WorldWideScience

Sample records for ii mediated dna

  1. Synthesis, characterization, and photoactivated DNA cleavage by copper (II)/cobalt (II) mediated macrocyclic complexes.

    Science.gov (United States)

    Naik, H R Prakash; Naik, H S Bhojya; Aravinda, T; Lamani, D S

    2010-01-01

    We report the synthesis of new photonuclease consisting of two Co(II)/Cu(II) complexes of macrocyclic fused quinoline. Metal complexes are [MLX(2)], type where M = Co(II) (5), Cu(II) (6), and X = Cl, and are well characterized by elemental analysis, Fourier transform infrared spectroscopy, (1)H-NMR and electronic spectra. We have shown that photocleavage of plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of Cu(II), and more so than that of cobalt. The chemistry of ternary and binary Co(II) complexes showing efficient light induced (360 nm) DNA cleavage activity is summarized. The role of the metal in photoinduced DNA cleavage reactions is explored by designing complex molecules having macrocyclic structure. The mechanistic pathways are found to be concentration dependent on Co(II)/Cu(II) complexes and the photoexcitation energy photoredox chemistry. Highly effective DNA cleavage ability of 6 is attributed to the effective cooperation of the metal moiety.

  2. Can copper(II) mediate Hoogsteen base-pairing in a left-handed DNA duplex? A pulse EPR study.

    Science.gov (United States)

    Santangelo, Maria Grazia; Antoni, Philipp M; Spingler, Bernhard; Jeschke, Gunnar

    2010-02-22

    Pulse EPR spectroscopy is used to investigate possible structural features of the copper(II) ion coordinated to poly(dG-dC).poly(dG-dC) in a frozen aqueous solution, and the structural changes of the polynucleotide induced by the presence of the metal ion. Two different copper species were identified and their geometry explained by a molecular model. According to this model, one species is exclusively coordinated to a single guanine with the N7 nitrogen atom forming a coordinative bond with the copper. In the other species, a guanine and a cytosine form a ternary complex together with the copper ion. A copper crosslink between the N7 of guanine and N3 of cytosine is proposed as the most probable coordination site. Moreover, no evidence was found for an interaction of either copper species with a phosphate group or equatorial water molecules. In addition, circular dichroism (CD) spectroscopy showed that the DNA of the Cu(II)-poly(dG-dC).poly(dG-dC) adducts resembles the left-handed Z-form. These results suggest that metal-mediated Hoogsteen base pairing, as previously proposed for a right-handed DNA duplex, can also occur in a double-stranded left-handed DNA.

  3. Topoisomerase II-mediated DNA damage is differently repaired during the cell cycle by non-homologous end joining and homologous recombination.

    Directory of Open Access Journals (Sweden)

    Marcelo de Campos-Nebel

    Full Text Available Topoisomerase II (Top2 is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB. In this report, by using knock down experiments, we demonstrated that Top2alpha was largely responsible for the induction of gammaH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ or homologous recombination (HR, we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.

  4. DNA-Mediated Electrochemistry

    Science.gov (United States)

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  5. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Sahni, Abha [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wang, Nadan [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Alexis, Jeffrey, E-mail: jeffrey_alexis@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States)

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.

  6. Postincubation with aclarubicin reverses topoisomerase II mediated DNA cleavage, strand breaks, and cytotoxicity induced by VP-16

    DEFF Research Database (Denmark)

    Petersen, L N; Jensen, P B; Sørensen, B S

    1994-01-01

    In previous studies, we found that VP-16 (etoposide) induced cytotoxicity and protein-concealed strand break formation was prevented in a small cell lung cancer (SCLC) cell line, when the cells were incubated with aclarubicin prior to treatment with VP-16. In the present work, we studied the effect...... of adding aclarubicin to the cell suspension after VP-16. In a clonogenic assay, we found that the cytotoxicity induced by VP-16 in SCLC cells was inhibited when cells were postincubated with aclarubicin. The addition of aclarubicin at any time in relation to VP-16 was able to stop further cytotoxicity...... induced by the topoisomerase II (topo-II) targeting drug. Aclarubicin was also found to antagonize the cytotoxicity induced by VM-26 (teniposide), and m-AMSA. With the alkaline elution technique we found that postincubating the cells with aclarubicin inhibited VP-16-induced DNA strand break formation...

  7. Mechanistic studies of copper(II)-aminoglycoside mediated DNA damage and magnesium catalyzed nuclease activity of hammerhead ribozyme

    Science.gov (United States)

    Patwardhan, Anjali A.

    The antibacterial activity of aminoglycosides stems from their high affinity binding to the 16S rRNA in bacteria resulting in inhibition of protein synthesis. Used to treat acute bacterial infections these antibiotics have limited applications due to their high dosage requirements and the emergence of resistant strains. We have synthesized and characterized Cu(II) derivatives of the aminoglycosides, kanamycin A, tobramycin, neamine, kanamycin B, neomycin B, and paromomycin. The first three exhibit preferential and tight binding to Cu(II) as against neomycin B and kanamycin B and paromomycin. EPR of frozen solutions and UV-visible spectroscopy suggest a change in geometry around the Cu(II) but the stabilities of the complexes in water differ. These copper derivatives efficiently cleave plasmid DNA at micromolar concentrations (hydrolytic) and at nanomolar concentrations in the presence co-reactants like hydrogen peroxide or ascorbic acid. Hydrolysis is multi turnover and exhibits Michelis-Menten kinetics with enzyme-like behavior whereas oxidative cleavage is highly specific with C-4' H abstraction resulting in characteristic base propenal and nucleotide base products. Hydroxyl radicals generated are copper based and are generated in close proximity of the substrate. Hammerhead ribozymes are selectively hydrolyzed in the presence of divalent ions with Mg2+ being the metal ion of choice in vivo . Our studies with complex ions like cobalt hexaammine and fac-triamminetriaquochromium(III) establish outer sphere interactions of Mg2+ with the hammerhead in the catalytic site. There are two sets of sites, one structural and one catalytic. Complex ions in the catalytic site and divalent ions in the structural site result in a slow but active hammerhead ribozyme suggesting that the complex ions are not inhibitory, contrary to what was suggested previously.

  8. DNA based computers II

    CERN Document Server

    Landweber, Laura F; Baum, Eric B

    1998-01-01

    The fledgling field of DNA computers began in 1994 when Leonard Adleman surprised the scientific community by using DNA molecules, protein enzymes, and chemicals to solve an instance of a hard computational problem. This volume presents results from the second annual meeting on DNA computers held at Princeton only one and one-half years after Adleman's discovery. By drawing on the analogy between DNA computing and cutting-edge fields of biology (such as directed evolution), this volume highlights some of the exciting progress in the field and builds a strong foundation for the theory of molecular computation. DNA computing is a radically different approach to computing that brings together computer science and molecular biology in a way that is wholly distinct from other disciplines. This book outlines important advances in the field and offers comprehensive discussion on potential pitfalls and the general practicality of building DNA based computers.

  9. Mediators of homologous DNA pairing.

    Science.gov (United States)

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-10-09

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Cu(II)-vitamin D interaction leads to free radical-mediated cellular DNA damage: a novel putative mechanism for its selective cytotoxic action against malignant cells.

    Science.gov (United States)

    Rizvi, Asim; Chibber, Sandesh; Naseem, Imrana

    2015-03-01

    Vitamin D (vit D) is a known anticancer molecule, and cancer cells are reported to have elevated levels of Cu(II) ions. In this study, we show that interaction of vit D and Cu(II) leads to the formation of hydroxyl free radicals, superoxide anion and hydrogen peroxide, which causes severe oxidative stress, selectively in malignant cells. We show that the production of these reactive oxygen species causes cellular DNA fragmentation which may cause cell death. A novel putative chemical mechanism explaining how vit D causes cell death by DNA damage, selectively in malignant cells, is proposed.

  11. Cu(II)-coumestrol interaction leads to ROS-mediated DNA damage and cell death: a putative mechanism for anticancer activity.

    Science.gov (United States)

    Zafar, Atif; Singh, Swarnendra; Naseem, Imrana

    2016-07-01

    Phytoestrogens have attracted considerable interest as natural alternatives to hormone replacement therapy and their potential as cancer therapeutic agents. Among phytoestrogens, coumestrol has shown multipharmacological properties such as antiinflammatory, neuroprotective, osteoblastic differentiation and anticancer. Though several studies have described anticancer effects of coumestrol, a clear underlying molecular mechanism has not been elucidated. Unlike normal cells, cancer cells contain elevated copper levels that play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper in cancer cells can serve as effective anticancer strategy. Using human peripheral lymphocytes, we assessed lipid peroxidation, protein carbonylation, reactive oxygen species (ROS) generation, DNA damage and apoptosis by coumestrol in the presence of exogenously added Cu(II) in cells to simulate malignancy-like condition. Results showed that Cu(II)-coumestrol interaction leads to lipid peroxidation and protein carbonylation (markers of oxidative stress), DNA fragmentation and apoptosis in treated lymphocytes. Further, incubation of lymphocytes with ROS scavengers and membrane-permeant copper chelator, neocuproine, resulted in inhibition of DNA damage and apoptosis. This suggests that coumestrol engages in redox cycling of Cu(II) to generate ROS that leads to DNA fragmentation and apoptosis. In conclusion, this is the first report showing that coumestrol targets cellular copper to induce prooxidant death in malignant cells. We believe that such a prooxidant cytotoxic mechanism better explains the anticancer activity of coumestrol. These findings will provide significant insights into the development of new chemical molecules with better copper-chelating and prooxidant properties against cancer cells.

  12. Microwave-assisted synthesis of arene ruthenium(II) complexes that induce S-phase arrest in cancer cells by DNA damage-mediated p53 phosphorylation.

    Science.gov (United States)

    Wu, Qiong; Fan, Cundong; Chen, Tianfeng; Liu, Chaoran; Mei, Wenjie; Chen, Sidong; Wang, Baoguo; Chen, Yunyun; Zheng, Wenjie

    2013-05-01

    A series of arene ruthenium(II) complexes coordinated by phenanthroimidazole derivates, [(C6H6)Ru(L)Cl]Cl·2H2O (1b L = IP, 2b L = p-NMe2PIP, 3b L = p-MeOPIP, 4b L = p-HOPIP, 5b L = p-COOHPIP, 6b L = p-CF3PIP, 7b L = p-BrPIP) have been synthesized in yields of 89-92% under microwave irradiation in 30 min, and the crystal structure of 1b by XRD gives a typical "piano stool" conformation. The antitumor activity of these complexes against various tumor cells have been evaluated by MTT assay, and the results show that this type of arene Ru(II) complexes exhibit acceptable inhibitory effect against all of these tumor cells, especially osteosarcoma MG-63 cells, but with low toxicity toward HK-2 human normal cells. Studies on the mechanism revealed that cell cycle arrest at S-phase in MG-63 cells induced by the arene Ru(II) complex 2b, which was confirmed by the increase in the percentage of cells at S-phase and down-regulator of cyclin A. The further studies by Comet assay at single cell level indicated that DNA damage in MG-63 cells was triggered by 2b, following with the up-regulation of phosphorylated p53 and histone. The studies by spectroscopy in vitro also indicate that 2b bind to DNA molecule by intercalative mode to disturb the bio-function of tumor cells. In conclusion, the synthetic arene Ru(II) complexes could serve as novel p53 activator with potential application in cancer chemotherapy.

  13. Zinc(II) complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers that trigger DNA damage-mediated p53 phosphorylation in cancer cells.

    Science.gov (United States)

    Liu, Shenggui; Cao, Wenqiang; Yu, Lianling; Zheng, Wenjie; Li, Linlin; Fan, Cundong; Chen, Tianfeng

    2013-04-28

    In the present study, two zinc(II) complexes containing bis-benzimidazole derivatives, Zn(bpbp)Cl2 (1) and [Zn(bpbp)2](ClO4)2·CH3CH2OH·H2O (2) (bpbp = 2,6-bis(1-phenyl-1H-benzo[d]imidazol-2-yl)pyridine), have been designed, synthesized and evaluated for their in vitro anticancer activities. The underlying molecular mechanisms through which they caused the cancer cell death were also elucidated. The complexes were identified as potent antiproliferative agents against a panel of five human cancer cell lines by comparing with cisplatin. Complex 2 demonstrated dose-dependent growth inhibition on MCF-7 human breast carcinoma cells with IC50 at 2.9 μM. Despite this potency, the complexes possessed great selectivity between human cancer cells and normal cells. Induction of apoptosis in MCF-7 cells by complex 2 was evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Further investigation on intracellular mechanisms revealed that complex 2 was able to induce p53-dependent apoptosis in cancer cells by triggering DNA damage. On the basis of this evidence, we suggest that Zn(II) complexes containing bis-benzimidazole derivatives may be candidates for further evaluation as chemotherapeutic agents for human cancers.

  14. Programmable DNA-mediated multitasking processor

    CERN Document Server

    Shu, Jian-Jun; Yong, Kian-Yan; Shao, Fangwei; Lee, Kee Jin

    2015-01-01

    Because of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems. The novel programmable DNA-mediated processor has several advantages over the existing silicon-mediated methods, such as conducting massive data storage and simultaneous processing via much fewer materials than conventional silicon devices.

  15. DNA topoisomerase II activity in nonreplicating, transcriptionally inactive, chicken late spermatids.

    Science.gov (United States)

    Roca, J; Mezquita, C

    1989-06-01

    To study a possible differential involvement of type I and type II DNA topoisomerases in the functional and structural changes that chromatin undergoes during spermatogenesis, we have determined both enzymatic activities in chicken testis cell nuclei at successive stages of differentiation. Whereas DNA topoisomerase I varies in parallel with transcriptional activity, DNA topoisomerase II was present in both replicating, transcriptionally active chicken testis cells and nonreplicating, transcriptionally inactive late spermatids. The presence of DNA topoisomerase II activity in late spermatids and, in addition, the relative increment of drug-induced topo-II-mediated DNA cleavage detected in these cells, suggest that DNA topoisomerase II might modulate the topology of DNA during the marked changes that chromatin structure undergoes in the nucleohistone-nucleoprotamine transition at the end of the spermiogenesis and could be involved in the final organization of DNA within the nucleus of the male gamete.

  16. Restriction enzyme-mediated DNA family shuffling.

    Science.gov (United States)

    Behrendorff, James B Y H; Johnston, Wayne A; Gillam, Elizabeth M J

    2014-01-01

    DNA shuffling is an established recombinatorial method that was originally developed to increase the speed of directed evolution experiments beyond what could be accomplished using error-prone PCR alone. To achieve this, mutated copies of a protein-coding sequence are fragmented with DNase I and the fragments are then reassembled in a PCR without primers. The fragments anneal where there is sufficient sequence identity, resulting in full-length variants of the original gene that have inherited mutations from multiple templates. Subsequent studies demonstrated that directed evolution could be further accelerated by shuffling similar native protein-coding sequences from the same gene family, rather than mutated variants of a single gene. Generally at least 65-75 % global identity between parental sequences is required in DNA family shuffling, with recombination mostly occurring at sites with at least five consecutive nucleotides of local identity. Since DNA shuffling was originally developed, many variations on the method have been published. In particular, the use of restriction enzymes in the fragmentation step allows for greater customization of fragment lengths than DNase I digestion and avoids the risk that parental sequences may be over-digested into unusable very small fragments. Restriction enzyme-mediated fragmentation also reduces the occurrence of undigested parental sequences that would otherwise reduce the number of unique variants in the resulting library. In the current chapter, we provide a brief overview of the alternative methods currently available for DNA shuffling as well as a protocol presented here that improves on several previous implementations of restriction enzyme-mediated DNA family shuffling, in particular with regard to purification of DNA fragments for reassembly.

  17. Mediator is an intrinsic component of the basal RNA polymerase II machinery in vivo.

    Science.gov (United States)

    Lacombe, Thierry; Poh, Siew Lay; Barbey, Régine; Kuras, Laurent

    2013-11-01

    Mediator is a prominent multisubunit coactivator that functions as a bridge between gene-specific activators and the basal RNA polymerase (Pol) II initiation machinery. Here, we study the poorly documented role of Mediator in basal, or activator-independent, transcription in vivo. We show that Mediator is still present at the promoter when the Pol II machinery is recruited in the absence of an activator, in this case through a direct fusion between a basal transcription factor and a heterologous DNA binding protein bound to the promoter. Moreover, transcription resulting from activator-independent recruitment of the Pol II machinery is impaired by inactivation of the essential Mediator subunit Med17 due to the loss of Pol II from the promoter. Our results strongly support that Mediator is an integral component of the minimal machinery essential in vivo for stable Pol II association with the promoter.

  18. Intermolecular DNA ligation activity of eukaryotic toposiomerase II: Potential roles in nucleic acid recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gale, K.C.R.

    1992-01-01

    Single-stranded [phi]X174 (+) strand DNA was used as a model substrate for topoisomerase II to determine whether double-stranded DNA cleavage observed in vitro reflects the in vivo intermediate in the enzyme's catalytic cycle and to investigate potential mechanisms for topoisomerase II-mediated DNA recombination. As found previously for topoisomerase II-mediated cleavage of double-stranded DNA, the enzyme was covalently linked to the 5[prime]-termini of cleaved [phi]X174 molecules. Optimal reaction conditions were similar for the two substrates. In contrast to results with double-stranded molecules, single-stranded DNA cleavage increased with time, was not reversible, and did not require the presence of SDS. Cleavage products generated in the absence of protein denaturant contained free 3[prime]-OH DNA termini. These results strongly suggest that the covalent topoisomerase II-cleaved DNA complex observed in vitro is the active intermediate in the enzyme's catalytic code. Topoisomerase II is capable of joining cleaved [phi]X174 (+) strand DNA to duplex oligonucleotide acceptor molecules by an intermolecular ligation reaction. Intermolecular DNA ligation proceeded in a time and oligonucleotide concentration dependent fashion. The covalent linkage is between the 5[prime]-phosphate of [phi]X174 (+) strand DNA and the 3[prime]-OH of oligonucleotide acceptor molecules. The reaction was dependent on the presence of a divalent cation, was inhibited by salt, and was not affected by the presence of ATP. The enzyme was capable of ligating [phi]X174 (+) strand DNA to double-stranded oligonucleotides that contained 5[prime]-overhang, 3[prime]-overhang, or blunt ends. Single-stranded, nicked, or gapped oligonucleotides could also be used as acceptor molecules. These results demonstrate that the type II enzyme has an intrinsic ability to mediate illegitimate DNA recombination in vitro and suggests possible roles for topoisomerase II in nucleic acid recombination in vivo.

  19. Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay; Robertson, Patrick D; Ramsden, Dale A; Williams, R Scott [NIH; (Georgetown); (UNC)

    2012-10-28

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl–linked topo II–DNA adducts. Here, X-ray structures of mouse Tdp2–DNA complexes reveal that Tdp2 β–2-helix–β DNA damage–binding 'grasp', helical 'cap' and DNA lesion–binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single–metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

  20. DNA-mediated gene transfer in plant protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    U, Zang Kual; Riu, Key Zung; So, In Sup; Hong, Kyung Ae [Cheju National University, Cheju (Korea, Republic of)

    1994-12-31

    The neomycin phosphotransferase II gene(NPT-II) was introduced into geranium (Pelargonium zonale hybrids) protoplasts by using PEG or electroporation method. The presence of the introduced DNA in the protoplasts and the expressions of the gene in the transformed cells were examined. The presence of the NPT-II DNA in the protoplasts were detected by polymerase chain reaction. The expressions of NPT-II gene in the transformed cells were confirmed by the NPT-II assay. (author)

  1. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly.

    Directory of Open Access Journals (Sweden)

    Carrie Bernecky

    2011-03-01

    Full Text Available The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC, consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in

  2. The roles and acting mechanism of Caenorhabditis elegans DNase II genes in apoptotic dna degradation and development.

    Directory of Open Access Journals (Sweden)

    Huey-Jen Lai

    Full Text Available DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary role, and crn-7 plays a negligible role in resolving 3' OH DNA breaks generated in apoptotic cells. Promoter swapping experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of NUC-1 secretion signal eliminates NUC-1's ability to mediate DNA degradation across its expression border. Furthermore, blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts in apoptotic cells rather than in phagocytes to resolve 3' OH DNA breaks. Our study illustrates how multiple DNase II nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase II action in mediating DNA degradation.

  3. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing.

    Science.gov (United States)

    Deweese, Joseph E; Osheroff, Neil

    2009-02-01

    Topoisomerase II is an essential enzyme that is required for virtually every process that requires movement of DNA within the nucleus or the opening of the double helix. This enzyme helps to regulate DNA under- and overwinding and removes knots and tangles from the genetic material. In order to carry out its critical physiological functions, topoisomerase II generates transient double-stranded breaks in DNA. Consequently, while necessary for cell survival, the enzyme also has the capacity to fragment the genome. The DNA cleavage/ligation reaction of topoisomerase II is the target for some of the most successful anticancer drugs currently in clinical use. However, this same reaction also is believed to trigger chromosomal translocations that are associated with specific types of leukemia. This article will familiarize the reader with the DNA cleavage/ligation reaction of topoisomerase II and other aspects of its catalytic cycle. In addition, it will discuss the interaction of the enzyme with anticancer drugs and the mechanisms by which these agents increase levels of topoisomerase II-generated DNA strand breaks. Finally, it will describe dietary and environmental agents that enhance DNA cleavage mediated by the enzyme.

  4. Photocleavage of DNA by copper(II) complexes

    Indian Academy of Sciences (India)

    Akhil R Chakravarty

    2006-11-01

    The chemistry of ternary and binary copper(II) complexes showing efficient visible lightinduced DNA cleavage activity is summarized in this article. The role of the metal in photo-induced DNA cleavage reactions is explored by designing complex molecules having a variety of ligands. Ternary copper(II) complexes with amino acid like L-methionone or L-lysine and phenanthroline base are efficient photocleavers of DNA. Complexes of formulation [Cu(L)(phen)](ClO4) with NSO-donor Schiff base (HL) and NN-donor heterocyclic base 1,10-phenanthroline (phen) show significant cleavage of supercoiled (SC) DNA on exposure to red light at ≈ 700 nm. The - and CT electronic bands of the copper(II) complexes play important roles in DNA cleavage reactions. The mechanistic pathways are found to be dependent on the types of ligands present in the copper(II) complexes and the photo-excitation energy. While UV exposure generally proceeds via a type-II process forming singlet oxygen as the reactive species, red-light exposure leads to DNA cleavage following different mechanistic pathways, viz. type-I, type-II and photo-redox pathways. Ternary copper(II) complexes with phen as DNA binder and Schiff base with a thiomethyl group as photosensitizer, cleave SC DNA to its nicked circular (NC) form in a type-II process in red-light. The binary complex [Cu(dpq)2(H2O)](ClO4)2 (dpq, dipyridoquinoxaline) cleaves DNA by photo-redox pathway at 694 nm. The binuclear complex [Cu$^{\\text{II}}_{2}$(RSSR)2], where H2RSSR is a Schiff base derived from 2-(thioethyl)salicylaldimine, cleaves SC DNA at 632.8 nm (CW He-Ne laser) and 694 nm (ruby laser) involving sulphide (type-I process) and hydroxyl radicals (photo-redox pathway) as the reactive species.

  5. DNA Nanostructures-Mediated Molecular Imprinting Lithography.

    Science.gov (United States)

    Tian, Cheng; Kim, Hyojeong; Sun, Wei; Kim, Yunah; Yin, Peng; Liu, Haitao

    2017-01-24

    This paper describes the fabrication of polymer stamps using DNA nanostructure templates. This process creates stamps having diverse nanoscale features with dimensions ranging from several tens of nanometers to micrometers. DNA nanostructures including DNA nanotubes, stretched λ-DNA, two-dimensional (2D) DNA brick crystals with three-dimensional (3D) features, hexagonal DNA 2D arrays, and triangular DNA origami were used as master templates to transfer patterns to poly(methyl methacrylate) and poly(l-lactic acid) with high fidelity. The resulting polymer stamps were used as molds to transfer the pattern to acryloxy perfluoropolyether polymer. This work establishes an approach to using self-assembled DNA templates for applications in soft lithography.

  6. Short-fragment DNA-mediated in vivo DNA electroporation delivery.

    Science.gov (United States)

    Peng, Jinliang; Zhao, Yonggang; Xu, Yuhong

    2014-01-01

    Electroporation is an effective physical delivery method. A variety of factors have been shown to affect the electroporation-mediated gene delivery efficiency. Here we report the usefulness of noncoding short-fragment DNA (sf-DNA) for facilitating electroporation-mediated gene transfer. The plasmid pGL3-control encoding firefly luciferase was injected into tissue together with or without sf-DNA in different length or dose. Immediately after injection, the tissues were electroporated and the level of luciferase activity was assessed 24 h later. The results showed that plasmid DNA formulated with sf-DNA resulted in significant improvement in electroporation-mediated gene transfer efficiency. The effect is dose and length dependent, and also found in low-voltage electroporation. These results indicated that sf-DNA can be used as a helper molecule to improve the electroporation-mediated gene transfection efficiency.

  7. Water-mediated correlations in DNA-enzyme interactions

    CERN Document Server

    Capolupo, A; Kurian, P; Vitiello, G

    2016-01-01

    In this paper we consider dipole-mediated correlations between DNA and enzymes in the context of their water environment. Such correlations emerge from electric dipole-dipole interactions between aromatic ring structures in DNA and in enzymes, and they are mediated by radiative fields that stimulate transitions between the $l=0$ and $l=1$ rotational levels of the molecular water electric dipoles. We show that there are matching collective modes between DNA and enzyme dipole fields, and that a dynamic time-averaged polarization vanishes in the water dipole field only if either DNA, enzyme, or both are absent from the sample. This persistent field may serve as the electromagnetic image that, in popular colloquialisms about DNA biochemistry, allows enzymes to "scan" or "read" the double helix. Topologically nontrivial configurations in the coherent ground state requiring clamplike enzyme behavior on the DNA may stem, ultimately, from spontaneously broken gauge symmetries.

  8. DNA from keratinous tissue. Part II

    DEFF Research Database (Denmark)

    Olsen, Maia E.; Bengtsson, Camilla Friis; Bertelsen, Mads Frost

    2012-01-01

    Although good quality DNA can be recovered from the base of the calamus of freshly sampled feathers, as from other fully keratinized tissues such as nail or hair shaft, the quality and quantity of DNA in the majority of feather structures is much poorer. Little research has been performed...

  9. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    (UV) light. Results: ATR-FTIR confirmed the formation of copper(II) complex with DTT by binding through thiol group based on the .... DNA cleavage detection ... The infrared spectra of pure DTT and its Cu(II) .... and iron complexes. J Phys Conf ...

  10. DNA polymorphism of HLA class II genes in alopecia areata

    DEFF Research Database (Denmark)

    Morling, N; Frentz, G; Fugger, L

    1992-01-01

    We investigated the DNA restriction polymorphism (RFLP) of the Major Histocompatibility Complex (MHC) class II genes: HLA-DQA, -DQB, -DPA, and -DPB in 20 Danish patients with alopecia areata (AA) and in healthy Danes. The frequency in AA of the DQB1*0301 and DQw7 associated DQB Bgl/II 4.2 kb...

  11. DNA topoisomerase II is involved in regulation of cyst wall protein genes and differentiation in Giardia lamblia.

    Science.gov (United States)

    Lin, Bo-Chi; Su, Li-Hsin; Weng, Shih-Che; Pan, Yu-Jiao; Chan, Nei-Li; Li, Tsai-Kun; Wang, Hsin-Chih; Sun, Chin-Hung

    2013-01-01

    The protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms. DNA topoisomerases maintain normal topology of genomic DNA. They are necessary for cell proliferation and tissue development as they are involved in transcription, DNA replication, and chromosome condensation. A putative topoisomerase II (topo II) gene has been identified in the G. lamblia genome. We asked whether Topo II could regulate Giardia encystation. We found that Topo II was present in cell nuclei and its gene was up-regulated during encystation. Topo II has typical ATPase and DNA cleavage activity of type II topoisomerases. Mutation analysis revealed that the catalytic important Tyr residue and cleavage domain are important for Topo II function. We used etoposide-mediated topoisomerase immunoprecipitation assays to confirm the binding of Topo II to the cwp promoters in vivo. Interestingly, Topo II overexpression increased the levels of cwp gene expression and cyst formation. Microarray analysis identified up-regulation of cwp and specific vsp genes by Topo II. We also found that the type II topoisomerase inhibitor etoposide has growth inhibition effect on Giardia. Addition of etoposide significantly decreased the levels of cwp gene expression and cyst formation. Our results suggest that Topo II has been functionally conserved during evolution and that Topo II plays important roles in induction of the cwp genes, which is key to Giardia differentiation into cysts.

  12. TopBP1-mediated DNA processing during mitosis.

    Science.gov (United States)

    Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H

    2016-01-01

    Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.

  13. Children and TV II: Mediating the Medium.

    Science.gov (United States)

    Winick, Mariann Pezzella; Wehrenberg, Judith S.

    This guidebook focuses on the reality of children's television viewing and the possibilities open to teachers for mediating the experience to enhance children's development and enrich the school curriculum. A Piagetian framework is used to examine and structure material suitable for the classroom. Part I of the guide reviews the historic…

  14. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks.

    Science.gov (United States)

    Pankotai, Tibor; Bonhomme, Céline; Chen, David; Soutoglou, Evi

    2012-02-12

    DNA double-strand break (DSB) repair interferes with ongoing cellular processes, including replication and transcription. Although the process of replication stalling upon collision of replication forks with damaged DNA has been extensively studied, the fate of elongating RNA polymerase II (RNAPII) that encounters a DSB is not well understood. We show that the occurrence of a single DSB at a human RNAPII-transcribed gene leads to inhibition of transcription elongation and reinitiation. Upon inhibition of DNA protein kinase (DNAPK), RNAPII bypasses the break and continues transcription elongation, suggesting that it is not the break per se that inhibits the processivity of RNAPII, but the activity of DNAPK. We also show that the mechanism of DNAPK-mediated transcription inhibition involves the proteasome-dependent pathway. The results point to the pivotal role of DNAPK activity in the eviction of RNAPII from DNA upon encountering a DNA lesion.

  15. Mechanisms of Surface-Mediated DNA Hybridization

    Science.gov (United States)

    2015-01-01

    Single-molecule total internal reflection fluorescence microscopy was employed in conjunction with resonance energy transfer (RET) to observe the dynamic behavior of donor-labeled ssDNA at the interface between aqueous solution and a solid surface decorated with complementary acceptor-labeled ssDNA. At least 100 000 molecular trajectories were determined for both complementary strands and negative control ssDNA. RET was used to identify trajectory segments corresponding to the hybridized state. The vast majority of molecules from solution adsorbed nonspecifically to the surface, where a brief two-dimensional search was performed with a 7% chance of hybridization. Successful hybridization events occurred with a characteristic search time of ∼0.1 s, and unsuccessful searches resulted in desorption from the surface, ultimately repeating the adsorption and search process. Hybridization was reversible, and two distinct modes of melting (i.e., dehybridization) were observed, corresponding to long-lived (∼15 s) and short-lived (∼1.4 s) hybridized time intervals. A strand that melted back onto the surface could rehybridize after a brief search or desorb from the interface. These mechanistic observations provide guidance for technologies that involve DNA interactions in the near-surface region, suggesting a need to design surfaces that both enhance the complex multidimensional search process and stabilize the hybridized state. PMID:24708278

  16. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  17. RNA-DNA Differences Are Generated in Human Cells within Seconds after RNA Exits Polymerase II

    Directory of Open Access Journals (Sweden)

    Isabel X. Wang

    2014-03-01

    Full Text Available RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs in nascent RNA. Our results show that RDDs begin to occur in RNA chains ∼55 nt from the RNA polymerase II (Pol II active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.

  18. Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators.

    Directory of Open Access Journals (Sweden)

    Yumiko Kurokawa

    2008-04-01

    Full Text Available In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that two mediators, Rad22 (the S. pombe Rad52 homolog and the Swi5-Sfr1 complex, participate in a common pathway of Rhp51 (the S. pombe Rad51 homolog-mediated homologous recombination (HR and HR repair. Here, we have demonstrated an in vitro reconstitution of the central step of DNA strand exchange during HR. Our system consists entirely of homogeneously purified proteins, including Rhp51, the two mediators, and replication protein A (RPA, which reflects genetic requirements in vivo. Using this system, we present the first robust biochemical evidence that concerted action of the two mediators directs the loading of Rhp51 onto single-stranded DNA (ssDNA precoated with RPA. Dissection of the reaction reveals that Rad22 overcomes the inhibitory effect of RPA on Rhp51-Swi5-Sfr1-mediated strand exchange. In addition, Rad22 negates the requirement for a strict order of protein addition to the in vitro system. However, despite the presence of Rad22, Swi5-Sfr1 is still essential for strand exchange. Importantly, Rhp51, but neither Rad22 nor the Swi5-Sfr1 mediator, is the factor that displaces RPA from ssDNA. Swi5-Sfr1 stabilizes Rhp51-ssDNA filaments in an ATP-dependent manner, and this stabilization is correlated with activation of Rhp51 for the strand exchange reaction. Rad22 alone cannot activate the Rhp51 presynaptic filament. AMP-PNP, a nonhydrolyzable ATP analog, induces a similar stabilization of Rhp51, but this stabilization is independent of Swi5-Sfr1. However, hydrolysis of ATP is required for processive strand transfer, which results in the formation of a long heteroduplex. Our in vitro reconstitution system has revealed that the two mediators have indispensable, but distinct, roles for mediating Rhp51 loading onto RPA-precoated ssDNA.

  19. Extended HSR/CARD domain mediates AIRE binding to DNA

    Energy Technology Data Exchange (ETDEWEB)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  20. Statistical mechanics of DNA-mediated colloidal aggregation.

    Science.gov (United States)

    Licata, Nicholas A; Tkachenko, Alexei V

    2006-10-01

    We present a statistical mechanical model of aggregation in colloidal systems with DNA-mediated interactions. We obtain a general result for the two-particle binding energy in terms of the hybridization free energy DeltaG of DNA and two model-dependent properties: the average number of available DNA bridges and the effective DNA concentration c(eff). We calculate these parameters for a particular DNA bridging scheme. The fraction of all the n-mers, including the infinite aggregate, are shown to be universal functions of a single parameter directly related to the two-particle binding energy. We explicitly take into account the partial ergodicity of the problem resulting from the slow DNA binding-unbinding dynamics, and introduce the concept of angular localization of DNA linkers. In this way, we obtain a direct link between DNA thermodynamics and the global aggregation and melting properties in DNA-colloidal systems. The results of the theory are shown to be in quantitative agreement with two recent experiments with particles of micron and nanometer size.

  1. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    Science.gov (United States)

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.

  2. T-DNA integration in plants results from polymerase-θ-mediated DNA repair.

    Science.gov (United States)

    van Kregten, Maartje; de Pater, Sylvia; Romeijn, Ron; van Schendel, Robin; Hooykaas, Paul J J; Tijsterman, Marcel

    2016-10-31

    Agrobacterium tumefaciens is a pathogenic bacterium, which transforms plants by transferring a discrete segment of its DNA, the T-DNA, to plant cells. The T-DNA then integrates into the plant genome. T-DNA biotechnology is widely exploited in the genetic engineering of model plants and crops. However, the molecular mechanism underlying T-DNA integration remains unknown(1). Here we demonstrate that in Arabidopsis thaliana T-DNA integration critically depends on polymerase theta (Pol θ). We find that TEBICHI/POLQ mutant plants (which have mutated Pol θ), although susceptible to Agrobacterium infection, are resistant to T-DNA integration. Characterization of >10,000 T-DNA-plant genome junctions reveals a distinct signature of Pol θ action and also indicates that 3' end capture at genomic breaks is the prevalent mechanism of T-DNA integration. The primer-template switching ability of Pol θ can explain the molecular patchwork known as filler DNA that is frequently observed at sites of integration. T-DNA integration signatures in other plant species closely resemble those of Arabidopsis, suggesting that Pol-θ-mediated integration is evolutionarily conserved. Thus, Pol θ provides the mechanism for T-DNA random integration into the plant genome, demonstrating a potential to disrupt random integration so as to improve the quality and biosafety of plant transgenesis.

  3. Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation

    Directory of Open Access Journals (Sweden)

    Mann Jennifer K

    2007-05-01

    Full Text Available Abstract Background The genetic code imposes a dilemma for cells. The DNA must be long enough to encode for the complexity of an organism, yet thin and flexible enough to fit within the cell. The combination of these properties greatly favors DNA collisions, which can knot and drive recombination of the DNA. Despite the well-accepted propensity of cellular DNA to collide and react with itself, it has not been established what the physiological consequences are. Results Here we analyze the effects of recombined and knotted plasmids in E. coli using the Hin site-specific recombination system. We show that Hin-mediated DNA knotting and recombination (i promote replicon loss by blocking DNA replication; (ii block gene transcription; and (iii cause genetic rearrangements at a rate three to four orders of magnitude higher than the rate for an unknotted, unrecombined plasmid. Conclusion These results show that DNA reactivity leading to recombined and knotted DNA is potentially toxic and may help drive genetic evolution.

  4. DNA-mediated self-assembly of artificial vesicles.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available BACKGROUND: Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. METHODOLOGY/PRINCIPAL FINDINGS: In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. CONCLUSIONS/SIGNIFICANCE: This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment

  5. HLA class II genes: typing by DNA analysis.

    Science.gov (United States)

    Bidwell, J L; Bidwell, E A; Bradley, B A

    1990-04-01

    A detailed understanding of the structure and function of the human major histocompatibility complex (MHC) has ensued from studies by molecular biologist during the last decade. Virtually all of the HLA genes have now been cloned, and the nucleotide sequences of their different allelic forms have been determined. Typing for these HLA alleles is a fundamental prerequisite for tissue matching in allogeneic organ transplantation. Until very recently, typing procedures have been dominated by serological and cellular methods. The availability of cloned DNA from HLA genes has now permitted the technique of restriction fragment length polymorphism (RFLP) analysis to be applied, with remarkable success and advantage, to phenotyping of both HLA Class I and Class II determinants. For the HLA Class II genes DR and DQ, a simple two-stage RFLP analysis permits the accurate identification of all specificities defined by serology, and of many which are defined by cellular typing. At the present time, however, RFLP typing of HLA Class I genes is not as practicable or as informative as that for HLA Class II genes. The present clinical applications of HLA-DR and DQ RFLP typing are predominantly in phenotyping of living donors, including selection of HLA-matched volunteer bone marrow donors, in allograft survival studies, and in studies of HLA Class II-associated diseases. However, the time taken to perform RFLP analysis precludes its use for the typing of cadaveric kidney donors. Nucleotide sequence data for the alleles of HLA Class II genes have now permitted the development of allele-specific oligonucleotide (ASO) typing, a second category of DNA analysis. This has been greatly facilitated by the ability to amplify specific HLA Class II DNA 'target' sequences using the polymerase chain reaction (PCR) technique. The accuracy of DNA typing techniques should ensure that this methodology will eventually replace conventional HLA phenotyping.

  6. Mega primer-mediated molecular cloning strategy for chimaeragenesis and long DNA fragment insertion.

    Science.gov (United States)

    Zhang, Hui; Liu, Chang-Jun; Jiang, Hui; Zhou, Lu; Li, Wen-Ying; Zhu, Ling-Yun; Wu, Lei; Meng, Er; Zhang, Dong-Yi

    2017-04-30

    Molecular cloning methods based on primer and overlap-extension PCR are widely used due to their simplicity, reliability, low cost and high efficiency. In this article, an efficient mega primer-mediated (MP) cloning strategy for chimaeragenesis and long DNA fragment insertion is presented. MP cloning is a seamless, restriction/ligation-independent method that requires only three steps: (i) the first PCR for mega primer generation; (ii) the second PCR for exponential amplification mediated by the mega primers and (iii) DpnI digestion and transformation. Most importantly, for chimaeragenesis, genes can be assembled and constructed into the plasmid vector in a single PCR step. By employing this strategy, we successfully inserted four DNA fragments (approximately 500 bp each) into the same vector simultaneously. In conclusion, the strategy proved to be a simple and efficient tool for seamless cloning.

  7. Magnetic fields facilitate DNA-mediated charge transport

    CERN Document Server

    Wong, Jiun Ru; Shu, Jian-Jun; Shao, Fangwei

    2015-01-01

    Exaggerate radical-induced DNA damage under magnetic fields is of great concerns to medical biosafety and to bio-molecular device based upon DNA electronic conductivity. In this report, the effect of applying an external magnetic field (MF) on DNA-mediated charge transport (CT) was investigated by studying guanine oxidation by a kinetics trap (8CPG) via photoirradiation of anthraquinone (AQ) in the presence of an external MF. Positive enhancement in CT efficiencies was observed in both the proximal and distal 8CPG after applying a static MF of 300 mT. MF assisted CT has shown sensitivities to magnetic field strength, duplex structures, and the integrity of base pair stacking. MF effects on spin evolution of charge injection upon AQ irradiation and alignment of base pairs to CT-active conformation during radical propagation were proposed to be the two major factors that MF attributed to facilitate DNA-mediated CT. Herein, our results suggested that the electronic conductivity of duplex DNA can be enhanced by a...

  8. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  9. Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis.

    Science.gov (United States)

    Hao, Guanghua; Han, Zhenhua; Meng, Zhe; Wei, Jin; Gao, Dengfeng; Zhang, Hong; Wang, Nanping

    2015-01-01

    Ets-1, the prototypical member of the family of Ets transcription factors, has been shown to participate in tissue fibrotic remodeling. However, its role in cardiac fibrosis has not been established. The aim of this study was to investigate the role of Ets-1 in profibrotic actions of angiotensin II (Ang II) in cardiac fibroblasts (CFs) and in the in vivo heart. In growth-arrested CFs, Ang II induced Ets-1 expression in a time- and concentration-dependent manner. Pretreatment with Ang II type 1 receptor blocker losartan, protein kinase C inhibitor bisindolylmaleimide I, extracellular signal-regulated kinase (ERK) inhibitor PD98059, or c-Jun NH(2)-terminal kinase (JNK) inhibitor SP600125 partly inhibited this induction accompanied with impaired cell proliferation and production of plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) protein, the two downstream targets of Ets-1. Knockdown of Ets-1 by siRNA significantly inhibited the inductive effects of Ang II on cell proliferation and expression of CTGF and PAI-1. Moreover, the levels of Ets-1, PAI-1 and CTGF protein were simultaneously upregulated in left ventricle of Ang II-infused rats in parallel with an increase in the activation of ERK and JNK. Our data suggest that Ets-1 may mediate Ang II-induced cardiac fibrotic effects.

  10. Different mechanisms between copper and iron in catecholamines-mediated oxidative DNA damage and disruption of gene expression in vitro.

    Science.gov (United States)

    Nishino, Yoshihiko; Ando, Motozumi; Makino, Rena; Ueda, Koji; Okamoto, Yoshinori; Kojima, Nakao

    2011-07-01

    Catechols produce reactive oxygen species (ROS) and induce oxidative DNA damage through reduction-oxidation reactions with metals such as copper. Here, we examined oxidative DNA damage by neurotransmitter catecholamines in the presence of copper or iron and evaluated the effects of this damage on gene expression in vitro. Dopamine induced strand breaks and base oxidation in calf thymus DNA in the presence of Cu(II) or Fe(III)-NTA (nitrilotriacetic acid). The extent of this damage was greater for Cu(II) than for Fe(III)-NTA. For the DNA damage induced by dopamine, the responsible reactive species were hydrogen peroxide and Cu(I) for Cu(II) and hydroxyl radicals and Fe(II) for Fe(III)-NTA. Cu(II) induced DNA conformational changes, but Fe(III)-NTA did not in the presence of dopamine. These differences indicate different modes of action between Cu and Fe-NTA with regard to the induction of DNA damage. Expression of the lacZ gene coded on plasmid DNA was inhibited depending on the extent of the oxidative damage and strand breaks. Endogenous catecholamines (dopamine, adrenaline, and noradrenaline) were more potent than catechols (no aminoalkyl side chains) or 3,4-dihydroxybenzylamine (aminomethyl side chain). These results suggest that the metal-mediated DNA damage induced by dopamine disrupts gene expression, and leukoaminochromes (further oxidation products of O-quinones having aminoethyl side chain) are involved in the DNA damage. These findings indicate a possibility that metal (especially iron and copper)-mediated oxidation of catecholamines plays an important role in the pathogenesis of neurodegenerative disorders including Parkinson's disease.

  11. A novel DNA computing model based on RecA-mediated triple-stranded DNA structure

    Institute of Scientific and Technical Information of China (English)

    Fang Gang; Zhang Shemin; Dong Yafei; Xu Jin

    2007-01-01

    The field of DNA computing emerged in 1994 after Adleman's paper was published. Henceforth, a few scholars solved some noted NP-complete problems in this way. And all these methods of DNA computing are based on conventional Watson-Crick hydrogen bond of doublehelical DNA molecule. In this paper, we show that the triple-stranded DNA structure mediated by RecA protein can be used for solving computational problems. Sequence-specific recognition of double-stranded DNA by oligonucleotide-directed triple helix (triplex) formation is used to carry out the algorithm. We present procedure for the 3-vertex-colorability problems. In our proposed procedure, it is suggested that it is possible to solve more complicated problems with more variables by this model.

  12. VEZF1 elements mediate protection from DNA methylation.

    Directory of Open Access Journals (Sweden)

    Jacqueline Dickson

    2010-01-01

    Full Text Available There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm beta-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin state.

  13. Sunlight exposure-mediated DNA damage in young adults.

    Science.gov (United States)

    Kato, Masashi; Iida, Machiko; Goto, Yuji; Kondo, Takaaki; Yajima, Ichiro

    2011-08-01

    Previous experimental studies showed that single ultraviolet B (UVB) light irradiation increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a well-established biomarker of carcinogenesis and oxidative DNA damage, in epithelial cells in animals and humans. We conducted for the first time an epidemiologic study to investigate the correlations among levels of oxidative DNA damage, skin pigmentation, and sunlight exposure in human daily life. Digitalized skin pigmentation levels and creatinine-adjusted urinary 8-OHdG levels were examined in 127 healthy young adults aged 20 to 24 years and in hairless mice with normal pigmented skin (HL-mice; n = 20) and hyperpigmented skin (HL-HPS-mice; n = 20). Data obtained by a questionnaire were also analyzed for the 127 subjects. Binary logistic regression analysis showed that increased sunlight intensity, but not sunlight-exposed time or sunlight-exposed skin area, was correlated with elevation in creatinine-adjusted urinary 8-OHdG levels. In contrast, increased skin pigmentation level, but not the use of sunscreen, was correlated with reduction in urinary 8-OHdG level in humans. UVB irradiation corresponding to several minutes of sunlight exposure significantly increased urinary 8-OHdG levels in HL-mice but not in HL-HPS-mice. We showed that increase in intensity of sunlight in human daily life increased levels of DNA damage. We also showed a protective effect of skin pigmentation on sunlight exposure-mediated DNA damage. We have provided more reliable evidence of routine sunlight exposure-mediated DNA damage in humans through the combination of epidemiologic and experimental studies. ©2011 AACR.

  14. DNA binding, DNA cleavage, and cytotoxicity studies of two new copper (II) complexes.

    Science.gov (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Rezvani, Alireza; Mansouri, Ghobad

    2011-05-01

    The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5 × 10(5) and 5 × 10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.

  15. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation.

    Science.gov (United States)

    Rius, Maria; Stresemann, Carlo; Keller, Daniela; Brom, Manuela; Schirrmacher, Esther; Keppler, Dietrich; Lyko, Frank

    2009-01-01

    The DNA methyltransferase inhibitors 5-azacytidine (5-azaCyd) and 5-aza-2'-deoxycytidine have found increasing use for the treatment of myeloid leukemias and solid tumors. Both nucleoside analogues must be transported into cells and phosphorylated before they can be incorporated into DNA and inactivate DNA methyltransferases. The members of the human equilibrative and concentrative nucleoside transporter families mediate transport of natural nucleosides and some nucleoside analogues into cells. However, the molecular identity of the transport proteins responsible for mediating the uptake of 5-azanucleosides has remained unknown. To this end, we have generated a stably transfected Madin-Darby canine kidney strain II cell line expressing recombinant hCNT1. An antiserum directed against hCNT1 specifically detected the protein in the apical membrane of hCNT1-expressing Madin-Darby canine kidney cells. Using [14C]5-azaCyd, we show here that hCNT1 mediated the Na+-dependent uptake of this drug with a Km value of 63 micromol/L. Na+-dependent transport of radiolabeled cytidine, uridine, and 5-fluoro-5'-deoxyuridine further showed the functionality of the transporter. hCNT1-expressing cells were significantly more sensitive to 5-azaCyd, and drug-dependent covalent trapping of DNA methyltransferase 1 was substantially more pronounced. Importantly, these results correlated with a significant sensitization of hCNT1-expressing cells toward the demethylating effects of 5-azaCyd and 5-aza-2'-deoxycytidine. In conclusion, our study identifies 5-azaCyd as a novel substrate for hCNT1 and provides direct evidence that hCNT1 is involved in the DNA-demethylating effects of this drug.

  16. DNA-mediated nanoparticle crystallization into Wulff polyhedra.

    Science.gov (United States)

    Auyeung, Evelyn; Li, Ting I N G; Senesi, Andrew J; Schmucker, Abrin L; Pals, Bridget C; de la Cruz, Monica Olvera; Mirkin, Chad A

    2014-01-02

    Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.

  17. Effects of Secondary Metabolites from the Fungus Septofusidium berolinense on DNA Cleavage Mediated by Human Topoisomerase IIα.

    Science.gov (United States)

    Vann, Kendra R; Ekiz, Güner; Zencir, Sevil; Bedir, Erdal; Topcu, Zeki; Osheroff, Neil

    2016-03-21

    Two metabolites from the ascomycete fungus Septofusidium berolinense were recently identified as having antineoplastic activity [Ekiz et al. (2015) J. Antibiot. , DOI: 10.1038/ja.2015.84]. However, the basis for this activity is not known. One of the compounds [3,6-dihydroxy-2-propylbenzaldehyde (GE-1)] is a hydroquinone, and the other [2-hydroxymethyl-3-propylcyclohexa-2,5-diene-1,4-dione (GE-2)] is a quinone. Because some hydroquinones and quinones act as topoisomerase II poisons, the effects of GE-1 and GE-2 on DNA cleavage mediated by human topoisomerase IIα were assessed. GE-2 enhanced DNA cleavage ∼4-fold and induced scission with a site specificity similar to that of the anticancer drug etoposide. Similar to other quinone-based topoisomerase II poisons, GE-2 displayed several hallmark characteristics of covalent topoisomerase II poisons, including (1) the inability to poison a topoisomerase IIα construct that lacks the N-terminal domain, (2) the inhibition of DNA cleavage when the compound was incubated with the enzyme prior to the addition of plasmid, and (3) the loss of poisoning activity in the presence of a reducing agent. In contrast to GE-2, GE-1 did not enhance DNA cleavage mediated by topoisomerase IIα except at very high concentrations. However, the activity and potency of the metabolite were dramatically enhanced under oxidizing conditions. These results suggest that topoisomerase IIα may play a role in mediating the cytotoxic effects of these fungal metabolites.

  18. Direct measurement of DNA-mediated adhesion between lipid bilayers

    CERN Document Server

    Shimobayashi, S F; Parolini, L; Orsi, D; Cicuta, P; Di Michele, L

    2015-01-01

    Multivalent interactions between deformable mesoscopic units are ubiquitous in biology, where membrane macromolecules mediate the interactions between neighbouring living cells and between cells and solid substrates. Lately, analogous artificial materials have been synthesised by functionalising the outer surface of compliant Brownian units, for example emulsion droplets and lipid vesicles, with selective linkers, in particular short DNA sequences. This development extended the range of applicability of DNA as a selective glue, originally applied to solid nano and colloidal particles. On very deformable lipid vesicles, the coupling between statistical effects of multivalent interactions and mechanical deformation of the membranes gives rise to complex emergent behaviours, as we recently contributed to demonstrate [Parolini et al., Nature Communications, 2015, 6, 5948]. Several aspects of the complex phenomenology observed in these systems still lack a quantitative experimental characterisation and fundamental...

  19. Proofreading genotyping assays mediated by high fidelity exo+ DNA polymerases.

    Science.gov (United States)

    Zhang, Jia; Li, Kai; Pardinas, Jose R; Sommer, Steve S; Yao, Kai-Tai

    2005-02-01

    DNA polymerases with 3'-5' proofreading function mediate high fidelity DNA replication but their application for mutation detection was almost completely neglected before 1998. The obstacle facing the use of exo(+) polymerases for mutation detection could be overcome by primer-3'-termini modification, which has been tested using allele-specific primers with 3' labeling, 3' exonuclease-resistance and 3' dehydroxylation modifications. Accordingly, three new types of single nucleotide polymorphism (SNP) assays have been developed to carry out genome-wide genotyping making use of the fidelity advantage of exo(+) polymerases. Such SNP assays might also provide a novel approach for re-sequencing and de novo sequencing. These new mutation detection assays are widely adaptable to a variety of platforms, including real-time PCR, multi-well plate and microarray technologies. Application of exo(+) polymerases to genetic analysis could accelerate the pace of personalized medicine.

