters such as pH, dose of DMG, concentration of nickel solution, contact time and selectivity were studied and the optimal operation parameters were found as follows: pHPZC: 7.6, CNi(II): 0.01 M, contact time: 360 min and DMG dosage: 5mM. The results of selectivity experiments showed that the modified zeolite has a good selectivity for nickel in the presence of different multivalent cations. Langmuir and Freundlich isotherm models were adopted to describe the adsorption isotherms. Adsorption isotherms of Ni(II) ions could be best modelled by Langmuir equation, that indicate the monolayer sorption of Ni(II). Comparison of two kinetic models indicates that the adsorption kinetic can be well described by the pseudo-second-order rate equation that indicates that the rate limiting step for the process involves chemical reaction. The negative ΔH and ΔG indicate an exothermic and spontaneously process. The negative ΔS indicates that the adsorption of nickel cations from solution occurs with lower amount ion replacement, thus chemisorptions due to complex formation are dominant process in nickel removal. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Uniform magnetic excitations in nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Britt Rosendahl

    2005-01-01

    We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...

  20. Energetic particle effects on global MHD modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  1. Excited QCD 2017

    CERN Document Server

    2017-01-01

    This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.

  2. Electronic properties of excited states in single InAs quantum dots

    International Nuclear Information System (INIS)

    Warming, Till

    2009-01-01

    The application of quantum-mechanical effects in semiconductor nanostructures enables the realization of novel opto-electronic devices. Examples are given by single-photon emitters and emitters of entangled photon pairs, both being essential for quantum cryptography, or for qubit systems as needed for quantum computing. InAs/GaAs quantum dots are one of the most promising candidates for such applications. A detailed knowledge of the electronic properties of quantum dots is a prerequisite for this development. The aim of this work is an experimental access to the detailed electronic structure of the excited states in single InAs/GaAs quantum dots including few-particle effects and in particular exchange interaction. The experimental approach is micro photoluminescence excitation spectroscopy (μPLE). One of the main difficulties using μPLE to probe single QDs is the unambiguous assignment of the observed resonances in the spectrum to specific transitions. By comparing micro photoluminescence (μPL) and μPLE spectra, the identification of the main resonances becomes possible. The key is given by the fine structure of the hot trion. Excitation spectroscopy on single charged QDs enables for the first time the complete observation of a non-trivial fine structure of an excitonic complex in a QD, the hot trion. Modelling based on eight-band k.p theory in combination with a configuration interaction scheme is in excellent agreement. Therewith the simulation also enables realistic predictions on the fine structure of the ground-state exciton which is of large importance for single quantum dot devices. Theory concludes from the observed transitions that the structural symmetry of the QDs is broken. Micro photoluminescence excitation spectroscopy combined with resonantly excited micro photoluminescence enables an optical access to the single particle states of the hole without the influence of few-particle coulomb interactions. Based on this knowledge the exciton binding

  3. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  4. Dual structure in the charge excitation spectrum of electron-doped cuprates

    Science.gov (United States)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  5. Structure of wobbling excitations in 163Lu

    International Nuclear Information System (INIS)

    Carlsson, B.G.

    2007-01-01

    Using a many-particles plus rotor model, wobbling excitations built on top of a triaxial superdeformed band in 163 Lu are investigated. By extracting all parameters for the rotor from a mean field calculation a good correspondence with calculations based on the random-phase approximation is achieved. (author)

  6. Spin-wave excitations and magnetism of sputtered Fe/Au multilayers

    Indian Academy of Sciences (India)

    2LMPG, Ecole supérieure de technologie, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Morocco. 3LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Morocco. MS received 15 September 2015; accepted 15 February 2016. Abstract. The spin-wave excitations and ...

  7. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  8. Favored neutron excitations in superdeformed Gd-147

    NARCIS (Netherlands)

    Theisen, C; Khadiri, N; Vivien, JP; Ragnarsson, J; Beausang, CW; Beck, FA; Belier, G; Byrski, T; Curien, D; deFrance, G; Disdier, D; Duchene, G; Finck, C; Flibotte, S; Gall, B; Haas, B; Hanine, H; Herskind, B; Kharraja, B; Merdinger, JC; Nourreddine, A; Nyako, BM; Perez, GE; Prevost, D; Stezowski, O; Rauch, I; Rigollet, C; Savajols, H; SharpeySchafer, J; Twin, PJ; Wei, L; Zuber, K

    1996-01-01

    Four new superdeformed (SD) bands have been observed in Gd-147 using the EUROGAM II spectrometer. By comparison with (146,148,149),Gd SD bands, we use the effective alignment to assign excited band configurations, with the support of the Nilsson-Strutinsky cranking formalism. The effect of the

  9. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    Science.gov (United States)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  11. Electromagnetic excitation with very heavy ions at and above the Coulomb barrier

    International Nuclear Information System (INIS)

    Wollersheim, H.J.

    1988-08-01

    The present report is part of a systematic study of the electromagnetic properties of strongly deformed and shape transitional nuclei carried out at GSI. The high efficiency particle-gamma detector system is described to perform multiple Coulomb excitation experiments with very heavy projectiles. Some results obtained for the shape transitional nucleus 196 Pt will be presented to exemplify the importance of having access to both the level energies and the E2-transition matrix elements when discussing the possible structure of these states. The second part of this paper is devoted to transfer reactions between very heavy nuclei. In contrast to light projectiles heavy ions offer the possibility to study new phenomena which originate in the much larger Coulomb contribution to the total interaction. In particular, heavy deformed nuclei will be Coulomb excited by the strong electromagnetic field to high spin states already at the time when they start interacting through the nuclear forces. The particle transfer therefore takes place mainly between excited collective states and thus should give information about the interplay between single-particle degrees of freedom, pair correlations and collective excitations. In this paper results of experiments will be reported in which nuclei from the rare earth and the actinide region have been bombarded by 206,208 Pb projectiles at incident energies near the Coulomb barrier. (orig./HSI)

  12. Searches for excited leptons in √(s)=8 and 13 TeV CMS data

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Matthias Klaus

    2017-05-12

    This thesis is about searches for excited leptons, being performed with CMS data from proton-proton collisions. The presented analyses are based on data of an integrated luminosity of 19.7 fb{sup -1} that was taken during 2012 at √(s)=8 TeV (Run I), and 2.7 fb{sup -1} from the 2015 period at √(s)=13 TeV (Run II). Excited leptons (l*) are expected to be sign for a possible lepton compositeness. Both analyses from the two different datasets consider the production of an excited muon (μ{sup *}) in association with another muon via contact interactions. The considered decay mode into another muon and a photon leads to a μμγ-final state. The factors f and f{sup '} that regulate the coupling between excited and Standard Model leptons, are assumed to be one. The observed data is consistent with the expectation from the Standard Model. Limits are set on the excluded signal cross section, as well as on the excited muon mass and the compositeness scale parameter Λ. Masses from 200 GeV up to 2.5(3) TeV≤M{sub μ{sup *}}=Λ are excluded with the Run I (Run II) analysis. At low excited muon masses, values of Λ up to 17(15) TeV are excluded. Combining the results from Run I and Run II extends the exclusion in Λ up to 19 TeV. Results from other Run I analyses that consider neutral current decays of excited electrons and muons are also evaluated. Since these channels are also sensitive to different configurations of f and f{sup '}, excited electron (muon) masses are excluded up to 2.35(2.4) TeV for the case that M{sub l{sup *}}=Λ and f=-f{sup '}=1.

  13. Observation of frequency cutoff for self-excited dust acoustic waves

    Science.gov (United States)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  14. Multi-quasi-particles states in 173Hf

    International Nuclear Information System (INIS)

    Fabricius, B.; Dracoulis, G.D.; Kibedi, T.; Stuchbery, A.E.; Baxter, A.M.

    1990-10-01

    Rotational bands built on 1, 3 and 5 quasi-particle (qp) states in 173 Hf have been populated to medium and high spins through the 160 Gd ( 18 O,5n) reaction. The 1qp bands, previously identified as the 1/2 - [521], 5/2 - [512] and 7/2 + [633] (mixed i 1 3 /2 ) Nilsson configurations, have been extended past the first back-bend and show different alignment properties, possibly originating from deformation differences. The multi-particle states were identified from excitation energies, the properties of their associated band structures and decay patterns. The 3 qp states are the previously known K π 19/2 + and 23/2 - isomeric states originating from the 7/2 + [633] quasi-neutron coupled to the 6 + and 8 - , 2-quasi-proton excitations and a K π = (13/2 + ) state possibly containing the three lowest quasi-neutrons. A 5 qp state with K π = (29/2 - ) was identified as the same three lowest lying quasi-neutrons coupled to the 8 - , 2-quasi-proton excitation. The low excitation energies of these two related 3- and 5-quasi-particle states implies a reduced neutron pairing gap, which can be attributed to the effect of blocking. 28 refs., 2 tabs., 9 figs

  15. Ionization and excitation of uranium in a hollow-cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Pianarosa, P.; Larin, G.; Saint-Dizier, J.P.; Bouchard, P.

    1981-01-01

    The influence of different carrier gases (Ne,Ar,Kr,Xe) their pressure, and discharge current on the excitation and ionization of uranium atoms in a vapor generator of hollow-cathode design has been investigated by monitoring emission line intensities. From our measurements of line intensities as a function of the carrier gas we obtain an indication of the role of Penning collisions on the excitation of radiative levels in U II

  16. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, William Alan, E-mail: bertsche@cern.ch [Swansea University, Department of Physics (United Kingdom); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Carpenter, P. T. [Auburn University, Department of Physics (United States); Butler, E. [CERN, Physics Department (Switzerland); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. F. [University of California, Department of Physics (United States); Charlton, M.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T. [University of Calgary, Department of Physics and Astronomy (Canada); Fujiwara, M. C.; Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayano, R. S. [University of Tokyo, Department of Physics (Japan); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale ({approx} 50 {mu}eV), and the energy scales associated with plasma confinement and space charge ({approx}1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  17. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    International Nuclear Information System (INIS)

    Bertsche, William Alan; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bowe, P. D.; Carpenter, P. T.; Butler, E.; Cesar, C. L.; Chapman, S. F.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.

    2012-01-01

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (∼ 50 μeV), and the energy scales associated with plasma confinement and space charge (∼1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  18. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  19. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  20. Fabrication of polymeric Janus particles by droplet microfluidics

    KAUST Repository

    Lone, Saifullah; Cheong, Inwoo

    2014-01-01

    Janus particles (JPs), with their fascinating property of asymmetry, have received considerable attention in recent years in the fields of colloidal and particulate chemistry. The particles offer a range of exciting potential applications

  1. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  2. Characterizing Plasmonic Excitations of Quasi-2D Chains

    Science.gov (United States)

    Townsend, Emily; Bryant, Garnett

    A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.

  3. Entrance channel excitations in the 28Si + 28Si reaction

    International Nuclear Information System (INIS)

    Decowski, P.; Gierlik, E.; Box, P.F.; Kamermans, R.; Nieuwenhuizen, G.J. van; Meijer, R.J.; Griffioen, K.A.; Wilschut, H.W.; Giorni, A.; Morand, C.; Demeyer, A.; Guinet, D.

    1991-01-01

    Velocity spectra of heavy ions produced in the 28 Si + 28 Si reaction at bombarding energies of 19.7 and 30 MeV/nucleon were measured and interpreted within the Q-optimum model extended by the inclusion of particle evaporation from excited fragments. Regions of forward angle spectra corresponding to the mutual excitation of the reaction partners with net mass transfer zero projected onto the Q-value variable show an enhancement at Q-values of -60 - -80 MeV (excitation energies of the reaction partners equal to 30 - 40 MeV). This energy range coincides with the region of 2ℎω - 3ℎω excitations characteristic for giant osciallations. This selective excitation, which occurs at a very early stage of the reaction (the cross section is the largest at very forward angles), provides an important doorway to other dissipative processes

  4. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    International Nuclear Information System (INIS)

    Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E.; Marcus, R. Kenneth

    2014-01-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (T rot ), excitation temperature (T exc ), electron number density (n e ), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N 2 and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ∼ 1000 K and ∼ 2700 K respectively. Electron number density was calculated to be on the order of ∼ 3 × 10 15 cm −3 utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source ( 3 volume), the LS-APGD is shown to be quite robust with plasma characteristics and temperatures being unaffected upon introduction of metal species, whether by liquid or laser ablation sample introduction. - Highlights: • Liquid sampling-atmospheric pressure glow discharge (LS-APGD) • LS-APGD as a secondary excitation source for laser-ablated (LA

  5. Some remarks on the disintegration of highly excited Ag and Br nuclei observed in photographic emulsion in view of the quark model

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, T.; Breivik, F.O.; Soerensen, S.O. (Oslo Univ. (Norway). Inst. for Teoretisk Fysikk)

    1980-01-01

    The angular distribution of the tracks of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei.

  6. Some remarks on the disintegration of highly excited Ag and Br nuclei observed in photographic emulsion in view of the quark model

    International Nuclear Information System (INIS)

    Jacobsen, T.; Breivik, F.O.; Soerensen, S.O.

    1980-01-01

    The angular distribution of the tracs of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei. (author)

  7. Role of particle-hole symmetry in mirror energy difference

    International Nuclear Information System (INIS)

    Kumar, V.; Kumar, S.; Hasan, Z.; Kumar, D.; Koranga, B.S.; Rohitash; Singh, D.; Negi, D.; Angus, L.

    2011-01-01

    Charge symmetry between protons and neutrons means that they can be viewed as two states of the same particle, the nucleon, characterized by different projections of the isospin quantum number. In the hypothesis of charge symmetry expected identical behaviour of excited states of two nuclei with the same total number of nucleons (isobaric nuclei). The nuclei with magic number are considered to be spherical. When the number of particles/holes increase, the nucleus try towards more deformed upto mid-shell. It shows symmetry between particles and holes towards the deformation. The hypothesis of Particle-hole symmetry expected identical behaviour of excited states of two nuclei close to magic number. It is worthwhile to examine the shape of mirror energy difference (MED) close to magic number nuclei, which will also an example of particle-hole symmetry

  8. Electron-impact excitation of diatomic hydride cations II: OH+ and SH+

    Science.gov (United States)

    Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan

    2018-05-01

    R-matrix calculations combined with the adiabatic-nuclei-rotation and Coulomb-Born approximations are used to compute electron-impact rotational rate coefficients for two open-shell diatomic cations of astrophysical interest: the hydoxyl and sulphanyl ions, OH+ and SH+. Hyperfine resolved rate coefficients are deduced using the infinite-order-sudden approximation. The propensity rule ΔF = Δj = ΔN = ±1 is observed, as is expected for cations with a large dipole moment. A model for OH+ excitation in the Orion Bar photon-dominated region is presented which nicely reproduces Herschel observations for an electron fraction xe = 10-4 and an OH+ column density of 3 × 1013 cm-2. Electron-impact electronic excitation cross-sections and rate coefficients for the ions are also presented.

  9. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  10. Nuclear excitations and reaction mechanisms

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1990-01-01

    The main theme of this report is the study and interpretation of the sequence of events that occur during the collisions of nuclear particles. Some of the processes discussed in parts A and B involve short range interactions; others involve interactions of long range. In most of part A one of the particles in the initial or in the final state (or in both) is a photon, which serves as a probe of the second particle, which may be a nucleus, a proton, a pion or any other hadron. The complexity of the processes taking place during the collisions makes it necessary to simplify some aspects of the physical problem. This leads to the introduction of modals which are used to describe a limited number of features in as much detail as possible. The main interest is the understanding of the hadronic excitations which result from the absorption of a photon and the determination of the fundamental structure constants of the target particle. In part B, all the particles are hadrons. The purpose here is to develop and apply optimal quantal methods appropriate for describing the interacting systems. Of particular interest are three-particle collision systems in which the final state consists of three free particles. Part B also considers the process of nuclear fusion as catalyzed by bound muons

  11. Collective nuclear excitations with Skyrme-second random-phase approximation

    International Nuclear Information System (INIS)

    Gambacurta, D.; Catara, F.; Grasso, M.

    2010-01-01

    Second random-phase approximation (RPA) calculations with a Skyrme force are performed to describe both high- and low-lying excited states in 16 O. The coupling between one particle-one hole and two particle-two hole as well as that between two particle-two hole configurations among themselves are fully taken into account, and the residual interaction is never neglected; we do not resort therefore to a generally used approximate scheme where only the first kind of coupling is considered. The issue of the rearrangement terms in the matrix elements beyond the standard RPA will be considered in detail in a forthcoming paper. Two approximations are employed here for these rearrangement terms: they are either neglected or evaluated with the RPA procedure. As a general feature of second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found with respect to RPA distributions. A much more important fragmentation of the strength is also naturally provided by the second RPA owing to the huge number of two particle-two hole configurations. A better description of the excitation energies of the low-lying 0 + and 2 + states is obtained with the second RPA than with the RPA.

  12. Particle identification using dE/dx in the Mark II detector at the SLC

    International Nuclear Information System (INIS)

    Boyarski, A.; Coupal, D.P.; Feldman, G.J.; Hanson, G.; Nash, J.; O'Shaughnessy, K.F.; Rankin, P.; Van Kooten, R.

    1989-04-01

    The central drift chamber in the Mark II detector at the SLAC Linear Collider has been instrumented with 100-MHz Flash-ADCs. Pulse digitization provides particle identification through the measurement of average ionization loss in the chamber. We present the results of a study of system performance and outline the systematic corrections that optimize resolution. The data used are from a short test run at PEP with one-third of the FADCs installed and an extensive cosmic ray sample with the fully instrumented chamber. 11 refs., 9 figs

  13. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  14. Neutral molecules in tokamak edge plasma - role of vibrationally excited hydrogen molecules

    International Nuclear Information System (INIS)

    Cadez, I.; Cercek, M.; Pelicon, P.; Razpet, A.

