WorldWideScience

Sample records for ii licensing safety-related

  1. Licensing decisions and safety research related to LMFBR accidents

    International Nuclear Information System (INIS)

    Denise, R.P.; Speis, T.P.; Kelber, C.N.; Curtis, R.T.

    1977-01-01

    The licensing approach which ensures adequate protection of the public health and safety against serious accidents is described. This paper describes the role of core melt and core disruptive accidents in the design, safety research, and licensing processes, using the Clinch River Breeder Reactor (CRBR) as a focal point. Major design attention is placed on the prevention of these accidents so that the probability of core melt accidents is reduced to a sufficiently low level that they are not treated as design basis accidents. Additional requirements are placed upon the design to further reduce residual risk. This licensing process is supported by a confirmatory research program designed to provide an independent basis for licensing judgements. It has as a goal the resolution of generic safety issues prior to the establishment of a commercial LMFBR industry. The program includes accident analysis, experiments in materials interactions, aerosol transport and system integrity and planning for new safety test facilities. The problems are approached in a multi-disciplinary functional manner that identifies key safety issues and centralizes efforts to resolve them. The near term objectives of the program support the licensing of the Clinch River Breeder Reactor (CRBR) and the proposed Prototype Large Breeder Reactor (PLBR). The long term objectives of the program support the licensing of commercial LMFBRs during the late 1980's and beyond. This safety research is designed to provide an independent basis for the licensing judgements which must be made by the Nuclear Regulatory Commission

  2. USNRC licensing process as related to nuclear criticality safety

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1987-01-01

    The U.S. Code of Federal Regulations establishes procedures and criteria for the issuance of licenses to receive title to, own, acquire, deliver, receive, possess, use, and initially transfer special nuclear material; and establishes and provides for the terms and conditions upon which the Nuclear Regulatory Commission (NRC) will issue such licenses. Section 70.22 of the regulations, ''Contents of Applications'', requires that applications for licenses contain proposed procedures to avoid accidental conditions of criticality. These procedures are elements of a nuclear criticality safety program for operations with fissionable materials at fuels and materials facilities (i.e., fuel cycle facilities other than nuclear reactors) in which there exists a potential for criticality accidents. To assist the applicant in providing specific information needed for a nuclear criticality safety program in a license application, the NRC has issued regulatory guides. The NRC requirements for nuclear criticality safety include organizational, administrative, and technical requirements. For purely technical matters on nuclear criticality safety these guides endorse national standards. Others provide guidance on the standard format and content of license applications, guidance on evaluating radiological consequences of criticality accidents, or guidance for dealing with other radiation safety issues. (author)

  3. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A.

    2013-01-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  4. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A., E-mail: emotta@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  5. Safety-licensing assessment of NASAP reactor concepts and fuel cycle facilities

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Prohammer, F.G.; van Erp, J.B.; Seefeldt, W.B.

    1978-06-01

    Assessments are presented of the safety/licensability of reactor concepts based on information supplied by the Nonproliferation Alternative Systems Assessment Program (NASAP) characterization contractors in their updated responses to the data package for NASAP Rolling Report II. The assessment of the LMFBR includes information from a characterization contractor on alternate fuel cycles but does not include information provided by a characterization contractor on plant-related safety issues. The information provided by the characterization contractors was supplemented by assessments provided by the U. S. Nuclear Regulatory Commission

  6. Licensing safety critical software

    International Nuclear Information System (INIS)

    Archinoff, G.H.; Brown, R.A.

    1990-01-01

    Licensing difficulties with the shutdown system software at the Darlington Nuclear Generating Station contributed to delays in starting up the station. Even though the station has now been given approval by the Atomic Energy Control Board (AECB) to operate, the software issue has not disappeared - Ontario Hydro has been instructed by the AECB to redesign the software. This article attempts to explain why software based shutdown systems were chosen for Darlington, why there was so much difficulty licensing them, and what the implications are for other safety related software based applications

  7. Safety and operating experience at EBR-II: lessons for the future

    International Nuclear Information System (INIS)

    Sackett, J.I.; Golden, G.H.

    1981-01-01

    EBR-II is a small LMFBR power plant that has performed safely and reliably for 16 years. Much has been learned from operating it to facilitate the design, licensing, and operation of large commercial LMFBR power plants in the US. EBR-II has been found relatively easy to keep in conformity with evolving safety requirements, largely because of inherent safety features of the plant. Such features reduce dependence on active safety systems to protect against accidents. EBR-II has experienced a number of plant-transient incidents, some planned, others inadvertent; none has resulted in any significant plant damage. The operating experience with EBR-II has led to the formulation of an Operational Reliability Test Program (ORTP), aimed at showing inherently safe performance of fuel and plant systems

  8. Fire safety regulations and licensing

    International Nuclear Information System (INIS)

    Berg, H.P.

    1998-01-01

    Experience of the past tow decades of nuclear power plant operation and results obtained from modern analytical techniques confirm that fires may be a real threat to nuclear safety and should receive adequate attention from the design phase throughout the life of the plant. Fire events, in particular influence significantly plant safety due to the fact that fires have the potential to simultaneously damage components of redundant safety-related equipment. Hence, the importance of fire protection for the overall safety of a nuclear power plant has to be reflected by the fire safety regulations and to be checked during the licensing process of a plant as well as during the continuous supervision of the operating plant

  9. ITER Safety and Licensing

    International Nuclear Information System (INIS)

    Girard, J-.P; Taylor, N.; Garin, P.; Uzan-Elbez, J.; GULDEN, W.; Rodriguez-Rodrigo, L.

    2006-01-01

    The site for the construction of ITER has been chosen in June 2005. The facility will be implemented in Europe, south of France close to Marseille. The generic safety scheme is now under revision to adapt the design to the host country regulation. Even though ITER will be an international organization, it will have to comply with the French requirements in the fields of public and occupational health and safety, nuclear safety, radiation protection, licensing, nuclear substances and environmental protection. The organization of the central team together with its partners organized in domestic agencies for the in-kind procurement of components is a key issue for the success of the experimentation. ITER is the first facility that will achieve sustained nuclear fusion. It is both important for the experimental one-of-a-kind device, ITER itself, and for the future of fusion power plants to well understand the key safety issues of this potential new source of energy production. The main safety concern is confinement of the tritium, activated dust in the vacuum vessel and activated corrosion products in the coolant of the plasma-facing components. This is achieved in the design through multiple confinement barriers to implement the defence in depth approach. It will be demonstrated in documents submitted to the French regulator that these barriers maintain their function in all postulated incident and accident conditions. The licensing process started by examination of the safety options. This step has been performed by Europe during the candidature phase in 2002. In parallel to the final design, and taking into account the local regulations, the Preliminary Safety Report (RPrS) will be drafted with support of the European partner and others in the framework of ITER Task Agreements. Together with the license application, the RPrS will be forwarded to the regulatory bodies, which will launch public hearings and a safety review. Both processes must succeed in order to

  10. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  11. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  12. 45 CFR 1321.75 - Licenses and safety.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Licenses and safety. 1321.75 Section 1321.75... AND COMMUNITY PROGRAMS ON AGING Service Requirements § 1321.75 Licenses and safety. The State shall... that the facility complies with all applicable State and local health, fire, safety, building, zoning...

  13. Safety evaluation report related to the full-term operating license for San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206)

    International Nuclear Information System (INIS)

    1991-07-01

    The safety evaluation report for the full-term operating license application filed by the Southern California Edison Company and the San Diego Gas and Electric Company has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in San Diego County, California. The staff has evaluated the issues related to the conversion of the provisional operating license to a full-term operating license and concluded that the facility can continue to be operated without endangering the health and safety of the public following the license conversion. 43 refs., 3 figs., 3 tabs

  14. Current safety issues of CANDU licensing

    International Nuclear Information System (INIS)

    Lee, Y.; Natalizio, A.

    1994-01-01

    As requested by Korea Institute of Nuclear Safety(KINS), the status of five generic licensing issues has been examined and their potential impact on a new plant that would be constructed in Canada has been evaluated. The results and conclusions of this evaluation are summarized as follows: steam explosion in calandria, hydrogen explosion in containment, use of PSA in reactor licensing, human factors, safety critical software

  15. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  16. Potential safety enhancements to nuclear plant control: proof testing at EBR-II

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Chisholm, G.H.

    1984-01-01

    Future changes in nuclear plant control and protective systems will reflect an evolutionary improvement through increased use of computers coupled with a better integration of man and machine. Before improvements can be accepted into the licensed commercial plant environment, significant testing must be accomplished to answer safety questions and to prove the worth of new ideas. The Experimental Breeder Reactor-II (EBR-II) is being used as a test-bed for both in-house development and testing for others in a DOE sponsored Man-Machine Integration program. The ultimate result of the development and testing would be a control system for which safety credit could be taken in the licensing process

  17. Demonstrating safety during license renewal should not be a large task

    International Nuclear Information System (INIS)

    Berto, D.S.

    1993-01-01

    The principal regulatory goal related to nuclear power plant operation is to ensure the health and safety of the public. The principal goal of extended plant operation via the license renewal process is also to ensure the health and safety of the public. The license renewal documentation issued by the Nuclear Regulatory Commission (NRC) provides guidance on what will be acceptable to the NRC in a license renewal application to demonstrate that this goal will be met. Application of this guidance is currently open to wide interpretation, with many of the current approaches proving to be extremely costly, complex, and uncertain of acceptability. This paper evaluates the requirements necessary to ensure the continued health and safety of the public during any license renewal term. This evaluation is based on the stated goals of the License Renewal Rule and on the published bases for the Rule. An approach to License Renewal is recommended that: (1) meets the stated goals of the NRC; (2) is consistent with current regulatory practices; and (3) will continue to ensure the health and safety of the public. This recommended approach is also much less costly than other current approaches, and can be easily agreed to by all participants. This approach will meet regulatory goals, while removing the cost and uncertainty obstacles currently being confronted by utilities. Providing a viable approach to license renewal will allow the renewal process to be pursued by utilities. Without such an approach, safe and reliable nuclear power plants will be permanently shut down at the arbitrary 40 year license limit

  18. Safety evaluation status report for the prototype license application safety analysis report

    International Nuclear Information System (INIS)

    1989-07-01

    The US Nuclear Regulatory Commission (NRC) staff and consultants reviewed a Prototype License Application Safety Analysis Report (PLASAR) submitted by the US Department of Energy (DOE) for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste disposal. The NRC reviewers relied extensively on the Standard Review Plan (SRP), Rev.1 (NUREG-1200), to evaluate the acceptability of the information provided in the EMCB PLASAR. The NRC staff selected certain review areas in the PLASAR for development of safety evaluation report input to provide examples of safety assessments that are necessary as part of a licensing review. Because of the fictitious nature of the assumed disposal site, and the decision to limit the review to essentially first-round review status, the NRC staff report is labeled a ''Safety Evaluation Status Report'' (SESR). Appendix A comprises the NRC review comments and questions on the information that DOE submitted in the PLASAR. The NRC concentrated its review on the design and operations-related portions of the EMCB PLASAR

  19. Safety aspects of nuclear plant licensing in Canada

    International Nuclear Information System (INIS)

    Jennekens, J.H.F.

    1975-01-01

    The legislative authority is laid down in the Atomic Energy Control Act, 1946, declaring atomic energy a matter of national interest and establishing the Atomic Energy Control Board (AECB) as the competent body for regulating all aspects of atomic energy. The Act also vests a Minister designated by the Government with research and exploitation functions; thus, by Ministerial order, Atomic Energy of Canada Limited was established in 1952 as a State-owned company. The Nuclear Liability Act, 1970, channels all liability for nuclear damage to the operator of a nuclear installation and requires him to obtain insurance in the amount of $75 million, part of which may be re-insured by the Government. The licensing requirements comprise the issuance of a site approval, a construction licence and an operating licence. The AECB is assisted in its licensing functions by its Nuclear Plant Licensing Directorate and by the Reactor Safety Advisory Committee co-operating with each other in making extensive safety assessments of a licence application. A site evaluation report, a preliminary safety report and a final safety report are required in relation to the siting, construction and operation of a nuclear power plant. The Canadian reactor safety philosophy is based on the concept of defence in depth, implemented through a multi-step approach, which includes avoidance of malfunctions, provision of special safety systems, periodic inspection and testing, and avoidance of human errors. Specific criteria and principles have evolved in applying this basic safety philosophy and radiation protection standards are derived from international recommendations. Stringent control is exercised over the management of radioactive waste and management facilities must meet the engineering and procedural requirements of AECB before they can be placed in operation. (author)

  20. Legal issues, authoritative licenses and tasks in relation with nuclear safety in Hungary

    International Nuclear Information System (INIS)

    Oerdoegh, J.; Voeroess, L.

    1998-01-01

    After a brief historical overview of nuclear authorities in Hungary, the role and functions of the National Atomic Energy Office are presented. It is the primary authority in this country on nuclear safety, with tasks and functions of licensing, inspection and enforcing safety measures. The organizational structure of NAEO and its position as a Governmental body is shown. Other tasks include the promotion of R and D coordination and international cooperation. (R.P.)

  1. Licensing process for safety-critical software-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, P. [VTT Automation, Espoo (Finland); Korhonen, J. [VTT Electronics, Espoo (Finland); Pulkkinen, U. [VTT Automation, Espoo (Finland)

    2000-12-01

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications

  2. Licensing process for safety-critical software-based systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Korhonen, J.; Pulkkinen, U.

    2000-12-01

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications. Many of the

  3. Improvement suggestions on license extension management for civil nuclear safety equipment activities

    International Nuclear Information System (INIS)

    Sun Xingjian; Liu Hongji; Han Guoli; Jia Fengcai

    2013-01-01

    Based on the concepts of Clear Requirements, Comprehensive Review, Objective Assessment, Dynamic Management, this paper gives improvement suggestions on license extension management for civil nuclear safety equipment design, manufacture, installation and non-destructive examination activities, which include establishing a relatively unified license extension review standard, combining multi-views and close linking license review and supervision, full utilizing the daily supervision and inspection results, as well as further improving motivation and elimination mechanism. (authors)

  4. The safety case in support of the license application of the surface repository of low-level waste in Dessel, Belgium

    International Nuclear Information System (INIS)

    Wacquier, William; Cool, Wim

    2014-01-01

    The modern concept of the safety case, developed by the OECD/NEA for geological repositories of high- and medium-level waste has been successfully applied by ONDRAF/ NIRAS for a surface repository for Category A waste (i.e. low-level waste) in Belgium in the current project phase 2006-2012. This resulted in the submission on 31 January 2013 by ONDRAF/NIRAS of an application for a 'construction and operation license' to the safety authorities. The benefits of using the notion of the safety case have been that: i) safety has been incorporated in an integrated manner within all assessment basis, design and safety assessment activities; ii) the process of development of the license application has gained in clarity and traceability; iii) the documentation of the license application contains multiple lines of argumentation for safety rather than argumentation based only on quantitative radiological impact calculations. To offer a comprehensive view on the safety argumentation and its development, it has been found useful to develop the argumentation not only along a safety statements structure but also along the safety report structure. (authors)

  5. Atomic Safety and Licensing Board Panel annual report

    International Nuclear Information System (INIS)

    1991-09-01

    In Fiscal Year 1990, The Atomic Safety and Licensing Board Panel (Panel) handled 40 proceedings involving the construction, operation, and maintenance of commercial nuclear power reactors or other activities requiring a license from the Nuclear Regulatory Commission. This report summarizes, highlights, and analyzes how the judges and licensing boards of the Panel addressed the wide-ranging issues raised in these proceedings during the year

  6. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  7. Safety and licensing issues for Indian PHWRs

    International Nuclear Information System (INIS)

    Srinivasan, G.R.; Das, M.

    1997-01-01

    India has achieved competency in design, construction, commissioning and operation of Pressurized Heavy Water Reactor based Nuclear Power Plants and has completed more than 120 reactor operating years with an extremely satisfactory safety record. In this paper, the safety management in NPCIL and operational safety aspects are discussed, licensing and regulatory approach is described and some of the main safety issues for Indian PHWRs are brought out. (author)

  8. Sodium Fast Reactor Safety and Licensing Research Plan

    International Nuclear Information System (INIS)

    Denman, Matthew; Lachance, Jeff; Sofu, Tanju; Wigeland, Roald; Flanagan, George; Bari, Robert

    2013-01-01

    Conclusions: The Sodium Fast Reactor Safety and Licensing Research Plan reports conclude a multi-year expert elicitation process. All information included in the studies are publicly available and the reports are UUR. These reports are intended to guide SFR researchers in the safety and licensing arena to important and outstanding issues Two (and a half) projects have been funded based on the recommendations in this report: • Modernization of SAS4A; • Incorporation of Contain/LMR with MELCOR; • (Data recovery at INL and PNNL)

  9. Safety evaluation for instrumentation and control system upgrading project of Malaysian TRIGA MARK II PUSPATI Research reactor

    International Nuclear Information System (INIS)

    Ridha Roslan; Nik Mohd Faiz Khairuddin

    2013-01-01

    Full-text: Malaysian TRIGA MARK II research reactor has been in safe operation since its first criticality in 1982. The reactor is licensed to be operated by Malaysian Nuclear Agency to perform training and research development related activities. Due to its extensive operation since last three decades, the option of modifications for safety and safety-related item and component become a necessary to replace the outdated equipment to a stat-of-art, reliable technologies. This paper will present the current regulatory activities performed by Atomic Energy Licensing Board (AELB) to ensure the upgrading of analogue to digital instrumentation and control system is implemented in safe manner. The review activity includes documentation review, manufacturer quality audit and on-site inspection for commissioning. The review performed by AELB is based on The International Atomic Energy Agency (IAEA) Safety Requirements NS-R-4, entitled Safety of Research Reactors. During this endeavour, AELB seeks technical cooperation from Korea Institute of Nuclear Safety (KINS), the nuclear experts organization of the country of origin of the instrumentation and control technology. The regulatory activity is still on-going and is expected to be completed by issuance of Authorization for Restart on December 2013. (author)

  10. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  11. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the U.S. Nuclear Regulatory Commission. For developing countries, such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that NRC has accumulated. NRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the NRC is in providing for reciprocal communicaion, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly-discovered problem in a nuclear reactor be brought immediately to the attention of other governments which are responsible for the safety of similar reactors. Definite progress has been made in the U.S. Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of NRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of country building its first power reactor is described

  12. The Atomic Safety and Licensing Board Panel

    International Nuclear Information System (INIS)

    1998-01-01

    Through the Atomic Energy Act, Congress made is possible for the public to get a full and fair hearing on civilian nuclear matters. Individuals who are directly affected by any licensing action involving a facility producing or utilizing nuclear materials may participate in a formal hearing, on the record, before independent judges on the Atomic Safety and Licensing Board Panel (ASLBP or Panel). Frequently, in deciding whether a license, permit, amendment, or extension should be granted to a particular applicant, the Panel members must be more than mere umpires. If appropriate, they are authorized to go beyond the issues the parties place before them in order to identify, explore, and resolve significant questions involving threats to the public health and safety that come to a board's attention during the proceedings. This brochure explains the purpose of the panel. Also addressed are: type of hearing handled; method of public participation; formality of hearings; high-level waste; other panel responsibilities and litigation technology

  13. Safety features and licensing of CNNC-ACP100

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, F., E-mail: Zhongfj2000@163.com [Nuclear Power Inst. of China, National Key Lab. of Science and Technology on Reactor System Design Technology (China)

    2014-07-01

    ACP100 is an innovatory modular pressurized water reactor, the engineering safety systems fully adopt passive safety design technology. Its inherent safety and passive features/systems are verified via testing facilities and are highlighted at certain levels of defence in depth. The licensing of ACP 100 is within current LWR framework and meets up-to-date codes and requirements in nuclear safety. (author)

  14. Application of coupled codes for safety analysis and licensing issues

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    2006-01-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  15. Status of safety issues at licensed power plants

    International Nuclear Information System (INIS)

    1991-05-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program has been established whereby an annual NUREG report will be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirement areas. This report, the second volume of a three-volume series, addresses the status of unresolved safety issues (USIs) at licensed plants. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. The purpose of this report is to provide a comprehensive description of the status of implementation and verification of the 27 safety issues designated as USIs and to make this information available to other interested parties, including the public. A corollary purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants. 3 figs., 4 tabs

  16. Status of safety issues at licensed power plants

    International Nuclear Information System (INIS)

    1991-03-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program has been established whereby an annual NUREG series report will be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirement areas. The data contained in this report are a product of the NRC's Safety Issues Management System database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by personnel in the NRC regions. This report has been prepared in order to provide a comprehensive description of the implementation and verification status of all the TMI Action Plan requirements at licensed reactors, and to make this information available to other interested parties, including the public. A corollary purpose of this report is for it to serve as a follow-on to NUREG-0933, ''A Prioritization of Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed facilities

  17. Impact of New Radiation Safety Standards on Licensing Requirements of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Strohal, P.; Subasic, D.; Valcic, I.

    1996-01-01

    As the outcomes of the newly introduced safety philosophies, new and more strict safety design requirements for nuclear installation are expected to be introduced. New in-depth defence measures should be incorporated into the design and operation procedure for a nuclear installation, to compensate for potential failures in protection or safety measures. The new requirements will also apply to licensing of NPP's operation as well as to licensing of nuclear sites, especially for radioactive waste disposal sites. This paper intends to give an overview of possible impacts of new internationally agreed basic safety standards with respect to NPP and related technologies. Recently issued new basic safety standards for radiation protection are introducing some new safety principles which may have essential impact on future licensing requirements regarding nuclear power plants and radioactive waste installations. These new standards recognize exposures under normal conditions ('practices') and intervention conditions. The term interventions describes the human activities that seek to reduce the existing radiation exposure or existing likelihood of incurring exposure which is not part of a controlled practice. The other new development in safety standards is the introduction of so called potential exposure based on the experience gained from a number of radiation accidents. This exposure is not expected to be delivered with certainty but it may result from an accident at a source or owing to an event or sequence of events of a probabilistic nature, including equipment failures and operating errors. (author)

  18. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the US Nuclear Regulatory Commission. For developing countries such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that USNRC has accumulated. USNRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the USNRC is in providing for reciprocal communication, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly discovered problem in a nuclear reactor be brought immediately to the attention of other governments that are responsible for the safety of similar reactors. Definite progress has been made in the USA in defining categories of information that USNRC can receive in confidence from foreign countries, and can protect from disclosure under the US Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of USNRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of a country building its first power reactor is described. (author)

  19. Licensing procedures and safety criteria for core conversion in Japan

    International Nuclear Information System (INIS)

    Kanda, K.; Nakagome, Y.; Hayashi, M.

    1983-01-01

    In Japan, the establishment and operation of nuclear installations are governed mainly by the Law for Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors. This law lays down the regulations and conditions for licensing of the various installations involved in the nuclear fuel cycle, namely licensing of installations for refining, fabricating and reprocessing; and reactors, as well as licensing of the use of nuclear fuels in research facilities. Although procedures for the installations listed above vary depending on the installation concerned, only those relating to construction and operation of reactor facilities will be analysed in this study, as the conditions and principles applying to licensing and control of other installations are, to a large extent, similar to those concerning reactor facilities. The second part of this presentation describes the safety review of the KUCA reactor core conversion form HEU to MEU. For the safety review of the core conversion, the Committee on Examination of Reactor Safety of Japanese Government examined mainly the the nuclear characteristics and the integrity of aluminide fuel plates, which was very severe because we had no experience to use aluminide fuel plates in Japan. The integrity of fuel plates and the results of the worst accident analysis for the MEU core are shown with the comparison between the HEU and MEU cores. The significant difference was not observed between them. All the regulatory procedures were completed in September 1980. Fabrication of MEU fuel elements for the KUCA experiments by CERCA in France was started in September 1980, and will be completed in March 1981. The critical experiments in the KUCA with MEU fuel will be started on a single-core in May 1981 as a first step. Those on a coupled-core will follow

  20. U.S. ALMR safety approach and licensing status

    International Nuclear Information System (INIS)

    Hardy, R.W.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Cooled Reactor in the United States is based on the PRISM concept originated by General Electric. This concept features a compact modular system suitable for factory fabrication, and a high degree of passive and natural safety characteristics. The safety approach emphasizes accident prevention, backed up by accident mitigation as required. First-round safety evaluations by the U.S. regulators have found that the design provides passive, natural and other desirable features enhancing the safety of the power plant. Licensing review continuing. (author)

  1. Safety evaluation review of the prototype license application safety analysis report

    International Nuclear Information System (INIS)

    1991-08-01

    The US Nuclear Regulatory Commission (NRC) staff and consultants reviewed a Prototype License Application Safety Analysis Report (PLASAR) submitted by the US Department of Energy (DOE) for the belowground vault (BGV) alternative method of low-level radioactive waste disposal. In Volume 1 of NUREG-1375, the NRC staff provided the safety review results for an earth-mounded concrete bunker PLASAR. In the current report, the staff focused its review on the design, construction, and operational aspects of the BGV PLASAR. The staff developed review comments and questions using the Standard Review Plan (SRP), Rev. 1 (NUREG-1200) as the basis for evaluating the acceptability of the information provided in the BGV PLASAR. The detailed review comments provided in this report are intended to be useful guidance to facility developers and State regulators in addressing issues likely to be encountered in the review of a license application for a low-level-waste disposal facility. 44 refs

  2. Workshop on Regulatory Review and Safety Assessment Issues in Repository Licensing

    International Nuclear Information System (INIS)

    Wilmot, Roger D.

    2011-02-01

    The workshop described here was organised to address more general issues regarding regulatory review of SKB's safety assessment and overall review strategy. The objectives of the workshop were: - to learn from other programmes' experiences on planning and review of a license application for a nuclear waste repository, - to offer newly employed SSM staff an opportunity to learn more about selected safety assessment issues, and - to identify and document recommendations and ideas for SSM's further planning of the licensing review

  3. Why trash don't pass? pharmaceutical licensing and safety performance of drugs.

    Science.gov (United States)

    Banerjee, Tannista; Nayak, Arnab

    2017-01-01

    This paper examines how asymmetric information in pharmaceutical licensing affects the safety standards of licensed drugs. Pharmaceutical companies often license potential drug molecules at different stages of drug development from other pharmaceutical or biotechnology companies and complete the remaining of research stages before submitting the new drug application(NDA) to the food and drug administration. The asymmetric information associated with the quality of licensed molecules might result in the molecules which are less likely to succeed to be licensed out, while those with greater potential of success being held internally for development. We identify the NDAs submitted between 1993 and 2004 where new molecular entities were acquired through licensing. Controlling for other drug area specific and applicant firm specific factors, we investigate whether drugs developed with licensed molecules face higher probability of safety based recall and ultimate withdrawal from the market than drugs developed internally. Results suggest the opposite of Akerlof's (Q J Econ 84:488-500, 1970) lemons problem. Licensed molecules rather have less probability of facing safety based recalls and ultimate withdrawal from the market comparing to internally developed drug molecules. This suggests that biotechnology and small pharmaceutical firms specializing in pharmaceutical research are more efficient in developing good potential molecules because of their concentrated research. Biotechnology firms license out good potential molecules because it increases their market value and reputation. In addition, results suggest that both the number of previous approved drugs in the disease area, and also the applicant firms' total number of previous approvals in all disease areas reduce the probability that an additional approved drug in the same drug area will potentially be harmful.

  4. The problem of licensing and safety of nuclear power plants

    International Nuclear Information System (INIS)

    Silva, R.A. da.

    1987-01-01

    The historical evolution of licensing process of nuclear power plants is presented. The designs carried out by FURNAS for constructing Angra-1 reactor and its contribution to the Brazilian CNEN in de licensing process, are evaluated. The aims of FURNAS Research Programs are determined and the safety goals are established. (M.C.K.) [pt

  5. FRM-II project status and safety of its compact fuel element

    International Nuclear Information System (INIS)

    Nuding, M.; Rottmann, M.; Axmann, A.; Boening, K.

    2000-01-01

    The construction of the new research reactor FRM-II is close to completion and the nuclear start-up is scheduled to begin in January 2001. This contribution provides an overview on the concept of the facility and the safety features of the reactor. It also describes some of the tests performed during the licensing procedure of the compact fuel element and their results. At the end a short status report is given. (author)

  6. FRM-II project status and safety of its compact fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Nuding, M.; Rottmann, M.; Axmann, A.; Boening, K. [Technical University of Munich, D-85747 Garching (Germany)

    2000-07-01

    The construction of the new research reactor FRM-II is close to completion and the nuclear start-up is scheduled to begin in January 2001. This contribution provides an overview on the concept of the facility and the safety features of the reactor. It also describes some of the tests performed during the licensing procedure of the compact fuel element and their results. At the end a short status report is given. (author)

  7. Nuclear safety requirements for operation licensing of Egyptian research reactors

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  8. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  9. License - RED II INAHO | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us RED II INAHO License License to Use This Database Last updated : 2016/01/14 You may use this database...the license terms regarding the use of this database and the requirements you must follow in using this database.... The license for this database is specified in the Creative Commons Attribut...ion-Share Alike 4.0 International . If you use data from this database, please be sure attribute this database...of the Creative Commons Attribution-Share Alike 4.0 International is found here . With regard to this database

  10. Safety and licensing analyses for the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Ball, S.J.; Conklin, J.C.; Harrington, R.M.; Cleveland, J.C.; Clapp, N.E. Jr.

    1982-01-01

    The Oak Ridge National Laboratory (ORNL) safety analysis program for the HTGR includes development and verification of system response simulation codes, and applications of these codes to specific Fort St. Vrain reactor licensing problems. Licensing studies addressed the oscillation problems and the concerns about large thermal stresses in the core support blocks during a postulated accident

  11. Evaluation of experience and trends in international co-operation in nuclear safety and licensing

    International Nuclear Information System (INIS)

    Stadie, K.B.; Strohl, P.

    1977-01-01

    The paper traces the development of co-operation in nuclear safety technology between the OECD Member countries which began as early as 1965 and is now organised under the auspices of the Committee on the Safety of Nuclear Installations of the OECD Nuclear Energy Agency. The principal objective is to exchange and evaluate information on relevant R and D and hence broaden the technical basis for decision-making by licensing authorities in the different countries. The membership of the Committee on the Safety of Nuclear Installations combines expertise in nuclear safety R and D and in licensing questions so that licensing procedures in the different countries may be exposed continuously to the influence of overall technological progress. The Committee actively seeks to narrow the differences between administrative procedures and traditional legal practices in Member countries as these affect the licensing of nuclear installations, primarily by assessing and comparing the methods employed. The paper shows how the Committee's working arrangements provide for maximum flexibility: the various co-ordinated programmes are selected after in-depth evaluation of potential areas of priority and are implemented through ad hoc Working Groups, specialist meetings or task forces, or in the form of special studies involving all interested countries. The results, conclusions and recommendations emerging from each programme are reviewed by the Committee before dissemination. Hitherto the greater part of the Committee's activities has been concerned with the safety of light water reactors and related subjects, but more attention is now being given to other topics such as LMFBR safety technology and the safety of fuel cycle facilities, particularly those at the end of the process, the so-called ''back-end'' plants. The paper discusses certain problems and constraints encountered in implementing the programme, some of which stem from Member countries' different degrees of penetration

  12. Atomic Safety and Licensing Board Panel annual report, fiscal year 1989

    International Nuclear Information System (INIS)

    Cotter, B.P. Jr.

    1990-07-01

    In Fiscal Year 1989, the Atomic Safety and Licensing Board Panel (ASLBP) handled 40 proceedings involving the construction, operation and maintenance of commercial nuclear power reactors or other activities requiring a license from the Nuclear Regulatory Commission. This report summarizes, highlights and analyzes how the wide-ranging issues raised in these proceedings were addressed by the Judges and Licensing Boards of the ASLBP during the year. 5 figs., 3 tabs

  13. Workshop on Regulatory Review and Safety Assessment Issues in Repository Licensing

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, Roger D. (Galson Sciences Limited (United Kingdom))

    2011-02-15

    The workshop described here was organised to address more general issues regarding regulatory review of SKB's safety assessment and overall review strategy. The objectives of the workshop were: - to learn from other programmes' experiences on planning and review of a license application for a nuclear waste repository, - to offer newly employed SSM staff an opportunity to learn more about selected safety assessment issues, and - to identify and document recommendations and ideas for SSM's further planning of the licensing review

  14. 76 FR 51065 - Florida Power & Light Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2011-08-17

    ... & Light Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the... hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding: Florida Power & Light Company (St. Lucie Plant, Unit 1) This proceeding involves a...

  15. Atomic Safety and Licensing Board Panel annual report, Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-09-01

    In Fiscal Year 1992, the Atomic Safety and Licensing Board Panel (''the Panel'') handled 38 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license from the Nuclear Regulatory Commission. This reports sets out the Panel's caseload during the year and summarizes, highlights, and analyzes how the wide-ranging issues raised in those proceedings were addressed by the Panel's judges and licensing boards

  16. SKB's safety case for a final repository license application

    International Nuclear Information System (INIS)

    Hedin, Allan; Andersson, Johan

    2014-01-01

    The safety assessment SR-Site is a main component in SKB's license application, submitted in March 2011, to construct and operate a final repository for spent nuclear fuel at Forsmark in the municipality of Oesthammar, Sweden. Its role in the application is to demonstrate long-term safety for a repository at Forsmark. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. The principal regulatory acceptance criterion, issued by the Swedish Radiation Safety Authority (SSM), requires that the annual risk of harmful effects after closure not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. SSM's regulations also imply that the assessment time for a repository of this type is one million years after closure. The licence applied for is one in a stepwise series of permits, each requiring a safety report. The next step concerns a permit to start excavation of the repository and requires a preliminary safety assessment report (PSAR) covering both operational and post-closure safety. Later steps include permission to commence trial operation, to commence regular operation and to close the final repository. (authors)

  17. Impact of ITER liquid metal design options on safety level and licensing - Sweden

    International Nuclear Information System (INIS)

    Harfors, C.; Devell, L.; Johansson, Kjell; Lundell, B.; Rolandsson, S.

    1993-01-01

    The safety level and licensability of five design options for ITER coolant, breeding material and structural material are assessed, with emphasis on some specified accident scenarios. The safety level is assessed in terms of barrier requirements and the feasibility to construct and qualify such a barrier. The licensability in Sweden of each design option is assessed based on the indicated safety level and on a judgement of the technical feasibility to construct and qualify the ITER tokamak itself, based on the selected design option. 20 refs

  18. Safety evaluation report related to the license renewal and power increase for the National Bureau of Standards reactor (Docket No. 50-184)

    International Nuclear Information System (INIS)

    Bernard, H.

    1984-03-01

    Supplement 1 to the Safety Evaluation Report (SER) related to the renewal of the operating license and for a power increase (10 MWt to 20 MWt) for the research reactor at the National Bureau of Standards (NBS) facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports on the review of the licensee's emergency plan, which had not been reviewed at the time the Safety Evaluation Report (NUREG-1007) was published, and the review of the NBS application by the Advisory Committee on Reactor Safeguards, which was completed subsequent to the publication of the SER

  19. The regulatory review of construction license application and the supporting safety case

    International Nuclear Information System (INIS)

    Heinonen, Jussi

    2014-01-01

    at the end of 1999 when Posiva Ltd, the current implementer of the disposal programme, submitted the application for a decision-in-principle (DiP, 2000) for a spent fuel disposal facility in the Olkiluoto. The DiP was given by the government in late 2000, approved by the host municipality and ratified by the parliament in early 2001. It gave Posiva the authorisation to start to construct an underground rock characterisation facility, to the depth of the actual planned disposal, as required by regulation. The safety case to support the decision-in-principle application was compiled for 1999. The safety case included a concept description, proposed site characteristics, general facility layout and a safety assessment. The application was further supported by an environmental impact assessment report. Posiva has submitted a construction license application for a spent fuel encapsulation and disposal facility at the end of 2012. STUK is currently finalising the decisions related to the initial review phase and starting the detailed review. The preparatory phase has included among other things a systematic requirement and education programme, negotiation of framework agreements with external support experts and stepwise review of Posiva's developing safety case documents which included the draft construction license application documents. (authors)

  20. Development of quantitative goals for inherent safety feature design and licensing

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.

    1987-01-01

    There is now considerable interest in the development of advanced fast reactors whose major focus is inherent safety. The achievement of inherent safety can be viewed from several aspects. In the Integral Fast Reactor Concept the approach is to utilize the intrinsic characteristics of pool-type liquid metal fast breeder reactors (LMFBRs) and the properties of metal fuels to integrate a high degree of inherent safety into the design. The PRISM and SAFR concepts focus on other inherent safety features. The reactors discussed above represent a radical departure from existing LWR designs as well as previous LMFBR designs (e.g., CRBRP) which are based, for the most part, on the General Design Criteria found in 10CFR50 Appendix. In view of these parallel developments (advanced reactors exploiting inherent safety and the use of quantitative goals to augment licensing), there appears to be a need to perform research on the development of methods for designing, assessing, and licensing inherent safety features in advanced reactors. The objectives of such research are outlined

  1. New trends in the evaluation and implementation of the safety-related operating experience associated with NRC-licensed reactors

    International Nuclear Information System (INIS)

    Michelson, C.; Heltemes, C.J.

    1981-01-01

    This article is an overview of the Nuclear Regulatory Commission program for the evaluation and dissemination of the safety-related operating experience associated with all NRC-licensed reactors. It discusses the historical background and past problems that led to the recent formation of NRC's Office for Analysis and Evaluation of Operational Data (AEOD) and details its activities, organization, staffing, and proposed analysis and evaluation methodology. The programs of industry organizations and nuclear plant licensees and the integration of foreign operating experience are included in the overview. The problems and limitations of the Licensee Event Report (LER) program and the Nuclear Plant Reliability Data system program are discussed. The AEOD analysis and evaluation methodology program includes some new improvements in the assessment of safety-related operating experience. Of particular note is the sequence coding and search procedure being developed by AEOD under a contract with the Nuclear Safety Information Center at the Oak Ridge National Laboratory. This computer-based retrieval system will have markedly improved search strategy capability for such items as commoncause failures or complex system interactions involving various failure sequences and other relationships associated with an event. The system retrieves failure data and information on the principal LER occurrence and on related component and system responses. The computer-generated Power Reactor Watch List enables AEOD to monitor all critical or unusual situations warranting close attention because of potential public health and safety. This listing is supported by a preestablished computer search strategy of the historical data base permitting identification of all past events and statistical information that are applicable to the situation being watched

  2. Summary report on safety and licensing strategy support for the ABR prototype

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Nuclear Engineering Division

    2007-01-01

    Argonne National Laboratory is providing support to the US Department of Energy in the Global Nuclear Energy Partnership (GNEP) in certification of an advanced, sodium-cooled fast reactor. The reactor is to be constructed as a prototype for future commercial power reactors that will produce electricity while consuming actinides recovered from light water reactor spent fuel. This prototype reactor has been called the Advanced Burner Reactor, or ABR, and is now often referred to as the advanced recycle reactor. As part of its activities, Argonne is providing technical services to assist definition of a safety and licensing strategy for the ABR prototype, and to further implementation of the strategy. In FY06, an organizational meeting was held for DOE and its laboratory contractors to discuss licensing alternatives and review previous licensing experience for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). Near the end of FY06, a report summarizing the discussions and conclusions was written. One of the top-level conclusions recorded in the report was a recommendation to follow a licensing strategy that included the US Nuclear Regulatory Commission (NRC) as the regulatory review and licensing authority. In FY07, activities ar Argonne to support safety and licensing progress have continued. These activities have focused on further evaluation of licensing alternatives; assessment of design, analysis, and documentation implications of licensing paths; and initial technical interactions with the Nuclear Regulatory Commission. This report summarizes FY07 activities

  3. 75 FR 54400 - Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2010-09-07

    ...] Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation..., notice is hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding: Florida Power & Light Company (Turkey Point Units 6 and 7) This...

  4. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1980-11-01

    This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. Some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors. At the end, a few considerations are given to the consequences of the Osiris core conversion

  5. Expert evaluation in NPP safety important systems licensing process

    International Nuclear Information System (INIS)

    Mikhail, A Yastrebenetsky; Vasilchenko, V.N.

    2001-01-01

    Expert evaluation of nuclear power plant safety important systems modernization is an integral part of these systems licensing process. The paper contains some aspects of this evaluation which are based on Ukrainian experience of VVER-1000 and VVER-440 modernization. (authors)

  6. Expert evaluation in NPP safety important systems licensing process

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, A Yastrebenetsky; Vasilchenko, V.N. [Ukrainian State Scientific Technical Center of Nuclear and Radiation Safety (Ukraine)

    2001-07-01

    Expert evaluation of nuclear power plant safety important systems modernization is an integral part of these systems licensing process. The paper contains some aspects of this evaluation which are based on Ukrainian experience of VVER-1000 and VVER-440 modernization. (authors)

  7. Sodium Fast Reactor Safety and Licensing Research Plan

    International Nuclear Information System (INIS)

    Denman, M.; Lachance, J.; Sofu, T.; Bari, R.; Flanagon, G.; Wigeland, R.

    2015-01-01

    This paper summarizes potential research priorities for the US Department of Energy (DOE) with the intent of improving the licensability of the sodium cooled fast reactor (SFR). In support of this project, five panels were tasked with identifying potential safety related gaps in the available information, data and models needed to support the licensing of an SFR. The areas examined were sodium technology; accident sequences and initiators; source term characterization, codes and methods; and fuels and materials. It is the intent of this paper to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the applied technology access control designation from old documents. The second cross-cutting gap is the need for a robust knowledge management and preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with applied technology and knowledge management. (author)

  8. Safety philosophy and licensing practice in different member states of IAEA: Canada

    International Nuclear Information System (INIS)

    Boyd, F.C.

    1981-01-01

    The lecture will provide an outline of the Canadian nuclear organization and basic characteristics of the CANDU reactor as a background for a brief description of the nuclear power plant licensing process and the safety philosophy followed. The regulatory agency (Atomic Energy Control Board) follows a three step licensing procedure, Site Acceptance, Construction Approval, Operating Licence. Defense in depth is followed as a general safety concept, but is applied in a special way. Completely separate and independant safety systems are required and basic criteria established through reference dose limits for any assumed failure (or initiating event) in any process (operating) system and for any such failure combined with complete failure at any safety system. The application of the Canadian approach in other countries will be mentioned. (orig./RW)

  9. Safety and licensing of nuclear heating plants

    International Nuclear Information System (INIS)

    Snell, V.G.; Hilborn, J.W.; Lynch, G.F.; McAuley, S.J.

    1989-09-01

    World attention continues to focus on nuclear district heating, a low-cost energy from a non-polluting fuel. It offers long-term security for countries currently dependent on fossil fuels, and can reduce the burden of fossil fuel transportation on railways and roads. Current initiatives encompass large, centralized heating plants and small plants supplying individual institutions. The former are variants of their power reactor cousins but with enhanced safety features. The latter face the safety and licensing challenges of urban siting and remotely monitored operation, through use of intrinsic safety features such as passive decay heat removal, low stored energy and limited reactivity speed and depth in the control systems. Small heating reactor designs are compared, and the features of the SLOWPOKE Energy System, in the forefront of these designs, are summarized. The challenge of public perception must be met by clearly presenting the characteristics of small heating reactors in terms of scale and transparent safety in design and operation, and by explaining the local benefits

  10. Probabilistic safety analysis : a new nuclear power plants licensing method

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de.