  20. DNA topoisomerase II-dependent control of the cell cycle progression in root meristems of Allium cepa.

    Science.gov (United States)

    Zabka, Aneta; Polit, Justyna Teresa; Bernasińska, Joanna; Maszewski, Janusz

    2014-03-01

    The catalytic ability of DNA topoisomerases (Topo) to generate short-term DNA breaks allow these enzymes to play crucial functions in managing DNA topology during S-phase replication, transcription, and chromatin-remodelling processes required to achieve commitment for the onset and transition through mitosis. Our experiments on root meristem cells of onion (Allium cepa) were designed to gain insight into the contribution of Topo II to plant-specific progression throughout interphase and mitosis. Irrespective of the position of the cell in interphase, the immunofluorescence of Topo II revealed similar nuclear labelling pattern with well defined signals dispersed in the nucleoplasm and the cortical zone of the nucleolus. Only weak labelling was detected in metaphase and anaphase chromosomes. Experiments with two potent anti-Topo II agents, doxorubicin (DOX, an anthracycline) and a bisdioxopiperazine derivative, ICRF-193, suggest that the inhibition-mediated increase in Topo II immunofluorescence may represent a compensatory mechanism, by which an up-regulated expression of the enzyme tends to counteract the drug-induced loss of indispensable catalytic and relaxation functions. γ-H2AX immunolabelling seems to indicate that both DOX- and ICRF-193-induced alterations in cell cycle progression reflect primarily the activity of the G2/M DNA damage checkpoint. Our findings provide evidence for the plant-specific cell cycle control mechanism induced by Topo II inhibitors under DNA stress conditions.

  1. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  2. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    the high-bendability regions position nucleosomes at the downstream end of the transcriptional start point, and consider the possibility of interaction between histone-like TAFs and this area. We also propose the use of this structural signature in computational promoter-finding algorithms.......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...

  3. Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes

    Science.gov (United States)

    Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir

    2017-04-01

    Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.

  4. Synthesis and DNA cleavage activities of mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes which linked with uracil.

    Science.gov (United States)

    Wang, Xiao-Yan; Zhang, Ji; Li, Kun; Jiang, Ning; Chen, Shan-Yong; Lin, Hong-Hui; Huang, Yu; Ma, Li-Jian; Yu, Xiao-Qi

    2006-10-01

    Mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes, which could attach to peptide nucleic acid (PNA), were synthesized as DNA cleavage agents. The structures of these new mononuclear complexes were identified by MS and (1)H NMR spectroscopy. The catalytic activities on DNA cleavage of these mononuclear complexes with different central metals were subsequently studied, which showed that copper complex was better catalyst in the DNA cleavage process than zinc and cobalt complexes. The effects of reaction time, concentration of complexes were also investigated. The results indicated that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II, no Form III produced) with high yields. The mechanism of the cleavage process was also studied.

  5. DNA-mediated electron transfer in DNA duplexes tethered to gold electrodes via phosphorothioated dA tags.

    Science.gov (United States)

    Campos, Rui; Kotlyar, Alexander; Ferapontova, Elena E

    2014-10-14

    The efficiency of DNA-based bioelectronic devices strongly depends on the way DNA molecules are linked to the electronic component. Commonly, DNA is tethered to metal electrodes via an alkanethiol linker representing an additional barrier for electron transport. Here we demonstrate that the replacement of the alkanethiol linker for a phosphorothioated adenosine tag increases the rate of DNA-mediated electron transfer (ET) up to 259 s(-1), representing the highest hitherto reported rate of electrochemically-modulated ET, and improves the stability of DNA-electrode surface binding. Both results offer pronounced technological and scientific benefits for DNA-based electronics.

  6. Contribution of ATM and ATR kinase pathways to p53-mediated response in etoposide and methyl methanesulfonate induced DNA damage.

    Science.gov (United States)

    Sun, Bin; Ross, Susan M; Rowley, Sean; Adeleye, Yeyejide; Clewell, Rebecca A

    2017-03-01

    p53 is a key integrator of cellular response to DNA damage, supporting post-translational repair and driving transcription-mediated responses including cell cycle arrest, apoptosis, and repair. DNA damage sensing kinases recognize different types of DNA damage and initiate specific responses through various post-translational modifications of p53. This study evaluated chemical specificity of the p53 pathway response by manipulating p53 or its upstream kinases and assessing the effect on DNA damage and cellular responses to prototype chemicals: etoposide (ETP, topoisomerase II inhibitor) and methyl methane sulfonate (MMS, alkylating agent). p53-deficient cells demonstrated reduced accumulation of the p53 target proteins MDM2, p21, and Wip1; reduced apoptotic response; and increased DNA damage (p-H2AX and micronuclei) with both chemicals. However, p53 was not essential for cell cycle arrest in HT1080 or HCT116 cells. The two chemicals induced different patterns of kinase activation, particularly in terms of Chk 1, Chk 2, p38, and ERK 1/2. However, inhibition of the ATM pathway showed a greater effect on p53 activtation, apoptosis, and accumulation of DNA damage than ATR-Chk 1 or the MAP kinases regardless of the chemical used. These results indicate that ATM is the predominant upstream kinase responsible for activation of the p53-mediated DNA damage response for both MMS and ETP, though the downstream kinase response is markedly different. Environ. Mol. Mutagen. 58:72-83, 2017. © 2017 Wiley Periodicals, Inc.

  7. Structure of an 'open' clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport.

    Science.gov (United States)

    Laponogov, Ivan; Veselkov, Dennis A; Crevel, Isabelle M-T; Pan, Xiao-Su; Fisher, L Mark; Sanderson, Mark R

    2013-11-01

    Type II topoisomerases regulate DNA supercoiling and chromosome segregation. They act as ATP-operated clamps that capture a DNA duplex and pass it through a transient DNA break in a second DNA segment via the sequential opening and closure of ATPase-, G-DNA- and C-gates. Here, we present the first 'open clamp' structures of a 3-gate topoisomerase II-DNA complex, the seminal complex engaged in DNA recognition and capture. A high-resolution structure was solved for a (full-length ParE-ParC55)2 dimer of Streptococcus pneumoniae topoisomerase IV bound to two DNA molecules: a closed DNA gate in a B-A-B form double-helical conformation and a second B-form duplex associated with closed C-gate helices at a novel site neighbouring the catalytically important β-pinwheel DNA-binding domain. The protein N gate is present in an 'arms-wide-open' state with the undimerized N-terminal ParE ATPase domains connected to TOPRIM domains via a flexible joint and folded back allowing ready access both for gate and transported DNA segments and cleavage-stabilizing antibacterial drugs. The structure shows the molecular conformations of all three gates at 3.7 Å, the highest resolution achieved for the full complex to date, and illuminates the mechanism of DNA capture and transport by a type II topoisomerase.

  8. Molecular cloning, sequencing, and expression analysis of cDNA encoding metalloprotein II (MP II) induced by single and combined metals (Cu(II), Cd(II)) in polychaeta Perinereis aibuhitensis.

    Science.gov (United States)

    Yang, Dazuo; Zhou, Yibing; Zhao, Huan; Zhou, Xiaoxiao; Sun, Na; Wang, Bin; Yuan, Xiutang

    2012-11-01

    We amplified and analyzed the complete cDNA of metalloprotein II (MP II) from the somatic muscle of the polychaete Perinereis aibuhitensis, the full length cDNA is 904 bp encoding 119 amino acids. The MP II cDNA sequence was subjected to BLAST searching in NCBI and was found to share high homology with hemerythrin of other worms. MP II expression of P. aibuhitensis exposed to single and combined metals (Cu(II), Cd(II)) was analyzed using real time-PCR. MP II mRNA expression increased at the start of Cu(II) exposure, then decreased and finally return to the normal level. Expression pattern of MP II under Cd(II) exposure was time- and dose-dependent. MP II expression induced by a combination of Cd(II) and Cu(II) was similar to that induced by Cd(II) alone.

  9. Influence of polyethylene glycol on the ligation reaction with calf thymus DNA ligases I and II.

    Science.gov (United States)

    Teraoka, H; Tsukada, K

    1987-01-01

    High concentrations of the nonspecific macromolecule polyethylene glycol 6000 (PEG 6000) enabled DNA ligases I and II from calf thymus to catalyze intermolecular blunt-end ligation of duplex DNA. Intermolecular cohesive-end ligation with these enzymes was markedly stimulated in the presence of 10-16% (w/v) PEG 6000. The effect of PEG 6000 (4-16%) on the sealing of single-stranded breaks in duplex DNA with DNA ligases I and II was not appreciably stimulatory but rather inhibitory. PEG 6000 (15%) enhanced more twofold the rate of DNA ligase II-AMP complex formation, but moderately suppressed the rate of formation of DNA ligase 1-AMP complex. Polyamines and KCl inhibited blunt-end and cohesive-end ligations with DNA ligases I and II in the presence of PEG 6000.

  10. Highly cytotoxic DNA-interacting copper(II) coordination compounds.

    Science.gov (United States)

    Brissos, Rosa F; Torrents, Ester; dos Santos Mello, Francyelli Mariana; Carvalho Pires, Wanessa; Silveira-Lacerda, Elisângela de Paula; Caballero, Ana B; Caubet, Amparo; Massera, Chiara; Roubeau, Olivier; Teat, Simon J; Gamez, Patrick

    2014-10-01

    Four new Schiff-base ligands have been designed and prepared by condensation reaction between hydrazine derivatives (i.e. 2-hydrazinopyridine or 2-hydrazinoquinoline) and mono- or dialdehyde (3-tert-butyl-2-hydroxybenzaldehyde and 5-tert-butyl-2-hydroxyisophthalaldehyde, respectively). Six copper(II) coordination compounds of various nuclearities have been obtained from these ligands, which are formulated as [Cu(L1)Cl](CH3OH) (1), [Cu(L2)NO3] (2), [Cu2(L3)(ClO4)2(CH3O)(CH3OH)](CH3OH) (3), [Cu2(L4)(ClO4)(OH)(CH3OH)](ClO4) (4), [Cu8(L3)4(NO3)4(OH)5](NO3)3(CH3OH)5(H2O)8 (5) and [Cu3(HL2')4Cl6](CH3OH)6 (6), as revealed by single-crystal X-ray studies. Their DNA-interacting abilities have been investigated using different characterization techniques, which suggest that the metal complexes act as efficient DNA binders. Moreover, cytotoxicity assays with several cancer cell lines show that some of them are very active, as evidenced by the sub-micromolar IC50 values achieved in some cases.

  11. Human Rad51 mediated DNA unwinding is facilitated by conditions that favour Rad51-dsDNA aggregation

    Directory of Open Access Journals (Sweden)

    Kulkarni Anagha

    2009-01-01

    Full Text Available Abstract Background Human Rad51 (RAD51, analogous to its bacterial homolog, RecA, binds and unwinds double stranded DNA (dsDNA in the presence of certain nucleotide cofactors. ATP hydrolysis is not required for this process, because even ATP non hydrolysable analogs like AMP-PNP and ATPγS, support DNA unwinding. Even ADP, the product of ATP hydrolysis, feebly supports DNA unwinding. Results We find that human Rad52 (RAD52 stimulates RAD51 mediated DNA unwinding in the presence of all Adenine nucleotide cofactors, (except in AMP and no nucleotide conditions that intrinsically fail to support unwinding reaction while enhancing aggregation of RAD51-dsDNA complexes in parallel. Interestingly, salt at low concentration can substitute the role of RAD52, in facilitating aggregation of RAD51-dsDNA complexes, that concomitantly also leads to better unwinding. Conclusion RAD52 itself being a highly aggregated protein perhaps acts as scaffold to bring together RAD51 and DNA molecules into large co-aggregates of RAD52-RAD51-DNA complexes to promote RAD51 mediated DNA unwinding reaction, when appropriate nucleotide cofactors are available, presumably through macromolecular crowding effects. Our work highlights the functional link between aggregation of protein-DNA complexes and DNA unwinding in RAD51 system.

  12. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.

    Science.gov (United States)

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-06-13

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.

  13. Conversion of DNA gyrase into a conventional type II topoisomerase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1996-01-01

    DNA gyrase is unique among topoisomerases in its ability to introduce negative supercoils into closed-circular DNA. We have demonstrated that deletion of the C-terminal DNA-binding domain of the A subunit of gyrase gives rise to an enzyme that cannot supercoil DNA but relaxes DNA in an ATP-depend...

  14. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis.

    Science.gov (United States)

    Königshoff, Melanie; Wilhelm, Anke; Jahn, Andreas; Sedding, Daniel; Amarie, Oana Veronica; Eul, Bastian; Seeger, Werner; Fink, Ludger; Günther, Andreas; Eickelberg, Oliver; Rose, Frank

    2007-12-01

    Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease unresponsive to currently available therapies. In IPF, initial alveolar epithelial cell damage leads to activation of fibroblast-(myo)fibroblasts, which deposit an increased amount of a collagen-rich extracellular matrix. Angiotensin II (ANGII) signaling, mediated via angiotensin II receptor type 1 (AGTR1) or type 2 (AGTR2), controls tissue remodeling in fibrosis, but the relevance of AGTR2 remains elusive. In the present study, we demonstrated increased expression of AGTR1 und AGTR2 in human and rodent lung tissues from patients with IPF and mice subjected to bleomycin-induced fibrosis, respectively. Both AGTR1 und AGTR2 localized to interstitial fibroblasts. Quantitative analysis of cell surface expression in primary mouse fibroblasts revealed a significant increase of AGTR2 surface expression in fibrotic fibroblasts, whereas AGTR1 surface expression levels remained similar. ANGII treatment of normal fibroblasts led to enhanced migration and proliferation, which was abrogated after pretreatment with losartan (LOS), an AGTR1 inhibitor. In contrast, in fibrotic fibroblasts, migration and proliferation was modified only by AGTR2, but not AGTR1 inhibition (using PD123319). ANGII-induced effects were mediated via phosphorylation of the mitogen-activated protein kinases p38 and p42/44, which was blocked via LOS and PD123319, respectively. Similar effects of AGTR1 and AGTR2 inhibition were observed using conditioned media of alveolar epithelial cells, a prominent source of ANGII in the lung in vivo. In summary, we conclude that ANGII signaling occurs primarily via AGTR1 in normal fibroblasts, while AGTR2-mediated effects are dominant on activated (myo)-fibroblasts, a receptor switch that may perturb epithelial-mesenchymal interaction, thereby further perpetuating fibrogenesis.

  15. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF

    Directory of Open Access Journals (Sweden)

    Min Xia

    2017-08-01

    Full Text Available DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases.

  16. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    NARCIS (Netherlands)

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    1994-01-01

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  17. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    NARCIS (Netherlands)

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  18. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  19. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  20. Purification of DNA polymerase II stimulatory factor I, a yeast single-stranded DNA-binding protein.

    OpenAIRE

    1990-01-01

    Incidental to the purification of yeast DNA polymerase II was the observation that various chromatographic fractions contained activities that stimulated synthesis by this polymerase. In this paper we report the purification and initial characterization of one such factor, stimulatory factor I (SFI). SFI, which is associated with an apparent complex of three polypeptides of 66, 37, and 13.5 kDa, binds preferentially to single-stranded DNA, possibly explaining its ability to stimulate DNA poly...

  1. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    Science.gov (United States)

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  2. Transformation of tetracyclines mediated by Mn(II) and Cu(II) ions in the presence of oxygen.

    Science.gov (United States)

    Chen, Wan-Ru; Huang, Ching-Hua

    2009-01-15

    Complexation of tetracyclines (TCs) with dissolved Mn(II) and Cu(II) ions were found to significantly enhance the transformation of these antibiotics in the presence of oxygen at pH 8-9.5 and pH 4-6, respectively. In the TC-Mn(II)-O2 system, oxidation of the TC-complexed Mn(II) to Mn(III) by oxygen occurs, followed by oxidation of TC by Mn(III) to regenerate Mn(II). In the TC-Cu(II)-O2 system, Cu(II) oxidizes TC within the complex and the yielded Cu(I) is reoxidized by the present oxygen. Opposite reactivity trends were observed with the two metals: OTC (oxytetracycline) > TTC (tetracycline) > iso-CTC (iso-chlorotetracycline) for the Mn(II)-mediated reaction, whereas CTC > TTC > OTC > epimers for the Cu(II)-mediated reaction. The reactivity results and examination of TC-metal ion complexation and transformation products suggest that the BCD-ring and A-ring of TC are crucial to interact with Mn(II) and Cu(II), respectively. This study highlights that the fate of TCs in aquatic environments may differ significantly by their strong interactions with different metal species present in the systems.

  3. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    Science.gov (United States)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  4. DNA binding and biological activity of mixed ligand complexes of Cu(II, Ni(II and Co(II with quinolones and N donor ligand

    Directory of Open Access Journals (Sweden)

    S.M M Akram

    2015-10-01

    Full Text Available  AbstractMixed ligand complexes of  Cu(II, Ni(II and Co(II have been synthesized by using levofloxacin and bipyridyl and characterized using spectral and analytical techniques. The binding behavior of the Ni(II and Cu(II complexes with herring sperm DNA(Hs-DNA were determined using electronic absorption titration, viscometric measurements and cyclic voltammetry measurements. The binding constant calculated  for Cu(II and Ni(II complexes are 2.0 x 104 and 4.0 x 104 M-1 respectively. Detailed analysis reveals that these metal complexes interact with DNA through intercalative binding mode. The nuclease activity of  Cu(II and Ni(II complexes with ct-DNA was carried out using agarose gel electrophoresis technique. The antioxidant activities for the synthesized complexes have been tested and the antibacterial activity for Ni(II complex was also checked.Key words: Intercalation, hypochromism, red shift and  peak potential.

  5. 5-hydroxymethylcytosine-mediated DNA demethylation in stem cells and development.

    Science.gov (United States)

    Sun, Wenjia; Guan, Minxin; Li, Xuekun

    2014-05-01

    The pursuit of DNA demethylation has a colorful history, but it was not until 2009 that the stars of this story, the Ten-eleven-translocation (Tet) family of proteins, were really identified. Tet proteins convert 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which can be further oxidized to 5-formylcytosine and 5-cyboxycytosine by Tet proteins to achieve DNA demethylation. Recent studies have revealed that 5hmC-mediated DNA demethylation can play essential roles in diverse biological processes, including development and diseases. Here, we review recent discoveries in 5hmC-mediated DNA demethylation in the context of stem cells and development.

  6. Structural basis of gate-DNA breakage and resealing by type II topoisomerases.

    Directory of Open Access Journals (Sweden)

    Ivan Laponogov

    Full Text Available Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg(2+ ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics.

  7. Hierarchical-Multiplex DNA Patterns Mediated by Polymer Brush Nanocone Arrays That Possess Potential Application for Specific DNA Sensing.

    Science.gov (United States)

    Liu, Wendong; Liu, Xueyao; Ge, Peng; Fang, Liping; Xiang, Siyuan; Zhao, Xiaohuan; Shen, Huaizhong; Yang, Bai

    2015-11-11

    This paper provides a facile and cost-efficient method to prepare single-strand DNA (ssDNA) nanocone arrays and hierarchical DNA patterns that were mediated by poly(2-hydroxyethyl methacrylate) (PHEMA) brush. The PHEMA brush nanocone arrays with different morphology and period were fabricated via colloidal lithography. The hierarchical structure was prepared through the combination of colloidal lithography and traditional photolithography. The DNA patterns were easily achieved via grafting the amino group modified ssDNA onto the side chain of polymer brush, and the anchored DNA maintained their reactivity. The as-prepared ssDNA nanocone arrays can be applied for target DNA sensing with the detection limit reaching 1.65 nM. Besides, with the help of introducing microfluidic ideology, the hierarchical-multiplex DNA patterns on the same substrate could be easily achieved with each kind of pattern possessing one kind of ssDNA, which are promising surfaces for the preparation of rapid, visible, and multiplex DNA sensors.

  8. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of 6-amino benzothiazole derivatives

    Science.gov (United States)

    Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj

    2017-09-01

    Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.

  9. The detection of Plasmodiophora brassicae using loop-mediated isothermal DNA amplification

    Directory of Open Access Journals (Sweden)

    Joanna Kaczmarek

    2014-12-01

    Full Text Available Plasmodiophora brassicae, the cause of clubroot, is a very serious problem preventing from successful and profitable cultivation of oilseed rape in Poland. The pathogen was found in all main growing areas of oilseed rape; it also causes considerable problems in growing of vegetable brassicas. The aim of this work was to elaborate fast, cheap and reliable screening method to detect P. brassicae. To achieve this aim the Loop-mediated isothermal DNA amplification (LAMP technique has been elaborated. The set of three primer pairs was designed using LAMP software. The detection was performed with the GspSSD polymerase, isolated from bacteria Geobacillus sp., with strand displacement activity. DNA extraction from clubbed roots obtained from farmers’ fields of oilseed rape infected by P. brassicae was done using a modified CTAB method. The reaction was performed for 60 min at 62oC. The visual detection was done using CFX96 Real Time PCR Detection System (BioRad or Gerie II Amplicatior (Optigen. The detection with LAMP proved its usefulness; it was easy, fast and accurate and independent of plant age. The detection limit was 5 spores per 1 µl of the spore suspension, so LAMP was less sensitive than quantitative PCR tests reported in the literature. However, the method is cheap and simple, so it is a good alternative, when it comes to practical use and the assessment of numerous samples.

  10. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering.

    Science.gov (United States)

    Çamdere, Gamze; Guacci, Vincent; Stricklin, Jeremiah; Koshland, Douglas

    2015-11-19

    Cohesin tethers together regions of DNA, thereby mediating higher order chromatin organization that is critical for sister chromatid cohesion, DNA repair and transcriptional regulation. Cohesin contains a heterodimeric ATP-binding Cassette (ABC) ATPase comprised of Smc1 and Smc3 ATPase active sites. These ATPases are required for cohesin to bind DNA. Cohesin's DNA binding activity is also promoted by the Eco1 acetyltransferase and inhibited by Wpl1. Recently we showed that after cohesin stably binds DNA, a second step is required for DNA tethering. This second step is also controlled by Eco1 acetylation. Here, we use genetic and biochemical analyses to show that this second DNA tethering step is regulated by cohesin ATPase. Furthermore, our results also suggest that Eco1 promotes cohesion by modulating the ATPase cycle of DNA-bound cohesin in a state that is permissive for DNA tethering and refractory to Wpl1 inhibition.

  11. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II

    DEFF Research Database (Denmark)

    Elmlund, Hans; Baraznenok, Vera; Lindahl, Martin

    2006-01-01

    CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8......-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II....

  12. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    Science.gov (United States)

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence.

  13. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  14. Synthesis and study of antiproliferative, antitopoisomerase II, DNA-intercalating and DNA-damaging activities of arylnaphthalimides.

    Science.gov (United States)

    Quintana-Espinoza, Patricia; García-Luis, Jonay; Amesty, Angel; Martín-Rodríguez, Patricia; Lorenzo-Castrillejo, Isabel; Ravelo, Angel G; Fernández-Pérez, Leandro; Machín, Félix; Estévez-Braun, Ana

    2013-11-01

    A series of arylnaphthalimides were designed and synthesized to overcome the dose-limiting cytotoxicity of N-acetylated metabolites arising from amonafide, the prototypical antitumour naphthalimide whose biomedical properties have been related to its ability to intercalate the DNA and poison the enzyme Topoisomerase II. Thus, these arylnaphthalimides were first evaluated for their antiproliferative activity against two tumour cell lines and for their antitopoisomerase II in vitro activities, together with their ability to intercalate the DNA in vitro and also through docking modelization. Then, the well-known DNA damage response in Saccharomyces cerevisiae was employed to critically evaluate whether these novel compounds can damage the DNA in vivo. By performing all these assays we conclude that the 5-arylsubstituted naphthalimides not only keep but also improve amonafide's biological activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. DNA interaction studies of a platinum (II) complex containing an antiviral drug, ribavirin: the effect of metal on DNA binding.

    Science.gov (United States)

    Shahabadi, Nahid; Mirzaei kalar, Zeinab; Moghadam, Neda Hosseinpour

    2012-10-01

    The water-soluble Pt (II) complex, [PtCl (DMSO)(N(4)N(7)-ribavirin)]· H(2)O (ribavirin is an antiviral drug) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, K(b), was 7.2×10(5) M(-1). In fluorimetric studies, the enthalpy (ΔH0) changes of the reaction between the Pt (II) complex with CT-DNA showed hydrophobic interaction. In addition, CD study showed stabilization of the right-handed B form of CT-DNA. All these results prove that the complex interacts with CT-DNA via intercalative mode of binding. In comparison with the previous study of the DNA interaction with ribavirin, these results show that platinum complex has greater affinity to CT-DNA.

  16. On the ion-mediated interaction between protein and DNA

    CERN Document Server

    Barbi, Maria

    2013-01-01

    The mechanism allowing a protein to search of a target sequence on DNA is currently described as an intermittent process composed of 3D diffusion in bulk and 1D diffusion along the DNA molecule. Due to the relevant charge of protein and DNA, electrostatic interaction should play a crucial role during this search. In this paper, we explicitly derive the mean field theory allowing for a description of the protein-DNA electrostatics in solution. This approach leads to a unified model of the search process, where 1D and 3D diffusion appear as a natural consequence of the diffusion on an extended interaction energy profile.

  17. Assembly of DNA triangles mediated by perylene bisimide caps.

    Science.gov (United States)

    Menacher, Florian; Stepanenko, Vladimir; Würthner, Frank; Wagenknecht, Hans-Achim

    2011-06-06

    Perylene bisimides (PBI) have been synthetically incorporated as caps onto a Y-shaped DNA triple strand. These PBI caps serve as "sticky" ends in the spontaneous assembly of larger DNA ensembles, linking the triangular DNA through stacking interactions. This, in turn, yields a hypsochromic shift in the absorption and a red shift in the fluorescence as characteristic optical readouts. This assembly occurs spontaneously without any enzymatic ligation process and without the use of overhanging DNA as sticky ends. Instead, dimerizations of the PBI chromophores in the assembly are controlled by the DNA as a structural scaffold. Thereby, the PBI-driven assembly is fully reversible. Due to the fact that PBI dimerization does not occur in the single strand, the aggregates can be destroyed by thermal dehybridization of the DNA scaffold and reassembled by reannealing of the DNA construct. In view of the fact that PBI forms stable radical anions, the presented DNA architectures are not only interesting optical biomaterials, but are also promising materials for molecular electronics with DNA.

  18. Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Draksharapu, Apparao; Boersma, Arnold J; Leising, Miriam; Meetsma, Auke; Browne, Wesley R; Roelfes, Gerard

    2015-01-01

    The interaction between salmon testes DNA (st-DNA) and a series of Cu-II polypyridyl complexes, i.e. [Cu(dmbpy)(NO3)(2)] (1) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [Cu(bpy)(NO3)(2)] (2) (bpy = 2,2'-bipyridine), [Cu(phen)(NO3)(2)] (3) (phen = phenanthroline), [Cu(terpy)(NO3)(2)]center dot H2O (4) (

  19. One New Method of Nucleic Acid Amplification-Loop-mediated Isothermal Amplification of DNA

    Institute of Scientific and Technical Information of China (English)

    Xue-en FANG; Jian LI; Qin CHEN

    2008-01-01

    Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method, which amplifies DNA with high specificity, sensitivity, rapidity and efficiency under isothermal conditions using a set of four specially designed primers and a Bst DNA polymerase with strand displacement activity. The basic principle, characteristics, development of LAMP and its applications are summarized in this article.

  20. LAMP (Loop-mediated isothermal amplification of DNA) - A technique for biotype discrimination in Bemisia tabaci

    Science.gov (United States)

    Loop-mediated isothermal amplification of DNA (LAMP) can amplify a target DNA sequence at a constant temperature in about 1 hour. LAMP technology has great potential for agricultural applications because of the need for rapid and inexpensive diagnoses. Assays based on LAMP technology are well suited...

  1. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway.

    NARCIS (Netherlands)

    X.W. Wang (Xin Wei); W. Vermeulen (Wim); J.D. Coursen; M.K. Gibson (Michael); S.E. Lupold; K. Forrester; G. Xu; L. Elmore; H. Yeh; J.H.J. Hoeijmakers (Jan); C.C. Harris

    1996-01-01

    textabstractThe molecular pathway of p53-dependent apoptosis (programmed cell death) is poorly understood. Because p53 binds to the basal transcription-repair complex TFIIH and modulates its DNA helicase activities, we hypothesized that TFIIH DNA helicases XPB and XPD are members of the p53-mediated

  2. Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration.

    Science.gov (United States)

    Churchil, R R; Gupta, J; Singh, A; Sharma, D

    2011-06-01

    1. Three types of exogenous DNA inserts, i.e. complete linearised pVIVO2-GFP/LacZ vector (9620 bp), the LacZ gene (5317 bp) and the GFP gene (2152 bp) were used to transfect chicken spermatozoa through simple incubation of sperm cells with insert. 2. PCR assay, Dot Blot hybridisation and Southern hybridisation showed the successful internalisation of exogenous DNA by chicken sperm cells. 3. Lipofection and Restriction Enzyme Mediated Integration (REMI) were used to improve the rate of internalisation of exogenous DNA by sperm cells. 4. Results from dot blot as well as Southern hybridisation were semi-quantified and improved exogenous DNA uptake by sperm cells through lipofection and REMI. Stronger signals were observed from hybridisation of LacZ as well as GFP specific probe with the DNA from lipofected exogenous DNA transfected sperm DNA in comparison with those transfected with nude exogenous DNA.

  3. DNA damage mediated transcription arrest: Step back to go forward.

    Science.gov (United States)

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored.

  4. DNA-mediated silver nanoclusters: synthesis, properties and applications.

    Science.gov (United States)

    Latorre, Alfonso; Somoza, Álvaro

    2012-05-07

    Fluorescent DNA-AgNCs have emerged as an alternative to standard emitters because of their unique properties: high fluorescent quantum yield, photostability, a broad pallet of colors (blue to near-IR), and the fact that their properties are easily modulated by the DNA sequence and environment. Applications as gene, ion, or small-molecule sensors have been reported.

  5. Dynamic assembly of DNA and polylysine mediated by electric energy.

    Science.gov (United States)

    Niu, Lin; Yang, Xuyan; Zhu, Xiaocui; Yin, Yudan; Qu, Wei; Zhou, Jihan; Zhao, Meiping; Liang, Dehai

    2015-01-28

    Under an electric field, the complexes formed by DNA and polylysine exhibit novel features, such as selective merging of particles, ejecting of daughter vehicles, and differentiation of particles of varying mobility. The mobility of the complex could be three times faster than that of free DNA.

  6. Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism

    OpenAIRE

    Deshotels, Matthew R.; Xia, Huijing; Lazartigues, Eric; Filipeanu, Catalin M.

    2014-01-01

    Angiotensin Converting Enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of Angiotensin (Ang)-II to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contribute to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 down-regulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significan...

  7. Anti-DNA antibody mediated catalysis is isotype dependent.

    Science.gov (United States)

    Xia, Yumin; Eryilmaz, Ertan; Zhang, Qiuting; Cowburn, David; Putterman, Chaim

    2016-01-01

    Anti-DNA antibodies are the serological hallmark of systemic lupus erythematosus, and participate in the pathogenesis of lupus nephritis by cross-reacting with multiple renal antigens. Previously, using a panel of murine anti-DNA IgGs that share identical variable regions but that differ in the constant regions, we demonstrated that the cross-reaction and renal pathogenicity of anti-DNA antibodies are isotype dependent. In this study, we investigated the catalytic potential of this anti-DNA antibody panel, and determined its isotype dependency. The three isotype switch variants (IgG1, IgG2a, IgG2b) and the parent IgG3 PL9-11 anti-DNA antibodies were compared in their catalysis of 500 base pair linear double stranded DNA and a 12-mer peptide (ALWPPNLHAWVP), by gel analysis, MALDI-TOF mass spectrometry, and nuclear magnetic resonance spectroscopy. The binding affinity of anti-DNA antibodies to double stranded DNA and peptide antigens were assessed by ELISA and surface plasmon resonance. We found that the PL9-11 antibody isotypes vary significantly in their potential to catalyze the cleavage of both linear and double stranded DNA and the proteolysis of peptides. The degree of the cleavage and proteolysis increases with the incubation temperature and time. While different PL9-11 isotypes have the same initial attack sites within the ALWPPNLHAWVP peptide, there was no correlation between binding affinity to the peptide and proteolysis rates. In conclusion, the catalytic properties of anti-DNA antibodies are isotype dependent. This finding provides further evidence that antibodies that share the same variable region, but which have different constant regions, are functionally distinct. The catalytic effects modulated by antibody constant regions need to be considered in the design of therapeutic antibodies (abzymes) and peptides designed to block pathogenic autoantibodies.

  8. DNA-HMGB1 interaction: The nuclear aggregates of polyamine mediation.

    Science.gov (United States)

    Iacomino, Giuseppe; Picariello, Gianluca; Sbrana, Francesca; Raiteri, Roberto; D'Agostino, Luciano

    2016-10-01

    Nuclear aggregates of polyamines (NAPs) are supramolecular compounds generated by the self-assembly of protonated nuclear polyamines (spermine, spermidine and putrescine) and phosphate ions. In the presence of genomic DNA, the hierarchical process of self-structuring ultimately produces nanotube-like polymers that envelop the double helix. Because of their modular nature and their aggregation-disaggregation dynamics, NAPs confer plasticity and flexibility to DNA. Through the disposition of charges, NAPs also enable a bidirectional stream of information between the genome and interacting moieties. High mobility group (HMG) B1 is a non-histone chromosomal protein that binds to DNA and that influences multiple nuclear processes. Because genomic DNA binds to either NAPs or HMGB1 protein, we explored the ability of in vitro self-assembled NAPs (ivNAPs) to mediate the DNA-HMGB1 interaction. To this end, we structured DNA-NAPs-HMGB1 and DNA-HMGB1-NAPs ternary complexes in vitro through opportune sequential incubations. Mobility shift electrophoresis and atomic force microscopy showed that the DNA-ivNAPs-HGMB1 complex had conformational assets supposedly more suitable those of the DNA-HGMB1-ivNAPs to comply with the physiological and functional requirements of DNA. Our findings indicated that ivNAPs act as mediators of the DNA-HMGB1 interaction.

  9. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    Science.gov (United States)

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  10. DNA polymorphism of HLA class II genes in pauciarticular juvenile rheumatoid arthritis

    DEFF Research Database (Denmark)

    Morling, N; Friis, J; Fugger, L;

    1991-01-01

    We investigated the DNA restriction fragment length polymorphism (RFLP) of the major histocompatibility complex (MHC) class II genes: HLA-DRB, -DQA, -DQB, DPA, and -DPB in 54 patients with pauciarticular juvenile rheumatoid arthritis (PJRA) and in healthy Danes. The frequencies of DNA fragments a...

  11. Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions.

    Science.gov (United States)

    Liang, Hongjun; Harries, Daniel; Wong, Gerard C L

    2005-08-09

    Self-assembled DNA delivery systems based on anionic lipids (ALs) complexed with DNA mediated by divalent cations have been recently introduced as an alternative to cationic lipid-DNA complexes because of their low cytotoxicity. We investigate AL-DNA complexes induced by different cations by using synchrotron small angle x-ray scattering and confocal microscopy to show how different ion-mediated interactions are expressed in the self-assembled structures and phase behavior of AL-DNA complexes. The governing interactions in AL-DNA systems are complex: divalent ions can mediate strong attractions between different combinations of the components (such as DNA-DNA and membrane-membrane). Moreover, divalent cations can coordinate non-electrostatically with lipids and modify the resultant membrane structure. We find that at low membrane charge densities AL-DNA complexes organize into a lamellar structure of alternating DNA and membrane layers crosslinked by ions. At high membrane charge densities, a new phase with no analog in cationic lipid-DNA systems is observed: DNA is expelled from the complex, and a lamellar stack of membranes and intercalated ions is formed. For a subset of the ionic species, high ion concentrations generate an inverted hexagonal phase comprised of DNA strands wrapped by ion-coated lipid tubes. A simple theoretical model that takes into account the electrostatic and membrane elastic contributions to the free energy shows that this transition is consistent with an ion-induced change in the membrane spontaneous curvature, c0. Moreover, the crossover between the lamellar and inverted hexagonal phases occurs at a critical c0 that agrees well with experimental values.

  12. Theoretical and Experimental Dissection of DNA Loop-Mediated Repression

    Science.gov (United States)

    Boedicker, James Q.; Garcia, Hernan G.; Phillips, Rob

    2013-01-01

    Transcriptional networks across all domains of life feature a wide range of regulatory architectures. Theoretical models now make clear predictions about how key parameters describing those architectures modulate gene expression, and the ability to construct genetic circuits with tunable parameters enables precise tests of such models. We dissect gene regulation through DNA looping by tuning network parameters such as repressor copy number, DNA binding strengths, and loop length in both thermodynamic models and experiments. Our results help clarify the short-length mechanical properties of DNA. PMID:23383841

  13. Theoretical and Experimental Dissection of DNA Loop-Mediated Repression

    Science.gov (United States)

    Boedicker, James Q.; Garcia, Hernan G.; Phillips, Rob

    2013-01-01

    Transcriptional networks across all domains of life feature a wide range of regulatory architectures. Theoretical models now make clear predictions about how key parameters describing those architectures modulate gene expression, and the ability to construct genetic circuits with tunable parameters enables precise tests of such models. We dissect gene regulation through DNA looping by tuning network parameters such as repressor copy number, DNA binding strengths, and loop length in both thermodynamic models and experiments. Our results help clarify the short-length mechanical properties of DNA.

  14. Recovery of the poisoned topoisomerase II for DNA religation: coordinated motion of the cleavage core revealed with the microsecond atomistic simulation.

    Science.gov (United States)

    Huang, Nan-Lan; Lin, Jung-Hsin

    2015-08-18

    Type II topoisomerases resolve topological problems of DNA double helices by passing one duplex through the reversible double-stranded break they generated on another duplex. Despite the wealth of information in the cleaving operation, molecular understanding of the enzymatic DNA ligation remains elusive. Topoisomerase poisons are widely used in anti-cancer and anti-bacterial therapy and have been employed to entrap the intermediates of topoisomerase IIβ with religatable DNA substrate. We removed drug molecules from the structure and conducted molecular dynamics simulations to investigate the enzyme-mediated DNA religation. The drug-unbound intermediate displayed transitions toward the resealing-compliant configuration: closing distance between the cleaved DNA termini, B-to-A transformation of the double helix, and restoration of the metal-binding motif. By mapping the contact configurations and the correlated motions between enzyme and DNA, we identified the indispensable role of the linker preceding winged helix domain (WHD) in coordinating the movements of TOPRIM, the nucleotide-binding motifs, and the bound DNA substrate during gate closure. We observed a nearly vectorial transition in the recovery of the enzyme and identified the previously uncharacterized roles of Asn508 and Arg677 in DNA rejoining. Our findings delineate the dynamic mechanism of the DNA religation conducted by type II topoisomerases.

  15. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template.

    Science.gov (United States)

    Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C; Engelke, David R

    2014-05-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.

  16. Protein phosphatase 5 is necessary for ATR-mediated DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoonsung [Department of Pharmacology, DNA Repair Research Center, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); Cheong, Hyang-Min [Department of Life Science, College of Natural Science, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Lee, Jung-Hee [Department of Pharmacology, DNA Repair Research Center, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); Song, Peter I. [Department of Dermatology, University of Arkansas for Medical Science, 4301 West Markham, Slot 576, Little Rock, AR 72205 (Korea, Republic of); Lee, Kwang-Ho [Department of Life Science, College of Natural Science, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Kim, Sang-Yong [Division of Endocrinology, Department of Internal Medicine, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); Jun, Jae Yeoul [Department of Physiology, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); You, Ho Jin, E-mail: hjyou@chosun.ac.kr [Department of Pharmacology, DNA Repair Research Center, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Serine/threonine protein phosphatase 5 (PP5) has been shown to participate in ataxia telangiectasia-mutated (ATM)- and ATR (ATM- and Rad3-related)-mediated checkpoint pathways, which plays an important role in the DNA damage response and maintenance of genomic stability. {yields} However, it is not clear exactly how PP5 participates in this process. {yields} Our results indicate that PP5 is more closely related with ATR-mediated pathway than ATM-mediated pathway in DNA damage repair. -- Abstract: Several recent studies have shown that protein phosphatase 5 (PP5) participates in cell cycle arrest after DNA damage, but its roles in DNA repair have not yet been fully characterized. We investigated the roles of PP5 in the repair of ultraviolet (UV)- and neocarzinostatin (NCS)-induced DNA damage. The results of comet assays revealed different repair patterns in UV- and NCS-exposed U2OS-PS cells. PP5 is only essential for Rad3-related (ATR)-mediated DNA repair. Furthermore, the phosphorylation of 53BP1 and BRCA1, important mediators of DNA damage repair, and substrates of ATR and ATM decreased in U2OS-PS cells exposed to UV radiation. In contrast, the cell cycle arrest proteins p53, CHK1, and CHK2 were normally phosphorylated in U2OS and U2OS-PS cells exposed to UV radiation or treated with NCS. In view of these results, we suggest that PP5 plays a crucial role in ATR-mediated repair of UV-induced DNA damage.

  17. Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).

    Science.gov (United States)

    Herzog, Katja; Flachowsky, Henryk; Deising, Holger B; Hanke, Magda-Viola

    2012-04-25

    Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene.

  18. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    Science.gov (United States)

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  19. Immune- and Pollution-mediated DNA Damage in Two Wild Mya arenaria Clam Populations

    Directory of Open Access Journals (Sweden)

    François Gagné

    2009-01-01

    Full Text Available In aquatic environments, genotoxicity results from the effects of pollution combined with the inflammatory response triggered by the immune system. Indeed, the production of nitrosylated DNA and proteins are though to arise from the production of peroxinitrite during phagocytosis and inflammation. The purpose of this study was to examine new DNA biomarkers that differentiate between immune- and pollution-mediated genotoxicity in wild clam populations. Intertidal clam populations were sampled and analyzed for gonadal DNA strand breaks, DNA nitrosylation and xanthine oxidoreductase (XOR activity (purine salvage pathway. The clam weight-to-shell-length ratio, the gonado-somatic index (GSI, age status, lipid peroxidation, xenobiotic conjugation activity (glutathione S-transferase (GST and phagocytic activity were examined to shed light on their relationships with the observed genotoxic endpoints. XOR activity and DNA strand breaks were generally elevated at polluted sites and correlated significantly with clam weight-to-shell-length ratios and DNA nitrosylation. DNA nitrosylation was also higher at some sites and correlated significantly with phagocytic activity and with DNA strand breaks. This study showed that DNA strand breaks were associated with both immune- and pollution-mediated effects. This suggests that there is a loss of DNA repair capacity due to the combined effects of aging, pollution and immune response in wild clam populations that are impacted by anthropogenic activity.

  20. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes.

    Science.gov (United States)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of K(b), 5.21×10(4)M(-1) that are higher than that obtained for 2 (red-shift, 2 nm; K(b), 1.73×10(4)M(-1)) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the E(pc) and E(0)' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HO()) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  1. Spectroscopic, DNA binding ability, biological activity, DFT calculations and non linear optical properties (NLO) of novel Co(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with ONS Schiff base

    Science.gov (United States)

    Abdel Aziz, Ayman A.; Elantabli, Fatma M.; Moustafa, H.; El-Medani, Samir M.

    2017-08-01

    The reaction of Co(II), Cu(II), Zn(II), Cd(II) and Hg(II) with the synthesized N-(2-hydroxy-1-naphthylidene)-2-aminothiophenol Schiff base ligand (H2L) at room temperature resulted in the formation of the five complexes; [Co(HL)2]H2O, 1; [M(HL)2] (M = Cu, Zn and Cd), (2-4) and [Hg(HL)Cl], 5. The ligand and its complexes were characterized based on elemental analyses, IR, 1H NMR, magnetic measurement, molar conductance, and thermal analysis. Coats and Redfern method was used to compute the kinetic and thermodynamic parameters. Antimicrobial activities of H2L and its complexes have been studied. The binding of Co(II), Cu(II) and Zn(II) complexes to calf thymus DNA (CT-DNA) has been investigated using UV-Vis and fluorescence absorption spectra. The results indicated that the ligand and its complexes may bind to DNA by intercalation modes, with a much higher binding affinity of the complexes than that of the ligand. The equilibrium geometries of the studied complexes are investigated theoretically at the B3LYP/LANL2DZ level of theory, and it was found that these geometries are non-linear. The calculated EHOMO and ELUMO energies of the studied complexes can be used to calculate the global properties. The calculated nonlinear optical parameters (NLO); first order hyperpolarizibility (β) of the studied complexes show promising optical properties.

  2. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenko, Julia; Jatsenko, Tatjana; Saumaa, Signe; Teras, Riho; Tark-Dame, Mariliis; Horak, Rita [Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu (Estonia); Kivisaar, Maia, E-mail: maiak@ebc.ee [Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu (Estonia)

    2011-09-01

    The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif{sup r} mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.

  3. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    Science.gov (United States)

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  4. Synthesis of dihydromyricetin-manganese (II) complex and interaction with DNA

    Science.gov (United States)

    Guo, Qingquan; Yuan, Juan; Zeng, Jinhua; He, Xiangzhu; Li, Daguang

    2012-11-01

    Dihydromyricetin has many physiological functions and its metal complex could have better effects. DNA is very important in biological body, but little attention has been devoted to the relationship between dihydromyricetin-metal complex and the DNA. In this paper, dihydromyricetin-Mn (II) complex has been prepared and characterized using UV-vis absorption spectrophotometry, IR spectroscopy, elemental analysis, and thermal gravimetric analysis (TG-DTA Analysis). The interaction of dihydromyricetin-Mn (II) complex with DNA was investigated using UV-vis spectra, fluorescence measurements and viscosity measurements. The results indicate that the dihydromyricetin-manganese (II) complex can intercalate into the stacked base pairs of DNA with binding constant Kb = 5.64 × 104 M and compete with the strong intercalator ethidium bromide for the intercalative binding sites with Stern-Volmer quenching constant, Ksq = 1.16.

  5. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor (Malaysia)

    2014-09-03

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N′-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by {sup 1}H and {sup 13}C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N{sub 2}O{sub 2} from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  6. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    Science.gov (United States)

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd

    2014-09-01

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N'-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by 1H and 13C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N2O2 from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  7. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells.

    Science.gov (United States)

    Guo, Wei; Zheng, Wei; Luo, Qun; Li, Xianchan; Zhao, Yao; Xiong, Shaoxiang; Wang, Fuyi

    2013-05-06

    We report herein a systematic study on interactions of organometallic ruthenium(II) anticancer complex [(η(6)-arene)Ru(en)Cl](+) (arene = p-cymene (1) or biphenyl (2), en = ethylenediamine) with human transferrin (hTf) and the effects of the hTf-ligation on the bioavailability of these complexes with cisplatin as a reference. Incubated with a 5-fold excess of complex 1, 2, or cisplatin, 1 mol of diferric hTf (holo-hTf) attached 0.62 mol of 1, 1.01 mol of 2, or 2.14 mol of cisplatin. Mass spectrometry revealed that both ruthenium complexes coordinated to N-donors His242, His273, His578, and His606, whereas cisplatin bound to O donors Tyr136 and Tyr317 and S-donor Met256 in addition to His273 and His578 on the surface of both apo- and holo-hTf. Moreover, cisplatin could bind to Thr457 within the C-lobe iron binding cleft of apo-hTf. Neither ruthenium nor platinum binding interfered with the recognition of holo-hTf by the transferrin receptor (TfR). The ruthenated/platinated holo-hTf complexes could be internalized via TfR-mediated endocytosis at a similar rate to that of holo-hTf itself. Moreover, the binding to holo-hTf well preserved the bioavailability of the ruthenium complexes, and the hTf-bound 1 and 2 showed a similar cytotoxicity toward the human breast cancer cell line MCF-7 to those of the complexes themselves. However, the conjugation with holo-hTf significantly reduced the cellular uptake of cisplatin and the amount of platinated DNA adducts formed intracellularly, leading to dramatic reduction of cisplatin cytotoxicity toward MCF-7. These findings suggest that hTf can serve as a mediator for the targeting delivery of Ru(arene) anticancer complexes while deactivating cisplatin.

  8. Sequence dependence of transcription factor-mediated DNA looping.

    Science.gov (United States)

    Johnson, Stephanie; Lindén, Martin; Phillips, Rob

    2012-09-01

    DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here, we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping.

  9. Chloramphenicol Mediates Superoxide Production in Photosystem II and Enhances Its Photodamage in Isolated Membrane Particles

    Science.gov (United States)

    Rehman, Ateeq Ur; Kodru, Sandeesha; Vass, Imre

    2016-01-01

    Chloramphenicol (CAP) is an inhibitor of protein synthesis, which is frequently used to decouple photodamage and protein synthesis dependent repair of Photosystem II during the process of photoinhibition. It has been reported earlier that CAP is able to mediate superoxide production by transferring electrons from the acceptor side of Photosystem I to oxygen. Here we investigated the interaction of CAP with Photosystem II electron transport processes by oxygen uptake and variable chlorophyll fluorescence measurements. Our data show that CAP can accept electrons at the acceptor side of Photosystem II, most likely from Pheophytin, and deliver them to molecular oxygen leading to superoxide production. In addition, the presence of CAP enhances photodamage of Photosystem II electron transport in isolated membrane particles, which effect is reversible by superoxide dismutase. It is concluded that CAP acts as electron acceptor in Photosystem II and mediates its superoxide dependent photodamage. This effect has potential implications for the application of CAP in photoinhibitory studies in intact systems. PMID:27092170

  10. The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma.

    Science.gov (United States)

    Maes, Ken; De Smedt, Eva; Lemaire, Miguel; De Raeve, Hendrik; Menu, Eline; Van Valckenborgh, Els; McClue, Steve; Vanderkerken, Karin; De Bruyne, Elke

    2014-05-30

    DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) are under investigation for the treatment of cancer, including the plasma cell malignancy multiple myeloma (MM). Evidence exists that DNA damage and repair contribute to the cytotoxicity mediated by the DNMTi decitabine. Here, we investigated the DNA damage response (DDR) induced by decitabine in MM using 4 human MM cell lines and the murine 5T33MM model. In addition, we explored how the HDACi JNJ-26481585 affects this DDR. Decitabine induced DNA damage (gamma-H2AX foci formation), followed by a G0/G1- or G2/M-phase arrest and caspase-mediated apoptosis. JNJ-26481585 enhanced the anti-MM effect of decitabine both in vitro and in vivo. As JNJ-26481585 did not enhance decitabine-mediated gamma-H2AX foci formation, we investigated the DNA repair response towards decitabine and/or JNJ-26481585. Decitabine augmented RAD51 foci formation (marker for homologous recombination (HR)) and/or 53BP1 foci formation (marker for non-homologous end joining (NHEJ)). Interestingly, JNJ-26481585 negatively affected basal or decitabine-induced RAD51 foci formation. Finally, B02 (RAD51 inhibitor) enhanced decitabine-mediated apoptosis. Together, we report that decitabine-induced DNA damage stimulates HR and/or NHEJ. JNJ-26481585 negatively affects RAD51 foci formation, thereby providing an additional explanation for the combinatory effect between decitabine and JNJ-26481585.

  11. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  12. Extended HSR/CARD domain mediates AIRE binding to DNA.

    Science.gov (United States)

    Maslovskaja, Julia; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Interaction of Bis-Zn(II) salphen complex with calf thymus-DNA

    Science.gov (United States)

    Yussof, Aida Mastura Binti Mohd; Karim, Nurul Huda Abd

    2014-09-01

    Metal salphen family has been extensively studied over the past few years and has been reported to be good DNA stabilizers due to its high binding affinity. Binding studies of metal complex with DNA are useful for understanding the interaction mechanism and to provide an insight about the application and design of a novel effective drug target to DNA. In this study, a bis-zinc (II) salphen metal complex derived from 4-methyl-2,6-diformylphenol and 1,2-diaminobenzene (H2L) via condensation reactions has been synthesised. The zinc(II) macrocyclic complex is characterised using standard spectroscopic and structural techniques such as 1H NMR spectroscopy and FTIR spectroscopy. The binding interaction between the synthesised metal complex with calf thymus-DNA (ct-DNA) has been investigated by preliminary UV/Vis DNA study. From the preliminary UV/Vis DNA study, it shows that Bis-Zn(II) salphen complex has interaction with ct-DNA.

  14. DNA sensor cGAS-mediated immune recognition

    Directory of Open Access Journals (Sweden)

    Pengyan Xia

    2016-09-01

    Full Text Available Abstract The host takes use of pattern recognition receptors (PRRs to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate–adenosine monophosphate (cGAMP from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.