    2003-01-01

    The role of neutral molecules in edge plasma is discussed with special emphasis on the vibrationally excited hydrogen. Neutral molecules are formed mostly by surface processes on the walls and then released to the edge plasma where they take part in volumetric reactions with other particles. Typically these molecules are formed in excited states and data are needed for their reactions on the wall and in the volume. Processes in edge plasma determine particle and energy flux what is especially critical issue in tokamak divertor region. Various cross sections and reaction rates are needed for modelling edge plasma and its interaction with walls. (author)

  15. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  16. Excitations in superfluid systems: contributions of the nuclear structure; Excitations dans les systemes superfluides: contributions de la structure nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Khan, E

    2005-12-15

    The author presents successively the theoretical aspect, the experimental aspect and the applied aspect of excitations in nuclear structures. The quasi-particle random phase approximation (QRPA) tool is first described. Recent approaches on QRPA are based on the theory of the density function where the ground state and excited states are described from the same nucleon-nucleon interaction. 2 methods for measuring the collective excitations are then presented: the proton scattering that has the potentiality to investigate the evolution of magicity, the second method is in fact a new method for measuring the giant mono-polar resonance (GMP) in exotic nuclei. Nuclear reactions are considered as a compulsory step on the way from observables like cross-sections to nuclear structure. The author highlights the assets of the convolution model that can generate the optical potential from the effective nucleon-nucleon interaction and from proton and neutron densities of the nuclei involved. R-processes in nucleosynthesis and neutron stars are reviewed as applications of collective excitations in the field of nuclear astrophysics. (A.C.)

  17. Excited-state dynamics of a ruthenium(II) catalyst studied by transient photofragmentation in gas phase and transient absorption in solution

    Energy Technology Data Exchange (ETDEWEB)

    Imanbaew, D.; Nosenko, Y. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Kerner, C. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Chevalier, K.; Rupp, F. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Riehn, C., E-mail: riehn@chemie.uni-kl.de [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Thiel, W.R. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Diller, R. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany)

    2014-10-17

    Graphical abstract: - Highlights: • Ultrafast dynamics of new Ru(II) catalysts investigated in gas phase and solution. • Catalyst activation (HCl loss) achieved in ion trap by UV photoexcitation. • Electronic relaxation proceeds by IVR and IC followed by ground state dissociation. • No triplet formation in contrast to other Ru-polypyridine complexes. • Solvent prohibits catalyst activation in solution by fast vibrational cooling. - Abstract: We report studies on the excited state dynamics of new ruthenium(II) complexes [(η{sup 6}-cymene)RuCl(apypm)]PF{sub 6} (apypm=2-NR{sub 2}-4-(pyridine-2-yl)-pyrimidine, R=CH{sub 3} (1)/H (2)) which, in their active form [1{sup +}-HCl] and [2{sup +}-HCl], catalyze the transfer hydrogenation of arylalkyl ketones in the absence of a base. The investigations encompass femtosecond pump–probe transient mass spectrometry under isolated conditions and transient absorption spectroscopy in acetonitrile solution, both on the cations [(η{sup 6}-cymene)RuCl(apypm)]{sup +} (1{sup +}, 2{sup +}). Gas phase studies on mass selected ions were performed in an ESI ion trap mass spectrometer by transient photofragmentation, unambiguously proving the formation of the activated catalyst species [1{sup +}-HCl] or [2{sup +}-HCl] after photoexcitation being the only fragmentation channel. The primary excited state dynamics in the gas phase could be fitted to a biexponential decay, yielding time constants of <100 fs and 1–3 ps. Transient absorption spectroscopy performed in acetonitrile solution using femtosecond UV/Vis and IR probe laser pulses revealed additional deactivation processes on longer time scales (∼7–12 ps). However, the formation of the active catalyst species after photoexcitation could not be observed in solution. The results from both studies are compared to former CID investigations and DFT calculations concerning the activation mechanism.

  18. Process and system for isotope separation using the selective vibrational excitation of molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1976-01-01

    This invention concerns the separation of isotopes by using the isotopically selective vibrational excitation and the vibration-translation reactions of the excited particles. UF 6 molecular mixed with a carrier gas, such as argon, are directed through a refrigerated chamber lighted by a laser radiation tuned to excite vibrationally the uranium hexafluoride molecules of a particular uranium isotope. The density of the carrier gas is preferably maintained above the density of the uranium hexafluoride to allow a greater collision probability of the vibrationally excited molecules with a carried molecule. In such a case, the vibrationally excited uranium hexafluoride will collide with a carrier gas molecule provoking the conversion of the excitation energy into a translation of the excited molecule, resulting in thermal energy or greater diffusibility than that of the other uranium hexafluoride molecules [fr

  19. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    National Research Council Canada - National Science Library

    Hill, Steven C; Mayo, Michael W; Chang, Richard K

    2009-01-01

    The fluorescence intensity as a function of excitation and emission wavelengths (EEM spectra) was measured for different species of bacteria, biochemical constituents of cells, pollens, and vegetation...

  20. Effect of Δ-isobar excitation on spin-dependent observables of elastic nucleon-deuteron scattering

    International Nuclear Information System (INIS)

    Nemoto, S.; Oryu, S.; Chmielewski, K.; Sauer, P.U.

    2000-01-01

    Δ-isobar excitation in the nuclear medium yields an effective three-nucleon force. A coupled-channel formulation with Δ-isobar excitation developed previously is used. The three-particle scattering equations are solved by a separable expansion of the two-baryon transition matrix for elastic nucleon-deuteron scattering. The effect of Δ-isobar excitation on the spin-dependent observables is studied at energies above 50 MeV nucleon lab energy. (author)

  1. Energy deposition and GDR emission in inelastic alpha particle scattering

    CERN Document Server

    Viesti, G; Fabris, D; Nebbia, G; Cinausero, M; Fioretto, E; Napoli, D R; Prete, G; Hagel, K; Natowitz, J B; Wada, R; Gonthier, P; Majka, Z; Alfarro, R; Zhao, Y; Mdeiwayeh, N; Ho, T

    1999-01-01

    Neutron fold distributions measured for the reaction sup 2 sup 0 sup 9 Bi(alpha,alpha') at 240 MeV have been analyzed with the help of Statistical Model calculations to determine the distribution of excitation energy in the primary target fragments as a function of the projectile energy loss, EL. Results show that the distributions in excitation energy feature a plateau which extends from the kinematical limit E sub x =EL to very small excitations, suggesting a variety of interactions of the beam particles with the target nucleus. Requiring an additional coincidence with a light charged particle leads to selection of a significant higher average excitation energy. This effect is extrapolated to explore results of previous GDR decay measurements in the case of a sup 2 sup 0 sup 8 Pb target. Corrections of derived GDR parameters due to the partial transfer of excitation energy are suggested.

  2. Enhanced spinal excitation from ankle flexors to knee extensors during walking in stroke patients

    DEFF Research Database (Denmark)

    Achache, V.; Mazevet, D.; Iglesias, C.

    2010-01-01

    : The spinal, presumed group II, excitation from ankle dorsiflexors to knee extensors is particularly enhanced during post-stroke walking probably due to plastic adaptations in the descending control. SIGNIFICANCE: This adaptation may help to stabilize the knee in early stance when the patients have recover......OBJECTIVES: It is still unclear to what an extent altered reflex activity contributes to gait deficit following stroke. Spinal group I and group II excitations from ankle dorsiflexors to knee extensors were investigated during post-stroke walking. METHODS: Electrical stimulation was applied...... ankle dorsiflexor functions....

  3. Technique for description of nonrotational excited states in a semiphenomenological nuclear theory

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    A non-standard technique for microscopic description of excited nonrotational states is considered; it is suitable for inseparable force application. Besides, an additional binding operator, mixing quasi-particle excitations and E1-resonance states, is considered. Instead of the standard technique of state ''collectivization'' of the random phase approximation type it is used the so-called ''method of bound amplitudes''

  4. Anisotropy in the simultaneous excitation of two colliding atoms to various substate combinations

    International Nuclear Information System (INIS)

    Moorman, L.

    1987-01-01

    In this thesis double-atom excitation (DAE) processes in atomic collision experiments are studied by measuring the angular correlation of two coincident photons emitted by both excited collision particles. The analytical expression for the angular correlation function is derived which contains as adjustable parameters the various (complex) excitation amplitudes integrated over all scattering angles. The He+He system is investigated, for projectile energies between 0.5 and 3.5 keV, in which both particles are excited simultaneously to the 2 1 P state. The relation between photon correlations and atomic state correlations is investigated and the density matrix elements are calculated for a statistical distribution of the excited atomic substates into which a certain symmetry is incorporated. Collisions between metastable and groundstate He atoms are considered. Single-photon spectra are presented and compared with spectra from the He+He collision system. Coincidence measurements were performed on these collision systems to study possible double-atom excitations. Coincidences between two ultraviolet as well as an ultraviolet and a visible photon were measu0515 Also a measurement is reported of the relative population of the magnetic substates of the 3 1 D state of helium. Coincidence measurements on two ultraviolet photons emitted upon Ne-Ne and He-Ne collisions are described and the double-atom excitations for these systems are studied. For Ne+Ne no coincidence peaks were found. For He+Ne double-atom excitation was observed and from the measured angular correlations the corresponding density matrix elements for some kinetic energies of the projectile. (Auth.)

  5. Calculations of coincident ionization plus excitation

    International Nuclear Information System (INIS)

    Becker, R.L.

    1986-01-01

    For Li- and Be-like ions, K x-ray yields, together with detection that the ionic charge has increased, give the cross section for ionization plus excitation (IE), a process which can exhibit electron-electron correlations. Measurements of IE for 14 Si 11+ + He stimulated our coupled-channels calculations in the independent-Fermi-particle model (IFPM), which includes Pauli correlations. We discuss how the IFPM expressions, generalized here to include an open shell, differ from those for distinguishable electrons. The sensitivity of σ/sub IE/ to correlations is shown. Recent additional measurements and future ones giving excitation functions for resolved configurations and complementary Auger data will provide even more sensitive tests of collisional correlation theory. 15 refs., 3 figs., 1 tab

  6. Real-space visualization of remnant Mott gap and magnon excitations.

    Science.gov (United States)

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  7. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    Science.gov (United States)

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.

  8. Depolarization of a photoelectret under depth-nonuniform excitation of the sample

    International Nuclear Information System (INIS)

    Vavrek, A.F.; Khristova, K.K.

    1988-01-01

    A simple theoretical model is given and explaination is made of the experimental observations of the recently carried out destroying the photoelectret state (PES) in Bi 1 2SiO 2 0 (BSO) by X-ray irradiation. It is assumed that during the irradiatoin two regions are formed divided by a sharp boundary - an excited region I with mobile non-equilibrium carriers and non-excited region II without mobile carriers. According to the experimental conditions, the isolating layers are between the sample and the electrodes, the total photoelectret charge is zero and the PE charge before the irradiation have a barrier distribution. For the determination of a PE charge the method of photodepolarization is used. When the photoelectret is irradiated in region I, mobile carriers are generated which move under the influence of the electrical field in this region and begin to accumulate on the boundary plane between the excited and non-excited regions, thus forming a 'shifted' charge layer. There is no movement of charges in region II. The distribution of the charges and the electric field in such a multilayer system is described by a system of equations. It is established that during the X-ray irradiation the PE charge gradually decreases. However, the maximum charge which can be destroyed is found to be a function of the thickness of the excited region and becomes equal to the initial charge when an excitation of the whole sample takes place. The consideration done explains the experimentally observed seeming loss of sensitivity of the BSO to the X radiation

  9. Derivation of electron density and temperature from (S II) and (O II) line intensity ratios

    Energy Technology Data Exchange (ETDEWEB)

    Canto, J; Meaburn, J; Theokas, A C [Manchester Univ. (UK). Dept of Astronomy; Elliott, K H [Anglo-Australian Observatory, Epping (Australia)

    1980-12-01

    Line intensity ratios for (S II) and (O II) due to collisional de-excitation are briefly discussed. Comparison is made between various reaction rate parameters presented by separate investigators. Included are observations of ratios obtained from the Orion nebula which experimentally confirm the reaction rates of Pradhan as best representing the observed distribution of these ratios. (O II) and (S II) contour plots are also presented, which allow effective electron temperatures and densities to be estimated from pairs of line ratios.

  10. Coherent radiation of photon by fast particles in exited matter

    International Nuclear Information System (INIS)

    Ryazanov, M.I.

    1981-01-01

    The review on the theory of coherent photon radiation by fast charged particle interaction with excited by external electromagnetic field atoms of matter is presented. The motive particle excites in the matter longitudinal electric oscillations (plasmons, longitudinal optical phonons, longitudinal excitons). Energy and momentum conservation laws in the course of quantum radiation in the matter by a charged particle are considered taking into account the energy-matter exchange. It follows from the conservation laws that for the processes investigated the quantum angle of escape is stiffly connected with its frequency. The cohe-- rent luminescence processes are considered as generalized Vavilov- Cherenkov radiation [ru

  11. Electronic excitation and deexcitation of atoms and molecules in nonequilibrium plasmas; Hiheiko plasma chu no denshi reiki ryushi hanno katei

    Energy Technology Data Exchange (ETDEWEB)

    Shimamori, H. [Fukui University of Technology, Fukui (Japan)

    1997-05-20

    Regarding excitation and deexcitation due to collision of electrons and deexcitation due to collision of baryons in nonequilibrium plasma, explanation is made about the general characteristics of the elementary processes involving their formation and disappearance and about the prediction of their sectional areas and velocity constants. As for the process of the formation of excited atoms and molecules by collision of electrons, it may be divided into the direct excitation in the ground state, excitation and light emission toward the resonance state, reexcitation and transformation of excited particles, recombination of electrons and positive atomic ions, and dissociation and recombination of electrons and positive molecular ions. As for the process of the disappearance of excited particles, there exist various courses it may follow, and it is quite complicated because it is dependent on the types of particles involved and the conditions the process proceeds under. Although the skeleton has been built of the theory of derivation of the sectional area of excitation due to collision of electrons and atoms/molecules, yet it is accurate enough only when applied to simple atomic/molecular systems, is far from satisfying in general, and is to be augmented by data from future experiments. 22 refs., 3 figs., 1 tab.

  12. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  13. Exploring excited eigenstates of many-body systems using the functional renormalization group

    Science.gov (United States)

    Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph

    2018-05-01

    We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.

  14. Excitation of accelerating plasma waves by counter-propagating laser beams

    International Nuclear Information System (INIS)

    Shvets, Gennady; Fisch, Nathaniel J.; Pukhov, Alexander

    2002-01-01

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Δω between beams and duration τ L of the short pulse, there are two approaches to CBA. First approach assumes (τ L ≅2/ω p ). Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with τ L >>ω p -1 detuned by Δω∼2ω p from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2ω p of two co-propagating lasers was first predicted by Rosenbluth and Liu [M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972)], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented

  15. Two-photon excited UV fluorescence for protein crystal detection

    International Nuclear Information System (INIS)

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-01-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC

  16. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  17. Study of atomic excitations in sputtering with the use of N, O, F, Ne, Na, Cl, and Ar projectiles

    International Nuclear Information System (INIS)

    Jensen, H.K.; Veje, E.

    1985-01-01

    Solid magnesium has been bombarded with 80 keV ions of N, O, F, Ne, Na, Cl, and Ar, and excitation of sputtered magnesium atoms and ions has been studied. Relative level excitation probabilities depend strongly on the projectile, the dependences for Mg I levels being different from those for Mg II levels. With all projectiles, the resonance level in Mg II is excited stronger than the resonance level in Mg I. Very little radiation is observed from the projectiles except for sodium. The results are discussed. (orig.)

  18. Collective hypersonic excitations in strongly multiple scattering colloids.

    Science.gov (United States)

    Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N

    2011-04-29

    Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.

  19. Search for excited quarks in p bar p collisions at √s =1.8 TeV

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Areti, H.; Auchincloss, P.; Azfar, F.; Azzi, P.; Bacchetta, N.; Badgett, W.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bartalini, P.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bird, F.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bolognesi, V.; Bortoletto, D.; Boswell, C.; Boulos, T.; Brandenburg, G.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cen, Y.; Cervelli, F.; Chapman, J.; Chiarelli, G.; Chikamatsu, T.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Cooper, J.; Cordelli, M.; Coupal, D.P.; Crane, D.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dickson, M.; Donati, S.; Done, J.P.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Eno, S.; Errede, D.; Errede, S.; Etchegoyen, A.; Fan, Q.; Farhat, B.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fry, A.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Garfinkel, A.F.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Grewal, A.; Grieco, G.; Groer, L.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Hamilton, R.; Handler, R.; Hans, R.M.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Heinrich, J.; Hennessy, D.; Hollebeek, R.; Holloway, L.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huston, J.; Huth, J.; Hylen, J.; Incagli, M.

    1994-01-01

    If quarks are composite particles then excited states are expected. We have searched in p bar p collisions for excited quarks (q * ) which decay to common quarks by emitting a W boson (q * →qW) or a photon (q * →qγ). The simplest model of excited quarks has been excluded for mass M * 2 at 95% confidence level

  20. Influence of excitation light on the frequency upconversion of trivalent lanthanide ions

    International Nuclear Information System (INIS)

    Fu Zhenxing; Zheng Hairong; Tian Yu; Zhang Zhenglong; Cui Min

    2010-01-01

    The upconversion mechanisms of the 1 D 2 level of Tm 3+ ion under different excitation lights were analyzed. The influences of the excitation lights on the upconversion process, nonradiative relaxation from level 3 F 2 to 3 H 4 and fluorescence properties were investigated. It was shown that the one-color cw excitation could affect the profile of fluorescence, while information of the nonradiative relaxation could not be extracted. The nonradiative relaxation rate measured with the one-color pulsed excitation in crystal phase was in agreement with what was obtained in the free-standing nanometer crystal particles through the two-color pulsed excitation. The characteristics of the fluorescent emissions of Tm 3+ ions doped in various host materials were also discussed under different excitation lights. As a result of the discussion, a possible way to obtain nonradiative relaxation rate directly from a spectroscopic method in frequency domain was proposed. The study can be extended to other trivalent lanthanide ions that have upconversion through excited state absorption.