    1982-04-01

    After a brief retrospect of the application of Probabilistic Safety Analysis in the nuclear field, the basic differences between the deterministic licensing method, currently in use, and the probabilistic method are explained. Next, the two main proposals (by the AIF and the ACRS) concerning the establishment of the so-called quantitative safety goals (or simply 'safety goals') are separately presented and afterwards compared in their most fundamental aspects. Finally, some recent applications and future possibilities are discussed. (Author) [pt

  11. The work of the OECD Nuclear Energy Agency on safety and licensing of nuclear installations

    International Nuclear Information System (INIS)

    Strohl, P.

    1975-01-01

    The acceleration of nuclear power programmes in OECD Member countries is reflected in the emphasis given by OECD/NEA to its activities in nuclear safety and regulatory matters. Particular effort is devoted to work on radiation protection and radioactive waste management, safety of nuclear installations and nuclear law development. A Committee on the Safety of Nuclear Installations reviews the state of the art and identifies areas for research and co-ordination of national programmes. A Sub-Committee on Licensing collates information and data on licensing standards and practices of different countries with a view to considering problems of common interest. Comparative studies of various licensing systems and discussions between licensing authorities should help to improve regulatory control of nuclear installations for which there appears to be a need for internationally accepted standards in the long run. (author)

  12. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework. 1. ed.

    International Nuclear Information System (INIS)

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  13. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework; 1. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  14. Safety philosophy and licensing practice in different member states of IAEA: Germany, F.R

    International Nuclear Information System (INIS)

    Lahner, K.

    1981-01-01

    The safety philosophy, as the basis of the design of a NPP, will be shown under the aspects of general design rules, requirements by law, reactor safety commission and nuclear or conventional technical standards. Then a discussion of the licensing practise in the Federal Republic of Germany and in the USA will follow for the different stages of conceptual design, construction and operation with special consideration of the example of the NPP Muelheim-Kaerlich. The interrelation between designer and licensing authority, reactor safety commission and technical consultants will be taken into account. (orig./RW)

  15. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  16. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    International Nuclear Information System (INIS)

    Garrett, R.J.

    2005-01-01

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period

  17. Survey of probabilistic methods in safety and risk assessment for nuclear power plant licensing

    International Nuclear Information System (INIS)

    1984-04-01

    After an overview about the goals and general methods of probabilistic approaches in nuclear safety the main features of probabilistic safety or risk assessment (PRA) methods are discussed. Mostly in practical applications not a full-fledged PRA is applied but rather various levels of analysis leading from unavailability assessment of systems over the more complex analysis of the probable core damage stages up to the assessment of the overall health effects on the total population from a certain practice. The various types of application are discussed in relation to their limitation and benefits for different stages of design or operation of nuclear power plants. This gives guidance for licensing staff to judge the usefulness of the various methods for their licensing decisions. Examples of the application of probabilistic methods in several countries are given. Two appendices on reliability analysis and on containment and consequence analysis provide some more details on these subjects. (author)

  18. Licensing and safety of nuclear power plants in Canada

    International Nuclear Information System (INIS)

    Boyd, F.C.

    1981-09-01

    An overview of the regulatory framework and licensing process for nuclear power plants in Canada is given along with an outline of the evolution of the safety philosophy followed and some comments on how this philosophy and process could be applied by a country embarking on a nuclear power program

  19. Safety Evaluation Report related to the renewal of the operating license for the research reactor at Pennsylvania State University

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Evaluation Report for the application filed by the Pennsylvania State University for a renewal of Operating License R-2 to continue to operate the Pennsylvania State University Breazeale Reactor (PSBR) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the campus in University Park, Pennsylvania. On the basis of its technical review, the staff concludes that the reactor facility can continue to be operated by the university without endangering the health and safety of the public or the environment

  20. Safety-evaluation report related to renewal of the operating license for the Texas A and M University Research Reactor. Docket No. 50-128, License R-83

    International Nuclear Information System (INIS)

    1983-03-01

    This Safety Evaluation Report for the application filed by the Texas A and M University (Texas A and M) for a renewal of operating license number R-83 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Texas Engineering and Experiment Station of the Texas A and M University and is located on the campus in College Station, Brazos County, Texas. The staff concludes that the TRIGA reactor facility can continue to be operated by Texas A and M University without endangering the health and safety of the public

  1. Nuclear power reactor safety research activities in CIAE

    International Nuclear Information System (INIS)

    Pu Shendi; Huang Yucai; Xu Hanming; Zhang Zhongyue

    1994-01-01

    The power reactor safety research activities in CIAE are briefly reviewed. The research work performed in 1980's and 1990's is mainly emphasised, which is closely related to the design, construction and licensing review of Qinshan Nuclear Power Plant and the safety review of Guangdong Nuclear Power Station. Major achievements in the area of thermohydraulics, nuclear fuel, probabilistic safety assessment and severe accident researches are summarized. The foreseeable research plan for the near future, relating to the design and construction of 600 MWe PWR NPP at Qinshan Site (phase II development) is outlined

  2. Safety and licensing for small and medium power reactors

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1987-01-01

    Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicates but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat

  3. Safety and licensing for small and medium power reactors

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1988-01-01

    Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicate but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: Nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat. (orig.)

  4. Sodium fast reactor safety and licensing research plan. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  5. Sodium fast reactor safety and licensing research plan - Volume I

    International Nuclear Information System (INIS)

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-01-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  6. Nuclear Safety Design Base for License Application

    International Nuclear Information System (INIS)

    R.J. Garrett

    2005-01-01

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period

  7. Safety and licensing requirements in the Republic of South Africa

    International Nuclear Information System (INIS)

    Simpson, D.M.; Langford, E.L.

    1986-01-01

    The principles for licensing of nuclear installations in South Africa are based on the control of mortality risk to the operators of an installation and the population resident in the vicinity of the site. This paper describes the development of this safety philosophy, and the nuclear licensing process used in this country. The structure of the nuclear regulatory function is briefly described, including the respective roles of the Atomic Energy Corporation, Licencing Branch and the Council for Nuclear Safety. The development of risk criteria and quantitative release magnitude-probability criteria for radioactive material is outlined. Tasks that have to be undertaken by a potential waste disposal site licensee before a site licence is issued are described. Once the facility is commissioned periodic monitoring procedures will have to be adopted throughout the lifetime of the facility. The scope of typical monitoring activities is outlined and the ongoing analyses to be performed and the records to be kept are discussed

  8. Impact of the Three Mile Island accident on reactor safety and licensing in Canada

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1980-06-01

    This paper discusses the implications of the accident at Three Mile Island on reactor safety and licensing in Canada. Reactor safety principles which can be learned from, or are reaffirmed by, the accident are reviewed. It is concluded that reactor safety demands a firm commitment to safety by all those involved in the nuclear industry. (auth)

  9. The licensing of nuclear power plants in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    In Brazil the governmental organization responsible for the licensing of NPPs is the Comissao Nacional de Energia Nuclear (CNEN), the Brazilian Regulatory Body. A description of CNEN's organization, responsabilities and working methods, as well as the present situation of the Brazilian NPPs undergoing licensing, has recently been presented. In this paper the experience gained by CNEN in the course of licensing Brazilian NPPs Units I and II is discussed. CNEN's present day technical competence and its future trends are analysed with regard to in-house capacity, foreign consultants and research contracts with Brazilian Universities. Finally, the immediate need for a Safety research programm in support of licensing is discussed. Manpower needs and major areas for such a programm are also indicated. (orig./RW)

  10. Reactor licensing

    International Nuclear Information System (INIS)

    Harvie, J.D.

    2002-01-01

    This presentation discusses reactor licensing and includes the legislative basis for licensing, other relevant legislation , the purpose of the Nuclear Safety and Control Act, important regulations, regulatory document, policies, and standards. It also discusses the role of the CNSC, its mandate and safety philosophy

  11. Development in France of nuclear safety technical regulations and standards used in the licensing procedure

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-04-01

    Initially, the Commissariat a l'Energie Atomique was the overall structure which encompassed all nuclear activities in France, including those connected with radiological protection and nuclear safety. As other partners appeared, the Authorities have laid down national regulations relative to nuclear installations since 1963. These regulations more particularly provide for the addition of prescriptions with which the applicant must comply to obtain the necessary licenses and the establishment of General Technical Regulations pertaining to nuclear safety. The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operation of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. A RFS, or a letter, can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  12. Safety Evaluation Report related to the full-term operating license for Dresden Nuclear Power Station, Unit 2 ( Docket No. 50-237)

    International Nuclear Information System (INIS)

    1990-10-01

    The Safety Evaluation Report for the full-term operating license application filed by Commonwealth Edison Company for the Dresden Nuclear Power Station, Unit 2, has been prepared by the Office of Nuclear Regulation of the US Nuclear Regulatory Commission. The facility is located in Grundy County, Illinois. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public. 72 refs

  13. Systematic evaluation program review of NRC Safety Topic VI-10.A associated with the electrical, instrumentation and control portions of the testing of reactor trip system and engineered safety features, including response time for the Dresden station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-10.A, associated with the electrical, instrumentation, and control portions of the testing of reactor trip systems and engineered safety features including response time for the Dresden II nuclear power plant, using current licensing criteria

  14. ITER licensing

    International Nuclear Information System (INIS)

    Gordon, C.W.

    2005-01-01

    ITER was fortunate to have four countries interested in ITER siting to the point where licensing discussions were initiated. This experience uncovered the challenges of licensing a first of a kind, fusion machine under different licensing regimes and helped prepare the way for the site specific licensing process. These initial steps in licensing ITER have allowed for refining the safety case and provide confidence that the design and safety approach will be licensable. With site-specific licensing underway, the necessary regulatory submissions have been defined and are well on the way to being completed. Of course, there is still work to be done and details to be sorted out. However, the informal international discussions to bring both the proponent and regulatory authority up to a common level of understanding have laid the foundation for a licensing process that should proceed smoothly. This paper provides observations from the perspective of the International Team. (author)

  15. 77 FR 1748 - Atomic Safety and Licensing Board; Calvert Cliffs 3 Nuclear Project, LLC, and UniStar Nuclear...

    Science.gov (United States)

    2012-01-11

    ... under represents potential contributions of wind and solar power, the combination alternative depends... Judge Ronald M. Spritzer, Atomic Safety and Licensing Board Panel, Mail Stop T-3F23, U.S. Nuclear..., Atomic Safety and Licensing Board Panel, Mail Stop T-3F23, U.S. Nuclear Regulatory Commission. Fax: (301...

  16. Safety assessments relating to the use of new fuels in research reactors: application to the case of FRM 2 reactor fuel

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Bars, G.; Tran Dai

    2001-01-01

    After giving a brief reminder of the procedure applied in France for the licensing of the use of a new fuel type or design in a research reactor, we outline the main safety aspects associated with such a modification. Finally, by way of an example, we focus on the safety assessment relating to the IRIS irradiation device used in SILOE reactor, in particular for the qualification of the fuel dedicated to FRM II reactor of the Technical University of Munich. This qualification was carried out on a U 3 Si 2 fuel plate enriched to about 90 % in weight of 235 U and containing 1.5 g of uranium per cm 3 . The evaluation performed by the IPSN for GRS did not call into question the choice of U 3 Si 2 fuel plates for the FRM-II reactor. (authors)

  17. Compact sodium cooled nuclear power plant with fast core (KNK II- Karlsruhe), Safety Report

    International Nuclear Information System (INIS)

    1977-09-01

    After the operation of the KNK plant with a thermal core (KNK I), the installation of a fast core (KNK II) had been realized. The planning of the core and the necessary reconstruction work was done by INTERATOM. Owner and customer was the Nuclear Research Center Karlsruhe (KfK), while the operating company was the Kernkraftwerk-Betriebsgesellschaft mbH (KBG) Karlsruhe. The main goals of the KNK II project and its special experimental test program were to gather experience for the construction, the licensing and operation of future larger plants, to develop and to test fuel and absorber assemblies and to further develop the sodium technology and the associated components. The present safety report consists of three parts. Part 1 contains the description of the nuclear plant. Hereby, the reactor and its components, the handling facilities, the instrumentation with the plant protection, the design of the plant including the reactor core and the nominal operation processes are described. Part 2 contains the safety related investigation and measures. This concerns the reactivity accidents, local cooling perturbations, radiological consequences with the surveillance measures and the justification of the choice of structural materials. Part three finally is the appendix with the figures, showing the different buildings, the reactor and its components, the heat transfer systems and the different auxiliary facilities [de

  18. Design and installation of advanced computer safety related instrumentation

    International Nuclear Information System (INIS)

    Koch, S.; Andolina, K.; Ruether, J.

    1993-01-01

    The rapidly developing area of computer systems creates new opportunities for commercial utilities operating nuclear reactors to improve plant operation and efficiency. Two of the main obstacles to utilizing the new technology in safety-related applications is the current policy of the licensing agencies and the fear of decision making managers to introduce new technologies. Once these obstacles are overcome, advanced diagnostic systems, CRT-based displays, and advanced communication channels can improve plant operation considerably. The article discusses outstanding issues in the area of designing, qualifying, and licensing of computer-based instrumentation and control systems. The authors describe the experience gained in designing three safety-related systems, that include a Programmable Logic Controller (PLC) based Safeguard Load Sequencer for NSP Prairie Island, a digital Containment Isolation monitoring system for TVA Browns Ferry, and a study that was conducted for EPRI/NSP regarding a PLC-based Reactor Protection system. This article presents the benefits to be gained in replacing existing, outdated equipment with new advanced instrumentation

  19. ORNL's NRC-sponsored HTGR safety and licensing analysis activities for Fort St. Vrain and advanced reactors

    International Nuclear Information System (INIS)

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.

    1985-01-01

    The ORNL safety analysis program for the HTGR was established in 1974 to provide technical assistance to the USNRC on licensing questions for both Fort St. Vrain and advanced plant concepts. The emphasis has been on development of major component and system dynamic simulation codes, and use of these codes to analyze specific licensing-related scenarios. The program has also emphasized code verification, using Fort St. Vrain data where applicable, and comparing results with industry-generated codes. By the use of model and parameter adjustment routines, safety-significant uncertainties have been identified. A major part of the analysis work has been done for the Fort St. Vrain HTGR, and has included analyses of FSAR accident scenario re-evaluations, the core block oscillation problem, core support thermal stress questions, technical specification upgrade review, and TMI action plan applicability studies. The large, 2240-MW(t) cogeneration lead plant design was analyzed in a multi-laboratory cooperative effort to estimate fission product source terms from postulated severe accidents

  20. Atomic Safety and Licensing Board Panel Biennial Report, Fiscal Years 1993--1994. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In Fiscal Year 1993, the Atomic Safety and Licensing Board Panel (``the Panel``) handled 30 proceedings. In Fiscal Year 1994, the Panel handled 36 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license form the Nuclear Regulatory Commission. This report sets out the Panel`s caseload during the year and summarizes, highlight, and analyzes how the wide- ranging issues raised in those proceedings were addressed by the Panel`s judges and licensing boards.

  1. Atomic Safety and Licensing Board Panel Biennial Report, Fiscal Years 1993--1994. Volume 6

    International Nuclear Information System (INIS)

    1995-08-01

    In Fiscal Year 1993, the Atomic Safety and Licensing Board Panel (''the Panel'') handled 30 proceedings. In Fiscal Year 1994, the Panel handled 36 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license form the Nuclear Regulatory Commission. This report sets out the Panel's caseload during the year and summarizes, highlight, and analyzes how the wide- ranging issues raised in those proceedings were addressed by the Panel's judges and licensing boards

  2. Licensing of safety critical software for nuclear reactors. Common position of seven European nuclear regulators and authorised technical support organisations

    International Nuclear Information System (INIS)

    2007-01-01

    The major result of the work is the identification of consensus and common technical positions on a set of important licensing issues raised by the design and operation of computer-based systems used in Nuclear Power Plants for safety functions. The purpose is to introduce greater consistency and more mutual acceptance into current practices. To achieve these common positions, detailed consideration was paid to the licensing approaches followed in the different countries represented by the experts of the task force. The report is intended to be useful: - to coordinate regulators' and safety experts' technical viewpoints in the design of regulators' national policies and in revisions of guidelines; - as a reference in safety cases and demonstrations of safety of software based systems; - as guidance for system design specifications by manufacturers and major I and C suppliers on the international market. The task force decided at an early stage to focus attention on computer based systems used in Nuclear Power Plants for the implementation of safety functions; namely, those systems classified by the IAEA as 'Safety Systems'. Therefore, recommendations of this report - except those of chapter 1.11 - primarily address 'safety systems' and not 'safety related systems'. It was felt that the most difficult aspects of the licensing of digital programmable systems are rooted in the specific properties of the technology. The objective was therefore to delineate practical and technical licensing guidance, rather than discussing or proposing basic principles or requirements. The design requirements and the basic principles of nuclear safety in force in each member state are assumed to remain applicable. This report represents the consensus view achieved by the experts who contributed to the task force. It is the result of what was at the time of its initiation a first attempt at the international level to achieve consensus among nuclear regulators on practical methods for

  3. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  4. Foundation for the adequacy of the licensing bases

    International Nuclear Information System (INIS)

    1991-12-01

    The objective of this report is to describe the regulatory processes that assures that any plant-specific licensing bases will provide reasonable assurance that the operation of nuclear power plants will not be inimical to the public health and safety to the end of the renewal period. It is on the adequacy of this process that the Commission has determined that a formal renewal licensing review against the full range of current safety requirements would not add significantly to safety and is not needed to assure that continued operation throughout the renewal term is not inimical to the public health and safety or common defense and security. This document illustrates in general terms how the regulatory process has evolved in major safety issue areas. It also provides examples illustrating why it is unnecessary to re-review an operating plant's basis, except for age-related degradation unique to license renewal, at the time of license renewal. The report is a supplement to the Statement of Considerations for the Nuclear Regulatory Commission's rule (10 CFR Part 54) that established the criteria and standards governing nuclear power plant license renewal

  5. Status of safety issues at licensed power plants

    International Nuclear Information System (INIS)

    1991-06-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program has been established whereby an annual NUREG report will be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirement areas. This report, the third volume of a three-volume series, addresses the status of generic safety issues (GSIs) at licensed plants. Volume 1 addressed the status of Three Mile Island Action Plan requirements and was published in March 1991. Volume 2 addressed the status of implementation and verification of unresolved safety issues and was published in May 1991. The annual NUREG report will combine these three areas in a single volume to be published in late 1991. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. The purpose of this report is to provide a comprehensive description of the status of implementation and verification of the 34 GSIs and sub-issues that have been resolved by the NRC and involve implementation of an action or actions by licensees. This NUREG report also serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until a request for action by licensees is issued by NRC. 3 figs., 6 tabs

  6. Safety and licensing: the British perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R D

    1986-02-01

    The legal framework of British regulatory practice is described, with emphasis on its flexibility and the fact that responsibility rests with the licensee, leaving the NII to monitor his implementation of that duty. The UK regulatory philosophy, the mixture of selective and random sampling used and the organization of the regulatory bodies as it interacts with that of the nuclear industry are outlined. This is followed by a resume of the current nuclear safety issues and of the NII's attitude to them, including the continued operation of the aging Magnox reactors, the extended transition of the AGR from the prototype to the 'tried and tested' stage of its existence, the problems of licensing nuclear chemical plant, the CEGB's proposed introduction of the PWR into this country, the availability of increasingly sophisticated means of assessing safety, and the steadily rising public interest in nuclear power issues. The Lecture ends by noting the problems of risk perception and cost/benefit analysis, emphasizing that in striking the right balance the regulatory body must be open, prepared to justify its reasoning, and productive of conclusions which are acceptable to the public.

  7. Regulation and Licensing Aspect. Chapter 5

    International Nuclear Information System (INIS)

    Muhamat Omar; Zalina Laili

    2015-01-01

    The NORM industries must apply the Envionmental Quality Act 1974 (Act 127), Safety Act and Occupational Safety and Health Act (514), Atomic Energy Licensing Act 1984 (Act 304) and others related act depend on the industries nature and situation.

  8. Nuclear fuel licensing requirements: present status and future trends

    International Nuclear Information System (INIS)

    Gantchev, T.; Vitkova, M.; Gorinov, I.; Datcheva, D.; Rashkova, N.

    2001-01-01

    The nuclear fuel licensing process must be directed to establishing of criteria for licensing (fuel safety criteria) and relationship between safety limits, technical specifications and operational conditions. This paper discusses the fuel safety criteria as used by NRC and Russian vendor. A survey on the available fuel behavior, modeling and related computer codes is given with respect to help the licensing process including new safety features of general changes in fuel design and operational conditions. Several types of computer codes that are used in safety analysis are sensitive to fuel-related parameters. The need for further code development and verification has been stated on many occasions: new design elements, such as different cladding materials, higher burnup, different fuel microstructure and use of MOX fuel can affect the performance of these codes. Regulatory inspection practices during operation and refueling in different countries are also shown. Future trends are discussed in particular with regard to the coming high burnup and to new core management schemes

  9. Finnish experiences on licensing and using of programmable digital systems in nuclear power plants

    International Nuclear Information System (INIS)

    Haapanen, P.; Maskuniitty, M.; Heimburger, H.; Hall, L.E.; Manninen, T.

    1993-01-01

    Finnish utility companies, Imatran Voima Oy (IVO) and Teollisuuden Voima (TVO), and the licensing authority, the Finnish Centre for Radiation and Nuclear Safety (STUK), are preparing for a new nuclear power plant in Finland. Plant vendors are proposing programmable digital automation systems for both the safety-related and the operational I and C (instrumentation and control) systems in this new unit. Also in existing plant units the replacement of certain old analog systems with state-of-the-art digital ones will become necessary in the years to come. Licensing of programmable systems for safety critical applications requires a new approach due to the special properties and failure modes of these systems. The major difficulties seem to be in the assessment and quantification of software reliability. The Technical Research Centre of Finland has in co-operation with the authority and the utilities conducted a project (AJA) to develop domestically applicable licensing requirements, guidelines and practices. International standards, guidelines and licensing practices have been analyzed in order to specify national licensing requirements. The paper describes and discusses the findings and experiences of the AJA project so far. The experience in introducing advanced programmable digital control and computer systems in the operating nuclear power plants will be covered briefly. Although these systems are not safety-related but systems of more general interest regarding nuclear safety, some routines regarding the licensing of safety- related systems have been followed. In these backfitting and replacement projects some experience have been gained in how to license safety-related programmable systems. (Author) 31 refs., 2 figs

  10. Safety-I, Safety-II and Resilience Engineering.

    Science.gov (United States)

    Patterson, Mary; Deutsch, Ellen S

    2015-12-01

    In the quest to continually improve the health care delivered to patients, it is important to understand "what went wrong," also known as Safety-I, when there are undesired outcomes, but it is also important to understand, and optimize "what went right," also known as Safety-II. The difference between Safety-I and Safety-II are philosophical as well as pragmatic. Improving health care delivery involves understanding that health care delivery is a complex adaptive system; components of that system impact, and are impacted by, the actions of other components of the system. Challenges to optimal care include regular, irregular and unexampled threats. This article addresses the dangers of brittleness and miscalibration, as well as the value of adaptive capacity and margin. These qualities can, respectively, detract from or contribute to the emergence of organizational resilience. Resilience is characterized by the ability to monitor, react, anticipate, and learn. Finally, this article celebrates the importance of humans, who make use of system capabilities and proactively mitigate the effects of system limitations to contribute to successful outcomes. Copyright © 2015 Mosby, Inc. All rights reserved.

  11. Exploitation of BEPU Approach for the Licensing Process

    International Nuclear Information System (INIS)

    D'Auria, F.; Petruzzi, A.; Muellner, A.N.; Mazzantini, O.

    2011-01-01

    Within the licensing process of the Atucha II PHWR (Pressurized Heavy Water Reactor) the BEPU (Best Estimate Plus Uncertainty) approach has been selected for issuing of the Chapter 15 on FSAR (Final Safety Analysis Report). The key steps of the entire process are basically two: a) the selection of PIE (Postulated Initiating Events) and, b) the analysis by best estimate models supported by uncertainty evaluation. The key elements of the approach are: 1) availability of qualified computational tools including suitable uncertainty method; 2) demonstration of quality; 3) acceptability and endorsement by the licensing authority. The effort of issuing Chapter 15 is terminated at the time of issuing of the present paper and the safety margins available for the operation of the concerned NPP (Nuclear Power Plant) have been quantified. (authors)

  12. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues

    International Nuclear Information System (INIS)

    1992-12-01

    This report is to provide a comprehensive description of the implementation and verification status of Three Mile Island (TMI) Action Plan requirements, safety issues designated as Unresolved Safety Issues (USIs), Generic Safety Issues(GSIs), and other Multiplant Actions (MPAs) that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  13. 77 FR 67679 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Science.gov (United States)

    2012-11-13

    ... diesel generator surveillance requirements. Margin of safety is related to the ability of the fission... evaluated; or (3) involve a significant reduction in a margin of safety. The basis for this proposed... accordance with the Commission's ``Rules of Practice for Domestic Licensing Proceedings'' in 10 CFR Part 2...

  14. Safety-evaluation report related to the renewal of the operating license for the Cornell University TRIGA Research Reactor. Docket No. 50-157

    International Nuclear Information System (INIS)

    1983-08-01

    This Safety Evaluation Report for the application filed by the Cornell University for a renewal of Operating License R-80 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by Cornell University and is located on the Cornell campus in Ithaca, New York. The staff concludes that the TRIGA reactor facility can continue to be operated by Cornell without endangering the health and safety of the public

  15. TMI-related requirements for new operating licenses. Technical report

    International Nuclear Information System (INIS)

    1980-06-01

    There are four types of TMI-related requirements and actions approved by the Commission for new operating licenses: (1) those required to be completed by a license applicant prior to receiving a fuel-loading and low-power testing license, (2) those required to be completed by a license applicant prior to receiving a license to operate at appreciable power levels up to full power, (3) those the NRC will take prior to issuing a fuel-loading and low-power testing or a full-power operating license, and (4) those required to be completed by a licensee prior to a specified date. In this report, only those dated requirements that have already been issued are of interest. Other dated requirements are expected to be issued in the future as work progresses in accordance with the TMI Action Plan. This report summarizes the several parts of the list of TMI-related requirements approved by the Commission for new operating licenses

  16. The impact of safety standards updating for design purposes in nuclear power plants licensing

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz

    2009-01-01

    The Brazilian experience of nuclear power plants licensing was consolidated by the use of the Brazilian, American, German and IAEA standards. Independently of the set of norms, standards or guides to be used, this set should be in consonance with the state-of-art or the current state of knowledge in science and technology. In the general design criteria of US NRC or German BMI, or in the Brazilian norms (CNEN) or even, in the IAEA standards, this aspect is always emphasized. On the other hand, the international operational experience of nuclear reactors (for example, TMI accident) also contributes to the updating of norms and standards. The use of new technologies (for example, digital technology) impels the norms and standards to adopt new design criteria related to the new technological context. Moreover, we must add the particular vision that each country can have concerning to specific topics in nuclear safety. This work discusses how the norms, standards and guides used in the nuclear licensing are being reviewed to cope with the requirement of the state-of-art. In order to accomplish this aim we took some general design criteria to exemplify how they are fulfilled, mainly those related directly with the protection of the defense-in-depth barriers: primary coolant system, containment vessel and containment systems, including external events and severe accidents. In complement to the deterministic analysis, it is also discussed the design criteria related to the human factors engineering and probabilistic safety analysis, including severe accidents aspects. (author)

  17. Stockholm Safety Conference. Analysis of the sessions on radiological protection, licensing and risk assessment

    International Nuclear Information System (INIS)

    Gea, A.

    1981-01-01

    A summary of the sessions on radiological protection, licensing and risk assessment in the safety conference of Stockholm is presented. It is considered the new point of view of the nuclear safety, probabilistic analysis, components failures probability and accident analysis. They are included conclusions applicable in many cases to development countries. (author)

  18. Safety Evaluation Report related to the renewal of the operating license for the Westinghouse research reactor at Zion, Illinois (Docket No. 50-87)

    International Nuclear Information System (INIS)

    1984-09-01

    This Safety Evaluation Report, for the application filed by the Westinghouse Electric Company, for renewal of operating license number R-119 to continue to operate the research reactor, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is operated by Westinghouse and is located in Zion, Illinois. The staff concludes that the reactor facility can continue to be operated by Westinghouse without endangering the health and safety of the public

  19. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement

  20. Safety Evaluation Report related to the full-term operating license for Millstone Nuclear Power Station, Unit No. 1 (Docket No. 50-245). Supplement No. 1

    International Nuclear Information System (INIS)

    1986-08-01

    This report, prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission, supplements the Safety Evaluation Report (NUREG-1143, October 1985). It fulfills a commitment to provide the Advisory Committee on Reactor Safeguards report, identifies the changes that have occurred since the Safety Evaluation Report was issued, and specifies the effective lifetime for the Full-Term Operating License

  1. License renewal process

    International Nuclear Information System (INIS)

    Fable, D.; Prah, M.; Vrankic, K.; Lebegner, J.

    2004-01-01

    The purpose of this paper is to provide information about license renewal process, as defined by Nuclear Regulatory Commission (NRC). The Atomic Energy Act and NRC regulations limit commercial power reactor licenses to an initial 40 years but also permit such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations not on limitations of nuclear technology. Due to this selected time period; however, some structures and components may have been engineered on the basis of an expected 40-year service life. The NRC has established a timely license renewal process and clear requirements codified in 10 CFR Part 51 and 10 CFR Part 54, that are needed to assure safe plant operation for extended plant life. The timely renewal of licenses for an additional 20 years, where appropriate to renew them, may be important to ensuring an adequate energy supply during the first half of the 21st Century. License renewal rests on the determination that currently operating plants continue to maintain adequate levels of safety, and over the plant's life, this level has been enhanced through maintenance of the licensing bases, with appropriate adjustments to address new information from industry operating experience. Additionally, NRC activities have provided ongoing assurance that the licensing bases will continue to provide an acceptable level of safety. This paper provides additional discussion of license renewal costs, as one of key elements in evaluation of license renewal justifiability. Including structure of costs, approximately value and two different approaches, conservative and typical. Current status and position of Nuclear Power Plant Krsko, related to license renewal process, will be briefly presented in this paper. NPP Krsko is designed based on NRC Regulations, so requirements from 10 CFR 51, and 10 CFR 54, are applicable to NPP Krsko, as well. Finally, this paper will give an overview of current status of

  2. NUPLEX Licensing Subcommittee

    International Nuclear Information System (INIS)

    Edwards, D.W.; Allen, S.R.

    1988-01-01

    The NUPLEX Licensing Subcommittee was organized to seek a formal license renewal mechanism that institutionalizes the current licensing basis and consequent level of safety of a plant as the legitimate standard for acceptance and approval of an application for extended operation. Along with defining the most workable approach to and scope of review for license renewal, this paper explains the reasons why a regulatory framework is needed by the early 1990s. The initial results of development work on two key issues, licensing criteria and hearing process, are also presented. at this point six potential license renewal criteria have emerged: evaluation of existing monitoring/maintenance programs, revalidation of current licensing basis, conformance to special regulations, evaluation to a safety goal, plant performance history, and environmental assessment. The work on a hearing process has led to the development of two models for future consideration: hybrid legislative and hybrid adjudicatory

  3. Safety Evaluation Report related to the renewal of the operating license for the research reactor at Purdue University: Docket No. 50-182

    International Nuclear Information System (INIS)

    1988-04-01

    This Safety Evaluation Report for the application filed by Purdue University for a renewal of Operating License R-87 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned by Purdue University and is located on the campus in West Lafayette, Indiana. On the basis of its technical review, the staff concludes that the reactor facility can continue to be operated by the university without endangering the health and safety of the public or the enviroment

  4. Safety evaluation report related to the renewal of the operating license for the Washington State University TRIGA reactor. Docket No. 50-27

    International Nuclear Information System (INIS)

    1982-05-01

    This Safety Evaluation Report for the application filed by the Washington State University (WSU) for a renewal of operating license number R-76 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Washington State University and is located on the WSU campus in Pullman, Whitman County, Washington. The staff concludes that the TRIGA reactor facility can continue to be operated by WSU without endangering the health and safety of the public

  5. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing

    International Nuclear Information System (INIS)

    1979-12-01

    Volume 6 of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power-generating capability and one without. This volume also provides estimates of the time required for development of large-scale commercial reactor systems to reach the construction permit application stage and for fuel-cycle facilities to reach the operating license application stage, which is a measure of the relative technical status of alternative nuclear systems

  6. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    International Nuclear Information System (INIS)

    Ichikawa, M.

    1994-01-01

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs

  7. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-12-31

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs.

  8. Trends in nuclear licensing

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, N W [Council for Nuclear Safety, Hennopsmeer, Pretoria (South Africa)

    1990-06-01

    The development of nuclear safety and licensing is briefly reviewed in four stages namely: The Formative Period (1946-1959), The Expansive Period (1960-1969), The Mature Period (1970-1979) and the Apprehensive Period (1980-1989). Particular safety issues in the respective periods are highlighted to indicate the changing emphasis of nuclear licensing over the past thirty years or so. Against this background, nuclear licensing. (author)

  9. Trends in nuclear licensing

    International Nuclear Information System (INIS)

    Dalton, N.W.

    1990-01-01

    The development of nuclear safety and licensing is briefly reviewed in four stages namely: The Formative Period (1946-1959), The Expansive Period (1960-1969), The Mature Period (1970-1979) and the Apprehensive Period (1980-1989). Particular safety issues in the respective periods are highlighted to indicate the changing emphasis of nuclear licensing over the past thirty years or so. Against this background, nuclear licensing. (author)

  10. Building the safety case for a hypothetical underground repository in crystalline rock. Final report. Vol. 2. Safety file

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.J.; Jobmann, M.; Lommerzheim, A.; Popp, W.; Frentz, R.R. v.; Wahl, A.

    1996-10-01

    The study was intended as a desk simulation of the process of preparing a licensing application for a deep repository for spent fuel and high level waste in crystalline rock. After clarifying of organizational aspects of table of contents specifying all aspects in a safety life for license application were considered. The volume II is subdivided in two parts. Part A describes the general information, waste description, site characteristics, disposal facility design, reporitory construction and operation, quality assurance, operational safety, repository closure, organization and financial aspects, and long-term safety assessment. Part B deals with the impact of retrievability. (DG)

  11. Materials-related issues in the safety and licensing of nuclear fusion facilities

    Science.gov (United States)

    Taylor, N.; Merrill, B.; Cadwallader, L.; Di Pace, L.; El-Guebaly, L.; Humrickhouse, P.; Panayotov, D.; Pinna, T.; Porfiri, M.-T.; Reyes, S.; Shimada, M.; Willms, S.

    2017-09-01

    Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.

  12. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee`s annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs.

  13. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    International Nuclear Information System (INIS)

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee's annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs

  14. Summary of IEA-R1 research a reactor licensing related to its power increase from 2 to 10 MW

    International Nuclear Information System (INIS)

    1989-04-01

    This work is a summary of IEA-R1 research reactor licensing related to its power increase from 2 to 10 MW. It reports also safety requirements, fuel elements, and reactor control modifications inherent to power increase. (A.C.A.S.)

  15. Safety Evaluation Report related to the renewal of the operating license for the research reactor at Manhattan College (Docket No. 50-199)

    International Nuclear Information System (INIS)

    1985-02-01

    This Safety Evaluation Report for the application filed by Manhattan College (MC) for a renewal of Operating License R-94 to continue to operate the MC 0.1-W open-pool training reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by MC and is located two blocks away from the MC main campus in the Riverdale area of New York City, New York. The staff concludes that the reactor facility can continue to be operated by MC without endangering the health and safety of the public

  16. Safety evaluation report related to the renewal of the operating license for the University of New Mexico Research Reactor (Docket No. 50-252)

    International Nuclear Information System (INIS)

    1987-03-01

    This Safety Evaluation Report for the application filed by the University of New Mexico (UNM) for renewal of Operating License No. R-102 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the campus of the University of New Mexico in Albuquerque, New Mexico. The staff concludes that the reactor can continue to be operated by the University of New Mexico without endangering the health and safety of the public. 7 refs., 7 figs., 2 tabs

  17. Safety evaluation report related to the renewal of the operating license for the Zero-Power Reactor at Cornell University, Docket No. 50-97

    International Nuclear Information System (INIS)

    1983-09-01

    This Safety Evaluation Report for the application filed by Cornell University (CU) for a renewal of Operating License R-80 to continue to operate a zero-power reactor (ZPR) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by Cornell University and is located on the Cornell campus in Ithaca, New York. The staff concludes that the ZPR facility can continue to be operated by CU without endangering the health and safety of the public

  18. Licensing assessment of the CANDU pressurized heavy water reactor. Volume I. Preliminary safety information document

    International Nuclear Information System (INIS)

    1977-06-01

    The PHWR design contains certain features that will require significant modifications to comply with USNRC siting and safety requirements. The most significant of these features are the reactor vessel; control systems; quality assurance program requirements; seismic design of structures, systems and components; and providing an inservice inspection program capability. None of these areas appear insolvable with current state-of-the-art engineering or with upgrading of the quality assurance program for components constructed outside of the USA. In order to be licensed in the U. S., the entire reactor assembly would have to be redesigned to comply with ASME Boiler and Pressure Vessel Code, Section III, Division 1 and Division 2. A summary matrix at the end of this volume identifies compliance of the systems and structures of the PHWR plant with the USNRC General Design Criteria. The matrix further identifies the estimated incremental cost to a 600 MWe PHWR that would be required to license the plant in the U. S. Further, the matrix identifies whether or not the incremental licensing cost is size dependent and the relative percentage of the base direct cost of a Canadian sited plant

  19. An overview of the class I structures license renewal industry report

    International Nuclear Information System (INIS)

    Renfro, L.J.; Statton, J.A.

    1991-01-01

    License renewal of a commercial nuclear power plant requires verification that systems, structures and components important to license renewal can perform their intended safety functions throughout the license renewal term. The verification of this continuing performance includes a technical evaluation of the effects of age-related degradation. An industry report (IR) sponsored by the nuclear industry was developed which identifies potentially significant age-related degradation mechanisms that may affect Class I structures and evaluates their impact on the ability of the structures to continue to perform their safety functions. Preventive and/or mitigative options are outlined for managing degradation mechanisms that could significantly affect plant performance during the license renewal period. This paper provides a summary of the IR. (author)

  20. PBMR-SA licensing project organization

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Metcalf, P.E.; Mysen, A.

    2001-01-01

    The South African nuclear regulatory authority, the Council for Nuclear Safety (CNS), is beginning the safety review of the Pebble Bed Modular Reactor (PBMR) design under development by the South African National Electrical Utility, Eskom. This paper describes the CNS licensing process, including the establishment of basic licensing criteria, general design criteria, and specific design rules, as well the safety assessment to be conducted in accordance with the established structure. It also summarises the CNS PBMR review project activities, including the overall organisational arrangements, licensing basis, safety and risk assessment, general operating rules and plant design engineering, and pre-operational testing. (author)

  1. Safety Evaluation Report related to the renewal of the operating license for the General Electric-Nuclear Test Reactor (GE-NTR) (Docket No. 50-73)

    International Nuclear Information System (INIS)

    1984-09-01

    This Safety Evaluation Report for the application filed by the General Electric Company (GE) for a renewal license number R-33 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by GE and is located in Pleasanton, California. The staff concludes that the reactor can continue to be operated by GE without endangering the health and safety of the public

  2. Regulatory challenges related to the licensing of a new nuclear power plant

    International Nuclear Information System (INIS)

    Maris, M.

    2010-01-01

    Assuring the safety and security of nuclear power plants is recognized world-wide as a challenge for all stakeholders. Particular attention goes to plants planned to be built in countries with not sufficiently developed industrial and regulatory infrastructure and experience. A construction and commissioning project, which is usually an international undertaking, gives opportunities to all national stakeholders to develop further their organisations and competences. In the present paper the duties of a regulatory body are recalled as well as the human resources and competences needed for the licensing of a new nuclear power plant. The regulatory body and its technical safety organization(s) should be strengthened and the international cooperation should contribute to this in a systematic and coordinated way. In particular, the donor country should support the necessary development of the regulatory competences and of an effective safety assessment process supporting the national licensing process. Appropriate support can be provided by the International Atomic Energy Agency (IAEA) and through other bi-lateral or multi-lateral programmes

  3. Technical evaluation of seismic qualification of safety-related equipment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yang Hui; Park, Heong Gee; Park, Yeong Seok [Univ. of Incheon, Incheon (Korea, Republic of)

    1994-04-15

    This study is purposed to evaluate the technical acceptability of the procedures and techniques of seismic qualifications which were performed for the YGN 3 and 4 safety-related equipment.This study is also targeted to suggest a systematized technical procedure guide for the effective performance and review of the seismic qualification, which reflects the most up-to-date licensing requirements and state-of the-art.

  4. Safety and environmental requirements and design targets for TIBER-II

    International Nuclear Information System (INIS)

    Piet, S.J.

    1987-09-01

    A consistent set of safety and environmental requirements and design targets was proposed and adopted for the TIBER-II (Tokamak Ignition/Burn Experimental Reactor) design effort. TIBER-II is the most recent US version of a fusion experimental test reactor (ETR). These safety and environmental design targets were one contribution of the Fusion Safety Program in the TIBER-II design effort. The other contribution, safety analyses, is documented in the TIBER-II design report. The TIBER-II approach, described here, concentrated on logical development of, first, a complete and consistent set of safety and environmental requirements that are likely appropriate for an ETR, and, second, an initial set of design targets to guide TIBER-II. Because of limited time in the TIBER-II design effort, the iterative process only included one iteration - one set of targets and one design. Future ETR design efforts should therefore build on these design targets and the associated safety analyses. 29 refs., 5 figs., 3 tabs

  5. FRM-II: status of construction, licensing fuel tests

    International Nuclear Information System (INIS)

    Axmann, A.; Boening, K.; Nuding, M.; Didier, H.J.