  15. DNA conformational analysis in solution by uranyl mediated photocleavage

    DEFF Research Database (Denmark)

    Nielsen, Peter E.; Møllegaard, N E; Jeppesen, C

    1990-01-01

    by uranyl in a way indicating strongest uranyl binding at the center of the minor groove of the AT-region. The A-tracts of kinetoplast DNA show the highest reactivity at the 3'-end of the tract--as opposed to cleavage by EDTA/Fell--in accordance with the minor groove being more narrow at this end. Finally...

  16. Human PSF concentrates DNA and stimulates duplex capture in DMC1-mediated homologous pairing

    Science.gov (United States)

    Morozumi, Yuichi; Ino, Ryohei; Takaku, Motoki; Hosokawa, Mihoko; Chuma, Shinichiro; Kurumizaka, Hitoshi

    2012-01-01

    PSF is considered to have multiple functions in RNA processing, transcription and DNA repair by mitotic recombination. In the present study, we found that PSF is produced in spermatogonia, spermatocytes and spermatids, suggesting that PSF may also function in meiotic recombination. We tested the effect of PSF on homologous pairing by the meiosis-specific recombinase DMC1, and found that human PSF robustly stimulated it. PSF synergistically enhanced the formation of a synaptic complex containing DMC1, ssDNA and dsDNA during homologous pairing. The PSF-mediated DMC1 stimulation may be promoted by its DNA aggregation activity, which increases the local concentrations of ssDNA and dsDNA for homologous pairing by DMC1. These results suggested that PSF may function as an activator for the meiosis-specific recombinase DMC1 in higher eukaryotes. PMID:22156371

  17. Direct monitoring of the strand passage reaction of DNA topoisomerase II triggers checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Katherine L Furniss

    Full Text Available By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.

  18. Photoinduced interactions of supramolecular ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies.

    Science.gov (United States)

    Swavey, Shawn; DeBeer, Madeleine; Li, Kaiyu

    2015-04-06

    Two new bridging ligands have been synthesized by combining substituted benzaldehydes with phenanthrolinopyrrole (php), resulting in new polyazine bridging ligands. The ligands have been characterized by (1)H NMR, mass spectroscopy, and elemental analysis. These new ligands display π-π* transitions above 500 nm with modest molar absorptivities. Upon excitation at the ligand-centered charge-transfer transition, weak emission with a maximum wavelength of 612 nm is observed. When coordinated to two ruthenium(II) bis(bipyridyl) groups, the new bimetallic complexes generated give an overall 4+ charge. The electronic transitions of the bimetallic ruthenium(II) complexes display traditional π-π* transitions at 287 nm and metal-to-ligand charge-transfer transitions at 452 nm with molar absorptivities greater than 30000 M(-1) cm(-1). Oxidation of the ruthenium(II) metal centers to ruthenium(III) occurs at potentials above 1.4 V versus the Ag/AgCl reference electrode. Spectroscopic and electrochemical measurements indicate that the ruthenium(II) moieties behave independently. Both complexes are water-soluble and show the ability to photonick plasmid DNA when irradiated with low-energy light above 550 nm. In addition, one of the complexes, [Ru(bpy)2php]2Van(4+), shows the ability to linearize plasmid DNA and gives evidence, by gel electrophoresis, of photoinduced binding to plasmid DNA.

  19. Synthesis, characterization and DNA binding/cleavage, protein binding and cytotoxicity studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of aminonaphthoquinone.

    Science.gov (United States)

    Kosiha, A; Parthiban, C; Elango, Kuppanagounder P

    2017-03-01

    The Co(II), Ni(II), Cu(II) and Zn(II) complexes of an aminonaphthoquinone ligand (L) have been prepared and characterized using analytical and spectral techniques. The structures of L and its Zn(II) complex are confirmed by single crystal X-ray diffraction study. The results indicate that Co(II), Ni(II) and Zn(II) complexes possess tetrahedral geometry while Cu(II) complex exhibits square planar structure. The interaction of L and its complexes with CT-DNA reveal that they could interact with CT-DNA through intercalation. The DNA cleavage studies of the L and its complexes indicate that the Cu(II) and Ni(II) complexes cleave the circular form of the DNA relatively to a greater extent than the other complexes. The results of the interaction of these compounds with bovine serum albumin (BSA) indicate that the complexes exhibit a strong binding to BSA over the L. The in vitro anticancer activities indicate that these compounds exhibit substantial activity against human breast (MCF7) and lung cancer (A549) cell lines. The characteristics of apoptosis in cell morphology have been observed using AO/EB and DAPI staining and the results suggest that an apoptotic mode of cell death with these compounds. The overall results and discussion indicate that coordination of metal ions with the ligand enhances the biological activity.

  20. Copper(II) complexes with new fluoroquinolones: Synthesis, structure, spectroscopic and theoretical study, DNA damage, cytotoxicity and antiviral activity.

    Science.gov (United States)

    Dorotíková, Sandra; Kožíšková, Júlia; Malček, Michal; Jomová, Klaudia; Herich, Peter; Plevová, Kristína; Briestenská, Katarína; Chalupková, Anna; Mistríková, Jela; Milata, Viktor; Dvoranová, Dana; Bučinský, Lukáš

    2015-09-01

    Copper(II) complexes with fluoroquinolones in the presence of the nitrogen donor heterocyclic ligands 1,10-phenanthroline have been considered in detail. The phenanthroline moiety was introduced into the ligand environment with the aim to determine whether the nuclease activity is feasible. All suitable X-ray structures of the complexes under study reveal a distorted square pyramidal coordination geometry for Cu(II) atom. The conformational and spectroscopic (FT-IR and UV-visible) behavior has been analyzed and has been interpreted with respect to B3LYP/6-311G* calculations including molecular dynamics. The ability of the complexes to cleave DNA was studied by agarose gel electrophoresis with plasmid DNA pBSK+. The results have confirmed that the complexes under study behave as the chemical nucleases. Nuclease like activity in the absence of hydrogen peroxide allows us to deduce an interaction of the complexes with the DNA resulting in the conversion of supercoiled circular DNA to the nicked form. The DNA cleavage activity enhanced by the presence of hydrogen peroxide demonstrates the participation of reactive oxygen species, such as superoxide radical anions and hydroxyl radicals which presence was confirmed independently using the standard radical scavenging agents. It has been suggested that the radical formation through the Fenton/Haber-Weiss reaction is mediated by the redox cycling mechanisms with the participation of cupric/cuprous ions. Cytotoxic activity was evaluated as the 50% cytotoxic concentration (CC50). The potential effects of tested compounds on replication of murine gammaherpesvirus 68 (MHV-68) under in vitro conditions were also evaluated. However, no antiviral activity against MHV-68 was observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Theerthankar Das

    Full Text Available Calcium (Ca(2+ has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca(2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca(2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca(2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca(2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG values in iTC data confirmed that the interaction between DNA and Ca(2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca(2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca(2+ to eDNA thereby mediating bacterial aggregation and biofilm formation.

  2. DNA Ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair

    Science.gov (United States)

    Gao, Yankun; Katyal, Sachin; Lee, Youngsoo; Zhao, Jingfeng; Rehg, Jerold E.; Russell, Helen R.; McKinnon, Peter J.

    2011-01-01

    DNA replication and repair in mammalian cells involves three distinct DNA ligases; ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4)1. Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway2,3. Lig3 is also present in the mitochondria where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc14. However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality5. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss6, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair. PMID:21390131

  3. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.

    Directory of Open Access Journals (Sweden)

    Stephanie J Yaung

    Full Text Available Bacteria rely on two known DNA-level defenses against their bacteriophage predators: restriction-modification and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-associated (Cas systems. Certain phages have evolved countermeasures that are known to block endonucleases. For example, phage T4 not only adds hydroxymethyl groups to all of its cytosines, but also glucosylates them, a strategy that defeats almost all restriction enzymes. We sought to determine whether these DNA modifications can similarly impede CRISPR-based defenses. In a bioinformatics search, we found naturally occurring CRISPR spacers that potentially target phages known to modify their DNA. Experimentally, we show that the Cas9 nuclease from the Type II CRISPR system of Streptococcus pyogenes can overcome a variety of DNA modifications in Escherichia coli. The levels of Cas9-mediated phage resistance to bacteriophage T4 and the mutant phage T4 gt, which contains hydroxymethylated but not glucosylated cytosines, were comparable to phages with unmodified cytosines, T7 and the T4-like phage RB49. Our results demonstrate that Cas9 is not impeded by N6-methyladenine, 5-methylcytosine, 5-hydroxymethylated cytosine, or glucosylated 5-hydroxymethylated cytosine.

  4. Hydrolytic protein cleavage mediated by unusual mononuclear copper(II) complexes: X-ray structures and solution studies.

    Science.gov (United States)

    de Oliveira, Mauricio C B; Scarpellini, Marciela; Neves, Ademir; Terenzi, Hernán; Bortoluzzi, Adailton J; Szpoganics, Bruno; Greatti, Alessandra; Mangrich, Antônio S; de Souza, Emanuel M; Fernandez, Pablo M; Soares, Marcia R

    2005-02-21

    The crystal structures and redox and UV-vis/EPR spectroscopic properties of two new mononuclear copper(II) complexes, [Cu(HL1)Cl2] (1) and [Cu(L1)Cl] (2), prepared through the reaction between copper(II) chloride and the ligand 2-[(bis(pyridylmethyl)amino)methyl]-4-methyl-6-formylphenol (HL1) under distinct base conditions, are reported along with solution studies. Also, we demonstrate that these CuII complexes are able to cleave unactivated peptide bonds from bovine serum albumin (BSA) and the thermostable enzyme Taq DNA polymerase at micromolar concentration, under mild pH and temperature conditions. The cleavage activity seems to be specific with defined proteolytic fragments appearing after protein treatment. The location of the specific cleavage sites was tentatively assigned to solvent-accessible portions of the protein. These are two of the most active Cu(II) complexes described to date, since their cleavage activity is detected in minutes and evidence is here presented for a hydrolytic mechanism mediating protein cleavage by these complexes.

  5. Hispidin produced from Phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation.

    Science.gov (United States)

    Chen, Wei; Feng, Lina; Huang, Zhaoyi; Su, Hongming

    2012-09-30

    Oxidative stress plays an important role in the progression of many chronic diseases including cardiovascular diseases, diabetes, cancer and neurodegenerative disorders. One such mediator of oxidative stress is peroxynitrite, which is highly toxic to cultured neurons and astrocytes, and has been reported to be involved in the pathogenesis of various types of neuronal diseases. Therefore, searching for natural compounds with peroxynitrite-scavenging activity might be an effective therapy for peroxynitrite-mediated cytotoxicity. Hispidin, a phenolic compound from Phellinus linteus (a medicinal mushroom), has been shown to possess strong antioxidant, anticancer, and antidiabetic properties. However, the astrocyte protective efficacy of hispidin has been not examined. This study was undertaken to investigate whether the astrocyte protective effect of hispidin is associated with inhibition of peroxynitrite-induced DNA damage, a critical event leading to peroxynitrite-mediated cytotoxicity. Our results showed that peroxynitrite can cause DNA damage in φX-174 plasmid DNA and rat primary astrocytes. The presence of hispidin (10-20 μg/ml) was found to significantly inhibit peroxynitrite-induced DNA damage and cytotoxicity. EPR spectroscopy demonstrated that the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from peroxynitrite, and that hispidin potently diminished the adduct signal in a concentration-dependent manner. Taken together, these results demonstrate for the first time that hispidin can protect against peroxynitrite-mediated cytotoxicity, DNA damage and hydroxyl radical formation.

  6. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance

    Directory of Open Access Journals (Sweden)

    Euan A. Stronach

    2011-11-01

    Full Text Available Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinumresistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK, and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Re-sensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage–mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.

  7. Insulin regulation of the glucagon gene is mediated by an insulin-responsive DNA element.

    OpenAIRE

    1991-01-01

    Diabetes mellitus is characterized by insulin deficiency and high plasma glucagon levels, which can be normalized by insulin replacement. It has previously been reported that glucagon gene expression is negatively regulated by insulin at the transcriptional level. By transfection studies, I have now localized a DNA control element that mediates insulin effects on glucagon gene transcription. This element also confers insulin responsiveness to a heterologous promoter. DNA-binding proteins that...

  8. A mediator methylation mystery: JMJD1C demethylates MDC1 to regulate DNA repair.

    Science.gov (United States)

    Lu, Jian; Matunis, Michael J

    2013-12-01

    Mediator of DNA-damage checkpoint 1 (MDMDC1) has a central role in repair of DNA double-strand breaks (DSBs) by both homologous recombination and nonhomologous end joining, and its function is regulated by post-translational phosphorylation, ubiquitylation and sumoylation. In this issue, a new study by Watanabe et al. reveals that methylation of MDMDC1 is also critical for its function in DSB repair and specifically affects repair through BRCA1-dependent homologous recombination.

  9. Immune- and Pollution-mediated DNA Damage in Two Wild Mya arenaria Clam Populations

    OpenAIRE

    François Gagné; M. Laura Martín-Díaz; Christian Blaise

    2009-01-01

    In aquatic environments, genotoxicity results from the effects of pollution combined with the inflammatory response triggered by the immune system. Indeed, the production of nitrosylated DNA and proteins are though to arise from the production of peroxinitrite during phagocytosis and inflammation. The purpose of this study was to examine new DNA biomarkers that differentiate between immune- and pollution-mediated genotoxicity in wild clam populations. Intertidal clam populations were sampled ...

  10. Investigation and improvement of DNA cleavage models of polyamide + Cu(II nuclease + OOH- ligands bound to DNA

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2010-10-01

    Full Text Available Abstract Background Copper nucleases as a famous class of artificial metallonucleases have attracted considerable interest in relation to their diverse potentials not only as therapeutic agents but also in genomic researches. Copper nucleases present high efficient oxidative cleavage of DNA, in which DNA strand scission occurs generally after hydrogen atom abstracted from a sugar moiety. In order to achieve the selective cleavage of DNA sequences by copper nucleases, the DNA specific recognition agents of the Dervan-type hairpin and cyclic polyamides can be considered as proper carriers of copper nucleases. Investigation of the DNA cleavage selectivity of copper nucleases assisted by the hairpin and cyclic polyamides at the molecular level has not yet been elucidated. Results We carried out a series of molecular dynamics simulations for the nuclease [Cu(BPA]2+ or [Cu(IDB]2+ bound to the hairpin/cyclic polyamide and associated with DNA to investigate the selective DNA cleavage properties of Cu(II-based artificial nucleases. The simulated results demonstrate that the DNA cleavage selectivity of the two nucleases assisted by the hairpin polyamide is improved efficiently. The [Cu(BPA]2+ or [Cu(IDB]2+ nuclease with a substrate OOH- bound to the hairpin polyamide can be stably located at the minor groove of DNA, and possibly abstracts H atom from the sugar of DNA. However, the DNA cleavage properties of the two nucleases assisted by the cyclic polyamide are significantly poor due to the rigidity of linking region between the cyclic polyamide and nuclease. With introduction of the flexible linker -CH2CH2CH2NH2, the modified cyclic polyamide can assist the two copper nucleases to improve the selective DNA cleavage properties efficiently. Conclusion A flexible linker and a proper binding site of the polyamide-type recognition agents play an important role in improving the DNA cleavage selectivity of copper nucleases. Current investigations provide an

  11. Differential Roles of ATM- and Chk2-Mediated Phosphorylations of Hdmx in Response to DNA Damage†

    OpenAIRE

    Pereg, Yaron; Lam, Suzanne; Teunisse, Amina; Biton, Sharon; Meulmeester, Erik; Mittelman, Leonid; Buscemi, Giacomo; Okamoto, Koji; Taya, Yoichi; Shiloh, Yosef; Jochemsen, Aart G.

    2006-01-01

    The p53 tumor suppressor plays a major role in maintaining genomic stability. Its activation and stabilization in response to double strand breaks (DSBs) in DNA are regulated primarily by the ATM protein kinase. ATM mediates several posttranslational modifications on p53 itself, as well as phosphorylation of p53's essential inhibitors, Hdm2 and Hdmx. Recently we showed that ATM- and Hdm2-dependent ubiquitination and subsequent degradation of Hdmx following DSB induction are mediated by phosph...

  12. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity.

    Science.gov (United States)

    Ishikawa, Hiroki; Ma, Zhe; Barber, Glen N

    2009-10-08

    The innate immune system is critical for the early detection of invading pathogens and for initiating cellular host defence countermeasures, which include the production of type I interferon (IFN). However, little is known about how the innate immune system is galvanized to respond to DNA-based microbes. Here we show that STING (stimulator of interferon genes) is critical for the induction of IFN by non-CpG intracellular DNA species produced by various DNA pathogens after infection. Murine embryonic fibroblasts, as well as antigen presenting cells such as macrophages and dendritic cells (exposed to intracellular B-form DNA, the DNA virus herpes simplex virus 1 (HSV-1) or bacteria Listeria monocytogenes), were found to require STING to initiate effective IFN production. Accordingly, Sting-knockout mice were susceptible to lethal infection after exposure to HSV-1. The importance of STING in facilitating DNA-mediated innate immune responses was further evident because cytotoxic T-cell responses induced by plasmid DNA vaccination were reduced in Sting-deficient animals. In the presence of intracellular DNA, STING relocalized with TANK-binding kinase 1 (TBK1) from the endoplasmic reticulum to perinuclear vesicles containing the exocyst component Sec5 (also known as EXOC2). Collectively, our studies indicate that STING is essential for host defence against DNA pathogens such as HSV-1 and facilitates the adjuvant activity of DNA-based vaccines.

  13. Synthesis, Characterization and Fluorescence Properties of Zn(II) and Cu(II) Complexes: DNA Binding Study of Zn(II) Complex.

    Science.gov (United States)

    Lavaee, Parirokh; Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad Reza; Mague, Joel T; Esmaeili, Abbas Ali; Abnous, Khalil

    2016-01-01

    Zinc(II) and copper(II) complexes containing Schiff base, 2- methoxy-6((E)-(phenylimino) methyl) phenol ligand (HL) were synthesized and characterized by elemental analysis, IR, NMR, and single crystal X-ray diffraction technique. The fluorescence properties and quantum yield of zinc complex were studied. Our data showed that Zn complex could bind to DNA grooves with Kb = 10(4) M(-1). Moreover, Zn complex could successfully be used in staining of DNA following agarose gel electrophoresis. MTT assay showed that Zn complex was not cytotoxic in MCF-7 cell line. Here, we introduce a newly synthesized fluorescence probe that can be used for single and double stranded DNA detection in both solution and agarose gels.

  14. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase.

    Science.gov (United States)

    Vizán, J L; Hernández-Chico, C; del Castillo, I; Moreno, F

    1991-02-01

    Microcin B17 (MccB17) is a bactericidal peptide antibiotic which inhibits DNA replication. Two Escherichia coli MccB17 resistant mutants were isolated and the mutations were shown to map to 83 min of the genetic map. Cloning of the mutations and Tn5 insertional analysis demonstrated that they were located inside gyrB. The approximate location of the mutations within gyrB was determined by constructing hybrid genes, as a previous step to sequencing. Both mutations were shown to consist of a single AT----GC transition at position 2251 of the gene, which produces a Trp751----Arg substitution in the amino acid sequence of the GyrB polypeptide. The inhibitory effect of MccB17 on replicative cell-free extracts was assayed. In this in vitro system, interaction of MccB17 with a component of the extracts induced double-strand cleavage of plasmid DNA. In vivo treatment with MccB17 also induced a well-defined cleavage pattern on chromosomal DNA. These effects were not observed with a MccB17-resistant, gyrB mutant. Altogether, our results indicate that MccB17 blocks DNA gyrase by trapping an enzyme-DNA cleavable complex. Thus, the mode of action of this peptide antibiotic resembles that of quinolones and a variety of antitumour drugs currently used in cancer chemotherapy. MccB17 is the first peptide shown to inhibit a type II DNA topoisomerase.

  15. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  16. Synthesis, characterization and DNA cleavage activity of nickel(II adducts with aromatic heterocyclic bases

    Directory of Open Access Journals (Sweden)

    G. H. PHILIP

    2010-01-01

    Full Text Available Mixed ligand complexes of nickel(II with 2,4-dihydroxyaceto-phenone oxime (DAPO and 2,4-dihydroxybenzophenone oxime (DBPO as primary ligands, and pyridine (Py and imidazole (Im as secondary ligands were synthesized and characterized by molar conductivity, magnetic moments measurements, as well as by electronic, IR, and 1H-NMR spectroscopy. Electrochemical studies were performed by cyclic voltammetry. The active signals are assignable to the NiIII/II and NiII/I redox couples. The binding interactions between the metal complexes and calf thymus DNA were investigated by absorption and thermal denaturation. The cleavage activity of the complexes was determined using double-stranded pBR322 circular plasmid DNA by gel electrophoresis. All complexes showed increased nuclease activity in the presence of the oxidant H2O2. The nuclease activities of mixed ligand complexes were compared with those of the parent copper(II complexes.

  17. Cross-resistance of an amsacrine-resistant human leukemia line to topoisomerase II reactive DNA intercalating agents. Evidence for two topoisomerase II directed drug actions

    Energy Technology Data Exchange (ETDEWEB)

    Zwelling, L.A.; Mayes, J.; Hinds, M.; Chan, D.; Altschuler, E.; Carroll, B.; Parker, E.; Deisseroth, K.; Radcliffe, A.; Seligman, M.; Li, Li; Farquhar, D. (Univ. of Texas M.D. Anderson Cancer Center, Houston (USA))

    1991-04-23

    HL-60/AMSA is a human leukemia cell line that is 50-100-fold more resistant than its drug-sensitive HL-60 parent line to the cytotoxic actions of the DNA intercalator amsacrine (m-AMSA). HL-60/AMSA topoisomerase II is also resistant to the inhibitory actions of m-AMSA. HL-60/AMSA cells and topoisomerase II are cross-resistant to anthracycline and ellipticine intercalators but relatively sensitive to the nonintercalating topoisomerase II reactive epipodophyllotoxin etoposide. The authors now demonstrate that HL-60/AMSA and its topoisomerase II are cross-resistant to the DNA intercalators mitoxantrone and amonafide, thus strongly indicating that HL-60/AMSA and its topoisomerase II are resistant to topoisomerase II reactive intercalators but not to nonintercalators. At high concentrations, mitoxantrone and amonafide were also found to inhibit their own, m-AMSA's, and etoposide's abilities to stabilize topoisomerase II-DNA complexes. These results suggest that the cytotoxicity of m-AMSA and etoposide is initiated primarily by the stabilization of the topoisomerase II-DNA complex. Other topoisomerase II reactive drugs may inhibit the enzyme at other steps in the topoisomerization cycle, particularly at elevated concentrations. Under these conditions, these latter drugs may not produce protein-associated DNA cleavage while still inhibiting topoisomerase II function as well as the actions of other topoisomerase II reactive drugs.

  18. Potential-modulated DNA cleavage by (N-salicylideneglycinato)copper(II) complex.

    Science.gov (United States)

    Yang, Zhou-Sheng; Wang, Yan-Ling; Liu, Yun-Chun; Zhao, Guang-Chao

    2005-11-01

    The interaction of aqua (N-salicylideneglycinato)copper(II) (Cu(salgly)2+) complex with calf thymus DNA has been investigated by cyclic voltammetry. Potential-modulated DNA cleavage in the presence of Cu(salgly)2+ complex was performed at a gold electrode in a thin layer cell. DNA can be efficiently cleaved by electrochemically reducing Cu(salgly)2+ complex to Cu(salgly)+ complex at -0.7 V (vs. Ag/AgCl). When the solution was aerated with a small flow of O2 during electrolysis, the extent of DNA cleavage was dramatically enhanced, and hydroxyl radical scavengers inhibited DNA cleavage. These results suggested that O2 and hydroxyl radical were involved in potential-modulated DNA cleavage reaction. The percentage of DNA cleavage was enhanced as the working potential was shifted to more negative values and the electrolysis time was increased. It was also dependent on the ratio of Cu(salgly)2+ complex to DNA concentration. The cleaved DNA fragments were separated by high performance liquid chromatography (HPLC). The experimental results indicated that the method for potential-modulated DNA cleavage by Cu(salgly)2+ complex was simple and efficient.

  19. The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends

    DEFF Research Database (Denmark)

    Weterings, Eric; Verkaik, Nicole S; Keijzers, Guido

    2008-01-01

    Repair of DNA double-strand breaks (DSBs) is predominantly mediated by nonhomologous end joining (NHEJ) in mammalian cells. NHEJ requires binding of the Ku70-Ku80 heterodimer (Ku70/80) to the DNA ends and subsequent recruitment of the DNA-dependent protein kinase catalytic subunit (DNA......-PK(CS)) and the XRCC4/ligase IV complex. Activation of the DNA-PK(CS) serine/threonine kinase requires an interaction with Ku70/80 and is essential for NHEJ-mediated DSB repair. In contrast to previous models, we found that the carboxy terminus of Ku80 is not absolutely required for the recruitment and activation...... of DNA-PK(CS) at DSBs, although cells that harbored a carboxy-terminal deletion in the Ku80 gene were sensitive to ionizing radiation and showed reduced end-joining capacity. More detailed analysis of this repair defect showed that DNA-PK(CS) autophosphorylation at Thr2647 was diminished, while Ser2056...

  20. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader.

    Science.gov (United States)

    Rock, Jeremy M; Lang, Ulla F; Chase, Michael R; Ford, Christopher B; Gerrick, Elias R; Gawande, Richa; Coscolla, Mireia; Gagneux, Sebastien; Fortune, Sarah M; Lamers, Meindert H

    2015-06-01

    The DNA replication machinery is an important target for antibiotic development in increasingly drug-resistant bacteria, including Mycobacterium tuberculosis. Although blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In Escherichia coli, the proofreading subunit of the replisome, the ɛ exonuclease, is essential for high-fidelity DNA replication; however, we find that the corresponding subunit is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase DnaE1 itself encodes an editing function that proofreads DNA replication, mediated by an intrinsic 3'-5' exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by more than 3,000-fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP domain-mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader.

  1. Attenuated Shigella as a DNA Delivery Vehicle for DNA-Mediated Immunization

    Science.gov (United States)

    Sizemore, Donata R.; Branstrom, Arthur A.; Sadoff, Jerald C.

    1995-10-01

    Direct inoculation of DNA, in the form of purified bacterial plasmids that are unable to replicate in mammalian cells but are able to direct cell synthesis of foreign proteins, is being explored as an approach to vaccine development. Here, a highly attenuated Shigella vector invaded mammalian cells and delivered such plasmids into the cytoplasm of cells, and subsequent production of functional foreign protein was measured. Because this Shigella vector was designed to deliver DNA to colonic mucosa, the method is a potential basis for oral and other mucosal DNA immunization and gene therapy strategies.

  2. DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage.

    OpenAIRE

    Holm, C.; Stearns, T.; Botstein, D

    1989-01-01

    The hypothesis that DNA topoisomerase II facilitates the separation of replicated sister chromatids was tested by examining the consequences of chromosome segregation in the absence of topoisomerase II activity. We observed a substantial elevation in the rate of nondisjunction in top2/top2 cells incubated at the restrictive temperature for one generation time. In contrast, only a minor increase in the amount of chromosome breakage was observed by either physical or genetic assays. These resul...

  3. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    Science.gov (United States)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  4. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach.

    Science.gov (United States)

    Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S

    2015-02-25

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  5. Procyanidin B2 has anti- and pro-oxidant effects on metal-mediated DNA damage.

    Science.gov (United States)

    Sakano, Katsuhisa; Mizutani, Mika; Murata, Mariko; Oikawa, Shinji; Hiraku, Yusuke; Kawanishi, Shosuke

    2005-10-15

    Procyanidin B2 (epicatechin-(4beta-8)-epicatechin), which is present in grape seeds, apples, and cacao beans, has antioxidant properties. We investigated the mechanism of preventive action of procyanidin B2 against oxidative DNA damage in human cultured cells and isolated DNA. Procyanidin B2 inhibited the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the human leukemia cell line HL-60 treated with an H2O2-generating system. In contrast, a high concentration of procyanidin B2 increased the formation of 8-oxodG in HL-60 cells. Experiments with calf thymus DNA also revealed that procyanidin B2 decreased 8-oxodG formation by Fe(II)/H2O2, whereas procyanidin B2 induced DNA damage in the presence of Cu(II), and H2O2 extensively enhanced it. An electron spin resonance spin trapping study utilizing 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO) demonstrated that procyanidin B2 decreased the signal of M4PO-OH from H2O2 and Fe(II), whereas procyanidin B2 enhanced the signal from H2O2 and Cu(II). As an antioxidant mechanism, UV-visible spectroscopy showed that procyanidin B2 chelated Fe(II) at equivalent concentrations. As a pro-oxidant property, we examined DNA damage induced by procyanidin B2, using 32P-labeled DNA fragments obtained from genes relevant to human cancer. Our results raise the possibility that procyanidin B2 exerts both antioxidant and pro-oxidant properties by interacting with H2O2 and metal ions.

  6. Antimutagenic activity of casein against MNNG in the E. coli DNA repair host-mediated assay.

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.; Goeptar, A.R.; Alink, G.M.

    1997-01-01

    The effect of caseinate and soy protein in the diet on the mutagenicity induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was assessed in-vivo and ex-vivo in the DNA-repair host-mediated assay and liquid suspension assay, respectively. Of the two proteins only casein showed a strong antimutagen

  7. Discrimination of Arcobacter butzleri isolates by polymerase chain reaction-mediated DNA fingerprinting

    DEFF Research Database (Denmark)

    Atabay, H. I.; Bang, Dang Duong; Aydin, F.;

    2002-01-01

    Aims: The objective of this study was to subtype Arcobacter butzleri isolates using RAPD-PCR. Methods and Results: Thirty-five A. butzleri isolates obtained from chicken carcasses were examined. PCR-mediated DNA fingerprinting technique with primers of the variable sequence motifs was used...

  8. A DNAzyme-mediated logic gate for programming molecular capture and release on DNA origami.

    Science.gov (United States)

    Li, Feiran; Chen, Haorong; Pan, Jing; Cha, Tae-Gon; Medintz, Igor L; Choi, Jong Hyun

    2016-06-28

    Here we design a DNA origami-based site-specific molecular capture and release platform operated by a DNAzyme-mediated logic gate process. We show the programmability and versatility of this platform with small molecules, proteins, and nanoparticles, which may also be controlled by external light signals.

  9. Plasma DNA Mediate Autonomic Dysfunctions and White Matter Injuries in Patients with Parkinson's Disease

    Science.gov (United States)

    Chen, Pei-Chin; Chen, Hsiu-Ling; Chao, Yi-Ping; Chen, Yi-Wen

    2017-01-01

    Background. Cardiovascular autonomic dysfunction is well known in Parkinson's disease (PD) presentation and it produces hypoperfusion of vital organs. The association between cardiovascular autonomic dysfunction and oxidative stress was examined in previous animal models. Oxidative stress and neuroinflammation were thought to have roles in PD pathogenesis. Owing to the relative low intrinsic antioxidative properties, brain white matter (WM) is vulnerable to the oxidative stress. This study is conducted to examine possible relationships by using a hypothesis-driven mediation model. Methods. Twenty-nine patients with PD and 26 healthy controls participated in this study, with complete examinations of cardiac autonomic parameters, plasma DNA level, and WM integrity. A single-level three-variable mediation model was used to investigate the possible relationships. Results. The elevated serum oxidative stress biomarkers include plasma nuclear DNA and mitochondrial DNA, and poorer cardiac autonomic parameters and multiple regional microstructural WM changes are demonstrated. Further mediation analysis shows that plasma nuclear DNA served as the mediators between poorer baroreflex sensitivity and mean diffusivity changes in cingulum. Conclusions. These results provide a possible pathophysiology for how the poor baroreflex sensitivity and higher oxidative stress adversely impacted the WM integrity. This model could provide us with a piece of the puzzle of the entire PD pathogenesis. PMID:28232858

  10. Cdk11-CyclinL Controls the Assembly of the RNA Polymerase II Mediator Complex

    Directory of Open Access Journals (Sweden)

    Julie Drogat

    2012-11-01

    Full Text Available The large Mediator (L-Mediator is a general coactivator of RNA polymerase II transcription and is formed by the reversible association of the small Mediator (S-Mediator and the kinase-module-harboring Cdk8. It is not known how the kinase module association/dissociation is regulated. We describe the fission yeast Cdk11-L-type cyclin pombe (Lcp1 complex and show that its inactivation alters the global expression profile in a manner very similar to that of mutations of the kinase module. Cdk11 is broadly distributed onto chromatin and phosphorylates the Med27 and Med4 Mediator subunits on conserved residues. The association of the kinase module and the S-Mediator is strongly decreased by the inactivation of either Cdk11 or the mutation of its target residues on the Mediator. These results show that Cdk11-Lcp1 regulates the association of the kinase module and the S-Mediator to form the L-Mediator complex.

  11. Cdk11-cyclinL controls the assembly of the RNA polymerase II mediator complex.

    Science.gov (United States)

    Drogat, Julie; Migeot, Valérie; Mommaerts, Elise; Mullier, Caroline; Dieu, Marc; van Bakel, Harm; Hermand, Damien

    2012-11-29

    The large Mediator (L-Mediator) is a general coactivator of RNA polymerase II transcription and is formed by the reversible association of the small Mediator (S-Mediator) and the kinase-module-harboring Cdk8. It is not known how the kinase module association/dissociation is regulated. We describe the fission yeast Cdk11-L-type cyclin pombe (Lcp1) complex and show that its inactivation alters the global expression profile in a manner very similar to that of mutations of the kinase module. Cdk11 is broadly distributed onto chromatin and phosphorylates the Med27 and Med4 Mediator subunits on conserved residues. The association of the kinase module and the S-Mediator is strongly decreased by the inactivation of either Cdk11 or the mutation of its target residues on the Mediator. These results show that Cdk11-Lcp1 regulates the association of the kinase module and the S-Mediator to form the L-Mediator complex.

  12. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Rachael E Hawtin

    Full Text Available BACKGROUND: Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research. METHODS/PRINCIPAL FINDINGS: Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more

  13. Synthesis, physico-chemical investigations of Co(II), Ni(II) and Cu(II) complexes and their in vitro microbial, cytotoxic, DNA cleavage studies.

    Science.gov (United States)

    Bagihalli, Gangadhar B; Patil, Sangamesh A

    2010-06-01

    A series of metal complexes of cobalt(II), nickel(II), and copper(II) have been synthesized with newly derived biologically active ligands. These ligands were synthesized by the condensation of 2-amino-4-phenyl-1,3-thiazole with 8-formyl-7-hydroxy- 4-methylcoumarin. The probable structure of the complexes has been proposed on the basis of analytical and spectroscopic data (IR, UV-Vis, ESR, FAB-mass, and thermoanalytical). Electrochemical study of the complexes is also reported. Elemental analysis of the complexes confined them to stoichiometry of the type ML(2).2H(2)O [M = Co(II), Ni(II), and Cu(II)]. The Schiff base and its metal(II) complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Staphylococcus pyogenes, and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the MIC method. The brine shrimp bioassay was carried out to study their in vitro cytotoxic properties, and also the Schiff base and its metal(II) complexes have been studied for DNA cleavage.

  14. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  15. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules.

    Science.gov (United States)

    Grødeland, Gunnveig; Bogen, Bjarne

    2015-06-01

    There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.

  16. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.

    Science.gov (United States)

    Yao, Guangbao; Li, Jiang; Chao, Jie; Pei, Hao; Liu, Huajie; Zhao, Yun; Shi, Jiye; Huang, Qing; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2015-03-02

    DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw-puzzle-like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide-functionalized AuNPs function as universal joint units for the one-pot assembly of parent DNA origami of triangular shape to form sub-microscale super-origami nanostructures. AuNPs anchored at predefined positions of the super-origami exhibited strong interparticle plasmonic coupling. This AuNP-mediated strategy offers new opportunities to drive macroscopic self-assembly and to fabricate well-defined nanophotonic materials and devices.

  17. Regulation of Ceramide Synthase-Mediated Crypt Epithelium Apoptosis by DNA Damage Repair Enzymes

    Science.gov (United States)

    Rotolo, Jimmy A.; Mesicek, Judith; Maj, Jerzy; Truman, Jean-Philip; Haimovitz-Friedman, Adriana; Kolesnick, Richard; Fuks, Zvi

    2015-01-01

    Acute endothelial cell apoptosis and microvascular compromise couple GI tract irradiation to reproductive death of intestinal crypt stem cell clonogens (SCCs) following high-dose radiation. Genetic or pharmacologic inhibition of endothelial apoptosis prevents intestinal damage, but as the radiation dose is escalated, SCCs become directly susceptible to an alternate cell death mechanism, mediated via ceramide synthase (CS)-stimulated de novo synthesis of the pro-apoptotic sphingolipid ceramide, and p53-independent apoptosis of crypt SCCs. We previously reported that ATM deficiency resets the primary radiation lethal pathway, allowing CS-mediated apoptosis at the low-dose range of radiation. The mechanism for this event, termed target reordering, remains unknown. Here we show that inactivation of DNA damage repair pathways signal CS-mediated apoptosis in crypt SCCs, presumably via persistent unrepaired DNA double strand breaks (DSBs). Genetic loss-of-function of sensors and transducers of DNA DSB repair confers the CS-mediated lethal pathway in intestines of sv129/B6Mre11ATLD1/ATLD1 and C57BL/6Prkdc/SCID (SCID) mice exposed to low-dose radiation. In contrast, CS-mediated SCC lethality was mitigated in irradiated gain-of-function Rad50S/S mice, and epistasis studies order Rad50 upstream of Mre11. These studies suggest unrepaired DNA DSBs as causative in target re-ordering in intestinal SCCs. As such, we provide an in vivo model of DNA damage repair that is standardized, can be exploited to understand allele-specific regulation in intact tissue, and is pharmacologically tractable. PMID:20086180

  18. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  19. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T

    2014-01-05

    The interactions of fish sperm DNA (FS-DNA) with the sodium salt of sweetener saccharin (sacH) and its copper and zinc complexes, namely [M(sac)2(H2O)4]·2H2O (M=Cu(II) or Zn(II)) were studied by using UV-Vis titration, fluorometric competition, thermal denaturation, viscosity and gel electrophoresis measurements. The intrinsic binding constants (Kb) obtained from absorption titrations were estimated to be 2.86 (±0.06)×10(4)M(-1) for Na(sac), 6.67 (±0.12)×10(4)M(-1) for Cu-sac and 4.01 (±0.08)×10(4)M(-1) for Zn-sac. The Cu-sac complex binds to FS-DNA via intercalation with a KA value of 50.12 (±0.22)×10(4)M(-1) as evidenced by competitive binding studies with ethidium bromide. Moreover, competition experiments with Hoechst 33258 are indicative of a groove binding mode of Na(sac) and Zn-sac with binding constants of 3.13 (±0.16)×10(4)M(-1) and 5.25 (±0.22)×10(4)M(-1), respectively. The spectroscopic measurements indicate a moderate DNA binding affinity of Na(sac) and its metal complexes. The suggested binding modes are further confirmed by the thermal denaturation and viscosity measurements. In addition, Cu-sac and Zn-sac show weak ability to damage to pBR322 supercoiled plasmid DNA.

  20. Ruthenium(II) arene complexes with oligocationic triarylphosphine ligands: synthesis, DNA interactions and in vitro properties

    NARCIS (Netherlands)

    Snelders, D.J.M.; Casini, A.; Edafe, F.; van Koten, G.; Klein Gebbink, R.J.M.; Dyson, P.J.

    2011-01-01

    The synthesis, DNA binding properties and cytotoxicity of a series of Ru(II)-arene complexes containing oligocationic ammonium-functionalized triarylphosphines, of the type Ru(p-cymene)Cl2(L) (L ¼ oligocationic phosphine), are reported. The complexes are highly charged (the overall charge states bei

  1. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    Science.gov (United States)

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2013-12-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution.

  2. DNA-Mediated Morphological Control of Pd-Au Bimetallic Nanoparticles.

    Science.gov (United States)

    Satyavolu, Nitya Sai Reddy; Tan, Li Huey; Lu, Yi

    2016-12-21

    Recent reports have shown that different DNA sequences can mediate the control of shapes and surface properties of nanoparticles. However, all previous studies have involved only monometallic particles, most of which were gold nanoparticles. Controlling the shape of bimetallic nanoparticles is more challenging, and there is little research into the use of DNA-based ligands for their morphological control. We report the DNA-templated synthesis of Pd-Au bimetallic nanoparticles starting from palladium nanocube seeds. The presence of different homo-oligomer DNA sequences containing 10 deoxy-ribonucleotides of thymine, adenine, cytosine, or guanine results in the growth of four distinct morphologies. Through detailed kinetic studies by absorption spectroscopy, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM), we have determined the role of DNA in controlling Pd-Au nanoparticle growth morphologies. One major function of DNA is affecting various properties of the incoming metal atoms, including their diffusion and deposition on the Pd nanocube seed. Interestingly, nanoparticle growth in the presence of A10 follows an aggregative growth mechanism that is unique when compared to the other base oligomers. These findings demonstrate that DNA can allow for programmable control of bimetallic nanoparticle morphologies, resulting in more complex hybrid materials with different plasmonic properties. The capability to finely tune multimetallic nanoparticle morphology stems from the versatile structure that is unique to DNA in comparison to conventionally used capping agents in colloidal nanomaterial synthesis.

  3. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    Science.gov (United States)

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program.

  4. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies.

    Science.gov (United States)

    Patil, Sangamesh A; Unki, Shrishila N; Kulkarni, Ajaykumar D; Naik, Vinod H; Badami, Prema S

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial (Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities (Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  5. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  6. Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis.

    Science.gov (United States)

    Draksharapu, Apparao; Boersma, Arnold J; Leising, Miriam; Meetsma, Auke; Browne, Wesley R; Roelfes, Gerard

    2015-02-28

    The interaction between salmon testes DNA (st-DNA) and a series of Cu(II) polypyridyl complexes, i.e. [Cu(dmbpy)(NO3)2] (1) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [Cu(bpy)(NO3)2] (2) (bpy = 2,2'-bipyridine), [Cu(phen)(NO3)2] (3) (phen = phenanthroline), [Cu(terpy)(NO3)2]·H2O (4) (terpy = 2,2':6',2″-terpyridine), [Cu(dpq)(NO3)2] (5) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) and [Cu(dppz)(NO3)2] (6) (dppz = dipyrido[3,2-a:2',3'-c]phenazine) was studied by UV/Vis absorption, Circular Dichroism, Linear Dichroism, EPR, Raman and (UV and vis) resonance Raman spectroscopies and viscometry. These complexes catalyse enantioselective C-C bond forming reactions in water with DNA as the source of chirality. Complex 1 crystallizes as an inorganic polymer with nitrate ligands bridging the copper ions, which adopt essentially a distorted square pyramidal structure with a fifth bridging nitrate ligand at the axial position. Raman spectroscopy indicates that in solution the nitrate ligands in 1, 2, 3 and 4 are displaced by solvent (H2O). For complex 1, multiple supramolecular species are observed in the presence of st-DNA in contrast to the other complexes, which appear to interact relatively uniformly as a single species predominantly, when st-DNA is present. Overall the data suggest that complexes 1 and 2 engage primarily through groove binding with st-DNA while 5 and 6 undergo intercalation. For complexes 3 and 4 the data indicates that both groove binding and intercalation takes place, albeit primarily intercalation. Although it is tempting to conclude that the groove binders give highest ee and rate acceleration, it is proposed that the flexibility and dynamics in binding of Cu(II) complexes to DNA are key parameters that determine the outcome of the reaction. These findings provide insight into the complex supramolecular structure of these DNA-based catalysts.

  7. Nickel(II), copper(II) and zinc(II) metallo-intercalators: structural details of the DNA-binding by a combined experimental and computational investigation.

    Science.gov (United States)

    Lauria, Antonino; Bonsignore, Riccardo; Terenzi, Alessio; Spinello, Angelo; Giannici, Francesco; Longo, Alessandro; Almerico, Anna Maria; Barone, Giampaolo

    2014-04-28

    We present a thorough characterization of the interaction of novel nickel(II) (1), copper(II) (2) and zinc(II) (3) Schiff base complexes with native calf thymus DNA (ct-DNA), in buffered aqueous solution at pH 7.5. UV-vis absorption, circular dichroism (CD) and viscometry titrations provided clear evidence of the intercalative mechanism of the three square-planar metal complexes, allowing us to determine the intrinsic DNA-binding constants (K(b)), equal to 1.3 × 10(7), 2.9 × 10(6), and 6.2 × 10(5) M(-1) for 1, 2 and 3, respectively. Preferential affinity, of one order of magnitude, toward AT compared to GC base pair sequences was detected by UV-vis absorption titrations of 1 with [poly(dG-dC)]2 and [poly(dA-dT)]2. Structural details of the intercalation site of the three metal complexes within [dodeca(dA-dT)]2 were obtained by molecular dynamics (MD) simulations followed by density functional theory/molecular mechanics (DFT/MM) calculations. The calculations revealed that three major intermolecular interactions contribute to the strong affinity between DNA and the three metal complexes: (1) the electrostatic attraction between the two positively charged triethylammoniummethyl groups of the metal complexes and the negatively charged phosphate groups of the DNA backbone; (2) the intercalation of the naphthalene moiety within the four nitrogen bases of the intercalation site; (3) the metal coordination by exocyclic donor atoms of the bases, specifically the carbonyl oxygen and amine nitrogen atoms. Remarkably, the Gibbs formation free energy calculated for the intercalation complexes of 1, 2 and 3 with [dodeca(dA-dT)]2 in the implicit water solution is in agreement with the experimental Gibbs free energy values obtained from the DNA-binding constants as ΔG° = -RT ln(K(b)). In particular, the DNA-binding affinity trend, 1 > 2 > 3, is reproduced. Finally, the first shell coordination distances calculated for the intercalation complex 3/[dodeca(dA-dT)]2 are in

  8. Use of signal-mediated amplification of RNA technology (SMART) to detect marine cyanophage DNA.

    Science.gov (United States)

    Hall, M J; Wharam, S D; Weston, A; Cardy, D L N; Wilson, W H

    2002-03-01

    Here, we describe the application of an isothermal nucleic acid amplification assay, signal-mediated amplification of RNA technology (SMART), to detect DNA extracted from marine cyanophages known to infect unicellular cyanobacteria from the genus Synechococcus. The SMART assay is based on the target-dependent production of multiple copies of an RNA signal, which is measured by an enzyme-linked oligosorbent assay. SMART was able to detect both synthetic oligonucleotide targets and genomic cyanophage DNA using probes designed against the portal vertex gene (g20). Specific signals were obtained for each cyanophage strain (S-PM2 and S-BnMI). Nonspecific genomic DNA did not produce false signals or inhibit the detection of a specific target. In addition, we found that extensive purification of target DNA may not be required since signals were obtained from crude cyanophage lysates. This is the first report of the SMART assay being used to discriminate between two similar target sequences.

  9. Characterization of the DNA-Mediated Oxidation of Dps, A Bacterial Ferritin.

    Science.gov (United States)

    Arnold, Anna R; Zhou, Andy; Barton, Jacqueline K

    2016-09-07

    Dps proteins are bacterial ferritins that protect DNA from oxidative stress and have been implicated in bacterial survival and virulence. In addition to direct oxidation of the Dps iron sites by diffusing oxidants, oxidation from a distance via DNA charge transport (CT), where electrons and electron holes are rapidly transported through the base-pair π-stack, could represent an efficient DNA protection mechanism utilized by Dps. Here, we spectroscopically characterize the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation using an intercalating ruthenium photooxidant and the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, consistent with guanine radical intermediates facilitating Dps oxidation. We have also explored possible protein electron transfer (ET) intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the iron-binding ferroxidase site (W52 in E. coli Dps). In EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, a W52A Dps mutant was significantly deficient compared to WT Dps in forming the characteristic EPR signal at g = 4.3, consistent with W52 acting as an ET hopping intermediate. This effect is mirrored in vivo in E. coli survival in response to hydrogen peroxide, where mutation of W52 leads to decreased survival under oxidative stress.

  10. Mechanistic studies of copper(II)-mediated oxidation of vic-dioxime to furoxan

    Indian Academy of Sciences (India)

    Oindrila Das; Tapan Kanti Paine

    2012-11-01

    The oxidation of vic-dioximes to furoxans by copper(II) perchlorate in acetonitrile as the oxidant has been discussed. This method was found to be applicable for a broad range of vic-dioximes. Copper complexes of 1,10-phenanthroline derived furoxans were isolated by oxidation of the corresponding copper(II) complexes of 1,10-phenanthroline based dioximes. In exploring the mechanism of copper(II)-mediated oxidative cyclization of vic-dioxime, a transient blue species was observed in the reaction pathway. Based on the spectroscopic signatures and reactivity patterns, the intermediate was proposed to be a dioximatecopper(II)-dinitrosoalkene complex. These results along with the role of metal ion and solvent in the oxidative transformation reaction are discussed in this review.

  11. Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair

    Directory of Open Access Journals (Sweden)

    Shrestha Ghosh

    2015-11-01

    Full Text Available The nuclear lamins are essential for various molecular events in the nucleus, such as chromatin organization, DNA replication, and provision of mechanical support. A specific point mutation in the LMNA gene creates a truncated prelamin A termed progerin, causing Hutchinson-Gilford progeria syndrome (HGPS. SIRT6 deficiency leads to defective genomic maintenance and accelerated aging similar to HGPS, suggesting a potential link between lamin A and SIRT6. Here, we report that lamin A is an endogenous activator of SIRT6 and facilitates chromatin localization of SIRT6 upon DNA damage. Lamin A promotes SIRT6-dependent DNA-PKcs (DNA-PK catalytic subunit recruitment to chromatin, CtIP deacetylation, and PARP1 mono-ADP ribosylation in response to DNA damage. The presence of progerin jeopardizes SIRT6 activation and compromises SIRT6-mediated molecular events in response to DNA damage. These data reveal a critical role for lamin A in regulating SIRT6 activities, suggesting that defects in SIRT6 functions contribute to impaired DNA repair and accelerated aging in HGPS.

  12. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment.

    Science.gov (United States)

    Malaquin, Nicolas; Carrier-Leclerc, Audrey; Dessureault, Mireille; Rodier, Francis

    2015-01-01

    The DNA damage response (DDR) is an evolutionarily conserved signaling cascade that senses and responds to double-strand DNA breaks by organizing downstream cellular events, ranging from appropriate DNA repair to cell cycle checkpoints. In higher organisms, the DDR prevents neoplastic transformation by directly protecting the information contained in the genome and by regulating cell fate decisions, like apoptosis and senescence, to ensure the removal of severely damaged cells. In addition to these well-studied cell-autonomous effects, emerging evidence now shows that the DDR signaling cascade can also function in a paracrine manner, thus influencing the biology of the surrounding cellular microenvironment. In this context, the DDR plays an emerging role in shaping the damaged tumor microenvironment through the regulation of tissue repair and local immune responses, thereby providing a promising avenue for novel therapeutic interventions. Additionally, while DDR-mediated extracellular signals can convey information to surrounding, undamaged cells, they can also feedback onto DNA-damaged cells to reinforce selected signaling pathways. Overall, these extracellular DDR signals can be subdivided into two time-specific waves: a rapid bystander effect occurring within a few hours of DNA damage; and a late, delayed, senescence-associated secretory phenotype generally requiring multiple days to establish. Here, we highlight and discuss examples of rapid and late DDR-mediated extracellular alarm signals.

  13. Jadomycins inhibit type II topoisomerases and promote DNA damage and apoptosis in multidrug resistant triple negative breast cancer cells.

    Science.gov (United States)

    Hall, Steven R; Toulany, Jay; Bennett, Leah G; Martinez-Farina, Camilo F; Robertson, Andrew W; Jakeman, David L; Goralski, Kerry B

    2017-09-13

    Jadomycins are natural products that kill drug-sensitive and multidrug resistant (MDR) breast cancer cells. To date the cytotoxic activity of jadomycins has never been tested in MDR breast cancer cells that are also triple-negative. Additionally, there is only a rudimentary understanding of how jadomycins cause cancer cell death, which includes the induction of intracellular reactive oxygen species (ROS). We first created a paclitaxel-resistant, triple-negative breast cancer cell line (231-TXL) from drug-sensitive MDA-MB-231 cells (231-CON). Using MTT cell viability measuring assays, jadomycins B, S, and F were found to be equipotent in drug-sensitive 231-CON and MDR 231-TXL cells, and using ROS-detecting assays these jadomycins were determined to increase ROS activity in both cell lines by up to 7.3-fold. Jadomycins caused DNA double strand breaks in 231-CON and 231-TXL cells as measured by γH2AX western blotting. Co-incubation with the antioxidant N-acetyl cysteine (NAC) or pro-oxidant auranofin did not affect jadomycin-mediated DNA damage. Jadomycins induced apoptosis in 231-CON and 231-TXL cells as measured by annexin V affinity assays, a process which was retained when ROS were inhibited. This indicated that jadomycins are capable of inducing MDA-MB-231 apoptotic cell death independently of ROS activity. Using qPCR, western blotting, and direct topoisomerase inhibition assays, it was determined that jadomycins inhibit type II topoisomerases and that jadomycins B and F selectively poison topoisomerase IIβ. We therefore propose novel mechanisms through which jadomycins induce breast cancer cell death independently of ROS-activity, through inhibition or poisoning of type II topoisomerases, and induction of DNA damage and apoptosis. The American Society for Pharmacology and Experimental Therapeutics.