  1. Hadron-nucleus interactions with a small target-nucleus excitation

    International Nuclear Information System (INIS)

    Anzon, Z.V.; Chasnikov, I.Ya.; Shakhova, Ts.I.

    1981-01-01

    Hadron inelastic interactions in nuclear emulsion with a small target-nucleus excitation in the energy range 7.5-200 GeV have been studied. Possible reasons for the differences in production cross-section for events with even and odd number of S-particles are analysed

  2. Sensitivity of (α,α') cross sections to excited-state quadrupole moments

    International Nuclear Information System (INIS)

    Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.

    1977-01-01

    Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2

  3. Particle spin tune in a partially excited snake

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tepikian, S.; Courant, E.D.

    1985-01-01

    In this paper, we address the question on the effect of the particle spin when a snake is turned on adiabatically near a depolarization resonance while not accelerating. The spinor equation and its solution are reviewed briefly and the spin transfer matrix method in the presence of a snake are used to evaluate the spin tune and the precession axis

  4. Excitation spectrum of correlated Dirac fermions

    Science.gov (United States)

    Jalali, Z.; Jafari, S. A.

    2015-04-01

    Motivated by the puzzling optical conductivity measurements in graphene, we speculate on the possible role of strong electronic correlations on the two-dimensional Dirac fermions. In this work we employ the slave-particle method to study the excitations of the Hubbard model on honeycomb lattice, away from half-filling. Since the ratio U/t ≈ 3.3 in graphene is not infinite, double occupancy is not entirely prohibited and hence a finite density of doublonscan be generated. We therefore extend the Ioff-Larkin composition rule to include a finite density of doublons. We then investigate the role played by each of these auxiliary particles in the optical absorption of strongly correlated Dirac fermions.

  5. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semiconductors

    International Nuclear Information System (INIS)

    Scha''fer, W.; Lo''venich, R.; Fromer, N. A.; Chemla, D. S.

    2001-01-01

    Recent theories of highly excited semiconductors are based on two formalisms, referring to complementary experimental conditions, the real-time nonequilibrium Green's function techniques and the coherently controlled truncation of the many-particle problem. We present a novel many-particle theory containing both of these methods as limiting cases. As a first example of its application, we investigate four-particle correlations in a strong magnetic field including dephasing resulting from the growth of incoherent one-particle distribution functions. Our results are the first rigorous solution concerning formation and decay of four-particle correlations in semiconductors. They are in excellent agreement with experimental data

  6. Cross Sections for Balmer-Alpha Excitation in Heavy Particle Collisions.

    Science.gov (United States)

    Bae, Young Kun

    Doppler shifted and unshifted Balmer-alpha radiation has been observed in the absolute sense for energetic H('+), H(,2)('+) and H(,3)('+) ions incident on molecular hydrogen by the method of decay inside the target within the energy range of 20 keV to 150 keV. Most of the measurements were based on single-collision conditions, but a simple thick -target experiment has been tried for the case of dissociative excitation of the target molecules by H atoms. The Balmer-alpha radiation emitted by hydrogen and deuterium beams has been used as a diagnostic method of neutral beam parameters. One important neutral beam parameter is the species mix between H('+), H(,2)('+) and H(,3)('+) ion currents produced by the ion source and accelerator. This species mix can be resolved by analysis of the Balmer-alpha radiation if the beam is observed along an off normal axis with sufficient spectral resolution to separate the Doppler shifted radiation components from each other. An impediment to this approach to measuring the ion species is that some of the required cross sections have not been measured. This is the motivation for the presented experimental work. A home made monochromator gave enough optical throughput and spectral resolution for separation of the Doppler shifted lines from the unshifted lines. By selectively varying the target pressure and the distance of travel into the target prior to the observation region, excitation cross sections for three different angular momentum states (3s, 3p and 3d) have been determined. Combinations of a linear polarizer and a half-wave plate were used for polarization measurement. Separation of the individual Zeeman levels have been tried for the 3p state from the information obtained from the polarization. Theoretical estimates of the cascading corrections have been applied in the case of both thin and thick targets. The intensity development equations for thick targets also have been derived. Cross sections for 3s production show

  7. Fourth-order perturbative extension of the single-double excitation coupled-cluster method

    International Nuclear Information System (INIS)

    Derevianko, Andrei; Emmons, Erik D.

    2002-01-01

    Fourth-order many-body corrections to matrix elements for atoms with one valence electron are derived. The obtained diagrams are classified using coupled-cluster-inspired separation into contributions from n-particle excitations from the lowest-order wave function. The complete set of fourth-order diagrams involves only connected single, double, and triple excitations and disconnected quadruple excitations. Approximately half of the fourth-order diagrams are not accounted for by the popular coupled-cluster method truncated at single and double excitations (CCSD). Explicit formulas are tabulated for the entire set of fourth-order diagrams missed by the CCSD method and its linearized version, i.e., contributions from connected triple and disconnected quadruple excitations. A partial summation scheme of the derived fourth-order contributions to all orders of perturbation theory is proposed

  8. Effects of the radial electrical field on the drifts, trapping and particle orbits in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1997-01-01

    In this study a detailed analysis of the effect of radial electric fields on drifts, trapping and trajectories for ions of low and intermediate energy (0.1-1 keV) in the helical axis stellarator TJ-II has been performed. In TJ-II the drift velocities have the same rotation direction than the Hard Core (HC, the same than the plasma) with predominance of the vertical downwards component. The intensity is higher near the HC and in the outwards direction. These trends create strong asymmetries in losses even in the absence of electric field. When an electric field is present the poloidal components of the drift velocity predominates modifying deeply the orbit behaviour. Positive electric fields produce internal radial trapping barriers and have a tendency to eliminate the external ones. The opposite happens for negative fields. These facts alterate deeply the tapping and confinement properties of the particles. All these analysis will be used as a basis for the understanding of the modifications on the loss distribution, trapping regions and loss cones for TJ-II that will be addressed in forthcoming studies. (Author)

  9. Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles

    International Nuclear Information System (INIS)

    Siems, A; Weber, S A L; Boneberg, J; Plech, A

    2011-01-01

    The nonlinear thermal behavior of laser-heated gold nanoparticles in aqueous suspension is determined by time-resolved optical spectroscopy and x-ray scattering. The nanoparticles can be excited transiently to high lattice temperatures owing to their large absorption cross-section and slow heat dissipation to the surrounding. A consequence is the observation of lattice expansion, changed optical transmission, vapor bubble formation or particle melting. The heat transfer equations are solved for two limiting cases of heat pulses shorter and longer than the characteristic cooling time. The results of pulsed excitation with femtosecond and nanosecond lasers are explained by the theoretical prediction, and the bubble formation is interpreted by a spinodal decomposition at the particle-liquid interface. It is shown that both the laser spectroscopy and x-ray scattering results agree qualitatively and quantitatively, underlining the validity of the comprehensive model.

  10. Fermionic Collective Excitations in a Lattice Gas of Rydberg Atoms

    International Nuclear Information System (INIS)

    Olmos, B.; Gonzalez-Ferez, R.; Lesanovsky, I.

    2009-01-01

    We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van der Waals interaction among the Rydberg atoms, these many-body states are collective fermionic excitations. The first excited state is a spin wave that extends over the entire lattice. We demonstrate that our system permits us to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices.

  11. Excitation spectrum and staggering transformations in lattice quantum models.

    Science.gov (United States)

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  12. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    Science.gov (United States)

    2009-02-01

    35 Figure 29. EEM spectra of kaolin particles, dry...Warrington, PA. Glass beads were obtained from Peirce Chemical Co., Rockford, IL. Kaolin particles were obtained from Particle Information Services...solution concentration of 1 mg/ml. The samples were vortexed and pipetted vigorously to disperse aggregates. Stock bacteria solutions were diluted to a

  13. Preface: II Russian-Spanish Congress on Particle and Nuclear Physics at All Scales, Astroparticle Physics and Cosmology

    OpenAIRE

    Andrianov, Alexander A.; Espriu, D. (Domènec); Andrianov, Vladimir A.; Kolevatov, S.

    2014-01-01

    This publication contains the proceedings of the II Russian-Spanish Congress on Particle and Nuclear Physics at All Scales, Astroparticle Physics and Cosmology, a collection of refereed papers presented in plenary and parallel sessions at a meeting that gathered leading Russian and Spanish Scientists in the above fields in Saint-Petersburg from October 1st through October 4th 2013 (http://hep.phys.spbu.ru/conf/esp-rus2013/).

  14. The influence of autoionizing states on the excitation of helium by electrons

    International Nuclear Information System (INIS)

    Ittersum, T. van

    1976-01-01

    The work described in this thesis deals with resonance effects in the scattering of electrons by helium at energies near the threshold of the autoionizing states (50-70 eV). The investigation is performed by studying light emission following the excitation of singly excited states. In some cases, the polarization of the radiation was also investigated. The purpose of the research was (i) to enlarge our knowledge of triply excited negative ion states, i.e. resonance states which are formed by temporary binding of the incident electron to a doubly excited (autoionizing) state of neutral helium, and (ii) to clear up the nature of some resonance structures which could not be explained in terms of negative ion resonances

  15. Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, H. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2016-04-15

    We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences of the PL characteristics are explained by the effects of the WL.

  16. Quasi-particle and collective magnetism: Rotation, pairing and blocking in high-K isomers

    International Nuclear Information System (INIS)

    Stone, N.J.; Stone, J.R.; Walker, P.M.; Bingham, C.R.

    2013-01-01

    For the first time, a wide range of collective magnetic g-factors g R , obtained from a novel analysis of experimental data for multi-quasi-particle configurations in high-K isomers, is shown to exhibit a striking systematic variation with the relative number of proton and neutron quasi-particles, N p −N n . Using the principle of additivity, the quasi-particle contribution to magnetism in high-K isomers of Lu–Re, Z=71–75, has been estimated. Based on these estimates, band-structure branching ratio data are used to explore the behavior of the collective contribution as the number and proton/neutron nature (N p , N n ), of the quasi-particle excitations, change. Basic ideas of pairing, its quenching by quasi-particle excitation and the consequent changes to moment of inertia and collective magnetism are discussed. Existing model calculations do not reproduce the observed g R variation adequately. The paired superfluid system of nucleons in these nuclei, and their excitations, present properties of general physics interest. The new-found systematic behavior of g R in multi-quasi-particle excitations of this unique system, showing variation from close to zero for multi-neutron states to above 0.5 for multi-proton states, opens a fresh window on these effects and raises the important question of just which nucleons contribute to the ‘collective’ properties of these nuclei

  17. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  18. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  19. Emission of complex particles from highly excited nuclei

    International Nuclear Information System (INIS)

    Gadioli, E.

    1984-01-01

    A great deal of work has been made to investigated experimentally and predict theoretically the continuous spectra of composite particles produced in reactions induced by nucleons with energy ranging from a few to several ten MeV. Some recent results in the field are summarized. In particular the exciton coalescence-pickup model and the exciton knock-on model, in the case of alpha emission, are reviewed and discussed

  20. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Manard, Benjamin T. [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sarkar, Arnab [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Marcus, R. Kenneth [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States)

    2014-04-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (T{sub rot}), excitation temperature (T{sub exc}), electron number density (n{sub e}), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N{sub 2} and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ∼ 1000 K and ∼ 2700 K respectively. Electron number density was calculated to be on the order of ∼ 3 × 10{sup 15} cm{sup −3} utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source (< 1 mm{sup 3} volume), the LS-APGD is shown to be quite robust with plasma characteristics and temperatures being unaffected upon introduction of metal species, whether by liquid or laser ablation sample introduction. - Highlights: • Liquid sampling-atmospheric pressure glow discharge (LS-APGD) • LS-APGD as a secondary

  1. The Lithium isotope ratio in Population II halo dwarfs: A proposed test of the late decaying massive particle nucleosynthesis scenario

    International Nuclear Information System (INIS)

    Brown, L.; Schramm, D.N.

    1988-02-01

    It is shown that observations of the Lithium isotope ratio in high surface temperature Population II stars may be critical to cosmological nucleosynthesis models. In particular, decaying particle scenarios as derived in some supersymmetric models may stand or fall with such observations. 15 refs., 3 figs., 2 tabs

  2. Finite temperature effects on monopole and dipole excitations

    International Nuclear Information System (INIS)

    Niu, Y F; Paar, N; Vretenar, D; Meng, J

    2011-01-01

    The relativistic random phase approximation based on effective Lagrangian with density dependent meson-nucleon couplings has been extended to finite temperature and employed in studies of multipole excitations within the temperature range T = 1 - 2 MeV. The model calculations showed that isoscalar giant monopole and isovector giant dipole resonances are only slightly modified with temperature, but additional transition strength appears at low energies because of thermal unblocking of single-particle orbitals close to the Fermi level. The analysis of low-lying states shows that isoscalar monopole response in 132 Sn results from single particle transitions, while the isovector dipole strength for 60 Ni, located around 10 MeV, is composed of several single particle transitions, accumulating a small degree of collectivity.

  3. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1992-08-01

    Some old characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5 A GeV/c momenta, which are explained as the manifestation of a few mechanism of strangeness production via dibaryonic de-excitations. A signature of formation of hadronic and baryonic clusters is also reported. The di-pionic signals of the dibaryonic orbital de-excitations are analysed in the frame of the MIT-bag model and the Monte Carlo simulation. The role played by the dibaryonic resonances in the relativistic nuclear collisions could be a significant one. (author). 23 refs, 5 figs, 1 tab

  4. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1993-08-01

    Some odd characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di- pionic signals of the dibaryonic orbital de- excitations are analyzed in the frame of the MIT -bag Model and a Monte Carlo simulation. The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. (author). 29 refs, 7 figs

  5. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  6. Modification of Particle Distributions by MHD Instabilities II

    International Nuclear Information System (INIS)

    White, Roscoe B.

    2011-01-01

    The modification of particle distributions by low amplitude magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles, and the same can be expected in burning plasmas for the alpha particle distributions. Flattening of a distribution in an island due to phase mixing and portions of phase space becoming stochastic lead to modification of the particle distribution, a process extremely rapid in the time scale of an experiment but still very long compared to the time scale of guiding center simulations. Large amplitude modes can cause profile avalanche and particle loss. Thus it is very valuable to be able to predict the temporal evolution of a particle distribution produced by a given spectrum of magnetohydrodynamic modes. In this paper we further develop and investigate the use of a new method of determining domains of phase space in which good KAM surfaces do not exist and use this method to examine a well documented case of profile modification by instabilities.

  7. Advancing the Search for Dark Matter: from CDMS II to SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Scott A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2012-09-01

    An overwhelming proportion of the universe (83% by mass) is composed of particles we know next to nothing about. Detecting these dark matter particles directly, through hypothesized weak-force-mediated recoils with nuclear targets here on earth, could shed light on what these particles are, how they relate to the standard model, and how the standard model ts within a more fundamental understanding. This thesis describes two such experimental eorts: CDMS II (2007-2009) and SuperCDMS Soudan (ongoing). The general abilities and sensitivities of both experiments are laid out, placing a special emphasis on the detector technology, and how this technology has evolved from the rst to the second experiment. Some topics on which I spent signicant eorts are described here only in overview (in particular the details of the CDMS II analysis, which has been laid out many times before), and some topics which are not described elsewhere are given a somewhat deeper treatment. In particular, this thesis is hopefully a good reference for those interested in the annual modulation limits placed on the low-energy portion of the CDMS II exposure, the design of the detectors for SuperCDMS Soudan, and an overview of the extremely informative data these detectors produce. It is an exciting time. The technology I've had the honor to work on the past few years provides a wealth of information about each event, more so than any other direct detection experiment, and we are still learning how to optimally use all this information. Initial tests from the surface and now underground suggest this technology has the background rejection abilities necessary for a planned 200kg experiment or even ton-scale experiment, putting us on the threshold of probing parameter space orders of magnitude from where the eld currently stands.

  8. Identification and origin of visible transitions in one dimensional (1D) ZnO nanostructures: Excitation wavelength and morphology dependence study

    Energy Technology Data Exchange (ETDEWEB)

    Baral, Arpit [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Khanuja, Manika, E-mail: manikakhanuja@gmail.com [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Islam, S.S. [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Sharma, Rishabh; Mehta, B.R. [Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2017-03-15

    In this present work, one dimensional (1D) ZnO nanostructures were synthesized by mechanical assisted thermal decomposition process. The samples were characterized by transmission electron microscopy (TEM) for morphology, high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) for structural characterization. Photoluminescence (PL) and Photoluminescence spectra evolution was studied as a function of (i) excitation wavelength (λ{sub Ex:} 310–370 nm) and (ii) morphology (nanoneedles and nanorods). PL spectra were observed to be highly asymmetric with strong dependence on excitation wavelength (λ{sub Ex}). PL spectra categorized into two types as a function of excitation wavelength (λ{sub Ex}): I. λ{sub Ex}≤345 nm and II. λ{sub Ex}≥350 nm. The PL spectra were deconvoluted into multiple Gaussian components for each excitation wavelength. The position of each component is a signature of its origin and corresponds to specific visible transition. The transition involving origin from conduction band (CB) are absent for excitation wavelength λ{sub Ex}≥350 nm. The tunable photoresponse is achieved in 1D ZnO nanostructures by varying (i) excitation wavelength and (ii) morphology: nanoneedles to nanorods. PL intensity increases as aspect ratio decrease from nanoneedles to nanorods morphology. This is attributed to non-radiative quenching by near surface defects.

  9. Dynamical Simulation of Recycling and Particle Fueling in TJ-II Plasmas; Simulacion Dinamica del Reciclado y de la Inyeccion de Particulas en los Plasmas del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D; Ferreira, J A; Tabares, F L; Castejon, F; Guasp, J

    2007-07-20

    With the aim of improving the calculation tools for transport analysis in TJ-II plasmas, in this work we analyze the simplified model for a kinetic equation that ASTRA uses to calculate the neutral particle distribution in the plasma. Next, we act on the boundary conditions for this kinetic equation (particularly on the neutral density in the plasma boundary) so we can simulate the recycling conditions for the TJ-II in a simple way. With the resulting transport models we can easily analyze the sensibility of these plasmas to the cold gas puffing depending on the recycling conditions. These transport models evidence the problem of density control in the TJ-II. Likewise, we estimate the importance of recycling in the plasmas heated by energetic neutral beam injection. The experimentally observed increments in density when the energetic neutrals are injected would respond, according to the calculations here presented, to a large increment of the neutrals influx that cannot be explained by the beam itself. (Author) 22 refs.