    2001-01-01

    The research reactor FRM-II of the Technische Universitaet Muenchen is now ready for the nuclear start-up, but still waiting for the operational license. The high-flux neutron-source FRM-II (8 x 10 14 n/(s cm 2 ) is a unique tool for solid state physics and materials research by neutron scattering, positron annihilation experiments and activation analysis, as well as for fundamental physics, isotope production, silicone doping, cancer therapy by irradiation with fission neutrons and for tomography with fast and thermal neutrons. Reactor built in facilities as a hot source, a cold source, an uranium loaded converter plate producing an intense beam of fission neutrons, allow to expand the range of usable neutron energies far beyond the thermal spectrum. In addition, a source providing an intense beam of fission products is planned to be constructed by the Ludwig-Maximilians-Universitaet Muenchen and a source of ultra cold neutrons is planned by the Physics Department of the Technische Universitaet Muenchen. The reactor is already prepared for both of these facilities. (author)

  6. Safety-evaluation report related to the license renewal and power increase for the National Bureau of Standards Reactor (Docket No. 50-184)

    International Nuclear Information System (INIS)

    1983-09-01

    This Safety Evaluation Report for the application filed by the National Bureau of Standards (NBS) for an increase in power from 10 MWt to 20 MWt and for a renewal of the Operating License TR-5 to continue to operate the test reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Gaithersburg, Maryland, on the site of the National Bureau of Standards, which is a bureau of the Department of Commerce. The staff concludes that the NBS reactor can operate at the 20 MWt power level without endangering the health and safety of the public

  7. Safety evaluation report related to the operation of Sequoyah Nuclear Plant, Units 1 and 2, Docket Nos. 50-327 and 50-328, Tennessee Valley Authority. Supplement No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-01-01

    On September 17, 1980, the Nuclear Regulatory Commission (NRC) issued the facility operating license DPR-77 to the Tennessee Valley Authority for the Sequoyah Nuclear Plant, Unit 1, located in Hamilton County, Tennessee. The license authorized operation of Unit 1 at 100 percent power; however, a license condition regarding the adequacy of the hydrogen control system was included that required resolution by January 31, 1981. The purpose of Supplement No. 4 to the SER is to further update our Safety Evaluation Reports on the hydrogen control measures (Section 22.2, II.B.7), and to comply with the license condition which is as follows: 'By January 31, 1981, TVA shall by testing and analysis show to the satisfaction of the NRC staff that an interim hydrogen control system will provide with reasonable assurance protection against breach of containment in the event that a substantial quantity of hydrogen is generated.' TVA submitted on December 11, 1980, the first quarterly report on the research program for hydrogen control. Also, TVA revised volume 2 of the Sequoyah Core Degradation Program Report to incorporate additional information on the overall program. Section II.B.7 of Supplement No. 4 responds to the license condition. Each section is supplementary to and not in lieu of discussion in the Safety Evaluation Report and Supplements Nos. 1, 2, and 3, except where specifically noted. Supplements No. 2 and 3 to the Safety Evaluation Report provided a basis for concluding that the full-power licensing of Sequoyah Unit 1 need not await completion of ongoing work on hydrogen control measures. This supplement concludes that operation of the IDIS for an interim period of one year is appropriate.

  8. Licensing in an international triopoly

    Science.gov (United States)

    Ferreira, Fernanda A.; Ferreira, Flávio

    2011-12-01

    We study the effects of entry of two foreign firms on domestic welfare in the presence of licensing, when the incumbent is technologically superior to the entrants. We consider two different situations: (i) the cost-reducing innovation is licensed to both entrants; (ii) the cost-reducing innovation is licensed to just one of the entrants. We analyse three kind of license: (lump-sum) fixed-fee; (per-unit) royalty; and two-part tariff, that is a combination of a fixed-fee and a royalty. We prove that a two part tariff is never an optimal licensing scheme for the incumbent. Moreover, (i) when the technology is licensed to the two entrants, the optimal contract consists of a licensing with only output royalty; and (ii) when the technology is licensed to just one of the entrants, the optimal contract consists of a licensing with only a fixed-fee.

  9. Licensing the First Nuclear Power Plant. INSAG-26. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2012-01-01

    having nuclear power plants of similar design, and the various technical cooperation activities conducted by international organizations, in particular the IAEA. The first major task for the regulatory body will be carrying out a review of the safety evaluation report of the proposed site for the first nuclear power plant. For this, the regulatory body must lay down the safety requirements that could be developed or adopted from IAEA safety standards on the subject. It will also require a set of specialized competences in areas such as seismology, hydrology, geochemistry and geology that is not necessarily nuclear related. In developing the strategy to secure and maintain a technically competent regulatory body, a decision should be made early whether to recruit staff with those competences or to outsource these activities to agencies where competences in such areas may already be available in the country. Notwithstanding this, the regulatory body still requires a core technical group in the key disciplines to be able to understand and compile the information from the site evaluation reports as input to the site licensing process.

  10. Safety Evaluation Report related to the renewal of the operating license for the research reactor at Michigan State University (Docket No. 50-294)

    International Nuclear Information System (INIS)

    1984-08-01

    This Safety Evaluation Report for the application filed by the Michigan State University (MSU) for a renewal of operating license number R-114 to continue to operate the TRIGA Mark I research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Michigan State University and is located on the campus of Michigan State University in East Lansing, Ingham County, Michigan. The staff concludes that the TRIGA reactor facility can continue to be operated by MSU without endangering the health and safety of the public

  11. Challenges in the Licensing of New Nuclear Power Plant, Service Life Extension of Operating Ones (Safeguards-Safety-Security Aspects)

    International Nuclear Information System (INIS)

    Horvath, K.

    2016-01-01

    The Hungarian Atomic Energy Authority (HAEA), as the Hungarian nuclear regulator is faced with dual challenges meant by the licensing of the planned construction of two AES-2006 type nuclear power plant units and the licensing of the service life extension of the existing units that have been operating for more than 30 years. The HAEA has full regulatory competence; its mission is to oversee the safety and security of all the peaceful applications of atomic energy. Accordingly, the licensing scope covers safeguards, safety as well as security. The paper shows the current status of the Hungarian nuclear programme and the future plans, as well as summarizes the regulatory approach followed by HAEA. (author)

  12. Safety evaluation report related to the renewal of the operating license for the research reactor at the University of Florida. Docket No. 50-83

    International Nuclear Information System (INIS)

    1982-05-01

    This Safety Evaluation Report for the application filed by the University of Florida (UF) for a renewal of Operating License R-56 to continue to operate its Argonaut-type research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Florida and is located on the UF campus in Gainesville, Alachua County, Florida. The staff concludes that the reactor facility can continue to be operated by UF without endangering the health and safety of the public

  13. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1983-01-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  14. Licensing procedures and safety criteria for research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J L; Lerouge, B [Centre d' Etudes Nucleaires de Saclay (France)

    1983-08-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon.

  15. Systematic evaluation program review of NRC Safety Topic VI-7.3 associated with the electrical, instrumentation and control portions of the ECCS actuation system for the Dresden II Nuclear Power Plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-7.A.3, associated with the electrical, instrumentation, and control portions of the classification of the ECCS actuation system for the Dresden II nuclear power plant, using current licensing criteria

  16. The safety related aspects of pressure components in nuclear power plants

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1979-01-01

    Over the last two years the safety philosophy for nuclear power plants in the Federal Republic of Germany has changed considerably, as everyone working in the field perceives. The original and appropriate philosophy of risk minimalisation through graduated safety barriers has been more and more replaced by the utopian goal of total prevention of any damage. The reasons for this development are discussed briefly especially regarding pressure components. The very numerous pressure components of a nuclear power station are not all of equal importance with respect to safety. Although considerable efforts have been made, it has not been possible, to date, to achieve an agreement between operators, manufacturers, licensing authorities, independent experts, and other specialists about the safety related classification of the manifold pressure bearing parts in nuclear power stations. The background of this extremely regrettable situation is explained. In the last part of the paper the author suggests a simple and clear safety philosophy for pressure components in nuclear power stations. This philosophy is orientated both on Safety Regulations of the Radiation Protection Decree ('Strahlenschutzverordnung') of the 13th October 1976 and on the Safety Criteria for Nuclear Power Stations from 21st October 1977. Only a simple, clear framework can make a contribution to the further improvement of the already exceptional safety of nuclear facilities and to the removal of obstacles in the licensing procedure which, taken as a whole, tie up skilled personnel to a senseless degree, involve considerable financial expenditure, and have no relevance for the safety of nuclear power plants. (orig.) [de

  17. 75 FR 16869 - Areva Enrichment Services, LLC; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2010-04-02

    ... Enrichment Services, LLC; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the... following proceeding: Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility) This Board is being established pursuant to a Notice of Hearing and Commission Order regarding the application of Areva Enrichment...

  18. 76 FR 58049 - Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium...

    Science.gov (United States)

    2011-09-19

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-3392-MLA; ASLBP No. 11-910-01-MLA-BD01] Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium Conversion Facility... assurance for its Metropolis Works uranium conversion facility in Metropolis, Illinois. \\1\\ LBP-11-19, 74...

  19. Status of safety issues at licensed power plants: TMI Action Plan requirements; unresolved safety issues; generic safety issues; other multiplant action issues

    International Nuclear Information System (INIS)

    1993-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. This third annual NUREG report, Supplement 3, presents updated information as of September 30, 1993. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  20. Changing mobility patterns and road mortality among pre-license teens in a late licensing country : an epidemiological study.

    NARCIS (Netherlands)

    Twisk, D.A.M. Bos, N.M. Shope, J.T. & Kok, G.

    2013-01-01

    Whereas the safety of teens in early licensing countries has been extensively studied, little is known about the safety of pre-license teens in late licensing countries, where these teens also may be at risk. This risk exists because of the combination of a) increasing use of travel modes with a

  1. Safety issues relating to the design of fusion power facilities

    International Nuclear Information System (INIS)

    Stasko, R.R.; Wong, K.Y.; Russell, S.B.

    1986-06-01

    In order to make fusion power a viable future source of energy, it will be necessary to ensure that the cost of power for fusion electric generation is competitive with advanced fission concepts. In addition, fusion power will have to live up to its original promise of being a more radiologically benign technology than fission, and be able to demonstrate excellent operational safety performance. These two requirements are interrelated, since the selection of an appropriate safety philosophy early in the design phase could greatly reduce or eliminate the capital costs of elaborate safety related and protective sytems. This paper will briefly overview a few of the key safety issues presently recognized as critical to the ultimate achievement of licensable, environmentally safe and socially acceptable fusion power facilities. 12 refs

  2. NUMARC view of license renewal criteria

    International Nuclear Information System (INIS)

    Edwards, D.W.

    1989-01-01

    The Atomic Energy Act and the implementing regulations of the US Nuclear Regulatory Commission (NRC) permit the renewal of nuclear plant operating licenses upon expiration of their 40-year license term. However, the regulatory process by which license renewal may be accomplished and the requirements for the scope and content of renewal applications are yet to be established. On August 29, 1988, the NRC published an Advanced Notice of Proposed Rulemaking regarding the subject of license renewal. This Advanced Notice and the NUREG which it references, NUREG-1317, Regulatory Options for Nuclear Plant License Renewal, provide the most recent regulatory thought on this issue. The basic issue addressed by NUREG-1317 is the definition of an adequate licensing basis for the renewal of a plant license. The report contemplates three alternatives in this regard. This paper discusses each of these three proposals. The NUMARC NUPLEX Working Group endorses a license renewal process based on a plant's current licensing basis along with an evaluation of the pertinent components, systems, and structures affected by age-related degradation. The NUMARC NUPLEX Working group believes that an appropriate scope for NRC review of the license renewal application should focus on those safety-significant structures systems, and components subject to significant age-related degradation that are not subject to existing recognized effective replacement, refurbishment, or inspection programs. The paper also briefly discusses NUMARC's view of the role of the Backfit Rule in the license renewal process

  3. Nuclear licensing and supervision in Germany

    International Nuclear Information System (INIS)

    1996-06-01

    The legal instrument for implementing the licensing and supervisory procedure is specified by statutory ordinances, guidelines and provisions. The licensing requirements for nuclear power plants on the final storage of radioactive wastes in the federal republic of germany are described. The nuclear facilities are subject to continuous state supervision after they have been granted. The appendix gives a brief account of the most important ordinances relating to the AtG and extracts from the Nuclear Safety Convention. (HP)

  4. Safety Evaluation Report related to renewal of the operating license for the CAVALIER Training Reactor at the University of Virginia (Docket No. 50-396)

    International Nuclear Information System (INIS)

    1985-05-01

    This Safety Evaluation Report for the application filed by the University of Virginia for a renewal of Operating License R-123 to continue to operate the CAVALIER (Cooperatively Assembled Virginia Low Intensity Educational Reactor) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Virginia and is located on the campus in Charlottesville, Virginia. Based on its technical review, the staff concludes that the reactor facility can continue to be operated by the university without endangering the health and safety of the public or the environment

  5. Safety evaluation report related to the renewal of the operating license for the Worcester Polytechnic Institute open-pool training reactor, Docket No. 50-134

    International Nuclear Information System (INIS)

    1982-12-01

    This Safety Evaluation Report for the application filed by the Worcester Polytechnic Institute (WPI) for a renewal of Operating License R-61 to continue to operate the WPI 10-kW open-pool training reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Worcester Polytechnic Institute and is located on the WPI campus in Worcester, Worcester County, Massachusetts. The staff concludes that the reactor facility can continue to be operated by WPI without endangering the health and safety of the public

  6. Safety Evaluation Report related to the renewal of the operating license for the research reactor at the University of Kansas (Docket No. 50-148)

    International Nuclear Information System (INIS)

    1984-05-01

    This Safety Evaluation Report for the application filed by the University of Kansas (KU) for a renewal of Operating License R-78 to continue to operate the KU 250-kW open-pool training reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Kansas and is located on the KU campus in Lawrence, Douglas County, Kansas. The staff concludes that the reactor facility can continue to be operated by KU without endangering the health and safety of the public. 17 references, 11 figures, 4 tables

  7. Coal Mine Health and Safety Regulation 2006 under the Coal Mine Health and Safety Act 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-22

    The aim of the Act is to secure the health, safety and welfare of people in connection with coal operations (which include all places of work where coal is mined and certain other places). The Regulation contains provisions about the following matters: (a) places of work to which the Act does not apply, (b) duties relating to health, welfare and safety at coal operations, including the following: (i) the nomination of the operator of a coal operation and the provision of health and safety information for incoming operators, (ii) the contents of health and safety management systems for coal operations, (iii) major hazards and the contents of major hazard management plans for coal operations, (iv) duties relating to contractors, (v) the contents of management structures and emergency management systems for coal operations, escape and rescue plans and fire fighting plans and high risk activities, (c) notifications, including (i) notification of incidents, (ii) inquiries, (iii) notification of other matters to the Chief Inspector), (d) aspects of safety at coal operations, including the following: (i) controlled materials, plants and practices, (ii) coal dust explosion prevention and suppression, (iii) ventilation at coal operations, (iv) escape from coal operations, (v) the operation of transport at coal operations, (vi) surveys and certified plans, (vii) employment at coal operations, (e) the licensing of certain activities, (f) competence standards, (g) the Coal Competence Board, (h) check inspectors, (i) exemptions from provisions of this Regulation, (j) the following miscellaneous matters concerning coal mine health and safety: (i) the keeping of records and reporting, (ii) penalties, the review of decisions by the Administrative Decisions Tribunal, fees and charges, consultation, information and other miscellaneous matters, (k) savings and transitional provisions.

  8. Status of safety issues at licensed power plants: TMI action plan requirements, unresolved safety issues, generic safety issues

    International Nuclear Information System (INIS)

    1991-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program was established whereby an annual NUREG report would be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was compiled and reported in three NUREG volumes. Volume 1, published in March 1991, addressed the status of of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). This annual NUREG report combines these volumes into a single report and provides updated information as of September 30, 1991. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. This report is to provide a comprehensive description of the implementation and verification status of TMI Action Plan Requirements, safety issues designated as USIs, and GSIs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  9. On the reform of nuclear licensing procedures for plants and operation

    International Nuclear Information System (INIS)

    Lecheler, H.

    1977-01-01

    The nuclear licensing procedures require basic reforming. In doing so, there must be a differentiation between (concrete) licensing of plants and (abstract) decisions on site provision. The provision of sites is exercised directly by the diets of the Laender. For this purpose they enact planning laws on sites for nuclear power plants of different sizes. As far as the Federal law is touched upon (especially the Federal act on construction), the Federal legislator has to concede competences to the Laender. No. 6 of section 7 II of the Atomic Energy Act would have to be deleted. The plant licensing procedure is to be limited to a mere safety check-up of a concrete plant. Licensing prerequisites of the Atomic Energy Act are to be made more precise by the Federal legislator, namely by deciding unequivocally the purpose of the law, whether priority is given to promotion or to protection, and by making the enacting of tangible regulations a duty. When these licensing prerequisites exist, the law has to concede the applicant a plain title to licensing. (orig.) [de

  10. Safety Evaluation Report, related to the renewal of the operating license for the critical experiment facility of the Rensselaer Polytechnic Institute (Docket No. 50-225)

    International Nuclear Information System (INIS)

    1983-10-01

    This Safety Evaluation Report for the application filed by the Rensselaer Polytechnic Institute (RPI) for a renewal of operating license CX-22 to continue to operate a critical experiment facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by Rensselaer Polytechnic Institute and is located at a site in the city of Schenectady, New York. The staff concludes that this critical facility can continue to be operated by RPI without endangering the health and safety of the public

  11. Safety evaluation report related to the construction permit and operating license for the research reactor at the University of Texas (Docket No. 50-602)

    International Nuclear Information System (INIS)

    1992-01-01

    The Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to NUREG-1135, ''Safety Evaluation Report Related to the Construction Permit and Operating License for the Research Reactor at the University of Texas'' (SER) May 1985. The reactor facility is owned by The University of Texas at Austin (UT, the applicant) and is located at the University's Balcones Research Center in Austin, Texas. This supplement to the SER (SSER) describes the changes to the reactor facility design from the description in the SER. The SER and SSER together reflect the facility as built. The SSER also documents the reviews that the NRC has completed regarding the applicant's emergency plan, security plan, and technical specifications that were identified as open in the SER

  12. Establishment of regulatory framework for the development reactor licensing

    International Nuclear Information System (INIS)

    Jo, Jong C.; Yune, Young G.; Kim, Woong S.; Ahn, Sang K.; Kim, In G.; Kim, Hho J.

    2003-01-01

    With a trend that various types of advanced reactor designs are currently under development worldwide, the Korea Atomic Energy Research Institute has been developing an advanced reactor called ' System-integrated Modular Advanced Reactor (SMART)', which is a small sized integral type pressurized water reactor with a rated thermal power of 330 MW. To demonstrate the safety and the performance of the SMART reactor design, the SMART Research and Development Center has embarked to build a scaled-down pilot plant of SMART, called 'SMART-P' with a rated thermal power of 65 MW. In preparation for the forthcoming applications for both construction permit and operating license of SMART-P in the near future, the Korea Institute of Nuclear Safety is developing a new regulatory framework for licensing review of such a development reactor, which covers establishment of licensing process, identification and resolution of technical and safety issues, development of regulatory evaluation or verification-purpose computer codes and analytical methods, and establishment of design-specific, general design and operating criteria, regulations, and associated regulatory guides. This paper presents the current activities for establishing a regulatory framework for the licensing of a research and development reactor. Discussions are made on the SMART-P development program, the current Korean regulatory framework for reactor licensing, the SMART-P licensing-related issues, and the approach and strategy for developing an effective regulatory framework for the SMART-P licensing

  13. Safety Evaluation Report related to the renewal of the operating license for the training and research reactor at the University of Lowell (Docket No. 50-223)

    International Nuclear Information System (INIS)

    1985-11-01

    This Safety Evaluation Report for the application filed by the University of Lowell (UL) for renewal of operating license number R-125 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the North Campus of the University of Lowell in Lowell, Massachusetts. The staff concludes that the reactor can continue to be operated by the University of Lowell without endangering the health and safety of the public

  14. Fast reactor safety and related physics. Volume I. Invited papers; panels; summary

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Separate abstracts were prepared for each of the twenty invited papers included. The papers covered sessions on licensing aspects of safety design bases, safety of demonstration plants, safety aspects of large commercial fast breeders, and safety test facilities.

  15. Experience on environmental qualification of safety-related components for Darlington Nuclear Generating Station

    International Nuclear Information System (INIS)

    Yu, A.S.; Kukreti, B.M.

    1987-01-01

    The proliferation of Nuclear Power Plant safety concerns has lead to increasing attention over the Environmental Qualification (EQ) of Nuclear Power Plant Safety-Related Components to provide the assurance that the safety related equipment will meet their intended functions during normal operation and postulated accident conditions. The environmental qualification of these components is also a Licensing requirement for Darlington Nuclear Generating Station. This paper provides an overview of EQ and the experience of a pilot project, in the qualification of the Main Moderator System safety-related functions for the Darlington Nuclear Generating Station currently under construction. It addresses the various phases of qualification from the identification of the EQ Safety-Related Components List, definition of location specific service conditions (normal, adbnormal and accident), safety-related functions, Environmental Qualification Assessments and finally, an EQ system summary report for the Main Moderator System. The results of the pilot project are discussed and the methodology reviewed. The paper concludes that the EQ Program developed for Darlington Nuclear Generating Station, as applied to the qualification of the Main Moderator System, contained all the elements necessary in the qualification of safety-related equipment. The approach taken in the qualification of the Moderator safety-related equipment proves to provide a sound framework for the qualification of other safety-related components in the station

  16. Cogeneration plants in Italy: Licensing aspects

    International Nuclear Information System (INIS)

    Buscaglione, A.

    1991-01-01

    This paper focusses on administrative/bureaucratic problems relative to the licensing of cogeneration plants in Italy. The current stumbling block appears to lie in organizational difficulties relative to the coordination of various Government authorized safety committees responsible for the drafting up of suitable legislation governing cogeneration plant fire safety aspects. The author cites the possible environmental benefits in terms of air pollution abatement that could have been had with the timely start-up of a new 7 MW plant (in Lombardia) still awaiting its go-ahead authorization

  17. Safety Evaluation Report related to the construction permit and operating license for the research reactor at the University of Texas (Docket No. 50-602)

    International Nuclear Information System (INIS)

    1985-05-01

    This Safety Evaluation Report for the application filed by the University of Texas for a construction permit and operating license to construct and operate a TRIGA research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Texas and is located at the university's Balcones Research Center, about 7 miles (11.6 km) north of the main campus in Austin, Texas. The staff concludes that the TRIGA reactor facility can be constructed and operated by the University of Texas without endangering the health and safety of the public

  18. Decommissioning licensing procedure

    International Nuclear Information System (INIS)

    Perello, M.

    1979-01-01

    Decommissioning or closure of a nuclear power plant, defined as the fact that takes place from the moment that the plant stops producing for the purpose it was built, is causing preocupation. So this specialist meeting on Regulatory Review seems to be the right place for presenting and discusing the need of considering the decommissioning in the safety analysis report. The main goal of this paper related to the licensing procedure is to suggest the need of a new chapter in the Preliminary Safety Analysis Report (P.S.A.R.) dealing with the decommissioning of the nuclear power plant. Therefore, after a brief introduction the problem is exposed from the point of view of nuclear safety and finally a format of the new chapter is proposed. (author)

  19. 77 FR 71454 - Notice of Atomic Safety And Licensing Board Reconstitution, Tennessee Valley Authority (Watts Bar...

    Science.gov (United States)

    2012-11-30

    ... accordance with the NRC E-Filing rule. See 10 CFR 2.302 et seq. Issued at Rockville, Maryland this 16th day of November 2012. E. Roy Hawkens, Chief Administrative Judge, Atomic Safety and Licensing Board Panel...

  20. License renewal

    International Nuclear Information System (INIS)

    Newberry, S.

    1993-01-01

    This article gives an overview of the process of license renewal for nuclear power plants. It explains what is meant by license renewal, the significance of license renewal, and goes over key elements involved in the process of license renewal. Those key elements are NRC requirements embodied in 10 CFR Part 54 (Reactor Safety) and 10 CFR Part 51 (Environmental Issues). In addition Industry Reports must be developed and reviewed. License renewal is essentially the process of applying for a 20 year extension to the original 40 year operating license granted for the plant. This is a very long term process, which involves a lot of preparation, and compliance with regulatory rules and guidelines. In general it is a process which is expected to begin when plants reach an operating lifetime of 20 years. It has provisions for allowing the public to become involved in the review process

  1. Stakes and Solutions for current and up-coming Licensing Challenges in PWR and BWR Reload and Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tiving, F.; Opel, S.

    2014-07-01

    Regulatory requirements for reloads and safety analyses are evolving: New safety criteria, requests for enlarged qualification databases, statistical applications, uncertainty propagation... In order to address these challenges and access more predictable licensing processes, AREVA implements a consistent code and methodology suite for PWR and BWR core design and safety analysis, based on a first principles modeling with an extremely broad international verification and validation data base. (Author)

  2. Current status of the PBMR licensing project

    International Nuclear Information System (INIS)

    Mysen, A.; Clapisson, G.A.; Metcalf, P.E.

    2000-01-01

    The CNS is currently reviewing the PBMR conceptual design from a licensibility point of view. The PBMR concept is based on a High Temperature Gas Cooled Reactor - pebble bed reactor type. It is anticipated that the PBMR design will rely on inherent safety characteristics to contain fission products within fuel over the full range of design basis events. This feature combined with the high temperature integrity of the fuel and structural graphite, allows the safe use of a high coolant temperature, which allows consideration of the future development of this reactor for non-electrical applications of nuclear heat for industrial use. The CNS licensing approach requires that the licensing and design basis of the plant should respect prevailing international norms and practices and that a quantitative risk assessment should demonstrate compliance with the CNS fundamental safety standards. The first stage of the licensing process is now ongoing; this is a pre-application phase, which will result in a statement on licensibility being issued. Identification of the specific documentation requirements and information needed is required across every step of the licensing process. Top level regulatory requirements have been established for the PBMR. They include the CNS fundamental safety standard and basic licensing criteria, which describes requirements on licensees of nuclear installations regarding risk assessment and compliance with the safety criteria and define classification of licensing basis events. (author)

  3. Licensing experience of the HTR-10 test reactor

    International Nuclear Information System (INIS)

    Sun, Y.; Xu, Y.

    1996-01-01

    A 10MW high temperature gas-cooled test reactor (HTR-10) is now being projected by the Institute of Nuclear Energy Technology within China's National High Technology Programme. The Construction Permit of HTR-10 was issued by the Chinese nuclear licensing authority around the end of 1994 after a period of about one year of safety review of the reactor design. HTR-10 is the first high temperature gas-cooled reactor (HTGR) to be constructed in China. The purpose of this test reactor project is to test and demonstrate the technology and safety features of the advanced modular high temperature reactor design. The reactor uses spherical fuel elements with coated fuel particles. The reactor unit and the steam generator unit are arranged in a ''side-by-side'' way. Maximum fuel temperature under the accident condition of a complete loss of coolant is limited to values much lower than the safety limit set for the fuel element. Since the philosophy of the technical and safety design of HTR-10 comes from the high temperature modular reactor design, the reactor is also called the Test Module. HTR-10 represents among others also a licensing challenge. On the one side, it is the first helium reactor in China, and there are less licensing experiences both for the regulator and for the designer. On the other side, the reactor design incorporates many advanced design features in the direction of passive or inherent safety, and it is presently a world-wide issue how to treat properly the passive or inherent safety design features in the licensing safety review. In this presentation, the licensing criteria of HTR-10 are discussed. The organization and activities of the safety review for the construction permit licensing are described. Some of the main safety issues in the licensing procedure are addressed. Among these are, for example, fuel element behaviour, source term, safety classification of systems and components, containment design. The licensing experiences of HTR-10 are of

  4. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island design, Docket No. 50-447

    International Nuclear Information System (INIS)

    1983-04-01

    The Safety Evaluation Report for the application filed by General Electric Company for the Final Design Approval for the General Electric Standard Safety Analysis Report (GESSAR II FSAR) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report summarizes the results of the staff's safety review of the GESSAR II BWR/6 Nuclear Island Design. Subject to favorable resolution of items discussed in the Safety Evaluation Report, the staff concludes that the facilities referencing GESSAR II, subject to approval of the balance-of-plant design, can conform with the provisions of the Act and the regulations of the Nuclear Regulatory Commission

  5. Licensing process in Finland

    International Nuclear Information System (INIS)

    Tiippana, Petteri

    2011-01-01

    In accordance with the Nuclear Energy Act, the use of nuclear energy constitutes operations subject to license. The licensing process and conditions for granting a license is defined in the legislation. The licenses are applied from and granted by the Government. This paper discusses briefly the licensing process in Finland and also the roles and responsibilities of main stakeholders in licensing. Licensing of a nuclear power plant in Finland has three steps. The first step is the Decision in Principle (DiP). Goal of DiP is to decide whether using nuclear power is for the overall good for the Finnish society. The second step is Construction License (CL) and the goal of CL phase is to determine whether the design of the proposed plant is safe and that the participating organisations are capable of constructing the plant to meet safety goals. The third step is the Operating License (OL) and the goal of the OL phase is to determine whether the plant operates safely and licensee is capable to operate the plant safely. Main stakeholders in the licensing process in Finland are the utility (licensee) interested in using nuclear power in Finland, Ministry of Employment and the Economy (MEE), Government, Parliament, STUK, the municipality siting the plant and the general public. Government grants all licenses, and Parliament has to ratify Government's Decision in Principle. STUK has to assess the safety of the license applications in each step and give statement to the Ministry. Municipality has to agree to site the plant. Both STUK and the municipality have a veto right in the licensing process

  6. Safety Evaluation Report related to the renewal of the operating license for the research reactor at the Universiy of Missouri-Rolla (Docket No. 5-123)

    International Nuclear Information System (INIS)

    1984-12-01

    This Safety Evaluation Report for the application filed by the University of Missouri-Rolla for a renewal of Operating License R-79 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned by the University of Missouri and is located on the campus in Rolla, Missouri. On the basis of its technical review, the staff concludes that the reactor facility can continue to be operated by the university without endangering the health and safety of the public or the environment

  7. Licensing the First Nuclear Power Plant. INSAG-26. A report by the International Nuclear Safety Group (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    countries having nuclear power plants of similar design, and the various technical cooperation activities conducted by international organizations, in particular the IAEA. The first major task for the regulatory body will be carrying out a review of the safety evaluation report of the proposed site for the first nuclear power plant. For this, the regulatory body must lay down the safety requirements that could be developed or adopted from IAEA safety standards on the subject. It will also require a set of specialized competences in areas such as seismology, hydrology, geochemistry and geology that is not necessarily nuclear related. In developing the strategy to secure and maintain a technically competent regulatory body, a decision should be made early whether to recruit staff with those competences or to outsource these activities to agencies where competences in such areas may already be available in the country. Notwithstanding this, the regulatory body still requires a core technical group in the key disciplines to be able to understand and compile the information from the site evaluation reports as input to the site licensing process

  8. 78 FR 51754 - Request To Modify License by Replacing Security Plan With New Radiation Safety Plan; U.S...

    Science.gov (United States)

    2013-08-21

    ... Replacing Security Plan With New Radiation Safety Plan; U.S. Department of the Army, Jefferson Proving... security plan with a new radiation safety plan. DATES: Submit comments by September 20, 2013. Requests for.... The proposed change is to modify License Condition No. 12 D which refers to the security plan of...

  9. Safety Evaluation Report related to the renewal of the operating license for the training and research reactor at the University of Michigan (Docket No. 50-2)

    International Nuclear Information System (INIS)

    1985-07-01

    This Safety Evaluation Report for the application filed by the University of Michigan (UM) for renewal of the Ford Nuclear Reactor (FNR) operating license number R-28 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the North Campus of the University of Michigan in Ann Arbor, Michigan. The staff concludes that the reactor can continue to be operated by the University of Michigan without endangering the health and safety of the public

  10. Systematic evaluation program review of NRC safety topic VII-2 associated with the electrical, instrumentation and control portions of the ESF system control logic and design for the Dresden Station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VII-2, associated with the electrical, instrumentation, and control portions of the ESF system control logic and design for the Dresden Station Unit II nuclear power plant, using current licensing criteria

  11. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues. Supplement 4

    International Nuclear Information System (INIS)

    1994-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. Supplement 3 gives status as of September 30, 1993. This annual report, Supplement 4, presents updated information as of September 30, 1994. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  12. Gas Reactor International Cooperative Program. Interim report. Safety and licensing evaluaion of German Pebble Bed Reactor concepts

    International Nuclear Information System (INIS)

    1978-09-01

    The Pebble Bed Gas Cooled Reactor, as developed in the Federal Republic of Germany, was reviewed from a United States Safety and Licensing perspective. The primary concepts considered were the steam cycle electric generating pebble bed (HTR-K) and the process heat pebble bed (PNP), although generic consideration of the direct cycle gas turbine pebble bed (HHT) was included. The study examines potential U.S. licensing issues and offers some suggestions as to required development areas

  13. Safety-related topics from the Nuclear Power Options Viability Study

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.

    1986-01-01

    The Nuclear Power Options Viability Study (NPOVS) evaluated innovative reactor concepts, and this article reviews NPOVS findings, with emphasis on safety and licensing. The reactors studied were of light-water, liquid-metal, and helium-cooled concepts, and most were of modular design. Prelicensed standard plants offer an important step toward regulatory stability and early licensing approvals with public participation before major expenditures. Advanced reactors with passive safety features offer the possibility of performance-based regulation. The concepts studied appear to be potentially viable, but more complete designs will be required before economic evaluations can be definitive

  14. Establishing a safety and licensing basis for generation IV advanced reactors. License by test

    International Nuclear Information System (INIS)

    Kadak, Andrew C.

    2001-01-01

    The license by test approach to licensing is a novel method of licensing reactors. It provides an opportunity to deal with innovative non-water reactors in a direct way on a time scale that could permit early certification based on tests of a demonstration reactor. The uncertainties in the design and significant contributors to risk would be identified in the PRA during the design. Deterministic analysis computer codes could be tested on a real reactor. Scaling effects and associated uncertainties would be minimized. License by test is an approach that has sufficient merit to be developed and tested

  15. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  16. Safety Evaluation Report related to the full-term operating license for Millstone Nuclear Power Station, Unit No. 1 (Docket No. 50-245)

    International Nuclear Information System (INIS)

    1985-10-01

    The Safety Evaluation Report for the full-term operating license application filed by the Connecticut Light and Power Company, the Hartford Electric Light Company, Western Massachusetts Electric Company and the Millstone Point Company [(now known as Connecticut Light and Power Company (CL and P) and Western Massachusetts Electric Company (WMECO) having authority to possess Millstone-1, 2, and 3, and the Northeast Nuclear Energy Company (NNECO) as the responsible entity for operation of the facilities)] for Millstone Nuclear Power Station Unit 1 has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, Connecticut. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public

  17. IRIS pre-application licensing

    International Nuclear Information System (INIS)

    Carelli, Mario D.; Kling, Charles L.; Ritterbusch, Stanley E.

    2003-01-01

    This paper presents the approach to pre-application licensing by the International Reactor Innovative and Secure (IRIS), and advanced, integral reactor design with a thermal power of 1000 MW. The rationale for the pre-application licensing is discussed. Since IRIS technology is based on proven LWR experience, the project will rely on AP600/AP1000 precedent and will focus during the pre-application on long lead and novel items. A discussion of the evolution of the project to significantly reduce licensing issues is provided, followed by a summary of the IRIS safety-by-design which provides a formidable first step in the Defense in Depth approach. The effects of the safety-by-design, as well as of passive systems, on the IRIS safety will be investigated in a proposed testing program that will be reviewed by NRC during the pre-application. Documentation to be provided to NRC is discussed. Early design analyses indicate that the benefits of the IRIS safety-by-design approach are so significant that the basic premise of current emergency planning regulations (i.e., likelihood of core damage) will be reduced to the extent that special emergency response planning beyond the exclusion area boundary may not be needed. How this very significant outcome can be effected through a highly risk-informed licensing is discussed. (author)

  18. Introduction to Technology Export License of Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hana; Lee, Chansuh; Shin, Donghoon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-05-15

    In this regime, the Nuclear Safety and Security Commission (NSSC) has authority on final decision making. And the Korea Institute of Nuclear nonproliferation and Control (KINAC) has missions to review the classification and export licensing technically. In principle, classification and export licensing are applied and reviewed individually. However, the number of application for classification and licensing has increased geometrically in the last three years. This is largely a due to the contract that the Republic of Korea (ROK) has finalized to build the UAE Barakah Nuclear Power Plant (BNPP) and Jordan Research and Training Reactor (JRTR). This circumstance brought an administrative burden for the government and related institutes as well as stakeholders. This article introduces the law related to the 'Technology Export License of Nuclear Facility' which was developed and legislated to improve the efficiency and effectiveness of commodities classification and export licensing. This system could significantly reduce the licensing burden for transferring the technologies. However, the classification and license on this system are still requested when transferring the goods. Therefore, KINAC will continue to figure out the needs for the stakeholders and keep searching for solutions to problems inherent in the industry.

  19. Introduction to Technology Export License of Nuclear Facility

    International Nuclear Information System (INIS)

    Seo, Hana; Lee, Chansuh; Shin, Donghoon

    2014-01-01

    In this regime, the Nuclear Safety and Security Commission (NSSC) has authority on final decision making. And the Korea Institute of Nuclear nonproliferation and Control (KINAC) has missions to review the classification and export licensing technically. In principle, classification and export licensing are applied and reviewed individually. However, the number of application for classification and licensing has increased geometrically in the last three years. This is largely a due to the contract that the Republic of Korea (ROK) has finalized to build the UAE Barakah Nuclear Power Plant (BNPP) and Jordan Research and Training Reactor (JRTR). This circumstance brought an administrative burden for the government and related institutes as well as stakeholders. This article introduces the law related to the 'Technology Export License of Nuclear Facility' which was developed and legislated to improve the efficiency and effectiveness of commodities classification and export licensing. This system could significantly reduce the licensing burden for transferring the technologies. However, the classification and license on this system are still requested when transferring the goods. Therefore, KINAC will continue to figure out the needs for the stakeholders and keep searching for solutions to problems inherent in the industry

  20. Interim staff position on environmental qualification of safety-related electrical equipment: including staff responses to public comments. Regulatory report

    International Nuclear Information System (INIS)

    Szukiewicz, A.J.

    1981-07-01

    This document provides the NRC staff positions regarding selected areas of environmental qualification of safety-related electrical equipment, in the resolution of Unresolved Safety Issue A-24, 'Qualification of Class IE Safety-Related Equipment.' The positions herein are applicable to plants that are or will be in the construction permit (CP) or operating license (OL) review process and that are required to satisfy the requirements set forth in either the 1971 or the 1974 version of IEEE-323 standard

  1. TURVA-2012 safety case for licensing a spent fuel repository at Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Vira, Juhani; Snellman, Margit

    2014-01-01

    In 2001, the Finnish Parliament endorsed a decision-in-principle (DiP) whereby the spent nuclear fuel produced by the operating nuclear reactors at Olkiluoto and Loviisa will be disposed of in a geological repository at Olkiluoto, on the south-western coast of Finland. Subsequently, additional DiPs were issued allowing the extension of the repository to accommodate spent nuclear fuel from additional reactors that are under construction or in planning at Olkiluoto, which means a total of 9 000 tU of spent nuclear fuel to be disposed of. In accordance with the decision of the Ministry of Trade and Industry (KTM) in 2003, Posiva submitted an application for a license to construct a disposal facility at Olkiluoto in 2012, consisting of an encapsulation facility and an underground deep geological repository. The application included a Preliminary Safety Analysis Report (PSAR) and a long-term safety case, TURVA-2012. Assuming a positive outcome of the current licensing review, the next step would be the Final Safety Analysis Report (FSAR) in support of an operational licence application around 2020. The disposal method is based on the same KBS-3 concept that the Swedish SKB has used as basis for their license application in 2010. Accordingly, the spent nuclear fuel will be encapsulated in water- and gas-tight copper canisters equipped with a load-bearing insert and emplaced in a deep geological repository constructed in the bedrock. The canisters will be surrounded by a swelling clay buffer material that isolates them from the bedrock. The deposition tunnels and the central tunnels and the other underground openings will be backfilled with materials of low permeability. The repository will be at a depth of about 400-450 m below ground. The primary role of the bedrock is to provide sufficiently stable conditions for the engineered barrier system and to make inadvertent human intrusion unlikely. In case of EBS failure, the bedrock shall also retain and retard the possible

  2. Licensing activities for advanced reactors in NNC

    International Nuclear Information System (INIS)

    Chevalier, A.B.H.; Mustoe, J.; Walters, J.; Ingham, E.L.

    2001-01-01

    NNC has been involved in safety and licensing activities for advanced reactors for many years. Most recently NNC has been involved with national regulators or their representatives for the HTR (High Temperature Reactor) reactor and the possible siting of ITER (International Thermonuclear Experimental Reactor) within Europe. Commonalties between the two activities can be seen, even though one is a fission process and the other based on a completely new technology. Both have the potential to generate power at a very low overall exposure to the public and station staff, but both also need to demonstrate to the regulator the safety of a design which differs from the standard LWR practice. In both concepts passive design features provide a major part of the safety argument, but the detailed assessment and justification of these features in licensing terms still needs to be made. A number of critical safety issues can be identified, which generally apply to any advanced system. These are: Safety categorization, codes and standards; confinement or containment; ALARA; safety code modelling and data; Occupational Exposure; occupational exposures; decommissioning and waste; no evacuation, or no emergency plans. The UK is notable for a flexible licensing regime, which allows a safety case to be built up from first principles, where this is applicable. In addition, experience of licensing gas cooled, water cooled and liquid metal plant, as well as extensive experience outside the UK provides NNC with a unique insight into the different licensing methodologies which can be applied in the licensing process. This paper discusses some possible approaches which could be applied in order to satisfy regulatory demands when addressing the critical issues listed above. (author)

  3. Progress in licensing ITER in Cadarache

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, Lina; Girard, Jean-Philippe; Uzan-Elbez, Joelle; Marbach, Gabriel; Garin, Pascal; Rosanvallon, Sandrine

    2005-01-01

    The licensing procedure for ITER in Europe in the framework of the French regulations is a non-prescriptive approach based on a continuous dialogue between the nuclear installation owner (or its representative) and the safety authority. In this paper, the licensing procedure and main safety issues, which are being studied in this process, are presented

  4. Safety evaluation report related to the renewal of the operating license for the training and research reactor at the University of Maryland (Docket No. 50-166)

    International Nuclear Information System (INIS)

    1984-03-01

    This Safety Evaluation Report for the application filed by the University of Maryland (UMD) for a renewal of operating license R-70 to continue to operate a training and research reactor facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Maryland and is located at a site in College Park, Prince Georges County, Maryland. The staff concludes that this training reactor facility can continue to be operated by UMD without endangering the health and safety of the public

  5. CSNI Status summary on utilization of best-estimate methodology in safety analysis and licensing

    International Nuclear Information System (INIS)

    1996-10-01

    The PWG 2 Task Group on Thermal Hydraulic System Behavior has discussed the subject of the use of best-estimate codes in the licensing process (codes that model thermal hydraulic processes are important to assessing safety system performance). The Task Group set out to determine the prevailing practices in member countries, concerning safety assessment and safety review of transients affecting the reactor coolant system. A summary of information provided by member countries in response to eleven questions is given: Who is Responsible for Safety Analysis? Who is Responsible for Review and Evaluation of Safety Analysis? Do the Regulations Permit the use of Best-Estimate Codes? What are the Requirements for What Constitutes a Best Estimate Code? What are the Requirements Concerning Code Documentation? What are the Requirements for Review of Code Models and Correlations? What are the Requirements Concerning Code Assessment? What are the Requirements Concerning Initial and Boundary Conditions? What are the Requirements Concerning Operability of Active Equipment? What are the Requirements Concerning Operator Actions?