  14. Synthesis, Characterization and DNA-Binding Properties of The Novel Mononuclear Zn(II, Cd(II, and Mn(II Complexes with Pantoprazole.

    Directory of Open Access Journals (Sweden)

    Wessam N. El-Sayed

    2016-04-01

    Full Text Available A   novel   mononuclear   Mn(II,   Zn(II   and   Cd(II   complexes of pantoprazole   (PA   was synthesized  and characterized  by elemental analysis,  molar conductivity,  magnetic susceptibility   measurements,   IR,  UV-visible  spectral  studies,  and  thermal  analysis.  The electronic spectra along with magnetic data suggest octahedral geometry for Mn(II, Zn(II and Cd(II complexes.  PA acts as an anionic bi-dentate ligand being coordinated by (S=O oxygen and benzimdazolyl nitrogen atoms. The interaction of the complexes with calf thymus DNA (CT-DNA was monitored by blue shift and hyperchromism in the UV-vis spectra. The observed  intrinsic  binding  constants  together  with  structural  analysis  of  the  complexes indicate  the groove  binding. The binding constants were determined at 303°K, 308°K and 313°K.  A thermodynamic analysis showed that the reaction is spontaneous with ΔG being negative. The enthalpy ΔH and the entropy ΔS of reactions were all determined.

  15. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases

    Science.gov (United States)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 2-hydroxy-1-naphthaldehyde and 2-oxo-2H-chromene-3-carbohydrazide/6-bromo-2-oxo-2H-chromene-3-carbohydrazide. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV-Vis, 1H NMR, ESR, FAB-mass and fluorescence), magnetic and thermal studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of the complexes was investigated with electrochemical method by using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial ( Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The DNA cleavage is studied by agarose gel electrophoresis method.

  16. A major second messenger mediator of Electrophorus electricus electric tissue is CaM kinase II.

    Science.gov (United States)

    Gotter, A L; Kaetzel, M A; Dedman, J R

    1997-09-01

    Electric tissue of the electric eel, Electrophorus electricus, has been used extensively as a model system for the study of excitable membrane biochemistry and electrophysiology. Membrane receptors, ion channels, and ATPases utilized by electrocytes are conserved in mammalian neurons and myocytes. In this study, we show that Ca2+ predominates as the major mediator of electric tissue phosphorylation relative to cyclic AMP and cyclic GMP-induced phosphorylation. Mastoparan, a calmodulin inhibitor peptide, and a peptide corresponding to the pseudosubstrate region of mammalian calmodulin-dependent protein kinase II (CaMKII (281-302)) attenuated Ca(2+)-dependent phosphorylation in a dose-dependent manner. These experiments demonstrated that calmodulin-dependent protein kinase II activity predominates in electric tissue. The Electrophorus kinase was purified by a novel affinity chromatography procedure utilizing Ca2+/calmodulin-dependent binding to the CaMKII (281-302) peptide coupled to Sepharose. The purified 51 kDa calmodulin-dependent protein kinase II demonstrated extensive autophosphorylation and exhibited a 3- to 4-fold increase in Ca(2+)-independent activity following autophosphorylation. Immunofluorescent localization experiments demonstrated calmodulin to be abundant in electrocytes, particularly subjacent to the plasma membrane. Calmodulin-dependent protein kinase II had a punctate distribution indicating that it may be compartmentalized by association with vesicles or the cytoskeleton. As the primary mediator of phosphorylation within electric tissue, CaM kinase II may be critical for the regulation of the specialized electrophysiological function of electrocytes.

  17. Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.

    Science.gov (United States)

    Andeer, Peter F; Learman, Deric R; McIlvin, Matt; Dunn, James A; Hansel, Colleen M

    2015-10-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants in environmental systems. A number of biotic and abiotic pathways induce the oxidation of Mn(II) to Mn oxides. Here, we use a combination of proteomic analyses and activity assays, to identify the enzyme(s) responsible for extracellular superoxide-mediated Mn oxide formation by a bacterium within the ubiquitous Roseobacter clade. We show that animal haem peroxidases (AHPs) located on the outer membrane and within the secretome are responsible for Mn(II) oxidation. These novel peroxidases have previously been implicated in direct Mn(II) oxidation by phylogenetically diverse bacteria. Yet, we show that in this Roseobacter species, AHPs mediate Mn(II) oxidation not through a direct reaction but by producing superoxide and likely also by degrading hydrogen peroxide. These findings point to a eukaryotic-like oscillatory oxidative-peroxidative enzymatic cycle by these AHPs that leads to Mn oxide formation by this organism. AHP expression appears unaffected by Mn(II), yet the large energetic investment required to produce and secrete these enzymes points to an as yet unknown physiological function. These findings are further evidence that bacterial peroxidases and secreted enzymes, in general, are unappreciated controls on the cycling of metals and reactive oxygen species (ROS), and by extension carbon, in natural systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Anaerobic DNA cleavage in red light by dicopper(II) complexes on disulphide bond activation

    Indian Academy of Sciences (India)

    Debojyoti Lahiri; Ritankar Majumdar; Ashis K Patra; Akhil R Chakravarty

    2010-05-01

    Binuclear complexes [Cu(-RSSR)]2 (1) and [M2(-PDS)(H2O)]2 (M = Cu(II), 2; Fe(II), 3), where H2RSSR is a reduced Schiff base derived from 2-(thioethyl)salicylaldimine having a disulphide moiety and H2PDS is derived from dimerization of D-penicillamine, have been prepared, structurally characterized, and their photo-induced DNA cleavage activity studied. The crystal structure of 1 shows the complex as a discrete binuclear species with each metal in a CuN2O2 square-planar geometry (Cu…Cu, 6.420 Å). The tetradentate RSSR2- acts as a bridging ligand. The sulphur atoms in the disulphide unit do not interact with the metal ions. Complexes 1-3 do not show any DNA cleavage activity in darkness. The copper(II) complexes exhibit chemical nuclease activity in the presence of 3-mercaptopropionic acid. Cleavage of supercoiled DNA has been observed in UV-A light of 365 nm for 1 and red light of 647.1 nm for both 1 and 2 in air. Mechanistic data reveal the involvement of the disulphide unit as photosensitizer generating hydroxyl radicals ($^{\\bullet}$OH) as the reactive species. Photo-induced DNA cleavage in red light seems to involve sulphide radicals in a type-I process and hydroxyl radicals. The dicopper(II) complexes show significant anaerobic photo-induced DNA cleavage activity in red light under argon following type-I pathway without involving any reactive oxygen species.

  19. Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels.

    Science.gov (United States)

    Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri

    2013-01-01

    In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn(2+)-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies.

  20. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    Science.gov (United States)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing

  1. Molecular cloning of partial cDNAs for rat DNA topoisomerase II isoforms and their differential expression in brain development.

    Science.gov (United States)

    Tsutsui, K; Tsutsui, K; Okada, S; Watanabe, M; Shohmori, T; Seki, S; Inoue, Y

    1993-09-05

    cDNA segments for DNA topoisomerase II were amplified from rat brain RNA after reverse transcription by the polymerase chain reaction, using degenerate oligonucleotide primers deduced from the conserved regions of topoisomerase II of higher eukaryotes. The cDNA product from a successful amplification was homogeneous in length but heterogeneous in sequence. Restriction mapping of the cloned cDNA fragments revealed that they consisted of two distinct sequence groups. DNA sequencing of representative clones from each group, designated A and B, showed that they are highly homologous to cDNAs of human topoisomerase II isoforms, alpha and beta, respectively. Northern blot analysis indicated that the transcript level for rat topoisomerase II alpha was high in embryonic brain and in the cerebellum of 2-day newborns, followed by rapid decrease to a undetectable level at 4 weeks after birth. In contrast, rat topoisomerase II beta transcript was present throughout the embryonic and postnatal stages. In the developing cerebellum, cells expressing topoisomerase II alpha were confirmed exclusively to the outer mitotic zone of the external granular layer, whereas the transcript of topoisomerase II beta was detected over the entire cortical region. These results clearly indicate that the isoform alpha is expressed only in proliferating cells. The differential expression of topoisomerase II isozymes was also observed among developed tissues. Therefore, the isozymes are most likely to be involved in the following different physiological processes: topoisomerase II alpha in cell proliferation, and topoisomerase II beta in some processes unrelated to cell proliferation.

  2. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II.

    Science.gov (United States)

    Westover, Kenneth D; Bushnell, David A; Kornberg, Roger D

    2004-02-13

    The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.

  3. The enzyme-amplified amperometric DNA sensor using an electrodeposited polymer redox mediator

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A highly sensitive method for the detection of a breast cancer-associated BRCA-1 gene is reported. The detection is based on a classical sandwich-type assay using horseradish peroxidase (HRP) as a catalytic label and electrodeposited Os2+/3+ conducting polymer (PAA-PVI-Os) as a redox mediator. Target DNA could be detected by the HRP-catalyzed reduction of H2O2, leading to a limit of detection as low as 10 fM.

  4. Pressure promotes angiotensin II--mediated migration of human coronary smooth muscle cells through increase in oxidative stress.

    Science.gov (United States)

    Yasunari, Kenichi; Maeda, Kensaku; Nakamura, Munehiro; Yoshikawa, Junichi

    2002-02-01

    Angiotensin II--mediated oxidative stress may play a role in the pathogenesis of coronary atherosclerosis. We examined the effects of pressure on the angiotensin II--mediated increase in oxidative stress and migration of cultured human coronary smooth muscle cells (SMCs). Increased pressure (100 mm Hg) by helium gas for 48 hours increased angiotensin II--mediated oxidative stress as evaluated by flow cytometry and SMC migration (from 15.9 +/- 2.2 to 32.0 +/- 2.4 cells per 4 high-power fields, P<0.05; n=8). The pressure-induced increases in oxidative stress observed appear to involve phospholipase D (PLD) and protein kinase C (PKC), inasmuch as the indirect PLD inhibitor suramin, at 100 micromol/L, and the PKC inhibitor chelerythrine, at 1 micromol/L, completely blocked the increase in angiotensin II--mediated oxidative stress induced by pressure. Pressure-induced increase in angiotensin II--mediated oxidative stress was inhibited by diphenylene iodonium chloride, an NADPH oxidase inhibitor, by 79% (P<0.05, n=8). Losartan (1 micromol/L), its active metabolite E3174 (1 micromol/L), and the antioxidant N-acetylcysteine (100 mmol/L) but not PD123319 (1 micromol/L) also blocked pressure-induced increases in angiotensin II--mediated oxidative stress and SMC migration (P<0.05, n=8). These findings suggest a novel cellular mechanism whereby pressure regulates the angiotensin II--mediated migration of SMCs, possibly via angiotensin II type 1 receptors, and which involves PLD-mediated, PKC-mediated, and NADPH oxidase--mediated increases in oxidative stress.

  5. Loop-mediated isothermal amplification targeting 18S ribosomal DNA for rapid detection of Acanthamoeba.

    Science.gov (United States)

    Yang, Hye-Won; Lee, Yu-Ran; Inoue, Noboru; Jha, Bijay Kumar; Danne, Dinzouna-Boutamba Sylvatrie; Kim, Hong-Kyun; Lee, Junhun; Goo, Youn-Kyoung; Kong, Hyun-Hee; Chung, Dong-Il; Hong, Yeonchul

    2013-06-01

    Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner.

  6. SRA-domain proteins required for DRM2-mediated de novo DNA methylation.

    Directory of Open Access Journals (Sweden)

    Lianna M Johnson

    2008-11-01

    Full Text Available De novo DNA methylation and the maintenance of DNA methylation in asymmetrical sequence contexts is catalyzed by homologous proteins in plants (DRM2 and animals (DNMT3a/b. In plants, targeting of DRM2 depends on small interfering RNAs (siRNAs, although the molecular details are still unclear. Here, we show that two SRA-domain proteins (SUVH9 and SUVH2 are also essential for DRM2-mediated de novo and maintenance DNA methylation in Arabidopsis thaliana. At some loci, SUVH9 and SUVH2 act redundantly, while at other loci only SUVH2 is required, and this locus specificity correlates with the differing DNA-binding affinity of the SRA domains within SUVH9 and SUVH2. Specifically, SUVH9 preferentially binds methylated asymmetric sites, while SUVH2 preferentially binds methylated CG sites. The suvh9 and suvh2 mutations do not eliminate siRNAs, suggesting a role for SUVH9 and SUVH2 late in the RNA-directed DNA methylation pathway. With these new results, it is clear that SRA-domain proteins are involved in each of the three pathways leading to DNA methylation in Arabidopsis.

  7. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  8. Ruthenium(II) complexes of saccharin with dipyridoquinoxaline and dipyridophenazine: Structures, biological interactions and photoinduced DNA damage activity.

    Science.gov (United States)

    Kumar, Priyaranjan; Dasari, Srikanth; Patra, Ashis K

    2017-08-18

    Ruthenium complexes trans-[Ru(sac)2(dpq)2] (1) and trans-[Ru(sac)2(dppz)2] (2) where sac is artificial sweetener saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one1,1-dioxide (Hsac)), dpq = dipyrido[3,2-d:2',3'-f]quinoxaline and dppz = dipyrido[3,2-a:2',3'-c]phenazine have been synthesized and thoroughly characterized using various analytical and spectral techniques. Saccharin known to act as carbonic anhydrase IX (CA IX) inhibitor which is a biomarker for highly aggressive and proliferative tumor in hypoxic stress, so inhibition of CA IX is a potential strategy for anticancer chemotherapy. The solid state structures, photophysical properties, photostability, DNA and protein binding affinity, and DNA photocleavage activity were explored. The structural analysis revealed Ru(II) centre is in discrete mononuclear, distorted octahedral {RuN6} coordination geometry with two monoanionic nitrogen donor saccharinate ligands and two neutral bidentate nitrogen donors ligands dpq and dppz. cis-[Ru(sac)2(dppz)2] (cis-2) geometrical isomer was also isolated and structurally characterized by X-ray crystallography. The photo-induced dissociation of monodentate saccharin ligand is observed when irradiated at UV-A light of 365 nm. The complexes show significant binding affinity to the calf thymus DNA (Kb ∼ 10(5) M(-1)) through significant intercalation through planar dpq and dppz ligands. Interaction of complexes 1 and 2 with bovine serum albumin (BSA) showed remarkable tryptophan emission quenching (KBSA ∼10(5) M(-1)). The complexes showed appreciable photoinduced DNA cleavage activity upon irradiation of low power UV-A light of 365 nm from supercoiled (SC) to its nicked circular (NC) form at micromolar complex concentrations. Photocleavage mechanistic studies in presence of O2 reveals involvement of reactive oxygen species (ROS) mediated through ligand-centered (3)ππ* and/or (3)MLCT excited states generated upon photoactivation leads to nicking of

  9. Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection.

    Directory of Open Access Journals (Sweden)

    Mat Yunus Abdul Masani

    Full Text Available BACKGROUND: Genetic engineering remains a major challenge in oil palm (Elaeis guineensis because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. METHODOLOGY/PRINCIPAL FINDINGS: We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. CONCLUSIONS/SIGNIFICANCE: We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.

  10. Differential roles of ATM- and Chk2-mediated phosphorylations of Hdmx in response to DNA damage.

    Science.gov (United States)

    Pereg, Yaron; Lam, Suzanne; Teunisse, Amina; Biton, Sharon; Meulmeester, Erik; Mittelman, Leonid; Buscemi, Giacomo; Okamoto, Koji; Taya, Yoichi; Shiloh, Yosef; Jochemsen, Aart G

    2006-09-01

    The p53 tumor suppressor plays a major role in maintaining genomic stability. Its activation and stabilization in response to double strand breaks (DSBs) in DNA are regulated primarily by the ATM protein kinase. ATM mediates several posttranslational modifications on p53 itself, as well as phosphorylation of p53's essential inhibitors, Hdm2 and Hdmx. Recently we showed that ATM- and Hdm2-dependent ubiquitination and subsequent degradation of Hdmx following DSB induction are mediated by phosphorylation of Hdmx on S403, S367, and S342, with S403 being targeted directly by ATM. Here we show that S367 phosphorylation is mediated by the Chk2 protein kinase, a downstream kinase of ATM. This phosphorylation, which is important for subsequent Hdmx ubiquitination and degradation, creates a binding site for 14-3-3 proteins which controls nuclear accumulation of Hdmx following DSBs. Phosphorylation of S342 also contributed to optimal 14-3-3 interaction and nuclear accumulation of Hdmx, but phosphorylation of S403 did not. Our data indicate that binding of a 14-3-3 dimer and subsequent nuclear accumulation are essential steps toward degradation of p53's inhibitor, Hdmx, in response to DNA damage. These results demonstrate a sophisticated control by ATM of a target protein, Hdmx, which itself is one of several ATM targets in the ATM-p53 axis of the DNA damage response.

  11. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Lee, Meryl; Sivaraman, J; Chatterjee, Chiradip

    2013-01-01

    Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) (1)H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.

  12. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model.

    Science.gov (United States)

    Liu, Baohua; Wang, Zimei; Ghosh, Shrestha; Zhou, Zhongjun

    2013-04-01

    ATM-mediated phosphorylation of KAP-1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24(-/-) mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM-Kap-1 signaling is compromised in Zmpste24(-/-) MEFs, leading to defective DNA damage-induced chromatin remodeling. Knocking down Kap-1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24(-/-) MEFs. Thus, ATM-Kap-1-mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.

  13. DNA as a Target for Anticancer Phen-Imidazole Pd(II) Complexes.

    Science.gov (United States)

    Heydari, Maryam; Moghadam, Mahboube Eslami; Tarlani, AliAkbar; Farhangian, Hossein

    2017-05-01

    Imidazole ring is a known structure in many natural or synthetic drug molecules and its metal complexes can interact with DNA and do the cleavage. Hence, to study the influence of the structure and size of the ligand on biological behavior of metal complexes, two water-soluble Pd(II) complexes of phen and FIP ligands (where phen is 1,10-phenanthroline and FIP is 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1, 10]phenanthroline) with the formula of [Pd(phen)(FIP)](NO3)2 and [Pd(FIP)2]Cl2, that were activated against chronic myelogenous leukemia cell line, K562, were selected. Also, the interaction of these anticancer Pd(II) complexes with highly polymerized calf thymus DNA was extensively studied by means of electronic absorption, fluorescence, and circular dichroism in Tris-buffer. The results showed that the binding was positive cooperation and [Pd(phen)(FIP)](NO3)2 (K f = 127 M(-1) G = 1.2) exhibited higher binding constant and number of binding sites than [Pd(FIP)2]Cl2 (K f = 13 M(-1) G = 1.03) upon binding to DNA. The fluorescence data indicates that quenching effect for [Pd(phen)(FIP)](NO3)2 (K SV = 58 mM(-1)) was higher than [Pd(FIP)2]Cl2 (K SV = 12 mM(-1)). Also, [Pd(FIP)2]Cl2 interacts with ethidium bromide-DNA, as non-competitive inhibition, and can bind to DNA via groove binding and [Pd(phen)(FIP)](NO3)2 can intercalate in DNA. These results were confirmed by circular dichroism spectra. Docking data revealed that longer complexes have higher interaction energy and bind to DNA via groove binding. Graphical Abstract Two anticancer Pd(II) complexes of imidazole derivative have been synthesized and interacted with calf thymus DNA. Modes of binding have been studied by electronic absorption, fluorescence, and CD measurements. [Pd(FIP)2]Cl2 can bind to DNA via groove binding while intercalation mode of binding is observed for [Pd(phen)(FIP)](NO3)2.

  14. Interlinked DNA nano-circles for measuring topoisomerase II activity at the level of single decatenation events

    DEFF Research Database (Denmark)

    Kristoffersen, Emil L; Jørgensen, Asger Givskov; Jørgensen, Line A

    2017-01-01

    DNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential...... topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling. The transition of each enzymatic reaction...... to a micrometer sized labeled product enabled quantitative detection of Topo II activity at the single decatenation event level rendering activity measurements in extracts from as few as five cells possible. Topo II activity is a suggested predictive marker in cancer therapy and, consequently, the described...

  15. Studies on the Interaction Mechanism of 1,10-Phenanthroline Cobalt(II Complex with DNA and Preparation of Electrochemical DNA Biosensor

    Directory of Open Access Journals (Sweden)

    Shiying Wang

    2006-10-01

    Full Text Available Fluorescence spectroscopy and ultraviolet (UV spectroscopy techniques coupled with cyclic voltammetry (CV were used to study the interaction between salmon sperm DNA and 1,10-Phenanthroline cobalt(II complex, [Co(phen2(Cl(H2O]Cl·H2O, where phen = 1,10-phenanthroline. The interaction between [Co(phen2(Cl(H2O]+ and double-strand DNA (dsDNA was identified to be intercalative mode. An electrochemical DNA biosensor was developed by covalent immobilization of probe single-strand DNA (ssDNA related to human immunodeficiency virus (HIV on the activated glassy carbon electrode (GCE. With [Co(phen2(Cl(H2O]+ being the novel electrochemical hybridization indicator, the selectivity of ssDNA-modified electrode was investigated and selective detection of complementary ssDNA was achieved using differential pulse voltammetry (DPV.

  16. Evidence for a DNA-based mechanism of intron-mediated enhancement

    Directory of Open Access Journals (Sweden)

    Alan B. Rose

    2011-12-01

    Full Text Available Many introns significantly increase gene expression through a process termed Intron-Mediated Enhancement (IME. Introns exist in the transcribed DNA and the nascent RNA, and could affect expression from either location. To determine which is more relevant to IME, hybrid introns were constructed that contain sequences from stimulating Arabidopsis thaliana introns either in their normal orientation or as the reverse complement. Both ends of each intron are from the non-stimulatory COR15a intron in their normal orientation to allow splicing. The inversions create major alterations to the sequence of the transcribed RNA with relatively minor changes to the DNA structure. Introns containing portions of either the UBQ10 or ATPK1 intron increased expression to a similar degree regardless of orientation. Also, computational predictions of IME improve when both intron strands are considered. These findings are more consistent with models of IME that act at the level of DNA rather than RNA.

  17. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    Science.gov (United States)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  18. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  19. RNA Pol II promotes transcription of centromeric satellite DNA in beetles.

    Directory of Open Access Journals (Sweden)

    Zeljka Pezer

    Full Text Available Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera. This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80% are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A tails in a portion of the transcripts indicate RNA polymerase II-dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.

  20. An extracellular DNA mediated bystander effect produced from low dose irradiated endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ermakov, Aleksei V., E-mail: avePlato@mail.ru [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Konkova, Marina S.; Kostyuk, Svetlana V.; Smirnova, Tatiana D.; Malinovskaya, Elena M.; Efremova, Liudmila V.; Veiko, Natalya N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2011-07-01

    The human umbilical vein endothelial cells culture was exposed to X-ray radiation in a low dose of 10 cGy. The fragments of extracellular genomic DNA (ecDNA{sup R}) were isolated from the culture medium after the short-term incubation. A culture medium of unirradiated endothelial cells was then supplemented with ecDNA{sup R}, followed by analysing the cells along the series of parameters (bystander effect). The exposed cells and bystander endotheliocytes showed similar response to low doses: approximation of the 1q12 loci of chromosome 1 and their transposition into the cellular nucleus, change in shape of the endotheliocytic nucleus, activation of the nucleolus organizing regions (NORs), actin polymerization, and an elevated level of DNA double-stranded breaks. Following blockade of TLR9 receptors with oligonucleotide-inhibitor or chloroquine in the bystander cells these effects - except of activation of NORs - on exposure to ecDNA{sup R} disappeared, with no bystander response thus observed. The presence of the radiation-induced apoptosis in the bystander effect being studied suggests a possibility for radiation-modified ecDNA fragments (i.e., stress signaling factors) to be released into the culture medium, whereas inhibition of TLR9 suggests the binding these ligands to the recipient cells. A similar DNA-signaling pathway in the bystander effect we previously described for human lymphocytes. Integrity of data makes it possible to suppose that a similar signaling mechanism which we demonstrated for lymphocytes (humoral system) might also be mediated in a monolayer culture of cells (cellular tissue) after the development of the bystander effect in them and transfer of stress signaling factors (ecDNA{sup R}) through the culture medium.

  1. Polyelectrolyte multilayers promote stent-mediated delivery of DNA to vascular tissue.

    Science.gov (United States)

    Saurer, Eric M; Jewell, Christopher M; Roenneburg, Drew A; Bechler, Shane L; Torrealba, Jose R; Hacker, Timothy A; Lynn, David M

    2013-05-13

    We report an approach to deliver DNA to vascular tissue in vivo using intravascular stents coated with degradable, DNA-containing polyelectrolyte multilayers (PEMs). Ionically cross-linked multilayers ∼120 nm thick were fabricated layer-by-layer on the surfaces of balloon-mounted stainless steel stents using plasmid DNA and a hydrolytically degradable poly(β-amino ester) (polymer 1). Characterization of stents coated using a fluorescently end-labeled analog of polymer 1 revealed film erosion to be uniform across the surfaces of the stents; differential stresses experienced upon balloon expansion did not lead to faster film erosion or dose dumping of DNA in areas near stent joints when stents were incubated in physiologically relevant media. The ability of film-coated stents to transfer DNA and transfect arterial tissue in vivo was then investigated in pigs and rabbits. Stents coated with films fabricated using fluorescently labeled DNA resulted in uniform transfer of DNA to sub-endothelial tissue in the arteries of pigs in patterns corresponding to the locations and geometries of stent struts. Stents coated with films fabricated using polymer 1 and plasmid DNA encoding EGFP resulted in expression of EGFP in the medial layers of stented tissue in both pigs and rabbits two days after implantation. The results of this study, combined with the modular and versatile nature of layer-by-layer assembly, provide a polymer-based platform that is well suited for fundamental studies of stent-mediated gene transfer. With further development, this approach could also prove useful for the design of nonviral, gene-based approaches for prevention of complications that arise from the implantation of stents and other implantable interventional devices.

  2. An extracellular DNA mediated bystander effect produced from low dose irradiated endothelial cells.

    Science.gov (United States)

    Ermakov, Aleksei V; Konkova, Marina S; Kostyuk, Svetlana V; Smirnova, Tatiana D; Malinovskaya, Elena M; Efremova, Liudmila V; Veiko, Natalya N

    2011-07-01

    The human umbilical vein endothelial cells culture was exposed to X-ray radiation in a low dose of 10cGy. The fragments of extracellular genomic DNA (ecDNA(R)) were isolated from the culture medium after the short-term incubation. A culture medium of unirradiated endothelial cells was then supplemented with ecDNA(R), followed by analysing the cells along the series of parameters (bystander effect). The exposed cells and bystander endotheliocytes showed similar response to low doses: approximation of the 1q12 loci of chromosome 1 and their transposition into the cellular nucleus, change in shape of the endotheliocytic nucleus, activation of the nucleolus organizing regions (NORs), actin polymerization, and an elevated level of DNA double-stranded breaks. Following blockade of TLR9 receptors with oligonucleotide-inhibitor or chloroquine in the bystander cells these effects - except of activation of NORs - on exposure to ecDNA(R) disappeared, with no bystander response thus observed. The presence of the radiation-induced apoptosis in the bystander effect being studied suggests a possibility for radiation-modified ecDNA fragments (i.e., stress signaling factors) to be released into the culture medium, whereas inhibition of TLR9 suggests the binding these ligands to the recipient cells. A similar DNA-signaling pathway in the bystander effect we previously described for human lymphocytes. Integrity of data makes it possible to suppose that a similar signaling mechanism which we demonstrated for lymphocytes (humoral system) might also be mediated in a monolayer culture of cells (cellular tissue) after the development of the bystander effect in them and transfer of stress signaling factors (ecDNA(R)) through the culture medium. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. DNA Interaction Studies of a New Platinum(II) Complex Containing Different Aromatic Dinitrogen Ligands.

    Science.gov (United States)

    Shahabadi, Nahid; Mohammadi, Somaye; Alizadeh, Robabeh

    2011-01-01

    A new mononuclear Pt(II) complex, [Pt(DMP)(DIP)]Cl(2).H(2)O, in which DMP is 4,4-dimethyl-2,2-bipyridine and DIP is 4,7-diphenyl-1,10-phenantroline, has been synthesized and characterized by physicochemical and spectroscopic methods. The binding interaction of this complex with calf thymus DNA (CT-DNA) was investigated using fluorimetry, spectrophotometry, circular dichroism, viscosimetry and cyclic voltametry (CV). UV-VIS spectrum showed 4 nm bathochromic shift of the absorption band at 280 nm along with significant hypochromicity for the absorption band of the complex. The intrnisic binding constant (K(b) = 2 × 10(4) M(-1)) is more in keeping with intercalators and suggests this binding mode. The viscosity measurements showed that the complex-DNA interaction can be hydrophobic and confirm intercalation. Moreover, the complex induced detectable changes in the CD spectrum of CT-DNA. The fluorescence studies revealed that the probable quenching mechanism of fluorescence of the complex by CT-DNA is static quenching. The thermodynamic parameters (ΔH > 0 and ΔS > 0) showed that main interaction with hydrogenic forces occurred that is intercalation mode. Also, CV results confirm this mode because, with increasing the CT-DNA concentration, shift to higher potential was observed.

  4. Characterisation of the interactions between substrate, copper(II) complex and DNA and their role in rate acceleration in DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Draksharapu, Apparao; Boersma, Arnold J; Browne, Wesley R; Roelfes, Gerard

    2015-01-01

    Interactions of the azachalcone derived substrate Aza with copper(II) complexes in the presence and absence of st-DNA were studied in detail by UV/Vis absorption, EPR and Raman and (UV and vis) resonance Raman spectroscopies. The binding of Aza to the Lewis acidic copper(II) complexes, which results

  5. Reduced DNA topoisomerase II activity and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; de Vries, Liesbeth; Mulder, Nanno

    1990-01-01

    In a previous study we suggested that, in addition to the reduced Adriamycin accumulation, part of the resistance in an Adriamycin-resistant human small cell lung carcinoma cell line (GLC4/ADR) could be explained by supposing a changed Adriamycin-DNA-topoisomerase II (Topo II) interaction. The prese

  6. Characterisation of the interactions between substrate, copper(II) complex and DNA and their role in rate acceleration in DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Draksharapu, Apparao; Boersma, Arnold J; Browne, Wesley R; Roelfes, Gerard

    2015-01-01

    Interactions of the azachalcone derived substrate Aza with copper(II) complexes in the presence and absence of st-DNA were studied in detail by UV/Vis absorption, EPR and Raman and (UV and vis) resonance Raman spectroscopies. The binding of Aza to the Lewis acidic copper(II) complexes, which results

  7. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.

    Science.gov (United States)

    Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao

    2016-03-01

    Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications.

  8. High-sensitivity assay for Hg (II) and Ag (I) ion detection: A new class of droplet digital PCR logic gates for an intelligent DNA calculator.

    Science.gov (United States)

    Cheng, Nan; Zhu, Pengyu; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Yang, Zhansen; Xu, Wentao

    2016-10-15

    The first example of droplet digital PCR logic gates ("YES", "OR" and "AND") for Hg (II) and Ag (I) ion detection has been constructed based on two amplification events triggered by a metal-ion-mediated base mispairing (T-Hg(II)-T and C-Ag(I)-C). In this work, Hg(II) and Ag(I) were used as the input, and the "true" hierarchical colors or "false" green were the output. Through accurate molecular recognition and high sensitivity amplification, positive droplets were generated by droplet digital PCR and viewed as the basis of hierarchical digital signals. Based on this principle, YES gate for Hg(II) (or Ag(I)) detection, OR gate for Hg(II) or Ag(I) detection and AND gate for Hg(II) and Ag(I) detection were developed, and their sensitively and selectivity were reported. The results indicate that the ddPCR logic system developed based on the different indicators for Hg(II) and Ag(I) ions provides a useful strategy for developing advanced detection methods, which are promising for multiplex metal ion analysis and intelligent DNA calculator design applications.

  9. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    Science.gov (United States)

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.

  10. Nickel (II) Ions Interaction with Polynucleotides and DNA of Different GC Composition

    CERN Document Server

    Bregadze, Vasil G; Melikishvili, Sophie Z; Melikishvili, Zaza G

    2009-01-01

    The goal of the work was to study the role of GC alternative dimmers in the binding of DNA with Ni (II) ions. The method of ultraviolet difference spectroscopy has been applied to investigate Ni (II) ions interactions with DNA extracted from Clostridium perfringens, Mice liver (C3HA line), Calf thymus, Salmon sperm, Herring sperm, E.coli, Micrococcus luteus and polynucleotides Poly (dA-dT)xPoly (dA-dT), Poly (dG)x Poly (dC), Poly (dG-dC)xPoly (dG-dC). It is shown that Ni (II) ions at outer-spherical binding with DNA double helix from the side of the major groove choose more stable dimmers 3^'-C-G-5^' . . 5^'-G-C-3^' and get bound with N7 atoms of both guanines in dimmer forming G-G interstrand crosslink. It directly correlates to the process of forming point defects of Watson-Crick wrong pair type (creation of rare keto-enolic and amino-imino tautomeric forms) and depurinization.

  11. Zinc(II) complexes of carboxamide derivatives: Crystal structures and interaction with calf thymus DNA

    Indian Academy of Sciences (India)

    Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2015-10-01

    Two mononuclear zinc(II) complexes of newly designed carboxamide derivatives, formulated as [Zn(L1)3](ClO4)2 (1) and [Zn(L2)3](ClO4)2 (2) [where L1 = -(furan-2-ylmethyl)-2-pyridinecarboxamide and L2 = -(thiophen-2-ylmethyl)-2-pyridine-carboxamide], have been isolated in pure form in the reaction of perchlorate salts of Zn(II) with ligands L1 and L2, respectively. The two complexes were characterized by physicochemical and spectroscopic tools, and by X-ray crystal structures of both ligands and the complex 1. In complex 1, zinc(II) is chelated by three ligands with a distorted octahedral geometry. The DNA-binding properties of zinc complexes 1 and 2 have been investigated by spectroscopic methods and viscosity measurements. The results suggest that both complexes 1 and 2 bind to DNA in an intercalation mode between the uncoordinated furan or thiophene chromophore and the base pairs of DNA.

  12. Novel FeII and CoII Complexes of Natural Product Tryptanthrin: Synthesis and Binding with G-Quadruplex DNA

    Science.gov (United States)

    Zhong, Yi-ning; Zhang, Yan; Gu, Yun-qiong; Wu, Shi-yun; Shen, Wen-ying

    2016-01-01

    Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid from Isatis. Two novel FeII and CoII complexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand. Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-quadruplex DNA. This study may potentially serve as the basis of future rational design of metal-based drugs from natural products that target the G-quadruplex DNA. PMID:27698647

  13. Macrocyclic nickel(II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding

    Science.gov (United States)

    Ramadan, Abd El-Motaleb M.

    2012-05-01

    A new series of nickel(II) complexes with the tetraaza macrocyclic ligand have been synthesized as possible functional models for nickel-superoxide dismutase enzyme. The reaction of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde (AMPC) with itself in the presence of nickel(II) ion yields, the new macrocyclic cationic complex, [NiL(NO3)2], containing a ligand composed of the self-condensed AMPC (4 mol) bound to a single nickel(II) ion. A series of metathetical reactions have led to the isolation of a number of newly complexes of the types [NiL]X2; X = ClO4 and BF4, [NiLX2], X = Cl and Br (Scheme 1). Structures and characterizations of these complexes were achieved by several physicochemical methods namely, elemental analysis, magnetic moment, conductivity, and spectral (IR and UV-Vis) measurements. The electrochemical properties and thermal behaviors of these chelates were investigated by using cyclic voltammetry and thermogravimetric analysis (TGA and DTG) techniques. A distorted octahedral stereochemistry has been proposed for the six-coordinate nitrato, and halogeno complexes. For the four-coordinate, perchlorate and fluoroborate, complex species a square-planar geometry is proposed. The measured superoxide dismutase mimetic activities of the complexes indicated that they are potent NiSOD mimics and their activities are compared with those obtained previously for nickel(II) complexes. The probable mechanistic implications of the catalytic dismutation of O2rad - by the synthesized nickel(II) complexes are discussed. The DNA-binding properties of representative complexes [NiLCl2] and [NiL](PF4)2 have been investigated by the electronic absorption and fluorescence measurements. The results obtained suggest that these complexes bind to DNA via an intercalation binding mode and the binding affinity for DNA follows the order: [NiLCl2] □ [NiL](PF4)2.

  14. Does quantum entanglement in DNA synchronize the catalytic centers of type II restriction endonucleases?

    CERN Document Server

    Kurian, P; Lindesay, J

    2014-01-01

    Several living systems have been examined for their apparent optimization of structure and function for quantum behavior at biological length scales. Orthodox type II endonucleases, the largest class of restriction enzymes, recognize four-to-eight base pair sequences of palindromic DNA, cut both strands symmetrically, and act without an external metabolite such as ATP. While it is known that these enzymes induce strand breaks by attacking phosphodiester bonds, what remains unclear is the mechanism by which cutting occurs in concert at the catalytic centers. Previous studies indicate the primacy of intimate DNA contacts made by the specifically bound enzyme in coordinating the two synchronized cuts. We propose that collective electronic behavior in the DNA helix generates coherent oscillations, quantized through boundary conditions imposed by the endonuclease, that provide the energy required to break two phosphodiester bonds. Such quanta may be preserved in the presence of thermal noise and electromagnetic in...

  15. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Science.gov (United States)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Ahmad, Haslina; Heng, Lee Yook; Karim, Nurul Huda Abd; Harun, Siti Norain

    2014-09-01

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy)2(PIP)]2+, (bpy = 2,2'bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy)2(PIP)]2+ was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  16. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension.

  17. Synthesis, DNA-binding, DNA-photonuclease profiling and antimicrobial activity of novel tetra-aza macrocyclic Ni(II), Co(II) and Cu(II) complexes constrained by thiadiazole.

    Science.gov (United States)

    Vinay Kumar, B; Bhojya Naik, H S; Girija, D; Sharath, N; Pradeepa, S M; Joy Hoskeri, H; Prabhakara, M C

    2012-08-01

    A new tetra-aza macrocyclic ligand, L (C(24)H(16)N(12)O(2)S(4)) and its complexes of type, [MLCl(2)] and [CuL]Cl(2) (where M=Ni(II), Co(II); L=N,N'-(benzene-1,3-diyldi-1,3,4-thiadiazole-5,2-diyl)bis{2-[(5-benzene-1,3-diyl-1,3,4-thiadiazol-2-yl)amino]acetamide}) were synthesized and characterized by the spectral and analytical techniques. An octahedral geometry has been proposed for Ni(II) and Co(II) complexes while Cu(II) complex exhibit a square planar geometry. All the synthesized metal complexes were screened for their in vitro antimicrobial activity against selected species of pathogenic bacteria and fungi. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. The photo induced cleavage studies revealed that the complexes possess photonuclease property against pUC19 DNA under UV-visible irradiation.

  18. Multispectroscopic studies on the interaction of a copper(ii) complex of ibuprofen drug with calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Shiri, Farshad

    2017-02-01

    The interaction of copper(II)-ibuprofenato complex with calf thymus DNA (ct-DNA) has been explored following, UV-visible spectrophotometry, fluorescence measurement, dynamic viscosity measurements, and circular dichroism spectroscopy. In spectrophotometric studies of ct-DNA it was found that [Cu(ibp)2]2 can form a complex with double-helical DNA. The association constant of [Cu(ibp)2]2 with DNA from UV-Vis study was found to be 6.19 × 10(4) L mol(-1). The values of Kf from fluorescence measurement clearly underscore the high affinity of [Cu(ibp)2]2 to DNA. The experimental results showed that the conformational changes in DNA helix induced by [Cu(ibp)2]2 are the reason for the fluorescence quenching of the DNA-Hoechst system. In addition, the fluorescence emission spectra of intercalated methylene blue (MB) with increasing concentrations of [Cu(ibp)2]2 represented a significant increase of MB intensity as to release MB from MB-DNA system. The results of circular dichroism (CD) suggested that copper(II)-ibuprofenato complex can change the conformation of DNA. In addition, the results of viscosity measurements suggest that copper(II)-ibuprofenato complex may bind with non-classical intercalative mode. From spectroscopic and hydrodynamic studies, it has been found that [Cu(ibp)2]2 interacts with DNA by partial intercalation mode which contains intercalation and groove properties.

  19. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  20. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions.

    Science.gov (United States)

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction's mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein-protein interactions or protein-DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1,040,000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43,000 RNA-mediated interactions, and ∼12,000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network

  1. DNA methylation mediates the discriminatory power of associative long-term memory in honeybees.

    Directory of Open Access Journals (Sweden)

    Stephanie D Biergans

    Full Text Available Memory is created by several interlinked processes in the brain, some of which require long-term gene regulation. Epigenetic mechanisms are likely candidates for regulating memory-related genes. Among these, DNA methylation is known to be a long lasting genomic mark and may be involved in the establishment of long-term memory. Here we demonstrate that DNA methyltransferases, which induce and maintain DNA methylation, are involved in a particular aspect of associative long-term memory formation in honeybees, but are not required for short-term memory formation. While long-term memory strength itself was not affected by blocking DNA methyltransferases, odor specificity of the memory (memory discriminatory power was. Conversely, perceptual discriminatory power was normal. These results suggest that different genetic pathways are involved in mediating the strength and discriminatory power of associative odor memories and provide, to our knowledge, the first indication that DNA methyltransferases are involved in stimulus-specific associative long-term memory formation.

  2. Histone deacetylase inhibitors mediate DNA damage repair in ameliorating hemorrhagic cystitis.

    Science.gov (United States)

    Haldar, Subhash; Dru, Christopher; Mishra, Rajeev; Tripathi, Manisha; Duong, Frank; Angara, Bryan; Fernandez, Ana; Arditi, Moshe; Bhowmick, Neil A

    2016-12-20

    Hemorrhagic cystitis is an inflammatory and ulcerative bladder condition associated with systemic chemotherapeutics, like cyclophosphomide. Earlier, we reported reactive oxygen species resulting from cyclophosphamide metabolite, acrolein, causes global methylation followed by silencing of DNA damage repair genes. Ogg1 (8-oxoguanine DNA glycosylase) is one such silenced base excision repair enzyme that can restore DNA integrity. The accumulation of DNA damage results in subsequent inflammation associated with pyroptotic death of bladder smooth muscle cells. We hypothesized that reversing inflammasome-induced imprinting in the bladder smooth muscle could prevent the inflammatory phenotype. Elevated recruitment of Dnmt1 and Dnmt3b to the Ogg1 promoter in acrolein treated bladder muscle cells was validated by the pattern of CpG methylation revealed by bisulfite sequencing. Knockout of Ogg1 in detrusor cells resulted in accumulation of reactive oxygen mediated 8-Oxo-dG and spontaneous pyroptotic signaling. Histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), restored Ogg1 expression in cells treated with acrolein and mice treated with cyclophosphamide superior to the standard of care, mesna or nicotinamide-induced DNA demethylation. SAHA restored cyclophosphamide-induced bladder pathology to that of untreated control mice. The observed epigenetic imprinting induced by inflammation suggests a new therapeutic target for the treatment of hemorrhagic cystitis.

  3. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage

    DEFF Research Database (Denmark)

    Morin, B; Davies, Michael Jonathan; Dean, R T

    1998-01-01

    of other protein-bound oxidation products. The formation of two oxidation products of DNA, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) and 5-hydroxy-2'-deoxycytidine (5OHdC), were studied with a novel HPLC using gradient elution and an electrochemical detection method, which allowed the detection of both...... of the present work was to investigate whether DOPA, and especially PB-DOPA, can mediate oxidative damage to DNA. We chose to generate PB-DOPA using mushroom tyrosinase, which catalyses the hydroxylation of tyrosine residues in protein. This permitted us to study the reactions of PB-DOPA in the virtual absence...... DNA modifications in a single experiment. We found that exposure of calf thymus DNA to DOPA or PB-DOPA resulted in the formation of 8oxodG and 5OHdC, with the former predominating. The formation of these DNA oxidation products by either DOPA or PB-DOPA depended on the presence of oxygen, and also...

  4. Histone deacetylase inhibitors mediate DNA damage repair in ameliorating hemorrhagic cystitis

    Science.gov (United States)

    Haldar, Subhash; Dru, Christopher; Mishra, Rajeev; Tripathi, Manisha; Duong, Frank; Angara, Bryan; Fernandez, Ana; Arditi, Moshe; Bhowmick, Neil A.

    2016-01-01

    Hemorrhagic cystitis is an inflammatory and ulcerative bladder condition associated with systemic chemotherapeutics, like cyclophosphomide. Earlier, we reported reactive oxygen species resulting from cyclophosphamide metabolite, acrolein, causes global methylation followed by silencing of DNA damage repair genes. Ogg1 (8-oxoguanine DNA glycosylase) is one such silenced base excision repair enzyme that can restore DNA integrity. The accumulation of DNA damage results in subsequent inflammation associated with pyroptotic death of bladder smooth muscle cells. We hypothesized that reversing inflammasome-induced imprinting in the bladder smooth muscle could prevent the inflammatory phenotype. Elevated recruitment of Dnmt1 and Dnmt3b to the Ogg1 promoter in acrolein treated bladder muscle cells was validated by the pattern of CpG methylation revealed by bisulfite sequencing. Knockout of Ogg1 in detrusor cells resulted in accumulation of reactive oxygen mediated 8-Oxo-dG and spontaneous pyroptotic signaling. Histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), restored Ogg1 expression in cells treated with acrolein and mice treated with cyclophosphamide superior to the standard of care, mesna or nicotinamide-induced DNA demethylation. SAHA restored cyclophosphamide-induced bladder pathology to that of untreated control mice. The observed epigenetic imprinting induced by inflammation suggests a new therapeutic target for the treatment of hemorrhagic cystitis. PMID:27995963

  5. TRF2-Mediated Control of Telomere DNA Topology as a Mechanism for Chromosome-End Protection.

    Science.gov (United States)

    Benarroch-Popivker, Delphine; Pisano, Sabrina; Mendez-Bermudez, Aaron; Lototska, Liudmyla; Kaur, Parminder; Bauwens, Serge; Djerbi, Nadir; Latrick, Chrysa M; Fraisier, Vincent; Pei, Bei; Gay, Alexandre; Jaune, Emilie; Foucher, Kevin; Cherfils-Vicini, Julien; Aeby, Eric; Miron, Simona; Londoño-Vallejo, Arturo; Ye, Jing; Le Du, Marie-Hélène; Wang, Hong; Gilson, Eric; Giraud-Panis, Marie-Josèphe

    2016-01-21

    The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.

  6. New unsymmetric dinuclear Cu(II)Cu(II) complexes and their relevance to copper(II) containing metalloenzymes and DNA cleavage.

    Science.gov (United States)

    Peralta, Rosely A; Neves, Ademir; Bortoluzzi, Adailton J; Dos Anjos, Ademir; Xavier, Fernando R; Szpoganicz, Bruno; Terenzi, Hernán; de Oliveira, Mauricio C B; Castellano, Eduardo; Friedermann, Geraldo R; Mangrich, Antonio S; Novak, Miguel A

    2006-05-01

    The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography. In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit. Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit. Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand). On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical

  7. p53 activation by Ni(II) is a HIF-1α independent response causing caspases 9/3-mediated apoptosis in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Victor C.; Morse, Jessica L.; Zhitkovich, Anatoly, E-mail: anatoly_zhitkovich@brown.edu

    2013-06-15

    Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl{sub 2} caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21 expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen. - Highlights: • Ni(II) is a strong activator of the transcription factor p53. • Apoptosis is a principal form of death by Ni(II) in human lung epithelial cells. • Ni(II)-activated p53 triggers caspases 9/3-mediated apoptotic program. • NOXA and PUMA are two main proapoptotic genes induced by Ni(II). • HIF-1α and p53 are independent

  8. Developmental and cytokine-mediated regulation of MHC class II gene promoter occupancy in vivo.

    Science.gov (United States)

    Kara, C J; Glimcher, L H

    1993-06-01

    The class II genes of the major histocompatibility complex are a family of genes whose expression is regulated developmentally in cells of the B lineage and by IFN-gamma in many other cell types. Using the approach of in vivo footprinting, which allows for the examination of protein-promoter interactions within intact cells, we demonstrated a transition from unoccupied to occupied to once again unoccupied class II promoters in cell lines representing the developmental pathway of B cells. IFN-gamma treatment of HeLa cells led to increased promoter occupancy of the DR alpha and DR beta promoters at the same sites that are constitutively bound in mature B cells. No IFN-gamma-specific binding site was induced. Additionally, an octamer element in the DR alpha gene displayed preferential binding in B cells. These results demonstrate that changes in the transcription of the class II genes are associated with changes in factor binding at the promoter in vivo. Moreover, given the ubiquity of class II promoter binding proteins, these results suggest that throughout B cell development and upon IFN-gamma stimulation, the accessibility of class II promoter DNA is subject to regulation.

  9. Involvement of DNA damage in hydroxyurea-mediated induction of endogenous murine retrovirus

    Energy Technology Data Exchange (ETDEWEB)

    Rascati, R.J.; Tennant, R.W.

    1979-04-30

    Hydroxyurea (HU) induces AKR cells to produce endogenous murine retrovirus at a low frequency (approx. 1 x 10/sup -5/), and DNA synthesis is required soon after treatment with HU for induction to be observed (i.e., no stable induction intermediate is formed). Induction by HU can be enhanced by simultaneous treatment with halogenated pyrimidines, with the concomitant appearance of a stable induction intermediate state. The effects of the two compounds are synergistic, indicating an actual stimulation of HU-mediated induction by iodode-oxyuridine. Since HU inhibits semiconservative replication, and since (/sup 3/H)bromodeoxyuridine is incorporated into the cellular genome predominantly by unscheduled DNA synthesis (repair replication) under these conditions, this stimulation appears to be the result of insertion into DNA of the thymidine analogs during the repair of HU-induced alterations in the DNA. The nature of HU damage to DNA is not defined; if single-strand breaks are involved, they may occur at a frequency <10/sup -8/ and escape detection, but induction could also be due to other alterations in DNA. The characteristics of induction by HU, therefore, are similar to those of induction by other DNA-damaging treatments such as ..gamma.. or x irradiation or methylcholanthrene. This suggests that these agents may induce by similar, if not identical, mechanisms. Further, the ability of halogenated pyrimidines to form a stable induction intermediate when incorporated by repair synthesis, similar to the intermediate formed when the analogs are incorporated during semiconservative replication, suggests that the same sites are involved for induction by damaging agents or by halogenated pyrimidine incorporation.

  10. IRF-4-mediated CIITA transcription is blocked by KSHV encoded LANA to inhibit MHC II presentation.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    2013-10-01

    Full Text Available Peptides presentation to T cells by MHC class II molecules is of importance in initiation of immune response to a pathogen. The level of MHC II expression directly influences T lymphocyte activation and is often targeted by various viruses. Kaposi's sarcoma-associated herpesvirus (KSHV encoded LANA is known to evade MHC class I peptide processing, however, the effect of LANA on MHC class II remains unclear. Here, we report that LANA down-regulates MHC II expression and presentation by inhibiting the transcription of MHC II transactivator (CIITA promoter pIII and pIV in a dose-dependent manner. Strikingly, although LANA knockdown efficiently disrupts the inhibition of CIITA transcripts from its pIII and pIV promoter region, the expression of HLA-DQβ but no other MHC II molecules was significantly restored. Moreover, we revealed that the presentation of HLA-DQβ enhanced by LANA knockdown did not help LANA-specific CD4+ T cell recognition of PEL cells, and the inhibition of CIITA by LANA is independent of IL-4 or IFN-γ signaling but dependent on the direct interaction of LANA with IRF-4 (an activator of both the pIII and pIV CIITA promoters. This interaction dramatically blocked the DNA-binding ability of IRF-4 on both pIII and pIV promoters. Thus, our data implies that LANA can evade MHC II presentation and suppress CIITA transcription to provide a unique strategy of KSHV escape from immune surveillance by cytotoxic T cells.

  11. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase II alpha inhibition.