  10. Photon emission produced by particle-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Tolk, N.H.

    1976-02-01

    Visible, ultraviolet, and infrared optical emission results from low-energy (20 eV-10 keV) particle-surface collisions. Several distinct kinds of collision induced optical radiation are discussed which provide fundamental information on particle-solid collision processes. Line radiation arises from excited states of sputtered surface constituents and backscattered beam particles. This radiation uniquely identifies the quantum state of sputtered or reflected particles, provides a method for identifying neutral atoms sputtered from the surface, and serves as the basis for a sensitive surface analysis technique. Broadband radiation from the bulk of the solid is attributed to the transfer of projectile energy to the electrons in the solid. Continuum emission observed well in front of transition metal targets is believed to arise from excited atom clusters (diatomic, triatomic, etc.) ejected from the solid in the sputtering process. Application of sputtered atom optical radiation for surface and depth profile analysis is demonstrated for the case of submonolayer quantities of chromium on silicon and aluminum implanted in SiO 2

  11. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  12. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  13. New particle searches and discoveries

    International Nuclear Information System (INIS)

    Trippe, T.G.; Barbaro-Galtieri, A.; Horne, C.P.; Kelly, R.L.; Rittenberg, A.; Rosenfeld, A.H.; Yost, G.P.; Armstrong, B.; Bricman, C.; Hemingway, R.J.; Losty, M.J.; Roos, M.

    1977-01-01

    This supplement to the 1976 edition of 'Review of particle properties', Particle Data Group [Rev. Mod. Phys. 48, No. 2, Part II (1976)], contains tabulations of experimental data bearing on the 'new particles' and related topics; categories covered include charmed particles, psi's and their decay products, and heavy leptons. Errata to the previous edition are also given. (Auth.)

  14. Isovector excitations in charge independent systems

    International Nuclear Information System (INIS)

    Menezes, D.P.

    1986-01-01

    A method for building states with good isospin, from states given by the action of an isovector excitation operator on states of the parent multiplet is developed. This new method is a generalization of Toki's method and is applicable to cases involving any isovector excitation operator and a parent state, which is not a double magic nucleus. Once obtained these states with well defined isospin, it is shown how to do a Tamm-Dancoff calculation for determining the energy levels. The transition matrix elements of an isotensor operator are also calculated. An application of this formalism to the Gamow-Teller transition strength in 90 Zr is studied. In this case, besides the double magic configuration, the 2 particles - 2 holes (Π1g 9/2 ) 2 (υ 2p 1/2 -1 ) 2 configuration is also considered. (author) [pt

  15. Lunar Soil Particle Separator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  16. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  17. Two quasi-particle excitations with particle-hole core polarization in even-even single closed shell nuclei

    International Nuclear Information System (INIS)

    Gillet, V.; Giraud, B.; Rho, M.

    1976-01-01

    The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr

  18. International Meeting: Excited QCD 2014

    CERN Document Server

    Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis

    2014-01-01

    Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...

  19. Excitation equilibria in plasmas: a classification

    International Nuclear Information System (INIS)

    Mullen, J.-J.A.M. van der.

    1986-01-01

    In this thesis the author presents a classification of plasmas based on the atomic state distribution function. The study is based on the relation between the distribution function and the underlying processes and starts with the proper understanding of thermodynamic equilibrium (TE). Four types of proper balances are relevant: The 'Maxwell balance' of kinetic energy transfer, the 'Boltzmann balance' of excitation/deexcitation, the 'Saha balance' of ionization/recombination and the 'Planck balance' for interaction of atoms with radiation. Special attention is paid to the distribution function of the ionizing excitation saturation balance. The classification theory of the distribution functions in relation with underlying balances is supported by experimental evidence in an ionizing argon plasma. The AR I system provides a pertinent support of the theory. Experimental facts found in the AR II system can be interpreted in global terms. (Auth.)

  20. Picosecond excitation transport in disordered systems

    International Nuclear Information System (INIS)

    Hart, D.E.

    1987-11-01

    Time-resolved fluorescence decay profiles are used to study excitation transport in 2- and 3-dimensional disordered systems. Time-correlated single photon counting detection is used to collect the fluorescence depolarization data. The high signal-to-noise ratios afforded by this technique makes it possible to critically examine current theories of excitation transport. Care has been taken to eliminate or account for the experimental artifacts common to this type of study. Solutions of 3,3'-diethyloxadicarbocyanine iodide (DODCI) in glycerol serve as a radomly distributed array of energy donors in 3-dimensions. A very thin sample cell (/approximately/ 2 μm) is used to minimize the effects of fluorescence self-absorption on the decay kinetics. Evidence of a dynamic shift of the fluorescence spectrum of DODCI in glycerol due to solvent reorganization is presented. The effects of excitation trapping on the decay profiles is minimized in the data analysis procedure. The 3-body theory of Gochanour, Andersen, and Fayer (GAF) and the far less complex 2-particle analytic theory of Huber, Hamilton, and Barnett yield indistinguishable fits to the data over the wide dynamic range of concentrations and decay times studied

  1. Equilibrium and kinetic studies of Pb(II, Cd(II and Zn(II sorption by Lagenaria vulgaris shell

    Directory of Open Access Journals (Sweden)

    Mitić-Stojanović Dragana-Linda

    2012-01-01

    Full Text Available The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II, Cd(II and Zn(II sorption equilibrium (when 98% of initial metal ions were sorbed was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil’s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II, cadmium(II and zinc(II ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99. Maximal sorption capacities of LVB for Pb(II, Cd(II and Zn(II at 25.0±0.5°C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.

  2. Population and particle decay of isobaric analog states in medium heavy nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1980-05-01

    The systematic features of proton stripping and neutron pick-up reactions to Isobaric Analog States in medium heavy nuclei are presented. The ( 3 He,d) reaction investigated at high incident energy is shown to selectively excite high-spin particle-analog states. Similarly the ( 3 He,α) reaction populates hole-analog states. The recent results related to such highly excited states in a wide range of nuclei ( 48 Ca to 208 Pb) are discussed in the framework of the DWBA theory of direct reactions with special emphasis on the treatment of unbound proton states or deeply-bound neutron hole states. The particle decay of Isobaric Analog States are investigated using the ( 3 He,d p) and ( 3 He, α p) sequential processes. The experimental method developed at Orsay (0 0 detection) for particle-particle angular correlations is presented. The advantage and the limits of such approach are illustrated by typical examples of particle decays: core-excited states, neutron particle-hole multiplets and the first observation of the proton emission of hole-analog levels. In conclusion new experimental approaches such as asymmetry measurements for analog states observed in transfer reactions or possible population of double analog states in heavy nuclei are discussed

  3. Statistics of excitations in the electron glass model

    Science.gov (United States)

    Palassini, Matteo

    2011-03-01

    We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.

  4. Excitation and decay of correlated atomic states

    International Nuclear Information System (INIS)

    Rau, A.R.P.

    1992-01-01

    Doubly excited states of atoms and ions in which two electrons are excited from the ground configuration display strong radial and angular electron correlations. They are prototypical examples of quantum-mechanical systems with strong coupling. Two distinguishing characteristics of these states are: (1) their organization into successive families, with only weak coupling between families, and (2) a hierarchical nature of this coupling, with states from one family decaying primarily to those in the next lower family. A view of the pair of electrons as a single entity, with the electron-electron repulsion between them divided into a adiabatic and nonadiabatic piece, accounts for many of the dominant features. The stronger, adiabatic part determines the family structure and the weaker, nonadiabatic part the excitation and decay between successive families. Similar considerations extend to three-electron atomic states, which group into five different classes. They are suggestive of composite models for quarks in elementary particle physics, which exhibit analogous groupings into families with a hierarchical arrangement of masses and electroweak decays. 49 refs., 6 figs., 2 tabs

  5. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  6. Search for Unstable Heavy and Excited Leptons at LEP2

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; Davis, R.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Meyer, I.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    Searches for unstable neutral and charged heavy leptons, N and L+-, and for excited states of neutral and charged leptons, nu*, e*, mu*, and tau*, have been performed in e+e- collisions using data collected by the OPAL detector at LEP. The data analysed correspond to an integrated luminosity of about 58pb-1 at a centre-of-mass energy of 183GeV, and about 10pb-1 each at 161GeV and 172GeV. No evidence for new particles was found. Lower limits on the masses of unstable heavy and excited leptons are derived. From the analysis of charged-current, neutral-current, and photonic decays of singly produced excited leptons, upper limits are determined for the ratio of the coupling to the compositeness scale, f/Lambda, for masses up to the kinematic limit. For excited leptons, the limits are established independently of the relative values of the coupling constants f and f'.

  7. 35Cl + 12C asymmetrical fission excitation functions

    International Nuclear Information System (INIS)

    Beck, C.; Mahboub, D.; Nouicer, R.; Freeman, R.M.; Haas, F.; Youlal, M.; Matsuse, T.; Sanders, S.J.

    1996-04-01

    The fully energy-damped yields from the 35 Cl + 12 C reaction have been systematically investigated using particle-particle coincidence techniques at a 35 Cl bombarding energy of ∼ 8 MeV/nucleon. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with rather large numbers of secondary light-charged particles emitted from the two excited exit fragments. No evidence is observed for ternary breakup events. The binary-process results of the present measurement, along with those of earlier, inclusive experimental data obtained at several lower bombarding energies are compared with predictions of two different kinds of statistical model calculations. The methods give comparable predictions and are both in good agreement with the experimental results thus confirming the fusion-fission origin of the fully-damped yields. (author)

  8. Contribution to the analysis of light elements using x fluorescence excited by radio-elements

    International Nuclear Information System (INIS)

    Robert, A.

    1964-01-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, β and α emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K α lines of 3. period elements excited by 55 Fe, 3 H/Zr and 210 Po sources; for the 2. period the K α spectra of carbon and of fluorine excited by the α particles of 210 Po. (author) [fr

  9. Search and analysis of superdeformed and oblate states in 193Pb nucleus with the EUROGAM II multidetector array

    International Nuclear Information System (INIS)

    Ducroux, L.

    1997-01-01

    This work is devoted to the search and analysis of superdeformed and oblate states in 193 Pb nucleus. High spin states of this isotope, populated via fusion-evaporation reaction 168 Er ( 30 Si, 5n) 193 Pb, have been studied with the EUROGAM II γ multidetector array located near the VIVITRON accelerator in Strasbourg. New sorting and analysis programs have been developed in particular related to the background treatment. Angular distribution and linear polarisation analysis allowed us to assign the γ transition multipolarities. Five dipole bands, corresponding to a weakly oblate-deformed shape of the nucleus, have been observed and connected to the low-lying states. The level scheme has been considerably extended up to a spin of 61/2 ℎ and an excitation energy of about 8 MeV. These structures have been interpreted as based on a high-K two-quasi-proton excitation coupled to rotation aligned quasi-neutrons. Six superdeformed bands, corresponding to a high prolate-deformed shape of the nucleus, have been observed. These six bands have been interpreted as three pairs of signature partners based on quasineutron excitations. The extraction of the g-factor of a K=9/2 neutron superdeformed orbital has been done for the first time in lead isotopes, giving access to the magnetic properties of the extreme nuclear matter. All these results have been discussed in terms of microscopic mean field self-consistent Hartree-Fock calculations using the microscopic 'rotor + particle(s)' model. (author)

  10. The Silicon Vertex Detector for b-tagging at Belle II

    International Nuclear Information System (INIS)

    Valentan, M.

    2013-01-01

    The Belle experiment at KEK (Tsukuba, Japan) was successfully operated from 1999 until 2010 and confirmed the theoretical predictions of CP violation. In order to increase the beam intensity, a major upgrade of the KEKB collider is foreseen until 2015. The final goal is to reach a luminosity of 8 x 10 35 cm -2 s -1 , which is about 40 times higher than the previous peak value. This also implies changes to the Belle detector and its innermost tracking subdetector, the SVD (Silicon Vertex Detector), in particular. The SVD will be completely replaced, as it had already operated close to its limits in the past. All other subsystems will also be upgraded. This leads to the new Belle II experiment. The aim of Belle II is to search for deviations from the Standard Model of particle physics by providing extremely precise measurements of rare particle decays, thus representing a complementary approach to the direct searches performed at high energy hadron colliders. The upgraded SuperKEKB machine will collide electrons and positrons at the center-of-mass energy of excited states of the Y-particle, which hereafter decays to a B meson and its anti-particle. The decay vertices of these mesons have to be precisely measured by the Belle II SVD, together with the PXD (PiXel Detector) and the CDC (Central Drift Chamber). This allows the measurement of time-dependent, mixing-induced CP asymmetry. In addition, the SVD measures vertex information in other decay channels involving D meson and tau lepton decays. Since the collision energy is quite low (around 10 GeV), the emerging particles have low momentum and are subject to strong multiple scattering when traversing material. Therefore, all sensors of the Belle II SVD have to be optimised in terms of material thickness, while preserving high signal yield and position measurement accuracy. This will be possible by the development of thin, double-sided silicon microstrip sensors. This PhD thesis includes the physics motivation for

  11. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Time-of-flight analysis of charge-exchange neutral particles from the TORTUR II plasma

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.

    1981-10-01

    A disc chopper for time-of-flight analysis of fast neutral particles was constructed for the determination of the ion energy spectrum at lower energies than can be obtained by conventional electro-magnetic analyzers. The method has been applied to the TORTUR II tokamak. The chopper and detection system are described and the measurements are presented. For the interpretation of the results of the measurements a data analysis procedure was developed. The influence of reflections of neutrals at the liner wall showed to be important in the calculations of the neutral density profile at the plasma edge. The neutral energy spectrum in the lower energy range is strongly pronounced by this effect

  13. Generalization of the variational principle and the Hohenberg and Kohn theorems for excited states of Fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gonis, A., E-mail: gonis@comcast.net

    2017-01-05

    Through the entanglement of a collection of K non-interacting replicas of a system of N interacting Fermions, and making use of the properties of reduced density matrices the variational principle and the theorems of Hohenberg and Kohn are generalized to excited states. The generalization of the variational principle makes use of the natural orbitals of an N-particle density matrix describing the state of lowest energy of the entangled state. The extension of the theorems of Hohenberg and Kohn is based on the ground-state formulation of density functional theory but with a new interpretation of the concept of a ground state: It is the state of lowest energy of a system of KN Fermions that is described in terms of the excited states of the N-particle interacting system. This straightforward implementation of the line of reasoning of ground-state density functional theory to a new domain leads to a unique and logically valid extension of the theory to excited states that allows the systematic treatment of all states in the spectrum of the Hamiltonian of an interacting system. - Highlights: • Use of entanglement in connection with the properties of density matrices. • An anti-symmetric entangled state of order KN expressed in terms of excited states of an interacting N-particle system.

  14. Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    2005-01-01

    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method

  15. Review of particle properties

    International Nuclear Information System (INIS)

    Bricman, C.; Dionisi, C.; Hemingway, R.J.; Mazzucato, M.; Montanet, L.; Barash-Schmidt, N.; Crawford, R.C.; Roos, M.; Barbaro-Galtieri, A.; Horne, C.P.; Kelly, R.L.; Losty, M.J.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Armstrong, B.

    1978-01-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available. (Auth.)

  16. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  17. Parametric excitation of very low frequency (VLF) electromagnetic whistler waves and interaction with energetic electrons in radiation belt

    Science.gov (United States)

    Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.

    2018-04-01

    The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.

  18. Nucleon and composite-particle production in spallation reactions studied with the multi-purpose detector NESSI

    International Nuclear Information System (INIS)

    Herbach, C.M.; Hilscher, D.; Jahnke, U.; Tishchenko, V.G.; Galin, J.; Lott, B.; Letourneau, A.; Peghaire, A.; Filges, D.; Goldenbaum, F.; Nuenighoff, K.; Schaal, H.; Sterzenbach, G.; Wohlmuther, M.; Pienkowski, L.; Kostecke, D.; Schroeder, W.U.; Toke, J.

    2003-01-01

    NESSI, a 4π-detector for neutrons and charged particles, was used in studies of proton-induced spallation reactions at the COSY facility. Due to the high detection efficiency of NESSI for particles evaporated from excited nuclei, measured particle multiplicities provide event-by-event information on the nuclear excitation energy. Data obtained for proton-induced reactions on thin targets ranging from Al to U and proton energies from 0.8 to 2.5 GeV are compared with model predictions. (orig.)

  19. THE POSSIBLE ROLE OF CORONAL STREAMERS AS MAGNETICALLY CLOSED STRUCTURES IN SHOCK-INDUCED ENERGETIC ELECTRONS AND METRIC TYPE II RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Wang, Bing; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2015-01-10

    Two solar type II radio bursts, separated by ∼24 hr in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find that the type II emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and type II excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulation for electron dynamics within a large-scale partially closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap via which the electrons are sent back to the shock front multiple times and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300 eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important for the generation of more metric type IIs. This study also provides an explanation of the general ending frequencies of metric type IIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary type IIs.

  20. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  1. JANUS - A setup for low-energy Coulomb excitation at ReA3

    Science.gov (United States)

    Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.

    2018-03-01

    A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.