  6. Safety Evaluation Report related to the renewal of the operating license for the TRIGA training and research reactor at the University of Arizona (Docket No. 50-113)

    International Nuclear Information System (INIS)

    1990-05-01

    This Safety Evaluation Report for the application filed by the University of Arizona for the renewal of Operating License R-52 to continue operating its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the University of Arizona campus in Tucson, Arizona. The staff concludes that the reactor can continue to be operated by the University of Arizona without endangering the health and safety of the public. 20 refs., 8 figs., 5 tabs

  7. Integrated plant safety assessment systematic evaluation program. R.E. Ginna Nuclear Power Plant, Rochester Gas and Electric Corporation, Docket No. 50-244

    International Nuclear Information System (INIS)

    1982-05-01

    The Systematic Evaluation Program was initiated in February 1978 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the R.E. Ginna Nuclear Power Plant (located in Wayne County near Rochester, NY), one of ten plants reviewed under Phase II of this program, and indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  8. A Study of Time Response for Safety-Related Operator Actions in Non-LOCA Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Seok; Lee, Sang Seob; Park, Min Soo; Lee, Gyu Cheon; Kim, Shin Whan [KEPCO E and C Company, Daejeon (Korea, Republic of)

    2014-10-15

    The classification of initiating events for safety analysis report (SAR) chapter 15 is categorized into moderate frequency events (MF), infrequent events (IF), and limiting faults (LF) depending on the frequency of its occurrence. For the non-LOCA safety analysis with the purpose to get construction or operation license, however, it is assumed that the operator response action to mitigate the events starts at 30 minutes after the initiation of the transient regardless of the event categorization. Such an assumption of corresponding operator response time may have over conservatism with the MF and IF events and results in a decrease in the safety margin compared to its acceptance criteria. In this paper, the plant conditions (PC) are categorized with the definitions in SAR 15 and ANS 51.1. Then, the consequence of response for safety-related operator action time is determined based on the PC in ANSI 58.8. The operator response time for safety analysis regarding PC are reviewed and suggested. The clarifying alarm response procedure would be required for the guideline to reduce the operator response time when the alarms indicate the occurrence of the transient.

  9. Safety related considerations for operation with defected elements in EBR-II

    International Nuclear Information System (INIS)

    Fryer, R.M.; Sackett, J.I.; Lambert, J.D.B.

    1976-01-01

    Traditionally, EBR-II has employed the 'shutdown and remove' philosophy when breached fuel elements are encountered. This mode of operation maintained in-plant inventories of fission products at low levels and allowed certain fission product detection systems to be employed as automatic plant shutdown devices. Information from fuel failure propagation studies and fast reactor operation indicates that shutdown under these conditions is unwarranted. Analytical studies, as well as fast reactor experience, further indicate that failure propagation, if it occurs at all, will not cross adjacent subassembly boundaries. Therefore, the 'shutdown and remove' philosophy can be liberalized to allow the demonstration of safety during a run-beyond-clad-breach mode of operation. This mode of operation is essential to the demonstration of the economics of commercial LMFBR systems

  10. Impact of 2D/3D-project on LOCA-licensing analysis and reactor safety of PWRs

    International Nuclear Information System (INIS)

    Winkler, F.; Krebs, W.D.

    1989-01-01

    In the past LOCA-licensing analysis has included large conservatisms to compensate for the lack of detailed two phase flow and full scale experimental data. The 2D/3D-project was established to improve the data base in order to minimize the conservatisms required. The significant results and findings of the full scale Upper Plenum Test Facility (UPTF) and from the electrically heated Slab Core Test Facility (SCTF) were particularly useful for understanding the multidimensional phenomena in the primary system and in the core of a PWR. UPTF results were used to verify the TRAC-PF1 analysis of a PWR with combined ECC-Injection during the reflood phase of a large break-LOCA. Comparison of these results with results from classic licensing calculations quantifies the large safety margin in earlier licensing procedures and in reactor systems. (orig.)

  11. Relevant aspects in licensing of radioactive installations at petroleum and gas well logging

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria da E. Sa

    2002-01-01

    The importance of the various factors considered during the process of licensing of radioactive installation for petroleum and gas well logging. This process involves the issuing of some public power acts, the co called Administrative Acts. For the radioactive installations the Administrative Acts are related to the Norm CNEN-NE-6.02 'Licensing of Radioactive Installation'. In the conduction of the licensing of radioactive installation of mobile nuclear measurement devices the safety evaluation of radioactive installation and equipment containing incorporated radiation source are included; certification of radioprotection supervisors; programing and evaluation of the radioprotection inspections; and the conduction of conformal inspection according to the project, safety analysis and audits. An evaluation of the impact of the importance grade attributed to each factor in the optimization of licensing process is related. Finally, the prediction of implantation of a control system for the displacement of radioactive sources in the installation is approached comprehending the up-to-date localization of each source at different work front of the Basis

  12. Licensing of safety critical software for nuclear reactors. Common position of seven European nuclear regulators and authorised technical support organisations

    International Nuclear Information System (INIS)

    2010-01-01

    It is widely accepted that the assessment of software cannot be limited to verification and testing of the end product, i.e. the computer code. Other factors such as the quality of the processes and methods for specifying, designing and coding have an important impact on the implementation. Existing standards provide limited guidance on the regulatory and safety assessment of these factors. An undesirable consequence of this situation is that the licensing approaches taken by nuclear safety authorities and by technical support organisations are determined independently with only limited informal technical co-ordination and information exchange. It is notable that several software implementations of nuclear safety systems have been marred by costly delays caused by difficulties in co-ordinating the development and qualification process. It was thus felt necessary to compare the respective licensing approaches, to identify where a consensus already exists, and to see how greater consistency and more mutual acceptance could be introduced into current practices. This report is the result of the work of a group of regulator and safety authorities' experts. The 2007 version was completed at the invitation of the Western European Nuclear Regulators' Association (WENRA). The major result of the work is the identification of consensus and common technical positions on a set of important licensing issues raised by the design and operation of computer based systems used in nuclear power plants for the implementation of safety functions. The purpose is to introduce greater consistency and more mutual acceptance into current practices. To achieve these common positions, detailed consideration was paid to the licensing approaches followed in the different countries represented by the experts of the task force. The report is intended to be useful: - to coordinate regulators' and safety experts' technical viewpoints in the design of regulators' national policies and in revisions

  13. Licensing of safety critical software for nuclear reactors. Common position of seven European nuclear regulators and authorised technical support organisations

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    It is widely accepted that the assessment of software cannot be limited to verification and testing of the end product, i.e. the computer code. Other factors such as the quality of the processes and methods for specifying, designing and coding have an important impact on the implementation. Existing standards provide limited guidance on the regulatory and safety assessment of these factors. An undesirable consequence of this situation is that the licensing approaches taken by nuclear safety authorities and by technical support organisations are determined independently with only limited informal technical co-ordination and information exchange. It is notable that several software implementations of nuclear safety systems have been marred by costly delays caused by difficulties in co-ordinating the development and qualification process. It was thus felt necessary to compare the respective licensing approaches, to identify where a consensus already exists, and to see how greater consistency and more mutual acceptance could be introduced into current practices. This report is the result of the work of a group of regulator and safety authorities' experts. The 2007 version was completed at the invitation of the Western European Nuclear Regulators' Association (WENRA). The major result of the work is the identification of consensus and common technical positions on a set of important licensing issues raised by the design and operation of computer based systems used in nuclear power plants for the implementation of safety functions. The purpose is to introduce greater consistency and more mutual acceptance into current practices. To achieve these common positions, detailed consideration was paid to the licensing approaches followed in the different countries represented by the experts of the task force. The report is intended to be useful: - to coordinate regulators' and safety experts' technical viewpoints in the design of regulators' national

  14. New nuclear plant design and licensing process

    International Nuclear Information System (INIS)

    Luangdilok, W.

    1996-01-01

    This paper describes latest developments in the nuclear power reactor technology with emphasis on three areas: (1) the US technology of advanced passive light water reactors (AP600 and S BWR), (2) regulatory processes that certify their safety, and (3) current engineering concerns. The goal is to provide and insight of how the government's regulatory agency guarantees public safety by looking into how new passive safety features were designed and tested by vendors and how they were re-evaluated and retested by the US NRC. The paper then discusses the US 1989 nuclear licensing reform (10 CFR Part 52) whose objectives are to promote the standardization of nuclear power plants and provide for the early and definitive resolution of site and design issues before plants are built. The new licensing process avoids the unpredictability nd escalated construction cost under the old licensing process. Finally, the paper summarizes engineering concerns found in current light water reactors that may not go away in the new design. The concerns are related the material and water chemistry technology in dealing with corrosion problems in water-cooled nuclear reactor systems (PWRs and BWRs). These engineering concerns include core shroud cracking (BWRs), jet pump hold-down beam cracking (BWRs), steam generator tube stress corrosion cracking (PWR)

  15. Licensing of away-from-reactor (AFR) installations

    International Nuclear Information System (INIS)

    Gray, P.L.

    1980-01-01

    Storage of spent fuel at Away-From-Reactor (AFR) installations will allow reactors to continue to operate until reprocessing or other fuel disposal means are available. AFR installations must be licensed by the Nuclear Regulatory Commission (NRC). Although wide experience in licensing reactors exists, the licensing of an AFR installation is a relatively new activity. Only one has been licensed to date. This paper delineates the requirements for licensing an AFR installation and projects a licensing schedule. Because the NRC is developing specific AFR requirements, this schedule is based primarily on draft NRC documents. The major documents needed for an AFR license application are similar to those for a reactor. They include: a Safety Analysis Report (SAR), and Environmental Report (ER), safeguards and security plans, decommissioning plans, proposed technical specifications, and others. However, the licensing effort has one major difference in that for AFR installations it will be a one-step effort, with follow-up, rather than the two-step process used for reactors. The projected licensing schedule shows that the elapsed time between filing an application and issuance of a license will be about 32 months, assuming intervention. The legal procedural steps will determine the time schedule and will override considerations of technical complexity. A license could be issued in about 14 months in the absence of intervention

  16. Experience acquired by Furnas for licensing nuclear power plants

    International Nuclear Information System (INIS)

    Silva, A.J.C. da; Xavier, E.E.

    1986-01-01

    The system for licensing of Almirante Alvaro Alberto Nuclear Power Plant-Unit 1 is presented. The process phases for reactor construction and operation are described: preliminary site approval; bases for safety review; partial construction permits; final construction permits; emission of final report of safety analysis; initial operation license and permanent operation license. (M.C.K.) [pt

  17. Safety Evaluation Report related to the renewal of the operating license for the TRIGA training and research reactor at the University of Utah (Docket No. 50-407)

    International Nuclear Information System (INIS)

    1985-03-01

    This Safety Evaluation Report for the application filed by the University of Utah (UU) for a renewal of operating license R-126 to continue to operate a training and research reactor facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Utah and is located on its campus in Salt Lake City, Salt Lake County, Utah. The staff concludes that this training reactor facility can continue to be operated by UU without endangering the health and safety of the public

  18. The SLOWPOKE licensing model

    Energy Technology Data Exchange (ETDEWEB)

    Snell, V. G.; Takats, F.; Szivos, K.

    1989-08-15

    The SLOWPOKE Energy System (SES-10) is a 10 MW heating reactor that has been developed in Canada. It will be capable of running without a licensed operator in continuous attendance, and will be sited in urban areas. It has forgiving safety characteristics, including transient time-scales of the order of hours. A process called `up-front` licensing has been evolved in Canada to identify, and resolve, regulatory concerns early in the process. Because of the potential market in Hungary for nuclear district heating, a licensing plan has been developed that incorporates Canadian licensing experience, identifies specific Hungarian requirements, and reduces the risk of licensing delays by seeking agreement of all parties at an early stage in the program.

  19. Radiation protection and safety guide no. GRPB-G-2: notification and authorization by registration or licensing, exemption and exclusion

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    The obligatory requirement for the notification of the Radiation Protection Board and application for authorization by registration or licensing are important elements of the national system for controlling radiation sources and practices which may be potentially harmful to people. The present document provides guidance for Notification and Authorization by Registration or Licensing. In pursuance of the provision of the Radiation Protection Instrument, 1993, L I 1559, Part II C ontrol and Use of Radiation Sources , the present Guide specifies the Radiation Protection Board (RPB) scheme of notification and authorization by registration of licensing. Criteria for exempting and excluding sources and practices from regulatory control are highlighted

  20. Atomic safety and licensing board panel: Annual report, Fiscal Year 1988

    International Nuclear Information System (INIS)

    1989-03-01

    This is the fiscal year 1988 annual report of the Atomic Safety and Licensing Board Panel. In response to further reduction in is authorized staffing level and with an eye toward the proposed full- text, electronic docket of the expected High-Level Waste Repository proceedings, the Panel stepped up efforts during fiscal year 1988 to extend the scope, depth and availability of its Computer Assistance Project (CAP) through INQUIRE. INQUIRE, and the Panel's ability to use the system to expeditiously manage and search the massive records that characterize our most complex cases, has generated great interest among legal practitioners and adjudicatory bodies throughout the United States and Canada

  1. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  2. Integrated-plant-safety assessment Systematic Evaluation Program. Dresden Nuclear Power Station, Unit 2, Commonwealth Edison Company, Docket No. 50-237

    International Nuclear Information System (INIS)

    1982-10-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of Dresden Nuclear Generating Station, Unit 2 owned and operated by the Commonwealth Edison Company and located in Grundy County, Illinois. Dresden Unit 2 is one of ten plants reviewed under Phase II of this program, which indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  3. What it took to get an NRC license for centralized incineration

    International Nuclear Information System (INIS)

    DiSalvo, R.; Zielenbach, W.

    1987-01-01

    In 1982, Battelle joined five other commercial generators of low level radioactive waste in conducting a study of the technical and economic feasibility and the licensability of a central facility for incinerating LLW. The project generated a license application to the USNRC and supporting documentation related to the safety and environmental impacts of the facility. After thorough review, the NRC has issued a Finding of No Significant Impact and the associated license authorization, which is the first of its kind for an incineration facility

  4. Comparison of the inspection practices in relation to the control room operator and shift supervisor licenses

    International Nuclear Information System (INIS)

    Aro, Ilari; Koizumi, Hiroyoshi; Manzella, Pietro

    1998-01-01

    The CNRA believes that safety inspections are a major element in the regulatory authority's efforts to ensure the safe operation of nuclear facilities. Considering the importance of these issues, the Committee has established a special Working Group on Inspection Practices (WGIP). The purpose of WGIP, is to facilitate the exchange of information and experience related to regulatory safety inspections between CNRA Member countries In 1996, members of WGIP discussed various ways in which regulatory inspectors look at and evaluate how licenses are given to control room operators and shift supervisors in the Member countries. As a result of these discussions it was proposed to put together a short comparison report on this issue. The CNRA approved work on this at its annual meeting that year. This CNRA/WGIP study concentrates on the regulatory inspection of control room operator competence and authorisation. As noted in the text, fourteen Member countries supplied input by responding to the questionnaire. This report presents a comparison of inspection practices in participating OECD countries relating to control room operator and shift supervisor licenses. The report has been derived from answers to a questionnaire on the basis of guidance given in Appendix 1.1 with the detailed answers being given in Appendix 1. Key questions for this comparison were 'What are the regulatory or licensee requirements for holding and up-keeping a license or authorisation' and 'How does the regulatory body inspect the training and competence of shift teams and individual operators'. The main conclusion from the comparison is that the general practice within the participating countries for ensuring the competence of operators is broadly similar although regulatory practices differ markedly. For example, the regulatory bodies in some countries are actively involved in the examination and licensing process of individual operators whereas other regulatory bodies

  5. Regulatory view on licensing and commissioning of Temelin NPP

    International Nuclear Information System (INIS)

    Drabova, D.; Boehm, K.; Brandejs, P.; Tipek, Z.

    2004-01-01

    The competencies delegated to the Czech State Office for Nuclear Safety by Czech legislation are highlighted and the history of construction and commissioning of the Temelin nuclear power plant in relation to the licensing process is described. (P.A.)

  6. DART - for design basis justification and safety related information management

    International Nuclear Information System (INIS)

    Billington, A.; Blondiaux, P.; Boucau, J.; Cantineau, B.; Doumont, C.; Mared, A.

    2000-01-01

    DART is the acronym for Design Analysis Re-engineering Tool. It embodies a systematic and integrated approach to NPP safety re-assessment and configuration management, that makes use of Reverse Failure Mode and Effect Analysis in conjunction with a state-of-the-art relational database and a standardized data format, to permit long-term management of plant safety related information. The plant design is reviewed in a step-by-step logical fashion by constructing fault trees that identify the link between undesired consequences and their causes. Each failure cause identified in a fault tree is addressed by defining functional requirements, which are in turn addressed by documenting the specific manner in which the plant complies with the requirement. The database can be used to generate up-to-date plant safety related documents, including: SAR, Systems Descriptions, Technical Specifications and plant procedures. The approach is open-minded by nature and therefore is not regulatory driven, however the plant licensing basis will also be reviewed and documented within the same database such that a Regulatory Conformance Program may be integrated with the other safety documentation. This methodology can thus reconstitute the plant design bases in a comprehensive and systematic way, while allowing to uncover weaknesses in design. The original feature of the DART methodology is that it links all the safety related documents together, facilitating the evaluation of the safety impact resulting from any plant modification. Due to its capability to retrieve the basic justifications of the plant design, it is also a useful tool for training the young generation of plant personnel. The DART methodology has been developed for application to units 2, 3 and 4 at Vattenfall's Ringhals site in Sweden. It may be applied to any nuclear power plant or industrial facility where public safety is a concern. (author)

  7. DART - for design basis justification and safety related information management

    International Nuclear Information System (INIS)

    Billington, A.; Blondiaux, B.; Boucau, J.; Cantineau, B.; Mared, A.

    2001-01-01

    DART is the acronym for Design Analysis Re-Engineering Tool. It embodies a systematic and integrated approach to NPP safety re-assessment and configuration management, that makes use of Reverse Failure Mode and Effect Analysis in conjunction with a state-of-the-art relational database and a standardized data format, to permit long-term management of plant safety related information. The plant design is reviewed in a step-by-step logical fashion by constructing fault trees that identify the link between undesired consequences and their causes. Each failure cause identified in a fault tree is addressed by defining functional requirements, which are in turn addressed by documenting the specific manner in which the plant complies with the requirement. The database can then be used to generate up-to-date plant safety related documents, including: SAR, Systems Descriptions, Technical Specifications and plant procedures. The approach is open-minded by nature and therefore is not regulatory driven, however the plant licensing basis will also be reviewed and documented within the same database such that a Regulatory Conformance Program may be integrated with the other safety documentation. This methodology can thus reconstitute the plant design bases in a comprehensive and systematic way, while allowing to uncover weaknesses in design. The original feature of the DART methodology is that it links all the safety related documents together, facilitating the evaluation of the safety impact resulting from any plant modification. Due to its capability to retrieve the basic justifications of the plant design, it is also a useful tool for training the young generation of plant personnel. The DART methodology has been developed for application to units 2, 3 and 4 at Vattenfall's Ringhals site in Sweden. It may be applied to any nuclear power plant or industrial facility where public safety is a concern. (author)

  8. Integrated plant safety assessment: systematic evaluation program. Oyster Creek nuclear generating station. GPU Nuclear Corporation and Jersey Central Power and Light Company. Docket No. 50-219

    International Nuclear Information System (INIS)

    1982-09-01

    The Systematic Evaluation Program was initiated in February 1978 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Oyster Creek Nuclear Generating Station (located in Ocean County, New Jersey), one of ten plants reviewed under Phase II of this program, and indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  9. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing

    International Nuclear Information System (INIS)

    1980-06-01

    This volume of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power - generating capability and one without

  10. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  11. NRC's license renewal regulations

    International Nuclear Information System (INIS)

    Akstulewicz, Francis

    1991-01-01

    In order to provide for the continuity of the current generation of nuclear power plant operating licenses and at the same time ensure the health and safety of the public, and the quality of the environment, the US Nuclear Regulatory Commission (NRC) established a goal of developing and issuing regulations and regulatory guidance for license renewal in the early 1990s. This paper will discuss some of those activities underway to achieve this goal. More specifically, this paper will discuss the Commission's regulatory philosophy for license renewal and the two major license renewal rule makings currently underway. The first is the development of a new Part 54 to address procedural and technical requirements for license renewal; the second is a revision to existing Part 51 to exclude environmental issues and impacts from consideration during the license renewal process. (author)

  12. Information to be submitted in support of licensing applications for nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Agency's Safety Series No.50-C-G, entitled ''Governmental Organization for the Regulation of Nuclear Power Plants: A Code of Practice''. It is concerned with the content of documents which should be submitted to the regulatory body by the applicant/licensee in support of licensing applications, with a possible method of classifying these documents and with the scheduling of their submission to the regulatory body at each major stage of the licensing process

  13. Scaling analysis in bepu licensing of LWR

    International Nuclear Information System (INIS)

    D'auria, Francesco; Lanfredini, Marco; Muellner, Nikolaus

    2012-01-01

    'Scaling' plays an important role for safety analyses in the licensing of water cooled nuclear power reactors. Accident analyses, a sub set of safety analyses, is mostly based on nuclear reactor system thermal hydraulics, and therefore based on an adequate experimental data base, and in recent licensing applications, on best estimate computer code calculations. In the field of nuclear reactor technology, only a small set of the needed experiments can be executed at a nuclear power plant; the major part of experiments, either because of economics or because of safety concerns, has to be executed at reduced scale facilities. How to address the scaling issue has been the subject of numerous investigations in the past few decades (a lot of work has been performed in the 80thies and 90thies of the last century), and is still the focus of many scientific studies. The present paper proposes a 'roadmap' to scaling. Key elements are the 'scaling-pyramid', related 'scaling bridges' and a logical path across scaling achievements (which constitute the 'scaling puzzle'). The objective is addressing the scaling issue when demonstrating the applicability of the system codes, the 'key-to-scaling', in the licensing process of a nuclear power plant. The proposed 'road map to scaling' aims at solving the 'scaling puzzle', by introducing a unified approach to the problem.

  14. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    International Nuclear Information System (INIS)

    Song, Tae Young

    2007-01-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas

  15. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Young [Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2007-07-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas.

  16. Safety evaluation report related to the renewal of the operating license for the Research Reactor at the State University of New York at Buffalo, Docket No. 50-57

    International Nuclear Information System (INIS)

    1983-05-01

    This Safety Evaluation Report for the application filed by the State University of New York at Buffalo for a renewal of Operating License R-77 to continue to operate a research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned by the State University of New York and is located on the campus in Buffalo, New York. Based on its technical review, the staff concludes that the reactor facility can continue to be operated by the University without endangering the health and safety of the public or endangering the environment

  17. Licensing of ''grandfather's'' facilities: Ukrainian experience

    International Nuclear Information System (INIS)

    Mikolaitchouk, H.; Bogdan, L.; Steinberg, N.

    1995-01-01

    In the former USSR, unlike most countries, radioactive waste management activities including waste disposal needed no license. But after the USSR breakdown the Ukrainian Parliament -- Verkhovna Rada -- invoked the revised Law on Business activities. According to Article 4 of the Law, in order to treat or to dispose radioactive waste every enterprise has to get a special permission or license. In compliance with the Law, the Cabinet of Ministers by its Ordinance of January 13, 1993, authorized the Ukrainian State Committee for Nuclear and Radiation Safety (UkrSCNRS) to issue special permissions or licenses for waste treatment and disposal. And that requirement was valid not only for future activities but also for existing facilities in operation. Taking into account the undergoing legislative process, SCNRS began to develop its licensing process without waiting for the special nuclear laws to be passed. On the basis of the legislation already in effect, first of all the Law on Enterprises (full responsibility of enterprises for their activities) and Law on Business activities (requirement to have a license for special types of activities), the newly formed national regulatory body had to identify all the enterprises that needed to be licensed, to establish relevant procedures, to develop related regulatory documents, to implement these procedures and documents at operating enterprises, and for each case to make a decision concerning feasibility of issuing a license, period of validity and license conditions

  18. The use of U.S. NRC licensing practices for VVERs

    International Nuclear Information System (INIS)

    Popp, D.M.

    2000-01-01

    The licensing process for the upgraded Temelin I and C and Fuel designs were enhanced with the introduction of U.S. Nuclear Regulatory Commission, NRC practices. Specifically, the use of the NRC Regulatory Guide 1.70, 'Standard Format and Content Guide for Safety Analyses Reports' and NRC NUREG 0800, 'Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants', were beneficial in the development and review of Temelin licensing documentation. These standards have been used for the preparation and review of Safety Analysis Reports in the United States and also in a large number of licensing applications around the world. Both Regulatory Guide 1.70 and NUREG 0800 were developed to provide a predictable and structured approach to licensing. This paper discusses this approach and identifies the benefits to designers, writers of licensing documentation and reviewers of licensing documents. (author)

  19. Integrated plant safety assessment. Systematic evaluation program, Big Rock Point Plant (Docket No. 50-155). Final report

    International Nuclear Information System (INIS)

    1984-05-01

    The Systematic Evaluation Program was initiated in February 1977 by the U.S. Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final Integrated Plant Safety Assessment Report has been issued. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  20. Safety case for license application for a final repository: The French example

    International Nuclear Information System (INIS)

    Boissier, Fabrice; Voinis, Sylvie

    2014-01-01

    The reversible repository in a deep geological formation is the French reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste (HLW and ILW). Twenty years of R and D work and conceptual and basic studies since the first French Act of 1991 led, in particular, to a feasibility demonstration in 2005. According to the French Act on Radioactive Waste of 28 of June 2006, Andra shall design a reversible repository in order to apply for license in 2015. In response to this demand, Andra developed the industrial project known as 'Cigeo', a reversible geological disposal facility for HLW and ILW located in Meuse/Haute-Marne. Two years before applying for authorisation, Andra's project is now focusing on three main targets: developing Cigeo's industrial design, preparing the authorisation process through increased exchanges with stakeholders and the preparation of a safety case to support authorisation application. The latter draws on the previous safety cases of 2005 and 2009, which give a sound basis to assess Cigeo's safety, both for the operational and post-closure periods. In this new stage of the project, the challenging issues for the preparation of the safety case are the following: - to identify the various regulatory frameworks (nuclear and non-nuclear) and guides applicable to the facility; - to ensure that the industrial design complies in particular with the safety requirements as presented in the safety case and its supporting safety assessment; - to identify crucial inputs (R and D, tests,...) needed to support the authorisation application, in particular, to bring convincing arguments to assess the technical feasibility of the design and when appropriate its ability to meet the safety requirements; - to ensure that all the requirements from previous regulatory and peer reviews (national and international?) are taken into account. (authors)

  1. Selection/licensing of nuclear power plant operators

    International Nuclear Information System (INIS)

    Saari, L.M.

    1983-07-01

    An important aspect of nuclear power plant (NPP) safety is the reactor operator in the control room. The operators are the first individuals to deal with an emergency situation, and thus, effective performance on their part is essential for safe plant operations. Important issues pertaining to NPP reactor operators would fall within the personnel subsystem of our safety system analysis. While there are many potential aspects of the personnel subsystem, a key first step in this focus is the selection of individuals - attempting to choose individuals for the job of reactor operator who will safely perform the job. This requires a valid (job-related) selection process. Some background information on the Nuclear Regulatory Commission (NRC) licensing process used for selecting NPP reactor operators is briefly presented and a description of a research endeavor now underway at Battelle for developing a valid reactor operator licensing examination is included

  2. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 27 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for a license to operate Diablo Canyon Nuclear Power Plant, Unit 1 (Docket No. 50-275), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses the revisions to the license conditions and to the Technical Specifications as they relate to Amendment 10 to Diablo Canyon, Unit 1 Facility Operating License, DPR-76

  3. Safety and licensing of MOX versus UO2 for BWRs and PWRs: Aspects applicable for civilian and weapons grade Pu

    International Nuclear Information System (INIS)

    Goldstein, L.; Malone, J.

    2000-01-01

    This paper reviews the safety and licensing differences between MOX and UO 2 BWR and PWR cores. MOX produced from the normal recycle route and from weapons grade material are considered. Reload quantities of recycle MOX assemblies have been licensed and continue to operate safely in European LWRs. In general, the European MOX assemblies in a reload are 2 . These studies indicated that no important technical or safety related issues have evolved from these studies. The general specifications used by fuel vendors for recycled MOX fuel and core designs are as follows: MOX assemblies should be designed to minimize or eliminate local power peaking mismatches with co-resident and adjacently loaded UO 2 assemblies. Power peaking at the interfaces arises from different neutronic behavior between UO 2 and MOX assemblies. A MOX core (MOX and UO 2 or all-MOX assemblies) should provide cycle energy equivalent to that of an all-UO 2 core. This applies, in particular, to recycle MOX applications. An important consideration when burning weapons grade material is rapid disposition which may not necessarily allow for cycle energy equivalence. The reactivity coefficients, kinetics data, power peaking, and the worth of shutdown systems with MOX fuel and cores must be such to meet the design criteria and fulfill requirements for safe reactor operation. Both recycle and weapons grade plutonium are considered, and positive and negative impacts are given. The paper contrasts MOX versus UO 2 with respect to safety evaluations. The consequences of some transients/accidents are compared for both types of MOX and UO 2 fuel. (author)

  4. 77 FR 47922 - Publication of General Licenses Related to the Burma Sanctions Program

    Science.gov (United States)

    2012-08-10

    ... DEPARTMENT OF THE TREASURY Office of Foreign Assets Control Publication of General Licenses Related to the Burma Sanctions Program AGENCY: Office of Foreign Assets Control, Treasury. ACTION: Notice, publication of general licenses. [[Page 47923

  5. 10 CFR 34.13 - Specific license for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY... industrial radiography. An application for a specific license for the use of licensed material in industrial...

  6. Cost reduction and safety design features of ABWR-II. Annex 5

    International Nuclear Information System (INIS)

    Koh, F.; Moriya, K.; Anegawa, T.

    2002-01-01

    The ABWR-II, which is aimed to be the next generation reactor following the latest BWR: Advanced Boiling Reactor (ABWR), is now under development jointly by the Japanese BWR utilities, General Electric Company, Hitachi Limited, and Toshiba Corporation. The key objectives of ABWR-II development include improvement in economics and further sophistication in safety for commercialization in the late 2010's and after. This paper summarizes the current status of ABWR-II development focusing on economics and safety. Plant power rating, fuel size, CRD rationalization and outage period are discussed from a cost reduction perspective. In terms of safety, the features such as diversification in emergency power sources and passive system application against severe accidents are being introduced. (author)

  7. Licensing process for future applications of advanced-design nuclear reactors

    International Nuclear Information System (INIS)

    Miller, C.L.

    1990-01-01

    The existing 10CFR50 two-step licensing process in the Code of Federal Regulations can continue to be a viable licensing vehicle for future applications, at least for the near future. The US Nuclear Regulatory Commission (NRC) Commissioners and staff, the public, and the utilities (along with supporting architect/engineers and nuclear steam supply system vendors) have a vast body of experience and knowledge of the existing part 50 licensing process. All these participants are familiar with their respective roles in this process, and history shows this process to be a workable licensing vehicle. Nevertheless, the use of 10CFR52 should be encouraged for future applications. This proposed new rule is intended to achieve the early resolution of licensing issues, to reduce the complexity and uncertainty of the licensing process, and enhance the safety and reliability of nuclear power plants. Part 52's overall purpose is to improve reactor safety and streamline the licensing process by encouraging the use of standard reactor designs and by allowing the early resolution of site environmental and reactor safety issues. The public should be afforded an earlier entry into the licensing process as a result of design certification rulemaking process and combined construction permit/operating license hearings

  8. Consensus standards utilized and implemented for nuclear criticality safety in Japan

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Okuno, Hiroshi; Naito, Yoshitaka

    1996-01-01

    The fundamental framework for the criticality safety of nuclear fuel facilities regulations is, in many advanced countries, generally formulated so that technical standards or handbook data are utilized to support the licensing safety review and to implement its guidelines. In Japan also, adequacy of the safety design of nuclear fuel facilities is checked and reviewed on the basis of licensing safety review guides. These guides are, first, open-quotes The Basic Guides for Licensing Safety Review of Nuclear Fuel Facilities,close quotes and as its subsidiaries, open-quotes The Uranium Fuel Fabrication Facility Licensing Safety Review Guidesclose quotes and open-quotes The Reprocessing Facility Licensing Safety Review Guides.close quotes The open-quotes Nuclear Criticality Safety Handbook close-quote of Japan and the Technical Data Collection are published and utilized to supply related data and information for the licensing safety review, such as for the Rokkasho reprocessing plant. The well-established technical standards and data abroad such as those by the American Nuclear Society and the American National Standards Institute are also utilized to complement the standards in Japan. The basic principles of criticality safety control for nuclear fuel facilities in Japan are duly stipulated in the aforementioned basic guides as follows: 1. Guide 10: Criticality control for a single unit; 2. Guide 11: Criticality control for multiple units; 3. Guide 12: Consideration for a criticality accident

  9. The licensing of shipping containers for radioactive materials

    International Nuclear Information System (INIS)

    Schulz-Forberg, B.

    1987-01-01

    In the Federal Republic of Germany the competent Federal Minister regulated the licensing procedure in a guideline while assigning the PTB the function of competent authority, and stipulating that BAM is to execute design inspection for approval. On completion of design inspection, BAM summarizes the results in a certificate which also states the measures required to be taken in quality monitoring in the manufacturing and maintenance of packagings. A sheet specifies the implemental provisions covering quality-assurance measures in planning, manufacturing, commissioning and operation of shipping items of types B(U) and B(M), and of nuclear safety classes I, II, and III. (orig./DG) [de

  10. Safety guides development process in Spain

    International Nuclear Information System (INIS)

    Butragueno, J.L.; Perello, M.

    1979-01-01

    Safety guides have become a major factor in the licensing process of nuclear power plants and related nuclear facilities of the fuel cycle. As far as the experience corroborates better and better engineering methodologies and procedures, the results of these are settled down in form of standards, guides, and similar issues. This paper presents the actual Spanish experience in nuclear standards and safety guides development. The process to develop a standard or safety guide is shown. Up to date list of issued and on development nuclear safety guides is included and comments on the future role of nuclear standards in the licensing process are made. (author)

  11. Licensing of simple digital devices

    International Nuclear Information System (INIS)

    Jackson, T. W.

    2008-01-01

    The inability to guarantee error-free software gave rise to the potential for common-cause failure of digital safety systems in nuclear power plants. To address this vulnerability, the U. S. Nuclear Regulatory Commission (NRC) required a quality software development process and a defense-in-depth and diversity analysis for digital safety systems. As a result of recent interim [NRC] staff guidance in the digital instrumentation and control (I and C) area, licensing of simple digital devices decreases some regulatory burden with respect to demonstrating a quality software development process and defense-in-depth and diversity analysis. This paper defines simple digital devices and addresses the interim staff guidance that applies to such devices. The paper also highlights the technical aspects that affect the licensing of such devices and incorporates licensing experience in the U.S. to date. (authors)

  12. Scaling analysis in bepu licensing of LWR

    Energy Technology Data Exchange (ETDEWEB)

    D' auria, Francesco; Lanfredini, Marco; Muellner, Nikolaus [University of Pisa, Pisa (Italy)

    2012-08-15

    'Scaling' plays an important role for safety analyses in the licensing of water cooled nuclear power reactors. Accident analyses, a sub set of safety analyses, is mostly based on nuclear reactor system thermal hydraulics, and therefore based on an adequate experimental data base, and in recent licensing applications, on best estimate computer code calculations. In the field of nuclear reactor technology, only a small set of the needed experiments can be executed at a nuclear power plant; the major part of experiments, either because of economics or because of safety concerns, has to be executed at reduced scale facilities. How to address the scaling issue has been the subject of numerous investigations in the past few decades (a lot of work has been performed in the 80thies and 90thies of the last century), and is still the focus of many scientific studies. The present paper proposes a 'roadmap' to scaling. Key elements are the 'scaling-pyramid', related 'scaling bridges' and a logical path across scaling achievements (which constitute the 'scaling puzzle'). The objective is addressing the scaling issue when demonstrating the applicability of the system codes, the 'key-to-scaling', in the licensing process of a nuclear power plant. The proposed 'road map to scaling' aims at solving the 'scaling puzzle', by introducing a unified approach to the problem.

  13. The art and trend of nuclear power plants aging management and licenses renewal activity In USA

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zhang Mengyi

    2014-01-01

    This paper briefly introduced the history and the art of nuclear power plants licenses renewal in United State. The aims, working scope, methodology, the art and trend of aging management and its role in license renewal process in United State nuclear power plants license renewal process were discussed in details. Furthermore, the aging management current research focus in United State was described. Then, take into account the AP serials Pressurized Water Reactor and nuclear safety requirements in the regulatory and safety guide in China, some suggestions and recommendation on nuclear power plants aging management were introduced, which will be helpful when we developed related aging management works in China. (authors)

  14. Status report on the HFR conversion and re-licensing project

    International Nuclear Information System (INIS)

    Wijtsma, F.G.

    2003-01-01

    In 1999 the HFR license holder (JRC, Petten, the Netherlands) initiated a project to study the conversion of the HFR from HEU to LEU. The first phase of this project consisted of a parametric study to determine the optimum fuel element and control rod design within given boundary conditions such as geometry, density, performance and cycle length. Results of this study are a 22 plates fuel element (550 g 235 U) at a density of 4.8 g.cm -3 and a 17 plates control rod (440 g 235 U). The second phase contains all aspects related to the conversion including a full-scale test irradiation of a prototype LEU element. The actual conversion of the HFR requires a new license. For this reason the re-licensing project has started in 2001. In this context many studies have been performed e.g. Risk Scoping Study, Safety Analyses, TOPA (Technical, Operational, Personnel and Administrative) evaluation. The license application will be based on a new Safety Report and an Environmental Impact Statement and will be submitted to the competent Authorities at the end of October 2003. (author)

  15. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II

    International Nuclear Information System (INIS)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site

  16. Integrated plant safety assessment: Systematic Evaluation Program, San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206): Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of San Onofre Nuclear Generating Station, Unit 1, operated by Southern California Edison Company. The San Onofre plant is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. This report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the draft report issued in April 1985

  17. MEX04/058 supporting the license renewal of the LVNPP

    International Nuclear Information System (INIS)

    Diaz, A.; Arganis, C.; Viais, J.; Mendoza, G.; Lucatero, M. A.; Contreras, A.

    2010-10-01

    Nuclear power plants in the United States are authorized to operate for 40 years. However, this 40-year period was chosen based on economic considerations and not on technological restrictions or safety aspects. In general, the operation of equipment, systems and components in a nuclear power plant is subject to rigorous maintenance and inspection monitoring under strict surveillance programs throughout their life. In fact, according to the Nuclear Energy Institute, in December 2009, 59 nuclear power plants in the United States had already reached the 40 years of the original operating license and carried out their renewal process, extending their operation for up to 20 more years. These 59 nuclear power plants carried out their renewal process, basing their operation mainly on safety reviews that validated the good working order of systems, structures and components, meeting the technical specifications required, as well as complying with the specific safety provisions for prolonging the use of a operating license. The owner is responsible for showing the Regulatory Agency that it is capable of effectively managing the aging of the systems, structures and components,guaranteeing their good working order during the renewal period. In the specific case of Mexico, Unit 1 of the Laguna Verde Nuclear Power Plant (LVNPP) has an original 30-year license, with almost 20 years of proper operation, for which, in order to request a license extension, it is necessary to begin management activities, which allow for constituting and submitting the license renewal application to the Regulatory Agency in order to continue its commercial operation. This paper presents some of most important activities carried out by Instituto Nacional de Investigaciones Nucleares and LVNPP in the international project MEX04/058, related to Plant Life Management as a support of the beginning of plant license renewal process. (Author)

  18. 76 FR 77561 - Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc.; (Levy County...

    Science.gov (United States)

    2011-12-13

    ...] Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc.; (Levy County Nuclear....\\1\\ On February 23, 2009, this Board was established to handle the matter and to preside over any... resulting from active and passive dewatering; 2. Impacts resulting from the connection of the site to the...

  19. Safety-evaluation report related to the renewal of the operating license for the research reactor at the Iowa State University (Docket No. 50-116)

    International Nuclear Information System (INIS)

    1983-09-01

    This Safety Evaluation Report for the application filed by the Iowa State University (ISU) for a renewal of the Class 104 Operating License R-59 to continue to operate its Argonaut-type research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Iowa State University, and is located on the ISU campus in Ames, Story County, Iowa. The staff concludes that the reactor facility can continue to be operated by ISU without endangering the health and safety of the public. The principal matters reviewed are: design, testing, and performance of the reactor components and systems; the expected consequences of credible accidents; the licensee's management organization; the method used for the control of radiological effluents; the licensee's technical specifications; financial data and information; the physical protection program; procedures for training reactor operators; and emergency plans. 11 references, 15 figures, 13 tables

  20. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  1. Bavarian liquid hydrogen bus demonstration project - safety, licensing and acceptability aspects

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, R.; Knorr, H.; Pruemm, W.

    1999-07-01

    A regular 12 m city bus of the MAN SL 202 type with an internal combustion engine adapted to hydrogen operation and auxiliary gasoline operation was demonstrated in the Bavarian cities of Erlangen and Munich between April 1996 and August 1998. Three bus operators, Erlanger Stadtwerke, Stadtwerke Muenchen and Autobus Oberbayern were testing the bus in three different operating schemes. In order to be able to perform this worldwide first public demonstration of a liquid hydrogen (LH{sub 2}) city bus in regular service, several requirements with respect to safety, licensing, training and acceptability had to be fulfilled. These activities were focusing mainly on the hydrogen specific issues such as (a) integration of onboard LH{sub 2} storage vessels, piping and instrumentation, (b) implementation of storage and refueling infrastructure in the operators' yards, (c) adaptation of the maintenance garages, (d) training of operating and maintenance personnel. During phase II of the demonstration activity a poll was performed on passengers traveling onboard the hydrogen-powered city bus in order to determined the level of acceptance among the users of the bus. The bus was designed and manufactured by MAN Nutzfahrzeuge Aktiengesellschaft. The cryogenic fuel storage and the refueling equipment were designed and manufactured by Linde AG. The realization of the hardware was financially supported by the European Commission (EC) within the Euro-Quebec Hydro-Hydrogen Pilot Project. The demonstration phase was financially supported by EC and the Bavarian State Government. Ludwig-Boelkow-Systemtechnik performed project monitoring for both funding organizations. The presentation will summarize the most important results of this demonstration phase and will address the measures undertaken in order to get the bus, the refueling infrastructure and the maintenance and operating procedures approved by the relevant authorities.

  2. PSA in licensing, safety reviews and design as applied in Germany

    International Nuclear Information System (INIS)

    Berg, H.P.; Goertz, R.; Schott, H.; Wendling, R.D.