    Science.gov (United States)

    Nateewattana, Jintapat; Dutta, Suman; Reabroi, Somrudee; Saeeng, Rungnapha; Kasemsook, Sakkasem; Chairoungdua, Arthit; Weerachayaphorn, Jittima; Wongkham, Sopit; Piyachaturawat, Pawinee

    2014-01-15

    Cholangiocarcinoma (CCA), the common primary malignant tumor of bile duct epithelial cells, is unresponsive to most chemotherapeutic drugs. Diagnosis with CCA has a poor prognosis, and therefore urgently requires effective therapeutic agents. In the present study we investigated anti-cancer effects of andrographolide analogue 3A.1 (19-tert-butyldiphenylsilyl-8, 17-epoxy andrographolide) and its mechanism in human CCA cell line KKU-M213 derived from a Thai CCA patient. By 24h after exposure, the analogue 3A.1 exhibited a potent cytotoxic effect on KKU-M213 cells with an inhibition concentration 50 (IC50) of approximately 8.0µM. Analogue 3A.1 suppressed DNA topoisomerase II α (Topo II α) protein expression, arrested the cell cycle at sub G0/G1 phase, induced cleavage of DNA repair protein poly (ADP-ribose) polymerases-1 (PARP-1), and enhanced expression of tumor suppressor protein p53 and pro-apoptotic protein Bax. In addition, analogue 3A.1 induced caspase 3 activity and inhibited cyclin D1, CDK6, and COX-2 protein expression. These results suggest that andrographolide analogue 3A.1, a novel topo II inhibitor, has significant potential to be developed as a new anticancer agent for the treatment of CCA.

  12. JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks

    DEFF Research Database (Denmark)

    Watanabe, Sugiko; Watanabe, Kenji; Akimov, Vyacheslav;

    2013-01-01

    Chromatin ubiquitylation flanking DNA double-strand breaks (DSBs), mediated by RNF8 and RNF168 ubiquitin ligases, orchestrates a two-branch pathway, recruiting repair factors 53BP1 or the RAP80-BRCA1 complex. We report that human demethylase JMJD1C regulates the RAP80-BRCA1 branch of this DNA...

  13. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism.

  14. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently.

  15. Suppression of TET1-Dependent DNA Demethylation Is Essential for KRAS-Mediated Transformation

    Directory of Open Access Journals (Sweden)

    Bo-Kuan Wu

    2014-12-01

    Full Text Available Hypermethylation-mediated tumor suppressor gene (TSG silencing is a central epigenetic alteration in RAS-dependent tumorigenesis. Ten-eleven translocation (TET enzymes can depress DNA methylation by hydroxylation of 5-methylcytosine (5mC bases to 5-hydroxymethylcytosine (5hmC. Here, we report that suppression of TET1 is required for KRAS-induced DNA hypermethylation and cellular transformation. In distinct nonmalignant cell lines, oncogenic KRAS promotes transformation by inhibiting TET1 expression via the ERK-signaling pathway. This reduces chromatin occupancy of TET1 at TSG promoters, lowers levels of 5hmC, and increases levels of 5mC and 5mC-dependent transcriptional silencing. Restoration of TET1 expression by ERK pathway inhibition or ectopic TET1 reintroduction in KRAS-transformed cells reactivates TSGs and inhibits colony formation. KRAS knockdown increases TET1 expression and diminishes colony-forming ability, whereas KRAS/TET1 double knockdown bypasses the KRAS dependence of KRAS-addicted cancer cells. Thus, suppression of TET1-dependent DNA demethylation is critical for KRAS-mediated transformation.

  16. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage

    OpenAIRE

    Pereg, Yaron; Shkedy, Dganit; de Graaf, Petra; Meulmeester, Erik; Edelson-Averbukh, Marina; Salek, Mogjiborahman; Biton, Sharon; Teunisse, Amina F.A.S.; Lehmann, Wolf D.; Jochemsen, Aart G.; Shiloh, Yosef

    2005-01-01

    Maintenance of genomic stability depends on the DNA damage response, an extensive signaling network that is activated by DNA lesions such as double-strand breaks (DSBs). The primary activator of the mammalian DSB response is the nuclear protein kinase ataxia–telangiectasia, mutated (ATM), which phosphorylates key players in various arms of this network. The activation and stabilization of the p53 protein play a major role in the DNA damage response and are mediated by ATM-dependent posttransl...

  17. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.

    Science.gov (United States)

    Hensel, Zach; Weng, Xiaoli; Lagda, Arvin Cesar; Xiao, Jie

    2013-01-01

    DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R) and O(L) (separated by 2.3 kb), mediated by the λ repressor CI (accession number P03034), play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.

  18. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.

    Directory of Open Access Journals (Sweden)

    Zach Hensel

    Full Text Available DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R and O(L (separated by 2.3 kb, mediated by the λ repressor CI (accession number P03034, play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.

  19. Physical mapping of BK virus DNA with SacI, MboII, and AluI restriction endonucleases.

    Science.gov (United States)

    Yang, R C; Wu, R

    1978-12-01

    A new restriction endonuclease, SacI from Streptomyces achromogenes cleaves BK virus (strain MM) DNA into 3 fragments, whereas MboII from Moraxella bovis and AluI from Arthrobacter luteus give 22 and 30 fragments, respectively. All these specific DNA fragments were ordered and mapped on the viral genome by two methods first, by the reciprocal digestion method using uniformly 32P-labeled DNA; and second, by the partial digestion technique using the single-end 32P-labeled DNA. This study, together with those reported earlier, defined the location of 90 cleavage sites on the BK virus DNA.

  20. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression.

    Science.gov (United States)

    Li, Haolong; Xie, Ning; Gleave, Martin E; Dong, Xuesen

    2015-08-21

    Although the new generation of androgen receptor (AR) antagonists like enzalutamide (ENZ) prolong survival of metastatic castration-resistant prostate cancer (CRPC), AR-driven tumors eventually recur indicating that additional therapies are required to fully block AR function. Since DNA topoisomerase II (Topo II) was demonstrated to be essential for AR to initiate gene transcription, this study tested whether catalytic inhibitors of Topo II can block AR signaling and suppress ENZ-resistant CRPC growth. Using multiple prostate cancer cell lines, we showed that catalytic Topo II inhibitors, ICRF187 and ICRF193 inhibited transcription activities of the wild-type AR, mutant ARs (F876L and W741C) and the AR-V7 splice variant. ICRF187 and ICRF193 decreased AR recruitment to target promoters and reduced AR nuclear localization. Both ICRF187 and ICRF193 also inhibited cell proliferation and delayed cell cycling at the G2/M phase. ICRF187 inhibited tumor growth of castration-resistant LNCaP and 22RV1 xenografts as well as ENZ-resistant MR49F xenografts. We conclude that catalytic Topo II inhibitors can block AR signaling and inhibit tumor growth of CRPC xenografts, identifying a potential co-targeting approach using these inhibitors in combination with AR pathway inhibitors in CRPC.

  1. In vitro DNA binding profile of enantiomeric dinuclear Cu(II)/Ni(II) complexes derived from l-/d-histidine-terepthaldehyde reduced Schiff base as potential chemotherapeutic agents.

    Science.gov (United States)

    Yousuf, Imtiyaz; Arjmand, Farukh

    2016-11-01

    New chiral reduced Schiff base ligands, L1 and L2 derived from l-/d-histidine and terepthaldehyde, and their Cu(II) and Ni(II) dinuclear complexes 1 &2 (a and b) were synthesized and thoroughly characterized by various spectroscopic techniques. Comparative binding profile of both l-/d-enantiomeric Cu(II) and Ni(II) complexes with ct-DNA was studied by employing optical and spectroscopic techniques to evaluate their enantiopreferential selectivity towards molecular target DNA and thereby explore their relative chemotherapeutic potential. Quantitative assessment of DNA binding propensity was ascertained by calculating Kb, K and Ksv values of 1 &2 (a and b) which demonstrated higher binding affinity of l-enantiomeric Cu(II) complex, 1a and followed the order as 1a>1b>2a>2b. Scanning electron microscopy (SEM) was used to analyze the morphological changes of the DNA condensate in presence of complexes 1 (a and b). The SEM micrographs condensates revealed morphological transitions and formation of different structural features implicating the condensation process between the complexes and biomolecule occurred to form compact massive structures. The gel electrophoretic assay of complex 1a was carried out with pBR322 plasmid DNA which revealed an efficient cleaving ability of the complex via oxidative pathway with the involvement of singlet oxygen ((1)O2) and the superoxide anion (O2(•-)) radicals as the ROS responsible the cleavage reactions. Molecular docking studies of 1 (a and b) with DNA revealed selective recognition of G-C residues of the narrow minor groove of the DNA duplex and complex 1a demonstrated binding affinity towards DNA ascertained from its higher binding energy values. Furthermore, the cytotoxic assessment of 1a was examined on a panel of cancer cell lines of different histological origin employing SRB assay which revealed remarkably good cytotoxic activity towards HL60, HeLa and MCF7 cancer cell lines.

  2. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  3. Investigation of irradiated rats DNA in the presence of Cu(II) chelates of amino acids Schiff bases.

    Science.gov (United States)

    Karapetyan, N H; Torosyan, A L; Malakyan, M; Bajinyan, S A; Haroutiunian, S G

    2016-01-01

    The new synthesized Cu(II) chelates of amino acids Schiff bases were studied as a potential radioprotectors. Male albino rats of Wistar strain were exposed to X-ray whole-body irradiation at 4.8 Gy. This dose caused 30% mortality of the animals (LD30). The survival of animals exposed to radiation after preliminary administration of 10 mg/kg Cu(II)(Nicotinyl-L-Tyrosinate)2 or Cu(II)(Nicotinyl-L-Tryptophanate)2 prior to irradiation was registered about 80 and 100% correspondingly. Using spectrophotometric melting and agarose gel electrophoresis methods, the differences between the DNA isolated from irradiated rats and rats pretreated with Cu(II) chelates were studied. The fragments of DNA with different breaks were revealed in DNA samples isolated from irradiated animals. While, the repair of the DNA structure was observed for animals pretreated with the Cu(II) chelates. The results suggested that pretreatment of the irradiated rats with Cu(II)(Nicotinyl-L-Tyrosinate)2 and Cu(II)(Nicotinyl-L-Tryptophanate)2 compounds improves the liver DNA characteristics.

  4. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase.

    Science.gov (United States)

    Coelho, João; Martins, Carlos; Ferreira, Fernando; Leitão, Alexandre

    2015-01-01

    Topoisomerases modulate the topological state of DNA during processes, such as replication and transcription, that cause overwinding and/or underwinding of the DNA. African swine fever virus (ASFV) is a nucleo-cytoplasmic double-stranded DNA virus shown to contain an OFR (P1192R) with homology to type II topoisomerases. Here we observed that pP1192R is highly conserved among ASFV isolates but dissimilar from other viral, prokaryotic or eukaryotic type II topoisomerases. In both ASFV/Ba71V-infected Vero cells and ASFV/L60-infected pig macrophages we detected pP1192R at intermediate and late phases of infection, cytoplasmically localized and accumulating in the viral factories. Finally, we used a Saccharomyces cerevisiae temperature-sensitive strain in order to demonstrate, through complementation and in vitro decatenation assays, the functionality of P1192R, which we further confirmed by mutating its predicted catalytic residue. Overall, this work strengthens the idea that P1192R constitutes a target for studying, and possibly controlling, ASFV transcription and replication.

  5. Ruthenium(II) complexes as apoptosis inducers by stabilizing c-myc G-quadruplex DNA.

    Science.gov (United States)

    Zhang, Zhao; Wu, Qiong; Wu, Xiao-Hui; Sun, Fen-Yong; Chen, Lan-Mei; Chen, Jin-Chan; Yang, Shu-Ling; Mei, Wen-Jie

    2014-06-10

    Two ruthenium(II) complexes, [Ru(L)2(p-tFMPIP)](ClO4)2 (L = bpy, 1; phen, 2; p-tFMPIP = 2-(4-(trifluoromethyphenyl)-1H-imidazo[4,5f][1,10] phenanthroline)), were prepared by microwave-assisted synthesis technology. The inhibitory activity evaluated by MTT assay shown that 2 can inhibit the growth of MDA-MB-231 cells with inhibitory activity (IC50) of 16.3 μM, which was related to the induction of apoptosis. Besides, 2 exhibit low toxicity against normal HAcat cells. The inhibitory growth activity of both complexes related to the induction of apoptosis was also confirmed. Furthermore, the studies on the interaction of both complexes with c-myc G4 DNA shown that 1 and 2 can stabilize the conformation of c-myc G4 DNA in groove binding mode, which has been rational explained by using DFT theoretical calculation methods. In a word, this type of ruthenium(II) complexes can act as potential apoptosis inducers with low toxicity in clinic by stabilizing c-myc G4 DNA.

  6. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    Science.gov (United States)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  7. Regulating infidelity: RNA-mediated recruitment of AID to DNA during class switch recombination.

    Science.gov (United States)

    DiMenna, Lauren J; Chaudhuri, Jayanta

    2016-03-01

    The mechanism by which the DNA deaminase activation-induced cytidine deaminase (AID) is specifically recruited to repetitive switch region DNA during class switch recombination is still poorly understood. Work over the past decade has revealed a strong link between transcription and RNA polymerase-associated factors in AID recruitment, yet none of these processes satisfactorily explain how AID specificity is affected. Here, we review a recent finding wherein AID is guided to switch regions not by a protein factor but by an RNA moiety, and especially one associated with a noncoding RNA that has been long thought of as being inert. This work explains the long-standing requirement of splicing of noncoding transcripts during class switching, and has implications in both B cell-mediated immunity as well as the underlying pathological syndromes associated with the recombination reaction.

  8. Peroxiredoxin I and II in human eyes: cellular distribution and association with pterygium and DNA damage.

    Science.gov (United States)

    Klebe, Sonja; Callahan, Thomas; Power, John H T

    2014-01-01

    Peroxiredoxin I and II are both 2-Cys members of the peroxiredoxin family of antioxidant enzymes and inactivate hydrogen peroxide. On western blotting, both enzymes appeared as 22-kD proteins and were present in the sclera, retina and iris. Immunohistochemistry showed strong cytoplasmic labeling in the basal cells of the corneal epithelial layer and the corneoscleral limbus. The melanocytes within the stroma of the iris and the anterior epithelial cells of the lens also showed strong cytoplasmic labeling. The fibrous structure of the stroma and the posterior surface of the ciliary body were also labeled. There was also strong labeling for both enzymes in the photoreceptors and the inner and outer plexiform layers of the retina. There was increased labeling of peroxiredoxin I and II in pterygium. In normal conjunctiva and cornea, only the basal cell layer showed labeling for peroxiredoxin I and II, whereas, in pterygia, there was strong cytoplasmic labeling in most cells involving the full thickness of the epithelium. Co-localization of the DNA oxidation product 8-hydroxy-2'-deoxyguanosine antibody with the nuclear dye 4',6'-diamidino-2-phenylindole dihydrochloride indicated that the majority of the oxidative damage was cytoplasmic; this suggested that the mitochondrial DNA was most affected by the UV radiation in this condition.

  9. HBP1-Mediated Transcriptional Regulation of DNA Methyltransferase 1 and Its Impact on Cell Senescence

    Science.gov (United States)

    Pan, Kewu; Chen, Yifan; Roth, Mendel; Wang, Weibin; Wang, Shuya; Yee, Amy S.

    2013-01-01

    The activity of DNA methyltransferase 1 (DNMT1) is associated with diverse biological activities, including cell proliferation, senescence, and cancer development. In this study, we demonstrated that the HMG box-containing protein 1 (HBP1) transcription factor is a new repressor of DNMT1 in a complex mechanism during senescence. The DNMT1 gene contains an HBP1-binding site at bp −115 to −134 from the transcriptional start site. HBP1 repressed the endogenous DNMT1 gene through sequence-specific binding, resulting in both gene-specific (e.g., p16INK4) and global DNA hypomethylation changes. The HBP1-mediated repression by DNMT1 contributed to replicative and premature senescence, the latter of which could be induced by Ras and HBP1 itself. A detailed investigation unexpectedly revealed that HBP1 has dual and complex transcriptional functions, both of which contribute to premature senescence. HBP1 both repressed the DNMT1 gene and activated the p16 gene in premature senescence. The opposite transcriptional functions proceeded through different DNA sequences and differential protein acetylation. While intricate, the reciprocal partnership between HBP1 and DNMT1 has exceptional importance, since its abrogation compromises senescence and promotes tumorigenesis. Together, our results suggest that the HBP1 transcription factor orchestrates a complex regulation of key genes during cellular senescence, with an impact on overall DNA methylation state. PMID:23249948

  10. Establishing a Gene Trap System Mediated by T-DNA(GUS) in Rice

    Institute of Scientific and Technical Information of China (English)

    Shi-Yan Chen; Ai-Min Wang; Wei Li; Zong-Yang Wang; Xiu-Ling Cai

    2008-01-01

    Two plasmids, p13GUS and p13GUS2, were constructed to create a gene trap system containing the promoterless β-glucuronidase (GUS) reporter gene in the T-DNA region. Transformation of these two plasmids into the rice variety Zhonghua 11 (Oryza sativa ssp. japonica cv.), mediated by Agrobacterium tumefaciens, resulted in 942 independent transgenic lines. Histochemical GUS assays revealed that 31 To plants had various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. Hygromycin-resistant (hygr) homozygotes were screened and the copy number of the T-DNA inserts was determined in the GUS-positivs transgenic plants. The flanking sequences of the T-DNA were isolated by inverse-polymerase chain reaction and the insert positions on the rice genome of T-DNA were determined by a basic local alignment search tool in the GUS-positive transgenic plants transformed with plasmid p13GUS. Moreover, calii induced from the seeds of the T1 generation of 911 GUS-negative transgenic lines were subjected to stress and hormone treatments. Histochemical GUS assays were carried out on the calli before and after treatment. The results revealed that calli from 21 lines displayed differential GUS expression after treatment. All of these data demonstrated that this trap system is suitable for identifying rice genes, including those that are sensitive to induction.

  11. Transcription activator-like effector nucleases (TALEN-mediated targeted DNA Insertion in potato plants

    Directory of Open Access Journals (Sweden)

    Adrienne Forsyth

    2016-10-01

    Full Text Available Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. Specifically integrated transgenes are guaranteed to co-segregate, and expression level is more predictable, which makes downstream characterization and line selection more manageable. Because the site of DNA integration is known, the steps to deregulation of transgenic crops may be simplified. Here we describe a method that combines TALEN-mediated induction of double strand breaks (DSBs and non-autonomous marker selection to insert a transgene into a pre-selected, transcriptionally active region in the potato genome. In our experiment, TALEN was designed to create a DSB in the genome sequence following an endogenous constitutive promoter. A cytokinin vector was utilized for TALENs expression and prevention of stable integration of the nucleases. The donor vector contained a gene of interest cassette and a promoter-less plant-derived herbicide resistant gene positioned near the T-DNA left border which was used to select desired transgenic events. Our results indicated that TALEN induced T-DNA integration occurred with high frequency and resulting events have consistent expression of the gene of interest. Interestingly, it was found that, in most lines integration took place through one sided homology directed repair despite the minimal homologous sequence at the right border. An efficient transient assay for TALEN activity verification is also described.

  12. Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants.

    Science.gov (United States)

    Forsyth, Adrienne; Weeks, Troy; Richael, Craig; Duan, Hui

    2016-01-01

    Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. Specifically integrated transgenes are guaranteed to co-segregate, and expression level is more predictable, which makes downstream characterization and line selection more manageable. Because the site of DNA integration is known, the steps to deregulation of transgenic crops may be simplified. Here we describe a method that combines transcription activator-like effector nuclease (TALEN)-mediated induction of double strand breaks (DSBs) and non-autonomous marker selection to insert a transgene into a pre-selected, transcriptionally active region in the potato genome. In our experiment, TALEN was designed to create a DSB in the genome sequence following an endogenous constitutive promoter. A cytokinin vector was utilized for TALENs expression and prevention of stable integration of the nucleases. The donor vector contained a gene of interest cassette and a promoter-less plant-derived herbicide resistant gene positioned near the T-DNA left border which was used to select desired transgenic events. Our results indicated that TALEN induced T-DNA integration occurred with high frequency and resulting events have consistent expression of the gene of interest. Interestingly, it was found that, in most lines integration took place through one sided homology directed repair despite the minimal homologous sequence at the right border. An efficient transient assay for TALEN activity verification is also described.

  13. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder.

    Science.gov (United States)

    Peng, Zhenling; Kurgan, Lukasz

    2015-10-15

    Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We report first-of-its-kind computational method DisoRDPbind for high-throughput prediction of RNA, DNA and protein binding residues located in IDRs from protein sequences. DisoRDPbind is implemented using a runtime-efficient multi-layered design that utilizes information extracted from physiochemical properties of amino acids, sequence complexity, putative secondary structure and disorder and sequence alignment. Empirical tests demonstrate that it provides accurate predictions that are competitive with other predictors of disorder-mediated protein binding regions and complementary to the methods that predict RNA- and DNA-binding residues annotated based on crystal structures. Application in Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila melanogaster proteomes reveals that RNA- and DNA-binding proteins predicted by DisoRDPbind complement and overlap with the corresponding known binding proteins collected from several sources. Also, the number of the putative protein-binding regions predicted with DisoRDPbind correlates with the promiscuity of proteins in the corresponding protein-protein interaction networks. Webserver: http://biomine.ece.ualberta.ca/DisoRDPbind/.

  14. Characterisation of the interactions between substrate, copper(II) complex and DNA and their role in rate acceleration in DNA-based asymmetric catalysis.

    Science.gov (United States)

    Draksharapu, Apparao; Boersma, Arnold J; Browne, Wesley R; Roelfes, Gerard

    2015-02-28

    Interactions of the azachalcone derived substrate Aza with copper(II) complexes in the presence and absence of st-DNA were studied in detail by UV/Vis absorption, EPR and Raman and (UV and vis) resonance Raman spectroscopies. The binding of Aza to the Lewis acidic copper(II) complexes, which results in activation of the substrate, was established spectroscopically. It was shown that the binding of Aza differs between Cu(II)dmbpy and Cu(II)terpy, consistent with the observed differences in catalytic asymmetric Diels-Alder reactions with regard to both the rate and enantiomeric preference. Finally, it was shown that DNA has a major beneficial effect on the binding of Aza to the copper(II) complex due to the fact that both bind to the DNA. The result is a high effective molarity of both the copper complexes and the Aza substrate, which leads to a significant increase in binding of Aza to the copper(II) complex. This effect is a key reason for the observed rate acceleration in the catalyzed reactions brought about by the presence of DNA.

  15. The enzyme-amplified amperometric DNA sensor using an electrodeposited polymer redox mediator

    Institute of Scientific and Technical Information of China (English)

    ZHANG LanYong; WAN Ying; ZHANG Jiong; LI Di; WANG LiHua; SONG ShiPing; FAN ChunHai

    2009-01-01

    A highly sensitive method for the detection of a breast cancer-associated BRCA-1 gene is reported. The detection is based on a classical sandwich-type assay using horseradish peroxidase (HRP) as a cata-lytic label and electrodeposited Os2+/3+ conducting polymer (PAA-PVi-Os) as a redox mediator. Target DNA could be detected by the HRP-catalyzed reduction of H2O2, leading to a limit of detection as low as 10 fM.

  16. Discrimination of Arcobacter butzleri isolates by polymerase chain reaction-mediated DNA fingerprinting

    DEFF Research Database (Denmark)

    Atabay, H. I.; Bang, Dang Duong; Aydin, F.

    2002-01-01

    Aims: The objective of this study was to subtype Arcobacter butzleri isolates using RAPD-PCR. Methods and Results: Thirty-five A. butzleri isolates obtained from chicken carcasses were examined. PCR-mediated DNA fingerprinting technique with primers of the variable sequence motifs was used...... found to be contaminated with several different strains of A. butzleri . RAPD-PCR technique was found to be a useful technique for distinguishing A. butzleri isolates. Significance and Impact of the Study: The presence of several different A. butzleri strains on chicken carcasses may indicate multiple...

  17. Sophoridinol derivative 05D induces tumor cells apoptosis by topoisomerase1-mediated DNA breakage

    Directory of Open Access Journals (Sweden)

    Zhao W

    2016-05-01

    Full Text Available Wuli Zhao, Caixia Zhang, Chongwen Bi, Cheng Ye, Danqing Song, Xiujun Liu, Rongguang Shao Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Abstract: Sophoridine is a quinolizidine natural product of Sophora alopecuroides and has been applied for treatment of malignant trophoblastic tumors. Although characterized by low toxicity, the limited-spectrum antitumor activity hinders its further applications. 05D, a derivative of sophoridine, exhibits a better anticancer activity on diverse cancer cells, including solid tumors, and hematologic malignancy. It could inhibit topoisomerase 1 (top1 activity by stabilizing DNA–top1 complex and induce mitochondria-mediated apoptosis by promoting DNA single- and double-strand breakage mediated by top1. Also, 05D induced HCT116 cells arrest at G1 phase by inactivating CDK2/CDK4–Rb–E2F and cyclinD1–CDK4–p21 checkpoint signal pathways. 05D suppressed the ataxia telangiectasia mutated (ATM and ATM and Rad3-related (ATR activation and decreased 53BP level, which contributed to DNA damage repair, suggesting that the novel compound 05D might be helpful to improve the antitumor activity of DNA damaging agent by repressing ATM and ATR activation and 53BP level. In addition, the priorities in molecular traits and druggability, such as a simple structure and formulation for oral administration, further prove 05D to be a promising targeting topoisomerase agent. Keywords: topoisomerase inhibitor, topoisomerase 1, DNA breakage, sophoridinol, anticancer, apoptosis, cell cycle

  18. Using Temperature-Sensitive Smart Polymers to Regulate DNA-mediated Nanoassembly

    Science.gov (United States)

    Hamner, Kristen L.

    Nanoparticle (NP) self-assembly has been proven as an effective route to organize nanoscale building blocks into ordered structures for potential technological applications. In order to successfully exploit the self-assembly processes a high level of direction and control is required. In my dissertation research, I synthesized a temperature responsive copolymer (p) to modify gold nanoparticles (AuNP) for controlling self-assembly. The copolymers' ability to regulate DNA-mediated NP self-assembly is a particular focus. In Chapter 2, the results show that by the addition of the p to create thermally responsive NP interfaces allows for controlled aggregation behavior and interparticle distances defined by the transition temperature (TC) of the p, to aid in NP assembly and help to regulate DNA-mediated interactions between NP. The work in Chapter 3 revealed that the reconfigurable conformation of the p sterically regulates the assembly: at T TC, assembly was observed, due the hydrophobic collapse of the p and the subsequent exposure of the complementary DNA bases. In Chapter 4, to gain insight into the mechanism, the rate of assembly was monitored, with DNA lengths that had hydrodynamic diameters more comparable to that of the p, and found the p was capable of slowing the kinetics. I further investigated to find that the addition of p extended the interparticle distances while disrupting the long range ordering. Finally, how the temperature responsive behavior of the p acted on the interparticle distances was probed, and it was found that without p, the interparticle distances expanded, while the addition of p compressed the interparticle distances.

  19. Novel and Efficient Chromium(II)-Mediated Desulfonylation of α-Sulfonyl Ketone.

    Science.gov (United States)

    Inanaga, Kazato; Fukuyama, Takashi; Kubota, Manabu; Komatsu, Yuki; Chiba, Hiroyuki; Kayano, Akio; Tagami, Katsuya

    2015-06-19

    A novel and efficient method for the Cr(II)-mediated desulfonylation of α-sulfonyl ketone by a Cr-ligand-Mn system has been developed during the course of process research on Halaven (eribulin mesylate). This reaction is dramatically accelerated in the presence of an appropriate bipyridyl-type ligand. This system is applicable to reduction of α-sulfur-substituted ketones. In addition, a Cr-Cp2ZrCl2-Mn catalytic system is also applicable to desulfonylation of α-sulfonyl ketone.

  20. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals.

    Science.gov (United States)

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-12-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal-semiconductor nano-heterostructures.

  1. Bcl10 mediates angiotensin II-induced cardiac damage and electrical remodeling.

    Science.gov (United States)

    Markó, Lajos; Henke, Norbert; Park, Joon-Keun; Spallek, Bastian; Qadri, Fatimunnisa; Balogh, András; Apel, Ingrid J; Oravecz-Wilson, Katherine I; Choi, Mira; Przybyl, Lukasz; Binger, Katrina J; Haase, Nadine; Wilck, Nicola; Heuser, Arnd; Fokuhl, Verena; Ruland, Jürgen; Lucas, Peter C; McAllister-Lucas, Linda M; Luft, Friedrich C; Dechend, Ralf; Müller, Dominik N

    2014-11-01

    Angiotensin (Ang) II is a potent mediator of both hypertension and cardiac damage; however, the mechanisms by which this occur remain unclear. B-cell lymphoma/leukemia 10 (Bcl10) is a member of the CBM signalosome, which links Ang II and nuclear factor-κB signaling. We hypothesized that Bcl10 is pivotal in the pathogenesis of Ang II-induced cardiac damage. Ang II infusion in mice lacking Bcl10 resulted in reduced cardiac fibrosis, less cellular infiltration, and improved arrhythmogenic electric remodeling, despite a similar degree of hypertension or cardiac hypertrophy. Adoptive transfer of bone marrow (BM), whereby Bcl10 knockout or wildtype BM was transferred to their opposite genotype recipients, revealed the dual importance of Bcl10 within both cardiac and immune cells. Loss of Bcl10 in cardiac cells resulted in reduced expression of genes important for the adhesion and recruitment of immune cells. In vitro experiments demonstrated that adhesion of monocytes to Ang II-treated endothelial cells also required Bcl10. Additionally, Bcl10 deficiency in macrophages reduced their intrinsic migratory ability. To address the role of BM-derived fibroblasts in the formation of cardiac fibrosis, we explored whether Bcl10 is also important for the infiltration of BM-derived (myo)fibroblasts into the heart. The transfer of green fluorescent protein positive wildtype BM into Bcl10 knockout recipient mice revealed a reduced number of noncardiac (myo)fibroblasts compared with those wildtype recipients. Our results demonstrate the significant role of Bcl10 in multiple cell types important for the generation of Ang II-induced cardiac damage and electric remodeling and may provide a new avenue for therapeutic intervention.

  2. DNA damage and repair kinetics of the Alternaria mycotoxins alternariol, altertoxin II and stemphyltoxin III in cultured cells.

    Science.gov (United States)

    Fleck, Stefanie C; Sauter, Friederike; Pfeiffer, Erika; Metzler, Manfred; Hartwig, Andrea; Köberle, Beate

    2016-03-01

    The Alternaria mycotoxins alternariol (AOH) and altertoxin II (ATX II) have previously been shown to elicit mutagenic and genotoxic effects in bacterial and mammalian cells, although with vastly different activities. For example, ATX II was about 50 times more mutagenic than AOH. We now report that stemphyltoxin III (STTX III) is also highly mutagenic. The more pronounced effects of the perylene quinones ATX II and STTX III at lower concentrations compared to the dibenzo-α-pyrone AOH indicate a marked dependence of the genotoxic potential on the chemical structure and furthermore suggest that the underlying modes of action may be different. We have now further investigated the type of DNA damage induced by AOH, ATX II and STTX III, as well as the repair kinetics and their dependence on the status of nucleotide excision repair (NER). DNA double strand breaks induced by AOH due to poisoning of topoisomerase IIα were completely repaired in less than 2h. Under cell-free conditions, inhibition of topoisomerase IIα could also be measured for ATX II and STTX III at low concentrations, but the perylene quinones were catalytic inhibitors rather than topoisomerase poisons and did not induce DSBs. DNA strand breaks induced by ATX II and STTX III were more persistent and not completely repaired within 24h. A dependence of the repair rate on the NER status could only be demonstrated for STTX III, resulting in an accumulation of DNA damage in NER-deficient cells. Together with the finding that the DNA glycosylase formamidopyrimidine-DNA glycosylase (Fpg), but not T4 endonuclease V, is able to generate additional DNA strand breaks measurable by the alkaline unwinding assay, we conclude that the genotoxicity of the perylene quinones with an epoxide group is probably caused by the formation of DNA adducts which may be converted to Fpg sensitive sites.

  3. DNA interaction studies of a novel Cu(II) complex as an intercalator containing curcumin and bathophenanthroline ligands.

    Science.gov (United States)

    Shahabadi, Nahid; Falsafi, Monireh; Moghadam, Neda Hosseinpour

    2013-05-05

    A new copper(II) complex; [Cu(Cur)(DIP)](+2) in which Cur=curcumin and DIP=4,7-diphenyl-1,10-phenanthroline, was synthesized and characterized using different physico-chemical methods. Binding interaction of this complex with calf thymus (CT-DNA) has been investigated by emission, absorption, circular dichroism, viscosity, and differential pulse voltammetry and fluorescence techniques. The complex displays significant binding properties to the CT-DNA. In fluorimeteric studies, the binding mode of the complex with CT-DNA was investigated using methylene blue as a fluorescence probe. Fluorescence of methylene blue-DNA solution increased in the presence of increasing amounts of the complex. It was found that the complex is able to displace the methylene blue completely. This indicate intercalation of the complex between base pairs of DNA. The cleavage of plasmid DNA by the complex was also studied. We found that the copper(II) complex can cleave puC18 DNA. Furthermore, mentioned complex induces detectable changes in the CD spectrum of CT-DNA, a decrease in absorption spectrum, and an increase in its viscosity. All of the experimental results showed that the Cu(II) complex bound to DNA by an intercalative mode of binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Phaeophytins from Thyrsacanthus ramosissimus Moric. with inhibitory activity on human DNA topoisomerase II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Analucia Guedes Silveira; Tenorio-Souza, Fabio Henrique; Moura, Marcelo Dantas; Mota, Sabrina Gondim Ribeiro; Silva Lins, Antonio Claudio da; Dias, Celidarque da Silva; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Ciencias Frmaceuticas; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas; Silva, Tania Maria Sarmento da [Universidade Federal Rural de Pernambuco, Recife, PE (Brazil). Dept. de Ciencias Moleculares; Santos, Creusioni Figueredo dos, E-mail: jbarbosa@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2012-07-01

    Our study reports the extraction and isolation of a new phaeophytin derivative 15{sup 1}-hydroxy-(15{sup 1}-S)-porphyrinolactone, designated anamariaine (1) herein, isolated from the chloroform fraction of aerial parts of Thyrsacanthus ramosissimus Moric. along with the known 15{sup 1}-ethoxy-(15{sup 1}-S)-porphyrinolactone (2). These compounds were identified by usual spectroscopic methods. Both compounds were subjected to in vitro (inhibitory activity) tests by means of supercoiled DNA relaxation techniques and were shown to display inhibitory activity against human DNA topoisomerase II-{alpha} at 50 {mu}M. Interconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely but cannot be entirely ruled out. (author)

  5. PvuII RFLP detected by a human. beta. ADH cDNA probe

    Energy Technology Data Exchange (ETDEWEB)

    Parsian, A.; Burgess, A.K.; Khan, M.A.; Devor, E.J. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1989-12-11

    A 0.97 kb cDNA (ADH12) fragment encoding human exons 7, 8, 9 of the ADH{sub 2} gene was isolated from an adult human liver cDNA library. The insert can be excised by Pst I digestion. Pvu II identifies a two-allele polymorphism with bands at 4.4 kb (A{sub 1}) and 3.0 kb (A{sub 2}) and invariant bands at 5.1, 4.0, 2.8, and 2.3 kb. It was localized on Chromosome 4q21-q25 by in situ hybridization. Co-dominant segregation was observed in 18 informative families.

  6. Interaction of dinuclear cadmium(II) 5-Cl-salicylaldehyde complexes with calf-thymus DNA.

    Science.gov (United States)

    Ristovic, Maja Sumar; Zianna, Ariadni; Psomas, George; Hatzidimitriou, Antonios G; Coutouli-Argyropoulou, Evdoxia; Lalia-Kantouri, Maria

    2016-04-01

    Five dinuclear Cd(II) complexes with the anion of 5-Cl-salicylaldehyde (5-Cl-saloH) were synthesized in the absence or presence of the α-diimines: 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neoc) or 2,2'-dipyridylamine (dpamH) and characterized as [Cd(5-Cl-salo)2(CH3OH)]2 (1), [Cd(5-Cl-salo)2(bipy)]2 (2), [Cd(5-Cl-salo)2(phen)]2 (3), [Cd(5-Cl-salo)(neoc)(ONO2)]2 (4) and [Cd(5-Cl-salo)(dpamΗ)(ONO2)]2 (5). The complexes were characterized by spectroscopic techniques (IR, UV-vis, (1)H-NMR and (13)C-NMR), elemental analysis and molar conductivity measurements. The structures of four complexes (1-3 and 5) were determined by X-ray crystallography, providing all three possible coordination modes of the ligand 5-Cl-salicylaldehyde, i.e. bidentate or tridentate chelating and/or bridging mode. The complexes bind to calf-thymus (CT) DNA mainly by intercalation, as concluded by the viscosity measurements and present relatively high DNA-binding constants. The complexes exhibit significant ability to displace ethidium bromide (EB) from the EB-DNA complex, thus indirectly proving the intercalation as the most possible binding mode to CT DNA.

  7. Synthesis, characterization, DNA binding, cleavage activity and cytotoxicity of copper(II) complexes.

    Science.gov (United States)

    Li, Mei-Jin; Lan, Tao-Yu; Cao, Xiu-Hui; Yang, Huang-Hao; Shi, Yupeng; Yi, Changqing; Chen, Guo-Nan

    2014-02-21

    Three new mononuclear copper(II) complexes, [Cu(L2)](2+) (1), [Cu(acac)(L)](+) (2), and [Cu(acac-Cl)(L)](+) (3) (L = 2-(4-pyridine)oxazo[4,5-f]1,10-phenanthroline (4-PDOP); acac = acetylacetone; acac-Cl = 3-chloroacetylacetone), have been synthesized and characterized by elemental analysis, high resolution mass spectrometry (Q-TOF), and IR spectroscopy. Two of the complexes were structurally characterized by single-crystal X-ray diffraction techniques. Their interactions with DNA were studied by UV-vis absorption and emission spectra, viscosity, thermal melting, DNA unwinding assay and CD spectroscopy. The nucleolytic cleavage activity of the compounds was carried out on double stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment in the presence and absence of an oxidant (H2O2). Active oxygen intermediates such as hydroxyl radicals and hydrogen peroxide generated in the presence of L and complexes 1-3 may act as active species for the DNA scission. The cytotoxicity of the complexes against HepG2 cancer cells was also studied.

  8. Cytotoxicity and DNA interactions of some platinum(II) complexes with substituted benzimidazole ligands.

    Science.gov (United States)

    Ozçelik, Azime Berna; Utku, Semra; Gümüş, Fatma; Keskin, Ayten Çelebi; Açık, Leyla; Yılmaz, Sükran; Ozgüngör, Adeviye

    2012-06-01

    In the present study, four Pt(II) complexes with 2-ethyl (1)/or benzyl (2)/or p-chlorobenzyl (3)/or 2-phenoxymethyl (4) benzimidazole carrier ligands were evaluated for their in vitro cytotoxic activities against the human HeLa cervix, oestrogen receptor-positive MCF-7 breast, and oestrogen receptor-negative MDA-MB 231 breast cancer cell lines. The plasmid DNA interactions and inhibition of the BamHI restriction enzyme activities of the complexes were also studied. Complex 3 was found to be more active than carboplatin for all examined cell lines and comparable with cisplatin, except for the HeLa cell line.

  9. DNA polymorphism of HLA class II genes in primary biliary cirrhosis

    DEFF Research Database (Denmark)

    Morling, Niels; Dalhoff, K; Fugger, L;

    1992-01-01

    We investigated the DNA restriction fragment length polymorphism of the major histocompatibility complex class II genes: HLA-DRB, -DQA, -DQB, DPA, -DPB, the serologically defined HLA-A, B, C, DR antigens, and the primed lymphocyte typing defined HLA-DP antigens in 23 Danish patients with primary......) associated DRB Bgl II 9.1 kilobase (kb) fragment (RR = 2.9; P less than 0.05, 'corrected' P greater than 0.05), the DQA1*0501 associated DQA Taq I 4.8 kb fragment (RR = 3.1; P less than 0.05, 'corrected' P greater than 0.05), the DQB1*0201 (DQw2) associated DQB Hin dIII 11.5 kb fragment (RR = 3.1; P less...

  10. A fast DNA sequence handling program for Apple II computer in BASIC and 6502 assembler.

    Science.gov (United States)

    Paolella, G

    1985-01-01

    A fast general purpose DNA handling program has been developed in BASIC and machine language. The program runs on the Apple II plus or on the Apple IIe microcomputer, without additional hardware except for disk drives and printer. The program allows file insertion and editing, translation into protein sequence, reverse translation, search for small strings and restriction enzyme sites. The homology may be shown either as a comparison of two sequences or through a matrix on screen. Two additional features are: (i) drawing restriction site maps on the printer; and (ii) simulating a gel electrophoresis of restriction fragments both on screen and on paper. All the operations are very fast. The more common tasks are carried out almost instantly; only more complex routines, like finding homology between large sequences or searching and sorting all the restriction sites in a long sequence require longer, but still quite acceptable, times (generally under 30 s).

  11. The role of the Zn(II binding domain in the mechanism of E. coli DNA topoisomerase I

    Directory of Open Access Journals (Sweden)

    Tse-Dinh Yuk-Ching

    2002-05-01

    Full Text Available Abstract Background Escherichia coli DNA topoisomerase I binds three Zn(II with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain. The 67 kDa N-terminal domain (Top67 has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. Results Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. Conclusions We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.

  12. Synthesis, Spectral Characterization, DNA/ Protein Binding, DNA Cleavage, Cytotoxicity, Antioxidative and Molecular Docking Studies of Cu(II)Complexes Containing Schiff Base-bpy/Phen Ligands.

    Science.gov (United States)

    Anupama, Berelli; Aruna, Airva; Manga, Vijjulatha; Sivan, Sreekanth; Sagar, Madamsetty Vijay; Chandrashekar, Ravula

    2017-05-01

    Ternary Cu(II) complexes [Cu(II)(L)(bpy)Cl] 1, [Cu(II)(L)(Phen)Cl] 2 [L = 2,3-dimethyl-1-phenyl-4(2 hydroxy-5-methyl benzylideneamino)-pyrazol-5-one, bpy = 2,2(') bipyridine, phen =1,10 phenanthroline) were synthesized and characterized by elemental analyses, UV-Visible, FT-IR, ESR, Mass, thermogravimetric and SEM EDAX techniques. The complexes exhibit octahedral geometry. The interaction of the Cu(II) with cailf thymus DNA (CT-DNA) was explored by using absorption and fluorescence spectroscopic methods. The results revealed that the complexes have an affinity constant for DNA in the order of 10(4) M(-1) and mode of interaction is intercalative mode. The DNA cleavage study showed that the complexes cleaved DNA without any external agent. The interaction of Cu(II) complexes with bovine serum albumin (BSA) was also studied using absorption and fluorescence techniques. The cytotoxic activity of the Cu(II) complexes was probed in HeLa (human breast adenocarcinoma cell line), B16F10 (Murine melanoma cell line) and HEPA1-6 celllines, complex 1 has good cytotoxic activity which is comparable with the doxarubicin drug, with IC50 values ranging from 3 to 12.6 μM. A further molecular docking technique was employed to understand the binding of the complexes towards the molecular target DNA. Investigation of the antioxidative properties showed that the metal complexes have significant radical scavenging activity potency against DPPH radical.

  13. Cobalt(III), nickel(II) and ruthenium(II) complexes of 1,10-phenanthroline family of ligands: DNA binding and photocleavage studies

    Indian Academy of Sciences (India)

    S Arounaguiri; D Easwaramoorthy; A Ashokkumar; Aparna Dattagupta; Bhaskar G Maiya

    2000-02-01

    DNA binding and photocleavage characteristics of a series of mixedligand complexes of the type [M(phen)2LL]n+ (where M = Co(III), Ni(II) or Ru(II), LL = 1,10-phenanthroline (phen), phenanthroline-dione (phen-dione) or dipyridophenazine (dppz) and = 3 or 2) have been investigated in detail. Various physico-chemical and biochemical techniques including UV/Visible, fluorescence and viscometric titration, thermal denaturation, and differential pulse voltammetry have been employed to probe the details of DNA binding by these complexes; intrinsic binding constants () have been estimated under a similar set of experimental conditions. Analysis of the results suggests that intercalative ability of the coordinated ligands varies as dppz > phen < phen-dione in this series of complexes. While the Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled pBR 322 DNA, the corresponding Ni(II) complexes are found to be inactive under similar experimental conditions. Results of detailed investigations carried out inquiring into the mechanistic aspects of DNA photocleavage by [Co(phen)2 (dppz)]3+ have also been reported.

  14. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia

    Science.gov (United States)

    Zhang, Yanming; Strissel, Pamela; Strick, Reiner; Chen, Jianjun; Nucifora, Giuseppina; Le Beau, Michelle M.; Larson, Richard A.; Rowley, Janet D.

    2002-01-01

    The translocation t(8;21)(q22;q22) is one of the most frequent chromosome translocations in acute myeloid leukemia (AML). AML1/RUNX1 at 21q22 is involved in t(8;21), t(3;21), and t(16;21) in de novo and therapy-related AML and myelodysplastic syndrome as well as in t(12;21) in childhood B cell acute lymphoblastic leukemia. Although DNA breakpoints in AML1 and ETO (at 8q22) cluster in a few introns, the mechanisms of DNA recombination resulting in t(8;21) are unknown. The correlation of specific chromatin structural elements, i.e., topoisomerase II (topo II) DNA cleavage sites, DNase I hypersensitive sites, and scaffold-associated regions, which have been implicated in chromosome recombination with genomic DNA breakpoints in AML1 and ETO in t(8;21) is unknown. The breakpoints in AML1 and ETO were clustered in the Kasumi 1 cell line and in 31 leukemia patients with t(8;21); all except one had de novo AML. Sequencing of the breakpoint junctions revealed no common DNA motif; however, deletions, duplications, microhomologies, and nontemplate DNA were found. Ten in vivo topo II DNA cleavage sites were mapped in AML1, including three in intron 5 and seven in intron 7a, and two were in intron 1b of ETO. All strong topo II sites colocalized with DNase I hypersensitive sites and thus represent open chromatin regions. These sites correlated with genomic DNA breakpoints in both AML1 and ETO, thus implicating them in the de novo 8;21 translocation. PMID:11867721

  15. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  16. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    Science.gov (United States)

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  17. NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis.

    Science.gov (United States)

    Wu, Y C; Stanfield, G M; Horvitz, H R

    2000-03-01

    One hallmark of apoptosis is the degradation of chromosomal DNA. We cloned the Caenorhabditis elegans gene nuc-1, which is involved in the degradation of the DNA of apoptotic cells, and found that nuc-1 encodes a homolog of mammalian DNase II. We used the TUNEL technique to assay DNA degradation in nuc-1 and other mutants defective in programmed cell death and discovered that TUNEL labels apoptotic cells only during a transient intermediate stage. Mutations in nuc-1 allowed the generation of TUNEL-reactive DNA but blocked the conversion of TUNEL-reactive DNA to a subsequent TUNEL-unreactive state. Completion of DNA degradation did not occur in the absence of cell-corpse engulfment. Our data suggest that the process of degradation of the DNA of a cell corpse occurs in at least three distinct steps and requires activities provided by both the dying and the engulfing cell.

  18. Interaction of dinuclear cadmium(II) 5-Cl-salicylaldehyde complexes with calf-thymus DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ristovic, Maja Sumar [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Faculty of Chemistry, University of Belgrade, Studenski Trg 12-16, Belgrade (Serbia); Zianna, Ariadni; Psomas, George; Hatzidimitriou, Antonios G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Coutouli-Argyropoulou, Evdoxia [Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Lalia-Kantouri, Maria, E-mail: lalia@chem.auth.gr [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2016-04-01

    Five dinuclear Cd(II) complexes with the anion of 5-Cl-salicylaldehyde (5-Cl-saloH) were synthesized in the absence or presence of the α-diimines: 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neoc) or 2,2′-dipyridylamine (dpamH) and characterized as [Cd(5-Cl-salo){sub 2}(CH{sub 3}OH)]{sub 2} (1), [Cd(5-Cl-salo){sub 2}(bipy)]{sub 2} (2), [Cd(5-Cl-salo){sub 2}(phen)]{sub 2} (3), [Cd(5-Cl-salo)(neoc)(ONO{sub 2})]{sub 2} (4) and [Cd(5-Cl-salo)(dpamΗ)(ONO{sub 2})]{sub 2} (5). The complexes were characterized by spectroscopic techniques (IR, UV‐vis, {sup 1}H-NMR and {sup 13}C–NMR), elemental analysis and molar conductivity measurements. The structures of four complexes (1–3 and 5) were determined by X-ray crystallography, providing all three possible coordination modes of the ligand 5-Cl-salicylaldehyde, i.e. bidentate or tridentate chelating and/or bridging mode. The complexes bind to calf-thymus (CT) DNA mainly by intercalation, as concluded by the viscosity measurements and present relatively high DNA-binding constants. The complexes exhibit significant ability to displace ethidium bromide (EB) from the EB-DNA complex, thus indirectly proving the intercalation as the most possible binding mode to CT DNA. - Graphical abstract: Cadmium complexes of the formulae [Cd(5-Cl-salo){sub 2}(CH{sub 3}OH)]{sub 2} and [Cd(5-Cl-salo){sub 2}(α-diimine)]{sub 2} or [Cd(5-Cl-salo)(α-diimine)(ONO{sub 2})]{sub 2} have been synthesized and characterized. The complexes bind tightly to CT DNA probably by intercalation competing with ethidium bromide for the intercalation site of DNA. - Highlights: • Synthesis of a series of dinuclear Cd complexes • The complexes characterized by diverse techniques. • The crystal structures of four complexes have been determined. • Intercalation is the most possible binding mode of the complexes to DNA. • The complexes compete with ethidium bromide for the DNA-intercalating sites.

  19. DNA interaction, antimicrobial, antioxidant and anticancer studies on Cu(II) complexes of Luotonin A.

    Science.gov (United States)

    Kesavan, M P; Vinoth Kumar, G G; Dhaveethu Raja, J; Anitha, K; Karthikeyan, S; Rajesh, J

    2017-02-01

    Luotonin A (L), a novel natural cytotoxic and anti-inflammatory alkaloid, chelated with copper(II) to improve its cytotoxic effect against the cancer cells. The complexes [Cu(L)H2OCl]Cl (1) and [Cu(L)2]Cl2 (2) are prepared by using copper(II) chloride and L with ligand/metal molar ratio of 1:1 and 2:1 respectively. A solution of complexes 1 &2 are characterized by physical spectroscopic methods using Ultraviolet-visible (UV-Vis) spectrophotometer, Fourier Transform-Infra red (FT-IR) spectroscopy, Electron Para magnetic Resonance Spectroscopy (EPR) and by electrochemical methods. The interaction of these complexes 1 &2 with calf thymus (CT-DNA) have been investigated by physical methods to propose the modes of DNA binding with the complexes 1 &2. Absorption spectral titration studies of complex 1 with CT-DNA shows a red-shift of 5nm with the DNA binding affinity of Kb, 8.65×10(3)M(-1), but complex 2does not show any red-shift with binding constant Kb, 7.32×10(3)M(-1) reveals that the complex 1 binding with DNA strongly than complex 2 and the binding occurs in between the base pairs of DNA as intercalation. Strong interactions of the two complexes 1 & 2 with CT-DNA have also been confirmed by fluorescence spectral titration studies. The evaluated values of KSV and Kass shows that, the complexes 1 &2 interact with DNA through the intercalation, coincide with other partial intercalators strongly than the free ligand L. Complex 1 exhibits potent antioxidant activity with SC50 value of 23.9±0.69μM is evaluated by DPPH radical scavenging assay and which has potent antimicrobial activity against pathogens than 2 and L. The anticancer activity of L, complexes 1 &2 against human breast cancer cell line (MCF-7) and cervical cancer cell line (HeLa) has also been studied by using fluorescence staining method. The IC50 values of L, complexes 1&2 against MCF-7 and HeLa cell lines with the incubation time intervals of 24hrs are 1 (5.0±0.25, 12.0±0.30μM)<2 (6.5±0.27, 15.0

  20. DNA intercalating Ru(II) polypyridyl complexes as effective photosensitizers in photodynamic therapy.

    Science.gov (United States)

    Mari, Cristina; Pierroz, Vanessa; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Spingler, Bernhard; Oehninger, Luciano; Schur, Julia; Ott, Ingo; Salassa, Luca; Ferrari, Stefano; Gasser, Gilles

    2014-10-27

    Six substitutionally inert [Ru(II) (bipy)2 dppz](2+) derivatives (bipy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) bearing different functional groups on the dppz ligand [NH2 (1), OMe (2), OAc (3), OH (4), CH2 OH (5), CH2 Cl (6)] were synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). As also confirmed by DFT calculations, all complexes showed promising (1) O2 production quantum yields, well comparable with PSs available on the market. They can also efficiently intercalate into the DNA double helix, which is of high interest in view of DNA targeting. The cellular localization and uptake quantification of 1-6 were assessed by confocal microscopy and high-resolution continuum source atomic absorption spectrometry. Compound 1, and especially 2, showed very good uptake in cervical cancer cells (HeLa) with preferential nuclear accumulation. None of the compounds studied was found to be cytotoxic in the dark on both HeLa cells and, interestingly, on noncancerous MRC-5 cells (IC50 >100 μM). However, 1 and 2 showed very promising behavior with an increment of about 150 and 42 times, respectively, in their cytotoxicities upon light illumination at 420 nm in addition to a very good human plasma stability. As anticipated, the preferential nuclear accumulation of 1 and 2 and their very high DNA binding affinity resulted in very efficient DNA photocleavage, suggesting a DNA-based mode of phototoxic action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: efficiency and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Nolte Ingo

    2011-10-01

    Full Text Available Abstract Background Reproducibly high transfection rates with low methodology-induced cytotoxic side effects are essential to attain the required effect on targeted cells when exogenous DNA is transfected. Different approaches and modifications such as the use of nanoparticles (NPs are being evaluated to increase transfection efficiencies. Several studies have focused on the attained transfection efficiency after NP-mediated approaches. However, data comparing toxicity of these novel approaches with conventional methods is still rare. Transfection efficiency and methodology-induced cytotoxicity were analysed after transfection with different NP-mediated and conventional approaches. Two eukaryotic DNA-expression-plasmids were used to transfect the mammalian cell line MTH53A applying six different transfection protocols: conventional transfection reagent (FuGENE HD, FHD, FHD in combination with two different sizes of stabilizer-free laser-generated AuNPs (PLAL-AuNPs_S1,_S2, FHD and commercially available AuNPs (Plano-AuNP, and two magnetic transfection protocols. 24 h post transfection efficiency of each protocol was analysed using fluorescence microscopy and GFP-based flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of propidium iodide (PI% positive cells. Expression of the respective recombinant proteins was evaluated by immunofluorescence. Results The addition of AuNPs to the transfection protocols significantly increased transfection efficiency in the pIRES-hrGFPII-eIL-12 transfections (FHD: 16%; AuNPs mean: 28%, whereas the magnet-assisted protocols did not increase efficiency. Ligand-free PLAL-AuNPs had no significant cytotoxic effect, while the ligand-stabilized Plano-AuNPs induced a significant increase in the PI% and lower cell proliferation. For pIRES-hrGFPII-rHMGB1 transfections significantly higher transfection efficiency was observed with PLAL-AuNPs (FHD: 31%; PLAL-AuNPs_S1: 46%; PLAL-AuNPs_S2: 50

  2. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions.

    Science.gov (United States)

    Callen, Elsa; Di Virgilio, Michela; Kruhlak, Michael J; Nieto-Soler, Maria; Wong, Nancy; Chen, Hua-Tang; Faryabi, Robert B; Polato, Federica; Santos, Margarida; Starnes, Linda M; Wesemann, Duane R; Lee, Ji-Eun; Tubbs, Anthony; Sleckman, Barry P; Daniel, Jeremy A; Ge, Kai; Alt, Frederick W; Fernandez-Capetillo, Oscar; Nussenzweig, Michel C; Nussenzweig, André

    2013-06-06

    The DNA damage response (DDR) protein 53BP1 protects DNA ends from excessive resection in G1, and thereby favors repair by nonhomologous end-joining (NHEJ) as opposed to homologous recombination (HR). During S phase, BRCA1 antagonizes 53BP1 to promote HR. The pro-NHEJ and antirecombinase functions of 53BP1 are mediated in part by RIF1, the only known factor that requires 53BP1 phosphorylation for its recruitment to double-strand breaks (DSBs). Here, we show that a 53BP1 phosphomutant, 53BP18A, comprising alanine substitutions of the eight most N-terminal S/TQ phosphorylation sites, mimics 53BP1 deficiency by restoring genome stability in BRCA1-deficient cells yet behaves like wild-type 53BP1 with respect to immunoglobulin class switch recombination (CSR). 53BP18A recruits RIF1 but fails to recruit the DDR protein PTIP to DSBs, and disruption of PTIP phenocopies 53BP18A. We conclude that 53BP1 promotes productive CSR and suppresses mutagenic DNA repair through distinct phosphodependent interactions with RIF1 and PTIP.

  3. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition.

    Science.gov (United States)

    Montini, Eugenio; Held, Patrice K; Noll, Meenakshi; Morcinek, Nicolas; Al-Dhalimy, Muhsen; Finegold, Milton; Yant, Stephen R; Kay, Mark A; Grompe, Markus

    2002-12-01

    Gene therapy applications of naked DNA constructs for genetic disorders have been limited because of lack of permanent transgene expression. This limitation, however, can be overcome by the Sleeping Beauty (SB) transposable element, which can achieve permanent transgene expression through genomic integration from plasmid DNA. To date, only one example of an in vivo gene therapy application of this system has been reported. In this report, we have further defined the activity of the SB transposon in vivo by analyzing the expression and integration of a fumarylacetoacetate hydrolase (FAH) transposon in FAH-deficient mice. In this model, stably corrected FAH(+) hepatocytes are clonally selected and stable integration events can therefore be quantified and characterized at the molecular level. Herein, we demonstrate that SB-transposon-transfected hepatocytes can support significant repopulation of the liver, resulting in long-lasting correction of the FAH-deficiency phenotype. A single, combined injection of an FAH-expressing transposon plasmid and a transposase expression construct resulted in stable FAH expression in approximately 1% of transfected hepatocytes. The average transposon copy number was determined to be approximately 1/diploid genome and expression was not silenced during serial transplantation. Molecular analysis indicated that high-efficiency DNA-mediated transposition into the mouse genome was strictly dependent on the expression of wild-type transposase.

  4. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    Science.gov (United States)

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  5. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage.

    Science.gov (United States)

    Lovely, Geoffrey A; Brewster, Robert C; Schatz, David G; Baltimore, David; Phillips, Rob

    2015-04-07

    The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. We have developed single-molecule assays to examine RSS binding by RAG1/2 and their cofactor high-mobility group-box protein 1 (HMGB1) as they proceed through the steps of this reaction. These assays allowed us to observe in real time the individual molecular events of RAG-mediated cleavage. As a result, we are able to measure the binding statistics (dwell times) and binding energies of the initial RAG binding events and characterize synapse formation at the single-molecule level, yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage on forming the synapse. Interestingly, we find that the synaptic complex has a mean lifetime of roughly 400 s and that its formation is readily reversible, with only ∼40% of observed synapses resulting in cleavage at consensus RSS binding sites.

  6. Inflammatory cytokines promote inducible nitric oxide synthase-mediated DNA damage in hamster gallbladder epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the link between chronic biliary inflammation and carcinogenesis using hamster gallbladder epithelial cells.METHODS: Gallbladder epithelial cells were isolated from hamsters and cultured with a mixture of inflammatory cytokines including interleukin-1β, interferon-γ, and tumor necrosis factor-α. Inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) generation, and DNA damage were evaluated.RESULTS: NO generation was increased significantly following cytokine stimulation, and suppressed by an iNOS inhibitor. iNOS mRNA expression was demonstrated in the gallbladder epithelial cells during exposure to inflammatory cytokines. Furthermore, NO-dependent DNA damage, estimated by the comet assay, was significantly increased by cytokines, and decreased to control levels by an iNOS inhibitor.CONCLUSION: Cytokine stimulation induced iNOS expression and NO generation in normal hamster gallbladder epithelial cells, which was sufficient to cause DNA damage. These results indicate that NO-mediated genotoxicity induced by inflammatory cytokines through activation of iNOS may be involved in the process of biliary carcinogenesis in response to chronic inflammation of the biliary tree.

  7. Detection of DNA damage induced by topoisomerase II inhibitors, gamma radiation and crosslinking agents using the comet assay.

    Science.gov (United States)

    Hazlehurst, Lori A

    2009-01-01

    The comet assay is a simple gel electrophoresis method for visualizing and quantifying DNA damage. The comet assay is sensitive and reproducible and can be used to detect single-strand DNA breaks, double-strand DNA breaks, protein-associated DNA strand breaks and DNA crosslinks. The comet assay uses fluorescent DNA-binding dyes to detect both damaged DNA that resides in the tail region and undamaged DNA that is retained in the head region following gel electrophoresis. This assay is a single cell-based assay and thus is highly adaptable for measuring DNA damage in clinical samples. Furthermore, unlike other assays the detection of DNA damage is not dependent on the random incorporation of radiolabeled nucleotides. Again this can be problematic with clinical samples as proliferation rates are often slow and culturing of primary patient specimens for 48 h required to randomly label DNA is often not possible. In this chapter we will outline the comet assay for the detection of DNA damage induced by topoisomerase II inhibitors, cross-linking agents and gamma radiation.

  8. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sallam, S.A., E-mail: shehabsallam@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt); Abbas, A.M. [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt)

    2013-04-15

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and {sup 1}H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift.

  9. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II.

    Directory of Open Access Journals (Sweden)

    Li Lin

    Full Text Available Angiotensin II (Ang II type 1 (AT1 receptor is known to mediate a variety of physiological actions of Ang II including autophagy. However, the role of AT1 receptor in cardiomyocyte autophagy triggered by mechanical stress still remains elusive. The aim of this study was therefore to examine whether and how AT1 receptor participates in cardiomyocyte autophagy induced by mechanical stresses. A 48-hour mechanical stretch and a 4-week transverse aorta constriction (TAC were imposed to cultured cardiomyocytes of neonatal rats and adult male C57B/L6 mice, respectively, to induce cardiomyocyte hypertrophy prior to the assessment of cardiomyocyte autophagy using LC3b-II. Losartan, an AT1 receptor blocker, but not PD123319, the AT2 inhibitor, was found to significantly reduce mechanical stretch-induced LC3b-II upregulation. Moreover, inhibition of p38MAP kinase attenuated not only mechanical stretch-induced cardiomyocyte hypertrophy but also autophagy. To the contrary, inhibition of ERK and JNK suppressed cardiac hypertrophy but not autophagy. Intriguingly, mechanical stretch-induced autophagy was significantly inhibited by Losartan in the absence of Ang II. Taken together, our results indicate that mechanical stress triggers cardiomyocyte autophagy through AT1 receptor-mediated activation of p38MAP kinase independently of Ang II.

  10. Altered catalytic activity of and DNA cleavage by DNA topoisomerase II from human leukemic cells selected for resistance to VM-26.

    Science.gov (United States)

    Danks, M K; Schmidt, C A; Cirtain, M C; Suttle, D P; Beck, W T

    1988-11-29

    The simultaneous development of resistance to the cytotoxic effects of several classes of natural product anticancer drugs, after exposure to only one of these agents, is referred to as multiple drug resistance (MDR). At least two distinct mechanisms for MDR have been postulated: that associated with P-glycoprotein and that thought to be due to an alteration in DNA topoisomerase II activity (at-MDR). We describe studies with two sublines of human leukemic CCRF-CEM cells approximately 50-fold resistant (CEM/VM-1) and approximately 140-fold resistant (CEM/VM-1-5) to VM-26, a drug known to interfere with DNA topoisomerase II activity. Each of these lines is cross-resistant to other drugs known to affect topoisomerase II but not cross-resistant to vinblastine, an inhibitor of mitotic spindle formation. We found little difference in the amount of immunoreactive DNA topoisomerase II in 1.0 M NaCl nuclear extracts of the two resistant and parental cell lines. However, topoisomerase II in nuclear extracts of the resistant sublines is altered in both catalytic activity (unknotting) of and DNA cleavage by this enzyme. Also, the rate at which catenation occurs is 20-30-fold slower with the CEM/VM-1-5 preparations. The effect of VM-26 on both strand passing and DNA cleavage is inversely related to the degree of primary resistance of each cell line. Our data support the hypothesis that at-MDR is due to an alteration in topoisomerase II or in a factor modulating its activity.

  11. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes.

    Science.gov (United States)

    Shen, Li; Inoue, Azusa; He, Jin; Liu, Yuting; Lu, Falong; Zhang, Yi

    2014-10-02

    With the exception of imprinted genes and certain repeats, DNA methylation is globally erased during preimplantation development. Recent studies have suggested that Tet3-mediated oxidation of 5-methylcytosine (5mC) and DNA replication-dependent dilution both contribute to global paternal DNA demethylation, but demethylation of the maternal genome occurs via replication. Here we present genome-scale DNA methylation maps for both the paternal and maternal genomes of Tet3-depleted and/or DNA replication-inhibited zygotes. In both genomes, we found that inhibition of DNA replication blocks DNA demethylation independently from Tet3 function and that Tet3 facilitates DNA demethylation largely by coupling with DNA replication. For both genomes, our data indicate that replication-dependent dilution is the major contributor to demethylation, but Tet3 plays an important role, particularly at certain loci. Our study thus defines the respective functions of Tet3 and DNA replication in paternal DNA demethylation and reveals an unexpected contribution of Tet3 to demethylation of the maternal genome.

  12. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation.

    Science.gov (United States)

    Chung, Woo-Hyun

    2016-01-01

    Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

  13. DNA binding and cleavage activity of a structurally characterized Ni(II) Schiff base complex

    Indian Academy of Sciences (India)

    Sarat Chandra Kumar; Abhijit Pal; Merry Mitra; V M Manikandamathavan; Chia -Her Lin; Balachandran Unni Nair; Rajarshi Ghosh

    2015-08-01

    Synthesis and characterization of a mononuclear Ni(II) compound [Ni(L)(H2O)2](NO3)2 [L = N,N'-bis((pyridine-2-yl)phenylidene)-1,3-diaminopropan-2-ol] (1) is reported. 1 crystallizes in triclinic P-1 space group with a = 8.1911(2) Å, b = 11.6624(3) Å, c = 16.5356(4) Å and = 108.8120(10)° , = 91.2010(10)° , = 91.1500(10)° . The binding property of the complex with DNA has been investigated using absorption and emission studies, and viscosity experiment. The binding constant (Kb) and the linear Stern-Volmer quenching constant (Ksv) of the complex have been determined as 9.23 × 10 4 M−1 and 2.0 × 10 4 M−1, respectively. Spectroscopic and hydrodynamic investigations revealed groove or electrostatic nature of binding of 1 with DNA. 1 is also found to induce oxidative cleavage of the supercoiled pUC 18 DNA to its nicked circular form in a concentration dependent manner.

  14. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution.

    Directory of Open Access Journals (Sweden)

    John K Pace

    2009-05-01

    Full Text Available DNA double-strand breaks (DSBs are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution. Here we developed an innovative computational pipeline that takes advantage of the repetitive structure of genomes to detect repair-mediated duplication events (RDs that occurred in the germline and created insertions of at least 50 bp of genomic DNA. Using this pipeline we identified over 1,000 probable RDs in the human genome. Of these, 824 were intra-chromosomal, closely linked duplications of up to 619 bp bearing the hallmarks of the synthesis-dependent strand-annealing repair pathway. This mechanism has duplicated hundreds of sequences predicted to be functional in the human genome, including exons, UTRs, intron splice sites and transcription factor binding sites. Dating of the duplication events using comparative genomics and experimental validation revealed that the mechanism has operated continuously but with decreasing intensity throughout primate evolution. The mechanism has produced species-specific duplications in all primate species surveyed and is contributing to genomic variation among humans. Finally, we show that RDs have also occurred, albeit at a lower frequency, in non-primate mammals and other vertebrates, indicating that this mechanism has been an important force shaping vertebrate genome evolution.

  15. Synthesis, characterization, thermal behavior, and DNA-cleaving studies of cyano-bridged nickel(II)-copper(II) complexes of 4-(pyridin-2-ylazenyl)resorcinol.

    Science.gov (United States)

    Karipcin, Fatma; Ozmen, Ismail; Cülü, Burcin; Celikoğlu, Umut

    2011-10-01

    We present here the syntheses of a mononuclear Cu(II) complex and two polynuclear Cu(II)-Ni(II) complexes of the azenyl ligand, 4-(pyridin-2-ylazenyl)resorcinol (HL; 1). The reaction of HL (1) and copper(II) perchlorate with KCN gave a mononuclear complex [CuL(CN)] (4). Using 4, one pentanuclear complex, [{CuL(NC)}(4) Ni](ClO(4))(2) (5) and one trinuclear complex, [{CuL(CN)}(2) NiL]ClO(4) (6), were prepared and characterized by elemental analyses, magnetic susceptibility, molar conductance, IR, and thermal analysis. Stoichiometric and spectral results of the mononuclear Cu(II) complex indicated that the metal/ligand/CN ratio was 1 : 1 : 1, and the ligand behaved as a tridentate ligand forming neutral metal chelates through the pyridinyl and azenyl N-, and resorcinol O-atom. The interaction between the compounds (the ligand 1, its Ni(II) and Cu(II) complexes without CN, i.e., 2 and 3, and its complexes with CN, 4-6) and DNA has also been investigated by agarose gel electrophoresis. The pentanuclear Cu(4) Ni complex (5) with H(2) O(2) as a co-oxidant exhibited the strongest DNA-cleaving activity.

  16. DNA-fragments are transcytosed across CaCo-2 cells by adsorptive endocytosis and vesicular mediated transport.

    Directory of Open Access Journals (Sweden)

    Lene E Johannessen

    Full Text Available Dietary DNA is degraded into shorter DNA-fragments and single nucleosides in the gastrointestinal tract. Dietary DNA is mainly taken up as single nucleosides and bases, but even dietary DNA-fragments of up to a few hundred bp are able to cross the intestinal barrier and enter the blood stream. The molecular mechanisms behind transport of DNA-fragments across the intestine and the effects of this transport on the organism are currently unknown. Here we investigate the transport of DNA-fragments across the intestinal barrier, focusing on transport mechanisms and rates. The human intestinal epithelial cell line CaCo-2 was used as a model. As DNA material a PCR-fragment of 633 bp was used and quantitative real time PCR was used as detection method. DNA-fragments were found to be transported across polarized CaCo-2 cells in the apical to basolateral direction (AB. After 90 min the difference in directionality AB vs. BA was >10(3 fold. Even undegraded DNA-fragments of 633 bp could be detected in the basolateral receiver compartment at this time point. Transport of DNA-fragments was sensitive to low temperature and inhibition of endosomal acidification. DNA-transport across CaCo-2 cells was not competed out with oligodeoxynucleotides, fucoidan, heparin, heparan sulphate and dextrane sulphate, while linearized plasmid DNA, on the other hand, reduced transcytosis of DNA-fragments by a factor of approximately 2. Our findings therefore suggest that vesicular transport is mediating transcytosis of dietary DNA-fragments across intestinal cells and that DNA binding proteins are involved in this process. If we extrapolate our findings to in vivo conditions it could be hypothesized that this transport mechanism has a function in the immune system.

  17. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3β Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Congcong Shen

    2017-02-01

    Full Text Available While angiotensin II (ang II has been implicated in the pathogenesis of cardiac cachexia (CC, the molecules that mediate ang II's wasting effect have not been identified. It is known TNF-α level is increased in patients with CC, and TNF-α release is triggered by ang II. We therefore hypothesized that ang II induced muscle wasting is mediated by TNF-α. Ang II infusion led to skeletal muscle wasting in wild type (WT but not in TNF alpha type 1 receptor knockout (TNFR1KO mice, suggesting that ang II induced muscle loss is mediated by TNF-α through its type 1 receptor. Microarray analysis identified cholesterol 25-hydroxylase (Ch25h as the down stream target of TNF-α. Intraperitoneal injection of 25-hydroxycholesterol (25-OHC, the product of Ch25h, resulted in muscle loss in C57BL/6 mice, accompanied by increased expression of atrogin-1, MuRF1 and suppression of IGF-1/Akt signaling pathway. The identification of 25-OHC as an inducer of muscle wasting has implications for the development of specific treatment strategies in preventing muscle loss.

  18. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy.

    Science.gov (United States)

    Pan, Wei; Zhong, Yun; Cheng, Chuanfang; Liu, Benrong; Wang, Li; Li, Aiqun; Xiong, Longgen; Liu, Shiming

    2013-01-01

    Dysregulated autophagy may lead to the development of disease. Role of autophagy and the diagnostic potential of microRNAs that regulate the autophagy in cardiac hypertrophy have not been evaluated. A rat model of cardiac hypertrophy was established using transverse abdominal aortic constriction (operation group). Cardiomyocyte autophagy was enhanced in rats from the operation group, compared with those in the sham operation group. Moreover, the operation group showed up-regulation of beclin-1 (an autophagy-related gene), and down-regulation of miR-30 in cardiac tissue. The effects of inhibition and over-expression of the beclin-1 gene on the expression of hypertrophy-related genes and on autophagy were assessed. Angiotensin II-induced myocardial hypertrophy was found to be mediated by over-expression of the beclin-1 gene. A dual luciferase reporter assay confirmed that beclin-1 was a target gene of miR-30a. miR-30a induced alterations in beclin-1 gene expression and autophagy in cardiomyocytes. Treatment of cardiomyocytes with miR-30a mimic attenuated the Angiotensin II-induced up-regulation of hypertrophy-related genes and decreased in the cardiomyocyte surface area. Conversely, treatment with miR-30a inhibitor enhanced the up-regulation of hypertrophy-related genes and increased the surface area of cardiomyocytes induced by Angiotensin II. In addition, circulating miR-30 was elevated in patients with left ventricular hypertrophy, and circulating miR-30 was positively associated with left ventricular wall thickness. Collectively, these above-mentioned results suggest that Angiotensin II induces down-regulation of miR-30 in cardiomyocytes, which in turn promotes myocardial hypertrophy through excessive autophagy. Circulating miR-30 may be an important marker for the diagnosis of left ventricular hypertrophy.

  19. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy.

    Directory of Open Access Journals (Sweden)

    Wei Pan

    Full Text Available Dysregulated autophagy may lead to the development of disease. Role of autophagy and the diagnostic potential of microRNAs that regulate the autophagy in cardiac hypertrophy have not been evaluated. A rat model of cardiac hypertrophy was established using transverse abdominal aortic constriction (operation group. Cardiomyocyte autophagy was enhanced in rats from the operation group, compared with those in the sham operation group. Moreover, the operation group showed up-regulation of beclin-1 (an autophagy-related gene, and down-regulation of miR-30 in cardiac tissue. The effects of inhibition and over-expression of the beclin-1 gene on the expression of hypertrophy-related genes and on autophagy were assessed. Angiotensin II-induced myocardial hypertrophy was found to be mediated by over-expression of the beclin-1 gene. A dual luciferase reporter assay confirmed that beclin-1 was a target gene of miR-30a. miR-30a induced alterations in beclin-1 gene expression and autophagy in cardiomyocytes. Treatment of cardiomyocytes with miR-30a mimic attenuated the Angiotensin II-induced up-regulation of hypertrophy-related genes and decreased in the cardiomyocyte surface area. Conversely, treatment with miR-30a inhibitor enhanced the up-regulation of hypertrophy-related genes and increased the surface area of cardiomyocytes induced by Angiotensin II. In addition, circulating miR-30 was elevated in patients with left ventricular hypertrophy, and circulating miR-30 was positively associated with left ventricular wall thickness. Collectively, these above-mentioned results suggest that Angiotensin II induces down-regulation of miR-30 in cardiomyocytes, which in turn promotes myocardial hypertrophy through excessive autophagy. Circulating miR-30 may be an important marker for the diagnosis of left ventricular hypertrophy.

  20. The impact of the human DNA topoisomerase II C-terminal domain on activity.

    Directory of Open Access Journals (Sweden)

    Emma L Meczes

    Full Text Available BACKGROUND: Type II DNA topoisomerases (topos are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, alpha and beta, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-terminal domain (CTD of the enzyme has the most diversity, and has been implicated in regulation. We sought to investigate the impact of the CTD domain on activity. METHODOLOGY/PRINCIPLE FINDINGS: We have investigated the role of the human topoII C-terminal domain by creating constructs encoding C-terminally truncated recombinant topoIIalpha and beta and topoIIalpha+beta-tail and topoIIbeta+alpha-tail chimeric proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-terminal domain had a large effect, with the topoIIalpha-CTD increasing activity, and the topoIIbeta-CTD decreasing activity. CONCLUSIONS/SIGNIFICANCE: In vivo complementation data show that the topoIIalpha C-terminal domain is needed for growth, but the topoIIbeta isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIbeta has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on activity, the presence of either the topoIIalpha or beta C-terminal domain can affect strand passage activity. Data indicates that the topoIIbeta-CTD may be a negative regulator. This is the first report of in vitro

  1. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  2. The Notch pathway mediates the angiotensin II-induced synthesis of extracellular matrix components in podocytes.

    Science.gov (United States)

    Yao, Min; Wang, Xiaomei; Wang, Xiaomeng; Zhang, Tao; Chi, Yanqing; Gao, Feng

    2015-07-01

    The Notch pathway is known to contribute to the development of glomerular disease. Angiotensin II (Ang II), an important member of the renin-angiotensin system, stimulates the accumulation of extracellular matrix components in glomerular disease; however, the exact mechanisms involved remain to be elucidated. In the present study, we aimed to investigate the effects of the Notch pathway on the synthesis of extracellular matrix components in Ang II-stimulated podocytes. Mouse podocytes were stimulated with Ang II (10-6 mol/l). The activation of the Notch pathway was inhibited by a vector carrying short hairpin RNA (shRNA) targeting Notch1 (sh-Notch1) or by γ-secretase inhibitor (GSI). The protein levels of Notch1, Notch intracellular domain 1 (NICD1), hairy and enhancer of split-1 (Hes1), matrix metalloproteinase (MMP)-2, MMP-9, transforming growth factor-β1 (TGF-β1), type IV collagen and laminin were determined by western blot analysis. The Notch1, Hes1, MMP-2, MMP-9, TGF-β1, type IV collagen and laminin mRNA levels were detected by RT-PCR. The MMP-2 and MMP-9 activity was measured using a cell active fluorescence assay kit. The levels of TGF-β1, type IV collagen and laminin were determined in the culture medium of the podocytes by enzyme-linked immunosorbent assay (ELISA). Our results revealed that Ang II upregulated Notch1, NICD1, Hes1, TGF-β1, type IV collagen and laminin expression and downregulated MMP-2 and MMP-9 expression in the cultured podocytes. The inhibition of the Notch pathway by sh-Notch1 or GSI increased MMP-2 and MMP-9 expression, decreased the TGF-β1 level and suppressed type IV collagen and laminin expression. The inhibition of the Notch pathway by sh-Notch1 or GSI also increased MMP-2 and MMP-9 activity, and decreased TGF-β1 levels, type IV collagen levels and laminin secretion. These findings indicate that the Notch pathway potentially mediates the Ang II-induced synthesis of extracellular matrix components in podocytes through the

  3. DNA interaction and cytotoxic activities of square planar platinum(II) complexes with N, S-donor ligands

    Science.gov (United States)

    Patel, Mohan N.; Patel, Chintan R.; Joshi, Hardik N.; Thakor, Khyati P.

    2014-06-01

    The platinum(II) complexes with N, S-donor ligands have been synthesized and characterized by physicochemical methods viz. elemental, electronic, FT-IR, 1H NMR and LC-MS spectra. The binding mode and potency of the complexes with HS DNA (Herring Sperm) have been examined by absorption titration and viscosity measurement studies. The results revealed that complexes bind to HS DNA via covalent mode with the intrinsic binding constant (Kb) in the range 1.37-7.76 × 105 M-1. Decrease in the relative viscosity of HS DNA also supports the covalent mode of binding. The DNA cleavage activity of synthesized complexes has been carried out by gel electrophoresis experiment using supercoiled form of pUC19 DNA; showing the unwinding of the negatively charged supercoiled DNA. Brine shrimp (Artemia Cysts) lethality bioassay technique has been applied for the determination of toxic property of synthesized complexes in terms of μM.

  4. Combining a Ru(II) "Building Block" and Rapid Screening Approach to Identify DNA Structure-Selective "Light Switch" Compounds.

    Science.gov (United States)

    Wachter, Erin; Moyá, Diego; Glazer, Edith C

    2017-02-13

    A chemically reactive Ru(II) "building block", able to undergo condensation reactions with substituted diamines, was utilized to create a small library of luminescent "light switch" dipyrido-[3,2-a:2',3'-c] phenazine (dppz) complexes. The impact of substituent identity, position, and the number of substituents on the light switch effect was investigated. An unbiased, parallel screening approach was used to evaluate the selectivity of the compounds for a variety of different biomolecules, including protein, nucleosides, single stranded DNA, duplex DNA, triplex DNA, and G-quadruplex DNA. Combining these two approaches allowed for the identification of hit molecules that showed different selectivities for biologically relevant DNA structures, particularly triplex and quadruplex DNA.

  5. Chloroplast ribonucleoproteins (RNPs) as phosphate acceptors for casein kinase II: purification by ssDNA-cellulose column chromatography.

    Science.gov (United States)

    Kanekatsu, M; Ezumi, A; Nakamura, T; Ohtsuki, K

    1995-12-01

    Using ssDNA-cellulose column chromatography, a 34 kDa ribonucleoprotein (p34) has been purified from a 0.4 M KCl crude extract of spinach chloroplasts as an effective phosphate acceptor for casein kinase II (CK-II) in vitro. Monomeric and oligomeric CK-IIs were copurified with p34 by the column chromatography and the kinases were separated from p34 by means of Mono Q column chromatography. It was found that (i) the purified p34 (pI 4.9) was phosphorylated specifically by CK-II in vitro; and (ii) similar polypeptides, such as p35 (pI 4.7) and p39 (pI 4.9) in maize and p33 (pI 4.7) in liverwort, were detected as ssDNA-binding chloroplast proteins phosphorylated by CK-II in vitro. The findings suggest that (i) RNPs that function as phosphate acceptors for CK-II exist commonly in chloroplasts among plant cells; and (ii) the physiological activity of RNPs is regulated by their specific phosphorylation by CK-II in chloroplasts.

  6. Modification of pGH cDNA using the first intron and adenovirus-mediated expression in CHO cells

    Institute of Scientific and Technical Information of China (English)

    李秀锦; 仲飞; 齐顺章

    2003-01-01

    Objective This study was conducted to investigate the function of the first intron of porcine growth hormone (pGH) gene in the gene expression.Methods PCR method was used to amplify the first intron from pig genomic DNA. The intron was then inserted into pGH cDNA to construct pGH cDNA-intron (pGH cDNA-in). The recombinant adenoviruses containing pGH cDNA and pGH cDNA-in genes under control of CMV promoter were generated by homologous recombination method in HEK 293 cells respectively. The effect of the first intron on gene expression was evaluated by comparing the expression levels of pGH cDNA-in and pGH cDNA mediated by adenovirus vectors in CHO cells.Results The expression level of pGH cDNA containing the first intron increased by 117%, which was significantly higher than that of pGH cDNA without the intron (P<0.001). Conclusion The first intron of pGH gene has the function to improve pGH gene expression.

  7. The paradox of dopamine and angiotensin II-mediated Na(+), K(+)-ATPase regulation in renal proximal tubules.

    Science.gov (United States)

    Zhang, Linan; Guo, Fang; Guo, Huicai; Wang, Haiyan; Zhang, Zhe; Liu, Xu; Shi, Xiaolu; Gou, Xiangbo; Su, Qian; Yin, Jian; Wang, Yongli

    2010-01-01

    Accumulated studies reported that the natruretic dopamine (DA) and the anti-natruretic angiotensin II (Ang II) represent an important mechanism to regulate renal Na(+) and water excretion through intracellular secondary messengers to inhibit or activate renal proximal tubule (PT) Na(+), K(+)-ATPase (NKA). The antagonistic actions were mediated by the phosphorylation of different position of NKA α₁-subunit and different Pals-associated tight junction protein (PATJ) PDZ domains, the different protein kinase C (PKC) isoforms (PKC-β, PKC-ζ), the common adenylyl cyclase (AC) pathway, and the crosstalk and balance between DA and Ang II to NKA regulation. Besides, Ang II-mediated NKA modulation has bi-phasic effects.

  8. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility

    KAUST Repository

    Jégu, Teddy

    2017-06-15

    Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored.In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms.These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.

  9. The impact of the C-terminal domain on the interaction of human DNA topoisomerase II α and β with DNA.

    Directory of Open Access Journals (Sweden)

    Kathryn L Gilroy

    Full Text Available BACKGROUND: Type II DNA topoisomerases are essential, ubiquitous enzymes that act to relieve topological problems arising in DNA from normal cellular activity. Their mechanism of action involves the ATP-dependent transport of one DNA duplex through a transient break in a second DNA duplex; metal ions are essential for strand passage. Humans have two isoforms, topoisomerase IIα and topoisomerase IIβ, that have distinct roles in the cell. The C-terminal domain has been linked to isoform specific differences in activity and DNA interaction. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the role of the C-terminal domain in the binding of human topoisomerase IIα and topoisomerase IIβ to DNA in fluorescence anisotropy assays using full length and C-terminally truncated enzymes. We find that the C-terminal domain of topoisomerase IIβ but not topoisomerase IIα affects the binding of the enzyme to the DNA. The presence of metal ions has no effect on DNA binding. Additionally, we have examined strand passage of the full length and truncated enzymes in the presence of a number of supporting metal ions and find that there is no difference in relative decatenation between isoforms. We find that calcium and manganese, in addition to magnesium, can support strand passage by the human topoisomerase II enzymes. CONCLUSIONS/SIGNIFICANCE: The C-terminal domain of topoisomerase IIβ, but not that of topoisomerase IIα, alters the enzyme's K(D for DNA binding. This is consistent with previous data and may be related to the differential modes of action of the two isoforms in vivo. We also show strand passage with different supporting metal ions for human topoisomerase IIα or topoisomerase IIβ, either full length or C-terminally truncated. They all show the same preferences, whereby Mg > Ca > Mn.

  10. Co(III and Ni(II Complexes Containing Bioactive Ligands: Synthesis, DNA Binding, and Photocleavage Studies

    Directory of Open Access Journals (Sweden)

    M. C. Prabhakara

    2007-02-01

    Full Text Available DNA binding and photocleavage characteristics of a series of mixed ligand complexes of the type [M(bpy2qbdp](PF6n⋅xH2O (where M=Co(III or Ni(II, bpy=2.2′-bipryidine, qbdp = Quinolino[3,2-b]benzodiazepine, n=3 or 2 and x=5 or 2 have been investigated. The DNA binding property of the complexes with calf thymus DNA has been investigated by using absorption spectra, viscosity measurements, as well as thermal denaturation studies. Intrinsic binding constant (Kb has been estimated under similar set of experimental conditions. Absorption spectral studies indicate that the Co(III and Ni(II complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 1.3×106 and 3.1×105 M-1 in Tris-HCl buffer containing 50 mM NaCl, respectively. The proposed DNA binding mode supports the large enhancement in the relative viscosity of DNA on binding to quinolo[3,2-b]benzodiazepine. The oxidative as well as photo-induced cleavage reactions were monitered by gel electrophoresis for both complexes. The photocleavage experiments showed that the cobalt(III complex can cleave pUC19 DNA effectively in the absence of external additives as an effective inorganic nuclease.

  11. Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats.

    Science.gov (United States)

    Hui, F M; Meng, C L; Guo, N N; Yang, L G; Shi, F X; Mao, D G

    2014-08-07

    DNA vaccination has been studied intensively as a potential vaccine technology. We evaluated the effect of an attenuated Salmonella choleraesuis-mediated inhibin DNA vaccine in rats. First, 15 rats were treated with different doses of an inhibin vaccine to evaluate vaccine safety. Next, 30 rats were divided into 3 groups and injected intramuscularly with the inhibin vaccine two (T1) or three times (T2) or with control bacteria (Con) at 4-week intervals. The inhibin antibody levels increased [positive/negative well (P/N) value: T1 vs Con = 2.39 ± 0.01 vs 1.08 ± 0.1; T2 vs Con = 2.36 ± 0.1 vs 1.08 ± 0.1, P < 0.05] at week 2 and were maintained at a high level in T1 and T2 until week 8, although a small decrease in T2 was observed at week 10. Rats in the T1 group showed more corpora lutea compared with the Con group (10.50 ± 0.87 vs 7.4 ± 0.51, P < 0.05). Estradiol (0.439 ± 0.052 vs 0.719 ± 0.063 ng/mL, P < 0.05) and progesterone (1.315 ± 0.2 vs 0.737 ± 0.11 ng/mL, P < 0.05) levels differed significantly at metestrus after week 10 between rats in the T1 and Con groups. However, there were no significant differences in body, ovary, uterus weights, or pathological signs in the ovaries after immunization, indicating that this vaccine is safe. In conclusion, the attenuated S. choleraesuis-mediated inhibin vaccine may be an alternative to naked inhibin plasmids for stimulating ovarian follicular development to increase the ovulation rate in rats.

  12. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1.

    Science.gov (United States)

    Isegawa, Y; Sheng, J; Sokawa, Y; Yamanishi, K; Nakagomi, O; Ueda, S

    1992-12-01

    A method, referred to as cassette-ligation mediated polymerase chain reaction (PCR), has been developed to permit selective and specific amplification of cDNA sequence from total cellular RNA. This technique comprises (i) digestion of cDNA with multiple restriction enzymes, (ii) ligation of cleavage products to double-stranded DNA cassettes possessing a corresponding restriction site and (iii) amplification of cassette-ligated restriction fragments containing a short, known sequence (but not all the other ligation products) by PCR using the specific and cassette primers; the specific primer is designed to prime synthesis from the known sequence of the cDNA whereas the cassette primer anneals to one strand of the cassette. Sequencing from the cassette primer provides information to design a new primer for the next walking step. The amplified cDNA fragments are often larger than the maximum DNA fragments (500-600 bp) that can be sequenced without the need of synthesizing internal sequencing primer. Each of such large cDNA fragments is dissected into smaller DNA fragments by repeating cassette-ligation mediated PCR exploiting different restriction sites and different sets of cassette primers. This dissection process reduces the number of specific primers to a minimum, thereby increasing the speed of sequencing and minimizing the overall cost. We have successfully applied this cDNA walking and sequencing by the cassette-ligation mediated PCR to the sequencing of an entire 6.5 kb genome segment of hantavirus strain B-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II.

    Science.gov (United States)

    Sopta, M; Burton, Z F; Greenblatt, J

    1989-10-05

    RAP30/74 is a heteromeric general transcription initiation factor which binds to RNA polymerase II. Here we report that preparations of RAP30/74 contain an ATP-dependent DNA helicase whose probable function is to melt the DNA at transcriptional start sites. The sequence of the RAP30 subunit of RAP30/74 indicates that RAP30 may be distantly related to bacterial sigma factors.

  14. Gold Nanoparticles Based Colorimetric Detection of Target DNA After Loop-mediated Isothermal Amplification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chao; MU Ying; YANG Meng-chao; WU Qing-qing; XU Wei; ZHANG Ying; JIN Wei

    2013-01-01

    We have developed a rapid,simple and label-free colorimetric method for the identification of target DNA.It is based on loop-mediated isothermal amplification(LAMP).Plain gold nanoparticles(AuNPs) are used to indicate the occurrence of LAMP.The amplified product is mixed with AuNPs in an optimized ratio,at which the deoxyribonucleotides(dNTPs) bind to the AuNPs via ligand-metal interactions and thus enhance AuNPs stability.If a target DNA is amplified,the dramatic reduction of the dNTPs leads to the aggregation of AuNPs and a color change from red to blue.The success of the method strongly depends on the ionic strength of the solution and the initial concentration of dNTPs.Unlike other methods for the identification of isothermal products,this method is simple and can be readily applied on site where instrumentation is inadequate or even lacking.

  15. Rapid detection of Opisthorchis viverrini copro-DNA using loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Arimatsu, Yuji; Kaewkes, Sasithorn; Laha, Thewarach; Hong, Sung-Jong; Sripa, Banchob

    2012-03-01

    Opisthorchis viverrini and other foodborne trematode infections are major health problem in Thailand, the Lao People's Democratic Republic, Vietnam and Cambodia. Differential diagnosis of O. viverrini based on the microscopic observation of parasite eggs is difficult in areas where Clonorchis sinensis and minute intestinal flukes coexist. We therefore established a rapid, sensitive and specific method for detecting O. viverrini infection from the stool samples using the loop-mediated isothermal amplification (LAMP) method. A total of five primers from seven regions were designed to target the internal transcribed spacer 1 (ITS1) in ribosomal DNA for specific amplification. Hydroxy naphthol blue (HNB) was more effective to detect the LAMP product compared to the Real-time LAMP and turbidity assay for its simple and distinct detection. The LAMP assay specifically amplified O. viverrini ITS1 but not C. sinensis and minute intestinal flukes with the limit of detection around 10(-3)ng DNA/μL. The sensitivity of the LAMP was 100% compared to egg positive samples. While all microscopically positive samples were positive by LAMP, additionally 5 of 13 (38.5%) microscopically negative samples were also LAMP positive. The technique has great potential for differential diagnosis in endemic areas with mixed O. viverrini and intestinal fluke infections. As it is an easy and simple method, the LAMP is potentially applicable for point-of-care diagnosis.

  16. Early ROS-mediated DNA damage and oxidative stress biomarkers in Monoclonal B Lymphocytosis.

    Science.gov (United States)

    Collado, Rosa; Oliver, Isabel; Tormos, Carmen; Egea, Mercedes; Miguel, Amparo; Cerdá, Concha; Ivars, David; Borrego, Silvia; Carbonell, Felix; Sáez, Guillermo T

    2012-04-28

    Monoclonal B Lymphocytosis (MBL) is defined as asymptomatic monoclonal B-cell expansion characterised by a CLL-phenotype, but with less than 5×10(9)/l circulating cells. Reactive oxygen species (ROS)-mediated cell damage plays a critical role in the initiation of carcinogenesis as well as in malignant transformation. The goal of this study was to perform an analysis of the oxidative stress statuses of patients affected by MBL and chronic lymphocytic leukaemia (CLL). We examined peripheral blood and urine specimens from 29 patients with MBL, 55 with CLL and 31 healthy subjects. There was a significant increase in the occurrence of the mutagenic base 8-oxo-2'-deoxiguanosine (8-oxo-dG) in the lymphocytes and urine of MBL and CLL patients compared with controls. Significant differences were also observed in the levels of the lipid peroxidation product malondialdehyde (MDA) and in the oxidised/reduced glutathione (GSSG/GSH) ratio, although an increase in 8-isoprostane was not detected. Interestingly, the antioxidant catalase activity of circulating lymphocytes decreased in the patient groups. In conclusion, early oxidative stress exists in patients with MBL and CLL, causing damage to DNA and lipid structures. The higher levels of 8-oxo-dG in lymphocytes than in urine may be related to a decrease in the capacity of DNA repair systems. There were no differences in the oxidative statuses of the MBL and CLL patients, suggesting that oxidative injuries appear during a pre-leukaemic state of the disease.

  17. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.

    Science.gov (United States)

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  18. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hsueh-Wei Chang

    2017-09-01

    Full Text Available Withaferin A (WFA is one of the most active steroidal lactones with reactive oxygen species (ROS modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27 rather than normal oral cells (HGF-1. WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  19. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    Science.gov (United States)

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  20. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  1. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    Science.gov (United States)

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  2. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies.

    Science.gov (United States)

    Nicolas, Emmanuelle; Golemis, Erica A; Arora, Sanjeevani

    2016-09-15

    The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5'-3' DNA polymerase and 3'-5' exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests that POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions.

  3. Inhibition of DNA topoisomerases I and II and cytotoxicity by lignans from Saururus chinensis.

    Science.gov (United States)

    Lee, Yeun-Kyung; Seo, Chang-Seob; Lee, Chong-Soon; Lee, Kyong-Seon; Kang, Shin-Jung; Jahng, Yurngdong; Chang, Hyun Wook; Son, Jong-Keun

    2009-10-01

    Thirteen lignans, erythro-austrobailignan-6 (1), meso-dihydroguaiaretic acid (2), sauchinone (3), 1'-epi-sauchinone (4), saucerneol D (5), manassantin B (6), manassantin A (7), nectandrin B (8), machilin D (9), saucerneol F (10), saucerneol G (11), saucerneol H (12) and saucerneol I (13), were isolated from the ethyl acetate extract of the roots of Saururus chinensis. Among these compounds, 5 showed potent inhibitory activities against DNA topoisomerase I and II, and 5, 6, 7 and 10 showed mild cytotoxicities against HT-29 (IC(50) values; 13, 12, 11, and 10 microM, respectively) and HepG2 cell lines (IC(50) values; 16, 11, 12, and 11 microM, respectively).

  4. Ruthenium(II) complexes containing quinone based ligands: Synthesis, characterization, catalytic applications and DNA interaction

    Science.gov (United States)

    Anitha, P.; Manikandan, R.; Endo, A.; Hashimoto, T.; Viswanathamurthi, P.

    2012-12-01

    1,2-Naphthaquinone reacts with amines such as semicarbazide, isonicotinylhydrazide and thiosemicarbazide in high yield procedure with the formation of tridentate ligands HLn (n = 1-3). By reaction of ruthenium(II) starting complexes and quinone based ligands HLn (n = 1-3), a series of ruthenium complexes were synthesized and characterized by elemental and spectroscopic methods (FT-IR, electronic, 1H, 13C, 31P NMR and ESI-MS). The ligands were coordinated to ruthenium through quinone oxygen, imine nitrogen and enolate oxygen/thiolato sulfur. On the basis of spectral studies an octahedral geometry may be assigned for all the complexes. Further, the catalytic oxidation of primary, secondary alcohol and transfer hydrogenation of ketone was carried out. The DNA cleavage efficiency of new complexes has also been tested.

  5. Heme oxygenase attenuates angiotensin II-mediated superoxide production in cultured mouse thick ascending loop of Henle cells.

    Science.gov (United States)

    Kelsen, Silvia; Patel, Bijal J; Parker, Lawson B; Vera, Trinity; Rimoldi, John M; Gadepalli, Rama S V; Drummond, Heather A; Stec, David E

    2008-10-01

    Heme oxygenase (HO)-1 induction can attenuate the development of angiotensin II (ANG II)-dependent hypertension. However, the mechanism by which HO-1 lowers blood pressure is not clear. The goal of this study was to test the hypothesis that induction of HO-1 can reduce the ANG II-mediated increase in superoxide production in cultured thick ascending loop of Henle (TALH) cells. Studies were performed on an immortalized cell line of mouse TALH (mTALH) cells. HO-1 was induced in cultured mTALH cells by treatment with cobalt protoporphyrin (CoPP, 10 microM) or hemin (50 microM) or by transfection with a plasmid containing the human HO-1 isoform. Treatment of mTALH cells with 10(-9) M ANG II increased dihydroethidium (DHE) fluorescence (an index of superoxide levels) from 35.5+/-5 to 136+/-18 relative fluorescence units (RFU)/microm2. Induction of HO-1 via CoPP, hemin, or overexpression of the human HO-1 isoform significantly reduced ANG II-induced DHE fluorescence to 64+/-5, 64+/-8, and 41+/-4 RFU/microm2, respectively. To determine which metabolite of HO-1 is responsible for reducing ANG II-mediated increases in superoxide production in mTALH cells, cells were preincubated with bilirubin or carbon monoxide (CO)-releasing molecule (CORM)-A1 (each at 100 microM) before exposure to ANG II. DHE fluorescence averaged 80+/-7 RFU/microm2 after incubation with ANG II and was significantly decreased to 55+/-7 and 53+/-4 RFU/microm2 after pretreatment with bilirubin and CORM-A1. These results demonstrate that induction of HO-1 in mTALH cells reduces the levels of ANG II-mediated superoxide production through the production of both bilirubin and CO.

  6. Phylogenetic positions of several amitochondriate protozoa-Evidence from phylogenetic analysis of DNA topoisomerase II

    Institute of Scientific and Technical Information of China (English)

    HE De; DONG Jiuhong; WEN Jianfan; XIN Dedong; LU Siqi

    2005-01-01

    Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, Entamoeba and Microsporida, were once widely considered to be the most primitive extant eukaryotic group―Archezoa. The main evidence for this is their 'lacking mitochondria' and possessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G. lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then combining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of 'long-branch attraction' appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplomonads, as represented

  7. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion

    Science.gov (United States)

    Luthra, Priya; Aguirre, Sebastian; Yen, Benjamin C.; Pietzsch, Colette A.; Sanchez-Aparicio, Maria T.; Tigabu, Bersabeh; Morlock, Lorraine K.; García-Sastre, Adolfo; Leung, Daisy W.; Williams, Noelle S.; Fernandez-Sesma, Ana; Bukreyev, Alexander

    2017-01-01

    ABSTRACT Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication. PMID:28377530

  8. Synthesis, Cytotoxic Activity, and DNA Binding Properties of Copper (II Complexes with Hesperetin, Naringenin, and Apigenin

    Directory of Open Access Journals (Sweden)

    Mingxiong Tan

    2009-01-01

    Full Text Available Complexes of copper (II with hesperetin, naringenin, and apigenin of general composition [CuL2(H2O2]⋅nH2O (1–3 have been synthesized and characterized by elemental analysis, UV-Vis, FT-IR, ESI-MS, and TG-DTG thermal analysis. The free ligands and the metal complexes have been tested in vitro against human cancer cell lines hepatocellular carcinoma (HepG-2, gastric carcinomas (SGC-7901, and cervical carcinoma (HeLa. Complexes 1 and 3 were found to exhibit growth inhibition of SGC-7901 and HepG2 cell lines with respect to the free ligands; the inhibitory rate of complex 1 is 43.2% and 43.8%, while complex 3 is 46% and 36%, respectively. The interactions of complex 1 and its ligand Hsp with calf thymus DNA were investigated by UV-Vis, fluorescence, and CD spectra. Both complex 1 and Hsp were found to bind DNA in intercalation modes, and the binding affinity of complex 1 was stronger than that of free ligand.

  9. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion

    Directory of Open Access Journals (Sweden)

    Priya Luthra

    2017-04-01

    Full Text Available Ebola virus (EBOV protein VP35 inhibits production of interferon alpha/beta (IFN by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.

  10. A spectroscopic investigation of the interaction between c-MYC DNA and tetrapyridinoporphyrazinatozinc(II).

    Science.gov (United States)

    Hassani, Leila; Fazeli, Zahra; Safaei, Elham; Rastegar, Hossein; Akbari, Minoo

    2014-06-01

    The c-MYC gene plays an important role in the regulation of cell proliferation and growth and it is overexpressed in a wide variety of human cancers. Around 90% of c-MYC transcription is controlled by the nuclease-hypersensitive element III1 (NHE III1), whose 27-nt purine-rich strand has the ability to form a G-quadruplex structure under physiological conditions. Therefore, c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Here, the interaction of water-soluble tetrapyridinoporphyrazinatozinc(II) with 27-nt G-rich strand (G/c-MYC), its equimolar mixture with the complementary sequence (GC/c-MYC) and related C-rich oligonucleotide (C/c-MYC) is investigated. Circular dichroism (CD) measurements of the G-rich 27-mer oligonucleotide in 150 mM KCl, pH 7 demonstrate a spectral signature consistent with parallel G-quadruplex DNA. Furthermore, the CD spectrum of the GC rich oligonucleotide shows characteristics of both duplex and quadruplex structures. Absorption spectroscopy implies that the complex binding of G/c-MYC and GC/c-MYC is a two-step process; in the first step, a very small red shift and hypochromicity and in the second step, a large red shift and hyperchromicity are observed in the Q band. Emission spectra of zinc porphyrazine are quenched upon addition of three types of DNA. According to the results of spectroscopy, it can be concluded the dominant binding mode is probably, outside binding and end stacking.

  11. Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells.

    Science.gov (United States)

    Han, Wei-Qing; Chen, Wen-Dong; Zhang, Ke; Liu, Jian-Jun; Wu, Yong-Jie; Gao, Ping-Jin

    2016-04-01

    It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.

  12. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pa

  13. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  14. The inhibition of P338 lymphocytic leukemia DNA polymerase alpha activity by cis-diamminedichloroplatinum(II) and related derivatives.

    Science.gov (United States)

    Oswald, C B; Hall, I H

    1989-01-01

    Cis-platinum derivatives were observed to inhibit the activity of DNA polymerase alpha of P388 lymphocytic leukemia cells. A 600g nuclear preparation of the polymerase alpha was inhibited by cis-diamminedichloroplatinum(II) [cDDP], diamminemalonatoplatinum(II) [MAL], (1,2-diaminocyclohexane)-dichloroplatinum(II) [DACH-Pt-CL2], and (1,2-diaminocyclohexane)malonato-platinum(II) [DACH-Pt-MAL]. cDDP was a more potent inhibitor of the enzyme activity which was positively correlated with the observed inhibition of DNA synthesis of P388 cells in vivo and in vitro. The inhibition of the 600g preparation by cDDP could be partially reversed by the addition of exogenous ctDNA, but 35% inhibition was not retreivable by adding new template. Isolation of the P388 DNA polymerase alpha enzyme by DEAE column chromatography led to an enzyme with 100 fold purification, which was sensitive to N-ethyl maleimide at 0.1 mM concentration. cDDP inhibited the activity of this enzyme in a dose dependent manner. However, MAL, DACH-Pt-Cl2 and DACH-Pt-MAL afforded no inhibition, nor did the latter two derivatives bind to the enzyme. cDDP inhibition of the activity of purified enzyme was partially reversed by the addition of exogenous ctDNA and by the addition of dGTP, whereas addition of other d(NTP)s had no effect on the recovery of the enzyme activity. These studies suggest that cDDP inhibits DNA polymerase alpha activity and that the inhibition is not the sole mechanism of the action of the drug in suppression of DNA synthesis and cell death. Preliminary studies suggest that the drug may bind to the apoprotein of the enzyme in a competitive manner with dGTP.

  15. Copper-obatoclax derivative complexes mediate DNA cleavage and exhibit anti-cancer effects in hepatocellular carcinoma.

    Science.gov (United States)

    Su, Jung-Chen; Chang, Jung-Hua; Huang, Jui-Wen; Chen, Peter P-Y; Chen, Kuen-Feng; Tseng, Ping-Hui; Shiau, Chung-Wai

    2015-02-25

    Obatoclax is an indole-pyrrole compound that induces cancer cell apoptosis through targeting the anti-apoptotic Bcl-2 protein family. Previously, we developed a series of obatoclax derivatives and studied their STAT3 inhibition-dependent activity against cancer cell lines. The obatoclax analog, prodigiosin, has been reported to mediate DNA cleavage in cancer cells by coordinating with copper complexes. To gain an understanding of copper-obatoclax complex activity, we applied obatoclax derivatives to examine their copper-mediated nuclease activity as a means to establish a basis for structure activity relationship. Replacement of the indole ring of obatoclax with furanyl, thiophenyl or Boc-indolyl rings reduced the DNA cleavage ability. The same effect was achieved through the replacement of the obatoclax pyrrolyl ring with thiazolidinedione and thioacetal. Among the compounds tested, we demonstrated that the complex of obatoclax or compound 7 with copper exhibited potent DNA strand scission which correlated with HCC cell growth inhibition.

  16. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA.

    Science.gov (United States)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-15

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  17. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    Science.gov (United States)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  18. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shu-Huei Wang

    Full Text Available Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity.

  19. DNA-Mediated Cyclic GMP-AMP Synthase-Dependent and -Independent Regulation of Innate Immune Responses.

    Science.gov (United States)

    Motani, Kou; Ito, Shinji; Nagata, Shigekazu

    2015-05-15

    Cytoplasmic DNA activates cyclic GMP-AMP synthase (cGAS) to produce cyclic 2'-5'3'-5'GMP-AMP dinucleotide (2'5 'cGAMP). The binding of 2'5'cGAMP to an adaptor protein, stimulator of IFN genes (STING), activates a transcription factor, IFN regulatory factor 3, leading to the induction of IFN and chemokine gene expression. In this study, we found that the 2'5'cGAMP-dependent STING activation induced highly upregulated CXCL10 gene expression. Formation of a distinct STING dimer, which was detected by native PAGE, was induced by 2'5'cGAMP, but not 3'-5'3'-5'cGAMP. Analysis of DNase II(-/-) mice, which constitutively produce IFN-β and CXCL10, showed the accumulation of 2'5'cGAMP in their fetal livers and spleens, suggesting that the undigested DNA accumulating in DNase II(-/-) cells may have leaked from the lysosomes into the cytoplasm. The DNase II(-/-) mouse embryonic fibroblasts produced 2'5'cGAMP in a cGAS-dependent manner during apoptotic cell engulfment. However, cGAS deficiency did not impair the STING-dependent upregulation of CXCL10 in DNase II(-/-) mouse embryonic fibroblasts that was induced by apoptotic cell engulfment or DNA lipofection. These results suggest the involvement of a cGAS-independent additional DNA sensor(s) that induces the STING-dependent activation of innate immunity.

  20. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells.

    Science.gov (United States)

    Peng, Hua; Li, Wencheng; Seth, Dale M; Nair, Anand R; Francis, Joseph; Feng, Yumei

    2013-01-01

    The binding of renin or prorenin to the (pro)renin receptor (PRR) promotes angiotensin (Ang) II formation and mediates Ang II-independent signaling pathways. In the central nervous system (CNS), Ang II regulates blood pressure via inducing oxidative stress; however, the role of PRR-mediated Ang II-independent signaling pathways in oxidative stress in the CNS remains undefined. To address this question, Neuro-2A cells were infected with control virus or an adeno-associated virus encoding the human PRR. Human PRR over-expression alone increased ROS levels, NADPH oxidase activity, as well as NADPH oxidase (NOX) isoforms 2 and 4 mRNA expression levels and these effects were not blocked by losartan. Moreover, the increase in NOX 2 and NOX 4 mRNA levels, NADPH oxidase activity, and ROS levels induced by PRR over-expression was prevented by mitogen activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) inhibition, and phosphoinositide 3 kinase/Akt (IP3/Akt) inhibition, indicating that PRR regulates NOX activity and ROS formation in neuro-2A cells through Ang II-independent ERK1/2 and IP3/Akt activation. Interestingly, at a concentration of 2 nM or higher, prorenin promoted Ang II formation, and thus further increased the ROS levels in cultured Neuro-2A cells via PRR. In conclusion, human PRR over-expression induced ROS production through both angiotensin II-dependent and -independent mechanisms. We showed that PRR-mediated angiotensin II-independent ROS formation is associated with activation of the MAPK/ERK1/2 and PI3/Akt signaling pathways and up-regulation of mRNA level of NOX 2 and NOX4 isoforms in neuronal cells.

  1. The meloxicam complexes of Co(II) and Zn(II): Synthesis, crystal structures, photocleavage and in vitro DNA-binding

    Science.gov (United States)

    Sanatkar, Tahereh Hosseinzadeh; Hadadzadeh, Hassan; Simpson, Jim; Jannesari, Zahra

    2013-10-01

    Two neutral mononuclear complexes of Co(II) and Zn(II) with the non-steroidal anti-inflammatory drug meloxicam (H2mel, 4-hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1,2-benzothiazine-3-carboxammide-1,1-dioxide), [Co(Hmel)2(EtOH)2] (1), and [Zn(Hmel)2(EtOH)2] (2), were synthesized and characterized by elemental analysis, IR and UV-Vis spectroscopy and their solid-state structures were studied by single-crystal diffraction. The complexes have a distorted octahedral geometry around the metal atom. The experimental data indicate that the meloxicam acts as a deprotonated bidentate ligand (through the amide oxygen and the nitrogen atom of the thiazolyl ring) in the complexes, and a strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom stabilizes the ZZZ conformation of meloxicam ligands. Absorption, fluorescence spectroscopy and cyclic voltammetry have been used to investigate the binding of the complexes with fish sperm DNA (FS-DNA). Additionally, the photocleavage studies have been also used to investigate the binding of the complexes with plasmid DNA. The interaction of the complexes with DNA was monitored by a blue shift and hyperchromism in the UV-Vis spectra attributed to an electrostatic binding mode. A competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The experimental results show that the complexes can cleave pUC57 plasmid DNA.

  2. Synthesis, characterization, biological activity and DNA cleavage studies of tridentate Schiff bases and their Co(II complexes

    Directory of Open Access Journals (Sweden)

    P. Kavitha

    2016-01-01

    Full Text Available In the present study a series of Co(II complexes of formyl chromone Schiff bases have been synthesized characterized by analytical, molar conductance, IR, electronic, magnetic susceptibility, thermal, fluorescence and powder XRD measurements and screened for various biological activities (antimicrobial, antioxidant, nematicidal, DNA cleavage and cytotoxicity. In all the Co(II complexes 1:2 metal to ligand molar ratio was obtained from analytical data. The molar conductance data confirm that all complexes are non-electrolytic in nature. Based on the electronic and magnetic data, an octahedral geometry is ascribed for all the Co(II complexes. Thermal behaviour of the synthesized complexes illustrates the general decomposition patterns of the complexes. The X-ray analysis data show that all the Co(II complexes have triclinic crystal system with different unit cell parameters. Metal complexes have greater antimicrobial activity than ligands. Antioxidant and nematicidal activities indicate that the ligands exhibit greater activity when compared to their respective Co(II complexes. All ligands and Co(II complexes of HL1 and HL2 showed considerable anticancer activity against Raw, MCF-7 and COLO 205 cell lines. All ligands and their Co(II complexes showed more pronounced DNA cleavage activity in the presence of H2O2.

  3. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor.

    NARCIS (Netherlands)

    L. Schaeffer; V. Moncollin; R. Roy (Richard); A. Staub; M. Mezzina; A. Sarasin; G. Weeda (Geert); J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc)

    1994-01-01

    textabstractERCC2 is involved in the DNA repair syndrome xeroderma pigmentosum (XP) group D and was found to copurify with the RNA polymerase II (B) transcription factor BTF2/TFIIH that possesses a bidirectional helicase activity. Antibodies directed towards the 89 kDa (ERCC3) or the p62 subunit of

  4. A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II.

    Science.gov (United States)

    Finkelstein, A; Kostrub, C F; Li, J; Chavez, D P; Wang, B Q; Fang, S M; Greenblatt, J; Burton, Z F

    1992-01-30

    RAP30/74 (also known as TFIIF, beta gamma and FC is one of several general factors required for initiation by RNA polymerase II. The small RAP30 subunit of RAP30/74 binds directly to polymerase and appears structurally and functionally homologous to bacterial sigma factors in their RNA polymerase-binding region. RAP30/74 or recombinant RAP30 suppresses nonspecific binding of RNA polymerase II to DNA and is required for RNA polymerase II to assemble stably into a preinitiation complex containing promoter DNA and the general factors TFIID, TFIIA and TFIIB; both RAP30 and RAP74 are physical components of the preinitiation complex. A complementary DNA encoding human RAP30 has been isolated, and here we report the isolation of a cDNA encoding human RAP74. RAP30 and RAP74 produced in Escherichia coli can be used in place of natural human RAP30/74 to direct accurate transcription initiation by RNA polymerase II in vitro.

  5. An RNA polymerase II-and AGO4-associated protein acts in RNA-directed DNA methylation

    KAUST Repository

    Gao, Zhihuan

    2010-04-21

    DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm. © 2010 Macmillan Publishers Limited. All rights reserved.

  6. Extra Copper-mediated Enhancement of the DNA Cleavage Activity Supported with Wild-type Cu, Zn Superoxide Dismutase

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ruo-Yu; JIANG Wei; ZHANG Li-Na; WANG Li; LIU Chang-Lin

    2008-01-01

    It is well known that the primary function of wild type Cu, Zn superoxide dismutase (holo SOD) is to catalyze the conversion of the superoxide anion to H2O2 and O2 as an antioxidant enzyme. However, the aberrant copper-mediated oxidation chemistry in the enzyme (including its mutation forms) that damages nucleic acids, proteins including itself and cell membrane has attracted extensive attention in the past decade. The present study examined the hydrogen peroxide-dependent DNA cleavage activity supported with the combinations between holo SOD and extra copper (holo SOD+nCu(Ⅱ)). The results indicate that the presence of extra copper can enhance the DNA cleavage activity and a cooperative effect between holo SOD and the extra Cu(Ⅱ) occurs in DNA cleavage. The relative activity and kinetic assay showed that the DNA cleavage activity of holo SOD+nCu(Ⅱ) was enhanced upon addition of extra Cu(Ⅱ). The favorable pH regions for the DNA cleavage were observed to be 3.6-5.6 and 9.0-10, suggesting the species responsible for the DNA cleavage are different in different pH regions. In addition,to obtain an insight into DNA cleavage pathways, the effect of free radical scavengers and inhibitors on the DNA cleavage activity was probed.

  7. Interaction of a copper(II)-Schiff base complexes with calf thymus DNA and their antimicrobial activity.

    Science.gov (United States)

    Sabolová, D; Kožurková, M; Plichta, T; Ondrušová, Z; Hudecová, D; Simkovič, M; Paulíková, H; Valent, A

    2011-03-01

    The interaction of a copper complexes containing Schiff bases with calf thymus (CT) DNA was investigated by spectroscopic methods. UV-vis, fluorescence and CD spectroscopies were conducted to assess their binding ability with CT DNA. The binding constants K have been estimated from 0.8 to 9.1×10(4) M(-1). The percentage of hypochromism is found to be over 70% (from spectral titrations). The results showed that the copper(II) complexes could bind to DNA with an intercalative mode. Synergic action of Cu(II) complexes with ascorbic acid against Candida albicans induced the generation of free radicals and increased (more than 60 times) antimicrobial effect of these complexes.

  8. Palladium(II) complexes as biologically potent metallo-drugs: Synthesis, spectral characterization, DNA interaction studies and antibacterial activity

    Science.gov (United States)

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Naveen Kumar, R. M.; Revanasiddappa, Hosakere D.

    2013-04-01

    Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L1-L4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, 1H NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique.

  9. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.

    Science.gov (United States)

    Frierdich, Andrew J; Catalano, Jeffrey G

    2012-10-16

    The reduction of trace elements and contaminants by Fe(II) at Fe(III) oxide surfaces is well documented. However, the effect of aqueous Fe(II) on the fate of redox-active trace elements structurally incorporated into iron oxides is unknown. Here, we investigate the fate of redox-active elements during Fe(II)-activated recrystallization of Cu-, Co-, and Mn-substituted goethite and hematite. Enhanced release of Cu, Co, and Mn to solution occurs upon exposure of all materials to aqueous Fe(II) relative to reactions in Fe(II)-free fluids. The quantity of trace element release increases with pH when Fe(II) is present but decreases with increasing pH in the absence of Fe(II). Co and Mn release from goethite is predicted well using a second-order kinetic model, consistent with the release of redox-inactive elements such as Ni and Zn. However, Cu release and Co and Mn release from hematite require the sum of two rates to adequately model the kinetic data. Greater uptake of Fe(II) by Cu-, Co-, and Mn-substituted iron oxides relative to analogues containing only redox-inactive elements suggests that net Fe(II) oxidation occurs. Reduction of Cu, Co, and Mn in all materials following reaction with Fe(II) at pHs 7.0-7.5 is confirmed by X-ray absorption near-edge structure spectroscopy. This work shows that redox-sensitive elements structurally incorporated within iron oxides are reduced and repartitioned into fluids during Fe(II)-mediated recrystallization. Such abiotic reactions likely operate in tandem with partial microbial and abiotic iron reduction or during the migration of Fe(II)-containing fluids, mobilizing structurally bound contaminants and micronutrients in aquatic systems.

  10. Angiotensin II Type 1 Receptor-Mediated Electrical Remodeling in Mouse Cardiac Myocytes.

    Directory of Open Access Journals (Sweden)

    Jeremy Kim

    Full Text Available We recently characterized an autocrine renin angiotensin system (RAS in canine heart. Activation of Angiotensin II Type 1 Receptors (AT1Rs induced electrical remodeling, including inhibition of the transient outward potassium current Ito, prolongation of the action potential (AP, increased calcium entry and increased contractility. Electrical properties of the mouse heart are very different from those of dog heart, but if a similar system existed in mouse, it could be uniquely studied through genetic manipulations. To investigate the presence of a RAS in mouse, we measured APs and Ito in isolated myocytes. Application of angiotensin II (A2 for 2 or more hours reduced Ito magnitude, without affecting voltage dependence, and prolonged APs in a dose-dependent manner. Based on dose-inhibition curves, the fast and slow components of Ito (Ito,fast and IK,slow appeared to be coherently regulated by [A2], with 50% inhibition at an A2 concentration of about 400 nM. This very high K0.5 is inconsistent with systemic A2 effects, but is consistent with an autocrine RAS in mouse heart. Pre-application of the microtubule destabilizing agent colchicine eliminated A2 effects on Ito and AP duration, suggesting these effects depend on intracellular trafficking. Application of the biased agonist SII ([Sar1-Ile4-Ile8]A2, which stimulates receptor internalization without G protein activation, caused Ito reduction and AP prolongation similar to A2-induced changes. These data demonstrate AT1R mediated regulation of Ito in mouse heart. Moreover, all measured properties parallel those measured in dog heart, suggesting an autocrine RAS may be a fundamental feedback system that is present across species.

  11. Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.

    Science.gov (United States)

    Marino, Julieta; García Vior, María C; Furmento, Verónica A; Blank, Viviana C; Awruch, Josefina; Roguin, Leonor P

    2013-11-01

    In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced

  12. A novel thermostable polymerase for RNA and DNA Loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Yogesh eChander

    2014-08-01

    Full Text Available Meeting the goal of providing point of care (POC tests for molecular detection of pathogens in low resource settings places stringent demands on all aspects of the technology. OmniAmp DNA polymerase (Pol is a thermostable viral enzyme that enables true POC use in clinics or in field by overcoming important barriers to isothermal amplification. In this paper, we describe the multiple advantages of OmniAmp Pol as an isothermal amplification enzyme and provide examples of its use in loop-mediated isothermal amplification (LAMP for pathogen detection. The inherent reverse transcriptase activity of OmniAmp Pol allows single enzyme detection of RNA targets in RT-LAMP. Common methods of nucleic acid amplification are highly susceptible to sample contaminants, necessitating elaborate nucleic acid purification protocols that are incompatible with POC or field use. OmniAmp Pol was found to be less inhibited by whole blood components typical in certain crude sample preparations . Moreover, the thermostability of the enzyme compared to alternative DNA polymerases (Bst and reverse transcriptases allows pretreatment of complete reaction mixes immediately prior to amplification, which facilitates amplification of highly structured genome regions. Compared to Bst, OmniAmp Pol has a faster time to result, particularly with more dilute templates. Molecular diagnostics in field settings can be challenging due to the lack of refrigeration. The stability of OmniAmp Pol is compatible with a dry format that enables long term storage at ambient temperatures. A final requirement for field operability is compatibility with either commonly available instruments or, in other cases, a simple, inexpensive, portable detection mode requiring minimal training or power. Detection of amplification products is shown using lateral flow strips and analysis on a real-time PCR instrument. Results of this study show that OmniAmp Pol is ideally suited for low resource molecular

  13. Photolysis and thermolysis of platinum(IV) 2,2'-bipyridine complexes lead to identical platinum(II)-DNA adducts.

    Science.gov (United States)

    Loup, Christophe; Tesouro Vallina, Ana; Coppel, Yannick; Létinois, Ulla; Nakabayashi, Yasuo; Meunier, Bernard; Lippert, Bernhard; Pratviel, Geneviève

    2010-10-04

    Two Pt(IV) and two Pt(II) complexes containing a 2,2'-bipyridine ligand were treated with a short DNA oligonucleotide under light irradiation at 37°C or in the dark at 37 and 50°C. Photolysis and thermolysis of the Pt(IV) complexes led to spontaneous reduction of the Pt(IV) to the corresponding Pt(II) complexes and to binding of Pt(II) 2,2'-bipyridine complexes to N7 of guanine. When the reduction product was [Pt(bpy)Cl(2)], formation of bis-oligonucleotide adducts was observed, whereas [Pt(bpy)(MeNH(2))Cl](+) gave monoadducts, with chloride ligands substituted in both cases. Neither in the dark nor under light irradiation was the reductive elimination process of these Pt(IV) complexes accompanied by oxidative DNA damage. This work raises the question of the stability of photoactivatable Pt(IV) complexes toward moderate heating conditions.

  14. DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes.

    Science.gov (United States)

    Kumar, Rajendran Senthil; Arunachalam, Sankaralingam; Periasamy, Vaiyapuri Subbarayan; Preethy, Christo Paul; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2008-10-01

    Some novel water-soluble polymer-copper(II)-phenanthroline complex samples, [Cu(phen)2(BPEI)]Cl(2).4H2O (phen=1,10-phenanthroline, BPEI=branched polyethyleneimine), with different degrees of copper complex content in the polymer chain have been prepared by ligand substitution method in water-ethanol medium and characterized by infrared, UV-visible, EPR spectral and elemental analysis methods. The binding of these complex samples with DNA has been investigated by electronic absorption spectroscopy, emission spectroscopy and gel retardation assay. Electrostatic interactions between DNA molecule and polymer-copper(II) complex molecule containing many high positive charges have been observed. Besides these ionic interactions, van der Waals interactions, hydrogen bonding and other partial intercalation binding modes may also exist in this system. The polymer-copper(II) complex with higher degree of copper complex content was screened for its antimicrobial activity and antitumor activity.

  15. DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac.

    Science.gov (United States)

    Wartlick, Friedrich; Bopp, Anita; Henninger, Christian; Fritz, Gerhard

    2013-12-01

    Here, we investigated the influence of Rac family small GTPases on mechanisms of the DNA damage response (DDR) stimulated by topoisomerase II poisons. To this end, we examined the influence of the Rac-specific small molecule inhibitor EHT1864 on Ser139 phosphorylation of histone H2AX, a widely used marker of the DDR triggered by DNA double-strand breaks. EHT1864 attenuated the doxorubicin-stimulated DDR in a subset of cell lines tested, including HepG2 hepatoma cells. EHT1864 reduced the level of DNA strand breaks and increased viability following treatment of HepG2 cells with topo II poisons. Protection by EHT1864 was observed in both p53 wildtype (HepG2) and p53 deficient (Hep3B) human hepatoma cells and, furthermore, remained unaffected upon pharmacological inhibition of p53 in HepG2. Apparently, the impact of Rac on the DDR is independent of p53. Protection from doxorubicin-induced DNA damage by EHT1864 comprises both S and G2 phase cells. The inhibitory effect of EHT1864 on doxorubicin-stimulated DDR was mimicked by pharmacological inhibition of various protein kinases, including JNK, ERK, PI3K, PAK and CK1. EHT1864 and protein kinase inhibitors also attenuated the formation of the topo II-DNA cleavable complex. Moreover, EHT1864 mitigated the constitutive phosphorylation of topoisomerase IIα at positions S1106, S1213 and S1247. Doxorubicin transport, nuclear import/export of topoisomerase II and Hsp90-related mechanisms are likely not of relevance for doxorubicin-stimulated DDR impaired by EHT1864. We suggest that multiple kinase-dependent but p53- and heat shock protein-independent Rac-regulated nuclear mechanisms are required for activation of the DDR following treatment with topo II poisons.

  16. A tri-copper(II) complex displaying DNA-cleaving properties and antiproliferative activity against cancer cells.

    Science.gov (United States)

    Suntharalingam, Kogularamanan; Hunt, Douglas J; Duarte, Alexandra A; White, Andrew J P; Mann, David J; Vilar, Ramon

    2012-11-19

    A new disubstituted terpyridine ligand and the corresponding tri-copper(II) complex have been prepared and characterised. The binding affinity and binding mode of this tri-copper complex (as well as the previously reported mono- and di-copper analogues) towards duplex DNA were determined by using UV/Vis spectroscopic titrations and fluorescent indicator displacement (FID) assays. These studies showed the three complexes to bind moderately (in the order of 10(4)  M(-1)) to duplex DNA (ct-DNA and a 26-mer sequence). Furthermore, the number of copper centres and the nature of the substituents were found to play a significant role in defining the binding mode (intercalative or groove binding). The nuclease potential of the three complexes was investigated by using circular plasmid DNA as a substrate and analysing the products by agarose-gel electrophoresis. The cleaving activity was found to be dependent on the number of copper centres present (cleaving potency was in the order: tri-copper>di-copper>mono-copper). Interestingly, the tri-copper complex was able to cleave DNA without the need of external co-reductants. As this complex displayed the most promising nuclease properties, cell-based studies were carried out to establish if there was a direct link between DNA cleavage and cellular toxicity. The tri-copper complex displayed high cytotoxicity against four cancer cell lines. Of particular interest was that it displayed high cytotoxicity against the cisplatin-resistant MOLT-4 leukaemia cell line. Cellular uptake studies showed that the tri-copper complex was able to enter the cell and more importantly localise in the nucleus. Immunoblotting analysis (used to monitor changes in protein levels related to the DNA damage response pathway) and DNA-flow cytometric studies suggested that this tri-copper(II) complex is able to induce cellular DNA damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring.

    Science.gov (United States)

    Gökçe, Cansu; Gup, Ramazan

    2013-05-05

    Two new copper(II) complexes with the condensation products of methyl 2-naphthyl ketone with 4-hydroxybenzohydrazide, 4-hydroxy-N'-[(1Z)-1-(naphthalen-2-yl)ethylidene]benzohydrazide [HL(1)] and (Z)-ethyl 2-(4-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinecarbonyl)phenoxy)acetate (HL(2)) were synthesized and characterized by elemental analysis, infrared spectra, UV-Vis electronic absorption spectra, magnetic susceptibility measurements, TGA, powder XRD and SEM-EDS. The binding properties of the copper(II) complexes with calf thymus DNA were studied by using the absorption titration method. DNA cleavage activities of the synthesized copper complexes were examined by using agarose gel electrophoresis. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The experimental results suggest that the copper complexes bind significantly to calf thymus DNA by both groove binding and intercalation modes and cleavage effectively pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide-derived species and singlet oxygen ((1)O2) are the active oxidative species for DNA cleavage.

  18. The designed protein M(II)-Gly-Lys-His-Fos(138-211) specifically cleaves the AP-1 binding site containing DNA.

    Science.gov (United States)

    Harford, C; Narindrasorasak, S; Sarkar, B

    1996-04-09

    A new specific DNA cleavage protein, Gly-Lys-His-Fos(138-211), was designed, expressed, and characterized. The DNA-binding component of the design uses the basic and leucine zipper regions of the leucine zipper Fos, which are represented by Fos(138-211). The DNA cleavage moiety was provided by the design of the amino-terminal Cu(II)-, Ni(II)-binding site GKH at the amino terminus of Fos(138-211). Binding of Cu(II) or Ni(II) by the protein activates its cleavage ability. The GKH motif was predicted to form a specific amino-terminal Cu(II)-, Ni(II)-binding motif as previously defined [Predki, P. F., Harford, C., Brar, P., & Sarkar, B. (1992) Biochem. J. 287, 211 -215]. This prediction was verified as the tripeptide, GKH, and the expressed protein, GKH-Fos(138-211), were both shown to be capable of binding Cu(II) and Ni(II). The designed protein upon heterodimerization with Jun(248-334) was shown to bind to and cleave several forms of DNA which contained an AP-1 binding site. The cleavage was shown to be specific. This design demonstrates the versatility of the amino-terminal Cu(II)-, Ni(II)-binding motif and the variety of motifs which can be generated. The site of cleavage by GKH-Fos(138-211) on DNA provides further information regarding the bending of DNA upon binding to Fos-Jun heterodimers.

  19. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  20. Rich spectroscopic and molecular dynamic studies on the interaction of cytotoxic Pt(II) and Pd(II) complexes of glycine derivatives with calf thymus DNA.

    Science.gov (United States)

    Eslami Moghadam, Mahboube; Saidifar, Maryam; Divsalar, Adeleh; Mansouri-Torshizi, Hassan; Saboury, Ali Akbar; Farhangian, Hossein; Ghadamgahi, Maryam

    2016-01-01

    Some amino acid derivatives, such as R-glycine, have been synthesized together with their full spectroscopic characterization. The sodium salts of these bidentate amino acid ligands have been interacted with [M(bpy)(H2O)2](NO3)2 giving the corresponding some new complexes with formula [M(bpy)(R-gly)]NO3 (where M is Pt(II) or Pd(II), bpy is 2,2'-bipyridine and R-gly is butyl-, hexyl- and octyl-glycine). Due to less solubility of octyl derivatives, the biological activities of butyl and hexyl derivatives have been tested against chronic myelogenous leukemia cell line, K562. The interaction of these complexes with highly polymerized calf thymus DNA has been extensively studied by means of electronic absorption, fluorescence and other measurements. The experimental results suggest that these complexes positive cooperatively bind to DNA presumably via groove binding. Molecular dynamic results show that the DNA structure is largely maintained its native structure in hexylglycine derivative-water mixtures and at lower temperatures. The simulation data indicates that the more destabilizing effect of butylglycine is induced by preferential accumulation of these molecules around the DNA and due to their more negative free energy of binding via groove binding.

  1. Characteristic effect of an anticancer dinuclear platinum(II) complex on the higher-order structure of DNA.

    Science.gov (United States)

    Kida, Naoko; Katsuda, Yousuke; Yoshikawa, Yuko; Komeda, Seiji; Sato, Takaji; Saito, Yoshihiro; Chikuma, Masahiko; Suzuki, Mari; Imanaka, Tadayuki; Yoshikawa, Kenichi

    2010-06-01

    It is known that a 1,2,3-triazolato-bridged dinuclear platinum(II) complex, [{cis-Pt(NH(3))(2)}(2)(micro-OH)(micro-1,2,3-ta-N (1),N (2))](NO(3))(2) (AMTA), shows high in vitro cytotoxicity against several human tumor cell lines and circumvents cross-resistance to cisplatin. In the present study, we examined a dose- and time-dependent effect of AMTA on the higher-order structure of a large DNA, T4 phage DNA (166 kbp), by adapting single-molecule observation with fluorescence microscopy. It was found that AMTA induces the shrinking of DNA into a compact state with a much higher potency than cisplatin. From a quantitative analysis of the Brownian motion of individual DNA molecules in solution, it became clear that the density of a DNA segment in the compact state is about 2,000 times greater than that in the absence of AMTA. Circular dichroism spectra suggested that AMTA causes a transition from the B to the C form in the secondary structure of DNA, which is characterized by fast and slow processes. Electrophoretic measurements indicated that the binding of AMTA to supercoiled DNA induces unwinding of the double helix. Our results indicate that AMTA acts on DNA through both electrostatic interaction and coordination binding; the former causes a fast change in the secondary structure from the B to the C form, whereas the latter promotes shrinking in the higher-order structure as a relatively slow kinetic process. The shrinking effect of AMTA on DNA is attributable to the possible increase in the number of bridges along a DNA molecule. It is concluded that AMTA interacts with DNA in a manner markedly different from that of cisplatin.

  2. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    Science.gov (United States)

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  4. DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)benzothiazole Schiff base ligands.

    Science.gov (United States)

    Rambabu, Aveli; Pradeep Kumar, Marri; Tejaswi, Somapangu; Vamsikrishna, Narendrula; Shivaraj

    2016-12-01

    Four novel Schiff base ligands, L(1) (1-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)naphthalen-2-ol, C19H11F3N2O2S), L(2) (3-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)benzene-1,2-diol, C15H9F3N2O3S), L(3) (2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol, C16H11F3N2O3S) and L(4) (2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-4-bromophenol, C15H8BrF3N2O2S) and their binary copper(II) complexes 1 [Cu(L(1))2], 2 [Cu(L(2))2], 3 [Cu(L(3))2] and 4 [Cu(L(4))2] have been synthesized and characterized by elemental analysis, (1)H NMR, (13)C NMR, ESI mass, FT-IR, ESR, UV-Visible, magnetic susceptibility, TGA, SEM and powder XRD studies. Based on spectral and analytical data, a square planar geometry is assigned for all Cu(II) complexes. The ligands and their Cu(II) complexes have been screened for antimicrobial activity against bacterial species E. coli, P. aeruginosa, B. amyloliquefaciens and S. aureus and fungal species S. rolfsii and M. phaseolina and it is observed that all Cu(II) complexes are more potent than corresponding ligands. DNA binding (UV absorption, fluorescence and viscosity titrations) and cleavage (oxidative and photo cleavage) studies of Cu(II) complexes have also been investigated against calf thymus DNA (CT-DNA) and supercoiled pBR322 DNA respectively. From the experimental results, it is found that the complexes bound effectively to CT-DNA through an intercalative mode and also cleaved pBR322 DNA in an efficient manner. The DNA binding and cleavage affinities of newly synthesized Cu(II) complexes are in the order of 2>1>3>4.

  5. Translocation of PKC-betaII is mediated via RACK-1 in the neuronal cells following dioxin exposure.

    Science.gov (United States)

    Lee, Hyun-Gyo; Kim, Sun-Young; Choi, Eun-Jung; Park, Ki-Yeon; Yang, Jae-Ho

    2007-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to induce neurotoxic effects. However, the mechanism of TCDD-mediated signaling pathways and its possible molecular targets in neurons remains unknown. In this study, we analyzed effects of TCDD on neurofilament subunits, receptor for activated C kinase-1 (RACK-1), and PKC-betaII activity in developing neuronal cells. TCDD induced a significant increase of RACK-1, an adaptor protein for protein kinase C (PKC), in cerebellar granule cells in both dose- and time-dependent manner, indicating that RACK-1 is a sensitive molecular target in neuronal cells for TCDD exposure. TCDD induced a dose-dependent translocation of PKC-betaII from cytosol to membrane fractions. However, when RACK-1 induction was blocked by antisense oligonucleotide or alpha-naphthoflavone, Ah receptor (AhR) inhibitor, the translocation of PKC-betaII was inhibited. Our data suggests that TCDD activates PKC-betaII via RACK-1 in an AhR-dependent manner. This is the first report identifying RACK-1 as a target molecule involved in TCDD-mediated signaling pathways. TCDD exposure also increased the level of neurofilament-H mRNA. These results suggest that identification of target molecules may contribute to improve our understanding of TCDD-mediated signaling pathway and the risk assessment of TCDD-induced neurotoxicities.

  6. Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shihoko Kimura-Ohba

    2016-01-01

    Full Text Available Evidence of the pathological roles of matrix metalloproteinases (MMPs in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.

  7. Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke.

    Science.gov (United States)

    Kimura-Ohba, Shihoko; Yang, Yi

    2016-01-01

    Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.

  8. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis

    Science.gov (United States)

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-01-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications. PMID:27417089

  9. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA

    Science.gov (United States)

    Decker, Logan M.; Xiao, Hua; Boone, Erin C.; Vierling, Michael M.; Shanker, Benjamin S.; Kingston, Shanika L.; Boone, Shannon F.; Haynes, Jackson B.; Shiu, Patrick K.T.

    2017-01-01

    In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus combat these repetitive elements. One of these defense mechanisms is called meiotic silencing by unpaired DNA (MSUD), which identifies and silences unpaired genes during meiosis. Utilizing common RNA interference (RNAi) proteins, such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified an additional silencing component, namely the cap-binding complex (CBC). Made up of cap-binding proteins CBP20 and CBP80, CBC associates with the 5′ cap of mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. As seen in animals but not in plants, CBP20’s robust nuclear import depends on CBP80 in Neurospora. CBC interacts with a component (Argonaute) of the perinuclear meiotic silencing complex (MSC), directly linking the two cellular factors. PMID:28179391

  10. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.

    Science.gov (United States)

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-06-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.

  11. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA

    Directory of Open Access Journals (Sweden)

    Logan M. Decker

    2017-04-01

    Full Text Available In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus combat these repetitive elements. One of these defense mechanisms is called meiotic silencing by unpaired DNA (MSUD, which identifies and silences unpaired genes during meiosis. Utilizing common RNA interference (RNAi proteins, such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified an additional silencing component, namely the cap-binding complex (CBC. Made up of cap-binding proteins CBP20 and CBP80, CBC associates with the 5′ cap of mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. As seen in animals but not in plants, CBP20’s robust nuclear import depends on CBP80 in Neurospora. CBC interacts with a component (Argonaute of the perinuclear meiotic silencing complex (MSC, directly linking the two cellular factors.

  12. Triple helix-forming oligonucleotides conjugated to indolocarbazole poisons direct topoisomerase I-mediated DNA cleavage to a specific site.

    Science.gov (United States)

    Arimondo, P B; Bailly, C; Boutorine, A S; Moreau, P; Prudhomme, M; Sun, J S; Garestier, T; Hélène, C

    2001-01-01

    Topoisomerase I is an ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin. To achieve a sequence-specific cleavage of DNA by topoisomerase I, a triple helix-forming oligonucleotide was covalently linked to indolocarbazole-type topoisomerase I poisons. The three indolocarbazole-oligonucleotide conjugates investigated were able to direct topoisomerase I cleavage at a specific site based upon sequence recognition by triplex formation. The efficacy of topoisomerase I-mediated DNA cleavage depends markedly on the intrinsic potency of the drug. We show that DNA cleavage depends also upon the length of the linker arm between the triplex-forming oligonucleotide and the drug. Based on a known structure of the DNA-topoisomerase I complex, a molecular model of the oligonucleotide conjugates bound to the DNA-topoisomerase I complex was elaborated to facilitate the design of a potent topoisomerase I inhibitor-oligonucleotide conjugate with an optimized linker between the two moieties. The resulting oligonucleotide-indolocarbazole conjugate at 10 nM induced cleavage at the triple helix site 2-fold more efficiently than 5 microM of free indolocarbazole, while the other drug-sensitive sites were not cleaved. The rational design of drug-oligonucleotide conjugates carrying a DNA topoisomerase poison may be exploited to improve the efficacy and selectivity of chemotherapeutic cancer treatments by targeting specific genes and reducing drug toxicity.

  13. Pyrovanadolysis: a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate MN2plus and DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; A Kulczyk; S Akabayov; C Thiele; L McLaughlin; B Beauchamp; C Richardson

    2011-12-31

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

  14. DNA methylation-mediated down-regulation of DNA methyltransferase-1 (DNMT1) is coincident with, but not essential for, global hypomethylation in human placenta.

    Science.gov (United States)

    Novakovic, Boris; Wong, Nick C; Sibson, Mandy; Ng, Hong-Kiat; Morley, Ruth; Manuelpillai, Ursula; Down, Thomas; Rakyan, Vardhman K; Beck, Stephan; Hiendleder, Stefan; Roberts, Claire T; Craig, Jeffrey M; Saffery, Richard

    2010-03-26

    The genome of extraembryonic tissue, such as the placenta, is hypomethylated relative to that in somatic tissues. However, the origin and role of this hypomethylation remains unclear. The DNA methyltransferases DNMT1, -3A, and -3B are the primary mediators of the establishment and maintenance of DNA methylation in mammals. In this study, we investigated promoter methylation-mediated epigenetic down-regulation of DNMT genes as a potential regulator of global methylation levels in placental tissue. Although DNMT3A and -3B promoters lack methylation in all somatic and extraembryonic tissues tested, we found specific hypermethylation of the maintenance DNA methyltransferase (DNMT1) gene and found hypomethylation of the DNMT3L gene in full term and first trimester placental tissues. Bisulfite DNA sequencing revealed monoallelic methylation of DNMT1, with no evidence of imprinting (parent of origin effect). In vitro reporter experiments confirmed that DNMT1 promoter methylation attenuates transcriptional activity in trophoblast cells. However, global hypomethylation in the absence of DNMT1 down-regulation is apparent in non-primate placentas and in vitro derived human cytotrophoblast stem cells, suggesting that DNMT1 down-regulation is not an absolute requirement for genomic hypomethylation in all instances. These data represent the first demonstration of methylation-mediated regulation of the DNMT1 gene in any system and demonstrate that the unique epigenome of the human placenta includes down-regulation of DNMT1 with concomitant hypomethylation of the DNMT3L gene. This strongly implicates epigenetic regulation of the DNMT gene family in the establishment of the unique epigenetic profile of extraembryonic tissue in humans.

  15. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter

    2009-01-01

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper...... is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV...

  16. Highly selective and sensitive DNA assay based on electrocatalytic oxidation of ferrocene bearing zinc(II)-cyclen complexes with diethylamine.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J; Zeng, Zhanghua; Spiccia, Leone; Bond, Alan M

    2010-07-28

    A highly selective and sensitive electrochemical biosensor has been developed that detects DNA hybridization by employing the electrocatalytic activity of ferrocene (Fc) bearing cyclen complexes (cyclen = 1,4,7,10-tetraazacyclododecane, Fc[Zn(cyclen)H(2)O](2)(ClO(4))(4) (R1), Fc(cyclen)(2) (R2), Fc[Zn(cyclen)H(2)O](ClO(4))(2) (R3), and Fc(cyclen) (R4)). A sandwich-type approach, which involves hybridization of a target probe hybridized with the preimmobilized thiolated capture probe attached to a gold electrode, is employed to fabricate a DNA duplex layer. Electrochemical signals are generated by voltammetric interrogation of a Fc bearing Zn-cyclen complexes that selectively and quantitatively binds to the duplex layers through strong chelation between the cyclen complexes and particular nucleobases within the DNA sequence. Chelate formation between R1 or R3 and thymine bases leads to the perturbation of base-pair (A-T) stacking in the duplex structure, which greatly diminishes the yield of DNA-mediated charge transport and displays a marked selectivity to the presence of the target DNA sequence. Coupling the redox chemistry of the surface-bound Fc bearing Zn-cyclen complex and dimethylamine provides an electrocatalytic pathway that increases sensitivity of the assay and allows the 100 fM target DNA sequence to be detected. Excellent selectivity against even single-base sequence mismatches is achieved, and the DNA sensor is stable and reusable.

  17. Sequence-specific fluorometric recognition of HIV-1 ds-DNA with zwitterionic zinc(II)-carboxylate polymers.

    Science.gov (United States)

    Sun, Bin; Zhao, Hai-Qing; Xie, Bao-Ping; Bai, Li-Ping; Jiang, Zhi-Hong; Chen, Jin-Xiang

    2017-11-01

    Four water-stable zwitterionic zinc-carboxylate polymers are prepared by reacting N-carboxymethyl-(3,5-dicarboxy)-pyridinium bromide (H3CmdcpBr) with zinc(II) nitrate in the presence of NaOH, through adjusting the solvents and ancillary ligands. With H2O as the solvent and the absence of an ancillary ligand, a two-dimensional (2D) polymer network [Zn(Cmdcp)(H2O)]n (1) is formed. In a mixed H2O/DMF solvent and with the presence of chelating ligands 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) and 2-(4-pyridyl)benzimidazole (pbz), a one-dimensional (1D) polymer of {[Zn2(Cmdcp)(bipy)2(H2O)5](NO3)2·3H2O}n (2), a mononuclear ionic species of [Zn(phen)(H2O)4][Cmdcp] (3), and a 2D polymer of {[Zn(Cmdcp)(pbz)][pbz]·7H2O}n (4) are accordingly formed. Compounds 1-4 are characterized by IR, elemental analyses and single crystal X-ray crystallography. Compound 2 strongly adsorbs single-stranded DNA (ss-DNA) probe (denoted as P-DNA) labeled with carboxyfluorescein (FAM) and quenches its fluorescence via a photo-induced electron transfer process. If, however, a double-stranded DNA (ds-DNA) of the human immunodeficiency virus 1 (HIV-1 ds-DNA) is further present, the P-DNA interacts with the major groove in HIV-1 ds-DNA via Hoogsteen hydrogen bonding to form a rigid triplex structure. This results in partial or complete fluorescence recovery depending on the concentration of HIV-1 ds-DNA. The findings are applied in fluorometric sensing of HIV-1 ds-DNA. The calibration plot is linear in the 0-60nM target DNA concentration range, with a 7.4nM detection limit (at a signal-to-noise ratio of 3). The assay is highly specific and not interfered by one base pair mutated for complementary target HIV-1 ds-DNA, complementary ss-DNA, single-base pair mutated for complementary ss-DNA, non-specific ss-DNA sequences, and higher-order dimeric G-quadruplexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. DNAM-1 mediates epithelial cell-specific cytotoxicity of aberrant intraepithelial lymphocyte lines from refractory celiac disease type II patients.

    Science.gov (United States)

    Tjon, Jennifer M-L; Kooy-Winkelaar, Yvonne M C; Tack, Greetje J; Mommaas, A Mieke; Schreurs, Marco W J; Schilham, Marco W; Mulder, Chris J; van Bergen, Jeroen; Koning, Frits

    2011-06-01

    In refractory celiac disease (RCD), intestinal epithelial damage persists despite a gluten-free diet. Characteristic for RCD type II (RCD II) is the presence of aberrant surface TCR-CD3(-) intraepithelial lymphocytes (IELs) that can progressively replace normal IELs and eventually give rise to overt lymphoma. Therefore, RCD II is considered a malignant condition that forms an intermediate stage between celiac disease (CD) and overt lymphoma. We demonstrate in this study that surface TCR-CD3(-) IEL lines isolated from three RCD II patients preferentially lyse epithelial cell lines. FACS analysis revealed that DNAM-1 was strongly expressed on the three RCD cell lines, whereas other activating NK cell receptors were not expressed on all three RCD cell lines. Consistent with this finding, cytotoxicity of the RCD cell lines was mediated mainly by DNAM-1 with only a minor role for other activating NK cell receptors. Furthermore, enterocytes isolated from duodenal biopsies expressed DNAM-1 ligands and were lysed by the RCD cell lines ex vivo. Although DNAM-1 on CD8(+) T cells and NK cells is known to mediate lysis of tumor cells, this study provides, to our knowledge, the first evidence that (pre)malignant cells themselves can acquire the ability to lyse epithelial cells via DNAM-1. This study confirms previous work on epithelial lysis by RCD cell lines and identifies a novel mechanism that potentially contributes to the gluten-independent tissue damage in RCD II and RCD-associated lymphoma.

  19. Stalled RNAP-II molecules bound to non-coding rDNA spacers are required for normal nucleolus architecture.

    Science.gov (United States)

    Freire-Picos, M A; Landeira-Ameijeiras, V; Mayán, María D

    2013-07-01

    The correct distribution of nuclear domains is critical for the maintenance of normal cellular processes such as transcription and replication, which are regulated depending on their location and surroundings. The most well-characterized nuclear domain, the nucleolus, is essential for cell survival and metabolism. Alterations in nucleolar structure affect nuclear dynamics; however, how the nucleolus and the rest of the nuclear domains are interconnected is largely unknown. In this report, we demonstrate that RNAP-II is vital for the maintenance of the typical crescent-shaped structure of the nucleolar rDNA repeats and rRNA transcription. When stalled RNAP-II molecules are not bound to the chromatin, the nucleolus loses its typical crescent-shaped structure. However, the RNAP-II interaction with Seh1p, or cryptic transcription by RNAP-II, is not critical for morphological changes.

  20. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Haller Thomas

    2011-02-01

    Full Text Available Abstract Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS, exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells, a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.

  1. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes.

    Directory of Open Access Journals (Sweden)

    Carola Engler

    Full Text Available We have developed a protocol to assemble in one step and one tube at least nine separate DNA fragments together into an acceptor vector, with 90% of recombinant clones obtained containing the desired construct. This protocol is based on the use of type IIs restriction enzymes and is performed by simply subjecting a mix of 10 undigested input plasmids (nine insert plasmids and the acceptor vector to a restriction-ligation and transforming the resulting mix in competent cells. The efficiency of this protocol allows generating libraries of recombinant genes by combining in one reaction several fragment sets prepared from different parental templates. As an example, we have applied this strategy for shuffling of trypsinogen from three parental templates (bovine cationic trypsinogen, bovine anionic trypsinogen and human cationic trypsinogen each divided in 9 separate modules. We show that one round of shuffling using the 27 trypsinogen entry plasmids can easily produce the 19,683 different possible combinations in one single restriction-ligation and that expression screening of a subset of the library allows identification of variants that can lead to higher expression levels of trypsin activity. This protocol, that we call 'Golden Gate shuffling', is robust, simple and efficient, can be performed with templates that have no homology, and can be combined with other shuffling protocols in order to introduce any variation in any part of a given gene.

  2. Quantitation of cis-diamminedichloroplatinum II (cisplatin)-DNA-intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy.

    Science.gov (United States)

    Reed, E; Yuspa, S H; Zwelling, L A; Ozols, R F; Poirier, M C

    1986-02-01

    The antitumor activity of cis-diamminedichloroplatinum II (cisplatin) is believed to be related to its covalent interaction with DNA where a major DNA binding product is an intrastrand N7-bidentate adduct on adjacent deoxyguanosines. A novel immunoassay was used to quantitate this adduct in buffy coat DNA from testicular and ovarian cancer patients undergoing cisplatin therapy. 44 out of 120 samples taken from 45 cisplatin patients had detectable cisplatin-DNA adducts. No adducts were detected in 18 samples of DNA taken from normal controls, patients on other chemotherapy, or patients before treatment. The quantity of measurable adducts increased as a function of cumulative dose of cisplatin. This was observed both during repeated daily infusion of the drug and over long-term, repeated 21-28 d cycles of administration. These results suggested that adduct removal is slow even though the tissue has a relatively rapid turnover. Patients receiving cisplatin for the first time on 56-d cycles, and those given high doses of cisplatin as a "salvage" regimen, did not accumulate adducts as rapidly as patients on first time chemotherapy on 21- or 28-d cycles. Disease response data, evaluated for 33 cisplatin-treated patients, showed a positive correlation between the formation of DNA adducts and response to drug therapy. However, more data will be required to confirm this relationship. These data show that specific immunological probes can readily be applied to quantitate DNA adducts in patients undergoing cancer chemotherapy.

  3. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Aman Wang

    2017-05-01

    Full Text Available Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22 with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.

  4. Spectrophotometric determination of Mercury (II by simultaneous micelle mediated extraction through ternary complex formation in water samples

    Directory of Open Access Journals (Sweden)

    Farzin Nekouei

    2014-06-01

    Full Text Available In this study, a micelle mediated extraction procedure for preconcentration of trace quantities of Hg(II as a prior step to its simultaneous spectrophotometric determination has been developed. The method is based on a ternary ion-association of Hg(II, Xylidyl Blue (XB and cationic surfactant (CTAB. Major factors affecting the efficiency of the method has been studied. The limit of detection (LOD under optimum conditions based on 3Sb was 4.65 ng mL-1. The proposed method has been applied for determination of trace amount of mercury in water samples with satisfactory results.

  5. TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus.

    Science.gov (United States)

    Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng

    2014-03-28

    Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus.

  6. A Pol V-mediated silencing, independent of RNA-directed DNA methylation, applies to 5S rDNA.

    Directory of Open Access Journals (Sweden)

    Julien Douet

    2009-10-01

    Full Text Available The plant-specific RNA polymerases Pol IV and Pol V are essential to RNA-directed DNA methylation (RdDM, which also requires activities from RDR2 (RNA-Dependent RNA Polymerase 2, DCL3 (Dicer-Like 3, AGO4 (Argonaute, and DRM2 (Domains Rearranged Methyltransferase 2. RdDM is dedicated to the methylation of target sequences which include transposable elements, regulatory regions of several protein-coding genes, and 5S rRNA-encoding DNA (rDNA arrays. In this paper, we have studied the expression of the 5S-210 transcript, a marker of silencing release at 5S RNA genes, to show a differential impact of RNA polymerases IV and V on 5S rDNA arrays during early development of the plant. Using a combination of molecular and cytological assays, we show that Pol IV, RDR2, DRM2, and Pol V, actors of the RdDM, are required to maintain a transcriptional silencing of 5S RNA genes at chromosomes 4 and 5. Moreover, we have shown a derepression associated to chromatin decondensation specific to the 5S array from chromosome 4 and restricted to the Pol V-loss of function. In conclusion, our results highlight a new role for Pol V on 5S rDNA, which is RdDM-independent and comes specifically at chromosome 4, in addition to the RdDM pathway.

  7. A new double digestion ligation mediated suppression PCR method for simultaneous bacteria DNA-typing and confirmation of species: an Acinetobacter sp. model.

    Directory of Open Access Journals (Sweden)

    Karolina Stojowska

    Full Text Available We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s, while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR, whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR. The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal "band-based" results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3' recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5' rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided.

  8. Two half-sandwiched ruthenium (II compounds containing 5-fluorouracil derivatives: synthesis and study of DNA intercalation.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Li

    Full Text Available Two novel coordination compounds of half-sandwiched ruthenium(II containing 2-(5-fluorouracil-yl-N-(pyridyl-acetamide were synthesized, and their intercalation binding modes with calf thymus DNA were revealed by hyperchromism of ultraviolet-visible spectroscopy; the binding constants were determined according to a Langmuir adsorption equation that was deduced on the base of careful cyclic voltammetry measurements. The two compounds exhibited DNA intercalation binding activities with the binding constants of 1.13×106 M-1 and 5.35 ×105 M-1, respectively.

  9. Two half-sandwiched ruthenium (II) compounds containing 5-fluorouracil derivatives: synthesis and study of DNA intercalation.

    Science.gov (United States)

    Li, Zhao-Jun; Hou, Yong; Qin, Da-An; Jin, Zhi-Min; Hu, Mao-Lin

    2015-01-01

    Two novel coordination compounds of half-sandwiched ruthenium(II) containing 2-(5-fluorouracil)-yl-N-(pyridyl)-acetamide were synthesized, and their intercalation binding modes with calf thymus DNA were revealed by hyperchromism of ultraviolet-visible spectroscopy; the binding constants were determined according to a Langmuir adsorption equation that was deduced on the base of careful cyclic voltammetry measurements. The two compounds exhibited DNA intercalation binding activities with the binding constants of 1.13×106 M-1 and 5.35 ×105 M-1, respectively.

  10. PCR mediated recombination impacts the analysis of hepatitis B Virus covalently closed circular DNA.

    Science.gov (United States)

    Suspène, Rodolphe; Thiers, Valérie; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2016-12-20

    The replication of HBV involves the production of covalently closed circular DNA (cccDNA) from the HBV genome through the repair of virion relaxed circular DNA (rcDNA) in the virion. As cccDNA is the transcription template for HBV genomes, it needs to be eliminated from hepatocytes if the eradication of chronic HBV infection is to be achieved. PCR quantitation of cccDNA copy number is the technique of choice for evaluating the efficiency of treatment regimens. The PCR target commonly used to identify cccDNA spans the gapped region of rcDNA and is considered to accurately distinguish between cccDNA and rcDNA. There is however, a potentially confounding issue in that PCR can generate larger targets from collections of small DNA fragments, a phenomenon known as PCR recombination. The impact of PCR recombination towards the amplification of this cccDNA specific target was explored by mixing three marked, yet overlapping HBV DNA fragments. Thirteen of sixteen possible recombinants were identified by sequencing with frequencies ranging from 0.6 to 23%. To confirm this finding in vivo, HBV positive sera were treated with DNase I and submitted to quantitative real-time PCR. Under these conditions, it was possible to amplify the cccDNA specific segment without difficulty. As the virion contains uniquely rcDNA, amplification of the cccDNA target resulted from PCR recombination. PCR quantitation of cccDNA may be more difficult than hitherto thought. Current detection protocols need to be investigated so as to help in the management of chronic HBV infection.

  11. Copper(II)-Mediated Self-Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires.

    Science.gov (United States)

    Wang, Chengdong; Sun, Yawei; Wang, Jiqian; Xu, Hai; Lu, Jian R

    2015-09-01

    The self-assembly of peptides and proteins under well-controlled conditions underlies important nanostructuring processes that could be harnessed in practical applications. Herein, the synthesis of a new hairpin peptide containing four histidine residues is reported and the self-assembly process mediated by metal ions is explored. The work involves the combined use of circular dichroism, NMR spectroscopy, UV/Vis spectroscopy, AFM, and TEM to follow the structural and morphological details of the metal-coordination-mediated folding and self-assembly of the peptide. The results indicate that by forming a tetragonal coordination geometry with four histidine residues, copper(II) ions selectively trigger the peptide to fold and then self-assemble into nanofibrils. Furthermore, the copper(II)-bound nanofibrils template the synthesis of CuS nanowires, which display a near-infrared laser-induced thermal effect.

  12. Transferrin-mediated PEGylated nanoparticles for delivery of DNA/PLL

    Energy Technology Data Exchange (ETDEWEB)

    Gu Wangwen; Xu Zhenghong; Gao Yu; Chen Lingli; Li Yaping [Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)

    2006-08-28

    The purpose of this work was to determine the stability of pDNA/poly(L-lysine) complex (DNA/PLL) during microencapsulation, prepare transferrin (TF) conjugated PEGylated nanoparticles (TF-PEG-NP) loading DNA/PLL, and assess its physicochemical characteristics and in vitro transfection efficiency. The DNA/PLL was prepared by mixing plasmid DNA (pDNA) in deionized water with various amounts of PLL. PEGylated nanoparticles (PEG-NP) loading DNA/PLL were prepared by a water-oil-water double emulsion solvent evaporation technique. TF-PEG-NP was prepared by coupling TF with PEG-NP. The physicochemical characteristics of TF-PEG-NP and in vitro transfection efficiency on K562 cells were measured. The results showed that free pDNA reserved its double supercoiled form (dsDNA) for only on average 25.7% after sonification, but over 70% of dsDNA was reserved after pDNA was contracted with PLL. The particle size range of TF-PEG-NP loading DNA/PLL was 150-450 nm with entrapment efficiency over 70%. TF-PEG-NP exhibited the low burst effect (<10%) within 1 day. After the first phase, DNA/PLL displayed a sustained release. The amount of cumulated DNA/PLL release from TF-PEG-NP with 2% polymer over 7 days was 85.4% for DNA/PLL (1:0.3 mass ratio), 59.8% and 43.1% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. To TF-PEG-NP loading DNA/PLL without chloroquine, the percentage of EGFP expressing cells was 28.9% for complexes consisting of DNA/PLL (1:0.3), 38.5% and 39.7% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. In TF-PEG-NP loading DNA/PLL with chloroquine, more cells were transfected, the percentage of positive cells was 37.6% (DNA/PLL, 1:0.3), 47.1% (DNA/PLL, 1:0.6) and 45.8% (DNA/PLL, 1:1.0), which meant that the transfection efficiency of pDNA was increased by over 50 times when PLL and TF-PEG-NP were jointly used as a plasmid DNA carrier, in particular, the maximal percentage of positive cells (47.1%) from TF-PEG-NP loading DNA/PLL (1:0.6) was about 70 times the

  13. Structured and disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1, ETV4 and ETV5

    Science.gov (United States)

    Currie, Simon L.; Lau, Desmond K. W.; Doane, Jedediah J.; Whitby, Frank G.; Okon, Mark; McIntosh, Lawrence P.

    2017-01-01

    Abstract Autoinhibition enables spatial and temporal regulation of cellular processes by coupling protein activity to surrounding conditions, often via protein partnerships or signaling pathways. We report the molecular basis of DNA-binding autoinhibition of ETS transcription factors ETV1, ETV4 and ETV5, which are often overexpressed in prostate cancer. Inhibitory elements that cooperate to repress DNA binding were identified in regions N- and C-terminal of the ETS domain. Crystal structures of these three factors revealed an α-helix in the C-terminal inhibitory domain that packs against the ETS domain and perturbs the conformation of its DNA-recognition helix. Nuclear magnetic resonance spectroscopy demonstrated that the N-terminal inhibitory domain (NID) is intrinsically disordered, yet utilizes transient intramolecular interactions with the DNA-recognition helix of the ETS domain to mediate autoinhibition. Acetylation of selected lysines within the NID activates DNA binding. This investigation revealed a distinctive mechanism for DNA-binding autoinhibition in the ETV1/4/5 subfamily involving a network of intramolecular interactions not present in other ETS factors. These distinguishing inhibitory elements provide a platform through which cellular triggers, such as protein–protein interactions or post-translational modifications, may specifically regulate the function of these oncogenic proteins. PMID:28161714

  14. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    Science.gov (United States)

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  15. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice

    OpenAIRE

    Chia, Elizabeth; Kagota, Satomi; Wijekoon, Enoka P; McGuire, John J

    2011-01-01

    Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of re...

  16. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath.

    Directory of Open Access Journals (Sweden)

    Sandeep K Kasoji

    Full Text Available A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation.

  17. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    Science.gov (United States)

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  18. Transferrin-mediated PEGylated nanoparticles for delivery of DNA/PLL.

    Science.gov (United States)

    Gu, Wangwen; Xu, Zhenghong; Gao, Yu; Chen, Lingli; Li, Yaping

    2006-08-28

    The purpose of this work was to determine the stability of pDNA/poly(L-lysine) complex (DNA/PLL) during microencapsulation, prepare transferrin (TF) conjugated PEGylated nanoparticles (TF-PEG-NP) loading DNA/PLL, and assess its physicochemical characteristics and in vitro transfection efficiency. The DNA/PLL was prepared by mixing plasmid DNA (pDNA) in deionized water with various amounts of PLL. PEGylated nanoparticles (PEG-NP) loading DNA/PLL were prepared by a water-oil-water double emulsion solvent evaporation technique. TF-PEG-NP was prepared by coupling TF with PEG-NP. The physicochemical characteristics of TF-PEG-NP and in vitro transfection efficiency on K562 cells were measured. The results showed that free pDNA reserved its double supercoiled form (dsDNA) for only on average 25.7% after sonification, but over 70% of dsDNA was reserved after pDNA was contracted with PLL. The particle size range of TF-PEG-NP loading DNA/PLL was 150-450 nm with entrapment efficiency over 70%. TF-PEG-NP exhibited the low burst effect (PLL displayed a sustained release. The amount of cumulated DNA/PLL release from TF-PEG-NP with 2% polymer over 7 days was 85.4% for DNA/PLL (1:0.3 mass ratio), 59.8% and 43.1% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. To TF-PEG-NP loading DNA/PLL without chloroquine, the percentage of EGFP expressing cells was 28.9% for complexes consisting of DNA/PLL (1:0.3), 38.5% and 39.7% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. In TF-PEG-NP loading DNA/PLL with chloroquine, more cells were transfected, the percentage of positive cells was 37.6% (DNA/PLL, 1:0.3), 47.1% (DNA/PLL, 1:0.6) and 45.8% (DNA/PLL, 1:1.0), which meant that the transfection efficiency of pDNA was increased by over 50 times when PLL and TF-PEG-NP were jointly used as a plasmid DNA carrier, in particular, the maximal percentage of positive cells (47.1%) from TF-PEG-NP loading DNA/PLL (1:0.6) was about 70 times the transfection efficiency of free plasmid DNA

  19. Receptor-Mediated Entry of Pristine Octahedral DNA Nanocages in Mammalian Cells

    DEFF Research Database (Denmark)

    Vindigni, Giulia; Raniolo, Sofia; Ottaviani, Alessio;

    2016-01-01

    , more recently, identified as a tumor marker. For this purpose a truncated octahedral DNA nanocage functionalized with a single biotin molecule, which allows DNA cage detection through the biotin–streptavidin assays, was constructed. The results indicate that DNA nanocages are stable in biological...

  20. Synergistic effect of angiotensin II on vascular endothelial growth factor-A-mediated differentiation of bone marrow-derived mesenchymal stem cells into endothelial cells

    OpenAIRE

    Ikhapoh, Izuagie Attairu; Pelham, Christopher J; Agrawal, Devendra K.

    2015-01-01

    Introduction Increased levels of angiotensin II (Ang II) and activity of Ang II receptor type 1 (AT1R) elicit detrimental effects in cardiovascular disease. However, the role of Ang II receptor type 2 (AT2R) remains poorly defined. Mesenchymal stem cells (MSCs) replenish and repair endothelial cells in the cardiovascular system. Herein, we investigated a novel role of angiotensin signaling in enhancing vascular endothelial growth factor (VEGF)-A-mediated differentiation of MSCs into endotheli...

  1. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Science.gov (United States)

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-05-11

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E₂, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional "repair and survive, or die" hypothesis.

  2. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage.

    Science.gov (United States)

    Pereg, Yaron; Shkedy, Dganit; de Graaf, Petra; Meulmeester, Erik; Edelson-Averbukh, Marina; Salek, Mogjiborahman; Biton, Sharon; Teunisse, Amina F A S; Lehmann, Wolf D; Jochemsen, Aart G; Shiloh, Yosef

    2005-04-05

    Maintenance of genomic stability depends on the DNA damage response, an extensive signaling network that is activated by DNA lesions such as double-strand breaks (DSBs). The primary activator of the mammalian DSB response is the nuclear protein kinase ataxia-telangiectasia, mutated (ATM), which phosphorylates key players in various arms of this network. The activation and stabilization of the p53 protein play a major role in the DNA damage response and are mediated by ATM-dependent posttranslational modifications of p53 and Mdm2, a ubiquitin ligase of p53. p53's response to DNA damage also depends on Mdm2-dependent proteolysis of Mdmx, a homologue of Mdm2 that represses p53's transactivation function. Here we show that efficient damage-induced degradation of human Hdmx depends on functional ATM and at least three sites on the Hdmx that are phosphorylated in response to DSBs. One of these sites, S403, is a direct ATM target. Accordingly, each of these sites is important for Hdm2-mediated ubiquitination of Hdmx after DSB induction. These results demonstrate a sophisticated mechanism whereby ATM fine-tunes the optimal activation of p53 by simultaneously modifying each player in the process.

  3. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    Science.gov (United States)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  4. Human insulin-like growth factor II leader 2 mediates internal initiation of translation

    DEFF Research Database (Denmark)

    Pedersen, Susanne K; Christiansen, Jan; Hansen, Thomas v O

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IG...

  5. How-to-Do-It: Recombinant DNA Made Easy II. Gene, Gene, Who's Got the Gene?

    Science.gov (United States)

    Thomson, Robert G.

    1989-01-01

    Described is an activity in which students are able to determine that DNA can be transferred between bacteria and should be able to predict the type of DNA transferred. Methods, materials, and results are discussed. (CW)

  6. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    Science.gov (United States)

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively.

  7. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties

    Science.gov (United States)

    Gup, Ramazan; Gökçe, Cansu; Aktürk, Selçuk

    2015-01-01

    Two new Cu(II) complexes of Schiff base-hydrazone ligands, hydroxy-N‧-[(1Z)-1-(4-hydroxyphenyl)ethylidene]benzohydrazide [H3L1] and ethyl 2-(4-(1-(2-(4-(2-ethoxy-2-oxoethoxy)benzoyl)hydrazono)ethyl)phenoxy)acetate (HL2) have been synthesized and then characterized by microcopy and spectral studies. X-ray powder diffraction illustrates that [Cu(L2)2] complex is crystalline in nature whereas [Cu(H2L1)2]·2H2O has an amorphous structure. Binding of the copper complexes with Calf thymus DNA (CT-DNA) has been investigated by UV-visible spectra, exhibiting non-covalent binding to CT-DNA. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). The effect of complex concentration on the DNA cleavage reaction has been also studied. Both copper complexes show nuclease activity, which significantly depends on concentrations of the complexes, in the presence of H2O2 through oxidative mechanism whereas they slightly cleavage DNA in the absence an oxidative agent.

  8. Tuning the activity of Zn(II) complexes in DNA cleavage: clues for design of new efficient metallo-hydrolases.

    Science.gov (United States)

    Bazzicalupi, Carla; Bencini, Andrea; Bonaccini, Claudia; Giorgi, Claudia; Gratteri, Paola; Moro, Stefano; Palumbo, Manlio; Simionato, Alessandro; Sgrignani, Jacopo; Sissi, Claudia; Valtancoli, Barbara

    2008-06-16

    The hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode. Experiments with supercoiled plasmid DNA show that both complexes can cleave DNA at neutral pH, where the L1 and L2 complexes display a similar reactivity. Conversely, the pH-dependence of their cleavage ability is remarkably different. The reactivity of the mononuclear complex, in fact, decreases with pH while that of the dinuclear one is enhanced at alkaline pH values. The efficiency of the two complexes in DNA cleavage at different pH values was elucidated by means of a quantum mechanics/molecular mechanics (QM/MM) study on the adducts between DNA and the different complexed species present in solution.

  9. Rapid purification of circular DNA by triplex-mediated affinity capture

    Science.gov (United States)

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  10. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    Science.gov (United States)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.

  11. MKP1 phosphatase mediates G1-specific dephosphorylation of H3Serine10P in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Khan, Shafqat A.; Sharda, Asmita; Reddy, Divya V; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-08-15

    Highlights: • Reversible reduction of H3S10 phosphorylation after DNA damage is G1 phase specific. • Dynamic balance between MAP kinases, MKP1 and MSK1 regulate H3S10P during DDR. • MKP1 associates with chromatin bearing γH2AX in response to DNA damage. • Inhibition of MKP1 activity with specific inhibitor promotes radiation-induced cell death. - Abstract: Histone mark, H3S10 phosphorylation plays a dual role in a cell by maintaining relaxed chromatin for active transcription in interphase and condensed chromatin state in mitosis. The level of H3S10P has also been shown to alter on DNA damage; however, its cell cycle specific behavior and regulation during DNA damage response is largely unexplored. In the present study, we demonstrate G1 cell cycle phase specific reversible loss of H3S10P in response to IR-induced DNA damage is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. We also show that the MKP1 recruits to the chromatin in response to DNA damage and correlates with the decrease of H3S10P, whereas MKP1 is released from chromatin during recovery phase of DDR. Furthermore, blocking of H3S10 dephosphorylation by MKP1 inhibition impairs DNA repair process and results in poor survival of WRL68 cells. Collectively, our data proposes a pathway regulating G1 cell cycle phase specific reversible reduction of H3S10P on IR induced DNA damage and also raises the possibility of combinatorial modulation of H3S10P with specific inhibitors to target the cancer cells in G1-phase of cell cycle.

  12. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Sudan, Sudhanshu; Rupasinghe, H P Vasantha

    2014-04-01

    Dietary flavonoids have been associated with reduced risk of cancer including hepatocellular carcinoma (HCC). Quercetin-3-O-glucoside (Q3G) has been shown to possess anti-proliferative and antioxidant activities. The objectives of this study were to assess the anti-proliferative properties of Q3G in human liver cancer cells (HepG2); assess the cytotoxicity on normal primary cells; and elucidate its possible mechanism of action(s). Using a dose- and time-dependent study, we evaluated the antiproliferative properties of Q3G in HepG2 cells using MTS cell viability assay and lactate dehydrogenase release assay. To elucidate the mechanism of action, we performed cell-cycle analysis using flow cytometry. Cell death via apoptosis was analyzed by DNA fragmentation assay, caspase-3 induction assay and fluorescence microscopy. DNA topoisomerase II drug screening assay was performed to assess the effect of Q3G on DNA topoisomerase II. Q3G treatment inhibited cell proliferation in a dose- and time-dependent manner in HepG2 cells with the blockade of the cell cycle in the S-phase. Additionally, Q3G exhibited a strong ability to inhibit DNA topoisomerase II. Furthermore, DNA fragmentation and fluorescence microscopy analysis suggested that Q3G induced apoptosis in HepG2 cells with the activation of caspase-3. Interestingly, Q3G exhibited significantly lower toxicity to normal cells (primary human and rat hepatocytes and primary lung cells) than sorafenib (papoptosis. Further research should be performed to confirm these results in vivo.

  13. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae).

    Science.gov (United States)

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-09-19

    To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G planctonica and 262,888-bp G sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming.

  14. Specific blockade by CD54 and MHC II of CD40-mediated signaling for B cell proliferation and survival

    DEFF Research Database (Denmark)

    Doyle, I S; Hollmann, C A; Crispe, I N;

    2001-01-01

    Regulation of B lymphocyte proliferation is critical to maintenance of self-tolerance, and intercellular interactions are likely to signal such regulation. Here, we show that coligation of either the adhesion molecule ICAM-1/CD54 or MHC II with CD40 inhibited cell cycle progression and promoted...... apoptosis of mouse splenic B cells. This resulted from specific blockade of NF-kappa B induction, which normally inhibits apoptosis. LPS- or B cell receptor (BCR)-induced proliferation was not inhibited by these treatments, and mAb-induced association of CD40 with other B cell surface molecules did not have...... these effects. Addition of BCR or IL-4 signals did not overcome the effect of ICAM-1 or MHC II on CD40-induced proliferation. FasL expression was not detected in B cell populations. These results show that MHC II and ICAM-1 specifically modulate CD40-mediated signaling, so inhibiting proliferation...

  15. Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Juan, Long; Xiao, Zhao; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    Current clinically available treatments for rheumatoid arthritis (RA) fail to cure the disease or unsatisfactorily halt disease progression. To overcome these limitations, the development of therapeutic DNA vaccines and boosters may offer new promising strategies. Because type II collagen (CII) as a critical autoantigen in RA and native chicken type II collagen (nCCII) has been used to effectively treat RA, we previously developed a novel therapeutic DNA vaccine encoding CCII (pcDNA-CCOL2A1) with efficacy comparable to that of the current "gold standard", methotrexate(MTX). Here, we systemically evaluated the safety and immunogenicity of the pcDNA-CCOL2A1 vaccine in normal Wistar rats. Group 1 received only a single intramuscular injection into the hind leg with pcDNA-CCOL2A1 at the maximum dosage of 3 mg/kg on day 0; Group 2 was injected with normal saline (NS) as a negative control. All rats were monitored daily for any systemic adverse events, reactions at the injection site, and changes in body weights. Plasma and tissues from all experimental rats were collected on day 14 for routine examinations of hematology and biochemistry parameters, anti-CII IgG antibody reactivity, and histopathology. Our results indicated clearly that at the maximum dosage of 3 mg/kg, the pcDNA-CCOL2A1 vaccine was safe and well-tolerated. No abnormal clinical signs or deaths occurred in the pcDNA-CCOL2A1 group compared with the NS group. Furthermore, no major alterations were observed in hematology, biochemistry, and histopathology, even at the maximum dose. In particularly, no anti-CII IgG antibodies were detected in vaccinated normal rats at 14 d after vaccination; this was relevant because we previously demonstrated that the pcDNA-CCOL2A1 vaccine, when administered at the therapeutic dosage of 300 μg/kg alone, did not induce anti-CII IgG antibody production and significantly reduced levels of anti-CII IgG antibodies in the plasma of rats with established collagen-induced arthritis

  16. Novel complexes of Co(III) and Ni(II) containing peptide ligands: Synthesis, DNA binding and photonuclease activity

    Science.gov (United States)

    Sudhamani, C. N.; Bhojya Naik, H. S.; Girija, D.; Sangeetha Gowda, K. R.; Giridhar, M.; Arvinda, T.

    2014-01-01

    The new cobalt(III) and nickel(II) complexes of the type [M(L)2(H2O)2]n+ (where M = Co(III) or Ni(II) ion, n = 3 for Co and 2 for Ni, L = peptides Fmoc. Ala-val-OH (F-AVOH), Fmoc-Phe-Leu-Ome (F-PLOMe) and Z-Ala-Phe-COsbnd NH2 (Z-APCONH2)) were synthesized and structurally characterized by FTIR, 1H NMR, elemental analysis and electronic spectral data. An octahedral geometry has been proposed for all the synthesized Co(III) and Ni(II) metal complexes. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation.

  17. Novel complexes of Co(III) and Ni(II) containing peptide ligands: synthesis, DNA binding and photonuclease activity.

    Science.gov (United States)

    Sudhamani, C N; Bhojya Naik, H S; Girija, D; Sangeetha Gowda, K R; Giridhar, M; Arvinda, T

    2014-01-24

    The new cobalt(III) and nickel(II) complexes of the type [M(L)2(H2O)2](n)(+) (where M = Co(III) or Ni(II) ion, n = 3 for Co and 2 for Ni, L = peptides Fmoc. Ala-val-OH (F-AVOH), Fmoc-Phe-Leu-Ome (F-PLOMe) and Z-Ala-Phe-CONH2 (Z-APCONH2)) were synthesized and structurally characterized by FTIR, (1)H NMR, elemental analysis and electronic spectral data. An octahedral geometry has been proposed for all the synthesized Co(III) and Ni(II) metal complexes. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation.

  18. The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.

    Science.gov (United States)

    Żabka, Aneta; Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2015-11-01

    DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities.

  19. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  20. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation.

    Science.gov (United States)

    Weng, Yueh-Shan; Wang, Hsueh-Fang; Pai, Pei-Ying; Jong, Gwo-Ping; Lai, Chao-Hung; Chung, Li-Chin; Hsieh, Dennis Jine-Yuan; HsuanDay, Cecilia; Kuo, Wei-Wen; Huang, Chih-Yang

    2015-01-01

    IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.

  1. White light-mediated Cu (II)-5FU interaction augments the chemotherapeutic potential of 5-FU: an in vitro study.

    Science.gov (United States)

    Chibber, Sandesh; Farhan, Mohd; Hassan, Iftekhar; Naseem, Imrana

    2011-10-01

    5-Fluorouracil (5-FU) is a potent photosensitizer used in colon and rectal cancers. 5-FU on galvanostatic electrolysis or radiation-induced oxidation of aqueous solution yields N(1)-C(5)-linked dimmer hydrate of 5-FU. Copper is presently associated with chromatin; in cancer cells the concentration of copper is very high. It has been shown to be capable of mediating the action of several anticancer drugs through the production of reactive oxygen species (ROS). The objective of the present study is to determine the Cu (II)-mediated anticancer mechanism of 5-FU under photo-illumination as well as 5-FU alone. We have shown that a pro-oxidant action was enhanced when Cu (II) was used with 5-FU as compared to 5-FU alone. This may be due to the inhibition of dimerization of 5-FU when present in combination with Cu (II) under photo-illumination. It was also shown that 5-FU alone as well as in combination with Cu (II) was able to generate oxidative stress in lymphocyte which is inhibited by scavengers of ROS. Moreover, the results of Fourier-transformed infrared spectra lead to the conclusion that the dimerization of 5-FU was inhibited when used in combination with Cu (II). It was due to the interaction of 5-FU with Cu (II). Hence, we propose that during chemoradiotherapy with 5-FU, the endogenous copper is mobilized by 5-FU, leading to the generation of ROS which cause oxidative stress and possibly cancer cell death by apoptosis.

  2. Ruthenium(II) complexes: DNA-binding, cytotoxicity, apoptosis, cellular localization, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential and western blot analysis.

    Science.gov (United States)

    Li, Wei; Jiang, Guang-Bin; Yao, Jun-Hua; Wang, Xiu-Zhen; Wang, Ji; Han, Bing-Jie; Xie, Yang-Yin; Lin, Gan-Jian; Huang, Hong-Liang; Liu, Yun-Jun

    2014-11-01

    The aim of our study was to investigate DNA-binding and cytotoxic activity of the four new Ru(II) polypyridyl complexes [Ru(dmb)₂(HMHPIP)](ClO₄)₂ (1), [Ru(bpy)₂(HMHPIP)](ClO₄)₂ (2), [Ru(phen)₂(HMHPIP)](ClO₄)₂ (3) and [Ru(dmp)₂(HMHPIP)](ClO₄)₂ (4). The complexes interact with DNA through intercalative mode and show relatively high cytotoxic activity against A549 cells, no cytotoxicity toward MG-63 cells. Complexes 1-4 can enhance the levels of ROS in A549 cells and induce the decrease of the mitochondrial membrane potential. These complexes inhibit the cell growth in A549 cells at G0/G1 or S phase. Complex 3 activated caspase 7, and down-regulated the expression of the anti-apoptotic protein Bcl-2. Complexes 1-4 induce apoptosis in A549 cells through ROS-mediated mitochondrial dysfunction pathway. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Synthesis, DNA binding and cleavage studies of Ni(II) complexes with fused aromatic N-containing ligands

    Science.gov (United States)

    Sudhamani, C. N.; Naik, H. S. Bhojya; Naik, T. R. Ravikumar; Prabhakara, M. C.

    2009-04-01

    The three Ni(II) complexes of fused aromatic N-containing ligands such as [Ni(bnp) 3](PF 6) 2 ( 1), [Ni(phen) 2(bnp)](PF 6) 2 ( 2) and [Ni(bpy) 2(bnp)](PF 6) 2 ( 3) (where bnp = dibenzo(b)1,8-naphthpyridine, phen = 1,10-phenanthroline and bpy = bipyridine) were synthesized and structurally characterized. Elemental analysis, magnetic and spectroscopic data suggested octahedral geometry for all the complexes. Binding of these complexes with (ds)DNA were analyzed by absorption spectra, viscosity and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator. The oxidative cleavage activities of the complexes were studied with supercoiled (SC)pUC19 DNA by using gel electrophoresis, and the results show that complexes have potent nuclease activity.

  4. Synthesis, structural characterization and biological activity of a trinuclear zinc(II) complex: DNA interaction study and antimicrobial activity

    Indian Academy of Sciences (India)

    Bhaskar Biswas; Niranjan Kole; Moumita Patra; Shampa Dutta; Mousumi Ganguly

    2013-11-01

    A trinuclear zinc(II) complex [Zn3L2(-O2CCH3)2(H2O)2]·H2O·2CH3OH (1) was synthesized from an in situ reaction between zinc acetate and a Schiff base ligand (H2L = 2-((2-hydroxyphenylimino) methyl)-6-methoxyphenol). The ligand was prepared by (1:1) condensation of ortho-vanillin and ortho-aminophenol. The ligand and zinc(II) complex were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), UV-Vis spectroscopy, Powder X-ray Diffraction (PXRD) and thermogravimetric analysis. 1 crystallizes in P-1 space group with = 11.9241(3) Å, = 12.19746 Å, = 20.47784 Å with unit cell volume is 2674.440 (Å)3. Binding property of the complex with calf thymus DNA (CT-DNA) has been investigated using absorption and emission studies. Thermal melting and viscosity experiments were further performed to determine the mode of binding of 1 with CT-DNA. Spectroscopic and viscosity investigations revealed an intercalative binding mode of 1 with CT-DNA. The ligand and its zinc complex were screened for their biological activity against bacterial species and fungi. Activity data show that the metal complex has more antibacterial and antifungal activity than the parent Schiff base ligand and against those bacterial or fungi species.

  5. Complexes of Pd(II) and Pt(II) with 9-Aminoacridine: Reactions with DNA and Study of Their Antiproliferative Activity

    Science.gov (United States)

    Riera, X.; Moreno, V.; Ciudad, C. J.; Noe, V.; Font-Bardía, M.; Solans, X.

    2007-01-01

    Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin. PMID:18364995

  6. A comparison of intraspecific patterns of DNA sequence variation in mitochondrial DNA, alpha-enolase, and MHC class II B loci in auklets (Charadriiformes: Alcidae).

    Science.gov (United States)

    Walsh, Hollie E; Friesen, Vicki L

    2003-12-01

    Patterns of DNA sequence variation can be used to learn about mechanisms of organismal evolution, but only if mechanisms of sequence evolution are well understood. Although theories of molecular evolution are well developed, few empirical studies have addressed patterns and mechanisms of sequence evolution in nuclear genes within species. In the present study, we compared DNA sequences among three loci with different evolutionary constraints to determine the influences of effective population size, balancing selection, and linkage on intraspecific patterns of sequence variation. Specifically, we assessed the degree and nature of polymorphism in a 307-base pair (bp) fragment of the mitochondrial cytochrome b gene, intron VIII of the gene for alpha-enolase (a presumably neutral nuclear gene), and an approximately 600-bp fragment of an MHC class II B gene, including 155 bp of the hypervariable peptide binding region (a nuclear locus thought to be under balancing selection) for least and crested auklets (Aethia pusilla and A. cristatella; Charadriiformes: Alcidae). Transspecies polymorphism was found in both alpha-enolase and the MHC but not cytochrome b and, given estimates of effective population size, probably represents retained ancestral variation. Biases in nucleotide composition suggested that mutational bias, tRNA availability, and the secondary structure of mRNA and/or DNA may influence base usage. Several lines of evidence indicated that balancing selection may be acting on the MHC II B exon 2. However, no evidence of balancing selection was observed in the intron and exon sequences immediately downstream of MHC II B exon 2.

  7. Design, synthesis, DNA-binding affinity, cytotoxicity, apoptosis, and cell cycle arrest of Ru(II) polypyridyl complexes.

    Science.gov (United States)

    Venkat Reddy, Putta; Reddy, Mallepally Rajender; Avudoddi, Srishailam; Praveen Kumar, Yata; Nagamani, Chintakuntla; Deepika, Nancherla; Nagasuryaprasad, K; Singh, Surya Satyanarayana; Satyanarayana, Sirasani

    2015-09-15

    A novel polypyridyl ligand CNPFIP (CNPFIP=2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP](2+)(1) (phen=1,10-phenanthroline), [Ru(bpy)2CNPFIP](2+)(2) (bpy=2,2'-bipyridine), and [Ru(dmb)2CNPFIP](2+)(3) (dmb=4,4'-dimethyl-2,2'-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock.

  8. HLA class II alleles and the presence of circulating Epstein-Barr virus DNA in greek patients with nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Karanikiotis, C. [424 Army General Hospital, Thessaloniki (Greece); Daniilidis, M.; Karyotis, N.; Nikolaou, A. [AHEPA Hospital, Aristotle Univ. of Thessaloniki School of Medicine (Greece); Bakogiannis, C. [Hygeia Hospital, Athens (Greece); Economopoulos, T. [' Attikon' Univ. Hospital, Athens (Greece); Murray, S. [Metropolitan Hospital, Athens (Greece); Papamichael, D. [Bank of Cyprus Oncology Center, Nicosia, Cyprus (Greece); Samantas, E. [' Agii Anargiri' Cancer Hospital, Athens (Greece); Skoura, L. [' Hippokration' Hospital, Thessaloniki (Greece); Tselis, N.; Zamboglou, N. [Dept. of Radiotherapy, Offenbach Hospital (Germany); Fountzilas, G. [' Papageorgiou' Hospital, Aristotle Univ. of Thessaloniki School of Medicine (Greece)

    2008-06-15

    Background and purpose: nasopharyngeal carcinoma (NPC) represents a seldom malignancy in most developed countries. Nevertheless, NPC receives an endemic form in concrete racial entities. The aims of this study were to detect the presence of Epstein-Barr virus DNA (EBV-DNA) in peripheral blood of NPC patients, to molecularly define human leukocyte antigens (HLA) DRB1*, DQA1* and DQB1* allele frequencies, and, finally, to determine whether the genetic predisposition of an individual to NPC depends on the liability to EBV infection. Patients and methods: a total of 101 patients of Hellenic origin and nationality, with histologically proven NPC, participated in this study. EBV-DNA detection was also applied in 66 patients with EBV-related malignancies (Hodgkin's [HL] and non-Hodgkin's lymphoma [NHL]) and infectious mononucleosis (IM), as well as in 80 healthy EBV-seropositive controls. Results: 81% of the NPC patients, 77.8% with HL, 72.2% with NHL, and 66.7% with IM were EBV-DNA positive, whereas the EBV genome was detected only in 15% of the healthy controls. These differences were statistically significant in all cases. Analysis of HLA class II antigens showed decreased frequency of the DRB1*07 (p = 0.003), DQA1*0103 (p = 0.002), and DQA1*0201 (p = 0.003) alleles among NPC patients. A significant association between the HLA-DR/DQ alleles and the presence of EBV-DNA in peripheral whole blood was not established. Conclusion: circulating EBV-DNA and specific HLA class II alleles may predispose to or protect from NPC. However, the results of this study suggest that the genetic predisposition of an individual to NPC is independent of the liability to EBV infection. (orig.)

  9. The significance of Epstein Barr Virus (EBV & DNA Topoisomerase II alpha (DNA-Topo II alpha immunoreactivity in normal oral mucosa, Oral Epithelial Dysplasia (OED and Oral Squamous Cell Carcinoma (OSCC

    Directory of Open Access Journals (Sweden)

    Osman Mohamed M

    2008-11-01

    Full Text Available Abstract Background Head and neck cancer including oral cancer is considered to develop by accumulated genetic alterations and the major pathway is cancerization from lesions such as intraepithelial dysplasia in oral leukoplakia and erythroplakia. The relationship of proliferation markers with the grading of dysplasia is uncertain. The involvement of EBV in oral carcinogenesis is not fully understood. Aim The present study was designed to investigate the role of EBV and DNA Topoisomerase II∝ (DNA-Topo II∝ during oral carcinogenesis and to examine the prognostic significance of these protein expressions in OSCCs. Methods Using specific antibodies for EBV and DNA-Topo II∝, we examined protein expressions in archival lesion tissues from 16 patients with oral epithelial dysplasia, 22 oral squamous cell carcinoma and 20 normal oral mucosa by immunohistochemistry. Clinical information was obtained through the computerized retrospective database from the tumor registry. Results DNA-Topo II∝ was expressed in all examined specimens. Analysis of Variance ANOVA revealed highly significant difference (P 0.05 in inferior surface of tongue and in hard palatal tissues. Significant differences were observed between OEDs and NSE (P Conclusion EBV and DNA Topo II-αLI expression are possible indicators in oral carcinogenesis and may be valuable diagnostic and prognostic indices in oral carcinoma.

  10. The new base excision repair pathway in mammals mediated by tyrosyl-DNA-phosphodiesterase 1

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Human tyrosyl-DNA phosphodiesterase 1 (Tdp1 hydrolyzes the phosphodiester bond at a DNA 3' end linked to a tyrosyl moiety and has been implicated in the repair of Topoisomerase I (TopI-DNA covalent complexes. Tdp1 can also hydrolyze other 3' end DNA alterations including 3' phosphoglycolate and 3' abasic (AP sites, and exhibits the 3' nucleosidase activity indicating that it may function as a general 3' end-processing DNA repair enzyme. Recently we have shown a new Tdp1 activity generating DNA strand break with the 3' phosphate termini from the AP site. AP sites are formed spontaneously and are inevitable intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic, and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair, initiated by DNA glycosylases performing beta, delta-elimination cleavage of the AP sites, has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites that is initiated by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap.

  11. Carboxylate-bridged Cu(II) coordination polymeric complex: synthesis, crystal structure, magnetic properties, DNA binding and electrochemical studies

    Indian Academy of Sciences (India)

    SABITHAKALA THATITURI; BHARGAVI GOVINDUGARI; VENKATA RAMANA REDDY CHITTIREDDY

    2017-08-01

    A novel water-soluble carboxylate-bridged copper(II) coordination polymer,Cu-BIG was formed by the reaction of Cu(ClO₄)₂ ·6H₂O and tridentate benzimidazole-glycine conjugate ligand, 2-((1H-benzimidazol- 2-yl)methylamino) acetic acid, BIGH and its structure has been determined by IR, UV, powder XRD, VSM, CV, TGA, DTA, EPR and single crystal X-ray diffraction. Crystallographic studies indicate it to be a coordination polymer with P¯ı Space group. The asymmetric unit of complex contains two Cu(II) ions with elongated square pyramid geometry.The axial positions of theCu(II) atoms are occupied by the carbonyl oxygen of the carboxylate group with the bond distances Cu(1)–O(5)axial , 2.28Å, and Cu(2)–O(2)axial , 2.26Å. The two Cu(II) are connected through the carboxylic group present in BIGH, which provides electron mobilisation in the molecule and hence results in the soft ferromagnetic polymer. An in vitro antibacterial activity study of BIGH and Cu-BIG showed moderate activity against Bacillus subtilis. The DNA binding studies showed the interaction of Cu-BIG with CT-DNA.

  12. Single nucleotide polymorphisms of mitochondrial DNA HVS-I and HVS-II in Chinese Bai ethnic group.

    Science.gov (United States)

    Chen, Feng; Yin, Cai-Yong; Qian, Xiao-Qin; Fan, Han-Ting; Deng, Ya-Jun; Zhang, Yu-Dang; Meng, Hao-Tian; Shen, Chun-Mei; Yang, Chun-Hua; Jin, Rui; Zhu, Bo-Feng; Xu, Peng

    2015-03-01

    For forensic and population genetic purposes, a total of 125 unrelated volunteers' blood samples were collected from Chinese Bai ethnic minority group to analyze sequence variation of two hypervariable segments (HVS-I and HVS-II) in the mitochondrial DNA control region. Comparing the HVS-I and HVS-II sequences of the 125 Chinese Bais to the Anderson reference sequence, we found 86 polymorphic loci in HVS-I and 40 in HVS-II in mitochondrial DNA sequences of the Chinese Bai ethnic minority group, which defined 93 and 53 different haplotypes, respectively. Haplotype diversity and the mean pairwise differences were 0.992 ± 0.003 and 6.553 in HVS-I, and 0.877 ± 0.027 and 2.407 in HVS-II, respectively. We defined four macrohaplogroups R, M, N and D with the proportions ranging from 9.6% to 40.0%. With the analysis of the hypervariable domain from nucleotide 16 180-16 193 in HVS-I, our study revealed new haplotypes of sequence variations. In addition, the Fst metric, phylogenetic tree, and principal component analysis demonstrated a close genetic relationship between the Bai group and Chinese Han populations from South China, Changsha, and Guangdong. The results support that the Bai group is a multiorigin ethnic minority that has merged with the Chinese Han population. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples.

    Science.gov (United States)

    Abbasi, Ibrahim; Kirstein, Oscar D; Hailu, Asrat; Warburg, Alon

    2016-10-01

    Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR.

  14. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  15. Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR.

    Science.gov (United States)

    Singh, Sheetal; Shih, Shyh-Jen; Vaughan, Andrew T M

    2014-01-01

    Current techniques for examining the global creation and repair of DNA double-strand breaks are restricted in their sensitivity, and such techniques mask any site-dependent variations in breakage and repair rate or fidelity. We present here a system for analyzing the fate of documented DNA breaks, using the MLL gene as an example, through application of ligation-mediated PCR. Here, a simple asymmetric double-stranded DNA adapter molecule is ligated to experimentally induced DNA breaks and subjected to seminested PCR using adapter- and gene-specific primers. The rate of appearance and loss of specific PCR products allows detection of both the break and its repair. Using the additional technique of inverse PCR, the presence of misrepaired products (translocations) can be detected at the same site, providing information on the fidelity of the ligation reaction in intact cells. Such techniques may be adapted for the analysis of DNA breaks and rearrangements introduced into any identifiable genomic location. We have also applied parallel sequencing for the high-throughput analysis of inverse PCR products to facilitate the unbiased recording of all rearrangements located at a specific genomic location.

  16. The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility

    Directory of Open Access Journals (Sweden)

    Daniel P. LePage

    2014-12-01

    Full Text Available Wolbachia pipientis is a worldwide bacterial parasite of arthropods that infects germline cells and manipulates host reproduction to increase the ratio of infected females, the transmitting sex of the bacteria. The most common reproductive manipulation, cytoplasmic incompatibility (CI, is expressed as embryonic death in crosses between infected males and uninfected females. Specifically, Wolbachia modify developing sperm in the testes by unknown means to cause a post-fertilization disruption of the sperm chromatin that incapacitates the first mitosis of the embryo. As these Wolbachia-induced changes are stable, reversible, and affect the host cell cycle machinery including DNA replication and chromosome segregation, we hypothesized that the host methylation pathway is targeted for modulation during cytoplasmic incompatibility because it accounts for all of these traits. Here we show that infection of the testes is associated with a 55% increase of host DNA methylation in Drosophila melanogaster, but methylation of the paternal genome does not correlate with penetrance of CI. Overexpression and knock out of the Drosophila DNA methyltransferase Dnmt2 neither induces nor increases CI. Instead, overexpression decreases Wolbachia titers in host testes by approximately 17%, leading to a similar reduction in CI levels. Finally, strength of CI induced by several different strains of Wolbachia does not correlate with levels of DNA methylation in the host testes. We conclude that DNA methylation mediated by Drosophila’s only known methyltransferase is not required for the transgenerational sperm modification that causes CI.

  17. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    Science.gov (United States)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  18. Photosensitized mefloquine induces ROS-mediated DNA damage and apoptosis in keratinocytes under ambient UVB and sunlight exposure.

    Science.gov (United States)

    Yadav, Neera; Dwivedi, Ashish; Mujtaba, Syed Faiz; Verma, Ankit; Chaturvedi, Rajnish; Ray, Ratan Singh; Singh, Gajendra

    2014-10-01

    The present study illustrates the photosensitizing behavior of mefloquine (MQ) in human skin keratinocytes under ambient doses of UVB and sunlight exposure. Photochemically, MQ generated reactive oxygen species superoxide radical, hydroxyl radical, and singlet oxygen through type I and type II photodynamic reactions, respectively, which caused photooxidative damage to DNA and formed localized DNA lesions cyclobutane pyrimidine dimers. Photosensitized MQ reduced the viability of keratinocytes to 25 %. Significant level of intracellular reactive oxygen species (ROS) generation was estimated through fluorescence probe DCF-H2. Increased apoptotic cells were evident through AO/EB staining and phosphatidyl serine translocation in cell membrane. Single-stranded DNA damage was marked through single-cell gel electrophoresis. Mitochondrial membrane depolarization and lysosomal destabilization were evident. Upregulation of Bax and p21 and downregulation of Bcl-2 genes and corresponding protein levels supported apoptotic cell death of keratinocyte cells. Cyclobutane pyrimidine dimers (CPDs) were confirmed through immunofluorescence. In addition, hallmarks of apoptosis and G2/M phase cell cycle arrest were confirmed through flow cytometry analysis. Our findings suggest that MQ may damage DNA and produce DNA lesions which may induce differential biological responses in the skin on brief exposure to UVB and sunlight.

  19. Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    OpenAIRE

    Pérez-Caro, M.; Bermejo-Rodríguez, C.; González-Herrero, I; Sánchez-Beato, M; Piris, M. A.; Sánchez-García, I

    2008-01-01

    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in respon...

  20. The mechanism of the nitric oxide-mediated enhancement of tert-butylhydroperoxide-induced DNA single strand breakage

    Science.gov (United States)

    Guidarelli, Andrea; Clementi, Emilio; Sciorati, Clara; Cantoni, Orazio

    1998-01-01

    Caffeine (Cf) enhances the DNA cleavage induced by tert-butylhydroperoxide (tB-OOH) in U937 cells via a mechanism involving Ca2+-dependent mitochondrial formation of DNA-damaging species (Guidarelli et al., 1997b). Nitric oxide (NO) is not involved in this process since U937 cells do not express the constitutive nitric oxide synthase (cNOS).Treatment with the NO donors S-nitroso-N-acetyl-penicillamine (SNAP, 10 μM), or S-nitrosoglutathione (GSNO, 300 μM), however, potentiated the DNA strand scission induced by 200 μM tB-OOH. The DNA lesions generated by tB-OOH alone, or combined with SNAP, were repaired with superimposable kinetics and were insensitive to anti-oxidants and peroxynitrite scavengers but suppressed by iron chelators.SNAP or GSNO did not cause mitochondrial Ca2+ accumulation but their enhancing effects on the tB-OOH-induced DNA strand scission were prevented by ruthenium red, an inhibitor of the calcium uniporter of mitochondria. Furthermore, the enhancing effects of both SNAP and GSNO were identical to and not additive with those promoted by the Ca2+-mobilizing agents Cf or ATP.The SNAP- or GSNO-mediated enhancement of the tB-OOH-induced DNA cleavage was abolished by the respiratory chain inhibitors rotenone and myxothiazol and was not apparent in respiration-deficient cells.It is concluded that, in cells which do not express the enzyme cNOS, exogenous NO enhances the accumulation of DNA single strand breaks induced by tB-OOH via a mechanism involving inhibition of complex III. PMID:9846647

  1. Cetuximab Induces Eme1-Mediated DNA Repair: a Novel Mechanism for Cetuximab Resistance

    Directory of Open Access Journals (Sweden)

    Agnieszka Weinandy

    2014-03-01

    Full Text Available Overexpression of the epidermal growth factor receptor (EGFR is observed in a large number of neoplasms. The monoclonal antibody cetuximab/Erbitux is frequently applied to treat EGFR-expressing tumors. However, the application of cetuximab alone or in combination with radio- and/or chemotherapy often yields only little benefit for patients. In the present study, we describe a mechanism that explains resistance of both tumor cell lines and cultured primary human glioma cells to cetuximab. Treatment of these cells with cetuximab promoted DNA synthesis in the absence of increased proliferation, suggesting that DNA repair pathways were activated. Indeed, we observed that cetuximab promoted the activation of the DNA damage response pathway and prevented the degradation of essential meiotic endonuclease 1 homolog 1 (Eme1, a heterodimeric endonuclease involved in DNA repair. The increased levels of Eme1 were necessary for enhanced DNA repair, and the knockdown of Eme1 was sufficient to prevent efficient DNA repair in response to ultraviolet-C light or megavoltage irradiation. These treatments reduced the survival of tumor cells, an effect that was reversed by cetuximab application. Again, this protection was dependent on Eme1. Taken together, these results suggest that cetuximab initiates pathways that result in the stabilization of Eme1, thereby resulting in enhanced DNA repair. Accordingly, cetuximab enhances DNA repair, reducing the effectiveness of DNA-damaging therapies. This aspect should be considered when using cetuximab as an antitumor agent and suggests that Eme1 is a negative predictive marker.

  2. BRCA1 Accelerates CtIP-Mediated DNA-End Resection

    Directory of Open Access Journals (Sweden)

    Andrés Cruz-García

    2014-10-01

    Full Text Available DNA-end resection is a highly regulated and critical step in the response and repair of DNA double-strand breaks. In higher eukaryotes, CtIP regulates resection by integrating cellular signals via its posttranslational modifications and protein-protein interactions, including cell-cycle-controlled interaction with BRCA1. The role of BRCA1 in DNA-end resection is not clear. Here, we develop an assay to study DNA resection in higher eukaryotes at high resolution. We demonstrate that the BRCA1-CtIP interaction, albeit not essential for resection, modulates the speed at which this process takes place.

  3. Human urocortin II, a new CRF-related peptide, displays selective CRF(2)-mediated action on gastric transit in rats.

    Science.gov (United States)

    Million, Mulugeta; Maillot, Céline; Saunders, Paul; Rivier, Jean; Vale, Wylie; Taché, Yvette

    2002-01-01

    Human urocortin (hUcn) II is a new member of the corticotropin-releasing factor (CRF) family that selectively binds to the CRF(2) receptor. We investigated the CRF receptors involved in mediating the effects of hUcn II and human/rat CRF (h/rCRF) on gut transit. Gastric emptying, 4 h after a solid meal, and distal colonic transit (bead expulsion time) were monitored simultaneously in conscious rats. CRF antagonists were given subcutaneously 30 min before intravenous injection of peptides or partial restraint (for 90 min). hUcn II (3 or 10 microg/kg i.v.) inhibited gastric emptying (by 45% and 55%, respectively) and did not influence distal colonic transit. The CRF(2) peptide antagonist astressin(2)-B blocked hUcn II action. h/rCRF, rat Ucn, and restraint delayed gastric emptying while accelerating distal colonic transit. The gastric response to intravenous h/rCRF and restraint was blocked by the CRF(2) antagonist but not by the CRF(1) antagonist CP-154,526, whereas the colonic response was blocked only by CP-154,526. None of the CRF antagonists influenced postprandial gut transit. These data show that intravenous h/rCRF and restraint stress-induced delayed gastric emptying involve CRF(2) whereas stimulation of distal colonic transit involves CRF(1). The distinct profile of hUcn II, only on gastric transit, is linked to its CRF(2) selectivity.

  4. New cobalt(II) and nickel(II) complexes of benzyl carbazate Schiff bases: Syntheses, crystal structures, in vitro DNA and HSA binding studies.

    Science.gov (United States)

    Nithya, Palanivelu; Helena, Sannasi; Simpson, Jim; Ilanchelian, Malaichamy; Muthusankar, Aathi; Govindarajan, Subbiah

    2016-12-01

    In the present study, new Schiff base complexes with the composition [M(NCS)2(L1)2]·nH2O, where M=Co (n=0) (1) and Ni (n=2) (2); [M(NCS)2(L2)2], M=Co (3) and Ni (4) as well as [M(NCS)2(L3)2], M=Co (5) and Ni (6); (L1=benzyl 2-(propan-2-ylidene)hydrazinecarboxylate, L2=benzyl 2-(butan-2-ylidene)hydrazinecarboxylate and L3=benzyl 2-(pentan-3-ylidene)hydrazinecarboxylate) have been synthesized by a template method. The complexes were characterised by analytical methods, spectroscopic studies, thermal and X-ray diffraction techniques. The structures of all the complexes explore that the metal(II) cation has a trans-planar coordination environment, the monomeric units containing a six-coordinated metal center in octahedral geometry with N-bound isothiocyanate anions coordinated as terminal ligands. Furthermore, the binding of the two Schiff base ligands to the metal centers involves the azomethine nitrogen and the carbonyl oxygen in mutually trans configuration. The binding interactions of all the complexes with Calf thymus-deoxyribonucleic acid (CT-DNA) and human serum albumin (HSA) have been investigated using absorption and emission spectral techniques. The CT-DNA binding properties of these complexes reveal that they bind to CT-DNA through a partial intercalation mode and the binding constant values were calculated using the absorption and emission spectral data. The binding constant values (~10×10(6)moldm(-3)) indicate strong binding of metal complexes with CT-DNA. HSA binding interaction studies showed that the cobalt and nickel complexes can quench the intrinsic fluorescence of HSA through static quenching process. Also, molecular docking studies were supported out to apprehend the binding interactions of these complexes with DNA and HSA which offer new understandings into the experimental model observations.

  5. Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind to topoisomerase II and DNA.

    Science.gov (United States)

    Yadav, Arun A; Wu, Xing; Patel, Daywin; Yalowich, Jack C; Hasinoff, Brian B

    2014-11-01

    Drugs that target DNA topoisomerase II isoforms and alkylate DNA represent two mechanistically distinct and clinically important classes of anticancer drugs. Guided by molecular modeling and docking a series of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds were designed, synthesized and biologically characterized. These hybrids were designed to alkylate nucleophilic protein residues on topoisomerase II and thus produce inactive covalent adducts and to also alkylate DNA. The most potent hybrid had a mean GI(50) in the NCI-60 cell screen 17-fold lower than etoposide. Using a variety of in vitro and cell-based assays all of the hybrids tested were shown to target topoisomerase II. A COMPARE analysis indicated that the hybrids had NCI 60-cell growth inhibition profiles matching both etoposide and the N-mustard compounds from which they were derived. These results supported the conclusion that the hybrids displayed characteristics that were consistent with having targeted both topoisomerase II and DNA.

  6. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice.

    Science.gov (United States)

    Xue, Baojian; Pamidimukkala, Jaya; Lubahn, Dennis B; Hay, Meredith

    2007-04-01

    It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-t