  2. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  3. Probing clustering in excited alpha-conjugate nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Borderie, B., E-mail: borderie@ipno.in2p3.fr [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); Raduta, Ad.R. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Ademard, G.; Rivet, M.F. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); De Filippo, E. [INFN, Sezione di Catania (Italy); Geraci, E. [INFN, Sezione di Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania (Italy); INFN, Sezione di Bologna and Dipartimento di Fisica, Università di Bologna (Italy); Le Neindre, N. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); LPC, CNRS/IN2P3, Ensicaen, Université de Caen, Caen (France); Alba, R.; Amorini, F. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Cardella, G. [INFN, Sezione di Catania (Italy); Chatterjee, M. [Saha Institute of Nuclear Physics, Kolkata (India); Guinet, D.; Lautesse, P. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Claude Bernard Lyon 1, Université de Lyon, Villeurbanne (France); La Guidara, E. [INFN, Sezione di Catania (Italy); CSFNSM, Catania (Italy); Lanzalone, G. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Facoltá di Ingegneria e Architettura, Università Kore, Enna (Italy); Lanzano, G. [INFN, Sezione di Catania (Italy); and others

    2016-04-10

    The fragmentation of quasi-projectiles from the nuclear reaction {sup 40}Ca+{sup 12}C at 25 MeV per nucleon bombarding energy was used to produce α-emission sources. From a careful selection of these sources provided by a complete detection and from comparisons with models of sequential and simultaneous decays, evidence in favor of α-particle clustering from excited {sup 16}O, {sup 20}Ne and {sup 24}Mg is reported.

  4. Coulomb excitation of the proton-dripline nucleus Na20

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-10-01

    The low-energy structure of the proton dripline nucleus Na20 has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon Na20 beam of ~5×106 ions/s was Coulomb excited by a 0.5-mg/cm2natTi target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while γ rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2+ ground state to the first excited 3+ and 4+ states was observed, and B(λL) values were determined using the 2+→0+ de-excitation in Ti48 as a reference. The resulting B(λL)↓ values are B(E2;3+→2+)=55±6e2fm4 (17.0±1.9 W.u.), B(E2;4+→2+)=35.7±5.7e2fm4 (11.1±1.8 W.u.), and B(M1;4+→3+)=0.154±0.030μN2 (0.086±0.017 W.u.). These measurements provide the first experimental determination of B(λL) values for this proton dripline nucleus of astrophysical interest.

  5. Inelastic two composite particle systems scattering at high energy

    International Nuclear Information System (INIS)

    Zhang Yushun.

    1986-11-01

    In this paper, by using the collective coordinate of Bohr and phenomenological deformed optical potentials, the scattering amplitudes of two composite particle systems can be obtained and the collective excitation for two composite particle systems in the scattering process is discussed. (author). 10 refs, 6 figs, 2 tabs

  6. Correlations between the alpha particles and ejectiles in the 208 MeV 14N on 93Nb reaction at three different ejectile angles

    International Nuclear Information System (INIS)

    Fukuda, T.; Ishihara, M.; Tanaka, M.; Ogata, H.; Miura, I.; Inoue, M.; Shimoda, T.; Katori, K.; Nakayama, S.

    1983-01-01

    The in plane correlations between alpha particles and various ejectiles were investigated in the reaction of 208 MeV 14 N on 93 Nb at theta/sub HI/ = +22 0 , +50 0 , and +80 0 . There were three sources of coincident alpha particles: (i) the sequential alpha decay of the excited ejectiles, (ii) the equilibrium alpha emission from the targetlike fragments, and (iii) the nonequilibrium process. Process (i) contributed mainly to the cross sections with the angular range of theta/sub α/ close to theta/sub HI/. Process (ii) contributed to the lowest part of the alpha energy spectra irrespectively of theta/sub HI/ and theta/sub α/. The remaining part was ascribed to process (iii). For this process the differential coincidence cross section of the lower energy part of the alpha particles was approximately factorized as d 4 sigma/dΩ/sub HI/dΩ/sub α/dE/sub HI/dE/sub α/ = K (d 2 sigma/dΩ/sub HI/dE/sub HI/)/sub singles/ (d 2 sigma/dΩ/sub α/dE/sub α/)/sub singles/ with Kapprox.0.4/b, whereas the higher energy part of the alpha particles emitted at the forward angles had a tendency to coincide weakly with the ejectiles emitted at the backward angles (theta/sub HI/ = +50 0 and +80 0 ) as compared to the lower energy part of the alpha particles

  7. Cross sections for Balmer-α excitation in heavy particle collisions

    International Nuclear Information System (INIS)

    Bae, Y.K.

    1982-01-01

    Doppler shifted and unshifted Balmer-α radiation has been observed in the absolute sense for energetic H + , H 2 + and H 3 + ions incident on molecular hydrogen by the method of decay inside the target within the energy range of 20 keV to 150 keV. Most of the measurements were based on single-collision conditions, but a simple thick-target experiment has been tried for the case of dissociative excitation of the target molecules by H atoms. The Balmer-α radiation emitted by hydrogen and deuterium beams has been used as a diagnostic method of neutral beam parameters. One important neutral beam parameter is the species mix between H + , H 2 + and H 3 + ion currents produced by the ion source and accelerator. This species mix can be resolved by analysis of the Balmer-α radiation if the beam is observed along an off normal axis with sufficient spectral resolution to separate the Doppler shifted radiation components from each other. An impediment to this approach to measuring the ion species is that some of the required cross sections have not been measured. This is the motivation for the presented experimental work. A home made monochromator gave enough optical throughput and spectral resolution for separation of the Doppler shifted lines from the unshifted lines. By selectively varying the target pressure and the distance of travel into the target prior to the observation region, excitation cross sections for three different angular momentum states (3s, 3p and 3d) have been determined. Combinations of a linear polarizer and a half-wave plate were used for polarization measurement

  8. Excitation of non-normal parity states by inelastic proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Emery, G. T. [Indiana Univ. (USA). Cyclotron Facility; Ikegami, Hidetsugu; Muraoka, Mitsuo [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    This is a review of the works done at the Indiana University Cyclotron Facility. The purposes of works are to find excitations that should have especially simple particle-hole structure in proton inelastic scattering, to use the data on these excitations to try to understand the mechanism and the effective interaction for the (p, p') reaction in this energy range, and to go on to study the nuclear structure involved in less simple excitation. As an example, the single-nucleon level diagram for the region of Si-28 is presented. A high spin state was made, and its spin-parity was 6/sup -/. It was tried to interpret the data in terms of a on-step distorted-wave impulse approximation. The optical model parameters derived from the extensive and precise elastic scattering results were used. The cross sections for the excitation of the 6/sup -/ states found in various reactions were not large. The T = 1 state is mainly excited by the direct tensor interaction, while the T = 0 state gets its strength mainly from the knock-on exchange contribution of both the tensor and spin-orbit interactions. Experiments on Pb-208 and Fe-54 are being performed.

  9. The three-body forces with two δ excitation and N+d scattering

    International Nuclear Information System (INIS)

    Uzu, Eizo; Koike, Yasuro; Yamaguchi, Masahiro; Kamada, Hiroyuki

    2005-01-01

    The differential cross section of 250 MeV N+d scattering was different from the results of Faddeev calculation. The possibility of δ excitation of two nucleons of deuteron in the initial state is considered and the degree of freedom of δδ excitation is applied to improve the three-body force effects. The system consisted of two nucleons, nucleon and δ particle, and two δparticles is called by NN, Nδ and δδ system, respectively. The first calculation was carried out by using AV14 potential as ordinary nuclear force and AV28 as interaction with Nδ and δδ as three-body. The results of calculation for 250 and 135 MeV N+d scattering showed no effect on the differential cross section but the large effect on the tensor resolving power. (S.Y.)

  10. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  11. Coherence and correlation in doubly excited heliumlike atoms

    International Nuclear Information System (INIS)

    Burgdoerfer, J.; Morgenstern, R.

    1988-01-01

    We analyze properties of the density matrix of doubly excited two-electron systems formed in inelastic collisions. Formulas for the two-particle joint angular probability density, the angular correlation function, and the reduced single-particle density are derived. Of particular interest is the interplay between the intrinsic correlations of the stationary two-electron state and collisionally induced coherences. We focus on its effects on the correlated and single-particle motion of the electrons. If one chooses approximate stationary wave functions reflecting the approximate O(4) x O(4)contains(4) dynamical symmetry, a simple quasiclassical interpretation of coherence and correlation in terms of shapes and modes of the relative motion of Kepler orbits can be given. The present description is applied to recent experimental results by Van der Straten and Morgenstern [Comments At. Mol. Phys. 19, 243 (1986)

  12. Angiotensin II potentiates adrenergic and muscarinic modulation of guinea pig intracardiac neurons.

    Science.gov (United States)

    Girasole, Allison E; Palmer, Christopher P; Corrado, Samantha L; Marie Southerland, E; Ardell, Jeffrey L; Hardwick, Jean C

    2011-11-01

    The intrinsic cardiac plexus represents a major peripheral integration site for neuronal, hormonal, and locally produced neuromodulators controlling efferent neuronal output to the heart. This study examined the interdependence of norepinephrine, muscarinic agonists, and ANG II, to modulate intrinsic cardiac neuronal activity. Intracellular voltage recordings from whole-mount preparations of the guinea pig cardiac plexus were used to determine changes in active and passive electrical properties of individual intrinsic cardiac neurons. Application of either adrenergic or muscarinic agonists induced changes in neuronal resting membrane potentials, decreased afterhyperpolarization duration of single action potentials, and increased neuronal excitability. Adrenergic responses were inhibited by removal of extracellular calcium ions, while muscarinic responses were inhibited by application of TEA. The adrenergic responses were heterogeneous, responding to a variety of receptor-specific agonists (phenylephrine, clonidine, dobutamine, and terbutaline), although α-receptor agonists produced the most frequent responses. Application of ANG II alone produced a significant increase in excitability, while application of ANG II in combination with either adrenergic or muscarinic agonists produced a much larger potentiation of excitability. The ANG II-induced modulation of firing was blocked by the angiotensin type 2 (AT(2)) receptor inhibitor PD 123319 and was mimicked by the AT(2) receptor agonist CGP-42112A. AT(1) receptor blockade with telmasartin did not alter neuronal responses to ANG II. These data demonstrate that ANG II potentiates both muscarinically and adrenergically mediated activation of intrinsic cardiac neurons, doing so primarily via AT(2) receptor-dependent mechanisms. These neurohumoral interactions may be fundamental to regulation of neuronal excitability within the intrinsic cardiac nervous system.

  13. Acoustofluidics 4: Piezoelectricity and application in the excitation of acoustic fields for ultrasonic particle manipulation.

    Science.gov (United States)

    Dual, Jurg; Möller, Dirk

    2012-02-07

    Piezoelectric materials are widely used in the excitation of MHz frequency vibrations in devices for ultrasonic manipulation. An applied electrical voltage is transformed into mechanical stress, strain and displacement. Piezoelectric elements can be used in either a resonant or non-resonant manner. Depending on the desired motion the piezoelectric longitudinal, transverse or shear effects are exploited. Because of the coupling between electrical and mechanical quantities in the constitutive law the modelling of devices turns out to be quite complex. In this paper, the general equations that need to be used are delineated. For a one-dimensional actuator the underlying physics is described, including the consequences resulting for the characterization of devices. For a practical setup used in ultrasonic manipulation, finite element models are used to model the complete system, including piezoelectric excitation, solid motion and acoustic field. It is shown, how proper tailoring of transducer and electrodes allows selective excitation of desired modes.

  14. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  15. Safety training and safe operating procedures written for PBFA [Particle Beam Fusion Accelerator] II and applicable to other pulsed power facilities

    International Nuclear Information System (INIS)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards

  16. The alpha-particle and shell models of the nucleus

    International Nuclear Information System (INIS)

    Perring, J.K.; Skyrme, T.H.R.

    1994-01-01

    It is shown that it is possible to write down α-particle wave functions for the ground states of 8 Be, 12 C and 16 O, which become, when antisymmetrized, identical with shell-model wave functions. The α-particle functions are used to obtain potentials which can then be used to derive wave functions and energies of excited states. Most of the low-lying states of 16 O are obtained in this way, qualitative agreement with experiment being found. The shell structure of the 0 + level at 6·06 MeV is analyzed, and is found to consist largely of single-particle excitations. The lifetime for pair-production is calculated, and found to be comparable with the experimental value. The validity of the method is discussed, and comparison made with shell-model calculations. (author). 5 refs, 1 tab

  17. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel

    Science.gov (United States)

    Manjuladevi, M.; Anitha, R.; Manonmani, S.

    2018-03-01

    The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren's model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.

  18. What's Next for Particle Physics?

    Science.gov (United States)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  19. 8 nm nanodiamonds as markers for 2 photon excited luminescent microscopy

    International Nuclear Information System (INIS)

    Kharin, A; Rogov, A; Bonacina, L; Geloen, A; Lysenko, V

    2016-01-01

    Structural and luminescent properties of stable suspensions of fluorescent nanodiamonds were investigated. Measurement of the effective hydrodynamic radius yields particles less than 30 nm diameter, while the TEM measurements made on the same particles shows average diameter about 8 nm. It was found that NDs have relatively low toxicity. Upon incubation, 3T3-L1 cells spontaneously take up nanodiamonds that uniformly distribute in cells cytoplasm. The possibility of fluorescent imaging using both single ore two-photon excitation was shown. (paper)

  20. Compósitos de borracha natural ou policloropreno e celulose II: influência do tamanho de partícula Natural rubber or chloroprene rubber and cellulose II composites: influence of particle size

    Directory of Open Access Journals (Sweden)

    Bruno de A. Napolitano

    2004-01-01

    Full Text Available O objetivo deste trabalho foi o desenvolvimento de compósitos claros com propriedades de interesse tecnológico utilizando elastômeros com diferentes polaridades. Para que este objetivo fosse atingido, celulose II em pó foi usada como carga, em borracha natural (NR ou policloropreno (CR. A celulose II foi obtida por coagulação da solução de xantato de celulose em meio ácido, sob agitação constante e à temperatura ambiente, constituindo uma nova forma de obtenção deste tipo de carga. Compósitos com 10 phr de celulose II com NR e CR, respectivamente, foram desenvolvidos tendo como variável o tamanho de partícula da carga. As propriedades mecânicas e os aspectos microscópicos dos diferentes compósitos foram avaliados e comparados com aqueles das formulações sem carga. Os resultados permitiram identificar o compósito como o de melhor resultado, influenciado pela polaridade da matriz elastomérica e pelo tamanho de partícula da carga, conseqüência das condições de moagem usadas.The aim of this work was to develop light composites with properties of technological interest by using elastomers of different polarities. This was achieved by employing cellulose II, in the powder form, as filler in natural rubber (NR and chloroprene (CR. Cellulose II was obtained by coagulation of cellulose xanthate solution, in acid medium, under stirring and at room temperature, which represents, to our knowledge, a new way of obtaining this type of filler. Composites with 10phr of cellulose II and NR or CR were prepared having the particle size as variable. The mechanical properties and the microscopic aspect of the different composites were evaluated and compared with compounds without filler. The results indicated best results for the CR composite, influenced by the polarity of the elastomeric matrix and by the particle size, as a consequence of the milling conditions of the filler used.

  1. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  2. A Novel On-Chip Impedance Sensor for the Detection of Particle Contamination in Hydraulic Oil

    Directory of Open Access Journals (Sweden)

    Hongpeng Zhang

    2017-08-01

    Full Text Available A novel impedance sensor based on a microfluidic chip is presented. The sensor consists of two single-layer coils and a straight micro-channel, and can detect, not only ferromagnetic and non-ferromagnetic particles in oil as an inductive sensor, but also, water droplets and air bubbles in oil as a capacitive sensor. The experiments are carried out at different excitation frequencies, number of coil turns and particle sizes. For the inductance detection, the inductance signals are found to increase with the excitation frequency and the noise is constant; both the inductance signals and the noise increase with the number of coil turns, but because the noise increases at a faster rate than the signal, the signal-to-noise ratio decreases with the number of coil turns. We demonstrate the successful detection of 40 μm iron particles and 110 μm copper particles using the coil with 20 turns at the excitation frequency of 2 MHz. For the capacitance detection, capacitance signals decrease with the excitation frequency and the noise is constant; the capacitance signals decrease with the number of coil turns, while the noise increases, thus, the signal-to-noise ratio decreases with the number of coil turns. We can detect 100 μm water droplets and 180 μm bubbles successfully using the coil with 20 turns at the excitation frequency of 0.3 MHz.

  3. A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-12-15

    In the first part is studied the properties of atoms excited by the passage of {alpha} particles through the various rare gases at atmospheric pressure. A spectral analysis of the emitted light showed that certain impurities play an important part in producing the fluorescence, and it has led to the conclusion that the light emission contains at least two components - one very short - lived due to the direct deexcitation of the rare gas, the other relatively slower due to the energy transfers to the impurity. The measurement of the life-time of the excited states has confirmed this foregoing hypothesis, the rapid part of the impulse is extremely short: less than 2,25.10{sup -9} s in the case of xenon; the slower part has a life-time depending directly on the nitrogen concentration, nitrogen being the impurity giving the largest effect in all cases. The study of rare gases under the influence of an electric field has made it possible to show that the amount of light produced by an {alpha} particle can be multiplied (by 60, for example, in a field of 600 V:cm) so that the luminescent efficiency is greater than in the case of INaTI. In the second part the characteristics of the rare gases acting as scintillators is examined, the most important property being the absence of fluorescence saturation when the intensity of the excitation incident on the gas is very large. This, together with the very short time of scintillation has made it possible to study a certain number of nuclear physical applications (heavy particle energy-measurements, kinetic studies on nuclear reactors, neutron spectroscopy). (author) [French] On etudie dans la premiere partie les proprietes des atomes excites par le passage de particules {alpha} dans les differents gaz rares a la pression atmospherique. L'etude spectrale de la lumiere emise a montre que certaines impuretes jouent un role considerable dans la fluorescence et on a ete amene a penser que l'emission de lumiere comporte au moins deux

  4. Electron-impact excitation of Fe II: Effective collision strengths for optically allowed fine-structure transitions

    International Nuclear Information System (INIS)

    Ramsbottom, C.A.