    1994-01-01

    In this paper, two topics - the application of PSA in the regulatory process and the effort to improve PSA methods and models - are addressed. From the regulators' point of view, the most important application of PSA in Germany is presently within the safety reviews of nuclear power plants in operation. The current status of regulatory guidance which shall be provided to establish a uniform procedure for a periodic safety review is described with special emphasis on the role of PSA. An important goal is to have all plant-specific PSAs comparable as far as possible. Guidance for PSA review is under development likewise. Furthermore, the application of PSA in licensing of nuclear power plants is addressed as well as its use in the design process of future pressurized water reactors. The development of models and methods to be applied in PSA has been and will be supported by a number of studies and investigations. An overview of the main issues of these investigations is provided. A specific task was the elaboration of a proposal for incorporating fire events into the PSA. The status of these efforts is outlined. (author). 7 refs, 3 figs, 2 tabs

  3. 78 FR 38097 - Publication of General License Related to the Syria Sanctions Program

    Science.gov (United States)

    2013-06-25

    ... DEPARTMENT OF THE TREASURY Office of Foreign Assets Control Publication of General License Related to the Syria Sanctions Program AGENCY: Office of Foreign Assets Control, Treasury. ACTION: Notice, publication of general license. SUMMARY: The Department of the Treasury's Office of Foreign Assets Control...

  4. Standard format and content of a license application for a low-level radioactive waste disposal facility: Safety analysis report

    International Nuclear Information System (INIS)

    1988-01-01

    This document discusses the information that should be provided in the Safety Analysis Report and establishes a uniform format for presenting the information necessary to fulfill the licensing requirements for land disposal of radioactive waste called for in 10 CFR 61. The uniform format will (1) help ensure that the Safety Analysis Report contains the information required by 10 CFR 61, (2) aid the applicant and NRC staff in ensuring that the information is complete, (3) help persons reading the Safety Analysis Report to locate information, and (4) contribute to shortening the time needed for the review process

  5. Standard format and content of a license application for a low-level radioactive waste disposal facility: Safety analysis report

    International Nuclear Information System (INIS)

    1987-01-01

    This document discusses the information that should be provided in the Safety Analysis Report and establishes a uniform format for presenting the information necessary to fulfill the licensing requirements for land disposal of radioactive waste called for in 10 CFR 61. The uniform format will (1) help ensure that the Safety Analysis Report contains the information required by 10 CFR 61, (2) aid the applicant and NRC staff in ensuring that the information is complete, (3) help persons reading the Safety Analysis Report to locate information, and (4) contribute to shortening the time needed for the review process

  6. 77 FR 51832 - Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc. (Levy County...

    Science.gov (United States)

    2012-08-27

    ...] Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc. (Levy County Nuclear... testimony are being heard, all of the proceedings will be open to the public. See 10 CFR 2.328. A. Matters.... Impacts resulting from active and passive dewatering; 2. Impacts resulting from the connection of the site...

  7. 78 FR 41192 - Publication of General License Related to the Zimbabwe Sanctions Program

    Science.gov (United States)

    2013-07-09

    ... DEPARTMENT OF THE TREASURY Office of Foreign Assets Control Publication of General License Related to the Zimbabwe Sanctions Program AGENCY: Office of Foreign Assets Control, Treasury. ACTION: Notice, publication of general license. SUMMARY: The U.S. Department of the Treasury's Office of Foreign Assets...

  8. Establishing management information system to solve the information management problem of nuclear safety related personnel's qualification management

    International Nuclear Information System (INIS)

    Sun Haipeng; Liu Zhijun; Li Tianshu

    2013-01-01

    With the rapid progress of nuclear energy and nuclear technology utilization, nuclear safety related personnel play an increasingly important role in ensuring nuclear safety. NNSA personnel qualification management information system conducts a multi-faceted, effective, real-time monitoring and information collection for nuclear safety staff practice unit management, knowledge management, license application, appraisal management or supervision, training management or supervision and certified staff management, and also is a milestone for NNSA to build the state department with 'five-feature' (learning-oriented, service-oriented, economical, innovative, clean-type). (authors)

  9. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  10. Safety evaluation report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 8 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by th Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides recent information regarding resolution of the license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that the Byron Station, Unit 2 can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public

  11. Licensing of the Ignalina NPP

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    Since 1991 State Nuclear Power Safety Inspectorate (VATESI) has regulated Ignalina NPP operation by issuing annual operating permits. Those have been issued following submission of specified documents by the Ignalina NPP that have been reviewed by VATESI. However, according to to the procedures that are now established in the Law on Nuclear Energy and subordinate regulations the use of nuclear energy in the Republic of Lithuania is subject to strict licensing. Therefore a decision about the licence for continued operation of unit 1 should be taken. Licence would be granted by VATESI in cooperation with the Ministry of Health, Ministry of Environment and the institutions of local authorities. Ignalina NPP presented to the VATESI safety analysis report (SAR) with other documents. SAR was made mainly by foreign experts and financed by European Bank for Reconstruction and Development (EBRD). VATESI in this process is supported by western regulators. A special project LAP - Licensing Assistance Project was launched to help VATESI perform licensing according western practices

  12. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal

  13. Safety Evaluation Report related to the operation of Fermi-2 (Docket No. 50-341). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-03-01

    Supplement No. 5 to the Safety Evaluation Report (SER) related to the operation of the Fermi-2 facility, provides the NRC staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 4 to the SER dated September 1984. This supplement contains the staff's conclusion that there are no outstanding issues which must be resolved prior to issuance of a low-power operating license (i.e., less than five percent of full rated power) for the Fermi-2 facility. Supplement No. 5 to the SER also summarizes the conditions which are placed in the Fermi-2 operating license

  14. On safety goals and related questions

    International Nuclear Information System (INIS)

    Kaplan, S.

    1985-01-01

    The question of what safety goals should be established for nuclear power plants has been receiving a great deal of urgent attention and debate recently, both by those responsible for reactor licensing and by others interested in establishing a quantitative measure of reactor safety. The same question, phrased alternately in the forms: ''What is acceptable risk?'' and ''How safe is safe enough?,'' has been debated extensively for quite a long time. The purpose of the present paper, therefore, is to show that the above questions, taken at face value, exist within an unworkable context, which the authors shall call the Old Regulatory Context (ORC), and that within this context lead to several absurdities. They shall argue that this context needs to be replaced by another context, which they call the Decision Theory Context (DTC), and which the authors discuss here

  15. 76 FR 23639 - Revocation of License of Small Business Investment Company

    Science.gov (United States)

    2011-04-27

    ... SMALL BUSINESS ADMINISTRATION Revocation of License of Small Business Investment Company Pursuant..., II, L.P., a Delaware Limited Partnership, to function as a small business investment company under the Small Business Investment Company License No. 09790400 issued to Aspen Ventures West, II, L.P., on...

  16. Role of security during safety-related emergencies at nuclear power plants

    International Nuclear Information System (INIS)

    Cardwell, R.G.; Moul, D.A.; McBride, J.A.; Wilson, C.W.

    1984-03-01

    This report provides an analysis of the literature and on-site data gathering relating to the actions of security forces at licensed nuclear power plants during safety-related emergencies. Literature search findings and results of on-site data gathering are furnished and subjected to analysis. Taking into account the analysis provided, appropriate recommendations are presented. Recommendations are keyed as to how improvements can be made in the regulatory approach and licensee planning and procedures as they relate to the subject matter under examination. In addition, certain technological problems and issues are examined within the context of the study. Appendices provide the results of the literature search, an annotated bibliography, the Data Collection Guide used, and additional details regarding certain aspects of the study that are relevant for further explication of the body of the report

  17. Criteria for safety-related nuclear-power-plant operator actions: 1982 pressurized-water-reactor (PWR) simulator exercises

    International Nuclear Information System (INIS)

    Crowe, D.S.; Beare, A.N.; Kozinsky, E.J.; Haas, P.M.

    1983-06-01

    The primary objective of the Safety-Related Operator Action (SROA) Program at Oak Ridge National Laboratory is to provide a data base to support development of criteria for safety-related actions by nuclear power plant operators. When compared to field data collected on similar events, a base of operator performance data developed from the simulator experiments can then be used to establish safety-related operator action design evaluation criteria, evaluate the effects of performance shaping factors, and support safety/risk assessment analyses. This report presents data obtained from refresher training exercises conducted in a pressurized water reactor (PWR) power plant control room simulator. The 14 exercises were performed by 24 teams of licensed operators from one utility, and operator performance was recorded by an automatic Performance Measurement System. Data tapes were analyzed to extract operator response times (RTs) and error rate information. Demographic and subjective data were collected by means of brief questionnaires and analyzed in an attempt to evaluate the effects of selected performance shaping factors on operator performance

  18. Looking at the licensability of System 80+ in the UK

    International Nuclear Information System (INIS)

    Molnar, C.M.

    1993-01-01

    There are today no internationally-sanctioned nuclear power plant design or licensing guidelines, or acceptance criteria, available for a standard plant design that would have multi-national regulatory acceptability. On the contrary, a diversity of national regulations govern the design and licensing of nuclear power stations around the world. When licensing a nuclear facility in this environment, it is important for all parties (utility, designer and regulator) to recognise consciously that there are numerous solutions available to satisfy varying safety requirements. There is no one right-way - there are only trade-offs justified on safety, performance benefit and cost, which, taken together, fashion designs that conform to national licensing requirements. (Author)

  19. A Study on the regulation improvement through the analysis of domestic and international categorization and licensing process for large particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Da-Yeong; Jeon, Yeo-Ryeong; Kim, Yong-Min [Catholic University of Daegu, Gyeongsan (Korea, Republic of); Jung, Nam-Suk; Lee, Hee-Seock [POSTECH, Pohang (Korea, Republic of)

    2016-10-15

    Many foreign countries use separate criteria and regulation procedure according to the categorization of accelerators. In Korea, nuclear and radiation related facilities are divided into 4 groups: 1) Nuclear Reactor and related facilities, 2) Nuclear fuel cycle, nuclear material facilities, 3) Disposal and transport, 4) Radioisotope and radiation generating devices related facilities. All accelerator facilities are categorized as group 4 regardless of their size and type. For facilities that belong to group 1 and 2, Radiation Environmental Impact Assessment Report(REIR) and Preliminary Decommissioning Plan Report(PDPR) should be submitted in construction licensing stage, but there are no rules about above documents for large particle accelerator facilities. Facilities that belong to 4) RI and RG, only two documents of Radiation Safety Report(RSR) and Safety Control Regulation(SCR) are submitted in licensing stage. Because there is no detailed guidelines according to facilities type, properties of each facility are not considered in preparation and licensing process. If we set up the categorization of accelerator facilities, we can expect the effective and safe construction and operation of the large accelerator facilities on the licensing and operation process. Similarly to other counties' criteria, 50 MeV of particle energy could be used as energy band of large particle accelerator. According to categorization, it is necessary to adopt graded licensing stages and separated safety documents. In case of large particle accelerators, it is appropriate to divide the licensing stages to construction and operation. We currently submit PDPR in case of reactor and related facilities, nuclear fuel cycle, and nuclear material facilities. Depending on the energy of particle accelerators, it is necessary to prepare the decontamination and decommissioning for the decrease of current and future burden from radioactive waste. From the arrangement of separated guidelines on

  20. A Study on the regulation improvement through the analysis of domestic and international categorization and licensing process for large particle accelerator

    International Nuclear Information System (INIS)

    Gwon, Da-Yeong; Jeon, Yeo-Ryeong; Kim, Yong-Min; Jung, Nam-Suk; Lee, Hee-Seock

    2016-01-01

    Many foreign countries use separate criteria and regulation procedure according to the categorization of accelerators. In Korea, nuclear and radiation related facilities are divided into 4 groups: 1) Nuclear Reactor and related facilities, 2) Nuclear fuel cycle, nuclear material facilities, 3) Disposal and transport, 4) Radioisotope and radiation generating devices related facilities. All accelerator facilities are categorized as group 4 regardless of their size and type. For facilities that belong to group 1 and 2, Radiation Environmental Impact Assessment Report(REIR) and Preliminary Decommissioning Plan Report(PDPR) should be submitted in construction licensing stage, but there are no rules about above documents for large particle accelerator facilities. Facilities that belong to 4) RI and RG, only two documents of Radiation Safety Report(RSR) and Safety Control Regulation(SCR) are submitted in licensing stage. Because there is no detailed guidelines according to facilities type, properties of each facility are not considered in preparation and licensing process. If we set up the categorization of accelerator facilities, we can expect the effective and safe construction and operation of the large accelerator facilities on the licensing and operation process. Similarly to other counties' criteria, 50 MeV of particle energy could be used as energy band of large particle accelerator. According to categorization, it is necessary to adopt graded licensing stages and separated safety documents. In case of large particle accelerators, it is appropriate to divide the licensing stages to construction and operation. We currently submit PDPR in case of reactor and related facilities, nuclear fuel cycle, and nuclear material facilities. Depending on the energy of particle accelerators, it is necessary to prepare the decontamination and decommissioning for the decrease of current and future burden from radioactive waste. From the arrangement of separated guidelines on

  1. Changing mobility patterns and road mortality among pre-license teens in a late licensing country: an epidemiological study.

    Science.gov (United States)

    Twisk, Divera; Bos, Niels; Shope, Jean T; Kok, Gerjo

    2013-04-11

    Whereas the safety of teens in early licensing countries has been extensively studied, little is known about the safety of pre-license teens in late licensing countries, where these teens also may be at risk. This risk exists because of the combination of a) increasing use of travel modes with a high injury risk, such as bicycles and mopeds, b) inexperience, and c) teens' developmental stage, known to be associated with risk taking and novelty seeking, especially among males. To explore the magnitude and nature of pre-license road risk, this study analysed epidemiological data from the Netherlands, and hypothesized that in this late licensing country, 'independent travel' and the use of riskier modes of transport increase among pre-license teens 10 to 17 years of age, resulting in higher fatality rates, with 'experience' and 'gender' as risk modifying factors. National travel and fatality data of pre-license adolescents in the Netherlands were analysed by traffic role (cyclist, pedestrian, car passenger and moped rider), and compared to a younger age group (0-9 years) and an older age group (18+ years). The study of travel data showed that teens migrate from being car occupants to being users of riskier modes of transport, specifically bicycles and mopeds. This migration resulted in a strong rise in road fatalities, illustrating the importance of mobility patterns for understanding changes in road fatalities in this age group. The data further suggested a protective role of early cycle experience for young adolescent cyclists, particularly for young males. But further study into the underlying mechanism is needed to confirm this relationship. Moped risk was extremely high, especially among young males, and even higher than that of young male car drivers. The study confirmed the importance of changes in mobility patterns for understanding the rising road mortality when youngsters enter into their teens. The focus on fatalities has led to an underestimation of the

  2. Experience gained in the production of licensable safety-critical software for Darlington NGS

    International Nuclear Information System (INIS)

    Crane, R.H.

    1992-01-01

    The Darlington Nuclear Generating Station is a new station, consisting of four 935 Mw units, built by Ontario Hydro, on the north shore of Lake Ontario, approximately 50 miles east of Toronto. In May, 1987, the first of the four units of this station was approaching the point where Ontario Hydro would be requesting a license to load fuel, and then proceed to first criticality. At this point, however, the regulatory authority, the Atomic Energy Control Board (AECB) started to show increasing concerns related to the Trip Computer Software associated with Darlington's newly-designed computerized shutdown systems. The concerns centered around whether or not the safety reliability, reviewability, and maintainability of this software could be demonstrated by Ontario Hydro or the system designer, Atomic Energy of Canada Limited (AECL). In order to back up the validity of their concerns, they hired a well-known consultant, who reviewed the code, and made recommendations concerning its design, implementation, and documentation. Considerable effort was required by Ontario Hydro and AECL in order to comply with those recommendations. This paper describes those efforts, outlines the difficulties encountered, and assesses the lessons learned from them

  3. Licensing issues associated with the use of computers in the nuclear industry

    International Nuclear Information System (INIS)

    Ehrenberger, W.D.; Bloomfield, R.E.

    1987-01-01

    Computers are increasingly important to ensuring the safety of nuclear power stations. They have been proposed or introduced into operator information systems, operational control systems, as well as into systems for core protection and plant protection. Although the developments in the individual countries are not at the same pace, they do tend to render similar results. Particular licensing problems arise because of the increasing complexity of computer systems and the software involved. In the past licensing has been closely connected with the mental understanding of the systems to be licensed. This understanding is endangered with greater complexity of the systems. Although several ''manual'' methods of licensing exist, the problem of cost effective licensing is still more or less unsolved. For the future it is expected that tools will reduce the licensing efforts leaving the licenser and assessor free to concentrate on the most important issues. Such tools will probably make use of artificial intelligence techniques. They will enable the inclusion of more complex functions into safety systems and thereby increase the number of safety criteria and the number of echelons od defense. Another important use of artificial intelligence techniques will be the area of operator information systems and maintenance, including computer hardware maintenance. They will provide early detection of problems in the plant and thereby largely enhance plant availability and safety. Further studies are being proposed in the fields of software licensing tools, artificial intelligence, fail-safe and fault-tolerant software architectures, test procedures and system specification

  4. Electronic licensing filing system development and implementation experience

    International Nuclear Information System (INIS)

    Walderhaug, J.

    1993-01-01

    The Electronic Licensing Filing System (ELFS) is a microcomputer-based integrated document search and retrieval system for the Nuclear Regulatory Affairs Division of Southern California Edison (SCE). ELFS allows the user access to the current licensing basis of a subject by providing an easily searchable electronic information data base consisting of regulatory correspondence, design-bases documentation, licensing documents [updated final safety and analysis report (UFSAR) and technical specifications], and regulatory guidance or directives [10CFR, generic letters, bulletins, notices, circulars, regulatory guides, policy statements, and selected US Nuclear Regulatory Commission (NRC) regulations]. It is used in the preparation of correspondence and submittals to the NRC, 50.59 safety evaluations, design-bases reconstitution, and commitment tracking and management

  5. Safety of licensed vaccines in HIV-infected persons: a systematic review protocol

    Science.gov (United States)

    2014-01-01

    Background Safety of vaccines remains a cornerstone of building public trust on the use of these cost-effective and life-saving public health interventions. In some settings, particularly Sub-Saharan Africa, there is a high prevalence of HIV infection and a high burden of vaccine-preventable diseases. There is evidence suggesting that the immunity induced by some commonly used vaccines is not durable in HIV-infected persons, and therefore, repeated vaccination may be considered to ensure optimal vaccine-induced immunity in this population. However, some vaccines, particularly the live vaccines, may be unsafe in HIV-infected persons. There is lack of evidence on the safety profile of commonly used vaccines among HIV-infected persons. We are therefore conducting a systematic review to assess the safety profile of routine vaccines administered to HIV-infected persons. Methods/Design We will select studies conducted in any setting where licensed and effective vaccines were administered to HIV-infected persons. We will search for eligible studies in PubMed, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, Africa-Wide, PDQ-Evidence and CINAHL as well as reference lists of relevant publications. We will screen search outputs, select studies and extract data in duplicate, resolving discrepancies by discussion and consensus. Discussion Globally, immunisation is a major public health strategy to mitigate morbidity and mortality caused by various infectious disease-causing agents. In general, there are efforts to increase vaccination coverage worldwide, and for these efforts to be successful, safety of the vaccines is paramount, even among people living with HIV, who in some situations may require repeated vaccination. Results from this systematic review will be discussed in the context of the safety of routine vaccines among HIV-infected persons. From the safety perspective, we will also discuss whether repeat vaccination strategies may be

  6. Nuclear licensing in Slovenia

    International Nuclear Information System (INIS)

    Prah, M.; Spiler, J.; Vojnovic, D.; Pristavec, M.

    1998-01-01

    The article presents the approach to nuclear licensing in Slovenia. The paper describes, the initialization, internal authorization and review process in the Krsko NPP. The overall process includes preparation, internal independent evaluation, the Krsko Operating Committee and the Krsko Safety Committee review and internal approval. In addition, the continuation of the licensing process is discussed which includes independent evaluation by an authorized institution and a regulatory body approval process. This regulatory body approval process includes official hearing of the licensee, communication with the licensee, and final issuance of a license amendment. The internal evaluation, which follows the methodology of US NRC (defined in 10 CFR 50.59 and NUMARC 125) is described. This concept is partially implemented in domestic legislation.(author)

  7. Demonstration of passive safety features in EBR-II

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Golden, G.H.; Sackett, J.I.

    1987-01-01

    Two tests of great importance to the design of future commercial nuclear power plants were carried out in the Experimental Breeder Reactor-II on April 3, 1986. These tests, (viewed by about 60 visitors, including 13 foreign LMR specialists) were a loss of flow without scram and a loss of heat sink without scram, both from 100% initial power. In these tests, inherent feedback shut the reactor down without damage to the fuel or other reactor components. This resulted primarily from advantageous characteristics of the metal driver fuel used in EBR-II. Work is currently underway at EBR-II to develop a control strategy that promotes inherent safety characteristics, including survivability of transient overpower accidents. In parallel, work is underway at EBR-II on the development of state-of-the-art plant diagnostic techniques

  8. Preliminary evaluation of licensing issues associated with U.S.-sited CANDU-PHW nuclear power plants

    International Nuclear Information System (INIS)

    van Erp, J.B.

    1977-12-01

    The principal safety-related characteristics of current CANDU-PHW power plants are described, and a distinction between those characteristics which are intrinsic to the CANDU-PHW system and those that are not is presented. An outline is given of the main features of the Canadian safety and licensing approach. Differences between the U.S. and Canadian approach to safety and licensing are discussed. Some of the main results of the safety analyses, routinely performed for CANDU-PHW reactors, are presented. U.S.-NRC General Design Criteria are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to its conformance to the U.S.-NRC General Design Criteria. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S

  9. Preliminary evaluation of licensing issues associated with U. S. -sited CANDU-PHW nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    van Erp, J B

    1977-12-01

    The principal safety-related characteristics of current CANDU-PHW power plants are described, and a distinction between those characteristics which are intrinsic to the CANDU-PHW system and those that are not is presented. An outline is given of the main features of the Canadian safety and licensing approach. Differences between the U.S. and Canadian approach to safety and licensing are discussed. Some of the main results of the safety analyses, routinely performed for CANDU-PHW reactors, are presented. U.S.-NRC General Design Criteria are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to its conformance to the U.S.-NRC General Design Criteria. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S.

  10. Nuclear relevant installations licensing methodology in the Argentine Republic

    International Nuclear Information System (INIS)

    Paganini, C.E.

    1986-01-01

    A review of the requeriments of the Nuclear Installations Advisory Committee on Licensing (CALIN) from the nuclear security point of view, is presented. The methodology applied by the CALIN for the licensing in the Argentine Republic is included as well as codes, standards of applications and the interaction between the licensing Authority and the Responsible Entity during the whole process. Finally, the Atucha II nuclear power plant's licensing, in construction at present, is explained and the standard, of the licensing schedule, is presented graphically. (author) [es

  11. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    International Nuclear Information System (INIS)

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses

  12. Licensing of nuclear and radioactive installations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1987-01-01

    In Peru, the Regulation for Ionizing Radiation Sources is applied, which establishes the norms and procedures to follow in the nuclear and radioactive installations of the country in order to assure their correct operation as concerns to the nuclear safety and radiological protection, allowing the emission of the respective licenses. As for the nuclear facilities, this authorization includes the Previous License, the Construction License and the Operation License (provisional and definitive) and for radioactive facilities and equipment generating ionizing radiations: the Construction License and the Operation License. The personnel also require a license that can be an operator license (as for nuclear reactors) or a supervisor license (for nuclear and radioactive facilities). In spite of the above mentioned regulation and its long enforcement period, less than 10% of radioactive facilities in this country are licensed, due to different problems which will be solved in the medium term. (Author)

  13. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  14. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455). Supplement No. 7

    International Nuclear Information System (INIS)

    1986-11-01

    Supplement No. 7 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power operation for Unit 2

  15. Fast reactor safety: proceedings of the international topical meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1985-07-01

    The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 1 include: impact of safety and licensing considerations on fast reactor design; safety aspects of innovative designs; intra-subassembly behavior; operational safety; design accommodation of seismic and other external events; natural circulation; safety design concepts; safety implications derived from operational plant data; decay heat removal; and assessment of HCDA consequences.

  16. Fast reactor safety: proceedings of the international topical meeting. Volume 1

    International Nuclear Information System (INIS)

    1985-07-01

    The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 1 include: impact of safety and licensing considerations on fast reactor design; safety aspects of innovative designs; intra-subassembly behavior; operational safety; design accommodation of seismic and other external events; natural circulation; safety design concepts; safety implications derived from operational plant data; decay heat removal; and assessment of HCDA consequences

  17. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 8

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement 8 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team of the US Nuclear Regulatory Commission. This Supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations relating to civil and structural and miscellaneous issues regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during recent Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  18. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island Design (Docket No. 50-447). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 3 to the Safety Evaluation Report (SER) for the application filed by General Electric Company for the final design approval for the GE BWR/6 nuclear island design has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report supplements the GESSAR II SER (NUREG-0979), issued in April 1983, summarizing the results of the staff's safety review of the GESSAR II BWR/6 nuclear island design. Subject to favorable resolution of the items discussed in this supplement, the staff concludes that the GESSAR II design satisfactorily addresses the severe-accident concerns described in draft NUREG-1070

  19. Status of the FRM-II project

    International Nuclear Information System (INIS)

    Boening, K.

    1994-01-01

    The new research reactor FRM-II at Garching near Munich is planned to become a high performance source of slow neutrons in Germany. Its design concept provides for a very compact reactor core cooled by light water and placed within a heavy water moderator tank, where a high thermal neutron flux will be obtained at only 20 MW power. - This paper begins with an overview over some of the essential design features and some more recent design modifications. It then reports on the status of the project, the most important event being a positive decision which the Bavarian State Government has made in January 1993 and which represented a green light for the project to enter the next project phase. Consequently, two official requests have been made by the Technical University of Munich, one for the nuclear licensing of the facility and the other for the so called 'Raumordnungsverfahren'. In this context the final version of the FRM-II safety report has been submitted to the nuclear licensing authority. (author)

  20. Considerations for advanced reactor design based on EBR-II experience

    International Nuclear Information System (INIS)

    King, R. W.

    1999-01-01

    The long-term success of the Experimental Breeder Reactor-II (EBR-II) provides several insights into fundamental characteristics and design features of a nuclear generating station that enhance safety, operability, and maintainability. Some of these same characteristics, together with other features, offer the potential for operational lifetimes well beyond the current licensing time frame, and improved reliability that could potentially reduce amortized capital costs as well as overall operation and maintenance costs if incorporated into advanced plant designs. These features and characteristics are described and the associated benefits are discussed

  1. Safety evaluation report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323). Supplement No. 25

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 25 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plants, Unit 1 and Unit 2 (Docket Nos. 50-275 and 50-323) has been prepared by the Office of Nuclear Reactor Regulation (NRR) of the US Nuclear Regulatory Commission. This supplement reports on the staff's inspection and evaluation efforts on the matter of piping and piping supports as related to the seven technical license conditions in an Order Modifying License issued by NRR on April 18, 1984

  2. Licensing and advanced fuel designs

    International Nuclear Information System (INIS)

    Davidson, S.L.; Novendstern, E.H.

    1991-01-01

    For the past 15 years, Westinghouse has been actively involved in the development and licensing of fuel designs that contain major advanced features. These designs include the optimized fuel assembly, The VANTAGE 5 fuel assembly, the VANTAGE 5H, and most recently the VANTAGE+ fuel assembly. Each of these designs was supported by extensive experimental data, safety evaluations, and design efforts and required intensive interaction with the US Nuclear Regulatory Commission (NRC) during the review and approval process. This paper presents a description of the licensing approach and how it was utilized by the utilities to facilitate the licensing applications of the advanced fuel designs for their plants. The licensing approach described in this paper has been successfully applied to four major advanced fuel design changes ∼40 plant-specific applications, and >350 cycle-specific reloads in the past 15 years

  3. Safety Evaluation Report, related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1983-11-01

    Supplement No. 3 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  4. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-05-01

    Supplement No. 4 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  5. Safety evaluation report related to the operation of Byron Station, Units 1 and 2. Docket Nos. STN 50-454 and STN 50-455

    International Nuclear Information System (INIS)

    1983-01-01

    Supplement No. 2 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  6. The probabilistic approach and the deterministic licensing procedure

    International Nuclear Information System (INIS)

    Fabian, H.; Feigel, A.; Gremm, O.

    1984-01-01

    If safety goals are given, the creativity of the engineers is necessary to transform the goals into actual safety measures. That is, safety goals are not sufficient for the derivation of a safety concept; the licensing process asks ''What does a safe plant look like.'' The answer connot be given by a probabilistic procedure, but need definite deterministic statements; the conclusion is, that the licensing process needs a deterministic approach. The probabilistic approach should be used in a complementary role in cases where deterministic criteria are not complete, not detailed enough or not consistent and additional arguments for decision making in connection with the adequacy of a specific measure are necessary. But also in these cases the probabilistic answer has to be transformed into a clear deterministic statement. (orig.)

  7. 75 FR 32983 - Commercial Driver's License (CDL) Standards: Exemption

    Science.gov (United States)

    2010-06-10

    ...-28480] Commercial Driver's License (CDL) Standards: Exemption AGENCY: Federal Motor Carrier Safety... commercial driver's license (CDL) as required by current regulations. FMCSA reviewed NAAA's application for... demonstrate alternatives its members would employ to ensure that their commercial motor vehicle (CMV) drivers...

  8. NRC licensing requirements: DOD options

    International Nuclear Information System (INIS)

    Pike, W.J.; O'Reilly, P.D.

    1982-09-01

    This report describes the licensing process (both safety and environmental) that would apply if the Department of Defense (DOD) chooses to obtain licenses from the US Nuclear Regulatory Commission (NRC) for using nuclear energy for power and luminous sources. The specific nuclear energy sources being considered include: small or medium-size nuclear power reactors; radioisotopic thermoelectric generators with 90 Sr or 238 Pu; radioisotopic dynamic electric generators with 90 Sr or 238 Pu; and applications of radioisotopes for luminous sources (lights) with 3 H, 85 Kr, or 147 Pm. The steps of the licensing process are summarized in the following sections, with particular attention given to the schedule and level of effort necessary to support the process

  9. 200-ZP-1 phase II and III IRM groundwater pump and treat site safety plan

    International Nuclear Information System (INIS)

    St. John, C.H.

    1996-07-01

    This safety plan covers operations, maintenance, and support activities related to the 200-ZP-1 Phase II and III Ground Water Pump- and-Treat Facility. The purpose of the facility is to extract carbon tetrachloride contaminated groundwater underlying the ZP-1 Operable Unit; separate the contaminant from the groundwater; and reintroduce the treated water to the aquifer. An air stripping methodology is employed to convert volatile organics to a vapor phase for absorption onto granular activated carbon. The automated process incorporates a variety of process and safety features that shut down the process system in the event that process or safety parameters are exceeded or compromised

  10. A Report on the Survey of Public Relations Division/AEJ Members on Licensing Public Relations Practitioners.

    Science.gov (United States)

    Tennant, Frank A.

    The licensing of public relations practitioners by government has long been controversial. A survey was conducted of members of the public relations division of the Association for Education in Journalism under the auspices of the division's committee on professional freedom and responsibility. One-hundred and sixty-one questionnaires were mailed…

  11. Advanced CANDU reactor pre-licensing progress

    International Nuclear Information System (INIS)

    Popov, N.K.; West, J.; Snell, V.G.; Ion, R.; Archinoff, G.; Xu, C.

    2005-01-01

    The Advanced CANDU Reactor (ACR) is an evolutionary advancement of the current CANDU 6 reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The Canadian Nuclear Safety Commission (CNSC) staff are currently reviewing the ACR design to determine whether, in their opinion, there are any fundamental barriers that would prevent the licensing of the design in Canada. This CNSC licensability review will not constitute a licence, but is expected to reduce regulatory risk. The CNSC pre-licensing review started in September 2003, and was focused on identifying topics and issues for ACR-700 that will require a more detailed review. CNSC staff reviewed about 120 reports, and issued to AECL 65 packages of questions and comments. Currently CNSC staff is reviewing AECL responses to all packages of comments. AECL has recently refocused the design efforts to the ACR-1000, which is a larger version of the ACR design. During the remainder of the pre-licensing review, the CNSC review will be focused on the ACR-1000. AECL Technologies Inc. (AECLT), a wholly-owned US subsidiary of AECL, is engaged in a pre-application process for the ACR-700 with the US Nuclear Regulatory Commission (USNRC) to identify and resolve major issues prior to entering a formal process to obtain standard design certification. To date, the USNRC has produced a Pre-Application Safety Assessment Report (PASAR), which contains their reviews of key focus topics. During the remainder of the pre-application phase, AECLT will address the issues identified in the PASAR. Pursuant to the bilateral agreement between AECL and the Chinese nuclear regulator, the National Nuclear Safety Administration (NNSA) and its Nuclear Safety Center (NSC), NNSA/NSC are reviewing the ACR in seven focus areas. The review started in September 2004, and will take three years. The main objective of the review is to determine how the ACR complies

  12. Technical findings and regulatory analysis for Generic Safety Issue II.E.4.3, ''Containment Integrity Check''

    International Nuclear Information System (INIS)

    Serkiz, A.W.

    1988-04-01

    This report contains the technical findings and regulatory analysis for Generic Safety Issue II.E.4.3, ''Containment Integrity Check.'' An evaluation of the containment isolation history from 1965 to 1983 reveals that (except for a small number of events) containment integrity has been maintained and that the majority of reported events have been events related to exceeding Technical Specification limits (or 0.6 of the allowable leakage level). In addition, more recent risk analyses have shown that allowable leakage rates even if increased by a factor of 10 would not significantly increase risk. Potential methods of continuous monitoring are identified and evaluated. Therefore, these technical findings and risk evaluations support closure of Generic Safety Issue II.E.4.3

  13. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  14. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces

  15. The United States nuclear regulatory commission license renewal process

    International Nuclear Information System (INIS)

    Holian, B.E.

    2009-01-01

    The United States (U.S.) Nuclear Regulatory Commission (NRC) license renewal process establishes the technical and administrative requirements for the renewal of operating power plant licenses. Reactor ope-rating licenses were originally issued for 40 years and are allowed to be renewed. The review process for license renewal applications (L.R.A.) provides continued assurance that the level of safety provided by an applicant's current licensing basis is maintained for the period of extended operation. The license renewal review focuses on passive, long-lived structures and components of the plant that are subject to the effects of aging. The applicant must demonstrate that programs are in place to manage those aging effects. The review also verifies that analyses based on the current operating term have been evaluated and shown to be valid for the period of extended operation. The NRC has renewed the licenses for 52 reactors at 30 plant sites. Each applicant requested, and was granted, an extension of 20 years. Applications to renew the licenses of 20 additional reactors at 13 plant sites are under review. As license renewal is voluntary, the decision to seek license renewal and the timing of the application is made by the licensee. However, the NRC expects that, over time, essentially all U.S. operating reactors will request license renewal. In 2009, the U.S. has 4 plants that enter their 41. year of ope-ration. The U.S. Nuclear Industry has expressed interest in 'life beyond 60', that is, requesting approval of a second renewal period. U.S. regulations allow for subsequent license renewals. The NRC is working with the U.S. Department of Energy (DOE) on research related to light water reactor sustainability. (author)

  16. Recent developments in Canadian nuclear power plant licensing practices

    International Nuclear Information System (INIS)

    Marchildon, P.

    1985-06-01

    This paper examines the dominant factors which have influenced the safety evaluation and licensing process of current 600 MW reactors. It describes possible modifications to the process which are being considered for the licensing of a second 600 MW reactor at Point Lepreau. The key element is a firm licensing agreement covering the entire licensing cycle, to be established between the proponent and the AECB before a construction licence is issued. Progress accomplished to date in reaching such an agreement is described

  17. Nuclear power plant licensing in Canada

    International Nuclear Information System (INIS)

    Tong, J.S.C.; Waddington, J.G.

    1997-01-01

    The Canadian nuclear power plant licensing practice which has evolved over three decades provides a regulatory framework that promotes safe design and operation of CANDU power plants. From the very outset, it recognizes the need for simple and reliable safety systems which are separate from the systems that are normally used to produce electricity. Further, it requires the reliability of safety systems be demonstrated by routine tests during plant operation. Over the three decades, the analysis requirements to demonstrate the performance and reliability of plant systems that have a role in the detection and mitigating of accidents have also evolved. Today's requirements are defined in consultative documents C-6 and C-98. One recurring theme throughout the evolution of the licensing practice is the maxim of prescribing only basic safety requirements and rules so that designers and operators have the freedom to devise the best possible design features and operating practices

  18. 77 FR 2600 - Revocation of License of Small Business Investment Company

    Science.gov (United States)

    2012-01-18

    ... SMALL BUSINESS ADMINISTRATION Revocation of License of Small Business Investment Company Pursuant... Limited Partnership, to function as a small business investment company under the Small Business Investment Company License No. 09790431 issued to AltoTech II, L.P. on December 04, 2000 and said license is...

  19. Computerized reactor protection and safety related systems in nuclear power plants. Proceedings of a specialists' meeting. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Though the majority of existing control and protection systems in nuclear power plants use old analogue technology and design philosophy, the use of computers in safety and safety related systems is becoming a current practice. The Specialists Meeting on ''Computerized Reactor Protection and Safety Related Systems in Nuclear Power Plants'' was organized by IAEA (jointly by the Division of Nuclear Power and the Fuel Cycle and the Division of Nuclear Installation Safety), in co-operation with Paks Nuclear Power Plant in Hungary and was held from 27-29 October 1997 in Budapest, Hungary. The meeting focused on computerized safety systems under refurbishment, software reliability issues, licensing experiences and experiences in implemented computerized safety and safety related systems. Within a meeting programme a technical visit to Paks NPP was organized. The objective of the meeting was to provide an international forum for the presentation and discussion on R and D, in-plant experiences in I and C important to safety, backfits and arguments for and reservations against the digital safety systems. The meeting was attended by 70 participants from 16 countries representing NPPs and utility organizations, design/engineering, research and development, and regulatory organizations. In the course of 4 sessions 25 technical presentations were made. The present volume contains the papers presented by national delegates and the conclusions drawn from the final general discussion

  20. Safety Evaluation Report related to the operation of Fermi-2 (Docket No. 50-341). Supplement No. 6

    International Nuclear Information System (INIS)

    1985-07-01

    Supplement No. 6 to the Safety Evaluation Report (SER) related to the operation of the Fermi-2 facility, provides the NRC staff's evaluation of additional information submitted by the licensee regarding outstanding review issues identified in Supplement No. 5 to the SER dated March 1985 and also contains the staff's evaluation of the Independent Design Verification Program. Supplement No. 6 to the SER also summarizes the conditions which are placed in the Fermi-2 full-power operating license, NPF-43, and evaluates recent proposed changes to the Fermi-2 Technical Specifications. This supplement presents the staff's conclusion that there are no outstanding issues which must be resolved prior to issuance of a full power operating license for the Fermi-2 facility

  1. Safety evaluation report related to the operation of Sequoyah Nuclear Plant, Units 1 and 2, Docket Nos. 50-327 and 50-328, Tennessee Valley Authority. Supplement No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-08-01

    The purpose of this supplement is to further update the Safety Evaluation Report by providing (1) our evaluation of additional information submitted by the licensee since the issuance of Supplement No. 1 to the Safety Evaluation Report, (2) our evaluation and status of the Non-TMI-2 outstanding issues identified in Part I of SER Supplement No. 1, (3) our evaluation of TMI-2 requirements which must be completed prior to the issuance of a full-power operating license, (4) our evaluation of dated requirements which the licensee must implement by the dates identified in NUREG-0694, TMI-Related Requirements for New Operating Licenses, and (5) our evaluation of additional information for those sections of the Safety Evaluation Report where further discussion or changes are in order.

  2. Safety evaluation report related to the operation of Sequoyah Nuclear Plant, Units 1 and 2, Docket Nos. 50-327 and 50-328, Tennessee Valley Authority. Supplement No. 2

    International Nuclear Information System (INIS)

    1980-08-01

    The purpose of this supplement is to further update the Safety Evaluation Report by providing (1) our evaluation of additional information submitted by the licensee since the issuance of Supplement No. 1 to the Safety Evaluation Report, (2) our evaluation and status of the Non-TMI-2 outstanding issues identified in Part I of SER Supplement No. 1, (3) our evaluation of TMI-2 requirements which must be completed prior to the issuance of a full-power operating license, (4) our evaluation of dated requirements which the licensee must implement by the dates identified in NUREG-0694, TMI-Related Requirements for New Operating Licenses, and (5) our evaluation of additional information for those sections of the Safety Evaluation Report where further discussion or changes are in order

  3. Safety and toxicological evaluation of a novel, water-soluble undenatured type II collagen.

    Science.gov (United States)

    Yoshinari, Orie; Marone, Palma Ann; Moriyama, Hiroyoshi; Bagchi, Manashi; Shiojima, Yoshiaki

    2013-09-01

    This study was conducted to determine the broad-spectrum safety of a novel, water-soluble undenatured type II collagen (NEXT-II) derived from chicken sternum cartilage. The presence of epitope in NEXT-II was confirmed by using a commercial kit. The acute oral LD₅₀ of NEXT-II was found to be greater than 5000 mg/kg bw in rats, while the single-dose acute dermal LD₅₀ was greater than 2000 mg/kg bw. The primary dermal irritation index (PDII) of NEXT-II was found to be 1.8 and classified as slightly irritating to the skin. In primary eye irritation studies, the maximum mean total score (MMTS) of NEXT-II was observed to be 7.3 and classified as minimally irritating to the eye. Long-term safety studies were conducted in dogs over a period of 150 d, and no significant changes were observed in body weight, heart rate, respiration rate and blood chemistry. NEXT-II does not induce mutagenicity in the bacterial reverse mutation test in five Salmonella typhimurium strains either with or without metabolic activation. Furthermore, two experiments were conducted to assess the potential of NEXT-II to induce mutations with and without metabolic activation at the mouse lymphoma thymidine kinase locus using the cell line L5178Y. No biologically relevant increase of mutants was observed. Also, no dose-dependent toxicity was observed. Furthermore, colony sizing showed no clastogenic effects induced by NEXT-II under the experimental conditions. These studies demonstrated the broad spectrum of safety of NEXT-II.

  4. Aspects of the licensing procedures for enrichment reduction in research reactors

    International Nuclear Information System (INIS)

    Krull, W.

    1983-01-01

    The enrichment reduction for research reactors requires a licensing procedure. For this purpose the qualification of the new fuel has to be demonstrated and changes in reactor safety have to be investigated like reactivity values, form-factors, Pu- and fission product inventory, safety margins and accidents. Calculations should be partly experimentally verified. The possible extent of the licensing procedure is discussed. (orig.) [de

  5. Generic licensing issues applicable to Wolsong 3 and 4 licensing review

    International Nuclear Information System (INIS)

    Boyd, Frederick C.

    1994-01-01

    The Wolsong 3 and 4 nuclear power plants are of CANDU type which were designed according to the rules and regulations of the Atomic Energy Control Board (AECB) of Canada. In 1992 AECB staff issued a first formal report (to the AECB Board) on 'generic safety issues affecting power reactors'. This was followed by a second report in 1993. These reports dealt with safety issues associated with Canadian CANDU nuclear power plants that applied to all or several plants and were considered insufficiently resolved. In most cases the concern was lack of certainty in the related safety analyses. The AECB staff report of 1993 identified eight 'generic action items' and six 'long-term research issues', three of which AECB staff have indicated may be moved into the 'action' category. This report, prepared for the Korea Institute of Nuclear Safety (KINS), reviews the background of the AECB 'generic action items' and the three 'long-term research issues' noted above. It also reviews an additional topic - steam line failure outside of containment - which was included in the request from KINS. In all, twelve issues are covered. These background reviews are followed by a discussion of the relevance of each issue to the licensing review (for Construction Permit) of Wolsong 3 and 4 and recommended actions to be taken by KINS

  6. 14 CFR 415.117 - Ground safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ground safety. 415.117 Section 415.117... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.117 Ground safety. (a) General. An applicant's safety review...