    2009-01-01

    In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Fe II. We consider specifically the optically allowed lines for transitions from the 3d 6 4s and 3d 7 even parity configuration states to the 3d 6 4p odd parity configuration levels. The parallel suite of Breit-Pauli codes are utilized to compute the collision cross-sections where relativistic effects are included explicitly in both the target and the scattering approximation. A total of 100 LS or 262-jj levels formed from the basis configurations 3d 6 4s, 3d 7 and 3d 6 4p were included in the wavefunction representation of the target, including all doublet, quartet and sextet terms. The Maxwellian averaged effective collision strengths are computed across a wide range of electron temperatures from 100 to 100,000 K, temperatures of importance in astrophysical and plasma applications. A detailed comparison is made with previous works and significant differences were found to occur for some of the transitions considered. We conclude that in order to obtain converged collision strengths and effective collision strengths for these allowed transitions it is necessary to include contributions from partial waves up to L = 50 explicitly in the calculation, and in addition, account for contributions from even higher partial waves through a 'top up' procedure.

  5. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    Science.gov (United States)

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  6. Electronically excited C 2 from laser photodissociated C 60

    Science.gov (United States)

    Arepalli, S.; Scott, C. D.; Nikolaev, P.; Smalley, R. E.

    2000-03-01

    Spectral and transient emission measurements are made of radiation from products of laser excitation of buckminsterfullerene (C 60) vapor diluted in argon at 973 K. The principal radiation is from the Swan band system of C 2 and, at early times, also from a black-body continuum. Transient measurements indicate two characteristic periods of decay 2 and 50 μs long, with characteristic decay times of ˜0.3 and 5 μs, respectively. The first period is thought to be associated with decomposition and radiative cooling of C 60 molecules or nano-sized carbon particles and the second period continues with decomposition products of laser excited C 60, C 58, C 56, etc.

  7. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  8. Analysis of orbitally excited B-mesons

    CERN Document Server

    Albrecht, Zoltan; Quast, Gunter

    2003-01-01

    This thesis reports on the study of orbitally excited B** mesons in DELPHI b-events taken in the years 1994 to 2000 with the DELPHI detector at the LEP collider. The analyses presented represent the result of applying much improved and extended techniques of spectroscopy since the first DELPHI publication in 1995. A major improvement has occurred in the area of particle identification, where a neural network approach has been implemented in the DELPHI software package. Developments in the area of neural networks have led to much improved enrichment of the excited B states. The Bˆ{**} neural networks identify, on a track-by-track basis, the decay pion/kaon originating from the Bˆ{**} decay, suppressing background and keeping signal events in an efficient way. To improve detector resolution, a further application of neural networks has been applied to reconstruct the underlying Q-value. The corresponding network gives a correction on existing measurements of the Q-value in the form of a probability density fu...

  9. Search for heavy long-lived particles that decay to photons at CDF II.

    Science.gov (United States)

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-09-21

    We present the first search for heavy, long-lived particles that decay to photons at a hadron collider. We use a sample of gamma + jet + missing transverse energy events in pp[over] collisions at square root[s] = 1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb(-1) of collision data, we observe 2 events, consistent with the background estimate of 1.3+/-0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits in a supersymmetric model with [Formula: see text] and place the world-best 95% C.L. lower limit on the [Formula: see text] mass of 101 GeV/c(2) at [Formula: see text].

  10. Dispersion relations in three-particle systems

    International Nuclear Information System (INIS)

    Grach, I.L.; Harodetskij, I.M.; Shmatikov, M.Zh.

    1979-01-01

    Positions of all dynamical singularities of the triangular nonrelativistic diagram are calculated including the form factors. The jumps of the amplitude are written in an analitical form. The dispersion method predictions for bound states in the three-particle system are compared with the results of the Amado exactly solvable model. It is shown that the one-channel N/D method is equivalent to the pole approximation in the Amado model, and that the three-particle s channel unitarity should be taken into account calculating (in the dispersion method) the ground and excited states of the three-particle system. The relation of the three-particle unitary contribution to the Thomas theorem and Efimov effect is briefly discussed

  11. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  12. Fluorescence F 0 of photosystems II and I in developing C3 and C 4 leaves, and implications on regulation of excitation balance.

    Science.gov (United States)

    Peterson, Richard B; Oja, Vello; Eichelmann, Hillar; Bichele, Irina; Dall'Osto, Luca; Laisk, Agu

    2014-10-01

    This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two

  13. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  14. The inelastic scattering of medium energy α particles

    International Nuclear Information System (INIS)

    Crut, M.

    1960-01-01

    The aim of this work is to find out what are the properties of the so-called 'anomalous states' in medium weight nuclei. These states preferentially excited in the inelastic scattering of medium energy charged particles have an excitation energy at about 4 MeV for nuclei with Z ≤ 29 and in the range 2-3 MeV for high Z nuclei. From a combination of angular distribution data in the elastic and inelastic scattering of 30 MeV α particles, and correlation data between inelastic α particles and deexcitation γ rays, we show that for even-even nuclei, we can attribute spin 3 and parity minus to these 'anomalous states'. This is quite in agreement with the interpretation of these levels suggested by Lane as due to collective octupole oscillations. We give a resume of the theories used in the analysis of the data and a description of the experimental set-up. (author) [fr

  15. Electrical properties of Lupinus angustifolius L. stem. II. Accommodation and anode break excitation

    Directory of Open Access Journals (Sweden)

    Tadeusz Zawadzki

    2015-01-01

    Full Text Available Under electrical stimulation of Lupinus stem phenomena of accommodation and anode break excitation appear. Their characteristic is the same as in the axon or nerve. Only their duration is about 103-104 longer in plants. The constant characterizing the rate of accommodation was calculated. A limiting threshold value was found beyond which excitation occurs, irrespective of the rate of stimulus rise (voltage gradient. The accommodation rate is approximately constant, whereas the range of accommodation varies and is dependent on the difference between the rheobase value and the limiting threshold value. Hence plants with a low rheobase are characterized by a wider range of accommodation. It is suggested that the changes in potential (including AP recorded on the stem surface are connected with changes of the potential on cell membranes (Sibaoka, 1962.

  16. Nuclear spin-orbit splitting from an intermediate Δ excitation

    International Nuclear Information System (INIS)

    Ohta, K.; Terasawa, T.; Tohyama, M.

    1980-01-01

    The strength of the single particle spin-orbit potential is calculated from the two pion exchange box diagrams involving an intermediate Δ(1232) resonance excitation by taking account of the exclusion principle for the intermediate nucleon states. The effect of the rho meson is also considered. The predicted strength is found to account for a substantial part of the empirical spin-orbit splittings

  17. Connectivity, excitability and activity patterns in neuronal networks

    International Nuclear Information System (INIS)

    Le Feber, Joost; Stoyanova, Irina I; Chiappalone, Michela

    2014-01-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFP i,j ) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFP i,j with the autocorrelation of i (i.e. CFP i,i ), to obtain the single pulse response (SPR i,j )—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression. (papers)

  18. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  19. Method of determining the characteristics of circulatory systems using tracer particles, making the particles and radioactive particles for use in the method

    International Nuclear Information System (INIS)

    Pratt, F.P.; Gagnon, D.L.

    1981-01-01

    In the method described tracer particles consist of ion exchange resin cores labelled with suitable radioactive ions or with a nuclide excitable by X-rays, and have a non-leaching polymeric coating. The particles are introduced into the system and are detected by visual inspection, radiation detection or X-ray fluorescence techniques. The cores are labelled using conventional batch ion exchange techniques. Coated tracers are produced by contacting a monomer, preferably furfuryl alcohol, with cores bearing catalytic ions (hydroxyl or hydrogen) on the surface which catalyse the monomer to form a polymer. The tracer particles in a physiologically acceptable liquid carrier are useful in clinical and medical investigations of blood flow. They can also be used for flow measurement in chemical process control streams. (U.K.)

  20. Diagnostics development for E-beam excited air channels

    Science.gov (United States)

    Eckstrom, D. J.; Dickenson, J. S.

    1982-02-01

    As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.

  1. Spin analysis of supersymmetric particles

    International Nuclear Information System (INIS)

    Choi, S.Y.; Martyn, H.U.

    2006-12-01

    The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)

  2. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.

    1995-01-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical

  3. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  4. Search and analysis of superdeformed and oblate states in {sup 193}Pb nucleus with the EUROGAM II multidetector array; Recherche et analyse des etats superdeformes et aplatis dans le noyau {sup 193}Pb a l'aide du multidetecteur EUROGAM II

    Energy Technology Data Exchange (ETDEWEB)

    Ducroux, L [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; [Universite Claude Bernard, 69 - Lyon (France)

    1997-01-09

    This work is devoted to the search and analysis of superdeformed and oblate states in {sup 193}Pb nucleus. High spin states of this isotope, populated via fusion-evaporation reaction {sup 168}Er ({sup 30}Si, 5n) {sup 193}Pb, have been studied with the EUROGAM II {gamma} multidetector array located near the VIVITRON accelerator in Strasbourg. New sorting and analysis programs have been developed in particular related to the background treatment. Angular distribution and linear polarisation analysis allowed us to assign the {gamma} transition multipolarities. Five dipole bands, corresponding to a weakly oblate-deformed shape of the nucleus, have been observed and connected to the low-lying states. The level scheme has been considerably extended up to a spin of 61/2 {Dirac_h} and an excitation energy of about 8 MeV. These structures have been interpreted as based on a high-K two-quasi-proton excitation coupled to rotation aligned quasi-neutrons. Six superdeformed bands, corresponding to a high prolate-deformed shape of the nucleus, have been observed. These six bands have been interpreted as three pairs of signature partners based on quasineutron excitations. The extraction of the g-factor of a K=9/2 neutron superdeformed orbital has been done for the first time in lead isotopes, giving access to the magnetic properties of the extreme nuclear matter. All these results have been discussed in terms of microscopic mean field self-consistent Hartree-Fock calculations using the microscopic 'rotor + particle(s)' model. (author)

  5. Non local theory of excitations applied to the Hubbard model

    International Nuclear Information System (INIS)

    Kakehashi, Y; Nakamura, T; Fulde, P

    2010-01-01

    We propose a nonlocal theory of single-particle excitations. It is based on an off-diagonal effective medium and the projection operator method for treating the retarded Green function. The theory determines the nonlocal effective medium matrix elements by requiring that they are consistent with those of the self-energy of the Green function. This arrows for a description of long-range intersite correlations with high resolution in momentum space. Numerical study for the half-filled Hubbard model on the simple cubic lattice demonstrates that the theory is applicable to the strong correlation regime as well as the intermediate regime of Coulomb interaction strength. Furthermore the results show that nonlocal excitations cause sub-bands in the strong Coulomb interaction regime due to strong antiferromagnetic correlations, decrease the quasi-particle peak on the Fermi level with increasing Coulomb interaction, and shift the critical Coulomb interaction U C2 for the divergence of effective mass towards higher energies at least by a factor of two as compared with that in the single-site approximation.

  6. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Gennady Shvets; Nathaniel J. Fisch; Alexander Pukhov

    2001-01-01

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined

  7. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    Science.gov (United States)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  8. Two-photon excitation of higher sodium levels and population transfer in a flame

    International Nuclear Information System (INIS)

    Dijk, C.A. van.

    1978-01-01

    Studies of the higher excited states of alkali atoms in the inelastic collisional interaction between excited alkali atoms and flame particles have been made. The emphasis is on an exploration of the possibilities that a flame, in combination with a laser, offers for such studies, rather than on obtaining detailed information concerning collisional transitions. Sodium atoms in a H 2 -O 2 -Ar flame at atmospheric pressure and a temperature of 1800 K were chosen as the system to be investigated. (C.F.)

  9. Black Hole Entropy from Indistinguishable Quantum Geometric Excitations

    Directory of Open Access Journals (Sweden)

    Abhishek Majhi

    2016-01-01

    Full Text Available In loop quantum gravity the quantum geometry of a black hole horizon consists of discrete nonperturbative quantum geometric excitations (or punctures labeled by spins, which are responsible for the quantum area of the horizon. If these punctures are compared to a gas of particles, then the spins associated with the punctures can be viewed as single puncture area levels analogous to single particle energy levels. Consequently, if we assume these punctures to be indistinguishable, the microstate count for the horizon resembles that of Bose-Einstein counting formula for gas of particles. For the Bekenstein-Hawking area law to follow from the entropy calculation in the large area limit, the Barbero-Immirzi parameter (γ approximately takes a constant value. As a by-product, we are able to speculate the state counting formula for the SU(2 quantum Chern-Simons theory coupled to indistinguishable sources in the weak coupling limit.

  10. Excitation states in type-II ZnSe/BeTe quantum wells

    International Nuclear Information System (INIS)

    Platonov, A.V.; Kochereshko, V.P.; Yakovlev, D.R.; Zehnder, U.; Ossau, W.; Fisher, F.; Litz, Th.; Waag, A.; Landwehr, G.

    1997-01-01

    We present an optical investigation of novel heterostructures based on beryllium chalcogenides with a type-I and type-II band alignment. In the type-II quantum well structures (ZnSe/BeTe) we observed a strong exciton transition involving an electron confined in the conduction band well and a hole localized in the valence band barrier (both in ZnSe layer). This transition is drastically broadened by the temperature increase due to enhanced exciton-acoustic phonon interaction. (author)

  11. Scaling of multiplicity distribution in hadron collisions and diffractive-excitation like models

    International Nuclear Information System (INIS)

    Buras, A.J.; Dethlefsen, J.M.; Koba, Z.

    1974-01-01

    Multiplicity distribution of secondary particles in inelastic hadron collision at high energy is studied in the semiclassical impact parameter representation. The scaling function is shown to consist of two factors: one geometrical and the other dynamical. We propose a specific choice of these factors, which describe satisfactorily the elastic scattering, the ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distribution in p-p collisions. Two versions of diffractive-excitation like models (global and local excitation) are presented as interpretation of our choice of dynamical factor. (author)

  12. Zonal flow excitation by Shukla-Varma modes in a nonuniform dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.; Stenflo, L.

    2002-01-01

    The nonlinear coupling between the Shukla-Varma (SV) modes and the zonal flows in a nonuniform dusty magnetoplasma is considered. By using a two-fluid model and the guiding center particle drifts, a pair of coupled mode equations is obtained. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the SV modes. The increment of the parametrically excited zonal flows is presented. The relevance of our investigation to laboratory and space plasmas is discussed

  13. Seismic and cask drop excitation evaluation of the tower shielding reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations. 6 figs

  14. Seismic and cask drop excitation evaluation of the Tower Shielding Reactor

    International Nuclear Information System (INIS)

    Stover, R.L.; Harris, S.P.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations

  15. Excitation of neutron star oscillations by an orbiting mass

    International Nuclear Information System (INIS)

    Ruoff, J.

    2001-01-01

    In this contribution, I present results from a numerical study of the even-parity gravitational radiation generated from a particle orbiting a neutron star. The investigation is focused on those conditions on the orbital parameters that favor the excitation of w-modes. It is found that, for astrophysically realistic conditions, there is practically no w-mode contribution to the emitted radiation. Only for particles with ultra-relativistic orbital speeds ≥ 0.9c, the w-mode does significantly contribute to the total emitted gravitational energy. To obtain reliable results, a way is presented to construct consistent initial data which contain as little as possible initial radiation. (author)

  16. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  17. Quasi-classical derivation of the Dirac and one-particle Schroedinger equations

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1990-08-01

    The quasi-classical approach, in which particles are regarded as extended periodic excitations of a classical nonlinear field, is for the first time applied quantitatively in the quantum domain. It is shown that the twofold intrinsic 'spin' degree of freedom possessed by an electron can be interpreted in a purely classical way, and that the Lorentz covariant incorporation of this degree of freedom requires that the spacetime evolution of an electron excitation in a prescribed external field be given by the Dirac equation and hence, in the nonrelativistic limit, by the Pauli or Schroedinger one-particle equations. 17 refs

  18. Electron-impact excitation of complex atoms and ions

    International Nuclear Information System (INIS)

    Burke, P.G.; Burke, V.M.; Dunseath, K.M.

    1994-01-01

    A new R-matrix approach for calculating cross sections and rate coefficients for electron-impact excitation of complex atoms and ions is described. This approach, based on an expansion of the total wavefunction in target configurations rather than in individual target states and taking advantage of the special status of the scattered electron in the collisional wavefunction, enables the angular integrals to be performed very much more efficiently than hitherto. It also enables electron correlation effects in the target and in the electron-target collision complex to be treated consistently, eliminating pseudo-resonances which have caused serious difficulties in some earlier work. A major new program package RMATRIX II has been written that implements this approach and, as an example, electron-impact excitation of Fe 2+ is considered where the four target configurations 3d 6 , 3d 5 4s, 3d 5 4p and 3d 5 4d are retained in the expansion of the total wavefunction. RMATRIX II is compared with the standard R-matrix program package and is found to be much more efficient showing that accurate electron scattering calculations involving complex targets, such as the astrophysically important low ionization stages of iron-peak elements, are now possible. (author)

  19. Production and de excitation of hot nuclei

    International Nuclear Information System (INIS)

    Auger, F.; Faure, B.; Wirleczki, J.P.; Cunsolo, A.; Foti, A.; Plagnol, E.

    1988-01-01

    We studied Kr induced reactions on C, Al and Ti at 26.4, 34.4 and 45.4 MeV/nucleon. The aims of these experiments were to learn about the influence of the incident energy and asymmetry of the system on the incomplete fusion mechanism, that is on the characteristics (E,l) of the nuclei formed in the reactions and on the competition between massive transfer and preequilibrium emission. We also wanted to study the influence of excitation energy and angular momentum of the nuclei on their deexcitation modes, specially on the competition between light particles (n, p, α) and complex fragments (M>4). Considering the available energies (2.8 < ε < 10.5 MeV/nucleon), the grazing and the total masses (96 ≤ M ≤ 132), nuclei with masses around 100 are likely to be formed with very different excitation energies and angular momenta

  20. WCPT4. World Congress on Particle Technology 4

    International Nuclear Information System (INIS)

    2002-01-01

    Particle Technology continues to provide challenges on a daily basis whether they are of academic or industrial interest. It is one of the most exciting interdisciplinary areas in science and engineering and has an enormous variety of applications spanning many industries, some of which include mining, pharmaceuticals, waste treatment, agriculture, food and chemicals. This conference covers various aspects of Particle Technology with presentations (oral and posters) divided in into four main themes: Particle and Bulk Solids Characterisation; Particle Design and New Technologies; Powder Handling and Multiphase Flow and Solid-Fluid Separation processes. Items relevant to INIS have been separately indexed

  1. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16

    International Nuclear Information System (INIS)

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.; Ohta, M.; Utsunomiya, H.

    2013-01-01

    An update of the NACRE compilation [3] is presented. This new compilation, referred to as NACRE II, reports thermonuclear reaction rates for 34 charged-particle induced, two-body exoergic reactions on nuclides with mass number A 6 ≲T⩽10 10 K range. Along with the ‘adopted’ rates, their low and high limits are provided. The new rates are available in electronic form as part of the Brussels Library (BRUSLIB) of nuclear data. The NACRE II rates also supersede the previous NACRE rates in the Nuclear Network Generator (NETGEN) for astrophysics. [ (http://www.astro.ulb.ac.be/databases.html)

  2. Timescale of particle emission using nuclear interferometry

    International Nuclear Information System (INIS)

    Ardouin, D.; Goujdami, D.; Guilbault, F.; Lebrun, C.; Erazmus, B.; Dabrowski, H.; Durand, D.; Lautridou, P.; Boisgard, R.; Quebert, J.; Carjan, N.

    1989-01-01

    A review of meson and baryon correlations at various energies is presented. An attempt, to focus on possible lifetime effects contained in existing data,is made. Data at 94 and 44 MeV/u, where experimental conditions are chosen, trying to study the lifetime of light particle emission using two particle correlations, are discussed. The temperature of a thermalized system is obtained, using the relative population of cluster excited states. It is shown that either quantum statistical fluctuations or Coulomb interactions play an important role in the trends of the correlation-functions at very low relative momenta. In the case of 1 60 and Ar induced reactions on heavy targets, a lifetime of the order of 10 -21 seconds is estimated. Temperature measurements for Ar + Ag system show that part of the excitation energy is not converted into thermal energy

  3. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  4. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  5. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav

    2015-01-01

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  6. Superconductivity and charge transfer excitations in high Tc superconductors

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Alascio, B.; Gagliano, E.; Rojo, A.

    1988-01-01

    We present some numerical results to show that in a simple model which includes Cu 3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters

  7. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  8. Concentration dependence of the light yield and energy resolution of NaI:Tl and CsI:Tl crystals excited by gamma, soft X-rays and alpha particles

    CERN Document Server

    Trefilova, L N; Kovaleva, L V; Zaslavsky, B G; Zosim, D I; Bondarenko, S K

    2002-01-01

    Based on the analysis of light yield dependence on activator concentration for NaI:Tl and CsI:Tl excited by gamma-rays, soft X-rays and alpha-particles, an explanation of the effect of energy resolution enhancement with the rise of Tl content has been proposed. Based on the concept regarding the electron track structure, we proposed an alternative explanation of the intrinsic resolution value. The concept does not take into account the non-proportional response to electrons of different energies and is based on the statistic fluctuation of scintillation photon number formed outside and inside the regions of higher ionization density.

  9. Structure studies on 82Kr by means of the multiple Coulomb excitation

    International Nuclear Information System (INIS)

    Bruessermann, S.

    1985-01-01

    With a 82 Kr beam of the energy 4.6 MeV per nucleon a 208 Pb target was irradiated in order to study the Coulomb excitation of 82 Kr. The experiment has been performed at the Society for Heavy Ion Research (GSI) in Darmstadt. The 82 Kr ions backscattered on the 208 Pb target were detected in a position-sensitive parallel-plate avalanche detector. The γ radiation of the excited 82 Kr particles was detected in 4 Ge(Li) detectors in coincidence with the particles. The spectra corrected regarding the Doppler shift contained 16 lines which permitted to determine by means of known mixing and branching ratios 22 electrical quadrupole transition matrix elements. The experimental excitation energies and the transition probabilities determined in this thesis are compared with different nuclear models, like the asymmetric rotator model, the rotational-vibrational model, the harmonic-oscillator model, the nuclear field theory, the SU(5) limit of the IBA-1, and the IBA-2 model. Thereby within the IBA-2 model a criterium for the symmetry of the wavefunction relative to the proton and neutron contributions is elaborated. Because of this criterium to the 2 1 + state a symmetric structure and to the 2 2 + ,3 states an asymmetric structure is assigned. (orig.) [de

  10. Excitation functions for deuterium-induced reactions on 194Pt near the coulomb barrier

    Czech Academy of Sciences Publication Activity Database

    Kulko, A. A.; Skobelev, N. K.; Kroha, Václav; Penionzhkevich, Y. E.; Mrázek, Jaromír; Burjan, Václav; Hons, Zdeněk; Šimečková, Eva; Piskoř, Štěpán; Kugler, Andrej; Demekhina, N. A.; Sobolev, Yu. G.; Chuvilskaya, T. V.; Shirokova, K.; Kuterbekov, K.

    2012-01-01

    Roč. 9, 6-7 (2012), s. 502-507 ISSN 1547-4771 R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : nucelar reactions * excitation functions * charged particle activation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  11. Decay of the giant quadrupoles resonance and higher excitation states in 40Ca

    International Nuclear Information System (INIS)

    Alamanos, N.; Fernandez, B.; Gillibert, A.

    1991-01-01

    Light charged particles have been measured in coincidence with inelastically scattered fragments from the 40 Ca + 40 Ca reaction at 50 MeV/N. Such a measurement allows to unravel the different reaction mechanisms contributing to the inelastic spectrum: pick-up break-up reactions, knock out and inelastic excitations. The giant quadrupole resonance in 40 Ca is shown to present a 30% non statistical decay branch. A prominent structure at 34 MeV is attributed to target excitation, the decay of this structure is studied

  12. Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Z.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-07-15

    The linear and nonlinear properties of dust-acoustic waves are investigated in a collisionless Thomas-Fermi magnetoplasma, whose constituents are electrons, ions, and negatively charged dust particles. At dust time scale, the electron and ion number densities follow the Thomas-Fermi distribution, whereas the dust component is described by the classical fluid equations. A linear dispersion relation is analyzed to show that the wave frequencies associated with the upper and lower modes are enhanced with the variation of dust concentration. The effect of the latter is seen more strongly on the upper mode as compared to the lower mode. For nonlinear analysis, we obtain magnetized Korteweg-de Vries (KdV) and Zakharov-Kuznetsov (ZK) equations involving the dust-acoustic solitary waves in the framework of reductive perturbation technique. Furthermore, the shock wave excitations are also studied by allowing dissipation effects in the model, leading to the Korteweg-de Vries-Burgers (KdVB) and ZKB equations. The analysis reveals that the dust-acoustic solitary and shock excitations in a Thomas-Fermi plasma are strongly influenced by the plasma parameters, e.g., dust concentration, dust temperature, obliqueness, magnetic field strength, and dust fluid viscosity. The present results should be important for understanding the solitary and shock excitations in the environments of white dwarfs or supernova, where dust particles can exist.

  13. Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma

    International Nuclear Information System (INIS)

    Rahim, Z.; Qamar, A.; Ali, S.

    2014-01-01

    The linear and nonlinear properties of dust-acoustic waves are investigated in a collisionless Thomas-Fermi magnetoplasma, whose constituents are electrons, ions, and negatively charged dust particles. At dust time scale, the electron and ion number densities follow the Thomas-Fermi distribution, whereas the dust component is described by the classical fluid equations. A linear dispersion relation is analyzed to show that the wave frequencies associated with the upper and lower modes are enhanced with the variation of dust concentration. The effect of the latter is seen more strongly on the upper mode as compared to the lower mode. For nonlinear analysis, we obtain magnetized Korteweg-de Vries (KdV) and Zakharov-Kuznetsov (ZK) equations involving the dust-acoustic solitary waves in the framework of reductive perturbation technique. Furthermore, the shock wave excitations are also studied by allowing dissipation effects in the model, leading to the Korteweg-de Vries-Burgers (KdVB) and ZKB equations. The analysis reveals that the dust-acoustic solitary and shock excitations in a Thomas-Fermi plasma are strongly influenced by the plasma parameters, e.g., dust concentration, dust temperature, obliqueness, magnetic field strength, and dust fluid viscosity. The present results should be important for understanding the solitary and shock excitations in the environments of white dwarfs or supernova, where dust particles can exist

  14. A Compact Fluorescence Lifetime Excitation-Emission Spectrometer (FLEXEMS) for Detecting Trace Organics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovative Research (SBIR) effort, Leiden Measurement Technology (LMT) proposes to design and build the Fluorescence Lifetime Excitation...

  15. Review of Particle Properties, 1982-1983

    CERN Document Server

    Particle Data Group. Berkeley; Porter, F C; Aguilar-Benítez, M; Montanet, Lucien; Walck, C; Crawford, R L; Kelly, Robert L; Rittenberg, Alan; Trippe, Thomas G; Wohl, Charles G; Yost, George P; Shimada, T; Losty, Michael J; Gopal, Gian P; Hendrick, R E; Shrock, R E; Frosch, R; Roper, L D; Armstrong, Betty

    1982-01-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 52 (1980) No. 2, Part II]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available.

  16. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  17. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana; Aly, Shawkat Mohammede; Goswami, Subhadip; Alarousu, Erkki; Usman, Anwar; Schanze, Kirk S.; Mohammed, Omar F.

    2015-01-01

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  18. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  19. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV

    International Nuclear Information System (INIS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko; Murakami, Masashi

    2017-01-01

    Highlights: • Detailed presentation of new results on experimental cross-sections of "n"a"tTi(α,x) processes. • Calculations of thick target yields for scandium and other radionuclides via the "n"a"tTi(α,x) production route. • Comparison with TENDL-2015 library. • Detailed review of previous experimental data. - Abstract: We studied the excitation functions of residual radionuclide productions from α particles bombardment on natural titanium in the energy range of 10.4–50.2 MeV. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for the "5"1","4"9","4"8Cr, "4"8V, "4"3K, and "4"3","4"4"m","4"4"g","4"6"g"+"m","4"7","4"8Sc radionuclides. The thick target yields for all assessed radionuclides were also calculated. The obtained experimental data were compared with the earlier experimental ones and also with the evaluated data in the TENDL-2015 library. A reasonable agreement was found between this work and some of the previous ones, while a partial agreement was found with the evaluated data. The present results would further enrich the experimental database and facilitate the understanding of existing discrepancies among the previous measurements. The results would also help to enhance the prediction capability of the nuclear reaction model codes.

  20. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Ahmed Rufai [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, Umaru Musa Yar' adua University, Katsina (Nigeria); Khandaker, Mayeen Uddin, E-mail: mu_khandaker@um.edu.my [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haba, Hiromitsu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Otuka, Naohiko [Nuclear Data Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna (Austria); Murakami, Masashi [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    Highlights: • Detailed presentation of new results on experimental cross-sections of {sup nat}Ti(α,x) processes. • Calculations of thick target yields for scandium and other radionuclides via the {sup nat}Ti(α,x) production route. • Comparison with TENDL-2015 library. • Detailed review of previous experimental data. - Abstract: We studied the excitation functions of residual radionuclide productions from α particles bombardment on natural titanium in the energy range of 10.4–50.2 MeV. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for the {sup 51,49,48}Cr, {sup 48}V, {sup 43}K, and {sup 43,44m,44g,46g+m,47,48}Sc radionuclides. The thick target yields for all assessed radionuclides were also calculated. The obtained experimental data were compared with the earlier experimental ones and also with the evaluated data in the TENDL-2015 library. A reasonable agreement was found between this work and some of the previous ones, while a partial agreement was found with the evaluated data. The present results would further enrich the experimental database and facilitate the understanding of existing discrepancies among the previous measurements. The results would also help to enhance the prediction capability of the nuclear reaction model codes.

  1. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    Science.gov (United States)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  2. Effective potential in the problem of scattering of three charged particles

    International Nuclear Information System (INIS)

    Kvitsinskii, A.A.; Merkur'ev, S.P.

    1988-01-01

    We study the effective interaction potential in the scattering of a charged particle by a bound state of two other charged particles. Scattering by both the ground and excited states of the target is considered. Explicit representations describing the asymptotic structure of effective potentials are proved

  3. Damping of unbound single-particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)

    1995-11-01

    The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.

  4. Structure of excited states in nuclei near doubly magic {sup 100}SN

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M.

    1998-11-01

    The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)

  5. Single-electron capture into Ar+ excited states in Ar2 + Na collision below 12 keV, 1

    International Nuclear Information System (INIS)

    Matsumoto, Atsushi; Tsurubuchi, Seiji; Okuno, Kazuhiko; Ohtani, Shunsuke; Iwai, Tsuruji.

    1979-08-01

    Emission spectra between 2800 and 6000 A have been observed at the ionic energies from 0.2 to 12 keV. Absolute measurements of emission cross-sections have been made for the emission lines coming from ArII excited states at 4 and 8 keV with a crossed-beam technique. Processes of single-electron capture into the ArII 4p- and 4p'-states, with exothermicity of a few eV, take place dominantly (--10 15 cm 2 ), while the endothermic processes producing ArII in the 4d- and 5s-states occur with small cross-sections. Sum of the cross-sections for electron capture into the excited states observed is comparable with the total single-electron capture cross-section estimated from attenuation measurements of ion currents. Possible errors and uncertainties are discussed. (author)

  6. Single-electron capture into Ar+ excited states in Ar2++Na collision below 12 keV, 1

    International Nuclear Information System (INIS)

    Matsumoto, Atsushi; Tsurubuchi, Seiji; Iwai, Tsuruji; Ohtani, Shunsuke; Okuno, Kazuhiko

    1980-01-01

    Emission spectra between 2800 and 6000 A have been observed at the ionic energies from 0.2 to 12 keV. Absolute measurements of emission cross-sections have been made for the emission lines coming from ArII excited states at 4 and 8 keV with a crossed-beam technique. Processes of single-electron capture into the ArII 4p- and 4p'-states, with exothermicity of a few eV, take place dominantly (--10 -15 cm 2 ), while the endothermic processes producing ArII in the 4d- and 5s-states occur with small cross-sections. Sum of the cross-sections for electron capture into the excited states observed is comparable with the total single-electron capture cross-section estimated from attenuation measurements of ion currents. Possible errors and uncertainties are discussed. (author)

  7. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    Science.gov (United States)

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  8. On the cosmic ray spectrum from type II Supernovae expanding in their red giant presupernova wind

    Science.gov (United States)

    Cardillo, Martina

    2015-12-01

    While from the energetic point of view SNRs are viable sources of Galactic CRs, the issue of whether they can accelerate protons up to PeV remains unsolved. Here we discuss particle acceleration at the forward shock of SN and discuss the possibility that the escaping particle current may excite a non-resonant instability that in turn leads to the formation of resonant modes confining particles close to the shock and increasing the maximum energy. This mechanism works throughout the expansion of the SN explosion, from the ejecta dominated (ED) to the Sedov-Taylor (ST) phase. Because of their higher explosion rate,we focus on type II SNae expanding in the slow, dense red supergiant wind. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. As a result, the spectrum of accelerated particles shows a break in the slope, at the maximum energy (EM) achieved at the beginning of the ST phase. Above this energy, the spectrum becomes steeper but remains a power law than developing an exponential cutoff. We show that for type II SNae typical parameters, proton EM can easily reach PeV energies, confirming that type II SNRs are the best candidate sources for CRs at the knee. We have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any parameter combination that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at 650 TeV, appreciably below the overall spectrum knee. This finding would resolve the problem of reaching very high energies in SNae, but, on the other hand, it would open a critical issue in the transition region between Galactic and extragalactic CRs.

  9. Theoretical Atomic Physics code development II: ACE: Another collisional excitation code

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Abdallah, J. Jr.; Csanak, G.; Mann, J.B.; Cowan, R.D.

    1988-12-01

    A new computer code for calculating collisional excitation data (collision strengths or cross sections) using a variety of models is described. The code uses data generated by the Cowan Atomic Structure code or CATS for the atomic structure. Collisional data are placed on a random access file and can be displayed in a variety of formats using the Theoretical Atomic Physics Code or TAPS. All of these codes are part of the Theoretical Atomic Physics code development effort at Los Alamos. 15 refs., 10 figs., 1 tab

  10. BeII** revisited

    International Nuclear Information System (INIS)

    Fischer, C.F.

    1982-01-01

    Doubly excited 1s2snl and 1s2pnl quartet states of BeII** are readily populated in beam-foil experiments and line-rich spectra have been obtained covering 600 to 5500 A wavelength range. In spite of several theoretical calculations a substantial number of observed lines have not been identified. The quartet system in BeII is an intersting one from a theoretical point of view. Three electron systems are simple enough that a fairly high level of accuracy is attainable without the calculations becoming horrendous. The important correlation effects are between the outer two electrons and, to a good approximation, the three-electrons system may be treated as a two-electron system outside a 1s-core. The multi-configuration Hartree-Fock (MCHF) method has been used successfully in a number of studies. Programs are under development that take into account the non-orthogonality of orbitals in the initial and final state, and allow for some non-orthogonal orbitals in a wavefunction expansion. LS dependent relativistic effects are also included. A study of BeII** was undertaken to evaluate the MCHF techniques being developed and to assit in the identification of observed lines. Most of the earlier calculations concentrated on the lower-lying levels. In this work particular attention was given to the more highly-excited states, though calculations for lower-lying states had to be repeated in order to predict life-times

  11. Multidimensional Plasma Wake Excitation in the Non-linear Blowout Regime

    CERN Document Server

    Vieira, J.; Silva, L.O.

    2016-01-01

    Plasma accelerators can sustain very high acceleration gradients. They are promising candidates for future generations of particle accelerators for sev- eral scientific, medical and technological applications. Current plasma based acceleration experiments operate in the relativistic regime, where the plasma response is strongly non-linear. We outline some of the key properties of wake- field excitation in these regimes. We outline a multidimensional theory for the excitation of plasma wakefields in connection with current experiments. We then use these results and provide design guidelines for the choice of laser and plasma parameters ensuring a stable laser wakefield accelerator that maximizes the quality of the accelerated electrons. We also mention some of the future challenges associated with this technology.

  12. One- and two-phonon excitations in strongly deformed triaxial nuclei

    International Nuclear Information System (INIS)

    Hagemann, G.B.

    2003-01-01

    The wobbling mode is uniquely related to triaxiality and introduces a series of bands with increasing wobbling phonon number, n ω , and a characteristic large Δ nω =1 E2 strength between the bands. The pattern of γ-transitions between the wobbling excitations will be influenced by the presence of an aligned particle. Evidence for the wobbling mode was obtained recently, and even a two-phonon wobbling excitation has now been identified in 163 Lu. The similarity of the data in 163 Lu to new strongly deformed triaxial bands and connecting transitions in the neighbouring nuclei, 165 Lu and 167 Lu, establishes wobbling as a more general phenomenon in this region. (author)

  13. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    International Nuclear Information System (INIS)

    Silver, R.N.

    1984-12-01

    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base

  14. Optimizing parameter of particle damping based on Leidenfrost effect of particle flows

    Science.gov (United States)

    Lei, Xiaofei; Wu, Chengjun; Chen, Peng

    2018-05-01

    Particle damping (PD) has strongly nonlinearity. With sufficiently vigorous vibration conditions, it always plays excellent damping performance and the particles which are filled into cavity are on Leidenfrost state considered in particle flow theory. For investigating the interesting phenomenon, the damping effect of PD on this state is discussed by the developed numerical model which is established based on principle of gas and solid. Furtherly, the numerical model is reformed and applied to study the relationship of Leidenfrost velocity with characteristic parameters of PD such as particle density, diameter, mass packing ratio and diameter-length ratio. The results indicate that particle density and mass packing ratio can drastically improve the damping performance as opposed as particle diameter and diameter-length ratio, mass packing ratio and diameter-length ratio can low the excited intensity for Leidenfrost state. For discussing the application of the phenomenon in engineering, bound optimization by quadratic approximation (BOBYQA) method is employed to optimize mass packing ratio of PD for minimize maximum amplitude (MMA) and minimize total vibration level (MTVL). It is noted that the particle damping can drastically reduce the vibrating amplitude for MMA as Leidenfrost velocity equal to the vibrating velocity relative to maximum vibration amplitude. For MTVL, larger mass packing ratio is best option because particles at relatively wide frequency range is adjacent to Leidenfrost state.

  15. Manipulation of spin states in single II-VI-semiconductor quantum dots; Manipulation von Spinzustaenden in einzelnen II-VI-Halbleiter-Quantenpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Andreas

    2007-10-09

    Semiconductor quantum dots (QD) are objects on the nanometer scale, where charge carriers are confined in all three dimensions. This leads to a reduced interaction with the semiconductor lattice and to a discrete density of states. The spin state of a particle defines the polarisation of the emitted light when relaxating to an energetically lower state. Spin exchange and optical transition selection rules (conservation law for spin) define the optical control of spin states. In the examined QD in II-VI seminconductor systems the large polar character of the bindings enables to observe particle interactions by spectroscopy of the photo-luminescence (PL), making QD attractive for basic research. This work subjects in its first part single negatively charged non-magnetic QD. The odd number of carriers allows to study the latter in an unpaired state. By using polarization-resolved micro-PL spectroscopy, the spin-states of single, isolated QD can be studied reproducibly. Of special interest are exchange interactions in this few-particle system named trion. By excitation spectroscopy energetically higher states can be identified and characterized. The exchange interactions appearing here lead to state mixing and fine structure patterns in the spectra. Couplings in excited hole states show the way to the optical orientation of the resident electron spin. The spin configuration of the trion triplet state can be used to optically control the resident electron spin. Semimagnetic QD are focused in the second part of this work. The interaction with a paramagnetic environment of manganese spins leads to new magneto-optical properties of the QD. They reveal on a single dot level by line broadening due to spin fluctuations and by the giant Zeeman effect of the dot ensemble. Of special interest in this context is the influence of the reduced system dimension and the relatively larger surface of the system on the exchange mechanisms. The strong temperature dependence of the spin

  16. Study of high-j neutron excitations outside 136Xe

    Science.gov (United States)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.

    2017-09-01

    The character of single-neutron excitations outside of N = 82 has been studied using nucleon transfer reactions in terms of the energy centroid of their strength as well as the fragmentation of this strength among the actual states of the nucleus. However, extending the systematic study of the N = 83 isotones to 137Xe has been challenging due to xenon being a gas at room temperature. Though several attempts have been made, a quantitative determination of the spectroscopic factors for the neutron 9/2- and 13/2+ excitations in 137Xe is still lacking. In the present work, we report on a study of the 136Xe(α,3He)137Xe reaction carried out at 100 MeV to probe the l = 5 , 9/2- and l = 6 , 13/2+ single-neutron excitations. The experimental technique and results will be presented discussing them in context of the evolution of these single-neutron excitations and the influence of the tensor interaction on the neutron single-particle states as the proton orbits are filling. This work has been supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357, the Australian Research Council Discovery Project 120104176, and the UK Science and Technology Facilities.

  17. LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments

    Science.gov (United States)

    Walker, Kyle M.

    2017-06-01

    While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.

  18. Design and development of a parametrically excited nonlinear energy harvester

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel

    2016-01-01

    Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.

  19. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  20. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  1. Theory of superconductivity. II. Excited Cooper pairs. Why does sodium remain normal down to 0 K?

    International Nuclear Information System (INIS)

    Fujita, S.

    1992-01-01

    Based on a generalized BCS Hamiltonian in which the interaction strengths (V 11 , V 22 , V 12 ) among and between electron (12) and hole (2) Cooper pairs are differentiated, the thermodynamic properties of a type-I superconductor below the critical temperature T c are investigated. An expression for the ground-state energy, W - W 0 , relative to the unperturbed Block system is obtained. The usual BCS formulas are obtained in the limits: (all) V jl = V 0 , N 1 (0) = N 2 (0). Any excitations generated through the BCS interaction Hamiltonian containing V jl must involve Cooper pairs of antiparallel spins and nearly opposite momenta. The nonzero momentum or excited Cooper pairs below T c are shown to have an excitation energy band minimum lower than the quasi-electrons, which were regarded as the elementary excitations in the original BCS theory. The energy gap var-epsilon g (T) defined relative to excited and zero-momentum Copper pairs (when V jl > 0) decreases from var-epsilon g (0) to 0 as the temperature T is raised from 0 to T c . If electrons only are available as in a monovalent metal like sodium (V 12 = 0), the energy constant Δ 1 is finite but the energy gap vanishes identically for all T. In agreement with the BCS theory, the present theory predicts that a pure nonmagnetic metal in any dimensions should have a Cooper-pair ground state whose energy is lower than that of the Bloch ground state. Additionally it predicts that a monovalent metal should remain normal down to 0 K, and that there should be no strictly one-dimensional superconductor

  2. Photoionization of furan from the ground and excited electronic states.

    Science.gov (United States)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  3. Convective excitation of quasistatic waves in an inhomogeneous anisothermic plasma. II

    International Nuclear Information System (INIS)

    Jungwirth, K.; Sizonenko, V.L.

    1977-01-01

    Nonlinear effects stabilizing the convective instabilities excited in an anisothermic plasma (Tsub(e)>>Tsub(i)) at the plasma boundary (a >ωsub(Bi)) saturate at first. Being excited by a small part of slow plasma electrons (vsub(z)<< vsub(Te)) only, they saturate at a relatively low level. Further, surface waves with lower frequencies and higher phase velocities (vsub(ph)=ω/ksub(z)) become dominant and a broadening of the plasma boundary occurs. For their saturation nonlinear interaction is more important than the quasilinear effects. During the time interval of several ωsub(Bi)sup(-1) the longest surface waves with ksub(y) approximately ωsub(Bi)/Vsub(s), γ approximately ω approximately ωsub(Bi) approximately ksub(y)Vsub(s) and vsub(ph) approximately vsub(Te) saturate at the absolutely highest level. The plasma boundary broadens in the meanwhile up to a approximately Vsub(s)/ωsub(Bi). The wave energy is comparable to the total energy connected with the longitudinal motion of the initially thermal electrons inside this boundary layer. The wave amplitude is large enough to trap the initially cold ions belonging to this layer and 'heat' them up to energies comparable to those of the electron component. The heating process again occurs within several ωsub(Bi)sup(-1) and the Larmor radius of the ions is then comparable to Vsub(s)/ωsub(Bi). Further evolution of the system is governed by the unstable local perturbations. (author)

  4. Wobbling excitation of triaxial nuclear molecule 28Si – 28Si

    International Nuclear Information System (INIS)

    Uegaki, E; Abe, Y

    2013-01-01

    High-spin resonances observed in the 28 Si + 28 Si collisions are investigated with a molecular model. At high spins, a stable dinuclear configuration is found to be an equator-equator touching one. Since the E-E configuration is slightly triaxial, rotations of the total system induce mixing of K quantum numbers, called wobbling motion, which clearly explains the particle-γ angular correlations observed as well as the disalignments in a simple and natural way. Furthermore, predictions are given for the angular correlations of the wobbling excited states. The first excited state of wobbling shows strong alignments, which is quite different from the molecular ground state.

  5. Excitation functions of radionuclides produced by proton induced reactions on gadolinium targets

    International Nuclear Information System (INIS)

    Challana, M.B.; Comsana, M.N.H.; Moawadb, G.S.; Abou-Zeid, M.A.

    2008-01-01

    Cross section study for proton induced reaction on natural Gadolinium targets were performed. Excitation functions for the reactions n atGd(p,x) 152m+g , 154m,154g Tb from threshold up to E p = 18 MeV have been measured employing the stacked foil activation technique, and using high resolution HPGe gamma spectrometry. Utilizing the simultaneous measurement of the excitation function of n atCu(p,x) 62 Zn, n atCu(p,x) 63 Zn, and n atCu(p,x) 65 Zn as monitor reactions. The theoretical analysis of the excitation functions has been done employing both ALICE-91 and EMPIRE-II codes. In general, theoretical calculations agree well with the experimental data. A significant contribution of pre-equilibrium component has been observed at these energies

  6. Hexagon POPE: effective particles and tree level resummation

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Lucía [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics and Astronomy & Guelph-Waterloo Physics Institute,University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada)

    2017-01-12

    We present the resummation of the full Pentagon Operator Product Expansion series of the hexagon Wilson loop in planar N=4 SYM at tree level. We do so by considering the one effective particle states formed by a fundamental flux tube excitation and an arbitrary number of the so called small fermions which are then integrated out. We derive the one effective particle measures at finite coupling. By evaluating these measures at tree level and summing over all one effective particle states we reproduce the full 6 point tree level amplitude.

  7. Two-photon excited fluorescence emission from hemoglobin

    Science.gov (United States)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  8. Direct excitation in heavy atom collisions: A propensity rule for charge cloud orientation

    International Nuclear Information System (INIS)

    Andersen, N.; Aarhus Univ.; Nielsen, S.E.; Royal Danish School of Pharmacy, Copenhagen)

    1985-01-01

    The Massey Criterion prescribes maximum electronic excitation of atoms in heavy particle collisions for collision velocities v where Δε a/ℎv ≅ π. Here Δε is the energy defect and a is the effective interaction length. Experiments with planar symmetry have revealed a preferred way of rotation of the excited charge cloud in this velocity region. We demonstrate by analysis of a simple, yet realistic model why excitation favors states with a specific orientation. A general propensity rule is derived and its validity evaluated for a specific case, the Na-He system. Implications for future experiments are pointed out. In particular, the propensity rule predicts very different collisions behaviors of oppositely oriented atoms, as prepared e.g. by circular polarized laser light. (orig.)

  9. Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia

    2013-01-01

    in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio...... between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...

  10. Charge exchange with ion excitation: asymptotic theory

    International Nuclear Information System (INIS)

    Ivakin, I.A.; Karbovanets, M.I.; Ostrovskii, V.N.

    1987-01-01

    There is developed an asymptotic (with respect to the large internuclear separation R) theory for computing the matrix element of the exchange interaction between states of quasimolecules, which is responsible for charge transfer with ion excitation: B + +A→B+A + *. A semiclassical approximation is used, which enables one to apply the theory to processes with the participation of multiply charged ions. The case of s--s transitions for excitation of the ion A + →A + *, where it is appropriate to take into account the distortion of the wave functions of the ion A + by the particle B, is treated separately. Calculations of cross sections and comparison with the results of experiments for He + --Cd and Ne + --Mg collisions at thermal energies are given. It is shown that it is impossible to explain the experimental data by the interaction of terms of the quasimolecules at large R only, and a possible mechanism for populating at small R is proposed

  11. Testing the existence of non-Maxwellian electron distributions in H II regions after assessing atomic data accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, C. [Permanent address: Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A, Venezuela. (Venezuela, Bolivarian Republic of); Bautista, M. A., E-mail: claudio.mendozaguardia@wmich.edu, E-mail: manuel.bautista@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2014-04-20

    The classic optical nebular diagnostics [N II], [O II], [O III], [S II], [S III], and [Ar III] are employed to search for evidence of non-Maxwellian electron distributions, namely κ distributions, in a sample of well-observed Galactic H II regions. By computing new effective collision strengths for all these systems and A-values when necessary (e.g., S II), and by comparing with previous collisional and radiative data sets, we have been able to obtain realistic estimates of the electron-temperature dispersion caused by the atomic data, which in most cases are not larger than ∼10%. If the uncertainties due to both observation and atomic data are then taken into account, it is plausible to determine for some nebulae a representative average temperature while in others there are at least two plasma excitation regions. For the latter, it is found that the diagnostic temperature differences in the high-excitation region, e.g., T{sub e} (O III), T{sub e} (S III), and T{sub e} (Ar III), cannot be conciliated by invoking κ distributions. For the low-excitation region, it is possible in some, but not all, cases to arrive at a common, lower temperature for [N II], [O II], and [S II] with κ ≈ 10, which would then lead to significant abundance enhancements for these ions. An analytic formula is proposed to generate accurate κ-averaged excitation rate coefficients (better than 10% for κ ≥ 5) from temperature tabulations of the Maxwell-Boltzmann effective collision strengths.

  12. One- and two-particle correlation functions in the dynamical quantum cluster approach

    International Nuclear Information System (INIS)

    Hochkeppel, Stephan

    2008-01-01

    This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes

  13. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-01

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  14. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  15. Far-infrared observations of Large Magellanic Cloud H II regions

    International Nuclear Information System (INIS)

    Werner, M.W.; Becklin, E.E.; Gatley, I.; Ellis, M.J.; Hyland, A.R.; Robinson, G.; Thomas, J.A.

    1978-01-01

    Far-infrared emission has been measured from four Large Magellanic Cloud H II regions: the 30 Doradus nebula, MC75, MC76 and MC77. The far-infrared radiation is thermal emission from dust heated by starlight. The results show that the LMC H II regions, like H II regions in the Galaxy, have far-infrared luminosities comparable to the total luminosity of their exciting stars. (author)

  16. Population densities and rate coefficients for electron impact excitation in singly ionized oxygen

    International Nuclear Information System (INIS)

    Awakowicz, P.; Behringer, K.

    1995-01-01

    In non-LTE arc plasmas, O II excited state number densities were measured relative to the O II ground and metastable states. The results were compared with collisional-radiative code calculations on the basis of the JET ADAS programs. Stationary He plasmas with small oxygen admixtures, generated in a 5 mm diameter cascade arc chamber (pressures 13-70 hPa, arc current 150 A), were investigated spectroscopically in the visible and the VUV spectral range. The continuum of a 2 mm diameter pure He arc (atmospheric pressure, current 100 A) served for calibration of the VUV system response. Plasma diagnostics on the basis of Hβ Stark broadening yielded electron densities between 2.4 x 10 14 and 2.0 x 10 15 cm -3 for the low-pressure O II mixture plasmas. The agreement of measured and calculated excited state populations is generally very satisfactory, thus confirming the rate coefficients in the code. This is of particular interest in this intermediate region between corona balance and LTE, where many atomic data are required in the simulation. Clear indications were found for the diffusion of metastables lowering their number densities significantly below their statistical values. (author)

  17. Field theoretical approach to proton-nucleus reactions: II-Multiple-step excitation process

    International Nuclear Information System (INIS)

    Eiras, A.; Kodama, T.; Nemes, M.

    1989-01-01

    A field theoretical formulation to multiple step excitation process in proton-nucleus collision within the context of a relativistic eikonal approach is presented. A closed form expression for the double differential cross section can be obtained whose structure is very simple and makes the physics transparent. Glauber's formulation of the same process is obtained as a limit of ours and the necessary approximations are studied and discussed. (author) [pt

  18. Automatic analysis of charged particle spectra

    International Nuclear Information System (INIS)

    Seres, Z.; Kiss, A.

    1975-11-01

    A computer program system is developed for off-line automatic analysis of a series of charged particle spectra measured by solid-state detectors and collected on magnetic tapes. The procedure results in complete angular distributions for the excited levels of the final nucleus up to about 15 MeV. (orig.) [de

  19. pyParticleEst: A Python Framework for Particle-Based Estimation Methods

    Directory of Open Access Journals (Sweden)

    Jerker Nordh

    2017-06-01

    Full Text Available Particle methods such as the particle filter and particle smoothers have proven very useful for solving challenging nonlinear estimation problems in a wide variety of fields during the last decade. However, there are still very few existing tools available to support and assist researchers and engineers in applying the vast number of methods in this field to their own problems. This paper identifies the common operations between the methods and describes a software framework utilizing this information to provide a flexible and extensible foundation which can be used to solve a large variety of problems in this domain, thereby allowing code reuse to reduce the implementation burden and lowering the barrier of entry for applying this exciting field of methods. The software implementation presented in this paper is freely available and permissively licensed under the GNU Lesser General Public License, and runs on a large number of hardware and software platforms, making it usable for a large variety of scenarios.

  20. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....