  7. 14 CFR 415.115 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 415.115 Section 415.115... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's...

  8. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  9. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R E

    1985-07-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  10. Safety philosophy and licensing practice in different member states of IAEA: Spain

    International Nuclear Information System (INIS)

    Alonso, A.

    1981-01-01

    With the aim of presenting the licensing experience in Spain, the countries with nuclear activities are divided into three main groups: exporters, qualified importers and importers, being Spain in the second group. The licensing problems, and therefore the licensing experience, are different in the different groups of countries. Moreover, the experience in Spain is enriched by the following facts: an early start, a substantial program and a diversity of types, pressurized and boiling water reactors, and suppliers, American and German plants. Reference is made to the basic legal documents governing licensing in Spain, together with the difficulties in adopting and applying detailed regulations. Within this framework, the licensing experience in Spain is described with reference to the reference plant concept, later enlarged to include the reference-site reference plant concept, ending in the most practical approach of the reference problem concept. Finally specific licensing problems are introduced with reference to the Spanish operating nuclear power plants, the ones under commissioning and in an advanced state of construction and the ones just staring construction. (orig./RW)

  11. Safety assurance for nuclear chemical plants - regulatory practice in the UK

    International Nuclear Information System (INIS)

    Driscoll, J.; Charlesworth, F.

    1983-01-01

    This paper describes the legislation and licensing requirements for nuclear installations as well as the related safety assurance procedures in the UK. Developments in safety assurance practice are identified and discussed in relation to the role of the regulator and of the operator. (NEA) [fr

  12. Globalization in the pharmaceutical industry, Part II.

    Science.gov (United States)

    Casadio Tarabusi, C; Vickery, G

    1998-01-01

    This is the second of a two-part report on the pharmaceutical industry. Part II begins with a discussion of foreign direct investment and inter-firm networks, which covers international mergers, acquisitions, and minority participation; market shares of foreign-controlled firms; international collaboration agreements (with a special note on agreements in biotechnology); and licensing agreements. The final section of the report covers governmental policies on health and safety regulation, price regulation, industry and technology, trade, foreign investment, protection of intellectual property, and competition.

  13. BWR containments license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Smith, S.; Gregor, F.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures, and components, in the license renewal technical Industry Reports (IR's). License renewal applicants may choose to reference these IR's in support of their plant-specific license renewal applications as an equivalent to the integrated plant assessment provisions of the license renewal rule (IOCFR54). The scope of the IR provides the technical basis for license renewal for U.S. Boiling Water Reactor (BWR) containments. The scope of the report includes containments constructed of reinforced or prestressed concrete with steel liners and freestanding stell containments. Those domestic BWR containments designated as Mark I, Mark II or Mark III are covered, but no containments are addressed before these designs. The report includes those items within the jurisdictional boundaries for metal and concrete containments defined by Section III of the ASME Boiler and Pressure Vessel Code, Division 1, Subsection NE (Class MC) and Division 2 (Class CC) and their supports, but excluding snubbers

  14. Reactor licensing process: a status report

    International Nuclear Information System (INIS)

    Long, J.A.

    1977-01-01

    The Nuclear Regulatory Commission (NRC), in its review of applications for licenses to construct and operate nuclear power plants, is required to consider those measures necessary to ensure the protection of the health and safety of the public and the environment. The article discusses the NRC staff procedures and policies for conducting the detailed safety, environmental, and antitrust reviews that provide the basis for these assurances. Included is a discussion of the improvements to the licensing process currently being proposed or implemented to enhance its stability and predictability for the benefit of all involved with the regulation of nuclear power. The views and opinions expressed in the article are those of the author alone and do not represent positions of the NRC

  15. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    Powers, J.; Ogura, C.; Arai, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  16. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  17. Licensing evaluation of CANDU-PHW nuclear power plants relative to U.S. regulatory requirements

    International Nuclear Information System (INIS)

    Erp, J.B. van

    1978-01-01

    Differences between the U.S. and Canadian approach to safety and licensing are discussed. U.S. regulatory requirements are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to current Regulatory Requirements and Guides. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S. These modifications are proposed solely for the purpose of maintaining consistency within the current U.S. regulatory system and not out of a need to improve the safety of current-design CANDU-PHW nuclear power plants. A number of issues are identified which still require resolution. Most of these issues are concerned with design areas not (yet) covered by the ASME code. (author)

  18. A qualified safety I and C for application in reactors of all kinds

    International Nuclear Information System (INIS)

    Stimler, M.

    2001-01-01

    for instrumentation and control systems in U.S. nuclear poer plants. Approval by the NRC reflects the results of a detailed technical and regulatory review, following which the NRC Staff concluded, '...the design of the TXS system is acceptable for all safety-related I and C applications and meets the relevant regulatory requirements.' By now more than 20 modernisation projects of Safety I and C have successfully been completed in most of the European countries that operate nuclear power plants and also in China and the USA projects are underway. It is remarkable, that in Germany, after first applications in safety related systems in nuclear power plants, the decision was made, to install TELEPERM XS in the research reactor FRM-II as protection system. The licensing process followed very much the guidelines of power reactors and was so far successful. The equipment has undergone a rigid test program in the test field and is ready for the startup tests at site. The presentation focuses on the special licensing process and explains why it was a good decision to utilize a system proven in commercial power reactors in a research reactor

  19. Department of Energy licensing strategy

    International Nuclear Information System (INIS)

    Frei, M.W.

    1984-01-01

    The Department of Energy (DOE) is authorized by the Nuclear Waste Policy Act of 1982 (Act) to site, design, construct, and operate mined geologic repositories for high-level radioactive wastes and is required to obtain licenses from the Nuclear Regulatory Commission (NRC) to achieve that mandate. To this end the DOE has developed a licensing approach which defines program strategies and which will facilitate and ease the licensing process. This paper will discuss the regulatory framework within which the repository program is conducted, the DOE licensing strategy, and the interactions between DOE and NRC in implementing the strategy. A licensing strategy is made necessary by the unique technical nature of the repository. Such a facility has never before been licensed; furthermore, the duration of isolation of waste demanded by the proposed EPA standard will require a degree of reliance on probabilistic performance assessment as proof of compliance that is a first of a kind for any industry. The licensing strategy is also made necessary by the complex interrelationships among the many involved governmental agencies and even within DOE itself, and because these relationships will change with time. Program activities which recognize these relationships are essential for implementing the Act. The guiding principle in this strategy is an overriding commitment to safeguarding public health and safety and to protecting the environment

  20. Review on conformance of JMTR reactor facility to safety design examination guides for water-cooled reactors for test and research

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Naka, Michihiro; Sakuta, Yoshiyuki; Hori, Naohiko; Matsui, Yoshinori; Miyazawa, Masataka

    2009-03-01

    The safety design examination guides for water-cooled reactors for test and research are formulated as fundamental judgements on the basic design validity for licensing from a viewpoint of the safety. Taking the refurbishment opportunity of the JMTR, the conformance of the JMTR reactor facility to current safety design examination guides was reviewed with licensing documents, annexes and related documents. As a result, it was found that licensing documents fully satisfied the requirements of the current guides. Moreover, it was found that the JMTR reactor facility itself also satisfied the guides requirements as well as the safety performance, since the facility with safety function such as structure, systems, devices had been installed based on the licensing documents under the permission by the regulation authority. Important devices for safety have been produced under authorization of regulating authority. Therefore, it was confirmed that the licensing was conformed to guides, and that the JMTR has enough performance. (author)

  1. Safety design of SNR-300

    International Nuclear Information System (INIS)

    Traube, K.

    1976-01-01

    The joint German-Belgian-Dutch loop-type 300 MW(e) LMFBR prototype is being constructed at Kalkar on the lower Rhine in Germany. Among the many arguments put forward in defense of SNR-300, that of acquiring licensing exprience has proven to be of major importance to the international breeder scene. The severity of the licensing procedures and of the safety standards imposed are unique in several respects, including timing: generally growing scepticism towards nuclear power increased severity of the licensing practice; organizational features: the procedure and criteria developed for commercial light water reactors have been applied without exemptions. This relates to the commercial-type contract under which SNR-300 is being built for private utilities by a private company; and German nuclear safety standards, known worldwide to be most stringent. The following three important areas are discussed in which SNR-300 decidedly deviates from its forerunners: protection against the hypothetical core disruptive accident (HCDA), protection against external events, and provisions for in-service inspection

  2. Motorcycle Training for California Driver Licensing Personnel. Final Report.

    Science.gov (United States)

    California State Dept. of Motor Vehicles, Sacramento.

    The development of a 6-hour motorcycle course of instruction for personnel responsible for motorcycle licensing is described in this project report. The primary goals are stated and include (1) training driver licensing personnel in motorcycle safety and principles of operation, and (2) purchasing and installing appropriate motorcycle skill…

  3. Criteria adopted by the Argentine Nuclear Regulatory Authority for assessing digital systems related to safety

    International Nuclear Information System (INIS)

    Terrado, Carlos A.; Chiossi, Carlos E.; Felizia, Eduardo R.; Roca, Jose L.; Sajaroff, Pedro M.

    2004-01-01

    Following the technological evolution in Instrumentation and Control (I and C) design, analog components are replaced by digital in almost every industry. Due to growing challenges of obsolescence and increasing maintenance costs, licensees of nuclear and radioactive installations are increasingly upgrading or replacing their existing I and C analog systems and components. In existing installations, this involves analog to digital replacements. In new installations design, the use of digital I and C systems is being considered from the very beginning, becoming a good alternative, even in safety applications. Up to now, in Argentina, there is no specific rules for safety-related digital systems, every safety system, analog or digital, must comply with the same generic regulations. The Nuclear Regulatory Authority is now developing criteria to assess digital systems related to safety in nuclear and radioactive installations. In this paper some of those criteria, based on local research and the recognized state of the art, are explained. From a regulatory point of view, the use of digital technology often raises new technical and licensing issues, particularly for safety-related applications. Examples include new failure modes, the potential for common-cause failure of redundant components, electromagnetic interference (EMI), software verification and validation, configuration management and a more exhaustive quality assurance system. The mentioned criteria comprehend the design, operation, maintenance and acquisition of digital systems and components important to safety. The main topics covered are: requirements specifications for digital systems, planning and documentation for digital system development, effectiveness of a digital system, commercial off the shelf (COTS) treatment and considerations involving tools for software development. (author)

  4. ACR: Licensing and design readiness

    International Nuclear Information System (INIS)

    Alizadeh, A.

    2009-01-01

    Full text The Canadian nuclear technology has a long history dating back to the 1940s. In this regard, Canada is in a unique situation, shared only by a very few countries, where original nuclear power technology has been invented and further developed. Canadian Nuclear Safety Commission (CNSC), then called AECB, was established in 1946. CNSC focuses on nuclear security, nuclear safety, establishing health and safety regulations, and has also played an instrumental role in the formation of the IAEA. CNSC has provided assistance to the establishment of regulatory authorities in AECL's client countries such as Korea, Argentina, China and Romania. AECL has developed the Gen III+ ACR 1000 as evolutionary advancement of the current CANDU 6 reactor. ACR-1000 has evolved from AECL's in depth experience with CANDU systems, components, and materials, as well as the feedback received from owners and operators of CANDU plants. The ACR-1000 design retains the proven strengths and features of CANDU reactors, while incorporating innovations and state-of-the-art technology. It also features major improvements in economics, inherent safety characteristics, and performance. ACR-1000 has completed its Basic Engineering, has advanced in the licensing process in Canada, and is ready for deployment in Canadian and world markets. EC6 is an evolution of CANDU 6 and is a Gen III natural uranium fuelled reactor. Its medium size and potential for fuel localization and advanced fuel cycles is an optimal strategic solution in many markets.AECL's reactor products are shown to be compliant with a variety of licensing and regulatory requirements. These include the new CNSC DRD-337, IAEA NS-R1, and EUR. This allows the countries interested in CANDU reactor products to be confident of its licensing in their own regulatory regimes.

  5. Immunogenicity and Safety of an Inactivated Quadrivalent Influenza Vaccine in US Children 6-35 Months of Age During 2013-2014: Results From A Phase II Randomized Trial.

    Science.gov (United States)

    Wang, Long; Chandrasekaran, Vijayalakshmi; Domachowske, Joseph B; Li, Ping; Innis, Bruce L; Jain, Varsha K

    2016-06-01

    Viruses from 2 influenza B lineages co-circulate, leading to suboptimal protection with trivalent influenza vaccines (TIV). Quadrivalent influenza vaccines (QIV) containing both lineages offer broader protection. We compared inactivated seasonal QIV versus TIV (15 and 7.5 μg hemagglutinin [HA] for each influenza strain, respectively) in a phase II randomized (1 : 1), observer-blind trial in US children 6-35 months of age (identifier NCT01974895). The primary objective was to evaluate immune responses induced by QIV for the 4 vaccine strains 28 days after completion of vaccination. A secondary objective was to demonstrate superiority of QIV versus TIV for the B/Victoria strain contained in QIV but not TIV. Immunogenicity was evaluated in the per-protocol cohort (N = 280), and safety was evaluated in the intent-to-treat cohort (N = 314). Seroconversion rates (SCRs) for QIV were 80.4% (95% confidence interval [CI], 73.0%-86.6%), 72.0% (95% CI, 63.9%-79.2%), 86.0% (95% CI, 79.2%-91.2%), and 66.4% (95% CI, 58.1%-74.1%) for A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, respectively. Quadrivalent influenza vaccines demonstrated immunogenic superiority over TIV for B/Victoria with a geometric mean titer ratio of 4.73 (95% CI, 3.73%-5.99%) and SCR difference of 54.02% (95% CI, 43.88%-62.87%). Safety was similar between the vaccine groups despite the QIV's higher antigen content. No serious adverse events were reported related to vaccination. Quadrivalent influenza vaccine (15 µg HA/strain) was immunogenic with an acceptable safety profile. The next phase of its development in children 6-35 months of age is a phase III trial in countries where it is not yet licensed. In countries where it is already licensed, a switch from TIV to QIV would provide broader protection in this vulnerable group. © The Author 2015. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society.

  6. 22 CFR 120.20 - License.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false License. 120.20 Section 120.20 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.20 License. License means a document bearing the word “license” issued by the Directorate of Defense Trade...

  7. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules

  8. Regulatory regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    Main elements of nuclear regulatory regime in general is presented. These elements are: national rules and safety regulations, system of nuclear facility licensing, activities of regulatory body. Regulatory body is needed to specify the national safety regulations, review and assess the safety documentation presented to support license application, make inspections to verify fulfilment of safety regulations and license conditions, monitor the quality of work processes of user organization, and to assess whether these processes provide a high safety level, promote high safety culture, promote maintenance and development of national infrastructure relevant to nuclear safety, etc

  9. 75 FR 37471 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Science.gov (United States)

    2010-06-29

    ... accordance with the Commission's ``Rules of Practice for Domestic Licensing Proceedings'' in 10 CFR Part 2... Specifications (TSs) to extend the allowed outage time (AOT) for the ``A'' and ``B'' emergency diesel generators... emergency diesel generators are safety related components which provide backup electrical power supply to...

  10. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  11. Safety philiosophies in technology-related law discussed for the example of atomic energy law

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1993-01-01

    In practice, legal ruling and its technical implementation stand isolated side by side. Taking the example of atomic energy law, the reasons for this situation and the significance of the deficit in the legal control of technology are examined. It is discussed how the controlling capacity of the law can be increased through the legal implementation of safety philosophies for technology. The paper deals with the problematic realtionship between technical and legal norms, with safety philosophies in the sense of mental approaches, safety concepts or safety postulates and their legal significance, and with the safety philosophy adhered to by the authorities and courts. The following learning processes in safety philosophy are described: new concepts of protection within the field of determinism, probabilistic safety concepts as well as concepts for the reduction of damage potential. Altogether it can be stated that the safety philosophy currently adhered to in Federal German licensing practice is not the only possible one; rather, that there are many different ways of conceptualizing, stipulating and checking technical safety. At least in the field of atomic energy law, this insight has a twofold significance: de lege lata there are several ways of operationalizing the licence requirements laid down in Article 7 of the Atomic Energy Law and the legally defined requirements for a licence withdrawal with the aid of technical licensing criteria. In all cases the legal wording is indeterminate and does not prescribe any specific safety philosophy. De lege ferenda it must be noted that amendments to the Atomic Energy Law entail a regularization of safety philosophy. This is a political necessity if the Atomic Energy Law is to be developed further and thus maintained as a modern security law. (orig.) [de

  12. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1993-02-01

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  13. 31 CFR 560.528 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft safety. 560.528 Section 560..., Authorizations and Statements of Licensing Policy § 560.528 Aircraft safety. Specific licenses may be issued on a... the safety of civil aviation and safe operation of U.S.-origin commercial passenger aircraft. ...

  14. Safety evaluation report related to the operation of WPPSS Nuclear Project No. 2, (Docket No. 50-397). Supplement No. 4

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by Washington Public Power Supply System for a license to operate the WPPSS Nuclear Project No. 2, located in Richland, Washington, has been prepared by the Division of Licensing, Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1, 2 and 3

  15. Poster — Thur Eve — 54: Radiotherapy and Non-Radiotherapy Safety Practices Beyond Licensing Expectations

    Energy Technology Data Exchange (ETDEWEB)

    Kosierb, Rick [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2014-08-15

    The Canadian Nuclear Safety Commission (CNSC) regulates the use of nuclear energy and materials to protect the health, safety and security of Canadians and the environment, and to implement Canada's international obligations on the peaceful use of nuclear energy. In order to perform this regulatory activity, the CNSC issue licences and has its staff perform inspections to verify conformity to the aspects of those licences. Within the CNSC, the Accelerators and Class II Facilities Division (ACFD) is responsible for the regulatory oversight of Class II Prescribed Equipment used in medical, academic, and industrial sectors in Canada. In performing inspections, ACFD has encountered licensees with practices that are either below, meet or exceed regulatory expectations in specific areas. Unfortunately, none of these practices are ever communicated to the broader Class II community to help other licensees avoid the same problem or achieve high standards. In this poster, ACFD will highlight safety practices that go beyond expectations. These practices are taken from observations during site inspections between 2007 and 2013 and will be presented in six areas: Procedures, Participation, Awareness, Equipment, Servicing and Software. Each area briefly discusses a number of practices that the CNSC feels went beyond the expectations dictated by the licence. Where possible, names are added of the contact people at the centres who can be reached for full details of their implementations. It is hoped that this communication will assist other licensees to achieve these same high levels of compliance and possibly go beyond.

  16. Recent progress in safety-related applications of reactor noise analysis

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Shinohara, Yoshikuni; Saito, Keiichi

    1982-01-01

    Recent progress in safety-related applications of reactor noise analysis is reviewed, mainly referring to various papers presented at the Third Specialists' Meeting on Reactor Noise (SMORN-III) held in Tokyo in 1981. Advances in application of autoregressive model, coherence analysis and pattern recognition technique are significant since SMORN-II in 1977. Development of reactor diagnosis systems based on noise analysis is in progress. Practical experiences in the safety-related applications to power plants are being accumulated. Advances in quantitative monitoring of vibration of internal structures in PWR and diagnosis of core stability and control system characteristics in BWR are notable. Acoustic methods are also improved to detect sodium boiling in LMFBR. The Reactor Noise Analysis Benchmark Test performed by Japan in connection with SMORN-III is successful so that it is possible to proceed to the second stage of the benchmark test. (author)

  17. Regulatory activities in reactor safety

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1987-01-01

    The safety phylosophy in designs and operation of nuclear power plants and, the steps for evaluating the safety and quality assurance, in the licensing procedure are described. The CNEN organization structure and the licensing procedure for nuclear power plants in Brazil are presented. (M.C.K.) [pt

  18. Safety goals and safety culture opening plenary. 2. Safety Regulation Implemented by Gosatomnadzor of Russia

    International Nuclear Information System (INIS)

    Gutsalov, A.T.; Bukrinsky, A.M.

    2001-01-01

    more strict than those recommended in the INSAG-3 and INSAG-12 reports, but they correlate with the value of negligible individual risk of 10 -6 , established in 'Radiation Safety Standards' (NRB-99) and consider still a high level of uncertainty in calculation of these probabilities. OPB- 88/97 also defines safety culture and principles of its formation and provision. Gosatomnadzor of Russia is a federal executive authority implementing state safety regulation in nuclear energy use. One of the main activities of Gosatomnadzor of Russia is nuclear and radiation safety regulation in sitting, design, construction, operation, and decommissioning of nuclear facilities. The activities include the following: 1. development and enactment of regulatory documents; 2. licensing of activities at nuclear facilities; 3. state supervision on observing the requirements of federal rules and regulations and license conditions. Gosatomnadzor of Russia strives toward solving the problems of consistent safety improvement of facilities and technologies up to the internationally accepted level, acting within the framework of the existing set of special safety rules and regulations in production and use of nuclear energy. Simultaneously, Gosatomnadzor of Russia develops proposals aimed at the improvement of legislative and regulatory bases of the Russian Federation as well as licensing and inspection procedures and implementing them. The main principles that Gosatomnadzor of Russia follows in its practical activities are openness, publicity, and cooperation with juridical and natural persons, whose activities are regulated with the purpose of achieving safety. This cooperation is accomplished in compliance with the principle of separation of responsibilities. According to this principle, the parties that are involved in activities related to the use of nuclear materials and nuclear energy on one hand, and in the state regulation of nuclear and radiation safety on the other hand, bear

  19. Integrated plant safety assessment: systematic evaluation program. Haddam Neck Plant, Connecticut Yankee Atomic Power Company. Docket No. 50-213

    International Nuclear Information System (INIS)

    1983-03-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Haddam Neck Plant, operated by Connecticut Yankee Atomic Power Company. The Haddam Neck Plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  20. Integrated plant safety assessment: Systematic Evaluation Program. LaCrosse Boiling Water Reactor, Dairyland Power Cooperative, Docket No. 50-409

    International Nuclear Information System (INIS)

    1983-04-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the La Crosse Boiling Water Reactor, operated by Dairyland Power Cooperative. The La Crosse plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addresed. Equipment and procedural changes have been identified as a result of the review

  1. Licensing of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    International Nuclear Information System (INIS)

    Ramirez, R.M.; Arrendondo, R.R.

    1990-01-01

    The TRIGA Mark III reactor at the Mexican Nuclear Centre went critical in 1968 and remained so until 1979 when the National Commission for Nuclear Safety and Safeguards (CNSNS), the Mexican regulatory authority, was set up. The reactor was therefore operating without a formal operating license, and the CNSNS accordingly requested the ININ to license the reactor under the existing conditions and to ensure that any modification of the original design complied with Standards ANSI/ANS-15 and with the code of practice set out in IAEA Safety Series No. 35. The most relevant points in granting the operating licence were: (a) the preparation of the Safety Report; (b) the formulation and application of the Quality Assurance Programme; (c) the reconditioning of the following reactor systems: the cooling systems; the ventilation and exhaust system; the monitoring system and control panel; (d) the training of the reactor operating staff at junior and senior levels; and (e) the formulation of procedures and instructions. Once the provisional operating license was obtained for the reactor it was considered necessary to modify the reactor core, which has been composed of 20% enriched standards fuel, to a mixed core based on a mixture of standard fuel and FLIP-type fuel with 70% 235 U enrichment. The CNSNS therefore requested that the mixed core be licensed and a technical report was accordingly annexed to the Safety Report, its contents including the following subjects: (a) neutron analysis of the proposed configuration; (b) reactor shutdown margins; (c) accident analysis; and (d) technical specifications. The licensing process was completed this year and we are now hoping to obtain the final operating license

  2. NRC safety research in support of regulation

    International Nuclear Information System (INIS)

    1994-06-01

    This report, the ninth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1993. A special emphasis on accomplishments in nuclear power plant aging research reflects recognition that number of plants are entering the final portion of their original 40-year operating licenses and that, in addition to current aging effects, a focus on safety considerations for license renewal becomes timely. The primary purpose of performing regulatory research is to develop and provide the Commission and its staff with sound technical bases for regulatory decisions on the safe operation of licensed nuclear reactors and facilities, to find unknown or unexpected safety problems, and to develop data and related information for the purpose of revising the Commission's rules, regulatory guides, or other guidance

  3. Regulations and the licensing process in Austria

    International Nuclear Information System (INIS)

    Matulla, Herbert U.

    1979-01-01

    A review of the licensing process which took place from 1971 to 1978 shows which laws, regulations and standards were used in checking the safety aspects of the nuclear power plant and which organisations participated in the licensing process. The internal organisation of the Austrian main-expert in the procedure is illustrated. Examples of detail-work are explained. The importance of intensive co-operation of the different technical groups and the problems of comparable examination depth are underlined. (author)

  4. Nuclear power plant diagnostics - Safety aspects and licensing. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the Technical Committee Meeting (TCM) was to review developed systems and methods in diagnostics in the scope of their impacts and importance to the safety of Nuclear Power Plants. Papers presented on TCM came from different sources, from developers, from manufacturers, from licensing authorities and from NPP personal. They reflect up to date status in the given subject. Participants of TCM formulated three working groups to elaborate different questions which were raised during the discussions. Their results are reflected in the three chapter titles of the given material. Annex 1 to this document contains presentations made at the Technical Committee Meeting. Refs, figs, tabs

  5. Licensing system for primary category radioactive installations

    International Nuclear Information System (INIS)

    Ramirez Riquelme, Angelica Beatriz

    1997-01-01

    The development of a licensing system for primary category radioactive installations is described, which aims to satisfy the needs of the Chilean Nuclear Energy Commission's Department of Nuclear and Radiological Safety, particularly the sections for Licensing Outside Radioactive Installations and Safety Control. This system involves the identification, control and inspection of the installations, their personnel and connected activities, for the purpose of protecting the population's health and the environment. Following the basic cycle methodology, a systems analysis and engineering stage was prepared, establishing the functions of the system's elements and defining the requirements, based on interviews with the users. This stage was followed by the design stage, focusing on the data structure, the software architecture and the procedural detail. The codification stage followed, which translated the design into legible machine-readable format. In the testing stage, the entries that were defined were proven to produce the expected data. Finally and operational and maintenance stage was developed, when the system was installed and put to use. All the above generated a useful system for the Licensing section of the Department of Nuclear and Radiological Safety, since it provides faster and easier access to information. A project is described that introduces new development tools in the Computer department following standards established by the C.CH.E.N. (author)

  6. Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff`s review of Envirocare of Utah, Inc.`s (Envirocare`s) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues.

  7. Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    International Nuclear Information System (INIS)

    1994-01-01

    The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff's review of Envirocare of Utah, Inc.'s (Envirocare's) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues

  8. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  9. Inquiry relating to safety due to modification of usage of nuclear fuel material (establishment of waste safety testing facility) in Tokai Laboratory, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the director of the Science and Technology Agency (STA) for the license relating to the modification of usage of nuclear fuel material (the establishment of waste safety testing facility) from the director of the Japan Atomic Energy Research Institute on November 30, 1978. After passing through the safety evaluation in the Nuclear Safety Bureau of STA, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 6, 1979, from the director of the STA. The head of AESC directed to conduct the safety examination to the head of the Nuclear Fuel Safety Examination Specialist Committee on June 7, 1979. The content of the modification of usage of nuclear fuel material is the establishment of waste safety testing facility to study and test the safety relating to the treatment and disposal of high level radioactive liquid wastes due to the reprocessing of spent fuel. As for the results of the safety examination, the siting of the waste safety testing facility which is located in the Tokai Laboratory, Japan Atomic Energy Research Institute (JAERI), and the test plan of the glass solidification of high level radioactive liquid are presented as the outline of the study plan. The building, main equipments including six cells, the isolation room and the glove box, the storage, and the disposal facilities for gas, liquid and solid wastes are explained as the outline of the facilities. Concerning the items from the viewpoint of safety, aseismatic design, slightly vacuum operation, shielding, decay heat removal, fire protection, explosion protection, criticality management, radiation management and environmental effect were evaluated, and the safety was confirmed. (Nakai, Y.)

  10. Immunogenicity and Safety of an Inactivated Quadrivalent Influenza Vaccine in US Children 6–35 Months of Age During 2013–2014: Results From A Phase II Randomized Trial

    Science.gov (United States)

    Wang, Long; Chandrasekaran, Vijayalakshmi; Domachowske, Joseph B.; Li, Ping; Innis, Bruce L.; Jain, Varsha K.

    2016-01-01

    Background Viruses from 2 influenza B lineages co-circulate, leading to suboptimal protection with trivalent influenza vaccines (TIV). Quadrivalent influenza vaccines (QIV) containing both lineages offer broader protection. Methods We compared inactivated seasonal QIV versus TIV (15 and 7.5 μg hemagglutinin [HA] for each influenza strain, respectively) in a phase II randomized (1 : 1), observer-blind trial in US children 6–35 months of age (identifier NCT01974895). The primary objective was to evaluate immune responses induced by QIV for the 4 vaccine strains 28 days after completion of vaccination. A secondary objective was to demonstrate superiority of QIV versus TIV for the B/Victoria strain contained in QIV but not TIV. Immunogenicity was evaluated in the per-protocol cohort (N = 280), and safety was evaluated in the intent-to-treat cohort (N = 314). Results Seroconversion rates (SCRs) for QIV were 80.4% (95% confidence interval [CI], 73.0%–86.6%), 72.0% (95% CI, 63.9%–79.2%), 86.0% (95% CI, 79.2%–91.2%), and 66.4% (95% CI, 58.1%–74.1%) for A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, respectively. Quadrivalent influenza vaccines demonstrated immunogenic superiority over TIV for B/Victoria with a geometric mean titer ratio of 4.73 (95% CI, 3.73%–5.99%) and SCR difference of 54.02% (95% CI, 43.88%–62.87%). Safety was similar between the vaccine groups despite the QIV's higher antigen content. No serious adverse events were reported related to vaccination. Conclusions Quadrivalent influenza vaccine (15 µg HA/strain) was immunogenic with an acceptable safety profile. The next phase of its development in children 6–35 months of age is a phase III trial in countries where it is not yet licensed. In countries where it is already licensed, a switch from TIV to QIV would provide broader protection in this vulnerable group. PMID:26407273

  11. Licensing reform in the USA

    International Nuclear Information System (INIS)

    1991-01-01

    The licensing process for nuclear power plants in the USA is currently in two distinct stages: the issuance of a construction permit followed later by the issuance of an operation license. The ''two-step'' process has come under heavy criticism from the U.S. nuclear industry on the grounds that it causes uncertainty and delays and therefore inhibits new commitments to nuclear power plants. In 1989 the NRC published new regulations for the licensing of nuclear power plants which provide for the issuance of early site permits, safety certifications of standard designs, and combined construction permits and operating licences. The new rule was challenged by intervenors representing antinuclear groups who filed a legal challenge seeking to have the rule set aside on the grounds that it violates the Atomic Energy Act which they allege makes two-step licensing mandatory. In November 1990 the US Court of Appeals upheld the NRC's authority to issue combined licenses. An appeal for a rehearing has been filed. The paper analyses the events and the possible consequences of an adverse court decision. It reviews the options open to the NRC and industry if the court decision is upheld. The possibility of congressional action to amend the Atomic Energy Act is discussed. (author)

  12. Safety aspects of advanced fuels irradiations in EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.

    1975-09-01

    Basic safety questions such as MFCI, loss-of-Na bond, pin behavior during design basis transients, and failure propagation were evaluated as they pertain to advanced fuels in EBR-II. With the exception of pin response to the unlikely loss-of-flow transient, the study indicates that irradiation of significant numbers of advanced fueled subassemblies in EBR-II should pose no safety problems. The analysis predicts, however, that Na boiling may occur during the postulated design basis unlikely loss-of-flow transient in subassemblies containing He-bonded fuel pins with the larger fuel-clad gaps. The calculations indicate that coolant temperatures at top of core in the limiting S/A's, containing the He bonded pins, would reach approximately 1480 0 F during the transient without application of uncertainty factors. Inclusion of uncertainties could result in temperature predictions which approach coolant boiling temperatures (1640 0 F). Further analysis of He-bonded pins is being done in this potential problem area, e.g., to apply best estimates of uncertainty factors and to determine the sensitivity of the preliminary results to gap conductance

  13. Licensing and decommissioning of nuclear installations in Japan

    International Nuclear Information System (INIS)

    Shimoyama, Shunji.

    1986-01-01

    The present report discusses the current status of Japan's licensing system and legislation concerning reactor decommissioning operations. Besides Japan is working to promote worldwide nuclear safety research. However, developing nuclear safety regulations that are uniformely applicable is a difficult job due to big differences in geographical, political, economical, and technological conditions. (CW) [de

  14. Adherence to Medical Cannabis Among Licensed Patients in Israel.

    Science.gov (United States)

    Zolotov, Yuval; Baruch, Yehuda; Reuveni, Haim; Magnezi, Racheli

    2016-01-01

    Objectives: To evaluate adherence among Israeli patients who are licensed to use medical cannabis and to identify factors associated with adherence to medical cannabis. Methods: Ninety-five novice licensed patients were interviewed for this cross-sectional study. The questionnaire measured demographics, the perceived patient-physician relationship, and the level of patients' active involvement in their healthcare. In addition, patients were queried about adverse effect(s) and about their overall satisfaction from this medical treatment. Results: Eighty percent ( n =76) has been identified as adherent to medical cannabis use. Variables found associated with adherence were "country of origin" (immigrant status), "type of illness" (cancer vs. non-cancer), and "experiencing adverse effect(s)." Three predictors of adherence were found significant in a logistic regression model: "type of illness" (odds ratio [OR] 0.101), patient-physician relationship (OR 1.406), and level of patient activation (OR 1.132). 71.5% rated themselves being "completely satisfied" or "satisfied" from medical cannabis use. Conclusions: Our findings show a relatively high adherence rate for medical cannabis, as well as relative safety and high satisfaction among licensed patients. Additionally indicated is the need to develop and implement standardized education about this evolving field-to both patients and physicians.

  15. Development of the Digital Reactor Safety System

    International Nuclear Information System (INIS)

    Lee, Dong Young; Lee, C. K.; Hwang, I. K.

    2008-04-01

    Objectives of Project - Development of Digital Safety Grade PLC and Licensing - Development of Safety System(RPS) and Licensing - Development of Safety System(ESF-CCS) and Licensing Content and Result of Project - POSAFE-Q PLC : Development of PLC platform for Shin-UCN unit 1 and 2 ·Development Scope : Processor module, Power module, 3 kinds of Communication module, Bus extension module(Master and Slave), 16 kinds of Input and Output module ·PLC application software development tool(pSET) - IDiPS RPS and IDiPS ESF-CCS : Development of PPS for Sin-UCN 1 and 2 ·Development Scope - 4-channels RPS with the KNICS inherent architecture - A part of 1-channels ESF-CCS with the KNICS inherent architecture - Licensing ·optical Report Submitted and Expected to finish the licensing process until Aug. 2008

  16. Fuel licensing process for an industrial use. ATF licensing process for an industrial use - Utility's perspective

    International Nuclear Information System (INIS)

    Waeckel, Nicolas

    2013-01-01

    To develop and license a breakthrough nuclear fuel technology for commercial use is becoming challenging. All the former safety analysis design limits (SAFDLs) defined in the 1970's for the standard UO 2 -Zr fuels, might no longer be applicable. Identification of the appropriate safety analysis design limits For each type of innovative fuel, the developers will have to identify and investigate all the possible failure/ruins scenarios (not only those related to severe accidents but also those related to normal operation). In order to save time and to focus on the best options, those failure scenarios (which could be 'killers' for the ATF concept) have to be determined early enough in the development process. Based on the above failure scenarios, the developers will have to propose the licensing limits (and the experimental protocol to determine and to justify them). As mentioned earlier, the licensing limits should not be defined against the accidental conditions only. For the operators, the (good) in-reactor fuel behaviour is crucial. As an example, in the case of the new fuel concepts coming with an outer coating, it is important to include the analysis of the consequences of the loss of this protective outer layer in the licensing process due to a manufacturing defect or an inevitable in-reactor fretting wear. Obviously, the new/specific SAFDLs will have to be endorsed by the regulators (which could be a long process by itself). Identification of a commercial reactor to irradiate the first ATF A commercial NPP is not a material test reactor (MTR); irradiating lead test fuel rods (LTFRs) or lead test assemblies (LTAs) implies strict requirements regarding the manufacturing processes [which should not include chemicals (additives or solvents) potentially incompatible with the nuclear technical specifications], the compatibility with the hosting fuel core (in terms of geometry, enrichment, thermal hydraulic performances, etc.) and the robustness and

  17. The role of TSOs in the context of increasing demand for safety expertise - Expectations of the NPP operators

    International Nuclear Information System (INIS)

    Debes, M.

    2013-01-01

    This series of slides focuses on expectations from NPP operators concerning key points and role of TSOs (Technical Safety Organizations) related to -) skills and competence, with the need for broad systemic views regarding safety issues, -) the whole licensing and regulatory framework, for an efficient safety management in a competitiveness context (the requirements must be clear, reliable, stable, timely and internationally aligned), and -) the harmonization and the standardization in the licensing process to foster nuclear renaissance

  18. Challenges of SMR licensing practices

    Energy Technology Data Exchange (ETDEWEB)

    Soderholm, K., E-mail: kristiina.soderholm@fortum.com [Fortum Power, Espoo (Finland)

    2012-12-15

    practices have been investigated as possibly suitable for use in nuclear licensing. All of the current licensing processes were found to be quite heavy and time-consuming and further streamlining could be possible without compromising safety or the need for public participation in the licensing process. Some examples of the modification possibilities for SMR applications are discussed. A profound discussion on SMR-specific licensing models, and on ways to simplify and harmonize them, will be needed in the near future in Europe too. This would be a natural continuation to the harmonization efforts underway for existing and new large reactors. (author)

  19. Safety-related control air systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This Standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this Standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  20. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Dockets Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 5 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report. Because of the favorable resolution of the items discussed in this report, the staff concludes that there is reasonable assurance that the facility can be operated by the applicant without endangering the health and safety of the public

  1. Safety evaluation report related to the operation of Wolf Creek Generating Staton, Unit No. 1, (Docket No. STN 50-482). Supplement No. 4

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement No. 4 to the Safety Evaluation Report related to the operation of the Wolf Creek Generating Station, Unit No. 1 updates the information contained in the Safety Evaluation Report, dated April 1982 and Supplements 1, 2, and 3, dated August 1982, June 1983 and August, 1983, respectively. Supplement No. 4 addresses open issues, confirmatory items and addresses Board Notifications. The Safety Evaluation and its supplements pertain to the application for a license to operate the Wolf Creek Generating Station, Unit No. 1 filed by Kansas Gas and Electric Company on February 19, 1980. The Construction Permit No. CPPR-147 was issued on May 17, 1977

  2. Interim safety evaluation report related to operation of Enrico Fermi Atomic Power Plant, Unit 2, Detroit Edison Company

    International Nuclear Information System (INIS)

    1977-09-01

    This interim report summarizes the scope and results of the radiological safety review performed to date by the NRC staff with respect to the operating license phase for the Enrico Fermi Atomic Power Plant, Unit 2. The major effort was the review of the facility design and proposed operating procedures described in applicant's Final Safety Analysis Report. In the course of the review, several meetings were held with representatives of the applicant to discuss plant design, construction and proposed operation. Additional information was requested, which the applicant provided through Amendment 7 to the Final Safety Analysis Report. A chronology of the principal actions relating to the review of the application is attached as Appendix A to the report. The Final Safety Analysis Report and amendments thereto are available for public inspection at the Nuclear Regulatory Commission Public Document Room, 1717 H Street, N. W., Washington, D.C. and at Monroe County Library System, 3700 South Custer Road, Monroe, Michigan 48161

  3. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    International Nuclear Information System (INIS)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z.

    2015-01-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  4. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  5. Nuclear power plant licensing: opportunities for improvement

    International Nuclear Information System (INIS)

    1977-06-01

    On April 20, 1977, the Commission directed that recently completed licensing actions be reviewed by the staff for the purpose of identifying ways to improve the effectiveness and efficiency of NRC nuclear power plant licensing activities. This report summarizes the results of a study undertaken by an internal ad hoc Study Group established in response to that directive. The Study Group limited its considerations to safety and environmental review activities. The background, scope, assumptions and objectives of the study are discussed. A prime assumption of this study was that improvements in the efficiency should not be permitted to reduce the current quality achieved in the licensing process. This consideration underlies the conclusions and recommendations of the study

  6. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  7. Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratzki, Z.

    1983-01-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratories to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the licensee is primarily responsible for achieving a high standard safety. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. In this article the Canadian licensing process is described with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  8. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  9. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-01-01

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public

  10. Westinghouse AP1000 licensing maturity

    International Nuclear Information System (INIS)

    Schulz, T.; Vijuk, R.P.

    2005-01-01

    The Westinghouse AP1000 Program is aimed at making available a nuclear power plant that is economical in the U.S deregulated electrical power industry in the near-term. The AP1000 is two-loop 1000 MWe pressurizer water reactor (PWR). It is an up rated version of the AP600. The AP1000 uses passive safety systems to provide significant and measurable improvements in plant simplification, safety, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 35 years of operating PWR experience. The AP1000 received Final Design Approval by the United States Nuclear Regulatory Commission (U.S. NRC) in September 2004. The AP1000 meets the US utility requirements. The AP1000 and its sister plant the AP600 have gone through a very through and complete licensing review. This paper describes the U.S. NRC review efforts of both the AP600 and the AP1000. The detail of the review and the independent calculations, evaluations and testing is discussed. The AP600 licensing documentation was submitted in 1992. The U.S. NRC granted Final Design Approval in 1999. During the intervening 7 years, the U.S. NRC asked thousands of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. For the AP1000 Westinghouse first engaged the U.S. NRC in pre-certification discussions to define the extent of the review required, since the design is so similar to the AP600. The AP1000 licensing documentation was submitted in March 2002. The U.S. NRC granted Final Design Approval in September 2004. During the intervening 2 1/2 years, the U.S. NRC asked hundreds of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. The implications of this review and approval on AP1000 applications in

  11. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    International Nuclear Information System (INIS)

    Roudier, S.; Badel, D.; Beraha, R.; Champ, M.; Tricot, N.; Tran Dai, P.

    1994-01-01

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: 1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; 2) guidelines for nuclear design and manufacturing requirements related to safety and 3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs

  12. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Roudier, S [Direction de la Surete des Installations Nucleaires, Fontenay-aux-Roses (France); Badel, D; Beraha, R [Direction Regionale de l` Industrie, de la Recherche et de l` Environnement Rhone-Alpes, Lyon (France); Champ, M; Tricot, N; Tran Dai, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-12-31

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: (1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; (2) guidelines for nuclear design and manufacturing requirements related to safety and (3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs.

  13. The Licensing of New Nuclear Power Plants in Europe

    International Nuclear Information System (INIS)

    Raetzke, C.

    2008-01-01

    After an introduction dealing with the nuclear Renaissance in Europe and the specific situation of Germany and of Italy, the article focuses on the question of licensing processes for new reactors. New nuclear power plant projects involve a substantial investment and electric utilities will only take this decision if the licensing and regulatory risk can be adequately managed. Licensing processes should be predictable and efficient in order to give sufficient assurance to applicants. The article discusses best practice in licensing by giving some examples of suitable licensing processes of other countries. It also highlights international initiatives aimed at harmonizing safety requirements for new reactors and a multinational cooperation in reactor design review. These issues should be carefully considered by any country wanting to get new nuclear started. [it

  14. Safety Evaluation of Full Digital Plant Protection System of Shin-Kori 3 and 4 in Korea

    International Nuclear Information System (INIS)

    Koh, J. S.; Kim, D. I.; Jeong, C. H.; Park, H. S.; Ji, S. H.; Kang, Y. D.; Park, G. Y.

    2009-01-01

    Keeping pace with the emerging trend of digital computer technologies, KHNP has utilized full digital plant protection system into the design of I and C systems at SKN 3 and 4. This paper presents safety review activities and results related to digital plant protection systems during the licensing of construction permit for the Shin-Kori 3 and 4(SKN 3 and 4) in Korea. The major licensing issues regarding the digital systems were software quality and cyber security during planning stage, system integrity with fail-safe design, EMI equipment qualification of digital systems, FPGA qualification and communication independence between safety and non-safety System. This paper addresses our approach to evaluate full digital protection systems with revised safety review guidelines and the resulting discussion to resolve the licensing issues

  15. Methodology to identify, review, and evaluate components for license renewal

    International Nuclear Information System (INIS)

    Carlson, D.D.; Gregor, F.E.; Walker, R.S.

    1988-01-01

    A methodology has been developed to systematically identify, review, and evaluate plant equipment for license renewal. The method builds upon the existing licensing basis, operating history, and accepted deterministic and probabilistic techniques. Use of these approaches provides a focus for license renewal upon those safety-significant systems and components that are not routinely replaced, refurbished, or subject to detailed inspection as part of the plant's existing test, maintenance, and surveillance programs. Application of the method identified the PWR and BWR systems that should be subjected to detailed license renewal review. Detailed examination of two example systems demonstrates the approach. The review and evaluation of plant equipment for license renewal differ from the initial licensing of the plant. A substantial operating history has been established, the licensing basis has evolved from the original one, and plant equipment has been subject to periodic maintenance and surveillance throughout its life. In consideration of these differences, a basis for license renewal is needed. License renewal should be based upon continuation of the existing licensing basis and recognition of existing programs and operating history

  16. A review of tritium licensing requirements

    International Nuclear Information System (INIS)

    Meikle, A.B.

    1982-12-01

    Present Canadian regulations and anticipated changes to these regulations relevant to the utilization of tritium in fusion facilities and in commercial applications have been reviewed. It is concluded that there are no serious licensing obstacles, but there are a number of requirements which must be met. A license will be required from Atomic Energy Control Board if Ontario Hydro tritium is to be applied by other users. A license is required from the Federal Government to export or import tritium. A licensed container will be required for the storage and shipping of tritium. The containers being designed by AECL and Ontario Hydro and which are currently being tested will adequately store and ship all of the Ontario Hydro tritium but are unnecessarily large for the small quantities required by the commercial tritium users. Also, some users may prefer to receive tritium in gaseous form. An additional, smaller container should be considered. The licensing of overseas fusion facilities for the use of tritium is seen as a major undertaking offering opportunities to Canadian Fusion Fuels Technology Project to undertake health, safety and environmental analysis on behalf of these facilities

  17. Integrated plant safety assessment. Systematic Evaluation Program. La Crosse Boiling Water Reactor. Dairyland Power Cooperative, Docket No. 50-409. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the La Crosse Boiling Water Reactor, operated by Dairyland Power Cooperative. The La Crosse plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  18. Integrated Plant Safety Assessment: Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  19. Integrated Plant Safety Assessment, Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Draft report

    International Nuclear Information System (INIS)

    1983-02-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  20. Integrated Plant Safety Assessment: Systematic Evaluation Program. Haddam Neck Plant, Connecticut Yankee Atomic Power Company, Docket No. 50-213. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Systematic Evaluation Progam was initiated in February 1977 by the US Nuclear Regulatory Commission review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with curent licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Haddam Neck Plant, operated by Connecticut Yankee Atomic Power Company. The Haddam Neck Plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  1. Methodology and findings of the NRC's materials licensing process redesign

    International Nuclear Information System (INIS)

    Rathbun, P.A.; Brown, K.D.; Madera, J.R.; Moriarty, M.; Pelchat, J.M.; Usilton, W.K.; Whitten, J.E.; Vacca, P.C.

    1996-04-01

    This report describes the work and vision of the team chartered to redesign the process for licensing users of nuclear materials. The Business Process Redesign team was chartered to improve the speed of the existing licensing process while maintaining or improving public safety and to achieve required resource levels. The report describes the team's methods for acquiring and analyzing information about the existing materials licensing process and the steps necessary to radically change this process to the envisioned future process

  2. Nuclear power plant simulators for operator licensing and training. Part I. The need for plant-reference simulators. Part II. The use of plant-reference simulators

    International Nuclear Information System (INIS)

    Rankin, W.L.; Bolton, P.A.; Shikiar, R.; Saari, L.M.

    1984-05-01

    Part I of this report presents technical justification for the use of plant-reference simulators in the licensing and training of nuclear power plant operators and examines alternatives to the use of plant-reference simulators. The technical rationale is based on research on the use of simulators in other industries, psychological learning and testing principles, expert opinion and user opinion. Part II discusses the central considerations in using plant-reference simulators for licensing examination of nuclear power plant operators and for incorporating simulators into nuclear power plant training programs. Recommendations are presented for the administration of simulator examinations in operator licensing that reflect the goal of maximizing both reliability and validity in the examination process. A series of organizational tasks that promote the acceptance, use, and effectiveness of simulator training as part of the onsite training program is delineated

  3. Resolution of thermal-hydraulic safety and licensing issues for the system 80+trademark design

    International Nuclear Information System (INIS)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-01-01

    The System 80+ trademark Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC's new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs

  4. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  5. NPP long term operation in Spain - First application for license renewal

    International Nuclear Information System (INIS)

    Francia, L.; Gorrochategui, I.; Marcos, R.

    2007-01-01

    Full text: In the operation of the Spanish nuclear power plants (NPP), safety is always the prime consideration. Plant Life Management Programmes have been set up with the strategic objective to operate the NPPs as long as they are considered safe and reliable. The safety of each NPP is reviewed by the Spanish nuclear regulatory authority (CSN) under a continuous process. In addition, experience is gained from operating the plants and from exchanges with operators of similar units. Current Spanish regulatory framework for renewing NPP operating licenses requires performing a Periodic Safety Review (PSR) to be performed every 10 years and submitted when applying for a new renewal of the NPP operating license. A few years ago, CSN issued a document regarding the licensing requirements that nuclear power plants should meet in order to be granted with an operating license for long term operation (i.e, operation beyond the original plant design life, typically 40 years). Besides the traditional PSR requirements, specific requirements regarding to long term operation (LTO) include: - An Aging Management and Evaluation Program, including the identification and evaluation of Time Limited Aging Analysis (TLAA). - An updated Radiological Impact Study. - A review and assessment of regulation/standard applicability. Garona NPP (GE, BWR/3 design) operated by Spanish utility Nuclenor from 1971 has a current operating license up to 2009. A decision was made to apply for a new operating license, being Garona plant the first one in Spain to face with the new long term operation requirements. The paper will provide an overview of the methodology used in Spain to address and perform the required analyses to support the LTO application for the operating license renewal. In particular, focus will be paid on the project developed in Garona (2002-2006) whose result has been the first Spanish application for License Renewal for LTO. Also it will be reported the ongoing work necessary to

  6. 31 CFR 538.519 - Aircraft and maritime safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft and maritime safety. 538.519..., Authorizations, and Statements of Licensing Policy § 538.519 Aircraft and maritime safety. Specific licenses may... aircraft, and to ensure the safety of ocean-going maritime traffic in international waters. ...

  7. 75 FR 8754 - Notice of Environmental Assessment Related to the Issuance of a License Amendment to Masters...

    Science.gov (United States)

    2010-02-25

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-34325; NRC-2010-0068] Notice of Environmental Assessment Related to the Issuance of a License Amendment to Masters Materials License 03-23853-01VA, for Unrestricted Release of a Department of Veterans Affairs Facility in Gainesville, FL AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of...

  8. Semi-annual report of the licensing program - July to December 1988

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The main activities developed and described are: licensing of CIPC (FSAR), emergency plan of NUCLEI, reevaluation of the maximum credible accident of NUCLEI, updating of the safety analysis report of CDTN, emergency plan of IPR-R1 reactor and licensing of the DIENR.CN. installations. (E.G.) [pt

  9. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1992-09-01

    This document supplement 25 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, and 24 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several Unit 1 licensing items resolved since Supplement 24 was issued

  10. Licensing criteria for particle accelerators categorization

    International Nuclear Information System (INIS)

    Costa, Evaldo L.C. da

    2013-01-01

    From the international experience of research centers in various parts of the world, where there are particle accelerators of various sizes and energies, it was found that operating energy of particle accelerators is one of the parameters used by categorization models in the licensing of these radiation facilities, and the facility size is an important aspect to be considered in this model. A categorization based on these two key parameters is presented, also taking into account the kinds of accelerated particles and radiation produced, the operating related technology and the possible applications concerned. The categorization models of national nuclear authorities of five countries are reviewed, emphasizing the contribution of Brazil, and the new model proposed is also based on the experience of these countries, modified by those two parameter discussed above: facility size and operating energy of particle accelerators. Later, some changes are suggested, considering risk factors and safety features related to these facilities, emphasizing some analytical tools commonly used in nuclear facilities and chemical plants, such as: risk-informing decision making, layer of protection analysis (LOPRA) and safety integrity levels (SIL), the two latter ones having its origin in the broader concept of system safety. We also discuss the problem of scarcity of reliability data (common in the analyses involving risk factors and safety), due to security concerns and other factors, being the possible alternative solutions the use of generic databases and the adoption of reference facilities that provide partial data publicly. (author).

  11. Licensing criteria for particle accelerators categorization

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Evaldo L.C. da, E-mail: evaldo@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dir. de Radioprotecao e Seguranca; Melo, Paulo F.F. Frutuoso e, E-mail: frutuoso@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    From the international experience of research centers in various parts of the world, where there are particle accelerators of various sizes and energies, it was found that operating energy of particle accelerators is one of the parameters used by categorization models in the licensing of these radiation facilities, and the facility size is an important aspect to be considered in this model. A categorization based on these two key parameters is presented, also taking into account the kinds of accelerated particles and radiation produced, the operating related technology and the possible applications concerned. The categorization models of national nuclear authorities of five countries are reviewed, emphasizing the contribution of Brazil, and the new model proposed is also based on the experience of these countries, modified by those two parameter discussed above: facility size and operating energy of particle accelerators. Later, some changes are suggested, considering risk factors and safety features related to these facilities, emphasizing some analytical tools commonly used in nuclear facilities and chemical plants, such as: risk-informing decision making, layer of protection analysis (LOPRA) and safety integrity levels (SIL), the two latter ones having its origin in the broader concept of system safety. We also discuss the problem of scarcity of reliability data (common in the analyses involving risk factors and safety), due to security concerns and other factors, being the possible alternative solutions the use of generic databases and the adoption of reference facilities that provide partial data publicly. (author).

  12. Probabilistic Safety Assessment Of It TRIGA Mark-II Reactor

    International Nuclear Information System (INIS)

    Ergun, E; Kadiroglu, O.S.

    1999-01-01

    The probabilistic safety assessment for Istanbul Technical University (ITU) TRIGA Mark-II reactor is performed. Qualitative analysis, which includes fault and event trees and quantitative analysis which includes the collection of data for basic events, determination of minimal cut sets, calculation of quantitative values of top events, sensitivity analysis and importance measures, uncertainty analysis and radiation release from fuel elements are considered

  13. Presentation on development of safety assessment reports in Romania

    International Nuclear Information System (INIS)

    Goicea, L.

    2002-01-01

    This presentation shows whole steps of Cernavoda 2 NPP licensing and accident management relevant changes considered. There are description of CANDU Safety principles and design criteria, as well as FSAR structured according to NRC Regulatory Guide 1.70, format of presentation of accident analyses, applicable acceptant criteria to analyses and Design Codes, Safety standards and Safety Guides used. The main features of CANDU reactors are presented, including of base design characteristics and describing of structures of CANDU reactors. During the licensing Cernavoda 2 are passed through Site approval, Construction permits of NPP system (1980-1993), Final construction license (1993) and Commissioning license (1995). In the May 1998 the First operating license is issued, based on FSAR Phase 1, Full power probationary report and carried out the requirements related to revising the FSAR and initiating of the Modernization program. To achieve the defense in depth concept are used and implemented the norms and quality standards during all plant stages, as well as selecting the high quality materials. During all plant stages is keeps strictly accomplishment of the quality requirements, and ensures a high level of reliability by using of operating principle and fabrication. In NPP operation is established using of the approved operating concept permitting only the safe condition for reactor operation. In the process of Cernavoda NPP licensing and operating the CSA and CGSB Canadian Standards, ASME and ANSI American Standards, Romanian Norms are implemented. Another useful Codes and Standards are implemented too, as ACI, ASTM, ANSI, AWS and others. In accident analysis for Safety Analysis Report for Cernavoda Unit 1 are involved 37 computer codes, in such areas as Reactor physics, Thermal-hydraulics, Fuel behavior, Fuel channel, Containment, and Fission product release and dose calculation

  14. Improved technical specifications and related improvements to safety in commercial Nuclear power plants

    International Nuclear Information System (INIS)

    Hoffman, D.R.; Demitrack, T.; Schiele, R.; Jones, J.C.

    2004-01-01

    Many of the commercial nuclear power plants in the United States (US) have been converting a portion of the plant operating license known as the Technical Specifications (TS) in accordance with a document published by the US Nuclear Regulatory Commission (NRC). The TS prescribe commercial nuclear power plant operating requirements. There are several types of nuclear power plants in the US, based on the technology of different vendors, and there is an NRC document that supports each of the five different vendor designs. The NRC documents are known as the Improved Standard Technical Specifications (ISTS) and are contained in a separate document (NUREG series) for each one of the designs. EXCEL Services Corporation (hereinafter EXCEL) has played a major role in the development of the ISTS and in the development, licensing, and implementation of the plant specific Improved Technical Specifications (ITS) (which is based on the ISTS) for the commercial nuclear power plants in the US that have elected to make this conversion. There are currently 103 operating commercial nuclear power plants in the US and 68 of them have successfully completed the conversion to the ITS and are now operating in accordance with their plant specific ITS. The ISTS is focused mainly on safety by ensuring the commercial nuclear reactors can safely shut down and mitigate the consequences of any postulated transient and accident. It accomplishes this function by including requirements directly associated with safety in a document structured systematically and taking into account some key human factors and technical initiatives. This paper discusses the ISTS including its format, content, and detail, the history of the ISTS, the ITS development, licensing, and implementation process, the safety improvements resulting from a plant conversion to ITS, and the importance of the ITS Project to the industry. (Author)

  15. Improved technical specifications and related improvements to safety in commercial Nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.R.; Demitrack, T.; Schiele, R.; Jones, J.C. [EXCEL Services Corporation, 11921 Rockville Pike, Suite 100, Rockville, MD 20852 (United States)]. e-mail: donaldh@excelservices.com

    2004-07-01

    Many of the commercial nuclear power plants in the United States (US) have been converting a portion of the plant operating license known as the Technical Specifications (TS) in accordance with a document published by the US Nuclear Regulatory Commission (NRC). The TS prescribe commercial nuclear power plant operating requirements. There are several types of nuclear power plants in the US, based on the technology of different vendors, and there is an NRC document that supports each of the five different vendor designs. The NRC documents are known as the Improved Standard Technical Specifications (ISTS) and are contained in a separate document (NUREG series) for each one of the designs. EXCEL Services Corporation (hereinafter EXCEL) has played a major role in the development of the ISTS and in the development, licensing, and implementation of the plant specific Improved Technical Specifications (ITS) (which is based on the ISTS) for the commercial nuclear power plants in the US that have elected to make this conversion. There are currently 103 operating commercial nuclear power plants in the US and 68 of them have successfully completed the conversion to the ITS and are now operating in accordance with their plant specific ITS. The ISTS is focused mainly on safety by ensuring the commercial nuclear reactors can safely shut down and mitigate the consequences of any postulated transient and accident. It accomplishes this function by including requirements directly associated with safety in a document structured systematically and taking into account some key human factors and technical initiatives. This paper discusses the ISTS including its format, content, and detail, the history of the ISTS, the ITS development, licensing, and implementation process, the safety improvements resulting from a plant conversion to ITS, and the importance of the ITS Project to the industry. (Author)

  16. Usage of Commercial Grade Programmable Digital Systems in Safety Related Applications

    International Nuclear Information System (INIS)

    Mandic, D.

    2006-01-01

    This paper explains methods and conditions, which if completely and correctly fulfilled, enable an operating NPP (Nuclear Power Plant) licensed and operating in accordance with the US codes and US regulatory requirements to use a commercial grade programmable digital device (PLC - Programmable Digital Controller, digital controller, digital computer or process computer) in a safety related application in a NPP. In mid 80's, when an intensive construction cycle of the new NPPs in the U.S.A. was completed, many equipment manufacturers either disappeared from the market or they abandoned their product lines that were designed and manufactured under 10 CFR Part 50 Appendix B quality assurance program. The quality assurance as defined by 10 CFR Part 50 Appendix B comprises all those planned and systematic actions necessary to provide adequate confidence that a Structure, System or Component (SSC) will perform satisfactorily in service . The operating NPPs faced the problem related to the availability of qualified equipment, components and spare parts. The US NRC (Nuclear Regulatory Commission) recognized that problem timely (Oct. 1978 revision of 10CFR21) and required a commercial grade item to be dedicated before it could be used as a basic component. A special process named Dedication of CGI - Commercial Grade Items if conducted properly, provides reasonable assurance that a commercial grade item to be used as a basic component will perform its intended safety related function and, in this respect, is deemed equivalent to an item designed and manufactured under 10 CFR Part 50 Appendix B. After that, the Dedication of CGI has been widely used mostly for relatively simple mechanical, electrical, and IandC components and spare parts. In order to provide guidance to the dedication process, EPRI has issued two documents (EPRI NP-5652 and Supplemental Guidance for EPRI NP-5652). All nuclear power plants, which comply with the US nuclear regulatory requirements, hindered as

  17. Safety analysis of a pool Genesis II irradiator

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de A.

    2011-01-01

    The Genesis II Irradiator manufactured by GRAT * STAR Inc. (USA) is a category III gamma irradiator in which the sealed source is contained in a water filled storage pool and is shielded permanently, i.e. the material has to move down to the source. Even though the pool is 5.6 m deep, what would happen if the water level lowered? There are a series of safety devices that will avoid this situation and calculations show that the water level has to be very low in order to deliver a significant dose; moreover, only in case a person remains at the border of the pool for a long time this would be risky. In conclusion, it is practically impossible for someone to be exposed to radiation from a Genesis II Irradiator source. (author)

  18. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  19. Main issues of the licensing of the Creys-Malville's LMFBR

    International Nuclear Information System (INIS)

    Natta, M.; Dufresne, J.; Jaffres, R.; Meyer-Heine, A.; Orzoni, G.

    1986-06-01

    This report presents the main features of general interest concerning the licensing procedures, procedures which are still in progress. The design studies and the construction of the Creys-Malville power plant were submitted to several assessments which allowed to verify the correct realisation of the plant and to intervene in due time on important issues. All related aspects of the start-up tests are followed by the safety authorities in satisfactory conditions without increasing significantly the applicant own duties

  20. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    International Nuclear Information System (INIS)

    Cowan, Pamela B.; Oh, Chaewoon; Dahlgren Persson, Kerstin; Carnino, Annick

    2008-01-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  1. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Pamela B. [Exelon Generation, 200 Exelon Way, 19348 Kennett Square, PA 19348 (United States); Oh, Chaewoon [Korea Institute of Nuclear Safety, 19 Gusung-Dong, Yuseong-Ku, 305-338 Daejeon (Korea, Republic of); Dahlgren Persson, Kerstin [International Atomic Energy Agency, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria); Carnino, Annick [IAEA, Division of Nuclear Installation Safety, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria)

    2008-07-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  2. Regulatory analysis for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This regulatory analysis provides the supporting information for the final rule (10 CFR Part 54) that defines the Nuclear Regulatory Commission's requirements for renewing the operating licenses of commercial nuclear power plants. A set of four specific alternatives for the safety review of license renewal applications is defined and evaluated. These are: Alternative A-current licensing basis; Alternative B-extension of Alternative A to require assessment and managing of aging; Alternative C -- extension of Alternative B to require assessment of design differences against selected new-plant standards using probabilistic risk assessment; and Alternative D -- extension of Alternative B to require compliance with all new-plant standards. A quantitative comparison of the four alternatives in terms of impact-to-value ratio is presented, and Alternative B is the most cost-beneficial safety review alternative

  3. Environmental licensing of nuclear facilities: compatibility of technical competencies

    International Nuclear Information System (INIS)

    Shu, J.; Paiva, R.L.C. de; Mezrahi, A.; Cardoso, E.M.; Aquino, W.P.; Deppe, A.L.; Menezes, R.M.; Prado, V.; Franco, N.M.F.L.; Nouailhetas, Y.; Xavier, A.M.

    1996-01-01

    The Brazilian Nuclear Energy Commission (CNEN) has the technical competency for diagnosing environmental radiological impacts, as well as evaluating the safety and requiring adequate control of the facilities which, due to their activities, represent a potential risk of radiological contamination for the environment. The institution is responsible for emission of radioprotection guidelines, controls and surveys in nuclear safety according to the country's regulations and international recommendations. The methodology to assure the limitation of radiation exposure is consequence from shared control over the nuclear activities, in special the nuclear facilities. According to the Federal Constitution of 1988, the nuclear activities must be under exclusive control of the Union in special related to the nuclear policies, economical, laboral and nuclear safety aspects, while the health and environmental controls of these activities are shared by the Federation, Union, States, Federal District and Counties. The controls related to specific aspects have to be harmonized in such a way to be optimized and effective. In this paper the results of compatibilization of nuclear legislation and environmental legislation are presented aiming to optimize the licensing of nuclear facilities. (author)

  4. A study on optimization of the nuclear safety system

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Koh, Byung Joon; Kim, Jin Soo; Kim, Byoung Do; Cho, Seong Won; Kwon, Seog Kwon; Choi, Kwang Sik

    1986-12-01

    The number of nuclear facilities (nuclear power plants, research reactors, nuclear fuel facilities) under construction or in operation in Korea continues to increase and this has brought about increased importance and concerns toward nuclear safety in Korea. Also, domestic nuclear related organizations are increasingly carrying out the design/construction of nuclear power plants and the development /supply of nuclear fuels. In order to flexibly respond to these changes and to suggest direction to take, it is necessary to re-examine the current nuclear safety regulation system. This study is carried out in two stages and this report describes the results of the analysis and the assessment of the nuclear licencing system of such foreign countries as sweden and German, as the first of the two. In this regard, this study includes the analysis on the backgrounds on the choice of nuclear licensing system, the analysis on the licensing procedures, the analysis on the safety inspection system and the enforcement laws, the analysis on the structure and function of the regulatory, business and research organizations as well as the analysis on the relationship between the safety research and the regulatory duties. In this study, the German safety inspection system and the enforcement procedures and the Swedish nuclear licensing system are analyzed in detail. By comparing and assessing the finding with the current Korea Nuclear Licensing System, this study points out some reform measures of the Korean system that needs to improved. With the changing situations in mind, this study aims to develop the nuclear safety regulation system optimized for Korean situation by re-examining the current regulation system. (Author)

  5. A utility theoretic view on probabilistic safety criteria

    International Nuclear Information System (INIS)

    Holmberg, J.E.

    1997-03-01

    A probabilistic safety criterion specifies the maximum acceptable hazard rates of various accidental consequences. Assuming that the criterion depends also on the benefit of the process to society and on the licensing time applied, we can regard such statements as preference relations. In this paper, a probabilistic safety criterion is interpreted to mean that if the accident hazard rate is higher than the accident hazard rate criterion, then the optimal stopping time of a hazardous process is shorter than the licensing time. This interpretation yields a condition for a feasible utility function. In particular, we derive such a condition for the parameters of a linear plus exponential utility function. (orig.) (12 refs.)

  6. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Mirro, G.A. [Growth Resources, Inc., Lafayette, LA (United States)

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  7. Beznau II nuclear power plant: Expertise on NOK's request for the removal of the time limitation for the operation licence; KKW Beznau II: Gutachten zum Gesuch der NOK um Aufhebung der Befristung der Betriebsbewilligung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-15

    The Federal Agency for the Safety of Nuclear Installations (HSK) is the Swiss authority responsible for nuclear safety and protection against radioactivity in nuclear power plants. It has to examine the request of the North-East Swiss Power Corporation (NOK) concerning the removal of the operational time limitation for the Beznau-II reactor (KKB-II). In the present report HSK reviews the enterprise management and the safety of KKB-II on the basis of the results of the Periodic Safety Review. The Beznau nuclear power plant exhibits a very high degree of technical and organisational safety. During the past 10 years the plant has been operated in a safe manner. At the same time the plant has been improved and this guarantees that the mechanisms of ageing degradation are systematically identified and that measures can be taken that are possibly necessary. Under such conditions, the safety of KKB-II can be guarantied at all times. As a result of the management of quality, environmental and working safety conditions, the correct application and the continuous improvement of all processes important to safety are ensured. With these measures KKB has shown that safety is given priority over and against all other working goals. The examination by HSK of the Periodic Safety Review has shown that, in the past, KKB has applied modernisation measures independent of the licensing situation of the two reactor blocks. These modernisation measures largely contribute to the fact that the HSK examination did not reveal any significant safety deficiencies. Other improvement measures allow risk reduction or can bee seen as an adaptation to experience gained and to the state of the technological art. In conclusion, HSK states that no safety-relevant facts have been found which could prevent the removal of the time limitation on the operational licence for KKB-II. From the point of view of HSK, KKB-II fulfils the conditions for the safe continuation of operation

  8. SSM's licensing review of a spent nuclear fuel repository in Sweden

    International Nuclear Information System (INIS)

    Dverstorpand, Bjoern; Stroemberg, Bo

    2014-01-01

    On 16 March 2011 the Swedish Nuclear Fuel and Waste Management Co. (SKB) submitted license applications for a general license to construct, possess and operate a KBS-3 type spent nuclear fuel repository at the Forsmark site, in Oesthammar municipality, and an encapsulation plant in Oskarshamn municipality. The KBS-3 method, which has been developed by SKB over a period of more than 30 years, entails disposing of the spent fuel in copper canisters, surrounded by a swelling bentonite clay, at about 500 m depth in crystalline basement rock. SKB's applications are being evaluated in parallel by the Swedish Radiation Safety Authority (SSM) according to the Act on Nuclear Activities and by the Land and Environmental Court according to the Environmental Code. During the review SSM will act as an expert review body to the Land and Environmental Court in the areas of radiation protection, safety and security/non-proliferation. Both SSM and the court will produce a statement with a recommendation regarding a licensing decision and licensing conditions to the government. The government will make the final decision after consulting the municipalities concerned by SKB's facilities (municipal veto applies). The current licensing decision is just one of several licensing decisions that will be required for the repository. However it is arguably the most important one, because it is the last licensing stage with a broad societal involvement including an environmental impact assessment (EIA) process, national consultations and municipal veto for the concerned municipalities. The licensing steps to follow, should SKB be granted a license by the government, only require approval by SSM. These steps include application for start of actual construction work, test operation and routine operation. (authors)

  9. Probabilistic safety assessment goals in Canada

    International Nuclear Information System (INIS)

    Snell, V.G.

    1986-01-01

    CANDU safety philosphy, both in design and in licensing, has always had a strong bias towards quantitative probabilistically-based goals derived from comparative safety. Formal probabilistic safety assessment began in Canada as a design tool. The influence of this carried over later on into the definition of the deterministic safety guidelines used in CANDU licensing. Design goals were further developed which extended the consequence/frequency spectrum of 'acceptable' events, from the two points defined by the deterministic single/dual failure analysis, to a line passing through lower and higher frequencies. Since these were design tools, a complete risk summation was not necessary, allowing a cutoff at low event frequencies while preserving the identification of the most significant safety-related events. These goals gave a logical framework for making decisions on implementing design changes proposed as a result of the Probabilistic Safety Analysis. Performing this analysis became a regulatory requirement, and the design goals remained the framework under which this was submitted. Recently, there have been initiatives to incorporate more detailed probabilistic safety goals into the regulatory process in Canada. These range from far-reaching safety optimization across society, to initiatives aimed at the nuclear industry only. The effectiveness of the latter is minor at very low and very high event frequencies; at medium frequencies, a justification against expenditures per life saved in other industries should be part of the goal setting

  10. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    International Nuclear Information System (INIS)

    Oh, Kyemin; Kang, Myoung-suk; Heo, Gyunyoung; Kim, Hyoung-chan

    2014-01-01

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  11. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kyemin; Kang, Myoung-suk [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Heo, Gyunyoung, E-mail: gheo@khu.ac.kr [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Hyoung-chan [National Fusion Research Institute, Daejeon-si 305-333 (Korea, Republic of)

    2014-10-15

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  12. Legal aspects of public participation in the planning/licensing of environmentally related large-scale projects

    International Nuclear Information System (INIS)

    Kurz, A.

    1991-01-01

    A variety of legal problems arise in the planning/licensing of environmentally related large-scale projects associated with the control and evaluation of technical conditions and the ramifications in social and legal policy of the acceptance of, and resistance to, such projects. On the basis of a number of partial studies e.g. of the licensing procedure of a nuclear power plant (Neckar-2 reactor) the author examines the legal aspects of public participation in the administrative procedures of licensing/plans approval. The dichotomy of law and technology is covered, and public participation in administrative procedures is derived legally from the basic constitutional rights and the principle of fair hearing. After an outline of specific administrative procedures, public participation as part of administrative procedures is included in the broad legal framework of licensing/plans approval of environmentally related large-scale projects. The author concludes that public participation, within the framework of the basic decisions established by legislature, is not a tool to be used in deciding basic political conflicts. Instead, public participations in the application of law serves to protect the rights of the individual by ensuring fair proceedings paying attention to the subjective rights of the individual. As it is unable to decide political conflicts, it is also an unsuitable means of establishing of basic societal consensus, or of seeking acceptance of large-scale projects. (orig./HP) [de

  13. Challenges in the management of gas voids in safety related systems

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Turkowski, W.M.; Ferraraccio, F.P.; Swartz, M.M.

    2009-01-01

    Gas intrusion into Safety Related Systems, such as the Emergency Core Cooling System (ECCS), Decay Heat Removal (DHR) and Containment Spray (CS) in nuclear power plants is undesirable and can lead to pump binding (depending on the void fraction and flow rate) and damaging water hammer events. Gas ingestion in pumps can result in total or momentary loss of hydraulic performance resulting in possible pump shaft seizure rendering the pumps unable to perform their safety functions or reduce the pump discharge pressure and flow capacity to the point that the system cannot perform its design function. Extreme cases of gas water hammer can result in physical damage to system piping, components and supports, and possible relief valve lifting events with consequential loss of inventory. NRC Generic Letter GL 2008 01, 'Managing Gas Accumulation in Emergency Core Cooling, Decay Heat Removal, and Containment Spray Systems,' requires US utilities to demonstrate that suitable design, operational and testing measures are in place to maintain licensing commitments. The Generic Letter (GL 2008 01) outlines a number of actions that are detailed in nature, such as establishing pump void tolerance limits; establishing limits on pump suction void fractions, assuring adequate system venting capability, identification of all possible sources of gas intrusion, preventing vortex formation in tanks, and determining acceptable limits of gas in system discharge piping.. Regarding one of these issues, GL 2008 01 indicates that the amount of gas that can be ingested without significant impact on pump design, gas dispersion and flow rate. Each US nuclear power plant licensee is required to evaluate their ECCS, DHR and CS system design, operation and test procedures to assure that gas intrusion is minimized and monitored in order to maintain system operability and compliance with the requirements of 10 CFR 50 Appendix B. Typically, gas pockets get into the safety related systems through a number

  14. Challenges in the management of gas voids in safety related systems

    Energy Technology Data Exchange (ETDEWEB)

    Ezekoye, L.I.; Turkowski, W.M.; Ferraraccio, F.P.; Swartz, M.M. [Westinghouse Electric Company LLC, Pittsburgh (United States)

    2009-04-15

    Gas intrusion into Safety Related Systems, such as the Emergency Core Cooling System (ECCS), Decay Heat Removal (DHR) and Containment Spray (CS) in nuclear power plants is undesirable and can lead to pump binding (depending on the void fraction and flow rate) and damaging water hammer events. Gas ingestion in pumps can result in total or momentary loss of hydraulic performance resulting in possible pump shaft seizure rendering the pumps unable to perform their safety functions or reduce the pump discharge pressure and flow capacity to the point that the system cannot perform its design function. Extreme cases of gas water hammer can result in physical damage to system piping, components and supports, and possible relief valve lifting events with consequential loss of inventory. NRC Generic Letter GL 2008 01, 'Managing Gas Accumulation in Emergency Core Cooling, Decay Heat Removal, and Containment Spray Systems,' requires US utilities to demonstrate that suitable design, operational and testing measures are in place to maintain licensing commitments. The Generic Letter (GL 2008 01) outlines a number of actions that are detailed in nature, such as establishing pump void tolerance limits; establishing limits on pump suction void fractions, assuring adequate system venting capability, identification of all possible sources of gas intrusion, preventing vortex formation in tanks, and determining acceptable limits of gas in system discharge piping.. Regarding one of these issues, GL 2008 01 indicates that the amount of gas that can be ingested without significant impact on pump design, gas dispersion and flow rate. Each US nuclear power plant licensee is required to evaluate their ECCS, DHR and CS system design, operation and test procedures to assure that gas intrusion is minimized and monitored in order to maintain system operability and compliance with the requirements of 10 CFR 50 Appendix B. Typically, gas pockets get into the safety related systems through

  15. Licensing systems and inspection of nuclear installations in NEA Member countries. Part 1, Description of licensing systems

    International Nuclear Information System (INIS)

    1977-01-01

    This study provides an assessment of the legislative and regulatory provisions applicable and of the practices followed in the countries concerned and is divided into two separate sections. This document is the first part only. It contains the description of national licensing and inspection systems for nuclear installations in the twenty OECD countries which have specific regulations in this field. Each analysis has been presented following a plan which is as standardised as possible so as to facilitate comparison between the national systems. Part II, which is not included in this document, contains the diagrams illustrating the steps in the licensing procedure and the duties of the bodies involved as well as certain additional documents. It also includes a table showing the sequence of the main steps in the licensing process in the countries covered by this Study

  16. Commercial driver's license (CDL) workflow study : final report.

    Science.gov (United States)

    2016-03-01

    Kentucky uses federally funded, time-limited (FFTL) employees to handle some of the administrative work necessary to : meet federal compliance standards for commercial drivers licenses (CDLs). The Federal Motor Carrier Safety : Administration (FMC...

  17. The USNCR license renewal process

    International Nuclear Information System (INIS)

    Kuo, Pao-Tsin

    2002-01-01

    The US Congress promulgated a law in 1954, entitled 'Atomic Energy Act'. This Act states that operating licenses for commercial nuclear power plants are limited to a fixed term of 40 years, but they may be renewed for a period not to exceed 20 years. The terms were established mainly for economic considerations, not based on technical limitations. The U.S. Nuclear Regulatory Commission (USNRC) published the license renewal rule, Title 10 of the Code of Federal Regulations, Part 54 (10 CFR Part 54), in December, 1991. The rule has since been amended in May, 1995. The underlying principle of the rule is that the regulatory process is adequate for ensuring safety of operating plants. The regulatory process includes NRC's issuance of Orders, Bulletins, Generic Letters, and Information Notices, as well as a number of special inspections in addition to the continuous oversight and routine inspection activities performed by on-site inspectors. Because of this comprehensive regulatory process, compilation of the current license basis or re-verification of the current licensing basis is not considered necessary for a license renewal review. The USNRC also determined on the basis of the findings of its research programs that active structures and components are well maintained by the existing programs. Therefore, the focus of the license renewal review is on passive, long-lived structures and components and on time-limited ageing analyses. The time-limited ageing analyses are for those structures and components which were originally designed to a 40 year service life

  18. Ignalina plant licensing process, international co-operation and assistance

    International Nuclear Information System (INIS)

    Bystedt, P.

    1999-01-01

    The challenge for Lithuania as a country with regained independence was to perform a licensing review in a way never done before in the country and in a time schedule that was extremely short. The work included establishing of the licensing base, strengthening the regulatory authority and organising the technical support, establish and implement a safety improvement program, production of the safety case and review of the safety case, and to derive a conclusion regarding whether to issue a licence or not. This was to be done together with other tasks, such as implementation of modifications included in the safety improvement programme at Ignalina, implementation of a new storage for spent fuel and, most important of all, to manage the operational safety at the plant. The achievements are impressive seen in view of the point of start and in view of the time and resources that have been available. Lithuania has put forward a unique safety documentation of an RBMK reactor and presented an in-depth safety evaluation in full openness to Western experts, giving the unique possibility to compare the safety of the Ignalina reactors to Western standards. The co-operation that has been established between Lithuania and Western experts through different assistance programmes is of outmost value, for all involved parties. Co-operation should continue as one element of the challenges for the future

  19. The Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratski, Z.

    1983-07-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratory to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the primary responsibility for achieving a high standard of safety resides with the licensee. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. The Canadian licensing process is described along with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  20. Product Licenses Database Application

    CERN Document Server

    Tonkovikj, Petar

    2016-01-01

    The goal of this project is to organize and centralize the data about software tools available to CERN employees, as well as provide a system that would simplify the license management process by providing information about the available licenses and their expiry dates. The project development process is consisted of two steps: modeling the products (software tools), product licenses, legal agreements and other data related to these entities in a relational database and developing the front-end user interface so that the user can interact with the database. The result is an ASP.NET MVC web application with interactive views for displaying and managing the data in the underlying database.

  1. Licensing of HTGRs in the United States

    International Nuclear Information System (INIS)

    Fisher, C.R.; Orvis, D.D.

    1981-01-01

    The licensing history of the high-temperature gas-cooled reactor (HTGR) in the United States is given historical perspective. The experience began with the licensing of the Peach Bottom Atomic Power Station and extends to the continuing experience at the Fort St. Vrain Nuclear Generating Station. Additional experience was obtained from the licensing reviews in the mid-1970s of the large HTGR plants that were to be built by Philadelphia Electric Company and Delmarva Power and Light. Also, information was provided by the licensing review of the General Atomic standard plant by the U.S. Nuclear Regulatory Commission (NRC) at about the same time. These experiences are summarized in terms of the principal design criteria that were required by the regulatory authority for each project. These criteria include specification of the design basis accidents that were postulated for the plant safety analysis. Several technical issues raised by the NRC during their review of the large HTGR are presented. (author)

  2. Licensing of HTGRs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, C. R.; Orvis, D. D. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The licensing history of the high-temperature gas-cooled reactor (HTGR) in the United States is given historical perspective. The experience began with the licensing of the Peach Bottom Atomic Power Station and extends to the continuing experience at the Fort St. Vrain Nuclear Generating Station. Additional experience was obtained from the licensing reviews in the mid-1970s of the large HTGR plants that were to be built by Philadelphia Electric Company and Delmarva Power and Light. Also, information was provided by the licensing review of the General Atomic standard plant by the U.S. Nuclear Regulatory Commission (NRC) at about the same time. These experiences are summarized in terms of the principal design criteria that were required by the regulatory authority for each project. These criteria include specification of the design basis accidents that were postulated for the plant safety analysis. Several technical issues raised by the NRC during their review of the large HTGR are presented.

  3. Licensing of MAPLE reactors in Canada

    International Nuclear Information System (INIS)

    Lee, A.G.; Labrie, J.P.; Langman, V.J.

    1999-01-01

    Full text: The Operating Licence for a MAPLE reactor (i.e., a 10 MW(th), pool-type reactor), has been approved by the Atomic Energy Control Board (AECB) on August 16th, 1999. This Operating Licence has been obtained within three years of the initiation of the MDS Nordion Medical Isotopes Reactor (MMIR) project, which entails the design, construction and commissioning of two 10 MW MAPLE reactors at AECL's Chalk River Laboratories. The scope and nature of the information required by the AECB, the licensing process and highlights of the events which led to successfully obtaining the Operating Licence for the MAPLE reactor are discussed. These discussions address all phases of the licensing process (i.e., the environmental assessment in support of siting, the Preliminary Safety Analysis Report, PSAR, in support of design, procurement and construction, the Final Safety Analysis Report, FSAR, in support of commissioning and operations, and the development of suitable quality assurance subprograms for each phase). An overview of some of the unique technical aspects associated with the MAPLE reactors, and how they have been addressed during the licensing process are also provided (e.g., applying CSA N285.0, General Requirements for Pressure-Retaining Systems and Components in CANDU Nuclear Power Plants, to a small, low pressure, low temperature research reactor, confirmation of the performance of the driver fuel via laboratory and/or in-reactor testing, validation of the computer codes used to perform the safety analyses, critical parameter uncertainty assessment, full scale hydraulic testing of the performance of the design, fuel handling, human factors validation, operator training and certification). (author)

  4. Safety Evaluation Report related to the operation of River Bend Station (Docket No. 50-458)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 1 to the Safety Evaluation Report on the application filed by Gulf States Utilities Company as applicant and for itself and Cajun Electric Power Cooperative, as owners, for a license to operate River Bend Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  5. Safety Evaluation Report related to the operation of LaSalle County Station, Units 1 and 2. Docket Nos. 50-373 and 50-374

    International Nuclear Information System (INIS)

    1984-03-01

    This supplement to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located in Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the full power operating license for Unit 2

  6. Licensing of ANSTO's Replacement Research Reactor

    International Nuclear Information System (INIS)

    Summerfield, M.W.; Garea, V.

    2003-01-01

    This paper presents a general description of the licensing of the 20 MW Pool-type Replacement Research Reactor (RRR) currently being built by the Australian Nuclear Science and Technology Organisation (ANSTO) at their Lucas Heights site. The following aspects will be addressed: 1) The influence of ARPANSA's (the Australian regulator) Regulatory Assessment Principles and Design Criteria on the design of the RRR. 2) The Site Licence Application, including the EIS and the supporting siting documentation. 3) The Construction Licence Application, including the PSAR and associated documentation. 4) The review process, including the IAEA Peer Review and the Public Submissions as well as ARPANSA's own review. 5) The interface between ANSTO, INVAP and ARPANSA in relation to the ongoing compliance with ARPANS Regulation 51 and 54. 6) The future Operating Licence Application, including the draft FSAR and associated documentation. These aspects are all addressed from the point of view of the licensee ANSTO and the RRR Project. Particular emphasis will be given to the way in which the licensing process is integrated into the overall project program and how the licensing and regulatory regime within Australia influenced the design of the RRR. In particular, the safety design features that have been incorporated as a result of the specific requirements of ANSTO and the Australian regulator will be briefly described. The paper will close with a description of how the RRR meets, and in many aspects exceeds the requirements of ANSTO and the Australian regulator. (author)

  7. Decontamination and decommissioning project status of the TRIGA Mark II and III in Korea

    International Nuclear Information System (INIS)

    Paik, S.T.; Park, S.K.; Chung, K.W.; Chung, U.S.; Jung, K.J.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO (High-flux Advanced Neutron Application Reactor) at the Korea Atomic Energy Institute (KAERI) in Taejon. Decontamination and decommissioning (D and D) project of TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. The first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is the technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Since and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license in mid 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project. (author)

  8. NRC safety research in support of regulation, FY 1992

    International Nuclear Information System (INIS)

    1993-05-01

    This report, the eighth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1992. A special emphasis on accomplishments in nuclear power plant aging research reflects recognition that a number of plants are entering the final portion of their original 40-year operating licenses and that, in addition to current aging effects, a focus on safety considerations for license renewal becomes timely. The primary purpose of performing regulatory research is to develop and provide the Commission and its staff with the technical bases for regulatory decisions on the safe operation of licensed nuclear reactors and facilities, to find unknown or unexpected safety problems, and to develop data and related information for the purpose of revising the Commission's rules, regulatory guides, or other guidance

  9. Violence prevention and municipal licensing of indoor sex work venues in the Greater Vancouver Area: narratives of migrant sex workers, managers and business owners.

    Science.gov (United States)

    Anderson, Solanna; Jia, Jessica Xi; Liu, Vivian; Chattier, Jill; Krüsi, Andrea; Allan, Sarah; Maher, Lisa; Shannon, Kate

    2015-01-01

    Using a socio-ecological, structural determinants framework, this study assesses the impact of municipal licensing policies and related policing practices across the Greater Vancouver Area (Canada) on the risk of violence within indoor sex work venues. Qualitative interviews were conducted with 46 migrant/immigrant sex workers, managers and owners of licensed indoor sex work establishments and micro-brothels. Findings indicate that policing practices and licensing requirements increase sex workers' risk of violence and conflict with clients and result in heightened stress, an inability to rely on police support, lost income and the displacement of sex workers to more hidden informal work venues. Prohibitive licensing and policing practices prevent sex workers, managers and owners from adopting safer workplace measures and exacerbate health and safety risks for sex workers. This study provides critical evidence of the negative public health implications of prohibitive municipal licensing in the context of a criminalised and enforcement-based approach to sex work. Workplace safety recommendations include the decriminalisation of sex work and the elimination of disproportionately high fees for licences, criminal record restrictions, door lock restrictions, employee registration requirements and the use of police as licensing inspectors.

  10. Role of fission gas release in reactor licensing

    International Nuclear Information System (INIS)

    1975-11-01

    The release of fission gases from oxide pellets to the fuel rod internal voidage (gap) is reviewed with regard to the required safety analysis in reactor licensing. Significant analyzed effects are described, prominent gas release models are reviewed, and various methods used in the licensing process are summarized. The report thus serves as a guide to a large body of literature including company reports and government documents. A discussion of the state of the art of gas release analysis is presented

  11. Methodology and findings of the NRC`s materials licensing process redesign

    Energy Technology Data Exchange (ETDEWEB)

    Rathbun, P.A.; Brown, K.D.; Madera, J.R.; Moriarty, M.; Pelchat, J.M.; Usilton, W.K.; Whitten, J.E.; Vacca, P.C.

    1996-04-01

    This report describes the work and vision of the team chartered to redesign the process for licensing users of nuclear materials. The Business Process Redesign team was chartered to improve the speed of the existing licensing process while maintaining or improving public safety and to achieve required resource levels. The report describes the team`s methods for acquiring and analyzing information about the existing materials licensing process and the steps necessary to radically change this process to the envisioned future process.

  12. Self Assessment for the Safety of Research Reactor in Indonesia

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2008-01-01

    At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. National Nuclear Energy Agency (BATAN) has three research reactor; which are: Reactor Triga Mark II at Bandung, Reactor Kartini at Yogyakarta and Reactor Serbaguna (Multi Purpose Reactor) at Serpong. The Code of Conduct on the Safety of Research Reactors establishes 'best practice' guidelines for the licensing, construction and operation of research reactors. In this paper the author use the requirement in code of conduct to review the safety of research reactor in Indonesia

  13. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial.

    Science.gov (United States)

    da Cruz, Lyndon; Dorn, Jessy D; Humayun, Mark S; Dagnelie, Gislin; Handa, James; Barale, Pierre-Olivier; Sahel, José-Alain; Stanga, Paulo E; Hafezi, Farhad; Safran, Avinoam B; Salzmann, Joel; Santos, Arturo; Birch, David; Spencer, Rand; Cideciyan, Artur V; de Juan, Eugene; Duncan, Jacque L; Eliott, Dean; Fawzi, Amani; Olmos de Koo, Lisa C; Ho, Allen C; Brown, Gary; Haller, Julia; Regillo, Carl; Del Priore, Lucian V; Arditi, Aries; Greenberg, Robert J

    2016-10-01

    The Argus II Retinal Prosthesis System (Second Sight Medical Products, Inc, Sylmar, CA) was developed to restore some vision to patients blind as a result of retinitis pigmentosa (RP) or outer retinal degeneration. A clinical trial was initiated in 2006 to study the long-term safety and efficacy of the Argus II System in patients with bare or no light perception resulting from end-stage RP. Prospective, multicenter, single-arm clinical trial. Within-patient controls included the nonimplanted fellow eye and patients' native residual vision compared with their vision with the Argus II. Thirty participants in 10 centers in the United States and Europe. The worse-seeing eye of blind patients was implanted with the Argus II. Patients wore glasses mounted with a small camera and a video processor that converted images into stimulation patterns sent to the electrode array on the retina. The primary outcome measures were safety (the number, seriousness, and relatedness of adverse events) and visual function, as measured by 3 computer-based, objective tests. Secondary measures included functional vision performance on objectively scored real-world tasks. Twenty-four of 30 patients remained implanted with functioning Argus II Systems at 5 years after implantation. Only 1 additional serious adverse event was experienced after the 3-year time point. Patients performed significantly better with the Argus II on than off on all visual function tests and functional vision tasks. The 5-year results of the Argus II trial support the long-term safety profile and benefit of the Argus II System for patients blind as a result of RP. The Argus II is the first and only retinal implant to have market approval in the European Economic Area, the United States, and Canada. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Are study strategies related to medical licensing exam performance?

    Science.gov (United States)

    West, Courtney; Kurz, Terri; Smith, Sherry; Graham, Lori

    2014-11-02

    To examine the relationship between study strategies and performance on a high stakes medical licensing exam entitled the United States Medical Licensing Examination Step 1. The action research project included seventy nine student participants at the Texas A & M Health Science Center College of Medicine during their pre-clinical education. Data collection included pre-matriculation and matriculation academic performance data, standardized exam data, and the Learning and Study Strategies Instrument. Multiple regression analyses were conducted. For both models, the dependent variable was the Step 1 score, and the independent variables included Medical College Admission Test, Undergraduate Grade Point Average, Year 1 Average, Year 2 Average, Customized National Board of Medical Examiners Average, Comprehensive Basic Science Exam score, and Learning and Study Strategy Instrument sub-scores. Model 2 added Comprehensive Basic Science Self-Assessment average. Concentration (Model 1 - β = .264; Model 2 - β = .254) was the only study strategy correlated with Step 1 performance. The other statistically significant predictors were Customized National Board of Medical Examiners Average (β = .315) and Year 2 Average (β = .280) in Model 1 and Comprehensive Basic Science Self-Assessment Average (β = .338) in Model 2. There does appear to be a relationship between the study strategy concentration and Step 1 licensing exam performance. Teaching students to practice and utilize certain techniques to improve concentration skills when preparing for and taking exams may help improve licensing exam scores.

  15. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board, and Licensing Board decisions issued from July 1, 1972 through March 31, 1986

    International Nuclear Information System (INIS)

    1986-10-01

    A digest is given of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to March 31, 1986, interpreting the NRC's Rules of Practice. Parts of earlier editions and supplements are replaced, and amendments to the Rules of Practice effective through March 31, 1986 are reflected. The material included deals with applications, prehearing matters, hearings, post-hearing matters, appeals, and decisions related to general matters. Decisions are indexed by facility, citation, CFR, statutes, case law, and other legal citations

  16. Safety of pandemic H1N1 vaccines in children and adolescents

    NARCIS (Netherlands)

    E.G. Wijnans (Leonoor); S. de Bie (Sandra); J.P. Dieleman (Jeanne); J. Bonhoeffer (Jan); M.C.J.M. Sturkenboom (Miriam)

    2011-01-01

    textabstractDuring the 2009 influenza A (H1N1) pandemic several pandemic H1N1 vaccines were licensed using fast track procedures, with relatively limited data on the safety in children and adolescents. Different extensive safety monitoring efforts were put in place to ensure timely detection of

  17. Use of modeling in repository licensing

    International Nuclear Information System (INIS)

    McGarry, J.M. III; Echols, F.S.

    1995-01-01

    A review of the regulatory history of the Nuclear Regulatory Commission (NRC) regulations applicable to the licensing of a geologic repository, as well as a review of NRC administrative (licensing) decisions and federal case law, support the NRC's use of simplified models, in appropriate circumstances, which provide well-documented and reasonably conservative bounding assumptions, together with the use of expert judgement, natural analogues, and other aids to supplement available information, in reaching its reasonable assurance determination whether the public health and safety will be adequately protected if the Yucca Mountain, Nevada site should be licensed for development as a geologic repository. Specific examples are provided to assist the reader to better understand how such qualitative concepts as open-quote reasonable assurance close-quote, open-quote reasonably conservative close-quote, and open-quote adequate close-quote protection are used in an administrative context to resolve technical issues

  18. Safety Evaluation Report related to the operation of Hope Creek Generation Station (Docket No. 50-354). Supplement No. 6

    International Nuclear Information System (INIS)

    1986-07-01

    Supplement No. 6 to the Safety Evaluation Report on the application filed by Public Service Electric and Gas Company on its own behalf as co-owner and as agent for the other co-owner, the Atlantic City Electric Company, for a license to operate Hope Creek Generating Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lower Alloways Creek Township in Salem County, New Jersey. This supplement reports the status of certain items that has not been resolved at the time of the publication of the Safety Evaluation Report. This supplement supports the issuance of a full-power license to operate Hope Creek Generating Station

  19. Assessment and management of ageing of major nuclear power plant components important to safety: In-containment instrumentation and control cables. Volume II

    International Nuclear Information System (INIS)

    2000-12-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance, design or manufacturing error) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This publication is one in a series of guidance reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canadian deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), including the Soviet designed 'water moderated and water cooled energy reactors' (WWERs), are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed at technical experts and managers from NPPs and from regulatory, plant design, manufacturing

  20. The roles of EBR-II and TREAT [Transient Reactor Test] in establishing liquid metal reactor safety

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Solbrig, C.W.

    1990-01-01

    This paper examines the role of the Experimental Breeder Reactor II (EBR-II) and Transient Reactor Test (TREAT) facilities in contributing to the understanding and resolution of key safety issues in liquid metal reactor safety during the decade of the 80's. Fuels and materials testing has been carried out to address questions on fuels behavior during steady-state and upset conditions. In addition, EBR-II has conducted plant tests to demonstrate passive response to ATWS events and to develop control and diagnostic strategies for safe operation of advanced LMRs. TREAT and EBR-II complement each other and between them provide a transient testing capability that covers the whole range of concerns during overpower conditions. EBR-II, with use of the special Automatic Control Rod Drive System, can generate power change rates that overlap the lower end of the TREAT capability. 21 refs

  1. The management system for the disposal of radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this Safety Guide is to provide recommendations on developing and implementing management systems for all phases of facilities for the disposal of radioactive waste and related activities. It covers the management systems for managing the different stages of waste disposal facilities, such as siting, design and construction, operation (i.e. the activities, which can extend over several decades, involving receipt of the waste product in its final packaging (if it is to be disposed of in packaged form), waste emplacement in the waste disposal facility, backfilling and sealing, and any subsequent period prior to closure), closure and the period of institutional control (i.e. either active control - monitoring, surveillance and remediation; or passive control - restricted land use). The management systems apply to various types of disposal facility for different categories of radioactive waste, such as: near surface (for low level waste), geological (for low, intermediate and/or high level waste), boreholes (for sealed sources), surface impoundment (for mining and milling waste) and landfill (for very low level waste). It also covers management systems for related processes and activities, such as extended monitoring and surveillance during the period of active institutional control in the post-closure phase, safety and performance assessments and development of the safety case for the waste disposal facility and regulatory authorization (e.g. licensing). This Safety Guide is intended to be used by organizations that are directly involved in, or that regulate, the facilities and activities described in paras 1.15 and 1.16, and by the suppliers of nuclear safety related products that are required to meet some or all of the requirements established in IAEA Safety Standards Series No. GS-R-3 'The Management System for Facilities and Activities'. It will also be useful to legislators and to members of the public and other parties interested in the nuclear

  2. Conduct of regulatory review and assessment during the licensing process for nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Code of Practice on Governmental Organization for the Regulation of Nuclear Power Plants (IAEA Safety Series No. 50-C-G) and is concerned with the review and assessment by the regulatory body of all information submitted in support of licence applications, in the various phases of the licensing process. The purpose of the Guide is to provide information, recommendations and guidance for the conduct of these activities. The scope of the review and assessment will encompass the safety aspects of siting, construction, commissioning, operation and decommissioning of each nuclear power plant

  3. 40 CFR 51.367 - Inspector training and licensing or certification.

    Science.gov (United States)

    2010-07-01

    ...) Public relations; and (ix) Safety and health issues related to the inspection process. (2) If inspector... effects; (ii) The purpose, function, and goal of the inspection program; (iii) Inspection regulations and... control device function, configuration, and inspection; (vi) Test equipment operation, calibration, and...

  4. Safety and environmental aspects of the HYLIFE-II and ARIES fusion reactor designs

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Herring, J.S.

    1993-01-01

    The HYLIFE-II inertial confinement fusion reactor design uses jets of Flibe molten salt to protect the blast chamber walls and to breed tritium. It has a low tritium inventory and effective tritium removal. The issue with this design is not one of safety but of economics. The ARIES reactor designs have safety concerns associated with fires. These reactors designs are described

  5. A study on the safety regulation of byproduct material (II)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Sun; Song, Yang Su [Chosun Univ., Gwangju (Korea, Republic of)

    2000-03-15

    The scope of this study consists of : in relating to the domestic license of byproduct material, a survey of technical criteria and status of regulation in U.S.A., a determination of range of application and contents of byproduct material, a tentative suggestion of related technical criteria and regulatory system. A study was performed about the above topics to establish the safe regulation of byproduct material institutionally, and this can be contributed in establishing the proper domestic technical criteria related.

  6. U.S. licensing process and ABWR certification

    International Nuclear Information System (INIS)

    Quirk, J.F.; Williams, W.A.

    1996-01-01

    Part 50 of Title 10 of the Code of Federal Regulation (CFR) establishes a two-step licensing process by which the U.S. Nuclear Regulatory Committee (NRC) authorizes nuclear reactor plant construction through issuance of a construction permit and authorizes operation by issuance of an operating license. At each stage, the NRC Staff conducts technical reviews and there is potential for public hearings. In 1989, the NRC issued a new, simplified licensing process: Part 52. The purpose of the Part 52 licensing process is to provide a regulatory framework that brings about earlier resolution of licensing issues. Because issues are not resolved early in the Part 50 licensing process, approval of an operating license is not assured until after a significant investment has been made in the plant. Part 52 increases the stability and certainty of the licensing process by providing for the early resolution of safety and environmental issues. The Part 52 licensing process features (1) early site permits, (2) design certification, and (3) combined construction permit and operating licenses. As part of the U.S. Advanced Light Water Reactor (ALWR) Program to revitalize the nuclear option through the integration of government/utility/industry efforts, GE undertook the role of applying for certification for its latest product line, the Advanced Boiling Water Reactor (ABWR), under the U.S. ABWR certification program. The ABWR design is an essentially complete plant. Initial application for design certification was in 1987 under Part 50. GE reapplied in late 1991 under the newly promulgated Part 52. Following seven years of intensive interactions with the NRC and ACRS, GE was awarded the first Final Design Approval (FDA) under Part 52. The Commission initiated rulemaking by publishing the proposed ABWR Certification Rule in the Federal Register in early 1995. Certification is anticipated mid-1996. (J.P.N.)

  7. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Science.gov (United States)

    2011-01-04

    ... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...

  8. Results and implications of the EBR-II inherent safety demonstration tests

    International Nuclear Information System (INIS)

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Betten, P.R.

    1987-01-01

    On April 3, 1986 two milestone tests were conducted in Experimental Breeder Reactor-2 (EBR-II). The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power and in both tests the reactor was shut down by natural processes, principally thermal expansion, without automatic scram, operator intervention or the help of special in-core devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. In a general sense, therefore, the tests plus supporting analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents in metal-fueled LMRs. The results provide a technical basis for future experiments in EBR-II to demonstrate inherent safety for overpower accidents and provide data for validation of computer codes used for design and safety analysis of inherently safe reactor plants

  9. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Energy Technology Data Exchange (ETDEWEB)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  10. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  11. The comparison of license management procedure for nuclear power plant in China and United States

    International Nuclear Information System (INIS)

    Yu Zusheng

    2006-01-01

    'Tow steps' license management procedure for nuclear power plant has been performed bas- ted on the requirement of 10CFR Part50-DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES in United States since last century fifties. In order to ulterior reduce the risk of investment and technical for new construction nuclear power plants, new regulations 'One step' license management procedure-10CFR Part52-EARLY SITE PERMITS; STANDARD DESIGN CERTIFICATIONS; AND COMBINED LICENSES FOR NUCLEAR POWER PLANTS issued in 1989. The new regulations has been adopted by new design of nuclear power plant, for example AP1000. ‘The similar tow steps’ license management procedure for nuclear power plant has been performed basted on the requirement of HAFO01/01 Rules for the Implementation of Regulations on the Safety Regulation for Civilian Nuclear Installations of the People's Re- public of China Part One: Application and Issuance of Safety License for Nuclear Power Plant (December 1993) in China since last century nineties. This article introduces and compares the requirements and characteristics of above license management procedure for nuclear power plant in China and United States. (author)

  12. Small modular reactors: current status, economic aspects and licensing

    International Nuclear Information System (INIS)

    Zimbron E, E.; Puente E, F.

    2014-10-01

    Interest for nuclear energy had resurgence since the beginning of the new century. This was a consequence of the new world conditions and needs: increasing energy demands (mainly from developing countries), awareness of the importance of energetic security and the necessity of limiting carbon emissions. In this nuclear boom, Small Modular Reactors (SMRs) develop and start to consolidate as a viable option for the present energy market. Their modular characteristics, lower initial capital cost, passive safety features and their niche applications, situate them as a technology with various advantages. The following study will present and analysis that will help to comprehend the SMRs present status. Information will show planned reactors, reactors in construction and in operation, advantages and challenges of their implementation, relevant economic aspects and important licensing factors that need to be highlighted. The analysis showed that the SMR technology is still in an initial stage that could reach and important development point in the next ten years. In this period, many of the reactors that are in design stage or that are through their licensing process might be constructed and could be getting ready for a commercial status. On the other hand, it has been observed that there are two main economic factors that need to be considered for any SMRs implementation project. First, the costs (initial, operation, maintenance, fuel and decommissioning) and second their possible niche market applications. Additionally, it has been noted that the licensing process is one of the greatest challenges for SMR general development. Licensing is mainly related to topic such as Emergency Planning Zone, first-of-a-kind engineering, passive safety features, proliferation resistance, multiple module designs and staffing. Previous information will serve as a base for carrying out a feasibility assessment analysis for SMR in Mexico. This part will be the last section of the project

  13. Small modular reactors: current status, economic aspects and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Zimbron E, E. [Instituto Tecnologico de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: erick.zimbron@gmail.com [ININ, Direccion de Investigacion Cientifica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    Interest for nuclear energy had resurgence since the beginning of the new century. This was a consequence of the new world conditions and needs: increasing energy demands (mainly from developing countries), awareness of the importance of energetic security and the necessity of limiting carbon emissions. In this nuclear boom, Small Modular Reactors (SMRs) develop and start to consolidate as a viable option for the present energy market. Their modular characteristics, lower initial capital cost, passive safety features and their niche applications, situate them as a technology with various advantages. The following study will present and analysis that will help to comprehend the SMRs present status. Information will show planned reactors, reactors in construction and in operation, advantages and challenges of their implementation, relevant economic aspects and important licensing factors that need to be highlighted. The analysis showed that the SMR technology is still in an initial stage that could reach and important development point in the next ten years. In this period, many of the reactors that are in design stage or that are through their licensing process might be constructed and could be getting ready for a commercial status. On the other hand, it has been observed that there are two main economic factors that need to be considered for any SMRs implementation project. First, the costs (initial, operation, maintenance, fuel and decommissioning) and second their possible niche market applications. Additionally, it has been noted that the licensing process is one of the greatest challenges for SMR general development. Licensing is mainly related to topic such as Emergency Planning Zone, first-of-a-kind engineering, passive safety features, proliferation resistance, multiple module designs and staffing. Previous information will serve as a base for carrying out a feasibility assessment analysis for SMR in Mexico. This part will be the last section of the project

  14. Development and implementation of setpoint tolerances for special safety systems

    International Nuclear Information System (INIS)

    Oliva, A.F.; Balog, G.; Parkinson, D.G.; Archinoff, G.H.

    1991-01-01

    The establishment of tolerances and impairment limits for special safety system setpoints is part of the process whereby the plant operator demonstrates to the regulatory authority that the plant operates safely and within the defined plant licensing envelope. The licensing envelope represents the set of limits and plant operating state and for which acceptably safe plant operation has been demonstrated by the safety analysis. By definition, operation beyond this envelope contributes to overall safety system unavailability. Definition of the licensing envelope is provided in a wide range of documents including the plant operating licence, the safety report, and the plant operating policies and principles documents. As part of the safety analysis, limits are derived for each special safety system initiating parameter such that the relevant safety design objectives are achieved for all design basis events. If initiation on a given parameter occurs at a level beyond its limit, there is a potential reduction in safety system effectiveness relative to the performance credited in the plant safety analysis. These safety system parameter limits, when corrected for random and systematic instrument errors and other errors inherent in the process of periodic testing or calibration, are then used to derive parameter impairment levels and setpoint tolerances. This paper describes the methodology that has evolved at Ontario Hydro for developing and implementing tolerances for special safety system parameters (i.e., the shutdown systems, emergency coolant injection system and containment system). Tolerances for special safety system initiation setpoints are addressed specifically, although many of the considerations discussed here will apply to performance limits for other safety system components. The first part of the paper deals with the approach that has been adopted for defining and establishing setpoint limits and tolerances. The remainder of the paper addresses operational

  15. Technology Licensing and Firm Innovation

    DEFF Research Database (Denmark)

    Moreira, Solon

    acquisition. The findings indicate that technology licensing is positively related to the number of inventions produced by the licensee in the years subsequent to the licensing deal. Subsequently, I investigate the moderating effect that organizational slack and myopia have on this main relationship....... The findings also suggest that high levels of Organizational Slack (available financial resources) strengthen the positive effect of licensing on innovation. However, higher levels of Organizational Myopia (the extent to which a firm draws on its own knowledge) can decrease the main effect of licensing....

  16. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface

  17. Regulating nuclear and radiation safety in the frame of the Chernobyl shelter Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, V.; Demchyuk, A.; Kilochitska, T.; Redko, V. [State Nuclear Regulatory Committee of Ukraine, SNRCU, Arsenalna St. 9/11, Kyiv (Ukraine); Bogorinski, P. [GRS/IPSN-RISKAUDIT, Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany); Vasilchenko, V.; Erickson, L.; Kadkin, E.; Kondratyev, S.; Kutina, L.; Smyshliaeva, S. [SSTC NRS, Stusa St. 35-37, 03142, Kyiv (Ukraine)

    2003-07-01

    Since 1998 the Shelter Implementation Plan (SIP) has been carried out on the Chernobyl NPP Unit 4 (the object Shelter - OS). The State Nuclear Regulatory Committee of Ukraine (SNRCU) recognizes the exceptional importance of successful and efficient SIP implementation and acts accordingly in regulation, licensing, and inspection. Technical support of the SNRCU in SIP licensing are provided by the State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC) and the SIP Licensing Consultant (LC) representing RISKAUDIT IPSN/GRS International and SCIENTECH, Inc. Support of the SNRCU is also provided by the International Consultative Committee of Regulatory Bodies (ICCRB). ICCRB members represent regulatory authorities from nine European countries, Canada and the U.S. Summarizing the information above, it can be stated that a sound basis has been created for the licensing process for SIP. The approach for using the regulatory base has been determined. It ensures the establishment of safety objectives and gives ChNPP the freedom of optimal choice of specific technical decisions. The License has been issued for OS-related activities and a number of documents have been developed to conduct an effective and high quality authorization process: the Licensing Process; Recommendations on single SSR, Licensing Plan for SIP. The Order of State Safety Supervision for SIP has been approved. Working groups are functioning, whose purposes are to coordinate actions of participants in authorization activities, including ChNPP, SNRCU, and other RA.

  18. Regulating nuclear and radiation safety in the frame of the Chernobyl shelter Implementation Plan

    International Nuclear Information System (INIS)

    Bykov, V.; Demchyuk, A.; Kilochitska, T.; Redko, V.; Bogorinski, P.; Vasilchenko, V.; Erickson, L.; Kadkin, E.; Kondratyev, S.; Kutina, L.; Smyshliaeva, S.

    2003-01-01

    Since 1998 the Shelter Implementation Plan (SIP) has been carried out on the Chernobyl NPP Unit 4 (the object Shelter - OS). The State Nuclear Regulatory Committee of Ukraine (SNRCU) recognizes the exceptional importance of successful and efficient SIP implementation and acts accordingly in regulation, licensing, and inspection. Technical support of the SNRCU in SIP licensing are provided by the State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC) and the SIP Licensing Consultant (LC) representing RISKAUDIT IPSN/GRS International and SCIENTECH, Inc. Support of the SNRCU is also provided by the International Consultative Committee of Regulatory Bodies (ICCRB). ICCRB members represent regulatory authorities from nine European countries, Canada and the U.S. Summarizing the information above, it can be stated that a sound basis has been created for the licensing process for SIP. The approach for using the regulatory base has been determined. It ensures the establishment of safety objectives and gives ChNPP the freedom of optimal choice of specific technical decisions. The License has been issued for OS-related activities and a number of documents have been developed to conduct an effective and high quality authorization process: the Licensing Process; Recommendations on single SSR, Licensing Plan for SIP. The Order of State Safety Supervision for SIP has been approved. Working groups are functioning, whose purposes are to coordinate actions of participants in authorization activities, including ChNPP, SNRCU, and other RA

  19. Relevant aspects in licensing of radioactive installations at petroleum and gas well logging; Aspectos relevantes no licenciamento de instalacoes radiativas em perfilagem de pocos de petroleo ou gas

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Marcia Valeria da E. Sa [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2002-07-01

    The importance of the various factors considered during the process of licensing of radioactive installation for petroleum and gas well logging. This process involves the issuing of some public power acts, the co called Administrative Acts. For the radioactive installations the Administrative Acts are related to the Norm CNEN-NE-6.02 'Licensing of Radioactive Installation'. In the conduction of the licensing of radioactive installation of mobile nuclear measurement devices the safety evaluation of radioactive installation and equipment containing incorporated radiation source are included; certification of radioprotection supervisors; programing and evaluation of the radioprotection inspections; and the conduction of conformal inspection according to the project, safety analysis and audits. An evaluation of the impact of the importance grade attributed to each factor in the optimization of licensing process is related. Finally, the prediction of implantation of a control system for the displacement of radioactive sources in the installation is approached comprehending the up-to-date localization of each source at different work front of the Basis.

  20. Estimation of expenses for low and intermediate level radioactive waste repository project in Croatia up to site license acquisition

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Subasic, D.

    2003-01-01

    The expenses needed for development of low- and intermediate level radioactive waste (LILW) repository project in Croatia include: (a) preliminary activities, (b) preparatory activities, and (c) preparing of environmental impact study. The first group of expenses are referring to the project leading activities, project plan updating, build-up of required infrastructure, preparing of licensing documentation, site investigations, data acquisition programme, pre-operational radio-ecological monitoring, modelling, safety analysis (first iteration) and public related activities. Preparatory activities are referring to purchasing of land for repository and preparatory activities for carrying out of on-site investigations, while third group of expenses are related to preparation and validation of Environmental impact study. It was found out that about 50 % of total expenses refer to build-up of infrastructure. Additional 25 % finances are related to radio-ecological monitoring, site investigations and development of calculations and models, while remaining 25 % of total estimated sum is expected to be spent for repository safety assessment, public relations, purchasing and preparing the on-site terrain for construction, etc. It was calculated 607 EUR per m3 of LILW to be needed up to site license acquisition. According to the world-wide practice, by extrapolating of additional expenses necessary for construction of the repository and acquisition of operational license, it comes out the cost of 1.723 EUR per m3 of LILW for shallow-ground and 2.412 EUR per m3 of LILW for tunnel repository. The estimated expenses for Croatia are within the span of expenses for the same purpose in the countries considered. Expected duration of the project performance up to acquisition of the site license is 4 years and 3 months. (author)

  1. U.S. ALMR safety approach and licensing status

    International Nuclear Information System (INIS)

    Herczeg, J.W.; Hardy, R.W.; Gyorey, G.L.

    1992-01-01

    The Advanced Liquid Metal Cooled Reactor (ALMR) in the United States is based on the Power Reactor Innovative Small Module (PRISM) concept originated by the General Electric Company (GE). This concept features a compact modular system suitable for factory fabrication, and a high degree of passive and natural safety characteristics. The safety approach emphasizes accident prevention, backed up by accident mitigation. First-round safety evaluations by U.S. regulators have found that the design provides passive, natural, and other desirable features enhancing the safety of the power plant. A Preapplication Safety Evaluation Report (PSER) from the U.S. Nuclear Regulatory Commission (NRC) is anticipated in early 1993. (author)

  2. SFR Safety Considerations

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2012-01-01

    Objectives of the Safety and Operation Project: • analysis and experiments that support approaches and assess performance of specific safety features, • development and verification of computational tools and validation of models employed in safety assessment and facility licensing, and • valorisation of reactor operation, from experience and testing in operating SFR plants

  3. Safety-evaluation report related to operation of McGuire Nuclear Station, Units 1 and 2. Docket Nos. 50-369 and 50-370

    International Nuclear Information System (INIS)

    1983-05-01

    This report supplements the Safety Evaluation Report Related to the Operation of McGuire Nuclear Station, Units 1 and 2 (SER (NUREG-0422)) issued in March 1978 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, as applicant and owner, for licenses to operate the McGuire Nuclear Station, Units 1 and 2 (Docket Nos. 50-369 and 50-370). The facility is located in Mecklenburg County, North Carolina, about 17 mi north-northwest of Charlotte, North Carolina. This supplement provides information related to issuance of a full-power authorization for Unit 2. The staff concludes that the McGuire Nuclear Station can be operated by the licensee without endangering the health and safety of the public

  4. The nuclear licensing and supervisory procedures for nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1982-02-01

    A combined system has been developed in the Federal Republic of Germany: the States execute the Atomic Energy Act on behalf of the Federal Government. Despite these differences, the safety requirements and the safety standard achieved vary only insignificantly, as a result of a world-wide communication and of international cooperation. The legal prerequesites for the German nuclear licensing procedures have been established about 20 years ago, and, by a number of amendments have been adapted to new perceptions and developments. Several supplementary ordinances, due to further developments in nuclear technology, are being prepared. The work on associated technical provision, which had been neglected for a long time, has in recent years been tackled systematically and should, before long, lead to a comprehensive programme of safety standards, which simplifies and expedites the nuclear licensing procedures. Essential features of the licensing procedure are the phased structure and the division into intermediate steps which render it possible to adapt the safety requirements to the advancing state of science and technology. The responsible authorities call in experts for the safety verification of the application documents. It is the task of these experts to make assessments and to conduct quality examinations in the manufacturing plants and at the site, and to carry out recurrent tests. The public is involved by the announcement of the projects, the display of the documents and by the opportunity to raise objections during the licensing procedure. Licenses granted can be contested before the administrative courts. This procedure paves the way for the achievement of a satisfactory balance between private and public interests. (orig./HP)

  5. Safety evaluation report related to the operation of River Bend Station (Docket No. 50-458)

    International Nuclear Information System (INIS)

    1984-05-01

    The Safety Evaluation Report for the application filed by the Gulf States Utilities Company, as applicant and owner, for a license to operate the River Bend Station (Docket No. 50-458) has been prepared by the Office of Nuclear Reactor Regulation of US Nuclear Regulatory Commission. The facility is located near St. Francisville, Louisiana. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  6. Safety design guide for safety related systems for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new

  7. Safety design guide for safety related systems for CANDU 9

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A.C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new.

  8. Criteria for safety-related operator actions

    International Nuclear Information System (INIS)

    Gray, L.H.; Haas, P.M.

    1983-01-01

    The Safety-Related Operator Actions (SROA) Program was designed to provide information and data for use by NRC in assessing the performance of nuclear power plant (NPP) control room operators in responding to abnormal/emergency events. The primary effort involved collection and assessment of data from simulator training exercises and from historical records of abnormal/emergency events that have occurred in operating plants (field data). These data can be used to develop criteria for acceptability of the use of manual operator action for safety-related functions. Development of criteria for safety-related operator actions are considered

  9. Outline for embedded topical license renewal industry perspective

    International Nuclear Information System (INIS)

    Gilchrist, Jacqueline

    1991-01-01

    This presentation describes the history of the project, selection of the Lead plant; project management, and project implementation, License renewal application contains: implementation plan; technical specifications and program changes; updated safety analysis report supplement; plant specific exemptions; environmental report update

  10. 47 CFR 22.960 - Cellular unserved area radiotelephone licenses subject to competitive bidding.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular unserved area radiotelephone licenses... (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.960 Cellular... applications for cellular unserved area Phase I and Phase II licenses filed after July 26, 1993 are subject to...

  11. Licensing of the proposed PBMR-SA

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Henderson, N.R.; Hill, T.F.; Keenan, N.H.; Metcalf, P.E.; Mysenkov, A.

    1997-01-01

    This paper describes the preliminary criteria, which are intended to be used by the South African regulatory authority (CNS), for licensing of the ESKOM proposed - South African high temperature gas-cooled Pebble Bed Modular Reactor (PBMR-SA). The CNS intends to apply the existing CNS licensing approach together with some international design criteria used for advanced reactors as well as international experience gained from the safety evaluation of the MHTGR, THTR, etc. A major requirement to this type of reactor is that it should comply with the current CNS risk criteria and provide, as a minimum, the same degree of protection to the operator, public and environment that is required for the current generation of nuclear reactors. (author)

  12. KNK II, Compact Sodium-Cooled Reactor in the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives an overview of the project of the sodium-cooled fast reactor KNK II in the nuclear research center KfK in Karlsruhe. This test reactor was the preparatory stage of the prototype plant SNR 300 and had several goals: to train operating personal, to practice the licensing procedures in Germany, to get experience with the sodium technology and to serve as a test bed for fast breeder core components. The report contains contributions of KfK as the owner and project managing organization, of INTERATOM as the design and construction company and of the KBG as the plant operating organization. Experience with and results of relevant aspects of the project are tackled: project management, reactor core and component design, safety questions and licensing, plant design and test programs [de

  13. Legal aspects of public participation in the planning/licensing of environmentally related large-scale projects

    International Nuclear Information System (INIS)

    Kurz, A.

    1992-02-01

    A variety of legal problems arise in the planning/licensing of environmentally related large-scale projects associated with the control and evaluation of technical conditions and the ramifications in social and legal policy of the acceptance of, and resistance to, such projects. On the basis of a number of partial studies e.g. of the licensing procedure of a nuclear power plant (Neckar-2 reactor), the author examines the legal aspects of public participation in the administrative procedure of licensing/plans approval. The dichotomy of law and technology is covered, and public participation in administrative procedures is derived legally from the basic constitutional rights and the principle of fair hearing. After an outline of specific administrative procedures, public participation as part of administrative procedures is included in the broad legal framework of licensing/plans approval of environmentally related large-scale projects. The author concludes that public participation, within the framework of the basic decisions established by legislature, is not a tool to be used in deciding basic political conflicts. Instead, public participations in the application of law serves to protect the rights of the individual by ensuring fair proceedings paying attention to the subjective rights of the individual. As it is unable to decide political conflicts, it is also an unsuitable means of establishing of basic societal consensus, or of seeking acceptance of large-scale projects. This is reflected also in studies of the legal functions of public participation, according to which the lawfulness of procedures is observed without, however, the legitimacy of the project being achieved. (orig./HP) [de

  14. Safety technical considerations on the 2012 periodic safety verification of the Beznau nuclear power plant

    International Nuclear Information System (INIS)

    2016-12-01

    According to nuclear legislation, the owner of an operational license for a nuclear power plant has to provide a periodic safety verification (PSU) every 10 years. The 'North Eastern Power Plants' company (NOK), today AXPO Power AG already performed such a PSU for the Beznau-2 nuclear reactor block (KKB2) in 2002. The Beznau-1 nuclear reactor block (KKB1) received its definitive operational license in October 1970, after test operation during 7 months. After the license for test operation received on July 16 th , 1971, the operational license of KKB2 was renewed several times, each time for a certain period of validity. In 1991, NOK requested a definitive operational license for KKB2, but in 1994 the Swiss Federal Council lengthened the license for only 10 years. Moreover, it laid down that NOK has to periodically report on the safety of the facility. With its letter of August 23 rd , 1998, the Federal Office of Energy defined the documents to be produced for the PSU. The extent of the PSU was defined in such a way that many documents concern the whole power plant, i.e. both nuclear reactor blocks. On December 3 rd , 2004, the Swiss Federal Council granted KKB2 an operational license of limited validity. The present report reviews the 2012 PSU, which covers the time interval from January 1 st , 2002, to December 31 st , 2011, from the point of view of safety. It contains documents for the evaluation of both reactor blocks at KKB. The Beznau interim storage pool was also taken into consideration; it is situated on the KKB site, but, according to a decision of the Swiss Federal Council of May 23 rd , 1991, it has an independent operational license. The evaluation of ageing surveillance takes the whole operational period of the facility into account, i.e. the ageing mechanisms acting as from the beginning of the operation. Moreover, important developments that occurred after the surveillance time interval have been taken into account, especially the status

  15. Safety regulations concerning instrumentation and control systems for research reactors

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.

    2009-01-01

    A brief study on the safety and reliability issues related to instrumentation and control systems in nuclear reactor plants is performed. In response, technical and strategic issues are used to accomplish instrumentation and control systems safety. For technical issues there are ; systems aspects of digital I and C technology, software quality assurance, common-mode software, failure potential, safety and reliability assessment methods, and human factors and human machine interfaces. The strategic issues are the case-by-case licensing process and the adequacy of the technical infrastructure. The purpose of this work was to review the reliability of the safety systems related to these technical issues for research reactors

  16. Licensing of the OPAL reactor during construction and commissioning

    International Nuclear Information System (INIS)

    Summerfield, M.

    2007-01-01

    This paper presents a description of the licensing activities associated with the construction and commissioning of the Australian Nuclear Science and Technology Organisation's (ANSTO) OPAL reactor. It addresses the Construction Licence, the interface between ANSTO, INVAP (the contractor with responsibility for design and construction of the facility) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA, the Australian nuclear regulator) during the construction of OPAL, specific licensing issues that have arisen during the construction and commissioning process, and the Operating Licence Application. Particular emphasis will be given to the way in which the licensing process is integrated into the overall project program and the lessons learnt that may be of benefit to other licensees and regulators

  17. Risk-assessment techniques and the reactor licensing process

    International Nuclear Information System (INIS)

    Levine, S.

    1979-01-01

    A brief description of the Reactor Safety Study (WASH-1400), concentrating on the engineering aspects of the contribution to reactor accident risks is followed by some comments on how we have applied the insights and techniques developed in this study to prepare a program to improve the safety of nuclear power plants. Some new work we are just beginning on the application of risk-assessment techniques to stablize the reactor licensing process is also discussed

  18. Five-year safety and performance results from the Argus II Retinal Prosthesis System clinical trial

    Science.gov (United States)

    da Cruz, Lyndon; Dorn, Jessy D.; Humayun, Mark S.; Dagnelie, Gislin; Handa, James; Barale, Pierre-Olivier; Sahel, José-Alain; Stanga, Paulo E.; Hafezi, Farhad; Safran, Avinoam B.; Salzmann, Joel; Santos, Arturo; Birch, David; Spencer, Rand; Cideciyan, Artur V.; de Juan, Eugene; Duncan, Jacque L.; Eliott, Dean; Fawzi, Amani; Olmos de Koo, Lisa C.; Ho, Allen C.; Brown, Gary; Haller, Julia; Regillo, Carl; Del Priore, Lucian V.; Arditi, Aries; Greenberg, Robert J.

    2016-01-01

    Purpose The Argus® II Retinal Prosthesis System (Second Sight Medical Products, Inc., Sylmar, CA) was developed to restore some vision to patients blind from retinitis pigmentosa (RP) or outer retinal degeneration. A clinical trial was initiated in 2006 to study the long-term safety and efficacy of the Argus II System in patients with bare or no light perception due to end-stage RP. Design The study is a prospective, multicenter, single-arm, clinical trial. Within-patient controls included the non-implanted fellow eye and patients' native residual vision compared to their vision when using the System. Subjects There were 30 subjects in 10 centers in the U.S. and Europe. Methods The worse-seeing eye of blind patients was implanted with the Argus II System. Patients wore glasses mounted with a small camera and a video processor that converted images into stimulation patterns sent to the electrode array on the retina. Main Outcome Measures The primary outcome measures were safety (the number, seriousness, and relatedness of adverse events) and visual function, as measured by three computer-based, objective tests. Secondary measures included functional vision performance on objectively-scored real-world tasks. Results Twenty-four out of 30 patients remained implanted with functioning Argus II Systems at 5 years post-implant. Only one additional serious adverse event was experienced since the 3-year time point. Patients performed significantly better with the System ON than OFF on all visual function tests and functional vision tasks. Conclusions The five-year results of the Argus II trial support the long-term safety profile and benefit of the Argus II System for patients blind from RP. The Argus II is the first and only retinal implant to have market approval in the European Economic Area, the United States, and Canada. PMID:27453256

  19. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  20. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail