WorldWideScience

Sample records for ii drilling initiative

  1. Predicted Geology of the Pahute Mesa-Oasis Valley Phase II Drilling Initiative

    International Nuclear Information System (INIS)

    2009-01-01

    Pahute Mesa-Oasis Valley (PM-OV) Phase II drilling will occur within an area that encompasses approximately 117 square kilometers (45 square miles) near the center of the Phase I PM-OV hydrostratigraphic framework model area. The majority of the investigation area lies within dissected volcanic terrain between Pahute Mesa on the north and Timber Mountain on the south. This area consists of a complex distribution of volcanic tuff and lava of generally rhyolitic composition erupted from nearby calderas and related vents. Several large buried volcanic structural features control the distribution of volcanic units in the investigation area. The Area 20 caldera, including its structural margin and associated caldera collapse collar, underlies the northeastern portion of the investigation area. The southern half of the investigation area lies within the northwestern portion of the Timber Mountain caldera complex, including portions of the caldera moat and resurgent dome. Another significant structural feature in the area is the west-northwest-trending Northern Timber Mountain moat structural zone, which bisects the northern portion of the investigation area and forms a structural bench. The proposed wells of the UGTA Phase II drilling initiative can be grouped into four generalized volcanic structural domains based on the stratigraphic distribution and structural position of the volcanic rocks in the upper 1,000 meters (3,300 feet) of the crust, a depth that represents the approximate planned total depths of the proposed wells

  2. Development and Testing of a Jet Assisted Polycrystalline Diamond Drilling Bit. Phase II Development Efforts

    Energy Technology Data Exchange (ETDEWEB)

    David S. Pixton

    1999-09-20

    Phase II efforts to develop a jet-assisted rotary-percussion drill bit are discussed. Key developments under this contract include: (1) a design for a more robust polycrystalline diamond drag cutter; (2) a new drilling mechanism which improves penetration and life of cutters; and (3) a means of creating a high-pressure mud jet inside of a percussion drill bit. Field tests of the new drill bit and the new robust cutter are forthcoming.

  3. Initial Report on MexiDrill: The Basin of Mexico Drilling Program

    Science.gov (United States)

    Brown, Erik; Werne, Josef; Caballero, Margarita; Cabral, Enrique; Fawcett, Peter; Lozano, Socorro; Morales, Eric; Myrbo, Amy; Noren, Anders; O'Grady, Ryan; Ortega, Beatriz; Perez, Liseth; Schnurrenberger, Doug; Schwalb, Antje; Smith, Victoria; Steinman, Byron; Stockhecke, Mona; Valero, Blas; Watt, Sebastian

    2016-04-01

    The Basin of Mexico (19°30'N, 99°W, 9600 km2, 2240 m asl) is a hydrologically-closed basin in the TransMexican Volcanic Belt. The emergence of the Chichinautzin volcanic field after ~780 ka is linked to basin closure and initiation of the development of a lake system within the basin. Continued subsidence accommodated accumulation of a long lacustrine sediment sequence. Radiocarbon chronologies indicate sedimentation rates of ~40 cm/kyr since ~40ka; application of this rate to the entire lacustrine sequence suggests a basal age of ~800 ka, consistent with the Chichinautzin volcanic age. To investigate the environmental history contained in Basin of Mexico sediments, the MexiDrill Program recovered a long lacustrine sedimentary sequence contained in the Lake Chalco basin on the southern outskirts of Mexico City. These sediments have the potential to provide a >500,000 year record of North American climate. Chalco is well suited for reconstruction and investigation of interannual through orbital-scale variations in the North American Monsoon and hydrologic variations of the neotropics. Ongoing work suggests that the system records environmental responses to both Milankovitch- and millennial-scale climate forcing.

  4. NanoDrill: 1 Actuator Core Acquisition System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build, and test a sample acquisition drill weighing less than 1 kg. The drill uses a novel method of core or powder acquisition, and is...

  5. Emplacement hole drill evaluation and specification study. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-30

    This appendix contains pertinent data sheets, drawings, and photographs provided by the drill manufacturers Acker Drill Co, Calweld, Dresser Industries, Gus Pech, Hughes Tool, Ingersoll-Rand, Robbins, and Subterranean Tools.

  6. Extreme Temperature Motor and Drill System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the need for motors, actuators and drilling systems that can operate in the harsh venusian environment for extended periods of time, on the order of...

  7. 77 FR 51825 - Certain Drill Bits and Products Containing Same; Determination To Review an Initial Determination...

    Science.gov (United States)

    2012-08-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-844] Certain Drill Bits and Products Containing Same; Determination To Review an Initial Determination; on Review, Affirmance of Grant of Summary... determined to review an initial determination (``ID'') (Order No. 9) of the presiding administrative law...

  8. Thermal and mineralogical characterization of drill cuttings from north capixaba: initial studies

    International Nuclear Information System (INIS)

    Fialho, P.F.; Goncalves, G. dos R.; Calmon, J.L.; Tristao, F.A.; Nunes, E.; Cunha, A.G.

    2011-01-01

    The drilling of oil wells generates various wastes among which are the cuttings and drilling fluids. The management of these wastes have been a problem for the oil and gas industry because of the amount generated and its contaminants, which can be organic and inorganic. This paper presents initial studies of thermal and mineralogical characterization of the drill cuttings from oil wells and gas in Southeast Brazilian, state of Espirito Santo with aim of reuse them as raw material in building materials. Characterizations were performed physical, thermal and mineralogical by particle size distribution, thermogravimetric analysis, differential scanning calorimetry and X-ray diffraction. The results indicate that there are potential replacements of natural raw materials or drill cuttings in the production of building materials. (author)

  9. Auto-Gopher-II: an autonomous wireline rotary-hammer ultrasonic drill

    Science.gov (United States)

    Badescu, Mircea; Lee, Hyeong Jae; Sherrit, Stewart; Bao, Xiaoqi; Bar-Cohen, Yoseph; Jackson, Shannon; Chesin, Jacob; Zacny, Kris; Paulsen, Gale L.; Mellerowicz, Bolek; Kim, Daniel

    2017-04-01

    Developing technologies that would enable future NASA exploration missions to penetrate deeper into the subsurface of planetary bodies for sample collection is of great importance. Performing these tasks while using minimal mass/volume systems and with low energy consumption is another set of requirements imposed on such technologies. A deep drill, called Auto-Gopher II, is currently being developed as a joint effort between JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher II is a wireline rotary-hammer drill that combines formation breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted auger bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that has been developed as an adaptable tool for many drilling and coring applications. The USDC uses an intermediate free-flying mass to transform high frequency vibrations of a piezoelectric transducer horn tip into sonic hammering of the drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher and then integrated into a rotary hammer device to develop the Auto-Gopher-I. The lessons learned from these developments are being integrated into the development of the Auto- Gopher-II, an autonomous deep wireline drill with integrated cuttings and sample management and drive electronics. Subsystems of the wireline drill are being developed in parallel at JPL and Honeybee Robotics Ltd. This paper presents the development efforts of the piezoelectric actuator, cuttings removal and retention flutes and drive electronics.

  10. Initial yield to depth relation for water wells drilled into crystalline bedrock - Pinardville quadrangle, New Hampshire

    Science.gov (United States)

    Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.

    2001-01-01

    A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.

  11. Hawaii Geothermal Project initial Phase II progress report, February 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    Additional gravity, seismic, and electrical surveys were conducted; water and rock samples were collected; and analysis and interpretation of data has proceeded. The engineering program has expanded its earlier work on mathematical and physical modeling of geothermal reservoirs; continued with the analysis of liquid-dominated geothermal systems; and initiated studies on geothermal well testing. An environmental assessment statement of HGP No. 1 was prepared and baselines established for crucial environmental parameters. Economic, legal, and regulatory studies were completed and alternatives identified for the development of geothermal power in Hawaii. The Drilling Program has provided assistance in contract negotiations, preparation of the drilling and testing programs, and scientific input to the drilling operation. (MHR)

  12. Hawaii Geothermal Project: initial Phase II progress report

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    Results of Phase I of the Hawaii Geothermal Project (HGP), which consisted of a two-year study on the potential of geothermal energy for the Big Island of Hawaii, are reviewed. One conclusion from Phase I was that preliminary results looked sufficiently encouraging to warrant the drilling of the first experimental geothermal well in the Puna area of the Big Island. During the first two months of drilling, parallel activity has continued in all research and support areas. Additional gravity, seismic, and electrical surveys were conducted; water and rock samples were collected; and analysis and interpretation of data has proceeded. Earlier work on mathematical and physical modeling of geothermal reservoirs was expanded; analysis of liquid-dominated geothermal systems continued; and studies on testing of geothermal wells were initiated. An environmental assessment statement of HGP No. 1 was prepared and baselines established for crucial environmental parameters. Economic, legal, and regulatory studies were completed and alternatives identified for the development of geothermal power in Hawaii. Early stages of the drilling program proceeded slowly. The initial 9 7/8-inch drill hole to 400 feet, as well as each of the three passes required to open the hole to 26 inches, were quite time consuming. Cementing of the 20-inch surface casing to a depth of 400 feet was successfully accomplished, and drilling beyond that depth has proceeded at a reasonable rate. Penetration below the surface casing to a depth of 1050 feet was accomplished at a drilling rate in excess of 150 feet per day, with partial circulation over the entire range.

  13. Initial proto II pulsed power tests

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1976-01-01

    The Proto II electron beam accelerator is being developed by Sandia Laboratories to study engineering and physics aspects of electron beam pellet fusion. Currently the Marx generator-water capacitor portion of Proto II is undergoing high voltage testing and timing measurements. Eight 112 kJ Marx generators form the primary energy storage system. Each Marx generator pulse charges two parallel 7.5 nF water capacitors to 3 MV. The water capacitors act as intermediate energy storage elements and will transfer their energy to the water insulated pulse-forming lines in 250 ns by means of eight SF 6 gas insulated, trigatron switches. Test data and design considerations of the trigger systems, Marx generators, water capacitors, and trigatron switches are presented

  14. Analysis on the nitrogen drilling accident of Well Qionglai 1 (II: Restoration of the accident process and lessons learned

    Directory of Open Access Journals (Sweden)

    Yingfeng Meng

    2015-12-01

    Full Text Available All the important events of the accident of nitrogen drilling of Well Qionglai 1 have been speculated and analyzed in the paper I. In this paper II, based on the investigating information, the well log data and some calculating and simulating results, according to the analysis method of the fault tree of safe engineering, the every possible compositions, their possibilities and time schedule of the events of the accident of Well Qionglai 1 have been analyzed, the implications of the logging data have been revealed, the process of the accident of Well Qionglai 1 has been restored. Some important understandings have been obtained: the objective causes of the accident is the rock burst and the induced events form rock burst, the subjective cause of the accident is that the blooie pipe could not bear the flow burden of the clasts from rock burst and was blocked by the clasts. The blocking of blooie pipe caused high pressure in wellhead, the high pressure made the blooie pipe burst, natural gas came out and flared fire. This paper also thinks that the rock burst in gas drilling in fractured tight sandstone gas zone is objective and not avoidable, but the accidents induced from rock burst can be avoidable by improving the performance of the blooie pipe, wellhead assemblies and drilling tool accessories aiming at the downhole rock burst.

  15. Effect of machining damage on low cycle fatigue crack initiation life in drilled holes in UdimetRTM 720

    Science.gov (United States)

    Magadanz, Christine M.

    White layer is a generic term for a light etching surface layer on metal alloys that can result under extreme deformation conditions in wear, sliding or machining. While there has been some characterization of white layer due to abusive machining, the specific effect on fatigue crack initiation life has not been well documented. This study aimed to establish a relationship between the presence of white layer due to abusive machining and fatigue crack initiation life in a wrought nickel based superalloy (Udimet ® 720). Low cycle fatigue testing was conducted on large specimens containing through holes drilled with parameters aimed at creating holes with and without white layer. Initially, Acoustic Emission monitoring technologies were used to monitor for acoustic events associated with crack initiation, however, this technology was deemed unreliable for this testing. Instead, cycles to crack initiation was determined using striation density measurements on each fracture surface to estimate the number of cycles of crack propagation, which was subtracted from the total number of cycles for the specimen. A total of sixteen specimens were tested in this manner. The results suggested that the crack initiation lives of holes machined with good machining parameters were statistically longer than crack initiation lives of holes machined with poor machining parameters. The mean initiation life of the poorly machined specimens was a factor of approximately 2 times shorter than the mean initiation life of the well machined specimens. The holes machined with good machining parameters exhibited subsurface initiations which suggested that no anomalies affected crack initiation for these specimens. It was also shown that some of the poorly machined holes exhibited subsurface initiations rather than initiations at white layer damage. These holes had better surface finish than the poorly machined specimens that did fail at white layer. The mean initiation life of the poorly

  16. 76 FR 50173 - Drill Pipe From the People's Republic of China: Initiation of Anti-circumvention Inquiry

    Science.gov (United States)

    2011-08-12

    ... the pipe to the tools joints, and then exports them to Hilong USA, which enters and sells the drill... that Hilong USA has imported merchandise identical to that which is subject to the Drill Pipe Orders.\\8... proprietary information, Hilong USA imports drill pipe as having been finished in the UAE and is, thus, able...

  17. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    Science.gov (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in

  18. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  19. Electrodril system field test program. Phase II, task B: deep drilling system demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-15

    The effort included the design, fabrication and Systems Verification Testing of the Deep Drilling System. The Systems Verification Test was conducted during October 1978 in a test well located on the premises of Brown Oil Tools Inc., Houston, Texas. In general, the Systems Verification test program was an unqualified success. All of the system elements of the Deep Drilling System were exercised and evaluated and in every instance the system can be declared ready for operational well demonstration. The motor/bit shaft combination operated very well and seal performance exceeds the design goals. The rig floor system performed better than expected. The power cable flexural characteristics are much better than anticipated and longitudinal stability is excellent. The prototype production connectors have functioned without failure. The cable reels and drive skid have also worked very well during the test program. The redesigned and expanded instrumentation subsystem also functioned very well. Some electronic component malfunctions were experienced during the early test stages, but they were isolated quickly and repaired. Subsequent downhole instrumentation deployments were successfully executed and downhole data was displayed both in the Electrodril instrumentation trailer and on the remote control and display unit.

  20. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale R. [Atlas-Copco Secoroc, LLC, Fagersta (Sweden)

    2017-05-01

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.

  1. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  2. Drilling, construction, and caliper-log data for wells 3-3406-14 and -15, Helemano exploratory wells I and II, Oahu, Hawaii

    Science.gov (United States)

    Presley, T.K.; Oki, D.S.

    1996-01-01

    The Helemano exploratory wells I and II (State well numbers 3-3406-14 and -15) were drilled near Weed Circle, about 3,000 feet south of the town of Haleiwa. The wells are located on agricultural land in the Waialua ground-water area. The wells penetrate through sedimentary deposits (caprock) and into a basalt aquifer. Both wells have short open intervals cased with well screen at the bottom of the hole, and are cased and sealed through the caprock and basalt to the well screen. The shallow well, Helemano exploratory well I, penetrates about 10 feet into the basalt aquifer below the contact of the caprock and basalt. The deep well, Helemano exploratory well II, penetrates about 210 feet into the basalt aquifer. The deep well has a 20-foot open interval at the bottom. Well construction data, logs of drilling notes, geologic descriptions for drill samples, and caliper-log data are presented for the wells. The wells are two of twelve exploratory wells drilled in the north-central Oahu area between July 1993 and May 1994 in cooperation with the Honolulu Board of Water Supply.

  3. CT-guided bone biopsy: Initial experience with a commercially available hand held Black and Decker drill.

    Science.gov (United States)

    Buckley, O; Benfayed, W; Geoghegan, T; Al-Ismail, K; Munk, P L; Torreggiani, William C

    2007-01-01

    To describe the use of a simple commercially available Black and Decker hand based drill in performing CT-guided bone biopsies. Three international institutions were enrolled in the study. In each centre, a fellowship trained musculoskeletal radiologist directed the assessment of a hand based commercial drill for performing CT-guided bone biopsies. A specially designed component was engineered which allowed the connection of a standard bone biopsy set to a commercial drill. The component was distributed to the three centres involved. Over a 3-year period, data from all three institutions was collected. Information regarding technical success, diagnostic data and complication rates were all collated to assess the technical feasibility of this technique. In total 68 patients underwent bone biopsy using a hand held commercial drill. Technical success was achieved in 65 patients. Diagnostic material was obtained in 53 patients. Non-diagnostic material was obtained in 12 patients. Five out of the 12 patients with non-diagnostic material had repeat biopsies with diagnostic material obtained in 2 of these. No major complications occurred in any patient. CT-guided bone biopsy using a hand held commercial drill has a technically high success rate with minimal complications.

  4. NSLS-II injector commissioning and initial operation

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, B.; Blum, E.; Bassi, B.; Bengtsson, J.; Blednykh, A.; Buda, S.; Cheng, W.; Choi, J.; Cuppolo, J.; D Alsace, R.; Davidsaver, M.; DeLong, J.; Doom, L.; Durfee, d.; fliller, R.; Fulkerson, M.; Ganetis, G.; Gao, F.; Gardner, C.; Guo, W.; Heese, R.; Hidaka, Y.; Hu, Y.; Johanson, M.; Kosciuk, B.; Kowalski, S.; Dramer, S.; Krinsky, S.; Li, Y.; Louie, W.; Maggipinto, M.; Marino, P.; Mead, J.; Oliva, G.; Padrazo, D.; Pedersen, K.; Podobedov, B.; Rainer, R.; Rose, J.; Santana, M.; Seletskiy, S.; Shaftan, T.; Singh, O.; Singh, P.; Smalyuk, V.; Smith, R.; Summers, T.; Tagger, J.; Tian, Y.; Wahl, W.; Wang, G.; Weiner, G.; Willeke, F.; Yang, L.; Yang, X.; Zeitler, E.; Zitvogel, E.; Zuhoski, P.

    2015-05-03

    The injector for the National Synchrotron Light Source II (NSLS-II) storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle in a train of bunches up to 300 ns long. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC, this has proven to be more than sufficient for storage ring commissioning and operation. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of linac and booster operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.

  5. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  6. Electrodril system field test program. Phase II: Task C-1-deep drilling system demonstration. Final report for Phase II: Task C-1

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P D

    1981-04-01

    The Electrodril Deep Drilling System field test demonstrations were aborted in July 1979, due to connector problems. Subsequent post test analyses concluded that the field replacable connectors were the probable cause of the problems encountered. The designs for both the male and female connectors, together with their manufacturing processes, were subsequently modified, as was the acceptance test procedures. A total of nine male and nine female connectors were manufactured and delivered during the 2nd Quarter 1980. Exhaustive testing was then conducted on each connector as a precursor to formal qualification testing conducted during the month of October 1980, at the Brown Oil Tool test facility located in Houston, Texas. With this report, requirements under Phase II, Task C-1 are satisfied. The report documents the results of the connector qualification test program which was successfully completed October 28, 1980. In general, it was concluded that connector qualification had been achieved and plans are now in progress to resume the field test demonstration program so that Electrodril System performance predictions and economic viability can be evaluated.

  7. Discharge initiation experiments in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Shepard, D.A.

    1984-01-01

    Experiments in the Tokapole II tokamak demonstrate the benefits of high density (n/sub e//n/sub o/ greater than or equal to 0.01) preionization by reducing four quantities at startup: necessary toroidal loop voltage (V 1 ) (50%), volt-second consumption (40-50%), impurity radiation (25-50%), and runaway electron production (approx. 80-100%). A zero-dimensional code models the loop voltage reduction dependence on preionization density and predicts a similar result for reactor scale devices. The code shows low initial resistivity and a high resistivity time derivative contribute to loop voltage reduction. Microwaves at the electron cyclotron resonance (ECR) frequency and plasma gun injection produce high density preionization, which reduces the initial V 1 , volt-second consumption, and runaways. The ECR preionization also reduces impurity radiation by shortening the time from voltage application to current channel formation. This, evidently, reduces the total plasma-wall interaction at startup. The power balance of the ECR plasma in a toroidal-field-only case was studied using Langmuir probes and impurity doping. The vertical electric field and current, which result from curvature drift, were measured as approx. 10 V/cm and 50 amps, respectively, and exceeded expected values for the bulk electron temperature (approx. 10 eV)

  8. Breckinridge Project, initial effort. Report II. Breckinridge Project design basis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The Breckinridge Project is a pioneer endeavor involving the engineering, construction, and operation of a commercial facility that will convert 23,000 tons per day of run-of-mine, high-sulfur coal into 50,000 barrels per day of liquid hydrocarbons equivalent to those produced from crude oil. The Initial Effort, now complete, was executed under Cooperative Agreement No. DE-FC05-80OR20717 between the Department of Energy and the Participants, Ashland Synthetic Fuels, Inc., and Airco Energy Company, Inc. The Initial Effort produced a preliminary design, capital estimate, and economic analysis of the commercial plant, as well as a plan for the design, construction, and operation of that plant. The extensive and rigorous attention given to environmental, socioeconomic, safety, and health considerations is indicative of the high priority these issues will continue to receive throughout the life of the project. The Breckinridge Energy Company, a partnership of several major corporations, is being formed to finance, own, and manage the Breckinridge Project. Report II is intended for the reader who is primarily interested in less detailed discussion of the coal liquefaction process and Breckinridge facility than presented in the eleven volumes of Reports IV and V. The overview section describes the project goals and briefly introduces the coal liquefaction process. The report continues with a discussion of the history of the project and the H-COAL process from its concept to the proposed commercialization technology. The report describes the site, the Breckinridge Facility, and concludes with a summary of the eleven reports that contain the deliverable documentation of the Initial Effort or Development Phase of the project.

  9. Fracture of a Tempofilter II: an Initial Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jun; Chang, Nam Kyu; Lim, Jae Hoon; Kim, Jae Kyu [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2011-10-15

    Tempofilter II is a device that is used for pulmonary embolism prophylaxis. Since the appearance of the Tempofilter II following withdrawal of the Tempofilter I, it has been reported that the Tempofilter II is safe, effective and useful. Here we report on the first case of a fracture of one leg of the filter and this leg was embedded in the inferior vena cava wall in a 62-year-old man with deep vein thrombosis.

  10. Drilling force and temperature of bone under dry and physiological drilling conditions

    Science.gov (United States)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  11. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project

    Science.gov (United States)

    Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.

    1996-01-01

    We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also

  12. Land - Ocean Climate Linkages and the Human Evolution - New ICDP and IODP Drilling Initiatives in the East African Rift Valley and SW Indian Ocean

    Science.gov (United States)

    Zahn, R.; Feibel, C.; Co-Pis, Icdp/Iodp

    2009-04-01

    The past 5 Ma were marked by systematic shifts towards colder climates and concomitant reorganizations in ocean circulation and marine heat transports. Some of the changes involved plate-tectonic shifts such as the closure of the Panamanian Isthmus and restructuring of the Indonesian archipelago that affected inter-ocean communications and altered the world ocean circulation. These changes induced ocean-atmosphere feedbacks with consequences for climates globally and locally. Two new ICDP and IODP drilling initiatives target these developments from the perspectives of marine and terrestrial palaeoclimatology and the human evolution. The ICDP drilling initiative HSPDP ("Hominid Sites and Paleolakes Drilling Project"; ICDP ref. no. 10/07) targets lacustrine depocentres in Ethiopia (Hadar) and Kenya (West Turkana, Olorgesailie, Magadi) to retrieve sedimentary sequences close to the places and times where various species of hominins lived over currently available outcrop records. The records will provide a spatially resolved record of the East African environmental history in conjunction with climate variability at orbital (Milankovitch) and sub-orbital (ENSO decadal) time scales. HSPDP specifically aims at (1) compiling master chronologies for outcrops around each of the depocentres; (2) assessing which aspects of the paleoenvironmental records are a function of local origin (hydrology, hydrogeology) and which are linked with regional or larger-scale signals; (3) correlating broad-scale patterns of hominin phylogeny with the global beat of climate variability and (4) correlating regional shifts in the hominin fossil and archaeological record with more local patterns of paleoenvironmental change. Ultimately the aim is to test hypotheses that link physical and cultural adaptations in the course of the hominin evolution to local environmental change and variability. The IODP initiative SAFARI ("Southern African Climates, Agulhas Warm Water Transports and Retroflection

  13. Rural Community College Initiative II. Economic Development. AACC Project Brief.

    Science.gov (United States)

    Eller, Ronald; Martinez, Ruben; Pace, Cynthia; Pavel, Michael; Garza, Hector; Barnett, Lynn

    This report addresses the Rural Community College Initiative (RCCI) from the American Association of Community Colleges, which seeks to enhance the capacity of targeted community colleges to expand access to postsecondary education and help foster regional economic development. The Ford Foundation has made a decade-long commitment to community…

  14. Quantum quenches in the thermodynamic limit. II. Initial ground states

    Science.gov (United States)

    Rigol, Marcos

    2014-09-01

    A numerical linked-cluster algorithm was recently introduced to study quantum quenches in the thermodynamic limit starting from thermal initial states [M. Rigol, Phys. Rev. Lett. 112, 170601 (2014), 10.1103/PhysRevLett.112.170601]. Here, we tailor that algorithm to quenches starting from ground states. In particular, we study quenches from the ground state of the antiferromagnetic Ising model to the XXZ chain. Our results for spin correlations are shown to be in excellent agreement with recent analytical calculations based on the quench action method. We also show that they are different from the correlations in thermal equilibrium, which confirms the expectation that thermalization does not occur in general in integrable models even if they cannot be mapped to noninteracting ones.

  15. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part I: Impact of Salinity, Initial pH and Initial Zn(II Concentration in Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available The sorption of inorganic elements on carbonate minerals is well known in strictly controlled conditions which limit the impact of other phenomena such as dissolution and/or precipitation. In this study, we evidence the behavior of Zn(II (initially in solution and two trace elements, Mn(II and Sr(II (released by carbonate dissolution in the context of a leakage from a CO2 storage site. The initial pH chosen are either equal to the pH of the water-CO2 equilibrium (~ 2.98 or equal to the pH of the water-CO2-calcite system (~ 4.8 in CO2 storage conditions. From this initial influx of liquid, saturated or not with respect to calcite, the batch experiments evolve freely to their equilibrium, as it would occur in a natural context after a perturbation. The batch experiments are carried out on two natural carbonates (from Lavoux and St-Emilion with PCO2 = 10−3.5 bar, with different initial conditions ([Zn(II]i from 10−4 to 10−6 M, either with pure water or 100 g/L NaCl brine. The equilibrium regarding calcite dissolution is confirmed in all experiments, while the zinc sorption evidenced does not always correspond to the two-step mechanism described in the literature. A preferential sorption of about 10% of the concentration is evidenced for Mn(II in aqueous experiments, while Sr(II is more sorbed in saline conditions. This study also shows that this preferential sorption, depending on the salinity, is independent of the natural carbonate considered. Then, the simulations carried out with PHREEQC show that experiments and simulations match well concerning the equilibrium of dissolution and the sole zinc sorption, with log KZn(II ~ 2 in pure water and close to 4 in high salinity conditions. When the simulations were possible, the log K values for Mn(II and Sr(II were much different from those in the literature obtained by sorption in controlled conditions. It is shown that a new conceptual model regarding multiple Trace Elements (TE sorption is

  16. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.

    1983-01-01

    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  17. Interference screw fixation of soft tissue grafts in anterior cruciate ligament reconstruction: part 1: effect of tunnel compaction by serial dilators versus extraction drilling on the initial fixation strength.

    Science.gov (United States)

    Nurmi, Janne T; Kannus, Pekka; Sievänen, Harri; Järvelä, Timo; Järvinen, Markku; Järvinen, Teppo L N

    2004-03-01

    Compaction of the bone-tunnel walls by serial dilation is believed to enhance the interference screw fixation strength of the soft tissue grafts in anterior cruciate ligament (ACL) reconstruction. Serial dilation enhances the fixation strength of soft tissue grafts in ACL reconstruction over extraction drilling. Randomized experimental study. Initial fixation strength of the doubled anterior tibialis tendon grafts (fixed with a bioabsorbable interference screw) was assessed in 21 pairs of human cadaver tibiae with either serially dilated or extraction-drilled bone tunnels. The specimens were subjected to a cyclic-loading test, and those surviving were then tested using the single-cycle load-to-failure test. During the cyclic-loading test, there were 3 fixation failures in the serially dilated and 6 failures in the extraction-drilled specimens but no significant stiffness or displacement differences between the groups. In the subsequent load-to-failure test, the average yield loads were 473 +/- 110 N and 480 +/- 115 N for the 2 groups respectively (P =.97) and no difference with regard to stiffness or mode of failure. Serial dilation does not increase the strength of interference fixation of soft tissue grafts in ACL reconstruction over extraction drilling. The results of this experiment do not support the use of serial dilators in ACL reconstruction.

  18. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells.

    Science.gov (United States)

    Danko, Charles G; Hah, Nasun; Luo, Xin; Martins, André L; Core, Leighton; Lis, John T; Siepel, Adam; Kraus, W Lee

    2013-04-25

    RNA polymerase II (Pol II) transcribes hundreds of kilobases of DNA, limiting the production of mRNAs and lncRNAs. We used global run-on sequencing (GRO-seq) to measure the rates of transcription by Pol II following gene activation. Elongation rates vary as much as 4-fold at different genomic loci and in response to two distinct cellular signaling pathways (i.e., 17β-estradiol [E2] and TNF-α). The rates are slowest near the promoter and increase during the first ~15 kb transcribed. Gene body elongation rates correlate with Pol II density, resulting in systematically higher rates of transcript production at genes with higher Pol II density. Pol II dynamics following short inductions indicate that E2 stimulates gene expression by increasing Pol II initiation, whereas TNF-α reduces Pol II residence time at pause sites. Collectively, our results identify previously uncharacterized variation in the rate of transcription and highlight elongation as an important, variable, and regulated rate-limiting step during transcription. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. 77 FR 60124 - Draft Guidance for Industry on Initial Completeness Assessments for Type II Active Pharmaceutical...

    Science.gov (United States)

    2012-10-02

    ... Ingredient Drug Master Files Under the Generic Drug User Fee Amendments of 2012 AGENCY: Food and Drug... certain drug master files, namely, Type II active pharmaceutical ingredient (API) drug master files (DMFs... notices. For DMFs that fail the initial completeness assessment, FDA will issue a letter notifying the...

  20. IAEA fast reactor knowledge preservation initiative. Project focus: KNK-II reactor, Karlsruhe, Germany

    International Nuclear Information System (INIS)

    2004-08-01

    This Working Material (including the attached CD-ROM) documents progress made in the IAEA's initiative to preserve knowledge in the fast reactor domain. The brochure describes briefly the context of the initiative and gives an introduction to the contents of the CD-ROM. In 2003/2004 a first focus of activity was concentrated on the preservation of knowledge related to the KNK-II experimental fast reactor in Karlsruhe, Germany. The urgency of this project was given by the impending physical destruction of the installation, including the office buildings. Important KNK-II documentation was brought to safety and preserved just in time. The CD-ROM contains the full texts of 264 technical and scientific documents describing research, development and operating experience gained with the KNK-II installation over a period of time from 1965 to 2002, extending through initial investigations, 17 years of rich operating experience, and final shutdown and decommissioning. The index to the documents on the CD-ROM is printed at the end of this booklet in chronological order and is accessible on the CD by subject index and chronological index. The CD-ROM contains in its root directory also the document 'fr c lassification.pdf' which describes the classification system used for the present collection of documents on the fast reactor KNK-II

  1. Dynamic fracture initiation in brittle materials under combined mode I/II loading

    International Nuclear Information System (INIS)

    Nakano, M.; Kishida, K.; Yamauchi, Y.; Sogabe, Y.

    1994-01-01

    A new test method has been developed to measure the resistance of dynamic fracture initiation in brittle materials under combined mode I/II loadings. The Brazilian disks with center-cracks have been fractured under oblique impact loadings in diametral-compression. The dynamic stress intensity factors of mode I and II are evaluated from the superposition integrals of the step response functions for the cracked disk. The experimental results are presented to elucidate the influence of loading rate on the combined mode fracture toughness for ceramics and glasses. (orig.)

  2. The initial masses of the red supergiant progenitors to Type II supernovae

    Science.gov (United States)

    Davies, Ben; Beasor, Emma R.

    2018-02-01

    There are a growing number of nearby supernovae (SNe) for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitor's brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L SNe have red supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to ≲ 17 M⊙. This is in contrast with the cut-off of 25-30 M⊙ predicted by evolutionary models, a result that is termed the `red supergiant problem'. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, which of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a star's luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cut-off of Mhi = 19.0^{+2.5}_{-1.3} M⊙, with a 95 per cent upper confidence limit of <27 M⊙. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cut-off to Mhi = 25 M⊙ (<33 M⊙, 95 per cent confidence). We therefore conclude that there is currently no strong evidence for `missing' high-mass progenitors to core-collapse SNe.

  3. Archaeological survey and monitoring of initial excavations within the basalt waste isolation project reference repository location and associated drill borehole site locations

    International Nuclear Information System (INIS)

    McCarthy, M.M.

    1984-01-01

    This letter report concerns cultural resources studies undertaken in November 1982 for the exploratory shaft starter hole and surface facilities for the Basalt Waste Isolation Project (BWIP). These studies were carried out under the provisions of the National Environmental Policy Act, the amended National Historic Preservation Act, and the Archaeological Resources Act. This report concludes that neither cultural nor palentological resources are being affected by the BWIP during the present phase of construction work and test drilling. 4 refs., 10 figs

  4. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... had been introduced. The Berkner Island (Antarctica) drill is also an extended HT drill capable of drilling 2 m long cores. The success of the mechanical design of the HT drill is manifested by over 12 km of good-quality ice cores drilled by the HT drill and its derivatives since 1995. Udgivelsesdato...

  5. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  6. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... COMMISSION Drill Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to sections...

  7. Berengario's drill: origin and inspiration.

    Science.gov (United States)

    Chorney, Michael A; Gandhi, Chirag D; Prestigiacomo, Charles J

    2014-04-01

    Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. Until the late Middle Ages, innovation in craniotomy instrumentation remained stunted without much documented redesign. Jacopo Berengario da Carpi's (c. 1457-1530 CE) text Tractatus de Fractura Calvae sive Cranei depicts a drill previously unseen in a medical volume. Written in 1518 CE, the book was motivated by defeat over the course of Lorenzo II de'Medici's medical care. Berengario's interchangeable bit with a compound brace ("vertibulum"), known today as the Hudson brace, symbolizes a pivotal device in neurosurgery and medical tool design. This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded.

  8. Drilling for energy resources

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Drilling is integral to the exploration, development, and production of most energy resources. Oil and natural gas, which are dependent on drilling technology, together account for about 77% of the energy sources consumed in the US. Thus, the limitations of current drilling technology also restrict the rate at which new energy supplies can be found, extracted, and brought to the marketplace. The purpose of the study reported was to examine current drilling technology, suggest areas where additional research and development (R and D) might significantly increase drilling rates and capabilities, and suggest a strategy for improving drilling technology. An overview is provided of the US drilling industry. The drilling equipment and techniques now used for finding and recovering oil, natural gas, coal, shale oil, nuclear fuels, and geothermal energy are described. Although by no means exhaustive, these descriptions provide the background necessary to adequately understand the problems inherent in attempts to increase instantaneous and overall drilling rates.

  9. Annual Report: Support Research for Development of Improved Geothermal Drill Bits

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, R.R.; Winzenried, R.W.; Jones, A.H.; Green, S.J.

    1978-07-01

    The work reported herein is a continuation of the program initiated under DOE contract E(10-1)-1546* entitled "Program to Design and Experimentally Test an Improved Geothermal Bit"; the program is now DOE Contract EG-76-C-1546*. The objective of the program has been to accelerate the commercial availability of a tolling cutter drill bit for geothermal applications. Data and experimental tests needed to develop a bit suited to the harsh thermal, abrasive, and chemical environment of the more problematic geothermal wells, including those drilled with air, have been obtained. Efforts were directed at the improvement of both the sealed (lubricated) and unsealed types of bits. The unsealed bit effort included determination of the rationale for materials selection, the selection of steels for the bit body, cutters, and bearings, the selection of tungsten carbide alloys for the friction bearing, and preliminary investigation of optimized tungsten carbide drilling inserts. Bits build** with the new materials were tested under stimulated wellbore conditions. The sealed bit effort provided for the evaluation of candidate high temperature seals and lubricants, utilizing two specially developed test apparatus which simulate the conditions found in a sealed bit operating in a geothermal wellbore. Phase I of the program was devoted largely to (1) the study of the geothermal environment and the failure mechanisms of existing geothermal drill bits, (2) the design and construction of separate facilities for testing both drill-bit seals and full-scale drill bits under simulated geothermal drilling conditions, and (3) fabrication of the MK-I research drill bits from high-temperature steels, and testing in the geothermal drill-bit test facility. The work accomplished in Phase I is reported in References 1 through 9. In Phase II, the first generation experimental bits were tested in the geothermal drill-bit test facility. Test results indicated that hardness retention at temperature

  10. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  11. Ultrasonic drilling apparatus

    Science.gov (United States)

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  12. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  13. Neutronics analysis of the initial core of the TRIGA Mark II reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R., E-mail: rustamzia@yahoo.co [Vienna University of Technology, Atominstitute (ATI), Stadion allee 2, A-1020, Vienna (Austria); Stummer, T.; Boeck, H.; Villa, M. [Vienna University of Technology, Atominstitute (ATI), Stadion allee 2, A-1020, Vienna (Austria)

    2011-05-15

    Highlights: The TRIGA Mark II Vienna is modeled employing MCNP5. The model is confirmed through three different experiments. Initial critical, reactivity distribution and flux mapping experiment. - Abstract: The Atominstitute (ATI) of Vienna University of Technology (VUT) operates a TRIGA Mark II research reactor since March 1962. Its initial criticality was achieved on 7th March 1962 when 57th Fuel Element (FE) was loaded to the core. This paper describes the development of the MCNP model of the TRIGA reactor and its validation through three different experiments i.e. initial criticality, reactivity distribution and a thermal flux mapping experiment in the reactor core. All these experiments were performed on the initial core configuration. The MCNP model includes all necessary core components i.e. FE, Graphite Element GE, neutron Source Element (SE), Central IRradiation channel (CIR) etc. Outside the core, this model simulates the annular grooved graphite reflector, the thermal and thermalizing column, four beam tubes and the reactor water tank up to 100 cm in radial and +60 and -60 cm in axial direction. Each grid position at its exact location is modeled. This model employs the ENDF/B-VI data library except for the Sm-isotopes which are taken from JEFF 3.1 because ENDF/B-VI lacks samarium (Sm) cross sections. For the first experiment, the model predicts an effective multiplication factor ({kappa}{sub eff}) of 1.00183 with an estimated standard deviation 0.00031 which is very close to the experimental value 1.00114. The second experiment measures the reactivity values of four FE and one GE. In comparison to the MCNP results, the percent difference ranges from 4 to 22. The third experiment verifies the model at a local level with the radial and axial thermal flux density distribution in the core. Though the trends are similar, the MCNP model overestimates the radial thermal flux density in the core and underestimates these results at the core periphery.

  14. HydroPulse Drilling

    Energy Technology Data Exchange (ETDEWEB)

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  15. Universal drill jig

    Science.gov (United States)

    Stringer, E. J.

    1973-01-01

    Inexpensive jig can steadily guide drill at selected angles to flat plane from any direction. Jig uses two mutually perpendicular bevel bodies, each corresponding to interval settings. Drill block has spline on one side to engage groove on bevel body at selected angle. Angles are set by loosening wing nuts, tilting drill block to desired angle until spline engages groove, and tightening nuts.

  16. 75 FR 52321 - Dry Lake Wind Power II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-08-25

    ... proceeding, of Dry Lake Wind Power II LLC application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1720-000] Dry Lake Wind Power II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...

  17. 77 FR 23476 - Cimarron Windpower II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-04-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Cimarron Windpower II, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Cimarron Windpower II, LLC's application for market-based rate authority...

  18. 78 FR 28836 - Arlington Valley Solar Energy II, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2013-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1430-000] Arlington Valley Solar Energy II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request..., of Arlington Valley Solar Energy II, LLC's application for market-based rate authority, with an...

  19. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  20. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders

    2008-01-01

    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  1. Protein crystallization and initial neutron diffraction studies of the photosystem II subunit PsbO.

    Science.gov (United States)

    Bommer, Martin; Coates, Leighton; Dau, Holger; Zouni, Athina; Dobbek, Holger

    2017-09-01

    The PsbO protein of photosystem II stabilizes the active-site manganese cluster and is thought to act as a proton antenna. To enable neutron diffraction studies, crystals of the β-barrel core of PsbO were grown in capillaries. The crystals were optimized by screening additives in a counter-diffusion setup in which the protein and reservoir solutions were separated by a 1% agarose plug. Crystals were cross-linked with glutaraldehyde. Initial neutron diffraction data were collected from a 0.25 mm 3 crystal at room temperature using the MaNDi single-crystal diffractometer at the Spallation Neutron Source, Oak Ridge National Laboratory.

  2. Drilling fluids engineering to drill extra-heavy oil reservoir on the Orinoco Oil Belt, eastern Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Pino, R.; Gonazalez, W. [Proamsa, Maturin, Monagas (Venezuela)

    2008-07-01

    Petrocedeno is an exploration and development company operating in Venezuela. As part of a multidisciplinary group, Proamsa has been working with Petrocedeno to drill horizontal wells while minimizing issues related to the handling of drilling fluids. Proamsa is the only 100 per cent Venezuelan Company involved in drilling extra-heavy oil wells. The drilling plan for Petrocedeno was divided into two campaigns. More than 400 horizontal wells were drilled during the first campaign from 1999 to 2003 which represented over 2,500,000 drilled feet into the Oficina Formation (pay zone of the field). From 2006, during the second drilling campaign, and another 154 horizontal wells having been drilled until 2006 utilizing the xantam gum viscoelastic fluid. This paper discussed the field geology of the Orinoco oil belt. Well design was also explained and discussed and drilling fluid design and new fluid formations were presented. The benefits of xantam gum viscoelastic fluid were also discussed. It was concluded that recycling of drilling fluid from well to well minimized volume and reduced costs. In addition, centrifugation of drilling fluids either on intermediate or horizontals sections while the rig was skidding was always a very good practice avoiding mixing additional volumes. It was also demonstrated that the initial idea to provide a drilling fluid service company with a 100 per cent national value was a success, as demonstrated by the high performance shown by Proamsa during the second drilling campaign with external technologic support. 6 refs., 4 tabs., 4 figs.

  3. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  4. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  5. FEATURES OF INITIATION OF STYRENE POLYMERIZATION BY CUMENE HYDROPEROXIDE IN PRESENCE OF ACETULACETONATE OF COPPER(II

    Directory of Open Access Journals (Sweden)

    A. V. Grekova

    2016-04-01

    Full Text Available Kinetics of sectional styrene polymerization initiated by cumene hydroperoxide, acetylacetonate of copper(II and by the system of cumene hydroperoxide — acetylacetonate of copper(II in a temperature range 333-363 K is studied. Kinetic parameters of polymerization process are determined. It is shown, that system of cumene hydroperoxide — acetylacetonate of copper(II is in 5-6 times more effective on the initiating ability comparatively to application of its individual components. From findings ensues that decline of energy of activating of initiation from 110 kdzh/mol’ to 87 kdzh/mol’ for cumene hydroperoxide at the use of the studied system is caused with participating of monomer in preliminary complexation facilitating formation of free radicals.

  6. Transcriptional switching by the metalloregulatory MerR protein: Initial characterization of DNA and mercury(II) binding activities

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Verdine, G.L.; Walsh, C.T.

    1989-01-01

    The MerR protein from the Tn501 mercury resistance operon is a metalloregulatory transcriptional switch, converting from repressor to activator on binding of Hg(II). The authors have determined via binding studies with 203 Hg(II) that a single Hg(II) atom binds to the MerR dimer (32 kDa) with a half-saturation concentration of 10 -7 M in the presence of up to 10 -3 M exogenous thiols. This 10 4 selective binding is specific for the binding of Hg(II) and corresponds to concentrations of metal that induce mercury(II) resistance in vivo. Extensive footprinting studies by DNase I, methylation protection, and hydroxyl radicals indicate MerR stays bound to DS1 even on addition of Hg(II) and shares no interaction in vitro with a second dyad symmetry element, DS2, centered at -79/-80. Studies with DTNB and pHMB titration of protein thiols and alkylation studies with iodo[ 14 C]acetamide, in the presence and absence of stoichiometrically bound Hg(II), allow initial assessment of roles for Cys-82, -115, -117, and -126 as potential ligands for Hg(II). A tryptic fragment of 1-120 amino acids (or 1-121 aa) still dimerizes and binds specifically to mer DNA but has lost 203 Hg(II) binding capacity

  7. αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Ho, Tammy Szu-Yu; Oses-Prieto, Juan; Burlingame, Alma L; Lalonde, Joshua; Noebels, Jeffrey L; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1 f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system. SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology. Copyright © 2017 the authors 0270-6474/17/3711311-12$15.00/0.

  8. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  9. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M

    2003-01-01

    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  10. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  11. Human insulin-like growth factor II leader 2 mediates internal initiation of translation

    DEFF Research Database (Denmark)

    Pedersen, Susanne; Christiansen, Jan; Hansen, T.O.

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IG...

  12. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  13. Hydraulic rotary drill

    Energy Technology Data Exchange (ETDEWEB)

    Kacy, J.; Pochaba, K.

    1987-06-01

    Presents a novel patented hydraulic drill for use in soft and medium hard rock. Indicates its numerous advantages resulting mainly from the driving method employing water/oil emulsion or hydraulic systems of heading machines or cutter loaders in mines. Provides technical data of the new drill and compares it with the PWR and OWRO drills used until now. The drill has a feed pressure of 15-25 bar, maximum rotation (at 25 bar pressure) of 1400 per minute, maximum moment of inertia 200 Nm, working medium - 5% emulsion, hydraulic oil, weight - 14 kg. Describes applications of the drill which has been approved for operation in environments of the IVth methane hazard category.

  14. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  15. Drill-motor holding fixture

    Science.gov (United States)

    Chartier, E. N.; Culp, L. N.

    1980-01-01

    Guide improves accuracy and reduces likelihood of bit breakage in drilling large work pieces. Drill motor is mounted on pipe that slides on furniture clamp. Drill is driven into work piece by turning furniture-clamp handle.

  16. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  17. Rpb5 modulates the RNA polymerase II transition from initiation to elongation by influencing Spt5 association and backtracking.

    Science.gov (United States)

    Martínez-Fernández, Verónica; Garrido-Godino, Ana Isabel; Mirón-García, María Carmen; Begley, Victoria; Fernández-Pévida, Antonio; de la Cruz, Jesús; Chávez, Sebastián; Navarro, Francisco

    2018-01-01

    Rpb5 is a subunit shared by the three eukaryotic RNA polymerases although its role in transcription remains unclear. It has been proposed that it makes contact with the promoter DNA and to participate in the coordination of the opening/closing of the RNA polymerase II DNA cleft. Here, we report the specific role of Rpb5 in the function of the yeast RNA polymerase II. The rpb5-P151T mutation specifically impairs transcription elongation by RNA polymerase II but does not influence the functions of RNA polymerases I or III. The comparison of RNA polymerase II ChIP and run-on signals indicates a higher tendency to backtrack by this mutant, in agreement with its lower elongation rate and its genetic interactions with dst1Δ mutant. This phenotype is particularly striking shortly after transcription initiation and is linked to differences in the phosphorylation state of the RNA polymerase II and reduced recruitment of Spt5 to transcribe chromatin, thus influencing its anti-backtracking activity. All together, our results reveal an important role of Rpb5 in the transition from initiation to elongation mediated by the RNA polymerase II, by modulating the Spt5 association, and the backtracking activity of the enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 77 FR 6109 - Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-02-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-846-000] Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bishop Hill...

  19. 76 FR 67721 - Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-162-000] Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bishop Hill...

  20. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Yan, B.; Stantic, M.; Zobalová, Renata; Bezawork-Geleta, A.; Stapelberg, M.; Stursa, J.; Prokopová, Kateřina; Dong, L.; Neužil, Jiří

    2015-01-01

    Roč. 15, č. 401 (2015) ISSN 1471-2407 R&D Projects: GA MZd NT14078; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Tumour-initiating cells * Mitochondrially targeted vitamin E succinate * Complex II Subject RIV: FD - Oncology ; Hematology Impact factor: 3.265, year: 2015

  1. A vision for drilling

    Energy Technology Data Exchange (ETDEWEB)

    Millheim, K. [Montanuniversitaet Leoben (Austria)

    1995-12-31

    The future of drilling lies in its relationship with the oil and gas industry. This paper examines how the future of drilling is seen from the view point of the exploration manager, the drilling contractor, the drilling engineer and the company president or managing director. The various pressures on the oil and gas industry are examined, such as environmental issues, alternative energy sources, and the price of oil which determines how companies are run. Exploration activity is driven by the price of oil and gas. The development of wells with multiple horizontal wells or multiple horizontal wells with tributaries will reduce the cost of exploration. Companies will rely less and less on reservoir simulation and more on cheap well-bores, multi-lateral well-bores and will exploit oil that could not be exploited before. The cost of exploratory drilling will need to be kept down so that in the future the industry will get better at economically finding fields at the 10 million to 20 million barrel range that would not have been possible before. The future is expected to see drilling contractors tunnelling, making sewerage lines and drilling 10,000 foot wells with purpose built rigs. Franchising will become a feature of the industry as will the use of databases to answer key technical questions. Offshore platforms will be built to be moveable and disposable. The industry is capable of solving problems, meeting challenges and making ideas work, providing much hope for the future. 10 figs., 1 photo.

  2. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Science.gov (United States)

    2010-09-09

    ... COMMISSION Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... the Act (19 U.S.C. 1671b) are being provided to manufacturers, producers, or exporters in China of...

  3. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Science.gov (United States)

    2010-03-08

    ... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... Government of China.\\2\\ \\1\\ The record is defined in sec. 207.2(f) of the Commission's Rules of Practice and...

  4. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II.

    Science.gov (United States)

    Imashimizu, Masahiko; Kireeva, Maria L; Lubkowska, Lucyna; Gotte, Deanna; Parks, Adam R; Strathern, Jeffrey N; Kashlev, Mikhail

    2013-02-22

    Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3' end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA-DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIIS(AA)) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3' end of the nascent RNA in the active center of the yeast RNAP II, and TFIIS(AA) promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3' RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II. Published by Elsevier Ltd.

  5. Subsurface drill string

    Science.gov (United States)

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  6. Drill pipe protector development

    Energy Technology Data Exchange (ETDEWEB)

    Thomerson, C.; Kenne, R. [Regal International Corp., Corsicanna, TX (United States); Wemple, R.P. [Sandia National Lab., Albuquerque, NM (United States)] [ed.] [and others

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  7. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  8. MACHINERY RESONANCE AND DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  9. The Newberry Deep Drilling Project (NDDP)

    Science.gov (United States)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  10. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  11. Initial experience of mitral valve repair using the Carpentier-Edwards Physio II annuloplasty ring.

    Science.gov (United States)

    Vohra, Hunaid A; Whistance, Robert N; Bezuska, Laurynas; Livesey, Steve A

    2011-06-01

    The Carpentier-Edwards (CE) Physio II ring is a new prosthetic ring designed to accommodate the changing pathology seen in the spectrum of degenerative valve disease, particularly the larger anterior leaflet in repair of the Barlow valve. The aim of our study was to assess the safety and efficacy of mitral valve (MV) repair with the CE Physio II ring. Between April 2009 and March 2010, 100 patients underwent MV repair using the Physio II ring. Median age of patients was 70 years (54-85 years). The left ventricle (LV) was moderately (30-50%; n=21) or severely (Physio II ring has excellent short-term results, including subgroups with large anterior mitral valve leaflet (AMVL). Moreover, the dimensional ratios of the ring may allow it to be used for MV repair for degenerative MV disease, irrespective of anterior leaflet size. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  12. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  13. Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit.

    OpenAIRE

    Buratowski, S; Sharp, P A

    1990-01-01

    RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.

  14. Reflood behavior at low initial clad temperature in Slab Core Test Facility Core-II

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Sobajima, Makoto; Abe, Yutaka; Iwamura, Takamichi; Ohnuki, Akira; Okubo, Tsutomu; Murao, Yoshio; Okabe, Kazuharu; Adachi, Hiromichi.

    1990-07-01

    In order to study the reflood behavior with low initial clad temperature, a reflood test was performed using the Slab Core Test Facility (SCTF) with initial clad temperature of 573 K. The test conditions of the test are identical with those of SCTF base case test S2-SH1 (initial clad temperature 1073 K) except the initial clad temperature. Through the comparison of results from these two tests, the following conclusions were obtained. (1) The low initial clad temperature resulted in the low differential pressures through the primary loops due to smaller steam generation in the core. (2) The low initial clad temperature caused the accumulated mass in the core to be increased and the accumulated mass in the downcomer to be decreased in the period of the lower plenum injection with accumulator (before 50s). In the later period of the cold leg injection with LPCI (after 100s), the water accumulation rates in the core and the downcomer were almost the same between both tests. (3) The low initial clad temperature resulted in the increase of the core inlet mass flow rate in the lower plenum injection period. However, the core inlet mass flow rate was almost the same regardless of the initial clad temperature in the later period of the cold leg injection period. (4) The low initial clad temperature resulted in the low turnaround temperature, high temperature rise and fast bottom quench front propagation. (5) In the region apart from the quench front, low initial clad temperature resulted in the lower heat transfer. In the region near the quench front, almost the same heat transfer coefficient was observed between both tests. (6) No flow oscillation with a long period was observed in the SCTF test with low initial clad temperature of 573 K, while it was remarkable in the Cylindrical Core Test Facility (CCTF) test which was performed with the same initial clad temperature. (J.P.N.)

  15. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  16. Petrographic drill cutting analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thom, R. [Core Laboratories Canada Ltd., Calgary, AB (Canada)

    1999-11-01

    Some of the diagnostic tools which are available to determine valuable reservoir rock information from drill cuttings were described. For example, valuable information can be obtained from drill cuttings and petrographic thin sections regarding mineralogy, facies, pore systems, reservoir quality and fluid sensitivity. This paper described the best ways to pick representative drill cuttings from vials. Colour and texture are among the most important determining factors. New guidelines from the Alberta Energy and Utilities Board have made it possible to obtain thin sections from drill cuttings from a competitor`s wells. Up to 12 chips from each vial can be removed for thin section scanning electron microscopy (SEM) analysis. X-ray diffraction (XRD) analysis of drill chips is not recommended because it is usually not possible to obtain enough sample material. Another powerful tool to investigate and characterize pore systems is the Mercury Injection Capillary Pressure technique. This technique makes it possible to characterize the pore system and to determine pore throat size distribution, permeability/porosity, producible reserves, capillary pressure, effective versus non-effective porosity, irreducible water saturation, and height above free water. The most reliable and valuable information is obtained from sandstone and carbonate aggregate chips in which the pore system is preserved. It was also noted that core porosity can be empirically derived if a trend line is constructed using sections prepared from an equivalent cored zone. Permeability can be derived in much the same way. 9 figs.

  17. Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, Yinji; Chen, Wei; Yao, Li; Deng, Yi; Pan, Daodong; Cao, Jinxuan; Ogabiela, Edward; Adeloju, Samuel B.

    2015-01-01

    The article describes a method for rapid and visual determination of Hg(II) ion using unmodified gold nanoparticles (Au-NPs). It involves the addition of Au-NPs to a solution containing Hg(II) ions which, however, does not induce a color change. Next, a solution of lysine is added which induces the aggregation of the Au-NPs and causes the color of the solution to change from wine-red to purple. The whole on-site detection process can be executed in less than 15 min. Other amines (ethylenediamine, arginine, and melamine) were also investigated with respect to their capability to induce aggregation. Notably, only amines containing more than one amino group were found to be effective, but a 0.4 μM and pH 8 solution of lysine was found to give the best results. The detection limits for Hg (II) are 8.4 pM (for instrumental read-out) and 10 pM (for visual read-out). To the best of our knowledge, this LOD is better than those reported for any other existing rapid screening methods. The assay is not interfered by the presence of other common metal ions even if present in 1000-fold excess over Hg(II) concentration. It was successfully applied to the determination of Hg(II) in spiked tap water samples. We perceive that this method provides an excellent tool for rapid and ultrasensitive on-site determination of Hg(II) ions at low cost, with relative ease and minimal operation. (author)

  18. Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast.

    Science.gov (United States)

    Gómez-Navarro, Natalia; Jordán-Pla, Antonio; Estruch, Francisco; E Pérez-Ortín, José

    2016-03-03

    The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. In order to cast light on the molecular functions of NC2, we performed genome-wide studies in conditional mutants in yeast NC2 essential subunits Ydr1 and Bur6. Our analyses show a generally increased level of cryptic transcription in all kinds of genes upon depletion of NC2 subunits, and that each kind of gene (canonical or ncRNAs, TATA or TATA-like) shows some differences in the cryptic transcription pattern for each NC2 mutant. We conclude that NC2 plays a general role in transcription initiation in RNA polymerase II genes that is related with its known TBP interchange function from free to promoter bound states. Therefore, loss of the NC2 function provokes increases in cryptic transcription throughout the yeast genome. Our results also suggest functional differences between NC2 subunits Ydr1 and Bur6.

  19. 40 CFR 300.305 - Phase II-Preliminary assessment and initiation of action.

    Science.gov (United States)

    2010-07-01

    ... SUBSTANCES POLLUTION CONTINGENCY PLAN Operational Response Phases for Oil Removal § 300.305 Phase II..., identify potentially responsible parties. (c) Where practicable, the framework for the response management... government, the state government, and the responsible party to achieve an effective and efficient response...

  20. Incentive drilling contracts

    International Nuclear Information System (INIS)

    Moomjian, C.A. Jr.

    1992-01-01

    Incentive drilling contracts historically have been based on the footage and turnkey concepts. Because these concepts have not been used widely in the international and offshore arenas, this paper discusses other innovative approaches to incentive contracts. Case studies of recently completed or current international and offshore contracts are presented to describe incentive projects based on a performance bonus (Case 1), lump sum per well (Case 2), target time and cap for a specified hole section (Case 3), and per-well target time (Case 4). This paper concludes with a review and comparison of the case studies and a general discussion of factors that produce successful innovative incentive programs that enhance drilling efficiency

  1. Physical demand of seven closed agility drills.

    Science.gov (United States)

    Atkinson, Mark; Rosalie, Simon; Netto, Kevin

    2016-11-01

    The present study aimed to quantify the demand of seven generic, closed agility drills. Twenty males with experience in invasion sports volunteered to participate in this study. They performed seven, closed agility drills over a standardised 30-m distance. Physical demand measures of peak velocity, total foot contacts, peak impacts, completion time, and maximum heart rate were obtained via the use of wearable sensor technologies. A subjective rating of perceived exertion (RPE) was also obtained. All measures, with the exception of maximum heart rates and RPE were able to delineate drills in terms of physical and physiological demand. The findings of this study exemplify the differences in demand of agility-type movements. Drill demand was dictated by the type of agility movement initiated with the increase in repetitiveness of a given movement type also contributing to increased demand. Findings from this study suggest agility drills can be manipulated to vary physical and physiological demand. This allows for the optimal application of training principles such as overload, progression, and periodisation.

  2. Evaluation of an air drilling cuttings containment system

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, J.

    1994-04-01

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  3. The Ultimate Big Data Enterprise Initiative: Defining Functional Capabilities for an International Information System (IIS) for Orbital Space Data (OSD)

    Science.gov (United States)

    Raygan, R.

    Global collaboration in support of an International Information System (IIS) for Orbital Space Data (OSD) literally requires a global enterprise. As with many information technology enterprise initiatives attempting to coral the desires of business with the budgets and limitations of technology, Space Situational Awareness (SSA) includes many of the same challenges: 1) Adaptive / Intuitive Dash Board that facilitates User Experience Design for a variety of users. 2) Asset Management of hundreds of thousands of objects moving at thousands of miles per hour hundreds of miles in space. 3) Normalization and integration of diverse data in various languages, possibly hidden or protected from easy access. 4) Expectations of near real-time information availability coupled with predictive analysis to affect decisions before critical points of no return, such as Space Object Conjunction Assessment (CA). 5) Data Ownership, management, taxonomy, and accuracy. 6) Integrated metrics and easily modified algorithms for "what if" analysis. This paper proposes an approach to define the functional capabilities for an IIS for OSD. These functional capabilities not only address previously identified gaps in current systems but incorporate lessons learned from other big data, enterprise, and agile information technology initiatives that correlate to the space domain. Viewing the IIS as the "data service provider" allows adoption of existing information technology processes which strengthen governance and ensure service consumers certain levels of service dependability and accuracy.

  4. Development and Initial Review of the Mark II Navy 44 Sail Training Craft

    Science.gov (United States)

    2009-03-01

    intensive training environment) • Offshore capability for trips to Bermuda with a semi-skilled crew of ten • Favorable treatment under existing rating... triangle and headsails • Existing systems by type, to be updated as directed Features to be improved: • Construction materials, scantlings and...consistent with the MK I’s. The mast height, standing rigging and fore triangle base had to be identical between the MK I and MK II. However, PYD wanted

  5. Measurement Space Drill Support

    Science.gov (United States)

    2015-08-30

    calendar within the CoBP SharePoint portal but it is not updated or maintained. The center Ops are notified if they are hosting the event since a...Recommendation: It is recommended that the center operations office within TRAC maintain the SharePoint calendar with upcoming MS drills and notify other

  6. Mars Science Laboratory Drill

    Science.gov (United States)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  7. OH-initiated oxidation of benzene - Part II. Influence of elevated NOx concentrations

    DEFF Research Database (Denmark)

    Klotz, B; Volkamer, R; Hurley, MD

    2002-01-01

    The present work represents a continuation of part I of this series of papers, in which we investigated the phenol yields in the OH-initiated oxidation of benzene under conditions of low to moderate concentrations of NOx, to elevated NOx levels. The products of the OH-initiated oxidation of benzene...... in 700 760 Torr of N-2/O-2 diluent at 297 +/- 4 K were investigated in 3 different photochemical reaction chambers. In situ spectroscopic techniques were employed for the detection of products, and the initial concentrations of benzene, NOx, and O-2 were widely varied (by factors of 6300, 1500, and 13......, respectively). In contrast to results from previous studies, a pronounced dependence of the product distribution on the NOx concentration was observed. The phenol yield decreases from approximately 50-60% in the presence of low concentrations (10 000 ppb) NOx concentrations. In the presence of high...

  8. Severe atypical herpes zoster as an initial symptom of fatal myelodysplastic syndrome with refractory anemia and blast excess (RAEB II

    Directory of Open Access Journals (Sweden)

    Wollina U

    2017-05-01

    Full Text Available Uwe Wollina,1 Gesina Hansel,1 Anja Baunacke,1 Georgi Tchernev2 1Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Dresden, Germany; 2Department of Dermatology and Dermatologic Surgery, Medical Institute of Ministry of Interior (MVR, Sofia, Bulgaria Abstract: Herpes zoster is a common disease caused due to varicella zoster virus (VZV infection with increasing incidence by age. If the patient has a severe, extended, or treatment-recalcitrant course of herpes zoster, this must be a red flag to search for underlying pathologies. Here, we report about a 64-year-old male patient with diabetes, who came to our emergency department because of general malaise, fever, chills, and a pronounced nuchal and facial swelling on the left side. Based on herpetiform-grouped vesicles and yellowish crusts, an impetiginized facial herpes zoster was diagnosed, and combined antiviral and antibiotic treatment was initiated. He was HIV negative. Despite intensified treatment, his situation worsened. We observed blasts in peripheral blood, but bone marrow biopsy was initially denied. Some days later after deterioration of his disease, he accepted further diagnostics. A myelodysplastic syndrome with blast excess (refractory anemia and blast excess II, RAEB II could be confirmed. The following translocations were detected: t(2;12(p13; q13 and t(6;9(p22;q34. REAB II has an unfortunate prognosis. Cytoreductive treatment was initiated by the hemato-oncologist. Unfortunately, the patient deceased due to septic shock. Keywords: herpes zoster, varicella zoster virus, myelodysplastic syndrome, sepsis, emergency

  9. Initial Assessment of Electron and X-Ray Production and Charge Exchange in the NDCX-II Accelerator

    International Nuclear Information System (INIS)

    Cohen, R.H.

    2010-01-01

    The purpose of this note is to provide initial assessments of some atomic physics effects for the accelerator section of NDCX-II. There are several effects we address: the production of electrons associated with loss of beam ions to the walls, the production of electrons associated with ionization of background gas, the possibly resultant production of X-rays when these electrons hit bounding surfaces, and charge exchange of beam ions on background gas. The results presented here are based on a number of caveats that will be stated below, which we will attempt to remove in the near future.

  10. Gel Evolution in Oil Based Drilling Fluids

    OpenAIRE

    Sandvold, Ida

    2012-01-01

    Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of new drilling techniques such as long deviated sections and drilling in ultra-deep waters, the standard of required performance of the drilling fluids continue to increase. Narrow pressure margins and low tolerance for barite sag requires accurate prediction of the gel evolution in drilling fluids. Increased knowledge of how dri...

  11. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  12. Method of drilling with magnetorheological fluid

    NARCIS (Netherlands)

    Zitha, P.L.J.

    2003-01-01

    A method of drilling a bore hole into a stratum, wherein via the drill hole drilling fluid is introduced and fed to the drill head. In order to avoid dilution or leak-off of the drilling fluid the same is in accordance with the invention a magnetorheological drilling fluid, and when an undesirable

  13. Initial results for electrochemical dissolution of spent EBR-II fuel

    International Nuclear Information System (INIS)

    Li, S. X.

    1998-01-01

    Initial results are reported for the anode behavior of spent metallic nuclear fuel in an electrorefining process. The anode behavior has been characterized in terms of the initial spent fuel composition and the final composition of the residual cladding hulls. A variety of results have been obtained depending on the experimental conditions. Some of the process variables considered are average and maximum cell voltage, average and maximum anode voltage, amount of electrical charge passed (coulombs or amp-hours) during the experiment, and cell resistance. The main goal of the experiments has been the nearly complete dissolution of uranium with the retention of zirconium and noble metal fission products in the cladding hulls. Analysis has shown that the most indicative parameters for determining an endpoint to the process, recognizing the stated goal, are the maximum anode voltage and the amount of electrical charge passed. For the initial experiments reported here, the best result obtained is greater than 98% uranium dissolution with approximately 50% zirconium retention. Noble metal fission product retention appears to be correlated with zirconium retention

  14. REQUIREMENTS FOR DRILLING CUTTINGS AND EARTH-BASED BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Chertes Konstantin L'vovich

    2017-08-01

    Full Text Available In this article, the problem of utilization of drilling cuttings by means of scavenging, is researched. The product received could be used for the restoration of lands disturbed during construction and economic activities. When assessing technogenic formations, the binary approach was used, as a system of two components. The purpose of the study is to assess the state and possibility of utilizing drilling cuttings as raw materials in order to produce technogenic building materials; to study the effect of the degree of homogeneity of initial mixtures based on drilling cuttings, on kinetics of their hardening which leads to obtaining final products for various applications . As a result of research, relations of hardening and subsequent strengthening of slurry-cement mixtures were obtained; the plan of the process area for treatment of drilling cuttings is presented on the spot of demolished drilling pit.

  15. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  16. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  17. Association of timing of initiation of breastmilk expression on milk volume and timing of lactogenesis stage II among mothers of very low-birth-weight infants.

    Science.gov (United States)

    Parker, Leslie A; Sullivan, Sandra; Krueger, Charlene; Mueller, Martina

    2015-03-01

    Feeding breastmilk to premature infants decreases morbidity but is often limited owing to an insufficient milk supply and delayed attainment of lactogenesis stage II. Early initiation of milk expression following delivery has been shown to increase milk production in mothers of very low-birth-weight (VLBW) infants. Although recommendations for milk expression in this population include initiation within 6 hours following delivery, little evidence exists to support these guidelines. This study compared milk volume and timing of lactogenesis stage II in mothers of VLBW infants who initiated milk expression within 6 hours following delivery versus those who initiated expression after 6 hours. Forty mothers of VLBW infants were grouped according to when they initiated milk expression following delivery. Group I began milk expression within 6 hours, and Group II began expression after 6 hours. Milk volume was measured daily for the first 7 days and on Days 21 and 42. Timing of lactogenesis stage II was determined through mothers' perceptions of sudden breast fullness. Group I produced more breastmilk during the initial expression session and on Days 6, 7, and 42. No difference in timing of lactogenesis stage II was observed. When mothers who began milk expression prior to 1 hour following delivery were removed from analysis, benefits of milk expression within 6 hours were no longer apparent. Initiation of milk expression within 6 hours following delivery may not improve lactation success in mothers of VLBW infants unless initiated within the first hour.

  18. Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L. [Colorado State U.; Biedron, S. G.; Milton, S. V.; Bowring, D.; Chase, B. E.; Edelen, J. P.; Nicklaus, D.; Steimel, J.

    2016-12-16

    For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.

  19. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, Rick [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hampton, Nigel [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Perkel, Josh [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hernandez, JC [Univ. de Los Andes, Merida (Venezuela); Elledge, Stacy [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); del Valle, Yamille [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Grimaldo, Jose [Georgia Inst. of Technology, Atlanta, GA (United States). School of Electrical and Computer Engineering; Deku, Kodzo [Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  20. MeBo70 Seabed Drilling on a Polar Continental Shelf: Operational Report and Lessons From Drilling in the Amundsen Sea Embayment of West Antarctica

    Science.gov (United States)

    Gohl, K.; Freudenthal, T.; Hillenbrand, C.-D.; Klages, J.; Larter, R.; Bickert, T.; Bohaty, S.; Ehrmann, W.; Esper, O.; Frederichs, T.; Gebhardt, C.; Küssner, K.; Kuhn, G.; Pälike, H.; Ronge, T.; Simões Pereira, P.; Smith, J.; Uenzelmann-Neben, G.; van de Flierdt, C.

    2017-11-01

    A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves.

  1. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial

    Science.gov (United States)

    Mendelow, A David; Gregson, Barbara A; Rowan, Elise N; Murray, Gordon D; Gholkar, Anil; Mitchell, Patrick M

    2013-01-01

    Summary Background The balance of risk and benefit from early neurosurgical intervention for conscious patients with superficial lobar intracerebral haemorrhage of 10–100 mL and no intraventricular haemorrhage admitted within 48 h of ictus is unclear. We therefore tested the hypothesis that early surgery compared with initial conservative treatment could improve outcome in these patients. Methods In this international, parallel-group trial undertaken in 78 centres in 27 countries, we compared early surgical haematoma evacuation within 12 h of randomisation plus medical treatment with initial medical treatment alone (later evacuation was allowed if judged necessary). An automatic telephone and internet-based randomisation service was used to assign patients to surgery and initial conservative treatment in a 1:1 ratio. The trial was not masked. The primary outcome was a prognosis-based dichotomised (favourable or unfavourable) outcome of the 8 point Extended Glasgow Outcome Scale (GOSE) obtained by questionnaires posted to patients at 6 months. Analysis was by intention to treat. This trial is registered, number ISRCTN22153967. Findings 307 of 601 patients were randomly assigned to early surgery and 294 to initial conservative treatment; 298 and 291 were followed up at 6 months, respectively; and 297 and 286 were included in the analysis, respectively. 174 (59%) of 297 patients in the early surgery group had an unfavourable outcome versus 178 (62%) of 286 patients in the initial conservative treatment group (absolute difference 3·7% [95% CI −4·3 to 11·6], odds ratio 0·86 [0·62 to 1·20]; p=0·367). Interpretation The STICH II results confirm that early surgery does not increase the rate of death or disability at 6 months and might have a small but clinically relevant survival advantage for patients with spontaneous superficial intracerebral haemorrhage without intraventricular haemorrhage. Funding UK Medical Research Council. PMID:23726393

  2. Conformal prostate brachytherapy: initial experience of a phase I/II dose-escalating trial

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Gonzalez, Jose; Stromberg, Jannifer; Edmundson, Gregory; Plunkett, Marianne; Gustafson, Gary; Brown, Debora; Di, Yan; Vicini, Frank; Brabbins, Donald

    1995-01-01

    Purpose: To improve treatment results on prostatic adenocarcinoma, conformal radiation therapy (CRT) has been used. Two major drawbacks of external CRT are: (a) internal organ motion/daily set-up variations, and (b) exclusion of several patients for CRT based on poor geometrical relationships as identified by three dimensional (3D) treatment planning. To overcome the above problems, we began the first prospective Phase I/II dose-escalating clinical trial of conformal brachytherapy (CB) and concurrent external beam irradiation. Methods and Materials: Fifty-nine patients with T2b-T3c prostatic adenocarcinoma received 176 transperineal ultrasound-guided conformal high-dose rate (HDR) boost implants. All patients received concomitant external beam pelvic irradiation. Dose escalation of the three HDR-CB fractions proceeded as follows: 5.5 Gy (30 patients), 6 Gy (20 patients), and 6.5 Gy (9 patients). The CB dose was prescribed to the prostate contour as outlined using an online biplanar transrectal ultrasound probe. The urethra, anterior rectal wall, and prostate boundaries were identified individually and outlined at 5 mm intervals from the base to the apex of the gland. The CB using real-time ultrasound guidance with interactive online isodose distributions was performed on an outpatient basis. As needles were placed into the prostate, corrections for prostate displacement were recorded and the isodose distributions were recalculated to represent the new relationship between the needles, prostate, and normal structures. No computerized tomography (CT) planning or implant preplanning was required. Results: No patient was rejected based on poor geometrical relation of pelvic structures. In every implant performed, prostate displacement was noted. Craniocaudal motion of the gland ranged from 0.5-2.0 cm (mean = 1.0 cm), whereas lateral displacement was 0.1-0.4 cm. With the interactive online planning system, organ motion was immediately detected, accounted for, and

  3. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  4. Drill string gas data

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, E.R.

    1998-05-12

    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  5. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    International Nuclear Information System (INIS)

    Yan, Bing; Stantic, Marina; Zobalova, Renata; Bezawork-Geleta, Ayenachew; Stapelberg, Michael; Stursa, Jan; Prokopova, Katerina; Dong, Lanfeng; Neuzil, Jiri

    2015-01-01

    Accumulating evidence suggests that breast cancer involves tumour-initiating cells (TICs), which play a role in initiation, metastasis, therapeutic resistance and relapse of the disease. Emerging drugs that target TICs are becoming a focus of contemporary research. Mitocans, a group of compounds that induce apoptosis of cancer cells by destabilising their mitochondria, are showing their potential in killing TICs. In this project, we investigated mitochondrially targeted vitamin E succinate (MitoVES), a recently developed mitocan, for its in vitro and in vivo efficacy against TICs. The mammosphere model of breast TICs was established by culturing murine NeuTL and human MCF7 cells as spheres. This model was verified by stem cell marker expression, tumour initiation capacity and chemotherapeutic resistance. Cell susceptibility to MitoVES was assessed and the cell death pathway investigated. In vivo efficacy was studied by grafting NeuTL TICs to form syngeneic tumours. Mammospheres derived from NeuTL and MCF7 breast cancer cells were enriched in the level of stemness, and the sphere cells featured altered mitochondrial function. Sphere cultures were resistant to several established anti-cancer agents while they were susceptible to MitoVES. Killing of mammospheres was suppressed when the mitochondrial complex II, the molecular target of MitoVES, was knocked down. Importantly, MitoVES inhibited progression of syngeneic HER2 high tumours derived from breast TICs by inducing apoptosis in tumour cells. These results demonstrate that using mammospheres, a plausible model for studying TICs, drugs that target mitochondria efficiently kill breast tumour-initiating cells. The online version of this article (doi:10.1186/s12885-015-1394-7) contains supplementary material, which is available to authorized users

  6. Civilians in World War II and DSM-IV mental disorders: results from the World Mental Health Survey Initiative.

    Science.gov (United States)

    Frounfelker, Rochelle; Gilman, Stephen E; Betancourt, Theresa S; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Bromet, Evelyn J; Bruffaerts, Ronny; de Girolamo, Giovanni; Gluzman, Semyon; Gureje, Oye; Karam, Elie G; Lee, Sing; Lépine, Jean-Pierre; Ono, Yutaka; Pennell, Beth-Ellen; Popovici, Daniela G; Ten Have, Margreet; Kessler, Ronald C

    2018-02-01

    Understanding the effects of war on mental disorders is important for developing effective post-conflict recovery policies and programs. The current study uses cross-sectional, retrospectively reported data collected as part of the World Mental Health (WMH) Survey Initiative to examine the associations of being a civilian in a war zone/region of terror in World War II with a range of DSM-IV mental disorders. Adults (n = 3370) who lived in countries directly involved in World War II in Europe and Japan were administered structured diagnostic interviews of lifetime DSM-IV mental disorders. The associations of war-related traumas with subsequent disorder onset-persistence were assessed with discrete-time survival analysis (lifetime prevalence) and conditional logistic regression (12-month prevalence). Respondents who were civilians in a war zone/region of terror had higher lifetime risks than other respondents of major depressive disorder (MDD; OR 1.5, 95% CI 1.1, 1.9) and anxiety disorder (OR 1.5, 95% CI 1.1, 2.0). The association of war exposure with MDD was strongest in the early years after the war, whereas the association with anxiety disorders increased over time. Among lifetime cases, war exposure was associated with lower past year risk of anxiety disorders (OR 0.4, 95% CI 0.2, 0.7). Exposure to war in World War II was associated with higher lifetime risk of some mental disorders. Whether comparable patterns will be found among civilians living through more recent wars remains to be seen, but should be recognized as a possibility by those projecting future needs for treatment of mental disorders.

  7. Civilians in World War II and DSM-IV mental disorders: Results from the World Mental Health Survey Initiative

    Science.gov (United States)

    Frounfelker, Rochelle; Gilman, Stephen E.; Betancourt, Theresa S.; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Bromet, Evelyn J.; Bruffaerts, Ronny; de Girolamo, Giovanni; Gluzman, Semyon; Gureje, Oye; Karam, Elie G.; Lee, Sing; Lépine, Jean-Pierre; Ono, Yutaka; Pennell, Beth-Ellen; Popovici, Daniela G.; Have, Margreet ten; Kessler, Ronald C.

    2018-01-01

    Purpose Understanding the effects of war on mental disorders is important for developing effective post-conflict recovery policies and programs. The current study uses cross-sectional, retrospectively reported data collected as part of the World Mental Health (WMH) Survey Initiative to examine the associations of being a civilian in a war zone/region of terror in World War II with a range of DSM-IV mental disorders. Methods Adults (n= 3,370)who lived in countries directly involved in World War II in Europe and Japan were administered structured diagnostic interviews of lifetime DSM-IV mental disorders. The associations of war-related traumas with subsequent disorder onset-persistence were assessed with discrete-time survival analysis (lifetime prevalence) and conditional logistic regression (12-month prevalence). Results Respondents who were civilians in a war zone/region of terror had higher lifetime risks than other respondents of major depressive disorder (MDD; OR 1.5, 95% CI 1.1, 1.9) and anxiety disorder (OR 1.5, 95% CI 1.1, 2.0). The association of war exposure with MDD was strongest in the early years after the war, whereas the association with anxiety disorders increased over time. Among lifetime cases, war exposure was associated with lower past year risk of anxiety disorders. (OR 0.4, 95% CI 0.2, 0.7). Conclusions Exposure to war in World War II was associated with higher lifetime risk of some mental disorders. Whether comparable patterns will be found among civilians living through more recent wars remains to be seen, but should be recognized as a possibility by those projecting future needs for treatment of mental disorders. PMID:29119266

  8. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    Science.gov (United States)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  9. Predictive Performance of the Simplified Acute Physiology Score (SAPS) II and the Initial Sequential Organ Failure Assessment (SOFA) Score in Acutely Ill Intensive Care Patients

    DEFF Research Database (Denmark)

    Granholm, Anders; Møller, Morten Hylander; Kragh, Mette

    2016-01-01

    PURPOSE: Severity scores including the Simplified Acute Physiology Score (SAPS) II and the Sequential Organ Failure Assessment (SOFA) score are used in intensive care units (ICUs) to assess disease severity, predict mortality and in research. We aimed to assess the predictive performance of SAPS II...... compared the discrimination of SAPS II and initial SOFA scores, compared the discrimination of SAPS II in our cohort with the original cohort, assessed the calibration of SAPS II customised to our cohort, and compared the discrimination for 90-day mortality vs. in-hospital mortality for both scores....... Discrimination was evaluated using areas under the receiver operating characteristics curves (AUROC). Calibration was evaluated using Hosmer-Lemeshow's goodness-of-fit Ĉ-statistic. RESULTS: AUROC for in-hospital mortality was 0.80 (95% confidence interval (CI) 0.77-0.83) for SAPS II and 0.73 (95% CI 0...

  10. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    Science.gov (United States)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at

  11. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been a...

  12. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  13. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  14. Strategies and structures for drilling and service contracts in the 1990's

    International Nuclear Information System (INIS)

    Wardt, J.P. de; Gils, J.M.I. van.

    1994-01-01

    Drilling in the nineties initiatives were introduced to the industry in early 1990. Contractual mechanisms for application of these initiatives have been developed. A strategy is developed for integrating services to provide a total service concept either directly through or parallel with a drilling contractor. Development of cooperative customer/supplier relationship are emerging as the way to sustain performance improvements

  15. Horizontal drilling assessment in Western Canada

    International Nuclear Information System (INIS)

    Catania, Peter; Wilson, Malcolm

    1999-01-01

    The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at

  16. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  17. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  18. Surgical drilling: design and performance of an improved drill.

    Science.gov (United States)

    Saha, S; Pal, S; Albright, J A

    1982-08-01

    The majority of twist drills used in orthopaedics are very similar to chisel pointed metal drilling bits. Modifications usually observed are reduction of the point angle to 90 deg and sometimes grinding of the entire cutting lip at 0 deg rake angle, which appeared to have been made arbitrarily without any advantage. We have attempted to design a surgical drill bit with the objective of minimization of the drilling thrust and temperature and effective removal of bone chips. Our results showed that the presence of the chisel edge was mainly responsible for increasing the thrust force and the temperature developed. The effects of a constant feed rate and thrust on the peak temperature were also examined. The combined effect of the helix and the point angles on the rake angle which in turn determines the cutting efficiency was analyzed for various types of surgical bits. Based on our results and previously published data from the literature an optimized drill bit was designed with a split point, a point angle of 118 deg, a parabolic flute, and a helix angle of 36 deg and its performance was compared with other existing surgical drill bits. For drilling in compact bone, the new design decreased the thrust load by 45 percent an the peak temperature rise by 41 percent. Similar improvements were also recorded for drilling bone cement. The time of drilling a bone cortex was also significantly reduced and "walking" on the curved bone surface was eliminated and dimensional tolerance on hole sizes was improved. The new design is likely to reduce the time of surgery and also minimize the tissue damage.

  19. Initial dosing regimen of vancomycin to achieve early therapeutic plasma concentration in critically ill patients with MRSA infection based on APACHE II score.

    Science.gov (United States)

    Imaura, Masaharu; Yokoyama, Haruko; Kohata, Yuji; Kanai, Riichiro; Kohyama, Tomoki; Idemitsu, Wataru; Maki, Yuichi; Igarashi, Takashi; Takahashi, Hiroyuki; Kanno, Hiroshi; Yamada, Yasuhiko

    2016-06-01

    It is essential to assure the efficacy of antimicrobials at the initial phase of therapy. However, increasing the volume of distribution (Vd) of hydrophilic antimicrobials in critically ill patients leads to reduced antimicrobial concentration in plasma and tissue, which may adversely affect the efficacy of that therapy. The aim of the present study was to establish a theoretical methodology for setting an appropriate level for initial vancomycin therapy in individual patients based on Acute Physiology and Chronic Health Evaluation (APACHE) II score. We obtained data from patients who received intravenous vancomycin for a suspected or definitively diagnosed Gram-positive bacterial infection within 72 h after admission to the intensive care unit. The Vd and elimination half-life (t 1/2) of vancomycin values were calculated using the Bayesian method, and we investigated the relationship between them and APACHE II score. There were significant correlations between APACHE II scores and Vd/actual body weight (ABW), as well as t 1/2 (r = 0.58, p vancomycin could be estimated using the following regression equations using APACHE II score.[Formula: see text] [Formula: see text]We found that APACHE II score was a useful index for predicting the Vd and t 1/2 of vancomycin, and used that to establish an initial vancomycin dosing regimen comprised of initial dose and administration interval for individual patients.

  20. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  1. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  2. Survival analysis of patients with clinical stages I or II Hodgkin's disease who have relapsed after initial treatment with radiotherapy alone

    DEFF Research Database (Denmark)

    Horwich, A.; Specht, L.; Ashley, S.

    1997-01-01

    relapse included initial stage, age, sex, histology, number of involved areas, mediastinal involvement, E-lesions, B-symptoms, erythrocyte sedimentation rate, alkaline phosphatase, serum albumin and haemoglobin. As well as presentation variables, we analysed the disease-free interval after initial......To aid treatment choice in early stage of Hodgkin's disease, we analysed patients registered in the IDHD Database with clinical stages I or II Hodgkin's disease who were not staged with laparotomy and whose initial treatment was with radiotherapy alone. The factors analysed for outcome after first...... radiotherapy and the extent of disease at relapse. A total of 1364 patients with clinical stage I or II Hodgkin's disease were treated with initial radiotherapy, of whom 473 relapsed. The probability of survival 10 years after relapse was 63%. For cause-specific survival (CSS), both multivariate and univariate...

  3. Survival analysis of patients with clinical stages I or II Hodgkin's disease who have relapsed after initial treatment with radiotherapy alone

    DEFF Research Database (Denmark)

    Horwich, A; Specht, L; Ashley, S

    1997-01-01

    To aid treatment choice in early stage of Hodgkin's disease, we analysed patients registered in the IDHD Database with clinical stages I or II Hodgkin's disease who were not staged with laparotomy and whose initial treatment was with radiotherapy alone. The factors analysed for outcome after first...... relapse included initial stage, age, sex, histology, number of involved areas, mediastinal involvement, E-lesions, B-symptoms, erythrocyte sedimentation rate, alkaline phosphatase, serum albumin and haemoglobin. As well as presentation variables, we analysed the disease-free interval after initial...... radiotherapy and the extent of disease at relapse. A total of 1364 patients with clinical stage I or II Hodgkin's disease were treated with initial radiotherapy, of whom 473 relapsed. The probability of survival 10 years after relapse was 63%. For cause-specific survival (CSS), both multivariate and univariate...

  4. Acoustical properties of drill strings

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1988-08-01

    The recovery of petrochemical and geothermal resources requires extensive drilling of wells to increasingly greater depths. Real-time collection and telemetry of data about the drilling process while it occurs thousands of feet below the surface is an effective way of improving the efficiency of drilling operations. Unfortunately, due to hostile down-hole environments, telemetry of this data is an extremely difficult problem. Currently, commercial systems transmit data to the surface by producing pressure pulses within the portion of the drilling mud enclosed in the hollow steel drill string. Transmission rates are between two and four data bits per second. Any system capable of raising data rates without increasing the complexity of the drilling process will have significant economic impact. One alternative system is based upon acoustical carrier waves generated within the drill string itself. If developed, this method would accommodate data rates up to 100 bits per second. Unfortunately, the drill string is a periodic structure of pipe and threaded tool joints, the transmission characteristics are very complex and exhibit a banded and dispersive structure. Over the past forty years, attempts to field systems based upon this transmission method have resulted in little success. This paper examines this acoustical transmission problem in great detail. The basic principles of acoustic wave propagation in the periodic structure of the drill string are examined through theory, laboratory experiment, and field test. The results indicate the existence of frequency bands which are virtually free of attenuation and suitable for data transmission at high bit rates. 9 refs., 38 figs., 2 tabs.

  5. Combining conventional and thermal drilling in order to increase speed and reduce costs of drilling operations to access deep geothermal resources

    Science.gov (United States)

    Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.

    2017-04-01

    rock strength with temperature. This is different from oven treatments, where an initial increase of strength is typically observed, followed by a steep decrease upon further (slow) oven-heating. Thus, the weakening of sandstone and granite samples due to flame treatments indicates the feasibility of a combined mechanical-thermal drilling system. These results suggest that the new combined method enables improved rates of penetration in hard rocks while reducing the rate of drill tool wear. We also present possible implementations of this combined drilling system in the field. From field test results, advantages and limitations of the proposed new technology are presented, with an emphasis on accessing geothermal energy resources in crystalline basement rocks.

  6. Towards a distributed infrastructure for research drilling in Europe

    Science.gov (United States)

    Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.

    2012-04-01

    The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will

  7. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    Science.gov (United States)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep

  8. Limit of crustal drilling depth

    Directory of Open Access Journals (Sweden)

    Y.S. Zhao

    2017-10-01

    Full Text Available Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources, facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth's crust. In order to understand the limit of drilling depth in the Earth's crust, we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system. Then the critical temperature-pressure coupling conditions that result in borehole instability are derived. Finally, based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling, the limit of drilling depth in the Earth's crust is formulated with ground temperature.

  9. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  10. Drilling Damage in Composite Material

    Directory of Open Access Journals (Sweden)

    Luís Miguel P. Durão

    2014-05-01

    Full Text Available The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  11. Feasibility study of a hand guided robotic drill for cochleostomy.

    Science.gov (United States)

    Brett, Peter; Du, Xinli; Zoka-Assadi, Masoud; Coulson, Chris; Reid, Andrew; Proops, David

    2014-01-01

    The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

  12. Feasibility Study of a Hand Guided Robotic Drill for Cochleostomy

    Directory of Open Access Journals (Sweden)

    Peter Brett

    2014-01-01

    Full Text Available The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

  13. Synthesis of engineering designs of drilling facilities

    Science.gov (United States)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  14. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  15. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  16. National Advanced Drilling and Excavation Technologies Institute. Status report, March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.

    1997-12-31

    The National Advanced Drilling and Excavation Technologies (NADET) program is intended to pool support, talent, and technologies of the industries dependent upon drilling and excavation technologies to initiate, coordinate, and sustain programs capable of developing substantial technological advances. The NADET Institute has been funded by the DOE Office of Geothermal Technologies and is now supporting seven projects aimed at advanced geothermal drilling technologies. The Institute seeks to broaden its base of funding and technological support from both government and industry sources. Encouraging progress has been made with the support of dues-paying industrial members and industrial sponsorship of a substantial drilling research study.

  17. Semantic Approaches Applied to Scientific Ocean Drilling Data

    Science.gov (United States)

    Fils, D.; Jenkins, C. J.; Arko, R. A.

    2012-12-01

    The application of Linked Open Data methods to 40 years of data from scientific ocean drilling is providing users with several new methods for rich-content data search and discovery. Data from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have been translated and placed in RDF triple stores to provide access via SPARQL, linked open data patterns, and by embedded structured data through schema.org / RDFa. Existing search services have been re-encoded in this environment which allows the new and established architectures to be contrasted. Vocabularies including computed semantic relations between concepts, allow separate but related data sets to be connected on their concepts and resources even when they are expressed somewhat differently. Scientific ocean drilling produces a wide range of data types and data sets: borehole logging file-based data, images, measurements, visual observations and the physical sample data. The steps involved in connecting these data to concepts using vocabularies will be presented, including the connection of data sets through Vocabulary of Interlinked Datasets (VoID) and open entity collections such as Freebase and dbPedia. Demonstrated examples will include: (i) using RDF Schema for inferencing and in federated searches across NGDC and IODP data, (ii) using structured data in the data.oceandrilling.org web site, (iii) association through semantic methods of age models and depth recorded data to facilitate age based searches for data recorded by depth only.

  18. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  19. The Application of Biodiesel as an Environmental Friendly Drilling Fluid to Drill Oil and Gas Wells

    OpenAIRE

    Ismail, Abdul Razak

    2014-01-01

    The oil and gas industries need to use oil based drilling fluids to drill troublesome rock layers such as sensitive shale formation or to drill very deep oil and gas wells. However, using oil based drilling fluids will create pollution and therefore, environmental regulations on discharge of such drilling fluids have become more stringent because it will give tremendous impacts on the marine life and ecosystem. This research is conducted to formulate a new environmental friendly drilling flui...

  20. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  1. Nondestructive Evaluation Technology Initiatives Program II (NTIP II). Delivery Order 10, Task 010-015: In Search of Excellence - An Historical Review

    Science.gov (United States)

    2006-05-01

    opportunities arose, some new technologists educated in physics, physical chemistry , materials science, electronic instrumentation, and similar...the evaluation and improvement of the detection capability of the methodology.[4.81] • Turbine Engine Sustainment Initiative ( TESI ) Advanced Disk...Turbine Engine Sustainment Initiative ( TESI ) with the goal of enhancing the Air Force’s NDI/E capability to accurately locate certain critical, diffi

  2. Uranium prospecting by percussive drilling

    International Nuclear Information System (INIS)

    Dionne, G.M.

    1980-01-01

    The Societe de developpent da la Baie James (SDBJ) is carrying out mineral exploration in the region surrounding its hydroelectric development, in partnership with several companies experienced in exploration. In 1977 one joint venture consisting of SDBJ, Eldorado Nuclear Ltd., and Seru Nucleaire (Canada) made use of percussive drilling techniques in its search for uranium, hoping to take advantage of the rapid progress and greater mobility offered by this method. Details of the equipment and techniques used, with particular adaptations made necessary by the remote and rugged terrain, are given. It was concluded that percussive drilling is a useful technique. It is capable of a depth of up to 150 meters; the cost is relatively low (around $11.40 per drilled foot); its mobility and the rapid emplacement of equipment are important factors; and productivity is good, ideally 10 meters per hour. (LL)

  3. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  4. Application of Ester based Drilling Fluid for Shale Gas Drilling

    Science.gov (United States)

    Sauki, Arina; Safwan Zazarli Shah, Mohamad; Bakar, Wan Zairani Wan

    2015-05-01

    Water based mud is the most commonly used mud in drilling operation. However, it is ineffective when dealing with water-sensitive shale that can lead to shale hydration, consequently wellbore instability is compromised. The alternative way to deal with this kind of shale is using synthetic-based mud (SBM) or oil-based mud (OBM). OBM is the best option in terms of technical requirement. Nevertheless, it is toxic and will create environmental problems when it is discharged to onshore or offshore environment. SBM is safer than the OBM. The aim of this research is to formulate a drilling mud system that can carry out its essential functions for shale gas drilling to avoid borehole instability. Ester based SBM has been chosen for the mud formulation. The ester used is methyl-ester C12-C14 derived from palm oil. The best formulation of ester-based drilling fluid was selected by manipulating the oil-water ratio content in the mud which are 70/30, 80/20 and 90/10 respectively. The feasibility of using this mud for shale gas drilling was investigated by measuring the rheological properties, shale reactivity and toxicity of the mud and the results were compared with a few types of OBM and WBM. The best rheological performance can be seen at 80/20 oil-water ratio of ester based mud. The findings revealed that the rheological performance of ester based mud is comparable with the excellent performance of sarapar based OBM and about 80% better than the WBM in terms of fluid loss. Apart from that, it is less toxic than other types of OBM which can maintain 60% prawn's survival even after 96 hours exposure in 100,000 ppm of mud concentration in artificial seawater.

  5. Zona pellucida drilling by a 1.48-um laser: influence on the biomechanics of the hatching process

    Science.gov (United States)

    Rink, Klaus; Descloux, Laurent; Delacretaz, Guy P.; Senn, Alfred; Nocera, Dorotha; Germond, Marc

    1996-01-01

    Efficient and well controlled laser drilling of the zona pellucida of mouse eggs has been demonstrated recently using a 1.48 micrometers laser diode. The zona pellucida openings (5 - 10 micrometers ) can be obtained within the culture dish in an either tangential or more poleward irradiation in respect to the spherical egg structure. Zone drilling is achieved at a laser power of 47 mW and typical irradiation times of 8 - 20 ms for mouse oocytes. Cultured mouse embryos evidence strongly modified hatching behavior when drilled. No increase of the outer diameter of the zona pellucida and no thinning are induced prior to hatching in the lased group, in contrast to the control non-drilled group. Drilled embryos hatches one day earlier than control non-drilled embryos. Obviously no mechanical constraint is induced on the zona pellucida during the initial development of the drilled blastocysts before hatching and hatching is facilitated.

  6. New design of a compact aero-robotic drilling end effector: An experimental analysis

    Directory of Open Access Journals (Sweden)

    Shi Zhenyun

    2016-08-01

    Full Text Available This paper presents the development of a normal adjustment cell (NAC in aero-robotic drilling to improve the quality of vertical drilling, by using an intelligent double-eccentric disk normal adjustment mechanism (2-EDNA, a spherical plain bearing and a floating compress module with sensors. After the surface normal vector is calculated based on the laser sensors’ feedback, the 2-EDNA concept is conceived specifically to address the deviation of the spindle from the surface normal at the drilling point. Following the angle calculation, depending on the actual initial position, two precise eccentric disks (PEDs with an identical eccentric radius are used to rotate with the appropriate angles using two high-resolution DC servomotors. The two PEDs will carry the spindle to coincide with the surface normal, keeping the vertex of the drill bit still to avoid repeated adjustment and position compensation. A series of experiments was conducted on an aeronautical drilling robot platform with a precise NAC. The effect of normal adjustment on bore diameter, drilling force, burr size, drilling heat, and tool wear was analyzed. The results validate that using the NAC in robotic drilling results in greatly improved vertical drilling quality and is attainable in terms of intelligence and accuracy.

  7. Pb II

    African Journals Online (AJOL)

    Windows User

    ., 2009) biomaterials. However, the ..... reported for various microorganisms by various researchers (Gong et al., 2005). At biomass ... the increase in initial Pb (II) was also observed for removal of Pb (II) by loofa sponge immobilized Aspergillus.

  8. You say you want a revolution: casing drilling targets 30 per cent well-cost saving

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.; Marsters, S.

    1999-10-01

    Casing drilling is a new method of drilling that eliminates drill strings by using standard casing to simultaneously drill and case wells. Tesco Corporation of Calgary acquired patent rights to casing drilling technology in 1995. The company now offers a conversion kit for existing drill rigs as well a new compact casing drilling rig for shallow markets. The single derrick will be rated at 1,500 meters, but initially it will be used to drill 700-800 meter gas wells in southeast Alberta. Some cost savings will be realized at these shallow depths, but the real cost saving advantages will be realized on deep holes. In the meantime, improvements are planned to the cutting structures of the under-rimming bit to increase safety and withstand higher torque loads. It will be also necessary to adapt techniques such as directional drilling and logging to the casing drilling conveyance mechanism which has been only partially successful thus far, especially in the retrieving mode. Another challenge already met, involved ensuring that casing could be run in high-compression loads without damage to connections. Despite these problems, the system attracted considerable attention with several international companies placing orders for immediate delivery. Another system, this one developed by Sperry-Sun Drilling Services and known as a 'casing while drilling' (CWD) system, is strictly a downhole assembly and is targeted for offshore use and deeper vertical holes. This system is currently being tested in two commercial operations in offshore Indonesia for Unocal Corporation. Despite numerous problems to fill casing with fluid during connections, penetration rates of 300-400 feet per hour were achieved.

  9. Additive to clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Voytenko, V.S.; Nekrasova, V.B.; Nikitinskiy, E.L.; Ponomarev, V.N.

    1984-01-01

    The purpose of the invention is to improve the lubricating and strengthening properties of clay drilling muds. This goal is achieved because the lubricating and strengthening additive used is waste from the pulp and paper industry at the stage of reprocessing crude sulfate soap into phytosterol.

  10. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  11. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  12. Geothermal well drilling manual at Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez P., A.; Flores S., M.

    1982-08-10

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimize hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.

  13. Design and initial performance of SHARP, a polarimeter for the SHARC-II camera at the Caltech Submillimeter Observatory

    Science.gov (United States)

    Li, H.; Dowell, C. D.; Kirby, L.; Novak, G.; Vaillancourt, J. E.

    2008-01-01

    We have developed a foreoptics module that converts the Submillimeter High Angular Resolution Camera generation II (SHARC-II) camera at the Caltech Submillimeter Observatory into a sensitive imaging polarimeter at wavelengths of 350 and 450 μm. We refer to this module as "SHARP." SHARP splits the incident radiation into two orthogonally polarized beams that are then reimaged onto opposite ends of the 32×12 pixel detector array in SHARC-II. A rotating half-wave plate is used just upstream from the polarization-splitting optics. The effect of SHARP is to convert SHARC-II into a dual-beam 12×12 pixel polarimeter. A novel feature of SHARP's design is the use of a crossed grid in a submillimeter polarimeter. Here we describe the detailed optical design of SHARP and present results of tests carried out during our first few observing runs. At 350 μm, the beam size (9 arc sec), throughput (75%), and instrumental polarization (<1%) are all very close to our design goals.

  14. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  15. Evaluation of unilateral versus bilateral ovarian drilling in clomiphene citrate resistant cases of polycystic ovarian syndrome.

    Science.gov (United States)

    Roy, K K; Baruah, Jinee; Moda, Nidhi; Kumar, Sunesh

    2009-10-01

    Laparoscopic ovarian drilling (LOD) has been put forward as the treatment of choice in women with clomiphene citrate (CC)-resistant polycystic ovary syndrome (PCOS), with tubo-ovarian adhesion formation as the major disadvantage. Our study proposed to compare the efficacy of laparoscopic unilateral ovarian drilling with bilateral ovarian drilling in terms of ovulation and pregnancy rate with the expected advantage of decreasing postoperative adhesion rate and change in fimbiro ovarian relationship with unilateral drilling. This prospective randomized study included 44 patients with anovulatory infertility due to PCOS. Twenty-two patients underwent unilateral ovarian drilling in group-I and 22 patients underwent bilateral ovarian drilling in group-II between June 2005 and June 2007. The number of drilling site in each ovary was limited to five. The clinical and biochemical response, ovulation and pregnancy rates over a follow-up period of 1 year were compared. Tubo-ovarian adhesion rate was compared during cesarean section or during repeat laparoscopy. There was no statistical difference between the two groups in terms of clinical and biochemical response, ovulation rate and pregnancy rate. Postoperatively, tubo-ovarian adhesions could be assessed in 36.3% of the patients and no adhesions were found in a single case in either group. Unilateral drilling cauterization of ovary is equally efficacious as bilateral drilling in inducing ovulation and achieving pregnancy. Unilateral ovarian drilling may be a suitable option in clomiphene citrate resistant infertility patient of PCOS which can replace bilateral ovarian drilling with the potential advantage of decreasing the chances of adhesion formation.

  16. Study on the ocean drilling program

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Ho; Han, Hyun Chul; Chin, Jae Wha; Lee, Sung Rok; Park, Kwan Soon; Lee, Young Joo; Park, Young Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Geoscience research trend of the world nations is focusing on the study of climate changes and preventing people from the natural hazards such as earthquakes and volcanic activities. For this study, it is necessary for scientists to interpret ancient climate changes preserved in ocean sediments, and to observe plate motions. Thus, geological and geophysical studies should be proceeded for the core samples recovered from the deep sea sediments and basement. It is essential to join the ODP(Ocean Drilling Program) that drills ocean basins and crusts using the drilling vessel with the ability of deploying almost 9 km of drilling string. The first year (1995) was focused on the analyzing the appropriateness Korea to join the ODP. The second year (1996) has been stressed on being an ODP member country based on results of the first year study, and planning the future activities as a member. The scope of study is joining the ODP as a Canada-Australia Consortium member and to set up the Korean ODP organization and future activities. The results and suggestions are as follows. 1) Necessities of Korea joining the ODP: If Korea becomes a member of the ODP, the benefits could be obtained based on the activities of other ODP members through academic, social and economic sectors. 2) Korean membership of ODP: Korea becomes a member of the Australia-Canada Consortium for ODP. AGSO (Austrian Geological Survey Organization), GSC (Geological Survey of Canada), and KIGAM (Korea Institute of Geology, Mining and Materials) on behalf of their own countries will each pay a share of the full member financial contribution to the ODP. AGSO and GSC will pay one third of the full member financial contribution, and KIGAM will pay one twelfth. 3) Korean ODP structure and future activities: To enhance the efficiency of initial activities after joining the ODP, it has been decided to have a relatively simple organization. The primary governing arm of the Korean ODP organizations is the Korean ODP

  17. Microhole Drilling Tractor Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a

  18. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  19. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  20. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  1. REDUCTION OF AN ADVERSE IMPACT DURING WELL DRILLING BY MEANS OF DRILLING WASTE USAGE

    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov

    2017-03-01

    Full Text Available The problem of drilling waste utilisation is assumed to be resolved through the implementation of the complex of environment protection production engineering measures. This includes, firstly, the usage in the process of well drilling of drilling mud on the basis of water-soluble biodegradable polymers and a four-stage drilling mud refining system. Secondly, the usage of the well site construction with trenching for allocation of expressed bore mud and a temporary ground tank for drilling waste water.

  2. Microhole High-Pressure Jet Drill for Coiled Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Ken Theimer; Jack Kolle

    2007-06-30

    coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  3. Long hole waterjet drilling for gas drainage

    Energy Technology Data Exchange (ETDEWEB)

    Matt Stockwell; M. Gledhill; S. Hildebrand; S. Adam; Tim Meyer [CMTE (Australia)

    2003-04-01

    In-seam drilling for gas drainage is now an essential part of operations at many Australian underground coalmines. The objective of this project is to develop and trial a new drilling method for the accurate and efficient installation of long inseam boreholes (>1000 metres). This involves the integration of pure water-jet drilling technology (i.e. not water-jet assisted rotary drilling) developed by CMTE with conventional directional drilling technology. The system was similar to conventional directional drilling methods, but instead of relying on a down-hole-motor (DHM) rotating a mechanical drill bit for cutting, high pressure water-jets were used. The testing of the system did not achieve the full objectives set down in the project plan. A borehole greater than 1000 metres was not achieved. The first trial site had coal that was weathered, oxidized and dry. These conditions significantly affected the ability of the drilling tool to stay 'in-seam'. Due to the poor conditions at the first trial, many experimental objectives were forwarded to the second field trial. In the second trial drilling difficulties were experienced, this was due to the interaction between the confinement of the borehole and the dimensions of the down hole drilling assembly. This ultimately reduced the productivity of the system and the distance that could be drilled within the specified trial periods. Testing in the first field trial did not show any indication that the system would have this difficulty.

  4. The Effect of Simplifying Dental Implant Drilling Sequence on Osseointegration: An Experimental Study in Dogs

    Directory of Open Access Journals (Sweden)

    Gabriela Giro

    2013-01-01

    Full Text Available Objectives. To test the hypothesis that there would be no differences in osseointegration by reducing the number of drills for site preparation relative to conventional drilling sequence. Methods. Seventy-two implants were bilaterally placed in the tibia of 18 beagle dogs and remained for 1, 3, and 5 weeks. Thirty-six implants were 3.75 mm in diameter and the other 36 were 4.2 mm. Half of the implants of each diameter were placed under a simplified technique (pilot drill + final diameter drill and the other half were placed under conventional drilling where multiple drills of increasing diameter were utilized. After euthanisation, the bone-implant samples were processed and referred to histological analysis. Bone-to-implant contact (BIC and bone-area-fraction occupancy (BAFO were assessed. Statistical analyses were performed by GLM ANOVA at 95% level of significance considering implant diameter, time in vivo, and drilling procedure as independent variables and BIC and BAFO as the dependent variables. Results. Both techniques led to implant integration. No differences in BIC and BAFO were observed between drilling procedures as time elapsed in vivo. Conclusions. The simplified drilling protocol presented comparable osseointegration outcomes to the conventional protocol, which proved the initial hypothesis.

  5. Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces

    Science.gov (United States)

    Janicki, Benjamin

    This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.

  6. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  7. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  8. Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report

    International Nuclear Information System (INIS)

    1992-01-01

    The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch reg-sign) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion

  9. Salvage of relapse of patients with Hodgkin's disease in clinical stages I or II who were staged with laparotomy and initially treated with radiotherapy alone. A report from the international database on Hodgkin's disease

    DEFF Research Database (Denmark)

    Specht, L.; Horwich, A.; Ashley, S.

    1994-01-01

    patients in the International Database on Hodgkin's Disease who were initially in clinical Stages I or II, who were staged with laparotomy, and who relapsed after initial treatment with irradiation alone. Factors analyzed for outcome after first relapse included initial stage, age, sex, histology......PURPOSE: To analyze presentation variables that might indicate a high or low likelihood of success of the treatment of patients relapsing after initial radiotherapy of Hodgkin's disease in clinical Stages I or II who were staged with laparotomy. METHODS AND MATERIALS: Data were analyzed on 681...

  10. Salvage of relapse of patients with Hodgkin's disease in clinical stages I or II who were staged with laparotomy and initially treated with radiotherapy alone. A report from the international database on Hodgkin's disease

    DEFF Research Database (Denmark)

    Specht, L.; Horwich, A.; Ashley, S.

    1994-01-01

    PURPOSE: To analyze presentation variables that might indicate a high or low likelihood of success of the treatment of patients relapsing after initial radiotherapy of Hodgkin's disease in clinical Stages I or II who were staged with laparotomy. METHODS AND MATERIALS: Data were analyzed on 681...... patients in the International Database on Hodgkin's Disease who were initially in clinical Stages I or II, who were staged with laparotomy, and who relapsed after initial treatment with irradiation alone. Factors analyzed for outcome after first relapse included initial stage, age, sex, histology...

  11. Analysis of residual stresses on the transverse beam of a casting stand by means of drilling method

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented paper demonstrates the application of drilling method in the analysis of residual stresses on the transverse beam of a casting stand. In the initial stage of the analysis the determination of strains was done for individual steps of drilling in the area which was determined by means of numerical analysis. The drilling was carried out gradually by 0,5 mm up to the depth of 5 mm, while the diameter of the drilled hole was 3,2 mm. During the analysis we used the drilling device RS-200, strain indicator P3 and SGD 1-RY21-3/120. The paper presents the development of residual stresses throughout the depth of the drilled hole which were determined according to standard ASTM E837-01, by means of integral method, power series method and by means of Power Series method.

  12. Going Online With Ocean Drilling Publications

    Science.gov (United States)

    Klaus, A. D.; Petronotis, K. E.

    2003-12-01

    In 1999, the Ocean Drilling Program (ODP) transitioned from a print publication format to a hybrid print/electronic format of its Initial Reports (IR) series. A year later, the Scientific Results (SR) series joined the electronic era. Our mandate was to produce a fully functional electronic publication in HTML and PDF formats that would also function as a professionally typeset printed publication. The IR series disseminates the preliminary scientific knowledge gained during each ODP cruise, whereas the SR series is a venue for publishing independent research conducted after each cruise and often includes extensive data sets and many color images. Although both series are published as a print/CD-ROM hybrid and on the Web, the IR online version follows publication of the CD, whereas the SR online version precedes it. This unique format--neither all print, all electronic, or print with electronic replica of print--led to interesting challenges that few other publishers had to grapple with when going electronic. ODP's formal transition from print to electronic publication was concentrated in a 2-year period, but fortunately, staff members had honed many valuable online editing and production skills prior to that time as a cost-saving means of publishing hardcover books. This made the transition rather seamless for the staff; however, issues pertaining to multiplatform publications still had to be addressed. These included word choices that made sense regardless of whether the material was being viewed on paper, on CD, or on the Web; the creation of alternative citation formats; policies on revising already published electronic material; etc. In our experience, the advantages for publishers and readers have outweighed the growing pains of moving to electronic publishing. For example, SR authors typically see their manuscripts published 4-5 months after acceptance, whereas it used to take 7-9 months. The accessibility of the online publications has significantly widened

  13. Salvage of relapse of patients with Hodgkin's disease in clinical stages I or II who were staged with laparotomy and initially treated with radiotherapy alone. A report from the international database on Hodgkin's disease

    DEFF Research Database (Denmark)

    Specht, L; Horwich, A; Ashley, S

    1994-01-01

    To analyze presentation variables that might indicate a high or low likelihood of success of the treatment of patients relapsing after initial radiotherapy of Hodgkin's disease in clinical Stages I or II who were staged with laparotomy.......To analyze presentation variables that might indicate a high or low likelihood of success of the treatment of patients relapsing after initial radiotherapy of Hodgkin's disease in clinical Stages I or II who were staged with laparotomy....

  14. Toluene and Ethylbenzene Aliphatic C-H Bond Oxidations Initiated by a Dicopper(II)-μ-1,2-Peroxo Complex

    Science.gov (United States)

    Lucas, Heather R.; Li, Lei; Sarjeant, Amy A. Narducci; Vance, Michael A.; Solomon, Edward I.; Karlin, Kenneth D.

    2009-01-01

    With an anisole containing polypyridylamine potential tetradentate ligand OL, a μ-1,2-peroxo-dicopper(II) complex [{OLCuII}2(O22-)]2+ forms from the reaction of the mononuclear compound [CuI(OL)(MeCN)]B(C6F5)4(OLCuI) with O2 in non-coordinating solvents at -80 °C. Thermal decay of this peroxo complex in the presence of toluene or ethylbenzene leads to rarely seen C-H activation chemistry; benzaldehyde and acetophenone/1-phenylethanol mixtures, respectively, are formed. Experiments with 18O2 confirm that the oxygen source in the products is molecular O2 and deuterium labeling experiments indicate kH/kD = 7.5 ± 1 for the toluene oxygenation. The O2-reaction of [CuI(BzL)(CH3CN)]+ (BzLCuI) leads to a dicopper(III)-bis-μ-oxo species [{BzLCuIII}2(μ-O2-)2]2+ at -80 °C and from such solutions, very similar toluene oxygenation chemistry occurs. Ligand BzL is a tridentate chelate, possessing the same moiety found in OL, but without the anisole O-atom donor. In these contexts, the nature of the oxidant species in or derived from [{OLCuII}2(O22-)]2+ is discussed and likely mechanisms of reaction initiated by toluene H-atom abstraction chemistry are detailed. To confirm the structural formulations of the dioxygen-adducts, UV-vis and resonance Raman spectroscopic studies have been carried out and these results are reported and compared to previously described systems including [{CuII(PYL)}2(O2)]2+ (PYL =TMPA = tris(2-methylpyridyl)amine). Using (L)CuI, CO-binding properties (i.e., νC-O values) along with electrochemical property comparisons, the relative donor abilities of OL, BzL and PYL are assessed. PMID:19216527

  15. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  16. PDVSA INTEVEP Technologies in oil well drilling

    International Nuclear Information System (INIS)

    Bolivar, C.; Rafael, A.; Davila, Manuel A.

    1998-01-01

    The orimulsion, the generation of catalytic technologies and the development of HDH (process which transform heavy crudes in light crudes), are examples of some of the well known technologies developed by PDVSA INTEVEP. But the drilling oil wells technologies developed by the same entreprise, even though are very important, are less known all around the world. This document describes some products developed through those technologies: THIXOGAS T M which is an antimigratory aditive; INTEFLOW T M which is a fluid for drilling, complementation and rehabilitation of oil drills; INTERCAB T M which is an aditive for fluids in drilling; orimatita which is a denser for drilling fluids; CARBOLIG T M which is an aditive for drilling fluids; and many other products and technologies in development, impacted considerably the venezuelan economy by preserving the environment and saving quite an important amount of money in 1997 (Bs. 3.000 M M)

  17. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  18. DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001

    Energy Technology Data Exchange (ETDEWEB)

    William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

    2001-07-01

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed

  19. Replacement team of mining drilling rigs

    OpenAIRE

    Hamodi, Hussan; Lundberg, Jan

    2014-01-01

    This paper presents a practical model to calculate the optimal replacement time (ORT) of drilling rigs used in underground mining. As a case study, cost data for drilling rig were collected over four years from a Swedish mine. The cost data include acquisition, operating, maintenance and downtime costs when using a redundant rig. A discount rate is used to determine the value of these costs over time. The study develops an optimisation model to identify the ORT of a mining drilling rig which ...

  20. An Infrared Drill Borehole Spectrometer for Mars

    Science.gov (United States)

    Smythe, W.; Foote, M.; Johnson, E.; Daly, J.; Loges, P.; Puscasu, I.; Gorevan, S.; Chu, P.; Granahan, J.

    2005-08-01

    The best clues to Mars past may be hidden below the surface of Mars. Long exposure to the sun, high winds and dust storms, large diurnal temperature excursions, and eons of space weathering combine to render a greatly modified surface, in many instances remarkable for its appearance of uniform composition. Drilling can provide access to the layers in the caps, to the permafrost and possibly, to pristine crustal material. The drilling process is complex with high demand on support resources. It is vital to make the drilling process as efficient as possible. A most promising approach is to instrument the drill string itself, thereby avoiding the complexity of sample handling, speeding and simplifying drill operations, and allowing examination of freshly exposed surfaces within the borehole. A solid-state IR spectrometer is being integrated with a blackbody source into a package to fit within an existing Mars drill design. The borehole IR spectrometer is used to monitor facies encountered throughout the drilling process. The spectrometer/IR combination is used in reflectance spectrometer mode to monitor H2O and CO2 content, as well as iron and carbonate mineralogies. Integration required adapting the existing spectrometer to fit within the drill -- including attaching the detectors directly to the spectrometer waveguide, developing the techniques required to seal the micro-thermopile detectors to the waveguide, implementing miniaturized digital conversion electronics, combining the spectrometer with the IR source and coupling them to a suitable window, implementing a suitable sealed package to fit within the drill, integrating and testing the package on a drill, and establishing the proper gain for both stimulus and spectrometer to permit reasonable range of Mars soil analogs. Tests have shown that both sapphire and diamond windows perform well in the drilling environment. Testing of the integrated spectrometer and drill will be completed in the coming year.

  1. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  < Q max  < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r  < Q min  < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  2. Methods and systems for determining angular orientation of a drill string

    Science.gov (United States)

    Cobern, Martin E.

    2010-03-23

    Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.

  3. Study on the influence of parameters of medical drill on bone drilling temperature

    Science.gov (United States)

    XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao

    2018-03-01

    During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.

  4. Columbia Gas preserves wetlands with directional drilling

    International Nuclear Information System (INIS)

    Luginbuhl, K.K.; Gartman, D.K.

    1995-01-01

    This paper reviews the use of directional drilling to install a 12 inch natural gas pipeline near Avon, Ohio. As a result of increased demand, the utility decided that it would need additional lines for pressure control with the only feasible route being through a forested and scrub/shrub wetland. This paper reviews the permitting requirements along with the directional drilling design and operation. Unfortunately during drilling, bentonite drilling fluids came to the surface requiring remedial action procedures. The paper then provides a detailed clean up strategy and makes recommendations on how to prevent such a break through in the future

  5. Vale exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  6. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  7. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.

    1990-01-01

    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  8. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo

    2013-01-01

    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.

  9. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  10. Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions

    Directory of Open Access Journals (Sweden)

    Jamal Rostami

    2015-06-01

    Full Text Available Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface. Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed.

  11. The exchange reaction between hydrogen and deuterium. II - Proposal for an heterogeneous initiation mechanism of gaseous phase reactions

    International Nuclear Information System (INIS)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, Henri

    1978-01-01

    Investigation of experimental data related to evolution period exhibited by H 2 -D 2 exchange process requires to take into account the variation against time of every atomic species -adsorbed or not- implied in the reaction mechanism. The formation of first chain carriers involves: - chemisorption of either gaseous reactant on the surface active centres (Σ), e.g.: Σ + 1/2 H 2 reversible ΣH; - consecutive generation of atomic species through hetero-homogeneous transfer between chemisorbed species (ΣH) and gaseous molecules: ΣH+H 2 →Σ+H 2 +H 0 , ΣH+D 2 →Σ+HD+D 0 . Therefore, it can be shown that the heterogeneous initiation process of a gas phase reaction identifies to a chain linear mechanism. Such an heterogeneous sequence conditions the further proceeding of the homogeneous chain reaction; both evolutions being kinematically connected. Rate constant of hydrogen adsorption on silica glass: ksub(a1) approximately 10 14 exp(-47/RT)Isup(0,5).molesup(-0,5).S -1 has been evaluated [fr

  12. Workshop on Marine Research Drilling

    Science.gov (United States)

    Spezzaferri, Silvia

    2009-06-01

    Cold-Water Carbonate Reservoir Systems in Deep Environments (COCARDE): A Pilot Industry-Academia Partnership in Marine Research Drilling; Fribourg, Switzerland, 21-24 January 2009; Cold-water carbonate mounds supporting cold-water coral ecosystems, often dominated by Lophelia pertusa and Madrepora oculata, are widespread along the Atlantic margins from Norway to Mauritania. During the past 10 years, the scientific community has accumulated new insights on their occurrence and development and identified their potential role in reservoir formation, thus establishing a framework for collaboration with the hydrocarbon industry. A Magellan workshop, sponsored by the European Science Foundation (ESF; http://www.esf.org/), was held in Switzerland in January. The workshop gathered 35 scientists from 10 European and two extra-European countries (Canada and Morocco), representing 20 research teams, including members of two Integrated Ocean Drilling Program (IODP) proposals. Some of the participants were also involved with two ESF European Collaborative Research (EUROCORES) projects [Microbial Diversity and Functionality in Cold-Water Coral Reef Ecosystems (MiCROSYSTEMS) and Mid-Latitude Carbonate Systems: Complete Sequences From Cold-Water Coral Carbonate Mounds in the Northeast Atlantic (CARBONATE)], and the European Union Framework Program 6 integrated project Hotspot Ecosystem Research on the Margins of European Seas (HERMES).

  13. Model Comparison Exercise Circuit Training Game and Circuit Ladder Drills to Improve Agility and Speed

    Directory of Open Access Journals (Sweden)

    Susilaturochman Hendrawan Koestanto

    2017-11-01

    Full Text Available The purpose of this study was to compare: (1 the effect of circuit training game and circuit ladder drill for the agility; (2 the effect of circuit training game and circuit ladder drill on speed; (3 the difference effect of circuit training game and circuit ladder drill for the speed (4 the difference effect of circuit training game and circuit ladder drill on agility. The type of this research was quantitative with quasi-experimental methods. The design of this research was Factorial Design, with analysing data using ANOVA. The process of data collection was done by using 30 meters sprint speed test and shuttle run test during the pretest and posttest. Furthermore, the data was analyzed by using SPSS 22.0 series. Result: The circuit training game exercise program and circuit ladder drill were significant to increase agility and speed (sig 0.000 < α = 0.005 Group I, II, III had significant differences (sig 0.000 < α = 0.005. The mean of increase in speed of group I = 0.20 seconds, group II = 0.31 seconds, and group III = 0.11 seconds. The average increase agility to group I = 0.34 seconds group II = 0.60 seconds, group III = 0.13 seconds. Based on the analysis above, it could be concluded that there was an increase in the speed and agility of each group after being given a training.

  14. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  15. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  16. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    Science.gov (United States)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Integrated Ocean Drilling Program (IODP) provides technologically top-level drilling vessels and platforms that can be used by scientists to address global scientific problems, including the causes and processes responsible for submarine geohazards. Both IODP and ECORD (the European Consortium for Ocean Research Drilling in collaboration with the European Science Foundation) support scientific initiatives towards submarine geohazards, because the geological record of geohazards can be read and interpreted only through ocean drilling, combined with a broad array of geophysical, geotechnical, and laboratory studies, to identify structures and deposits associated with hazardous phenomena.

  17. Variations of the stellar initial mass function in semi-analytical models - II. The impact of cosmic ray regulation

    Science.gov (United States)

    Fontanot, Fabio; De Lucia, Gabriella; Xie, Lizhi; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane

    2018-04-01

    Recent studies proposed that cosmic rays (CRs) are a key ingredient in setting the conditions for star formation, thanks to their ability to alter the thermal and chemical state of dense gas in the ultraviolet-shielded cores of molecular clouds. In this paper, we explore their role as regulators of the stellar initial mass function (IMF) variations, using the semi-analytic model for GAlaxy Evolution and Assembly (GAEA). The new model confirms our previous results obtained using the integrated galaxy-wide IMF (IGIMF) theory. Both variable IMF models reproduce the observed increase of α-enhancement as a function of stellar mass and the measured z = 0 excess of dynamical mass-to-light ratios with respect to photometric estimates assuming a universal IMF. We focus here on the mismatch between the photometrically derived (M^app_{\\star }) and intrinsic (M⋆) stellar masses, by analysing in detail the evolution of model galaxies with different values of M_{\\star }/M^app_{\\star }. We find that galaxies with small deviations (i.e. formally consistent with a universal IMF hypothesis) are characterized by more extended star formation histories and live in less massive haloes with respect to the bulk of the galaxy population. In particular, the IGIMF theory does not change significantly the mean evolution of model galaxies with respect to the reference model, a CR-regulated IMF instead implies shorter star formation histories and higher peaks of star formation for objects more massive than 1010.5 M⊙. However, we also show that it is difficult to unveil this behaviour from observations, as the key physical quantities are typically derived assuming a universal IMF.

  18. HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.; Huesemann, M.

    2008-01-01

    The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 μmole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 μmole m-2 s-1. Excessive light at 400 μmole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal

  19. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  20. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  1. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  2. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  3. STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION

    International Nuclear Information System (INIS)

    Lu, J. R.; Do, T.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Matthews, K.

    2013-01-01

    The supermassive black hole at the center of the Milky Way plays host to a massive, young cluster that may have formed in one of the most inhospitable environments in the Galaxy. We present new measurements of the global properties of this cluster, including the initial mass function (IMF), age, and cluster mass. These results are based on Keck laser-guide-star adaptive optics observations used to identify the young stars and measure their Kp-band luminosity function as presented in Do et al. A Bayesian inference methodology is developed to simultaneously fit the global properties of the cluster utilizing the observations and extensive simulations of synthetic star clusters. We find that the slope of the mass function for this cluster is α = 1.7 ± 0.2, which is steeper than previously reported, but still flatter than the traditional Salpeter slope of 2.35. The age of the cluster is between 2.5 and 5.8 Myr with 95% confidence, which is a younger age than typically adopted but consistent within the uncertainties of past measurements. The exact age of the cluster is difficult to determine since our results show two distinct age solutions (3.9 Myr and 2.8 Myr) due to model degeneracies in the relative number of Wolf-Rayet and OB stars. The total cluster mass is between 14,000 and 37,000 M ☉ above 1 M ☉ and it is necessary to include multiple star systems in order to fit the observed luminosity function and the number of observed Wolf-Rayet stars. The new IMF slope measurement is now consistent with X-ray observations indicating a factor of 10 fewer X-ray emitting pre-main-sequence stars than expected when compared with a Salpeter IMF. The young cluster at the Galactic center is one of the few definitive examples of an IMF that deviates significantly from the near-universal IMFs found in the solar neighborhood.

  4. The Hominin Sites and Paleolakes Drilling Project (HSPDP): Understanding the paleoenvironmental and paleoclimatic context of human origins through continental drilling

    Science.gov (United States)

    Cohen, Andrew S.; Campisano, Christopher; Asrat, Asfawossen; Arrowsmith, Ramon; Deino, Alan; Feibel, Craig; Hill, Andrew; Kingston, John; Lamb, Henry; Lowenstein, Tim; Olago, Daniel; Bernhart Owen, R.; Renaut, Robin; Schabitz, Frank; Trauth, Martin

    2015-04-01

    The influence of climate and environmental history on human evolution is an existential question that continues to be hotly debated, in part because of the paucity of high resolution records collected in close proximity to the key fossil and archaeological evidence. To address this issue and transform the scientific debate, the HSPDP was developed to collect lacustrine sediment drill cores from basins in Kenya and Ethiopia that collectively encompass critical time intervals and locations for Plio-Quaternary human evolution in East Africa. After a 17 month campaign, drilling was completed in November, 2014, with over 1750m of core collected from 11 boreholes from five areas (1930m total drilling length, avg. 91% recovery). The sites, from oldest to youngest, include 1) N. Awash, Ethiopia (~3.5-2.9Ma core interval); 2) Baringo-Tugen Hills, Kenya (~3.3-2.5Ma); 3) West Turkana, Kenya (~1.9-1.4Ma); L. Magadi, Kenya (0.8-0Ma) and the Chew Bahir Basin, Ethiopia (~0.5-0Ma). Initial core description (ICD) and sampling for geochronology, geochemistry and paleoecology studies had been completed by mid2014, with the two remaining sites (Magadi and Chew Bahir) scheduled for ICD work in early 2015. Whereas the primary scientific targets were the lacustrine deposits from the hominin-bearing basin depocenters, many intervals of paleosols (representative of low lake stands and probable arid periods) were also encountered in drill cores. Preliminary analyses of drill core sedimentology and geochemistry show both long-term lake level changes and cyclic variability in lake levels, both of which may be indicative of climatic forcing events of interest to paleoanthropologists. Authors of this abstract also include the entire HSPDP field team.

  5. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Science.gov (United States)

    Hall, Edward; Isaacs, James; Henriksen, Steve; Zelkin, Natalie

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  6. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    Science.gov (United States)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions

  7. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  9. Status Report A Review of Slimhole Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  10. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  11. Westinghouse GOCO conduct of casualty drills

    International Nuclear Information System (INIS)

    Ames, C.P.

    1996-02-01

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility

  12. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    Science.gov (United States)

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  13. Drilling the North Anatolian Fault

    Directory of Open Access Journals (Sweden)

    Mustafa Aktar

    2008-07-01

    Full Text Available An international workshop entitled “GONAF: A deep Geophysical Observatory at the North Anatolian Fault”, was held 23–27 April 2007 in Istanbul, Turkey. The aim of this workshop was to refine plans for a deep drilling project at the North Anatolian Fault Zone (NAFZ in northwestern Turkey. The current drilling target is located in the Marmara Sea offshore the megacity of Istanbul in the direct vicinity of the main branch of the North Anatolian Fault on the PrinceIslands (Figs. 1 and 2.The NAFZ represents a 1600-km-long plate boundary that slips at an average rate of 20–30 mm·yr-1 (McClusky et al., 2000. It has developed in the framework of the northward moving Arabian plate and the Hellenic subduction zone where the African lithosphere is subducting below the Aegean. Comparison of long-term slip rates with Holocene and GPS-derived slip rates indicate an increasing westwardmovement of the Anatolian plate with respect to stable Eurasia. During the twentieth century, the NAFZ has ruptured over 900 km of its length. A series of large earthquakes starting in 1939 near Erzincan in Eastern Anatolia propagated westward towards the Istanbul-Marmara region in northwestern Turkey that today represents a seismic gap along a ≥100-km-long segment below the Sea of Marmara. This segment did not rupture since 1766 and, if locked, may have accumulated a slip deficit of 4–5 m. It is believed being capable of generating two M≥7.4 earthquakes within the next decades (Hubert-Ferrari et al., 2000; however, it could even rupture in a large single event (Le Pichon et al., 1999.

  14. Air drilling: the first experience in the Amazon; Perfuracao a ar: primeira experiencia na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Gabriel Raimundo L.; Santana, Esdras Gomes de; Souza, Gilberto Bellas de [PETROBRAS, Manaus, AM (Brazil). Distrito de Perfuracao da Amazonia. Superintendencia de Operacoes; Leme Junior, Leandro; Machado, Jorge Barreto [PETROBRAS, Manaus, AM (Brazil). Distrito de Perfuracao da Amazonia. Div. de Perfuracao

    1989-12-31

    The development of drilling techniques closely follows the difficulties of operating well events at low costs. In the Amazon Region, problems such as logistic support at high costs did not allow for the use of air drilling techniques as a means of obtaining the results necessary to the development of the field. Without these, there was no justification for promoting initial investments in air drilling equipment. After the Urucu/AM roads were completed, we were able to bring equipment to the area of operation. This equipment was tested in two wells, one directional and one vertical. In this paper, we describe the pioneer use of air drilling in their region and present the results obtained through it as well as the problems encountered and the techniques used to solve them. (author) 2 refs., 7 figs., 3 tabs.

  15. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    field monitoring. Vibration prediction diminishes the importance of trial-and-error procedures such as drill-off tests, which are valid only for short sections. It also solves an existing lapse in Mechanical Specific Energy (MSE) real-time drilling control programs applying the theory of Teale, which states that a drilling system is perfectly efficient when it spends the exact energy to overcome the in situ rock strength. Using the proprietary software tool this paper will examine the resonant vibration modes that may be initiated while drilling with different BHA's and drill string designs, showing that the combination of a proper BHA design along with the correct selection of input parameters results in an overall improvement to drilling efficiency. Also, being the BHA predictively analyzed, it will be reduced the potential for vibration or stress fatigue in the drill string components, leading to a safer operation. In the recent years there has been an increased focus on vibration detection, analysis, and mitigation techniques, where new technologies, like the Drilling Dynamics Data Recorders (DDDR), may provide the capability to capture high frequency dynamics data at multiple points along the drilling system. These tools allow the achievement of drilling performance improvements not possible before, opening a whole new array of opportunities for optimization and for verification of predictions calculated by the drill string dynamics modeling software tool. The results of this study will identify how the dynamics from the drilling system, interacting with formation, directly relate to inefficiencies and to the possible solutions to mitigate drilling vibrations in order to improve drilling performance. Software vibration prediction and downhole measurements can be used for non-drilling operations like drilling out casing or reaming, where extremely high vibration levels - devastating to the cutting structure of the bit before it has even touched bottom - have

  16. New approaches to subglacial bedrock drilling technology

    Science.gov (United States)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical

  17. Counter-Rotating Tandem Motor Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger

  18. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    Science.gov (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  19. Utilização do planejamento experimental no estudo do efeito da composição de misturas de bentonitas na reologia de fluidos de perfuração. Parte II: composições ternárias Experimental design applied to the study of composition effect of bentonite on the rheology of drilling fluids. Part II: ternary compositions

    Directory of Open Access Journals (Sweden)

    L. F. A. Campos

    2007-03-01

    Full Text Available O objetivo deste trabalho foi utilizar o planejamento experimental para avaliar o efeito da composição de misturas ternárias de bentonitas na reologia de fluidos de perfuração de poços de petróleo. Por meio do planejamento foram determinadas as proporções dos componentes nas misturas ternárias das argilas e então ajustados modelos de regressão relacionando viscosidade aparente, viscosidade plástica e volume de filtrado com a proporção de cada argila. A aplicação da modelagem de misturas, incluindo composições ternárias, aliada a metodologia de superfícies de resposta e otimização matemática e gráfica permitiu delimitar uma gama de composições de argilas que favorece a melhoria das propriedades reológicas e de filtração dos fluidos estudados.The purpose of this work was to study of composition effect of ternary bentonite mixtures on the rheology of drilling fluids. Through the experimental design were defined the components proportions in the ternary clays mixtures and then adjusted regression models relating apparent and plastic viscosities and water loss, with the proportion of each clay. The application of mixture experimental design, include ternary composition, response surface methodology, graphic and mathematical optimization allowed to delimit a strip of compositions that favors the improvement of the rheological properties of the drilling fluids.

  20. Steamboat Hills exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

    1994-10-01

    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  1. The Auto-Gopher Deep Drill

    Science.gov (United States)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  2. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    Science.gov (United States)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e

  3. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  4. Hole fluids for deep ice core drilling

    OpenAIRE

    Talalay, P.G.; Gundestrup, N.S.

    2002-01-01

    This paper is based on the data published in research report of P. G. Talalay and N. S. Gundestrup; Hole fluids for deep ice core drilling : A review. Copenhagen University, Copenhagen, 1999,120p. In the practice of deep ice core drilling only three types of bore-hole fluids have been used : 1) petroleum oil products (fuels or solvents) containing densifier, 2) aqueous ethylene glycol or ethanol solutions, 3) n-butyl acetate. The main parameters of drilling fluids are 1) density and fluid top...

  5. Environmental issues and solutions for exploratory drilling in sensitive areas

    International Nuclear Information System (INIS)

    Smith, R.M.

    1995-01-01

    Chevron USA Production Company (CPDN), the National Forest Service (FS) and the Bureau of Land Management (BLM) successfully utilized a multi-disciplinary team approach to design and implement innovative environmental solutions to drill the 8,000 foot deep, Hunter Creek exploratory well. The project was located in the Bridger-Teton National Forest, less than 20 miles from Grand Teton National Park. Acquiring permission from the FS, the BLM, and ultimately, the public to drill the Hunter Creek well involved substantial teamwork in identifying many potential, environmental pitfalls. Creative, workable and cost-effective mitigation measures employed at Hunter Creek included: utilizing a helicopter and limiting vehicle use of an existing road, conducting environmental and safety training, an erosion control and reclamation plan, designing an environmentally friendly, near-zero-discharge drilling location, initiating a water quality monitoring program to establish baseline data and to ensure protection of surface and ground water, designing a waste minimization plan, identifying threatened and endangered and special status species possibly affected by project activities, and ensuring compliance with all mitigation measures and Federal and State regulations. The Hunter Creek project successfully demonstrates that oil and gas exploration can be conducted with a soft footprint in environmentally sensitive areas if mitigation measures are front-end loaded in the project and honored by all personnel involved. Teamwork, training and communication were found to be indispensable components of achieving success at Hunter Creek

  6. Temperature analysis in CFRP drilling

    Science.gov (United States)

    Matsumura, Takashi; Tamura, Shoichi

    2016-10-01

    The cutting temperature in drilling of carbon fiber reinforced plastics (CFRPs) is simulated numerically in finite difference analysis. The cutting force is predicted to estimate heat generation on the shear plane and the rake face by an energy approach. In the force model, three dimensional chip flow is interpreted as a piling up of the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined chip flow model. The cutting temperature distribution is simulated with the thermal conductions, the thermal convections and the heat generations in the discrete elements of the tool, the chip and the workpiece. The heat generations on the shear plane and the rake face are given by stress distributions based on the cutting force predicted. The cutting temperature is analyzed on assumption that all mechanical works contribute the heat generation. The temperature of CFRP is compared with that of carbon steel in the numerical simulation. The maximum temperature of CFRP is much lower than carbon steel. The position at the maximum temperature is near the tool tip due to a low thermal conductivity of CFRP.

  7. Final Technical Report for “A Heliportable Sonic Drilling Platform for Microhole Drilling and Exploration”

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, Peter [Resodyn Corporation, Butte, MT (United States)

    2008-05-05

    Exploration and development of new energy resources in remote and environmentally sensitive areas can benefit greatly from a reduction in the size of drilling equipment and the associated equipment for its operation. In particular, microhole sonic drilling technology can significantly reduce costs for: 1.) drilling equipment size, 2.) well construction, 3.) placement of subterranean instrumentation and 4.) exploratory drilling costs. The ultimate goal of the project is to provide reliable, small footprint, instrumentation deployment systems that can operate at lower costs and in environmentally sensitive areas that are not accessible to conventional drilling systems. Sonic drilling, combined with an advanced control technology, termed ResonantSonic Tracking™ (RST™) is proposed as a method to meet the DOE requirements.

  8. Ecologically pure drilling muds for the drilling of variable purpose wells

    Energy Technology Data Exchange (ETDEWEB)

    Kudaikulova, G.A.; Rakishev, B.R.; Aitugulova, B.A. [K.I. Satpaev Kazak National Technical Univ., (Kazakhstan)

    2010-07-01

    The volumes of prospecting and geotechnological rock drilling wells have increased considerably in Kazakhstan. Among the number of ores developed in Kazakhstan, the gold-containing, polymetallic and uranium ores are of particular interest. By working out the deposits, the creviced and cavernous zones often appear. Therefore, a high-quality polymer-clay drilling mud is needed to provide a high yield of core, increase mechanical speed of drilling, and increase the technical and economic indicators of drilling. This paper presented data on the development of ecologically pure polymer-clay drilling muds with application of Kazakhstan clays of various deposits and ecologically pure chemical reagents of companies around the world. The paper discussed the theory and experimental results. It was concluded that the newly created ecologically pure polymer-clay drilling muds had a low indicator of filtration, good removal ability and contained a minimum quantity of reagents. 3 refs., 1 tab., 2 figs.

  9. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  10. Lake Van deep drilling project PALEOVAN

    Science.gov (United States)

    Litt, Thomas; Anselmetti, Flavio S.

    2014-11-01

    A complete succession of the lacustrine sediment sequence deposited during the last ˜600,000 years in Lake Van, Eastern Anatolia (Turkey) was drilled in 2010 supported by the International Continental Scientific Drilling Program (ICDP). Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin) and 220 m (Ahlat Ridge). To obtain a complete sedimentary section, the two sites were multiple cored in order to investigate the paleoclimate history of a sensitive semi-arid region between the Black, Caspian, and Mediterranean seas. This introductory paper provides background information of the deep drilling project and an overview of the studies presented in this special volume by the PALEOVAN science team dealing with chronology, paleomagnetism, paleoenvironmental proxies, geophysical and petrophysical investigations as well as pore-water and fluid transport.

  11. Drill Embedded Nanosensors for Planetary Subsurface Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a carbon nanotube (CNT) sensor for water vapor detection under Martian Conditions and the miniaturized electronics can be embedded in the drill bit...

  12. 75 FR 8113 - Drill Pipe From China

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  13. Exploring frontiers of the deep biosphere through scientific ocean drilling

    Science.gov (United States)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  14. Drilling dimension effects in early stages of osseointegration and implant stability in a canine model

    Science.gov (United States)

    Baires-Campos, Felipe-Eduardo; Jimbo, Ryo; Fonseca-Oliveira, Maiolino-Thomaz; Moura, Camila; Zanetta-Barbosa, Darceny; Coelho, Paulo-Guilherme

    2015-01-01

    Background This study histologically evaluated two implant designs: a classic thread design versus another specifically designed for healing chamber formation placed with two drilling protocols. Material and Methods Forty dental implants (4.1 mm diameter) with two different macrogeometries were inserted in the tibia of 10 Beagle dogs, and maximum insertion torque was recorded. Drilling techniques were: until 3.75 mm (regular-group); and until 4.0 mm diameter (overdrilling-group) for both implant designs. At 2 and 4 weeks, samples were retrieved and processed for histomorphometric analysis. For torque and BIC (bone-to-implant contact) and BAFO (bone area fraction occupied), a general-linear model was employed including instrumentation technique and time in vivo as independent. Results The insertion torque recorded for each implant design and drilling group significantly decreased as a function of increasing drilling diameter for both implant designs (pimplant designs for each drilling technique (p>0.18). A significant increase in BIC was observed from 2 to 4 weeks for both implants placed with the overdrilling technique (p0.32). Conclusions Despite the differences between implant designs and drilling technique an intramembranous-like healing mode with newly formed woven bone prevailed. Key words: Histomorphometry, biomechanical, in vivo, initial stability, insertion torque, osseointegration. PMID:25858087

  15. A reagent for processing drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, G.A.; Khon-Pak, A.T.; Khon, A.V.; Normatov, L.N.; Telegin, B.V.

    1983-01-01

    A reagent is proposed for processing drilling muds. It contains an acrylic polymer and potassium permanganate. The reagent is distinguished by the fact that in order to improve the quality of the drilling muds by increasing their salt resistance, the reagent contains hydrolized nitron fiber as the acrylic polymer with the following component relationship (in percent by weight): potassium permanganate, 0.015 to 0.065 and hydrolyzed nitron fiber, the remainder.

  16. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  17. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  18. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  19. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani

    2016-03-01

    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  20. Arm-Deployed Rotary-Percussive Coring Drill, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The continued development of automated sample acquisition and handling tools is of critical importance to future robotic missions on Mars, the Moon, Venus, and other...

  1. One-Meter Class Drilling for Planetary Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Robotic planetary exploration missions will need to perform in-situ analysis of rock and/or regolith samples or returning samples back to earth. Obtaining and...

  2. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  3. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    Science.gov (United States)

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Multi-Model Assessment for the 2006 and 2010 Simulations under the Air Quality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of Column Variable Predictions Using Satellite Data

    Science.gov (United States)

    Within the context of the Air Quality Model Evaluation International Initiative phase 2 (AQMEII2) project, this part II paper performs a multi-model assessment of major column abundances of gases, radiation, aerosol, and cloud variables for 2006 and 2010 simulations with three on...

  5. Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin

    Energy Technology Data Exchange (ETDEWEB)

    David Gibbons; Larry A. Carrell; Richard D. George

    1997-07-31

    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.

  6. Information Portal for the Integrated Ocean Drilling Program

    Science.gov (United States)

    Miville, B.; Soeding, E.; Larsen, H.

    2005-12-01

    The Integrated Ocean Drilling Program (IODP) is preparing for the challenge of managing data from three scientific drilling platforms, operated by US, Japanese and European science operators, each using different data management systems. This includes organizing and distributing data to clients outside the program, developing interfaces with external global data and metadata catalogues, and making IODP data effectively searchable for data mining and visualization applications. To meet the needs of integrating data from a web of distributed operator databases and providing easy and seamless top-down access from the larger cyberspace infrastructure, IODP will develop an Information Portal for IODP (IPI), that will be a unique entry point for discovery of all IODP data, as well as legacy data from previous scientific ocean drilling programs (ODP, DSDP). It will consist of a central metadata catalogue based on the ISO 19115 standard, which will allow for easy construction of interfaces to access the IODP metadata and data sources. This requires that each contributor to the IPI provide metadata structured according to a common schema currently being devised by an IODP task force. The IPI will use the Open Archive Initiative Protocol to allow Metadata Harvesting (OAI-PMH) to gather the metadata from the different contributors. Initially the portal will allow multiple IODP contributors and in the future external providers to harvest data. Other metadata catalog services could also participate in this system, by either making their metadata available and/or by harvesting the IPI metadata. IODP Management International Inc. is supported by NSF OCE 0432224.

  7. Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity

    International Nuclear Information System (INIS)

    Kriesky, J.; Goldstein, B.D.; Zell, K.; Beach, S.

    2013-01-01

    The pace of development of shale gas plays varies greatly among US states and globally. Through analysis of telephone survey responses, we explore support for natural gas drilling in residents of Washington County (WC), PA (n=502) vs. residents of Allegheny County (AC), PA (n=799). WC has had intense Marcellus Shale (MS) drilling activity, in comparison to adjacent AC, which has had little drilling activity. WC residents are marginally more supportive of MS drilling than are AC residents (p=0.0768). Residents of WC are more likely to perceive MS as an economic opportunity than are AC residents (p=0.0015); to be in a family that has signed a MS lease (p<0.0001); to follow the MS issue closely (p=0.0003); to get MS information from neighbors, friends, and relatives (p<0.0001); and are marginally less likely to perceive MS as an environmental threat (p=0.1090). WC leaseholders are significantly more supportive of MS drilling than WC non-leaseholders and AC non-leaseholders (p=0.0024). Mediation analyses show that county-based differences in support of MS drilling are due to WC residents seeing more of an economic opportunity in the MS and their greater likelihood of having a family-held lease. - Highlights: • Telephone survey analysis of sources of support for Marcellus Shale drilling. • Perceived positive economic impact of drilling drives support among respondents. • Mineral rights leaseholders are significantly more supportive than non-leaseholders

  8. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    Science.gov (United States)

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  9. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States); Hsi, Andy C., E-mail: hsia@path.wustl.edu [Washington University School of Medicine, Division of Anatomic Pathology, Department of Pathology & Immunology (United States); Long, Jeremiah, E-mail: longj@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States); Chang, Randy O., E-mail: changr@wusm.wustl.edu [Washington University School of Medicine (United States); Jennings, Jack W., E-mail: jenningsj@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States)

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reports were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.

  10. To drill or not to drill? An econometric analysis of US public opinion

    International Nuclear Information System (INIS)

    Mukherjee, Deep; Rahman, Mohammad Arshad

    2016-01-01

    Offshore drilling in the United States (US) has been the subject of public and political discourse due to multiple reasons which include economic impact, energy security, and environmental hazard. Consequently, several polls have been conducted over time to gauge public attitude towards offshore drilling. Nevertheless, the economic literature on this issue is sparse. This paper contributes to the literature and analyzes support for offshore drilling based on demographic, economic, social, belief, and shock (e.g. spill) factors. The data is taken from ten nationwide surveys conducted before, during and after the British Petroleum (BP) oil spill and analyzed within the framework of discrete choice model. The results from an ordinal probit model demonstrate that age, annual household income, affiliation to Republican Party, and residence in oil-rich states positively affect the probability of strong support and reduce the probability of strong opposition for offshore drilling. In contrast, the female gender, higher education, association to Democratic Party, and environmental concern affect opinion in opposite direction. Marginal effects show that belief about environmental consequences of drilling has the highest impact on opinion. Binary probit model also yields a similar result and suggests that BP oil disaster resulted in a transient decrease in support for offshore drilling. - Highlights: •US public opinion on offshore drilling is analyzed based on ten national polls. •Ordinal and binary probit models are utilized to identify the underlying factors that shape public opinion. •Belief about environmental cost of drilling and educational attainment have the highest negative impact on opinion. •Age, income, affiliation to Republican party and oil-rich states positively affect support for drilling. •BP oil spill resulted in a transient decrease in support for offshore drilling.

  11. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill

    Science.gov (United States)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang

    2015-03-01

    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  12. Progress in reducing the environmental impacts of offshore drilling wastes

    International Nuclear Information System (INIS)

    Flemming, D; Candler, J.E.

    2002-01-01

    Full text:Over the past several years, great progress has been made in understanding and reducing the environmental impacts of offshore drilling wastes. Our understanding of sea floor impacts has been helped along by new environmental assessment tools such us computer modeling of sea floor deposition of drilling discharges, sediment profile imaging, and in situ sediment toxicity bioassays. To further reduce environmental impacts, new pollution prevention technologies have been developed that can shrink the environmental footprint of offshore drilling. These technologies reduce the total amount of drilling wastes discharged and include cuttings dryers and centrifuges that can reduce the drilling fluid content of drill cuttings to below 10 percent. In conclusion, the oil and gas industry is adopting more environmentally compatible drilling fluids, new environmental assessment tools and pollution prevention technologies that dramatically reduce the amount of drilling wastes discharged. Together, all of these elements have the potential to reduce environmental impacts of offshore drilling

  13. The rock art of Mwana wa Chentcherere II rock shelter, Malawi : a site-specific study of girls' initiation rock art

    NARCIS (Netherlands)

    Zubieta, L.F.

    2006-01-01

    Mwana wa Chentcherere II, or Chentcherere Rock Shelter II, the name by which it was more generally known when it was excavated in 1972, is one of the largest rock painting sites in Malawi. It has been a national monument since 1972 and has been the subject of extensive archaeological research. This

  14. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  15. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  16. Using MPC for Managed Pressure Drilling

    Directory of Open Access Journals (Sweden)

    Johannes Møgster

    2013-07-01

    Full Text Available As production on the Norwegian shelf enters tail production, drilling wells with vanishing pressure windows become more attractive. This motivates use of automatic control systems for improved control of downhole pressure using Managed Pressure Drilling (MPD techniques. PID SISO control solutions for MPD are by now relatively standard, and well understood. This article explores the potential benefits of using linear Model Predictive Control (MPC for MPD. It is shown that in combination with wired drill pipe, the downhole pressure can be controlled at multiple locations in the open wellbore, by using both pumps and choke in applied backpressure MPD. Also, downhole pressure constraints (pore and fracture pressures fit naturally in MPC. Illustrative simulations are presented from using a high fidelity well simulator called WeMod, and Statoil's MPC software SEPTIC.

  17. Use of Hardware Battery Drill in Orthopedic Surgery.

    Science.gov (United States)

    Satish, Bhava R J; Shahdi, Masood; Ramarao, Duddupudi; Ranganadham, Atmakuri V; Kalamegam, Sundaresan

    2017-03-01

    Among the power drills (Electrical/Pneumatic/Battery) used in Orthopedic surgery, battery drill has got several advantages. Surgeons in low resource settings could not routinely use Orthopedic battery drills (OBD) due to the prohibitive cost of good drills or poor quality of other drills. "Hardware" or Engineering battery drill (HBD) is a viable alternative to OBD. HBD is easy to procure, rugged in nature, easy to maintain, durable, easily serviceable and 70 to 75 times cheaper than the standard high end OBD. We consider HBD as one of the cost effective equipment in Orthopedic operation theatres.

  18. Rheological study of a water based oil well drilling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mahto, Vikas; Sharma, V.P. [Department of Petroleum Engineering, Indian School of Mines, Dhanbad-826004, Jharkhand (India)

    2004-11-30

    Organic polymers are commonly used to control the rheology and filtrate loss required for water-based drilling fluids. An ecologically-friendly water-based drilling fluid was developed by studying the rheological behavior of tamarind gum and polyanionic cellulose on bentonite water suspensions. The effect of drilling fluid filtrate on formation damage was also analyzed. The drilling fluid that was developed has better rheological properties and fluid loss control which are required for optimum performance of oil well drilling. In addition, the drilling fluid filtrate exhibits minimum formation damage on sandstone cores.

  19. Experimental evaluation of training accelerators for surgical drilling

    Directory of Open Access Journals (Sweden)

    Gosselin Florian

    2011-12-01

    Full Text Available In some specific maxillo-facial surgeries, like the Epker, the cortical part of the lower maxilla must be drilled with minimum penetration into the spongy bone to avoid the trigeminal nerve. The result of the surgery is highly dependent on the quality of the drill. Drilling must therefore be mastered by students before acting as surgeon. The study compares the efficiency of two punctual drilling training programs developed on a virtual reality platform with non medical participants. The results show better benefit of training on relevant haptic aspects of the task before introducing multimodal drilling over repeated multimodal simulated drilling exercises.

  20. Drilling supervision procedure for the Exploratory Shaft Facility: Final draft

    International Nuclear Information System (INIS)

    1986-11-01

    Drilling supervision will be undertaken in the Exploratory Shaft Facility (ESF) for boreholes drilled primarily for the purpose of hydrologic testing, downhole mechanical/thermal testing, sampling for laboratory testing, and for the placement of instrumentation. The primary purpose of this procedure is documentation of drilling activities prescribed by other procedures. Supervision of drilling includes designation of positions of authority, lines of communication, and methodology of supervising, monitoring, and documenting drilling and associated activities. The rationale for the specific applications of core drilling is provided by the test procedures for each activity. 2 figs

  1. Fabrication of Micro Flat Drills by Precision Grinding and Drilling into Duralumin and Stainless Steel with Ultrasonic Vibration

    Science.gov (United States)

    Ohnishi, Osamu; Onikura, Hiromichi; Hata, Akira; Yamamoto, Kenichiro

    The present paper deals with the fabrication of micro flat drills by precision grinding and their application to the drilling into duralumin and stainless steel without/with ultrasonic vibration on a vertical grinding/drilling machine. It is found from drill fabrication test that, by choosing grinding procedure of workpieces so that the stiffness may be kept as high as possible, the diameters range from 18 to 21µm for a nominal diameter of 20µm, and that precision measurement of the diameter after grinding of drill periphery and the precision positioning enabled us to fabricate a flat drill of minimum diameter 10.8µm. But, web eccentricity must be improved hereafter. From drill life test it is found that, irrespective of the existence of web taper, the drills without back taper showed longer tool life, and that irrespective of back taper, longer drill life was obtained in case of drills with web taper. This fact suggests that the stiffness at the root of a drill is very important for drill life. In duralumin longer drill life are gained without ultrasonic vibration than with ultrasonic vibration, and in stainless steel vice versa. Burr grows significantly with the increase in number of holes, but roundness of drilled holes is roughly good.

  2. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. High Performance Steel for Percussive Drilling

    OpenAIRE

    Fredriksson, Mikael; Åkerlund, Elin; Åberg, Jakob; Österberg, Patrik; Havo, Rebecka

    2017-01-01

    Atlas Copco Secoroc AB are searching after new bulk materials for drill heads that are used in percussive drilling in order to improve their strength and durability. The aim of this project is to assist Atlas Copco in this search and provide them with further information regarding material properties, alloying elements, suppliers, etc. A literary study was carried out in order to identify materials that had UTS and KIC more than or equal to 1700 MPa and 70 MPa*m^1/2, respectively. Materials t...

  4. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  5. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz

    2017-01-01

    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  6. A novel point mutation in the translation initiation codon of the pre-pro-vasopressin-neurophysin II gene: Cosegregation with morphological abnormalities and clinical symptoms in autosomal dominant neurohypophyseal diabetes insipidus

    Energy Technology Data Exchange (ETDEWEB)

    Rutishauser, J.; Boeni-Schnetzler, M.; Froesch, E.R.; Wichmann, W.; Huisman, T. [Univ. of Zuerich (Switzerland)] [and others

    1996-01-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a rare variant of idiopathic central diabetes insipidus. Several different mutations in the human vasopressin-neurophysin II (AVP-NP II) gene have been described. We studied nine family members from three generations of an ADNDI pedigree at the clinical, morphological, and molecular levels. AVP concentrations were measured during diagnostic fluid restriction tests. Coronal and sagittal high resolution T1-weighted images of the pituitary were obtained from affected and healthy family members. PCR was used to amplify the AVP-NP II precursor gene, and PCR products were directly sequenced. Under maximal osmotic stimulation, AVP serum levels were close to or below the detection limit in affected individuals. Magnetic resonance imaging studies revealed the characteristic hyperintense ({open_quotes}bright spot{close_quotes}) appearance of the posterior pituitary in two healthy family members. This signal was absent in all four ADNDI patients examined. The coding sequences of AVP and its carrier protein, neurophysin II, were normal in all family members examined. Affected individuals showed a novel single base deletion (G 227) in the translation initiation codon of the AVP-NP II signal peptide on one allele. The mutation in the AVP-NP II leader sequence appears to be responsible for the disease in this kindred, possibly by interfering with protein translocation. The absence of the hyperintense posterior pituitary signal in affected individuals could reflect deficient posterior pituitary function. 56 refs., 4 figs., 3 tabs.

  7. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  8. Comments on some of the drilling and completion problems in Cerro Prieto geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, B.; Sanchez G, G.

    1981-01-01

    From 1960 to the present, 85 wells with a total drilling length exceeding 160,000 m have been constructed at Cerro Prieto, a modest figure compared to an oil field. This activity took place in five stages, each characterized by changes and modifications required by various drilling and well-completion problems. Initially, the technical procedures followed were similar to those used in the oil industry. However, several problems emerged as a result of the relatively high temperatures found in the geothermal reservoir. The various problems that have been encountered can be considered to be related to drilling fluids, cements and cementing operations, lithology, geothermal fluid characteristics, and casings and their accessories. As the importance of high temperatures and the characteristics of the geothermal reservoir fluids were better understood, the criteria were modified to optimize well-completion operations, and satisfactory results have been achieved to date.

  9. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    Energy Technology Data Exchange (ETDEWEB)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  10. Scientific drilling reveals geochemical heterogeneity within the Ko'olau shield, Hawai'i

    Science.gov (United States)

    Haskins, Eric H.; Garcia, Michael O.

    The Ko'olau Scientific Drilling Project (KSDP) was initiated to determine if the distinctive geochemistry of Ko'olau lavas is a near-surface feature. This project successfully deepened a recent, 351 m deep, tri-cone rotary-drilled water well by coring another 328 m. Three Ar-Ar plateau ages of 2.8 to 2.9 Ma from the drill core section of 103 flows confirm stratigraphic interpretations that core drilling recovered the deepest and oldest subaerially erupted lavas yet sampled from this volcano. The petrography and geochemistry of the core, and cuttings from this and another new Ko'olau water well ( 433 m deep) were determined. These analyses revealed that the geochemically distinct lavas of Ko'olau form a veneer only 175-250 m thick at the drill sites, covering flows with more typical Hawaiian tholeiite compositions. The compositional change occurred near the end of shield volcanism and is not abrupt. Thus, it is probably not related to a catastrophic event such as the collapse of the northeast flank of this volcano. The distinct geochemistry of surface Ko'olau lavas cannot be explained by melting pyroxenitic or combined pyroxenitic and peridotitic sources. Additional recycled oceanic crustal components, such as plagioclase-rich cumulates and sediment, were probably involved. As the Ko'olau volcano drifted off the Hawaiian hotspot and the overall degree of melting decreased, the proportion of melts from recycled oceanic crustal material increased relative to those from mantle peridotite.

  11. The effect of drill hole location on load bearing capacity of long bones.

    Science.gov (United States)

    Yiachos, Christopher James; Saha, Subrata

    2018-06-01

    We investigated how load bearing capacity (LBC) of long bone differs with a bicortical drill hole in a compressive/tensile location vs. a neutral location. Group I had a hole drilled through 0°/180° ([compressive at 0°/maximum tensile at 180°]), Group II at 90°/270° ([neutral]), and Group III at 135°/315° ([tensile at 135°/compressive at 315°]). Maximum load at failure and stiffness was measured. A significant ([ p  Loss of strength for Group II was statistically insignificant ([ p  > 0.05]). Changes in stiffness for both tibias and fibulas was not statistically significant ([ p >  0.05]).

  12. Drilling Polar Oceans with the European Research Icebreaker AURORA BOREALIS: the IODP Context

    Science.gov (United States)

    Lembke-Jene, Lester; Wolff-Boenisch, Bonnie; Azzolini, Roberto; Thiede, Joern; Biebow, Nicole; Eldholm, Olav; Egerton, Paul

    2010-05-01

    Polar oceans are characterized by extreme environmental conditions for humans and materials, and have remained the least accessible regions to scientists of the IODP. DSDP and ODP have for long faced specific technical and logistical problems when attempting to drill in ice-covered polar deep-sea basins. The Arctic Ocean and large areas of the high-latitude Southern Ocean remained largely un-sampled by ODP and remain one of the major scientific and technological challenges for IODP. Drilling in these regions has been discussed and anticipated for decades and the scientific rationales are reflected in the science plans of the international Nansen Arctic Drilling Program (NAD) or the Arctic Program Planning Group (APPG) of ODP/IODP, amongst others. More recently, the rationale to investigate the polar oceans in a holistic approach has been outlined by workshops, leading to strategic assessments of the scientific potential and new drilling proposals. The European Polar Board took the initiative to develop a plan for a novel and dedicated research icebreaker with technical capabilities hitherto unrealised. This research icebreaker will enable autonomous operations in the central Arctic Ocean and the Southern Ocean, even during the severest ice conditions in the deep winter, serving all marine disciplines of polar research including scientific drilling: The European Research Icebreaker and Deep-Sea Drilling Vessel AURORA BOREALIS. AURORA BOREALIS is presently planned as a multi-purpose vessel. The ship can be deployed as a research icebreaker in all polar waters during any season of the year, as it shall meet the specifications of the highest ice-class attainable (IACS Polar Code 1) for icebreakers. During the times when it is not employed for drilling, it will operate as the most technically advanced multi-disciplinary research vessel in the Arctic or polar Southern Ocean. AURORA BOREALIS will be a "European scientific flagship facility" (fully open to non

  13. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2017-10-10

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  14. Pregnancy following laparoscopy ovarian drilling for clomiphene

    African Journals Online (AJOL)

    We presented a case of 29 year old nulliparous woman who presented with features of polycystic ovarian syndrome. She had ovulation induction with. Clomiphene citrate for nine consecutive cycles to no avail. She achieved pregnancy following Laparoscopic Ovarian Drilling at the Assisted. Reproductive Technology Unit ...

  15. Impedance-matched drilling telemetry system

    Science.gov (United States)

    Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  16. Dexterity Drills for the Student Violinist

    Science.gov (United States)

    Darling, Cynthia

    2007-01-01

    Practical dexterity exercises are essential for the student violinist. Dimitri Hadjipetkov, the tricampus strings director at the Montclair Kimberley Academy in Montclair, New Jersey, identifies three main benefits resulting from dexterity drills and exercises: (1) strengthening the third and fourth finger in first position; (2) improving…

  17. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  18. Field Testing of Environmentally Friendly Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  19. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... of operations and the structural integrity of the drilling unit. (d) Foundation requirements. When... well and mud logs through the objective interval to determine the presence, quality, and quantity of... deposit. (2) Inclinational surveys shall be obtained on all vertical wells at intervals not exceeding 1...

  20. FIXTURING DEVICE FOR DRILLING A STRAIGHT SHAFT

    OpenAIRE

    SUSAC, Florin; TABACARU Valentin; COSTIN Georgiana-Alexandra

    2017-01-01

    The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  1. High Temperature Venus Drill and Sample Delivery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We proposed to design, build and test a high temperature Pneumatic Drill and Trencher system for Venus subsurface exploration. The Venus Drill and Trencher will be...

  2. Interval by interval analysis of commercial drilling speed

    Energy Technology Data Exchange (ETDEWEB)

    Dublenich, L.B.; Gor' kov, A.P.

    1984-01-01

    The results are cited of an interval by interval analysis of the commercial drilling speeds in individual sites of the Carpathian region (Skhodnitsa, Dolina, Duvboshanka) which attest to the presence of reserves for increasing the commercial drilling speeds.

  3. NanoDrill: 1 Actuator Core Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test a 1 kg, single actuator, sample acquisition drill. The drill uses a novel method of core or powder acquisition. The core...

  4. Carcinoma of the uterine cervix stage IB and early stage II. Prognostic value of the histological tumor regression after initial brachytherapy

    International Nuclear Information System (INIS)

    Calais, G.; Le Floch, O.; Chauvet, B.; Reynaud-Bougnoux, A.; Bougnoux, P.

    1989-01-01

    In our center limited centro pelvic invasive carcinomas of the uterine cervix (less than 4 cm) are treated with brachytherapy and surgery. With these therapeutic modalities no residual carcinoma was observed for 80% of the patients. The purpose of this study was to evaluate our results with this treatment, and to evaluate the prognostic value of the pathological status of the cervix. From 1976 to 1987 we have treated 115 patients with these modalities. Staging system used was the FIGO classification modified for Stage II (divided in early Stage II and late Stage II). Patients were Stage IB (70 cases) and early Stage II (45 cases); 60 Gy were delivered with utero vaginal brachytherapy before any treatment. Six weeks later a radical hysterectomy with pelvic lymphadenectomy was performed. Twenty-one patients with positive nodes received a pelvic radiotherapy (45 to 55 Gy). Local control rate was 97% (100% for Stage IB and 93% for early Stage II). Uncorrected 10-year actuarial survival rate was 96% for Stage IB and 80% for early Stage II patients. No treatment failure was observed for Stage IB patients. Ninety-two patients (80%) had no residual carcinoma in the cervix (group 1) and 23 patients (20%) had a residual tumor (group 2). The sterilization rate of the cervix was 87% for Stage IB tumors versus 69% for early Stage II, and was 82% for N- patients versus 68% for N+ patients. Ten year actuarial survival rate was 92% for group 1 and 78% for group 2 (p = 0, 1). Grade 3 complications rate was 6%. We conclude that brachytherapy + surgery is a safe treatment for limited centro pelvic carcinomas of the uterine cervix (especially Stage IB) and that pathological status of the cervix after brachytherapy is not a prognostic factor

  5. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Science.gov (United States)

    Buranský, Ivan; Necpal, Martin; Bračík, Matej

    2016-09-01

    The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  6. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  7. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)

    2004-07-01

    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  8. Improve Performance of Water-based Drilling Fluids

    OpenAIRE

    Ismail, Abdul Razak

    2014-01-01

    The significant of exploring deep wells is increasing rapidly to fulfill the global oil and gas demand. Deepwater drilling in offshore operations found negative impact on the drilling fluids rheological properties when exposed to high pressure high temperature conditions. Hence, designing drilling fluids for drilling in these type of wells are the major challenges. In this study, the impact of multi-walled carbon nanotube (MWCNT) and nano metal oxides (titanium oxide, aluminum oxide and coppe...

  9. Drilling activity down but not out

    Energy Technology Data Exchange (ETDEWEB)

    McNally, R.

    1983-09-01

    ''The drilling contractor and his customers are in trouble, but so is all basic industry. Steel production is down to about 50% of capacity, automobile sales are off drastically, and railroads are saying they must have help to continue to exist.'' That is a quote from the July 1958 issue of PETROLEUM ENGINEER International, but substitute ''airlines'' for ''railroads'' and the 25-year-old statement is just as true today as it was back then. There is a tendency today, however, to regard the current drilling slump as the worst ever, even for an industry that has traditionally had its peaks and valleys. Granted, the drop in drilling rig activity during 1982 was the steepest of all time. But it must be remembered that it came at the end of the greatest increase in the history of U.S. rig activity - a phenomenon that created what will go down in oilpatch lore as the Mount Everest of drilling peaks. But the downside should not be remembered as Death Valley because, even at its lowest point, rig activity in the U.S. since the end of 1981 has been higher than it was at any time during the 14-year period from 1962 to 1976. All that, of course, is small consolation for drilling contractors who are desperately trying to remain afloat until the tide turns again. Although they may be buoyed by the fact that history tells us the tide is sure to turn eventually, the bad news is that history does not tell us when.

  10. The rock melting approach to drilling

    Energy Technology Data Exchange (ETDEWEB)

    Cort, G.E.; Goff, S.J.; Rowley, J.C.; Neudecker, J.W. Jr.; Dreesen, D.S.; Winchester, W.

    1993-09-01

    During the early and mid-1970`s the Los Alamos National Laboratory demonstrated practical applications of drilling and coring using an electrically-heated graphite, tungsten, or molybdenum penetrator that melts a hole as it is slowly pushed through the rock or soil. The molten material consolidates into a rugged glass lining that prevents hole collapse; minimizes the potential for cross-flow, lost circulation, or the release of hazardous materials without casing operations; and produces no cuttings in porous or low density (<1.7 g/cc) formations. Because there are no drilling fluids required, the rock melting approach reduces waste handling, treatment and disposal. Drilling by rock melting has been demonstrated to depths up to 30 m in caliche, clay, alluvium, cobbles, sand, basalt, granite, and other materials. Penetrating large cobbles without debris removal was achieved by thermal stress fracturing and lateral extrusion of portions of the rock melt into the resulting cracks. Both horizontal and vertical holes in a variety of diameters were drilled in these materials using modular, self-contained field units that operate in remote areas. Because the penetrator does not need to rotate, steering by several simple approaches is considered quite feasible. Melting is ideal for obtaining core samples in alluvium and other poorly consolidated soils since the formed-in-place glass liner stabilizes the hole, encapsulates volatile or hazardous material, and recovers an undisturbed core. Because of the relatively low thermal conductivity of rock and soil materials, the heat-affected zone beyond the melt layer is very small, <1 inch thick. Los Alamos has begun to update the technology and this paper will report on the current status of applications and designs for improved drills.

  11. Recent Developments in Geothermal Drilling Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

    1981-01-01

    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  12. EIA completes corrections to drilling estimates series

    International Nuclear Information System (INIS)

    Trapmann, W.; Shambaugh, P.

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of US oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status. They are assessed directly for trends, as well as in combination with other measures to assess the productivity and profitability of upstream industry operations. They are major reference points for federal and state policymakers. EIA does not itself collect drilling activity data. Instead, it relies on an external source for data on oil, bas, and dry well completions. These data are provided to EIA monthly on an as reported basis. During a recent effort to enhance EIA's well completion data system, the detection of unusual patterns in the well completion data as received led to an expanded examination of these data. Substantial discrepancies between the data as received by EIA and correct record counts since 1987 were identified. For total wells by year, the errors ranged up to more than 2,300 wells, 11% of the 1995 total, and the impact of these errors extended backward in time to at least the early 1980s. When the magnitude and extent of the as reported well completion data problem were confirmed, EIA suspended its publication and distribution of updated drilling data. EIA staff proceeded to acquire replacement files with the as reported records and then revise the statistical portion of its drilling data system to reflect the new information. The replacement files unfortunately also included erroneous data based on the improper allocation of wells between exploration and development. EIA has now resolved the two data problems and generated revised time series estimates for well completions and footage drilled. The paper describes the problems in the data, differences between the series, and maintaining future data quality

  13. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang

    2017-04-01

    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  15. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  16. Robotic System Development for Cooperative Orthopedic Drilling Assistance

    Directory of Open Access Journals (Sweden)

    Vijayabaskar Kasi

    2014-10-01

    Full Text Available This paper describes a robotic bone drilling and screwing system for applications in orthopedic surgery. The goal is to realize two robot manipulators performing cooperative bone drilling. The proposed cooperative bone drilling system can be divided into hardware and software development. The hardware development section consists of two robot manipulator arms, which perform drilling and gripping of the bone, and operates using two joysticks. The software section assists the surgeon in visual and navigation control of those robot manipulators. Controller used in this system can be included in the hardware and software sections. Disturbance observer based position control was used in the robot manipulator maneuver and reposition controller (cooperative control was used in cooperative drilling operation to maintain the alignment of the drill bit during drilling. A mathematical model for the control system was designed and a real environment mimicking simulation for bone drilling was designed. The result of the simulation shows that the cooperative robot system managed to perform cooperative drilling when misalignment occurs during bone drilling. The bone gripping robot managed to restore the drill bit to its ideal alignment in every event of misalignment in the drilling axis. Therefore this cooperative system has potential application in experimental orthopedic surgery.

  17. Drilling hazards inventory: The key to safer -and cheaper- wells

    NARCIS (Netherlands)

    Hoetz, G.; Jaarsma, B.; Kortekaas, M.

    2013-01-01

    Safety and cost control are critical success factors in the realm of drilling. Actual well costs frequently exceed planned costs due to unexpected drilling incidents related to potentially avoidable geohazards. It is estimated that - in the Netherlands on average - around 20% of drilling time is

  18. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2011-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...

  19. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2012-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...

  20. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pneumatic cranial drill motor. 882.4370 Section 882.4370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power...

  1. 21 CFR 882.4360 - Electric cranial drill motor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  2. Stabilization/solidification of synthetic Nigerian drill cuttings | Opete ...

    African Journals Online (AJOL)

    Stabilization/solidification of synthetic Nigerian drill cuttings. SEO Opete, IA Mangibo, ET Iyagba. Abstract. In the Nigerian oil and gas industry, large quantities of oily and synthetic drill cuttings are produced annually. These drill cuttings are heterogeneous wastes which comprises of hydrocarbons, heavy metals and ...

  3. development and evaluation of a drill re-grinding fixture

    African Journals Online (AJOL)

    user

    work-piece. There are different drills but the most common drill used is the twist drill. They are provided with double helical flutes called twist. The twist could be .... shear stresses as seen from the geometry of this fixture. The stresses are computed as: The bending stress on the pivot bolt, σ; where centroid of the pivot rod,. =.

  4. Overhead drilling: comparing three bases for aligning a drilling jig to vertical.

    Science.gov (United States)

    Rempel, David; Star, Demetra; Barr, Alan; Janowitz, Ira

    2010-06-01

    Drilling overhead into concrete or metal ceilings is a strenuous task done by construction workers to hang ductwork, piping, and electrical equipment. The task is associated with upper body pain and musculoskeletal disorders. Previously, we described a field usability evaluation of a foot lever and inverted drill press intervention devices that were compared to the usual method for overhead drilling. Both interventions were rated as inferior to the usual method based on poor setup time and mobility. Three new interventions, which differed on the design used for aligning the drilling column to vertical, were compared to the usual method for overhead drilling by commercial construction workers (n=16). The usual method was associated with the highest levels of regional body fatigue and the poorest usability ratings when compared to the three interventions. Overall, the 'Collar Base' intervention design received the best usability ratings. Intervention designs developed for overhead drilling may reduce shoulder fatigue and prevent subsequent musculoskeletal disorders. These designs may also be useful for other overhead work such as lifting and supporting materials (e.g., piping, ducts) that are installed near the ceiling. Workplace health and safety interventions may require multiple rounds of field-testing prior to achieving acceptable usability ratings by the end users. (c) 2010 Elsevier Ltd. All rights reserved.

  5. The disposal of oilfield brine drilling fluids and drill cuttings in the Province of Ontario

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-19

    This technical report was assembled by the Ontario Petroleum Institute as a source document for the discussion of the environmental issues which now confront the industry. The purpose of the report is to provide technical information to government about the nature of current practice, to inform industry on existing regulations and to promote discussion between government and industry. Oil drilling, production and stimulation are discussed. The material in a drilling pit usually separates into a liquid and a slurry phase. The liquid phase in a drilling pit contains the drilling fluid, formation water, rainfall, crude oil, surfactant, and soluble drilling additives. Drilling slurry contains rock cuttings, cement chips, clay, bentonite. The total volume of solids generated was estimated at 6,500m{sup 3} in 1988. Oilfield brine consists of formation water with minor quantities of soluble chemicals. The total volume of oilfield brine produced in 1988 was estimated at 1.308 million m{sup 3}. The total volume of stimulation fluids generated in 1988 was estimated at 1.264 m{sup 3} (8,000 barrels). It as recommended that operators and contractors take responsibility to avoid the use of material which are likely to become registerable wastes; that industry meet with regulatory authorities to discuss disposal standards, procedures and guidelines and to solve jurisdictional conflicts between regulatory bodies. It was also recommended that landfill operators be kept better informed about the nature and quantity of materials being disposed.

  6. Environmentally Assisted Cracking of Drill Pipes in Deep Drilling Oil and Natural Gas Wells

    Science.gov (United States)

    Ziomek-Moroz, M.

    2012-06-01

    Corrosion fatigue (CF), hydrogen induced cracking (HIC) and sulfide stress cracking (SSC), or environmentally assisted cracking (EAC) have been identified as the most challenging causes of catastrophic brittle fracture of drill pipes during drilling operations of deep oil and natural gas wells. Although corrosion rates can be low and tensile stresses during service can be below the material yield stress, a simultaneous action between the stress and corrosive environment can cause a sudden brittle failure of a drill component. Overall, EAC failure consists of two stages: incubation and propagation. Defects, such as pits, second-phase inclusions, etc., serve as preferential sites for the EAC failure during the incubation stage. Deep oil and gas well environments are rich in chlorides and dissolved hydrogen sulfide, which are extremely detrimental to steels used in drilling operations. This article discusses catastrophic brittle fracture mechanisms due to EAC of drill pipe materials, and the corrosion challenges that need to be overcome for drilling ultra-deep oil and natural gas wells.

  7. A Fast Inspection of Tool Electrode and Drilling Depth in EDM Drilling by Detection Line Algorithm.

    Science.gov (United States)

    Huang, Kuo-Yi

    2008-08-21

    The purpose of this study was to develop a novel measurement method using a machine vision system. Besides using image processing techniques, the proposed system employs a detection line algorithm that detects the tool electrode length and drilling depth of a workpiece accurately and effectively. Different boundaries of areas on the tool electrode are defined: a baseline between base and normal areas, a ND-line between normal and drilling areas (accumulating carbon area), and a DD-line between drilling area and dielectric fluid droplet on the electrode tip. Accordingly, image processing techniques are employed to extract a tool electrode image, and the centroid, eigenvector, and principle axis of the tool electrode are determined. The developed detection line algorithm (DLA) is then used to detect the baseline, ND-line, and DD-line along the direction of the principle axis. Finally, the tool electrode length and drilling depth of the workpiece are estimated via detected baseline, ND-line, and DD-line. Experimental results show good accuracy and efficiency in estimation of the tool electrode length and drilling depth under different conditions. Hence, this research may provide a reference for industrial application in EDM drilling measurement.

  8. Scientific Drilling with the Sea Floor Drill Rig MeBo

    Directory of Open Access Journals (Sweden)

    Gerold Wefer

    2007-09-01

    Full Text Available In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gapbetween conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea withoutrelying on the services of expensive drilling vessels.

  9. Beyond 2013 - The Future of European Scientific Drilling Research - An introduction.

    Science.gov (United States)

    Camoin, G.; Stein, R.

    2009-04-01

    with the expected framework (available drilling platforms and anticipated funding levels). The key items that should be addressed during the EGU Session and the workshop will especially include : (1) The future of ECORD (science, technology, management). (2) New research initiatives and emerging fields in scientific drilling (3) Relationships between IODP and other programs (e.g. ICDP, IMAGES etc). (4) Collaboration between academia and industry. (5) New technologies and the Mission Specific Platform approach.

  10. Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD/nuclear energy agency (NEA benchmark on reactivity-initiated accident codes phase-II

    Directory of Open Access Journals (Sweden)

    Olivier Marchand

    2018-03-01

    Full Text Available In the framework of OECD/NEA Working Group on Fuel Safety, a RIA fuel-rod-code Benchmark Phase I was organized in 2010–2013. It consisted of four experiments on highly irradiated fuel rodlets tested under different experimental conditions. This benchmark revealed the need to better understand the basic models incorporated in each code for realistic simulation of the complicated integral RIA tests with high burnup fuel rods. A second phase of the benchmark (Phase II was thus launched early in 2014, which has been organized in two complementary activities: (1 comparison of the results of different simulations on simplified cases in order to provide additional bases for understanding the differences in modelling of the concerned phenomena; (2 assessment of the uncertainty of the results. The present paper provides a summary and conclusions of the second activity of the Benchmark Phase II, which is based on the input uncertainty propagation methodology. The main conclusion is that uncertainties cannot fully explain the difference between the code predictions. Finally, based on the RIA benchmark Phase-I and Phase-II conclusions, some recommendations are made. Keywords: RIA, Codes Benchmarking, Fuel Modelling, OECD

  11. Addressing Geohazards Through Ocean Drilling

    Directory of Open Access Journals (Sweden)

    Craig Shipp

    2009-03-01

    Full Text Available Natural geohazards, such as earthquakes, volcanic eruptions, landslides, and volcanic collapse, are of immediate societal concern. In an oceanic setting (Fig. 1, all are capable of generating tsunami that threaten coastal zones at distances of many thousands of kilometers. This power and its effects were forcefully shown by the giant earthquake (Mw 9.2 and tsunami of 26 December 2004 off the coast of northern Sumatra. Smaller magnitude submarine earthquakes andlandslides occur with shorter recurrence intervals and the capability of tsunami generation, creating hazards for local coastal communities as well as for offshore industry and infrastructure. At the other end of the scale, the geologic record suggests that less common, large-volume volcanic collapses and extraterrestrial meteorite and comet impacts in ocean basins have the potential to initiate tsunami ofextraordinary power that can threaten huge sections of coastlines with growing populations. These events also disperse enormous volumes of ash, steam, and ejecta into the atmosphere, with short- and long-term consequences, including climate change. All of these processes, which have operated throughout the Earth’s history, are instrumental in shaping the Earth system today. However, they are characteristically difficult to predict, and viable risk assessmentand hazard mitigation depend on a clearer understanding of the causes, distributions, and consequences of such natural events.

  12. Transients from initial conditions based on Lagrangian perturbation theory in N-body simulations II: the effect of the transverse mode

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki

    2014-01-01

    We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small

  13. Hydraulic study of drilling fluid flow in circular and annular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail: calcada@ufrrj.br; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2011-10-15

    This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)

  14. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What quantities of drilling fluids are required... Drilling Fluid Requirements § 250.458 What quantities of drilling fluids are required? (a) You must use, maintain, and replenish quantities of drilling fluid and drilling fluid materials at the drill site as...

  15. 76 FR 11757 - Drill Pipe From the People's Republic of China: Antidumping Duty Order

    Science.gov (United States)

    2011-03-03

    ... are finished drill pipe and drill collars without regard to the specific chemistry of the steel (i.e... included are unfinished drill collars (including all drill collar green tubes) and unfinished drill pipe (including drill pipe green tubes, which are tubes meeting the following description: seamless tubes with an...

  16. Semisubmersible rigs attractive for tender-assisted drilling

    Energy Technology Data Exchange (ETDEWEB)

    Tranter, P. (Sedco Forex, Aberdeen (United Kingdom))

    1994-09-19

    Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

  17. Prioritization to limit sampling and drilling in site investigations

    International Nuclear Information System (INIS)

    Burton, J.C.

    1992-01-01

    One of the major goals of the Environmental Research Division of Argonne National Laboratory is to develop and provide governmental agencies with technically sound, cost-effective frameworks for environmental site characterization and remedial programs. An example of the development of such a framework for preremedial site characterization is presented in this paper. Specifically, this paper presents portions of an expanded site investigation program developed for landfills suspected of containing hazardous waste. The work was sponsored by the New Mexico State Office of the US Department of Interior's Bureau of Land Management (BLM). The emphasis of the BLM program was on identifying initial characterization procedures that would decrease the need for sampling and drilling on a random grid

  18. Excavation and drilling at a spent-fuel test facility in granitic rock

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m{sup 3} were excavated at an average rate of 2 m{sup 3}/h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule.

  19. Casing and liners for drilling and completion

    CERN Document Server

    Byrom, Ted G

    2007-01-01

    The Gulf Drilling Series is a joint project between Gulf Publishing Company and the International Association of Drilling Contractors. The first text in this Series presents casing design and mechanics in a concise, two-part format. The first part focuses on basic casing design and instructs engineers and engineering students how to design a safe casing string. The second part covers more advanced material and special problems in casing design in a user-friendly format. Learn how to select sizes and setting depths to achieve well objectives, determine casing loads for design purposes, design casing properties to meet burst, collapse and tensile strength requirements and conduct casing running operations safely and successfully.

  20. Arctic deepwater development drilling design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinis, Theodore; Brinkmann, Carl R.; Ding, John; Fenz, Daniel M. [ExxonMobil Upstream Research Company, Houston, Texas (United States)], email: ted.kokkinis@exxonmobil.com, email: carl.r.brinkmann@exxonmobil.com, email: john.ding@exxonmobil.com, email: daniel.m.fenz@exxonmobil.com

    2010-07-01

    In the world, important amounts of oil and gas reserves are north of the Arctic Circle and a large part of it is located offshore in water depths over 100 meters. Accessing those deepwater areas presents important challenges due to the harsh environment and current methods are not viable, year round operations would be required to drill a large number of wells. The aim of this paper is to determine the design requirements for economic development of Arctic deepwater reservoirs and to highlight the new technologies needed to do so. This paper showed that overall system design should integrate a rapid disconnection capacity and a caisson shaped hull with a breaking cone at the waterline. In addition, developing the disconnection, ice management and re-supply systems were found to be the key technical challenges and the development of topsides drilling equipment and of a method of estimation of the ice loads were determined among the technology development required.

  1. Borehole survey method and apparatus for drilling substantially horizontal boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Trowsdale, L.S.

    1982-11-30

    A borehole survey method and apparatus are claimed for use in drilling substantially horizontal boreholes through a mineral deposit wherein a dip accelerometer, a roll accelerometer assembly and a fluxgate are disposed near the drill bit, which is mounted on a bent sub, and connected to a surface computation and display unit by a cable which extends through the drill string. The dip angle of the borehole near the drill bit, the azimuth of the borehole near the drill bit and the roll angle or orientation of the bent sub are measured and selectively displayed at the surface while the drill string is in the borehole for utilization in guiding the drill bit through the mineral deposit along a predetermined path.

  2. Geothermal down-well instrumentation (during drilling). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kent, W.H.; Mitchell, P.G.; Row, R.V.

    1979-06-01

    The object of the work was to investigate acoustic and electromagnetic telemetry methods which could be used as a basis for geothermal MWD systems. The emphasis has been on methods which employ the drill string and/or the formation surrounding the borehole as a signalling media. The investigations have been confined to the transmission characteristics of these media and have excluded the area of downwell measurements. Work performed includes: laboratory measurement of acoustic attenuation in drill pipe; field measurement of acoustic attenuation in drill pipe; measurements of drill string vibrations (drilling noise) during drilling; evaluation of drill string vibration dampers; modeling of electromagnetic propagation in the borehole region; and field measurements of attenuation of a downwell electromagnetic signal source. (MHR)

  3. Automatic identification of otologic drilling faults: a preliminary report.

    Science.gov (United States)

    Shen, Peng; Feng, Guodong; Cao, Tianyang; Gao, Zhiqiang; Li, Xisheng

    2009-09-01

    A preliminary study was carried out to identify parameters to characterize drilling faults when using an otologic drill under various operating conditions. An otologic drill was modified by the addition of four sensors. Under consistent conditions, the drill was used to simulate three important types of drilling faults and the captured data were analysed to extract characteristic signals. A multisensor information fusion system was designed to fuse the signals and automatically identify the faults. When identifying drilling faults, there was a high degree of repeatability and regularity, with an average recognition rate of >70%. This study shows that the variables measured change in a fashion that allows the identification of particular drilling faults, and that it is feasible to use these data to provide rapid feedback for a control system. Further experiments are being undertaken to implement such a system.

  4. Dissertations Initiative for the Advancement of Limnology and Oceanography DIALOG II. Abstracts of Ph.D. Dissertations Completed between September 1, 1994 - March 31, 1997

    National Research Council Canada - National Science Library

    Weiler, C

    1997-01-01

    The Dissertations Initiative for the Advancement of Limnology and Oceanography (DIALOG) was founded in 1994 to facilitate interdisciplinary, inter-institutional and international aquatic science research, understanding and collaborations...

  5. FIXTURING DEVICE FOR DRILLING A STRAIGHT SHAFT

    Directory of Open Access Journals (Sweden)

    SUSAC, Florin

    2017-05-01

    Full Text Available The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  6. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  7. New Proposed Drilling at Surtsey Volcano, Iceland

    Science.gov (United States)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  8. Slim hole drilling and testing strategies

    Science.gov (United States)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  9. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  10. DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING

    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE

    2015-05-01

    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  11. Deepwater drilling; Jakten paa de store dyp

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Recent technological development has made it possible to drill for oil and gas at the impressive depth of 3000 metres. An increasing part of the world's oil and gas discoveries are made in deep or ultra deep waters. Ultra deep waters are those exceeding 1500 metres. Since drilling at more than 500 metres started at the end of the 1970s, 32 discoveries of about 500 million barrels of extractable oil or gas have been made. These finds amount to almost 60 thousand millions barrels of oil equivalents. Most of the effort has been made in the coasts between Brazil, West Africa and the Gulf of Mexico. Deepwater projects have been a field of priority for Norwegian oil companies in their search for international commissions. It is frequently time-consuming, expensive and technologically challenging to drill at great depths. The article describes the Atlantis concept, which may reduce the complexities and costs of deepwater activities. This involves making an artificial sea bottom, which in the form of an air-filled buoy is anchored at a depth of 200 - 300 metres. Production wells or exploration wells and risers are extended from the real bottom to the artificial one.

  12. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  13. Deep drilling for geothermal energy in Finland

    Science.gov (United States)

    Kukkonen, Ilmo

    2016-04-01

    There is a societal request to find renewable CO2-free energy resources. One of the biggest such resources is provided by geothermal energy. In addition to shallow ground heat already extensively used in Finland, deep geothermal energy provides an alternative so far not exploited. Temperatures are high at depth, but the challenge is, how to mine the heat? In this presentation, the geological and geophysical conditions for deep geothermal energy production in Finland are discussed as well as challenges for drilling and conditions at depth for geothermal energy production. Finland is located on ancient bedrock with much lower temperatures than geologically younger volcanically and tectonically active areas. In order to reach sufficiently high temperatures drilling to depths of several kilometres are needed. Further, mining of the heat with, e.g., the principle of Enhanced Geothermal System (EGS) requires high hydraulic conductivity for efficient circulation of fluid in natural or artificial fractures of the rock. There are many issues that must be solved and/or improved: Drilling technology, the EGS concept, rock stress and hydraulic fracturing, scale formation, induced seismicity and ground movements, possible microbial activity, etc. An industry-funded pilot project currently in progress in southern Finland is shortly introduced.

  14. Drilling gas hydrates with the sea floor drill rig MARUM-MeBo

    Science.gov (United States)

    Freudenthal, Tim; Bohrmann, Gerhard; Wefer, Gerold

    2015-04-01

    Large amounts of methane are bound in marine gas hydrate deposits. Local conditions like pressure, temperature, gas and pore water compositions define the boundaries of gas hydrate stability within the ocean sediments. Depending on those conditions gas hydrates can occur within marine sediments at depth down to several hundreds of meters up to sea floor. These oceanic methane deposits are widespread along continental margins. By forming cement in otherwise soft sediments gas hydrates are stabilizing the seafloor on continental slopes. Drilling operations are required for understanding the distribution of gas hydrates as well as for sampling them to study the composition, microstructure and its geomechanical and geophysical properties. The sea floor drill rig MARUM-MeBo200 has the capability to drill down to 200 m below sea floor well within the depth of major gas hydrate occurrences at continental margins. This drill rig is a transportable sea floor drill rig that can be deployed from a variety of multi-purpose research vessels. It is deployed on the sea bed and controlled from the vessel. It is the second generation MeBo (Freudenthal and Wefer, 2013) and was developed from 2011 to 2014 by MARUM in cooperation with BAUER Maschinen GmbH. Long term experiences with the first generation MeBo70 that was operated since 2005 on 15 research expeditions largely contributed to the development of MeBo200. It was first tested in October 2014 from the research vessel RV SONNE in the North Sea. In this presentation the suitability of MARUM-MeBo for drilling marine gas hydrates is discussed. We report on experiences drilling gas hydrates on two research expeditions with MeBo70. A research expedition for sampling gas hydrates in the Danube Paleodelta with MeBo200 as well as technical developments for improving the suitability of MeBo for gas hydrate exploration works are planned within the project SUGAR3 funded by the Federal Government for Economy and Energy (BMWi). Freudenthal

  15. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    Science.gov (United States)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  16. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    Science.gov (United States)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  17. Requirements for drilling and disposal in deep boreholes; Foerutsaettningar foer borrning av och deponering i djupa borrhaal

    Energy Technology Data Exchange (ETDEWEB)

    Oden, Anders [QTOB, Haesselby (Sweden)

    2013-09-15

    In this report experience from drilling at great depth in crystalline rock is compiled based on project descriptions, articles and personal contacts. Rock mechanical effects have been analyzed. The report also describes proposals made by SKB and other agencies regarding the disposal of and closure of deep boreholes. The combination of drilling deep with large diameter in crystalline rocks have mainly occurred in various research projects, such as in the German KTB project. Through these projects and the increased interest in recent years for geothermal energy , today's equipment is expected to be used to drill 5000 m deep holes , with a hole diameter of 445 mm , in crystalline rock. Such holes could be used for the disposal of spent nuclear fuel. With the deposition technique recently described by Sandia National Laboratories in USA, SKB estimates that it might be possible to implement the disposal to 5000 m depth. Considering the actual implementation, drilling and disposal, and the far-reaching requirements on nuclear safety and radiation protection, it is considered an important risk getting stuck with the capsule-string, or part of it, above deposition zone without being able to get it loose. In conclusion, even if the drilling and the deposit would succeed there remains to verify that the drill holes with the deposited canisters meet the initial requirements and is long-term safe.

  18. ATUCHA I NPP - Emergency drill practice

    International Nuclear Information System (INIS)

    Sanda, Alejandro; Rosales, Gabriel

    2008-01-01

    Full text: Atucha I NPP performs an Emergency Drill Practice once a year. Its main goals are: -) Fulfill the requirements of the Argentine Nuclear Regulatory Authority (ARN) regarding Atucha I NPP's Operating License; -) Fulfill the commitment with the community regarding the safe and reliable operation Atucha I NPP; -) Verify the response of the Civil Organizations, Security Forces, and Armed Forces, as well as the correct application of the Emergency Plan; -) Perform the 'General Alarm Drill' periodic control; -) Perform a re-training of the members of the Security Advisor Internal Committee (CIAS) on the Internal and External Aspects of the Emergency Plan and on the related procedures; -) Test the Emergency Communications System. New goals are added every year, considering the Drill's scope. This drill comprises two different kinds of practices: Internal practices (practices in the station, with our personnel) and external practices (practices outside the station with governmental organizations). Internal practices comprise: -) Internal and external communications practices; -) Acoustic alarms; -) Personnel gathering in the Meeting Points; -) Safety of selected Meeting Points; -) Personnel count, selective evacuation; -) Iodide Potassium pills distribution; -) CICE (Internal Group for Emergency Control) Coordination. External practices comprise: -) Nuclear Regulatory Authority; -) Argentine Navy, Comando Area Naval Fluvial, Base Naval Zarate; -) Lima firemen; -) Zarate firemen; -) Municipal Civil Defense (Zarate and Lima); -) National Guard, Escuadron Atucha; -) Zarate Regional Hospital; -) Lima Police Department; -) Zarate Police Department; -) Argentine Coast Guard, Zarate; -) Local radios: Radio FM Libre, FM El Sitio; -) First Aid clinic. The following activities are performed together with the aforementioned organizations: -) Formation of an 'Operative committee'; -) Evacuation of citizens in a 3 km radio; -) Control of every access to Lima; -) Control of

  19. A simple and inexpensive technique for assessing microbial contamination during drilling operations

    Science.gov (United States)

    Friese, André; Vuillemin, Aurèle; Kallmeyer, Jens; Wagner, Dirk

    2016-04-01

    Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing allochthonous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations. Several techniques have been used in the past, including fluorescent dyes, perfluorocarbon tracers and fluorescent microspheres. Fluorescent dyes are inexpensive and easy to analyze on-site but are sensitive to light, pH and water chemistry. Furthermore, significant sorption to clays can decrease the fluorescence signal. Perfluorocarbon tracers are chemically inert hydrophobic compounds that can be detected with high sensitivity via gas chromatography, which might be a problem for on-site analysis. Samples have to be taken immediately after core retrieval as otherwise the volatile tracer will have diffused out of the core. Microsphere tracers are small (0.2 - 0.5 μm diameter) fluorescent plastic particles that are mixed into the drilling fluid. For analysis, these particles can be extracted from the sediment sample, transferred onto a filter and quantified via fluorescence microscopy. However, they are very expensive and therefore unsuitable for deep drilling operations that need large amounts of drilling fluids. Here, we present an inexpensive contamination control approach using fluorescent pigments initially used for coloring plastics. The price of this tracer is nearly three orders of magnitude lower than conventional microsphere tracers. Its suitability for large drilling campaigns was tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia. The tracer was diluted 1:1000 in lake water, which was used as the drilling fluid. Additionally, a plastic bag filled with 20 mL of undiluted tracer was attached to the core catcher to increase the amount of particles in the liner fluid right at the core. After core retrieval

  20. Tesco's Bob Tessari: launching a drilling revolution

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-07-01

    The 'Casing Drilling' technology, patented by Tesco, which allows operators to simultaneously drill, case and evaluate oil and gas wells, is described. The system is claimed to substantially reduce the amount of lost circulation, loss of well control and bore hole instability problems that have been documented to account for about 25 per cent of total rig time on a well, and at least $4 billion (or 10 per cent of the $40 billion annual global drilling tab) spent on 'unscheduled events' associated with tripping drill pipe. With the Casing Drilling process, wells are drilled using standard oilfield casing instead of drill pipe. The host of downhole problems associated with tripping in and out of the hole are avoided, as the casing pipe is never removed. Instead, drill bits and other downhole tools are tripped through the casing with wireline at a rate of about 500 ft per minute, drastically reducing tripping time. Tesco also developed the portable top drive, the manufacture and rental of which constitutes a large part of the company's business, besides helping technologically to make Casing Drilling possible. Much of the company's success is attributed to the tenacity and zest for innovative approaches of the company's CEO, Bob Tessari, who is largely responsible for the company finding itself at the centre of a drilling technology revolution.

  1. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  2. Preliminary Research on Possibilities of Drilling Process Robotization

    Science.gov (United States)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  3. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto [Oulu University Hospital, Department of Radiology, Oulu (Finland); Lakovaara, Martti [Oulu Deaconess Institute, Department of Surgery, Oulu (Finland); Hyvoenen, Pekka; Lehenkari, Petri [Oulu University Hospital, Department of Surgery, Oulu (Finland)

    2011-06-15

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  4. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    International Nuclear Information System (INIS)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto; Lakovaara, Martti; Hyvoenen, Pekka; Lehenkari, Petri

    2011-01-01

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  5. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The manganese (II), cobalt (II), nickel (II) and copper (II) complexes of N, N' – bis(benzoin)ethylenediiminato have been prepared and characterized by infrared, elemental analysis, conductivity measurements and solubility. The potentiometric, and elemental analyses studies of the complexes revealed 1:1 ...

  6. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    Science.gov (United States)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the

  7. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    International Nuclear Information System (INIS)

    Adegbotolu, Urenna V; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-01-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed

  8. Application of odex drilling method in a variably fractured volcanic/igneous environment

    International Nuclear Information System (INIS)

    Murphy, J.

    1992-01-01

    A case history of a subsurface investigation at a geothermal waste disposal facility within a volcanic flow regime illustrates a classic example of critical drilling problems arising from severe air and mud circulation loss. Extremely dense dacite and rhyolite rock alternating with severely fractured flow margins (interconnected with numerous voids and caverns) has provided the scenario for open-quotes gravel pilesclose quotes of substantial size between competent dacite flows. The interconnected void space at numerous depths beneath the site is great enough to create complete loss of circulation while using more than 3000 cubic feet per minute (cfm) of air at 350 pounds per square inch (psi). This initial failed effort also included the use of a foam additive. The technologies employed at this site to address the problem of circulation loss included air rotary casing hammer methods, mud rotary (with beat pulp additives and linen additives), boring wall stabilization, telescoped casing and ultimately the ODEX casing advancement system. The relative success of this seldom used method invites a discussion of the principals of the under-reamer drilling method (ODEX) and the physical limitations of the system. A practical knowledge of the advantages and disadvantages of each drilling method is necessary when designing an investigation addressing problems of soil and water contamination. Additionally, by addressing the methods that were unsuccessful, geologists, contractors and engineers can gain insight into the value and application of the various technologies available for similar drilling problems

  9. Effects of tones associated with drilling activities on bowhead whale calling rates.

    Directory of Open Access Journals (Sweden)

    Susanna B Blackwell

    Full Text Available During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus, northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs deployed on the seafloor over ~7 weeks in Aug-Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A "tone index" was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the "dose" of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort.

  10. Planning and drilling geothermal energy extraction hole EE-2: a precisely oriented and deviated hole in hot granitic rock

    Energy Technology Data Exchange (ETDEWEB)

    Helmick, C.; Koczan, S.; Pettitt, R.

    1982-04-01

    During the preceding work (Phase I) of the Hot Dry Rock (HDR) Geothermal Energy Project at Fenton Hill, two holes were drilled to a depth of nearly 3048 m (10,000 ft) and connected by a vertical hydraulic fracture. In this phase, water was pumped through the underground reservoir for approximately 417 days, producing an energy equivalent of 3 to 5 MW(t). Energy Extraction Hole No. 2 (EE-2) is the first of two deep holes that will be used in the Engineering-Resource Development System (Phase II) of the ongoing HDR Project of the Los Alamos National Laboratory. This phase of the work consists of drilling two parallel boreholes, inclined in their lower, open-hole sections at 35/sup 0/ to the vertical and separated by a vertical distance of 366 m (1200 ft) between the inclined parts of the drill holes. The holes will be connected by a series of vertical, hydraulically produced fractures in the Precambrian granitic rock complex. EE-2 was drilled to a depth of 4660 m (15,289 ft), where the bottom-hole temperature is approximately 320/sup 0/C (608/sup 0/F). Directional drilling techniques were used to control the azimuth and deviation of the hole. Upgrading of the temperature capability of existing hardware, and development of new equipment was necessary to complete the drilling of the hole in the extremely hot, hard, and abrasive granitic formation. The drilling history and the problems with bits, directional tools, tubular goods, cementing, and logging are described. A discussion of the problems and recommendations for overcoming them are also presented.

  11. Metal and hydrocarbon behavior in sediments from Brazilian shallow waters drilling activities using nonaqueous drilling fluids (NAFs).

    Science.gov (United States)

    do Carmo R Peralba, Maria; Pozebon, Dirce; dos Santos, João H Z; Maia, Sandra M; Pizzolato, Tânia M; Cioccari, Giovani; Barrionuevo, Simone

    2010-08-01

    The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.

  12. Axel rover NanoDrill and PowderDrill: Acquisition of cores, regolith and powder from steep walls

    Science.gov (United States)

    Zacny, K.; Paulsen, G.; Chu, P.; Hedlund, M.; Spring, J.; Osborne, L.; Matthews, J.; Zarzhitsky, D.; Nesnas, I. A.; Szwarc, T.; Indyk, S.

    This paper describes development and testing of low-mass, low-power drills for the Axel rover. Axel is a two-wheeled tethered rover designed for the robotic exploration of steep cliff walls, crater walls and deep holes on earth and other planetary bodies. The Axel rover has a capability to deploy scientific instruments and/or samplers in the areas of interest to scientists currently inaccessible by conventional robotic systems. To enable sample recovery, we developed two drills: NanoDrill for acquisition of 25 mm long and 7 mm diameter cores and PowderDrill for acquisition of either in situ regolith/soil or drilled cuttings from depths of up to 15 mm. Both drills have been successfully tested in laboratory in limestone and sandstone rocks and on-board the Axel rover in the Mars Yard at NASA JPL. The drills managed to acquire limestone and sandstone cores and powder, with an average power of less than 5 Watts. The penetration rate of the NanoDrill was ~2 mm/min and of the PowderDrill it was ~9 mm/min. After sample acquisition, both drills successfully ejected of the acquired samples (cores and powder).

  13. The ground stone components of drills in the ancient Near East: Sockets, flywheels, cobble weights, and drill bits

    Directory of Open Access Journals (Sweden)

    David Ilan

    2016-10-01

    Full Text Available Three types of drills are known from antiquity: the bow drill, the pump drill and the crank drill. Each type often included ground stone components - sockets, weights and flywheels. However, these components are inconspicuous; on their own they are almost never associated with drills. The result is that the drill is nearly invisible in many assemblages, particularly those of the proto-historic and historic periods, from the Chalcolithic through to late antiquity. In this article I focus on the identification of the possible ground stone components of each of these drill types. The means by which these components were attached or applied to the drill shaft is examined and the way that they related to the rotary motion of drills is laid out. I briefly discuss the historical development of each type, referencing more detailed studies, where available. This study should be seen as a prelude to a more comprehensive study that will test hypotheses by means of experiment and catalogue more completely and precisely the ground stone components of drills that have been unidentified or misidentified in archaeological contexts.

  14. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force

  15. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  16. Automatic identification of otological drilling faults: an intelligent recognition algorithm.

    Science.gov (United States)

    Cao, Tianyang; Li, Xisheng; Gao, Zhiqiang; Feng, Guodong; Shen, Peng

    2010-06-01

    This article presents an intelligent recognition algorithm that can recognize milling states of the otological drill by fusing multi-sensor information. An otological drill was modified by the addition of sensors. The algorithm was designed according to features of the milling process and is composed of a characteristic curve, an adaptive filter and a rule base. The characteristic curve can weaken the impact of the unstable normal milling process and reserve the features of drilling faults. The adaptive filter is capable of suppressing interference in the characteristic curve by fusing multi-sensor information. The rule base can identify drilling faults through the filtering result data. The experiments were repeated on fresh porcine scapulas, including normal milling and two drilling faults. The algorithm has high rates of identification. This study shows that the intelligent recognition algorithm can identify drilling faults under interference conditions. (c) 2010 John Wiley & Sons, Ltd.

  17. Are recent graduates of orthopaedic training programs performing less fracture care? American Board of Orthopedic Surgeons part II: a quality improvement initiative.

    Science.gov (United States)

    Koval, Kenneth J; Marsh, Larry; Anglen, Jeff; Weinstein, James; Harrast, John J

    2012-03-01

    The purpose of this study was to evaluate whether there has been a change in the amount of fracture care performed by recent graduates of orthopaedic residency programs over time. Retrospective review. American Board of Orthopaedic Surgery (ABOS) Part II database. Candidates applying for Part II of the second part of the Orthopaedic (ABOS) certification. The ABOS Part II database was searched from years 1999 to 2008 for Current Procedural Terminology codes indicating 1) "simpler fractures" that any candidate surgeon should be able to perform; 2) "complex fractures" that are often referred to surgeons with specialty training; and 3) "emergent cases" that should be done emergently by a physician. Logistic regression and chi-square tests were used to evaluate whether there has been a change in the amount of fracture care among recent graduates of orthopaedic residency programs over time. Over the 10-year period (1999-2008), a total of 95,922 cases were in the simpler fractures category; 16,523 were classified as complex fractures and 17,789 were classified as emergent cases. The overall number of cases by fracture type increased from 1999 to 2008 as did the average number of surgery cases performed by surgeons in each category over the 6-month collection period. Simpler fracture cases increased 18% (8304-9784 cases) with the average number surgically treated by surgeons performing at least one simple fracture case also increasing 18% (14.1-16.6 cases per surgeon). Complex fracture cases increased 51% (1266-1916 cases) with the average number of these cases per surgeon operating at least one complex fracture case increasing 52% (3.3-5.0 cases per surgeon). Emergent fracture cases increased 92% (1178-2264 cases) with the average number of these cases per surgeon operating at least one emergent fracture case increasing 49% (4.5-6.7 cases per surgeon). From the data presented here, candidate orthopaedic surgeons are treating fractures as least as often as young surgeons

  18. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  19. Interim report for SNL/NM environmental drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Meyer, R.D. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-02-01

    Concern for the environment and cost reduction are the driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. Preliminary activities included surveying the directional drilling access needs of various DOE sites, identifying an existing class of machinery that could be enhanced for environmental work through development, and establishing a mutually beneficial working relationship with an industry partner. Since that time the project has tested a variety of prototype machinery and hardware built by the industrial partner, and SNL. The project continues to test and develop the machinery and technique refinements needed for future applications at DOE, DOD, and private sector sites. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of ``cut/thrust and compact cuttings without adding large quantities of fluid`` to an environmental problem site. Technology transfer to the private sector is ongoing and ultimately should result in commercial availability of the machinery. Education of regulatory agencies resulting in restructuring appropriate regulatory standards for specification of the horizontal drilling techniques will be a final project goal.

  20. An Improved Triangular Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars; Grønne, Mikael

    2002-01-01

    A new plane element with rotational degrees in the corner nodes is presented. The element has 12 degrees of freedom and the only difference from the well-known Linear Strain Triangular (LST) element is that the displacements perpendicular to the element sides in the mid-side nodes are replaced...... by rotations in the corner nodes. Compared to Allman's plane element which was the first succesfull implementation of drilling rotations the proposed element has extra displacements in the mid-side nodes parallel to the element sides. The performance should therefore be better and closer to the LST-element...

  1. Hovercraft drill probes Saraji tailings dam

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In early operations at BHP-Utah's Saraji Mine in central Queensland, quantities of coking coal were pumped into the tailings dam because the preparation plant's flotation circuit was unable to handle ultra-fines. A reverse circulating drilling rig mounted on a hovercraft was used to recover 22 samples (representing 9 metres of tailings from 11 x 8 x 0.09 metre cores) in an investigation into whether the tailings can now be treated economically. 1 fig.

  2. Sound Coiled-Tubing Drilling Practices

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  3. Mist characterization in drilling 1018 steel

    Science.gov (United States)

    Cole, Ian

    Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.

  4. Fifteen years of the Chinese Continental Scientific Drilling Program

    Science.gov (United States)

    Xu, Zhiqin; Yang, Jingsui; Wang, Chengshan; An, Zhisheng; Li, Haibing; Wang, Qin; Su, Dechen

    2017-05-01

    Continental scientific drilling can be regarded as a telescope into the Earth's interior because it provides process insight and uncompromised samples of rocks, fluids, and even sampled from the deep biosphere from the Earth's surface to great depths. As one of the three founding members of the International Continental Scientific Drilling Program (ICDP), ICDP China has made great achievements in many scientific drilling-related research fields. Based on the ICDP participation it attracted global attention of scientists and set up not only the Chinese Continental Scientific Drilling (CCSD) Program in 2001 but also a growing number of ambitious drilling projects in the country. The 5158 m deep borehole of the CCSD project at Donghai County in the Sulu ultrahigh-pressure metamorphic terrain demonstrates that large amounts of crustal rocks of the South China Block have been subducted to at least 120 km, followed by rapid uplift. After successful completion of drilling at Donghai, several continental scientific drilling projects were conducted with funding of the Chinese government and partially with support of ICDP, resulting in a total drilling depth of more than 35 000 m. These projects encompass the Continental Environmental Scientific Drilling Program of China, the Scientific Drilling Project of Wenchuan Earthquake Fault Zone, the Continental Scientific Drilling Project of Cretaceous Songliao Basin, and the Program of Selected Continental Scientific Drilling and Experiments. On the occasion of the 20th anniversary of the ICDP and the 15th anniversary of the CCSD Program, this paper reviews the history and major progress of the CCSD Program.

  5. Reaching 1 m deep on Mars: the Icebreaker drill.

    Science.gov (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  6. Drilling fluid technologies : what goes in must come out

    International Nuclear Information System (INIS)

    Polczer, S.

    1998-01-01

    The treatment of drilling wastes contaminated with invert drilling muds was discussed. The tight emulsion properties which make invert drilling muds useful are the same properties that make their disposal so difficult. Potential long-term liability associated with inverts is another reason for reluctance to use these products. Inverts are toxic and highly mobile in the environment, and must therefore be handled with care. Often the costs associated with their disposal are greater than their potential benefits. Petro-Canada Lubricants has formulated a new, non-diesel based product called Drill Mud Oil HT40N which completely eliminates toxic aromatic molecules. It is composed of 98 per cent plus of cyclic and branched isoparaffins with an average carbon number of C16. The level of polynuclear aromatics is reduced to parts per billion levels. Drill Mud Oil HT40N was being used at Hibernia until an even newer product, IPAR3 synthetic drill mud oil, was developed exclusively for offshore use. Drill Mud Oil HT40N is less prone to flash fires, is odourless and is more likely to be used in places such as the Western Canada Sedimentary Basin. Drill Mud Oil HT40N works almost exactly the same as a diesel-based drill mud oil but has many advantages in terms of safety and ease of disposal, particularly in landfarming operations. Drill Mud Oil HT40N does not irritate the skin or release toxic fumes. The cost of Drill Mud Oil HT40N is higher than conventional diesel-based drilling muds. 2 figs

  7. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-01-01

    Full Text Available Signal attenuates while Measurement-While-Drilling (MWD mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison.

  8. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  9. Evaluation of drilling Al/B4C composites with carbide drills

    Directory of Open Access Journals (Sweden)

    Ali Rıza Motorcu

    2016-08-01

    Full Text Available In this study, cutting forces and torque was evaluated through Taguchi Method (TM in the drilling of the high density B4C particle reinforced composites, which were produced through powder metallurgy-hot pressing method, with coated and uncoated carbide drills. Cutting speed (18, 25 and 35 m/min, feed rate (0.08, 0.112 and 0.16 mm/rev, coating properties (coated and uncoated and the amounts of particle reinforcement (5%, 10% and 15% B4C were used as the control factors. It was observed that the increased feed rate and particle reinforcement increased the axial force and torque, and decreased the cutting speed. The uncoated drills had a better performance than the coated drills. The amount of B4C reinforcement was observed to be the most effective parameter on the axial force and torque with the contribution ratios of 96.6% and 49.1%, respectively. Moreover, the correlation coefficients (R2 of the first order predictive equations developed for the axial force and torque were calculated as 0.895 and 0.854, respectively.

  10. Soil properties affecting wheat yields following drilling-fluid application.

    Science.gov (United States)

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  11. Drills and Training on board Ship in Maritime Transport

    Directory of Open Access Journals (Sweden)

    Cristina Dragomir

    2016-01-01

    Full Text Available In maritime transport, drills are methods of practicing how a team or individuals should behavein case of an emergency on board ship (fire, explosion, pirates’ attacks, ship sinking, shipgrounding, capsizing etc.. Most commonly acknowledged in the shipping domain, drills aresynonyms to training exercises. Drills are extremely important for the safety of ship, crew andpassengers and are mandatory to be performed in any sea voyage. In this paper is made anoverview on regulatory framework and strategic role of efficient maritime drills and training.

  12. Development and Testing of The Lunar Resource Prospector Drill

    Science.gov (United States)

    Zacny, K.; Paulsen, G.; Kleinhenz, J.; Smith, J. T.; Quinn, J.

    2017-12-01

    The goal of the Lunar Resource Prospector (RP) mission is to capture and identify volatiles species within the top one meter layer of the lunar surface. The RP drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RP drill is based on the TRL4 Mars Icebreaker drill and TRL5 LITA drill developed for capturing samples of ice and ice cemented ground on Mars, and represents over a decade of technology development effort. The TRL6 RP drill weighs approximately 15 kg and is rated at just over 500 Watt. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing Station, 4. Feed Stage, and 5. Deployment Stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in 10 cm depth intervals. The first generation, TRL4 Icebreaker drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation, TRL5 LITA drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama, Antarctica, the Arctic, and Greenland. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The modified LITA drill was tested in NASA GRC's lunar vacuum chamber at <10^-5 torr and <200 K. It demonstrated successful capture and transfer

  13. Research on technical and technological parameters of inclined drilling

    Directory of Open Access Journals (Sweden)

    М. В. Двойников

    2017-03-01

    Analysis of investigation results showed that the main source of oscillations is linked to bending and compressing stresses, caused by well deviations as well as rigidity of the drilling tool. In effect, in the bottom-hole assembly occur auto-oscillations, making it impossible to correct azimuth and zenith angles. Alteration of rigidity in the bottom part of the tool and drilling parameters, implying reduced rotation speed of the drill string and regulation of drill bit pressure, can partially solve this problem, though increase in rotation speed is limited by technical characteristics of existing top drive systems.

  14. Tribological characterization of the drill collars and casing friction couples

    Science.gov (United States)

    Ripeanu, R. G.; Badicioiu, M.; Caltaru, M.; Dinita, A.; Laudacescu, E.

    2018-01-01

    Drill collars are special pipes used in the drilling of wells for weighting the drill bit, enabling it to drill through the rock. In the drilling process, the drill collars are exposed to an intensive wear due to friction on inner surface of casing wall. In order to evaluate the tribological behaviour of this friction couple, paper presents the drill collars parent material, reconditioned and casing pipe chemical composition, microstructures, hardness and friction tests. For friction tests were prepared samples extracted from new and reconditioned drill collars and from casing pipes and tested on a universal tribometer. Were used plane-on-disk surface friction couples and tests were conducted at two sliding speeds and three normal loads for each materials couple. Plane static partner samples were extracted from casing pipes and disks samples were extracted from new and reconditioned drill collars. Were obtained friction coefficients values and also the temperatures increasing values due to friction working tests parameters. The temperature increasing values were obtained by measuring it with an infrared thermographic camera.

  15. MEDALIST: Communication Drills for Distributed Coaching (CD-ROM)

    National Research Council Canada - National Science Library

    Graves, Christopher R; Jenkins, Samuel N; Flynn, Michael R; Shadrick, Scott B

    2005-01-01

    .... The MEDALIST approach comprises a notional structure of communication drills with varying difficulty levels and scenario settings, targeted training audiences, a distributed performance coaching...

  16. Challenges in selecting sites for Arctic Ocean drilling

    Science.gov (United States)

    Mikkelsen, Naja; Coakley, Bernard; Stein, Ruediger

    2012-06-01

    Overcoming Barriers to Arctic Ocean Drilling: The Site Survey Challenge; Copenhagen, Denmark, 1-3 November 2011 The climate of the high Arctic appears to be changing faster than any other region on Earth. To place contemporary change in context, it is necessary to use scientific ocean drilling to sample the climate history stored in the sediments of the Arctic Ocean. The focus of the November 2011 workshop was to define site survey investigations for drilling campaigns based on existing proposals and preproposals; to identify themes and areas for developing new and innovative science proposals; and to discuss opportunities, technical needs, and limitations for drilling in the Arctic Ocean.

  17. Contamination tracer testing with seabed drills: IODP Expedition 357

    Science.gov (United States)

    Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.

    2017-11-01

    IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  18. Cleaning oil sands drilling waste in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Mikic, N.; Nilsen, C.; Markabi, M. [Mi SWACO, Calgary, AB (Canada)

    2008-07-01

    The waste generated from steam assisted gravity drainage (SAGD) wells is brought to the surface and separated by shale shakers. The waste can include drilling fluids and sand contaminated with bitumen. This paper described a new technology developed to treat waste using the addition of hot water and various mixing and separation technologies to reduce the viscosity of the bitumen and separate it from the sand. The bitumen-contaminated drill cuttings were mixed with hot water to form a slurry that was then separated through the G-force created by a hydrocyclone. A secondary separation was then conducted in an elutriation column to remove residual contaminants from the sand. The flow rate of the process was controlled by the fine solids composition of the cuttings, the temperature of the cleaning process, and the performance of the individual components. Laboratory tests conducted to tests the method showed that the sand particles produced using the method were clean enough to be safely disposed in the environment. A pilot study will be conducted to test the sand cleaning technology at a commercial scale. 6 refs., 3 figs.

  19. Deep water challenges for drilling rig design

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M. [Transocean Sedco Forex, Houston, TX (United States)

    2001-07-01

    Drilling rigs designed for deep water must meet specific design considerations for harsh environments. The early lessons for rig design came from experiences in the North Sea. Rig efficiency and safety considerations must include structural integrity, isolated/redundant ballast controls, triple redundant DP systems, enclosed heated work spaces, and automated equipment such as bridge cranes, pipe handling gear, offline capabilities, subsea tree handling, and computerized drill floors. All components must be designed to harmonize man and machine. Some challenges which are unique to Eastern Canada include frequent storms and fog, cold temperature, icebergs, rig ice, and difficult logistics. This power point presentation described station keeping and mooring issues in terms of dynamic positioning issues. The environmental influence on riser management during forced disconnects was also described. Design issues for connected deep water risers must insure elastic stability, and control deflected shape. The design must also keep stresses within acceptable limits. Codes and standards for stress limits, flex joints and tension were also presented. tabs., figs.

  20. Drilling simulated temporal bones with left-handed tools: a left-hander's right?

    Science.gov (United States)

    Torgerson, Cory S; Brydges, Ryan; Chen, Joseph M; Dubrowski, Adam

    2007-11-01

    Left-handed trainees can be at a disadvantage in the surgical environment because of a right-handed bias. The effectiveness of teaching left-handed trainees to use an otologic drill designed for their dominant hand versus the conventional right-handed drill was examined. Novice medical students were recruited from the university community. Twenty-four subjects were left-handed, and 12 were right-handed. Eight left-handed surgeons also participated. A randomized controlled trial was conducted to compare the performance of left-handed trainees using novel left-handed drills to that of left-handed trainees using right-handed tools and to that of right-handed trainees using right-handed tools. The evaluation consisted of 3 phases: pretest, skill acquisition, and 2 post-tests. The measurement tools included expert assessment of performance, and subjective and objective final product analyses. An initial construct validity phase was conducted in which validity of the assessment tools was ensured. Both the left-handers using left-handed tools and the right-handers using right-handed tools significantly outperformed the left-handers using right-handed tools at pretest, immediate posttest, and delayed posttest. All participants improved their performance as a function of practice. The left-handed trainees learned bone drilling better with tools designed for the left hand. These tools may be incorporated into residency training programs for the development of surgical technical skills. Future studies should assess skill transfer between the left-handed and right-handed drills.

  1. Design aspects of the Alpha Repository: VI. Selection and cost analysis of large hole drilling equipment

    International Nuclear Information System (INIS)

    Ellis, D.B.; Grams, W.H.

    1975-01-01

    An evaluation of common drilling practices and technology and applicability of currently available drilling machinery in the excavation of the canister emplacement holes for the Alpha Repository is presented. Sections are included on drilling system applications, descriptions of drilling operations, and drill system performance

  2. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Science.gov (United States)

    2010-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT... Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general requirements for a drilling fluid program? You must design and implement your drilling fluid program to prevent the loss of...

  3. Improving hole quality by automatic control of the drilling process: theoretical and field studies

    Energy Technology Data Exchange (ETDEWEB)

    Sinkala, T. (Luleaa University of Technology, Luleaa (Sweden). Division of Mining Equipment Engineering)

    1991-01-01

    Some results from studies on hole deviations are discussed. A system which automatically controls drilling parameters during percussion drilling was developed. A procedure for determining the operating magnitudes of drilling parameters for presetting on a drilling machine is demonstrated. Field experiments show that the automatic control system gives less deviations than ordinary drilling systems. 4 refs., 10 figs., 3 tabs.

  4. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    Science.gov (United States)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud

  5. Effect of drilling fluids on coal permeability: Impact on horizontal wellbore stability

    Energy Technology Data Exchange (ETDEWEB)

    Gentzis, Thomas [Petron Resources, L.P., 3000 Internet Boulevard, Suite 400, Frisco, TX 75034 (United States); Deisman, Nathan; Chalaturnyk, Richard J. [University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB (Canada)

    2009-05-01

    The objective of this study was to evaluate a series of mud systems and additives typically used in coalbed methane drilling in terms of formation of an instantaneous filter cake, ability of the coal reservoir to rid itself of the filter cake during production, and overall impact on coal permeability. To achieve this, a series of laboratory tests were conducted initially using artificially cleated gypstone rock (to simulate coal). This was followed by the use of large-diameter coal cores, which, unfortunately, did not allow for the tests to be done under in-situ confining stress conditions. The three mud systems tested against coal (Xantham Gum, HEC and Na-CMC) did not have a negative impact on coal permeability, in contrast to previous laboratory data that showed large decreases. Two fluid loss control additives, which have been used successfully in drilling clastic and carbonate rocks, were also tested using a non-ionic polymer mud system. During simulated drilling, these additives (FLC 2000 trademark and Q-Stop) were very effective in building a thin filter cake on the coal surface almost instantaneously, to the point that no solids were detected in the downstream fluid accumulator. During simulated production, a small pressure drop was sufficient to remove the filter cake. Coal permeability (to water) returned to its original (pre-test) value, which suggested that there was no permanent permeability damage caused by the two additives. When coal-derived fines were added to the drilling mud in another experiment using the same coal, the near wellbore coal permeability was reduced by 87.5%, indicating severe damage to the cleat system and in agreement with previously reported laboratory data. Following the very good performance of FLC 2000 trademark and Q-Stop in the laboratory tests, these two additives were then used in field applications. Their presence in the drilling fluid resulted in the successful drilling of 953 m and 1400 m of total horizontal length in

  6. New cobalt-mediated radical polymerization (CMRP of methyl methacrylate initiated by two single-component dinuclear β-diketone cobalt (II catalysts.

    Directory of Open Access Journals (Sweden)

    Feng Bao

    Full Text Available Two dinuclear cobalt complexes based on bis-diketonate ligands (ligand 1: 3,3'-(1,3-phenylenebis(1-phenylpropane-1,3-dione; ligand 2: 3,3'-(1,4-phenylenebis(1-phenylpropane-1,3-dione were successfully synthesized. The two neutral catalysts all showed satisfactory activities in the cobalt-mediated radical polymerization (CMRP of methyl methacrylate (MMA with the common initiator of azodiisobutyronitrile (AIBN. The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities. Mono- or dicomponent low polydispersity polymers could be obtained by using the two dinuclear catalysts under proper reaction conditions. All these improvements facilitate the implementation of the acrylate CMRP and open the door to the scale-up of the syntheses and applications of the multicomponent low polydispersity polymers.

  7. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    Science.gov (United States)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a

  8. Description of Work for Drilling at the 183-DR Site in Support of the In Situ Gaseous Reduction Test

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Edward C.; Olsen, Khris B.; Schalla, Ronald

    2000-06-26

    In Situ Gaseous Reduction is a technology currently being developed by DOE for the remediation of soil waste sites contaminated with hexavalent chromium. Prior work suggests that a candidate for application of this approach is the 183-DR site at Hanford. However, deep vadose zone drilling is needed to verify the presence of a hexavalent chromium source and to determine the concentration levels and spatial distribution of contamination. This document presents the requirements associated with drilling one to two vadose zone boreholes at the 183-DR site to obtain this information. If hexavalent chromium is determined to be present at levels of at least 10 ppm in the vadose zone in one of the initial boreholes, this hole will be completed for gas injection and six additional gas extraction boreholes will be drilled and completed. This network will be used as a flowcell for performing a gas treatment test at the site.

  9. Deep Scientific Drilling at Koyna, India

    Science.gov (United States)

    Gupta, H. K.

    2011-12-01

    countries were held under the auspices of International Continental Scientific Drilling Program (ICDP) and the Ministry of Earth Sciences (MoES), Government of India, during March 21 through 26, 2011 to discuss all aspects of the proposed scientific drilling at Koyna. In addition to a pilot bore hole of about 2.5 km, 4 other bore holes penetrating the basalt cover of about 1 km thickness, are proposed to be drilled to conduct a suite of geophysical and hydro-geological experiments and measurements. Results of these investigations would be complementary to SAFOD experiment being conducted on the plate boundary.

  10. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    Science.gov (United States)

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  11. Big-hole drilling - the state of the art

    International Nuclear Information System (INIS)

    Lackey, M.D.

    1983-01-01

    The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete

  12. Evaluation of Groundwater Potentials for Borehole Drilling by ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Evaluation of Groundwater Potentials for Borehole Drilling by Integrated Geophysical. Mapping of ... drilling. Six lithologic formations were delineated which included the top soil, clay/shale, fine grained sand, coarse grained sand, fractured bedrock and fresh bedrock. ... properties, geological (composition) and fluid content.

  13. Co-composting of Non-aqueous Drilling Fluid Contaminated ...

    African Journals Online (AJOL)

    Drill cuttings (from Ologbo active oil field) contaminated with non-aqueous drilling fluid was co-composted with poultry manure and plant waste for eighteen weeks. A homogenized non-aqueous based fluid contaminated cutting was mixed with wood chips in a ratio of 1:1 and then mixed with soil, poultry and plant waste ...

  14. Investigating Created Properties of Nanoparticles Based Drilling Mud

    Science.gov (United States)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2017-11-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  15. Aerobic Degradation of Drill Muds by Axenic and Mixed Bacterial ...

    African Journals Online (AJOL)

    Prof. Ogunji

    (2003) have earlier shown that drilling muds additives were biodegradable, when they investigated the ... investigation reports the potentials of some indigenous bacteria to biodegrade drilling muds used in exploration in Nigeria. ... Samples were transported to the laboratory aseptically for evaluation, in labeled plastic.

  16. Biodegradation Potential of Oil-based Drill Cuttings Encapsulated ...

    African Journals Online (AJOL)

    Michael Horsfall

    equally divided into 5 plastic containers. Cement encapsulated oil-based drill cuttings were prepared by ... Into each of the plastic containers containing the soil sample, one slab each of the cement encapsulated drill cuttings was ..... Estimating biodegradable municipal solid waste diversion from landfill. Phase 1 Review of ...

  17. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  18. 46 CFR 199.180 - Training and drills.

    Science.gov (United States)

    2010-10-01

    ... problems of hypothermia, first aid treatment for hypothermia, and other appropriate first aid procedures... 46 Shipping 7 2010-10-01 2010-10-01 false Training and drills. 199.180 Section 199.180 Shipping... LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Requirements for All Vessels § 199.180 Training and drills...

  19. States Stepping up Mandates for School Safety Drills

    Science.gov (United States)

    Shah, Nirvi

    2013-01-01

    Hundreds of U.S. schools will supplement fire drills and tornado training next fall with simulations of school shootings. In response to the December shootings by an intruder at Sandy Hook Elementary School in Newtown, Connecticut, several states have enacted or are considering laws that require more and new types of school safety drills, more…

  20. Calibrating the Truax Rough Rider seed drill for restoration plantings

    Science.gov (United States)

    Loren St. John; Brent Cornforth; Boyd Simonson; Dan Ogle; Derek Tilley

    2008-01-01

    The purpose of this technical note is to provide a step-by-step approach to calibrating the Truax Rough Rider range drill, a relatively new, state-of-the-art rangeland drill. To achieve the desired outcome of a seeding project, an important step following proper weed control and seedbed preparation is the calibration of the seeding equipment to ensure the recommended...

  1. 30 CFR 77.1013 - Air drills; safeguards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air drills; safeguards. 77.1013 Section 77.1013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Ground Control § 77.1013 Air drills; safeguards...

  2. Data analysis & probability drill sheets : grades 6-8

    CERN Document Server

    Forest, Chris

    2011-01-01

    For grades 6-8, our Common Core State Standards-based resource meets the data analysis & probability concepts addressed by the NCTM standards and encourages your students to review the concepts in unique ways. Each drill sheet contains warm-up and timed drill activities for the student to practice data analysis & probability concepts.

  3. Comprehensive Approach to Oil Well Drilling Cost Estimation ...

    African Journals Online (AJOL)

    The comprehensive approach to oil well drilling cost estimation was presented. A formular was derived from the existing drilling cost estimation formulae that considered a parameter known as host community cost (HCC), which was introduced into the existing formula to make it more comprehensive. The host community ...

  4. Post drill survey A6 - A6 2014

    NARCIS (Netherlands)

    Glorius, S.T.; Weide, van der B.E.; Kaag, N.H.B.M.

    2015-01-01

    A consortium has drilled a production well linked to the existing production platform A6-A. This platform is located in an ‘FFH-area’ with a Natura 2000 designation area. Wintershall (one of the consortium partners) has requested IMARES to conduct a post-drilling survey at the A6-A platform site to

  5. U.S. drilling contractors could face stiff challenges

    International Nuclear Information System (INIS)

    Simmons, M.R.

    1993-01-01

    Although the outlook for most segments of the contract drilling business is now more optimistic than in the past decade, the increased activity has brought several problems: the availability of fully trained crews, the need for new capital, and the limited number of quality drillstrings. These problems will grow in importance if natural gas deliverability begins to decline visibly and once the scramble to correct this decline begins. As the drilling recovery unfolds, the most important lesson to remember, based on worldwide activity in the past year, is how rapidly conditions can change and how quickly excess capacity can turn into chronic shortages. The various segments of the world wide contract drilling industry's prospects have changed dramatically during the past 12 months, and oddly, some market sectors have improved while others have become worse. These quick changes highlight the unpredictable and volatile nature of the markets for contract drilling and other services needed to drill and complete oil and gas wells. The paper describes the business of well drilling onshore and offshore in the US, drilling activities in Canada, international markets, capacity, the supplies of natural gas, Gulf of Mexico activities, drill pipe shortages, manpower shortages, and challenges offshore

  6. Removal of chromium and lead from drill cuttings using activated ...

    African Journals Online (AJOL)

    user

    2009-07-14

    Jul 14, 2009 ... disposal of drill cuttings normally requires transport of the cuttings to a suitable landfill or shore-based processing system. Presently in Nigeria, drill ..... Kinetics and Thermodynamic Study of Lead Adsorption onto Acti- vated Carbon from Coconut and Sea Hull of the Palm Tree. J. Environ. Sci and Tech.

  7. Drilling analysis of coir–fibre-reinforced polyester composites

    Indian Academy of Sciences (India)

    Administrator

    mized for studying drilling characteristics of coir–polyester composites using the Taguchi approach. A drill bit diameter of 6 mm, spindle speed of 600 ... epoxy resin and made suggestions for low-load applica- tions. They assessed only the limited .... the multi-channel charge amplifier. A Rapid-I machine vision system from ...

  8. 30 CFR 57.4361 - Underground evacuation drills.

    Science.gov (United States)

    2010-07-01

    ...) Involve activation of the fire alarm system; and (3) Include evacuation of all persons from their work... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At...

  9. Development of a Mine Rescue Drilling System (MRDS)

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaither, Katherine N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steven D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broome, Scott Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Costin, Laurence S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  10. Slim-hole drilling in the Gulf of Suez, Egypt

    International Nuclear Information System (INIS)

    Ghazaly, S.M.; Khalaf, F.

    1993-01-01

    This paper discusses the economical, operational and environmental aspects of the reduced hole size drilling now used in offshore operations in Gupco and other major petroleum companies operating in the Gulf of Suez Area Egypt. The results demonstrate that reduced hole size drilling saves cost: use of slim hole reduces time related intangible savings, fixed tangible savings, and tangible equipment savings. The advantages of small hole size and the reduction in the volume and size of oil wet drilling cuttings help minimize the environmental impact associated with the use of oil base mud. The reduction in drilling fluid volume and treatment cost, higher rates of penetration, better hole cleaning capabilities, savings in consumables (such as bits, mud, cement and diesel oil), less tangible cost, and easier equipment mobilization are interacted to produce significant operational gains. This results in savings to 40 to 50 percent of well costs versus the cost of conventional wells drilled in the same area. Although substantial savings were realized, there are elevated risks with the major one being the lack of a good contingency in the event unexpected hole condition or geological condition require an extra casing to be run prior to reaching the total depth. Effective preplanning between the drilling, exploration, and engineering to accurately define possible geologic targets and their potential drilling problems can minimize these risks associated with drilling slim holes and provide higher levels of success in meeting objectives

  11. Study on Earthquake Emergency Evacuation Drill Trainer Development

    Science.gov (United States)

    ChangJiang, L.

    2016-12-01

    With the improvement of China's urbanization, to ensure people survive the earthquake needs scientific routine emergency evacuation drills. Drawing on cellular automaton, shortest path algorithm and collision avoidance, we designed a model of earthquake emergency evacuation drill for school scenes. Based on this model, we made simulation software for earthquake emergency evacuation drill. The software is able to perform the simulation of earthquake emergency evacuation drill by building spatial structural model and selecting the information of people's location grounds on actual conditions of constructions. Based on the data of simulation, we can operate drilling in the same building. RFID technology could be used here for drill data collection which read personal information and send it to the evacuation simulation software via WIFI. Then the simulation software would contrast simulative data with the information of actual evacuation process, such as evacuation time, evacuation path, congestion nodes and so on. In the end, it would provide a contrastive analysis report to report assessment result and optimum proposal. We hope the earthquake emergency evacuation drill software and trainer can provide overall process disposal concept for earthquake emergency evacuation drill in assembly occupancies. The trainer can make the earthquake emergency evacuation more orderly, efficient, reasonable and scientific to fulfill the increase in coping capacity of urban hazard.

  12. Bioremediation of hydrocarbon contaminated-oil field drill-cuttings ...

    African Journals Online (AJOL)

    The effectiveness of 2 bacterial isolates (Bacillus subtilis and Pseudomonas aeruginosa) in the restoration of oil-field drill-cuttings contaminated with polycyclic aromatic hydrocarbons (PAHs) was studied. A mixture of 4 kg of the drill-cuttings and 0.67 kg of top-soil were charged into triplicate plastic reactors labeled A1 to A3, ...

  13. Development of a Database for Drilled SHAft Foundation Testing (DSHAFT).

    Science.gov (United States)

    2012-06-01

    Drilled shafts have been used in the US for more than 100 years in bridges and buildings as a deep foundation alternative. For many of these applications, the drilled shafts were designed using the Working Stress Design (WSD) approach. Even though WS...

  14. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass

    Science.gov (United States)

    Hwang, D. J.; Choi, T. Y.; Grigoropoulos, C. P.

    Ultra-short-pulse lasers have proved to be effective tools for micromachining a wide range of materials. When the ultra-short laser pulse is focused inside the bulk of a transparent medium, nonlinear absorption occurs only near the focal volume that is subjected to high intensity. Three-dimensional structures can be fabricated inside transparent materials by taking advantage of this volumetric absorption. In this paper, femtosecond laser pulses were used to fabricate straight and bent through-channels. Drilling was initiated from the rear surface to preserve consistent absorption of the laser pulse. When the debris was not removed efficiently, variation of the channel diameter and occasional termination of the drilling process were observed. Machining in the presence of a liquid and additional use of ultrasonic wave agitation facilitated the debris ejection. The machined channels had diameters on the order of tens of microns, high aspect ratios, and good wall-surface quality.

  15. A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+channels that initiates long-range signaling to the nucleus.

    Science.gov (United States)

    Wang, Xiaohan; Marks, Christian R; Perfitt, Tyler L; Nakagawa, Terunaga; Lee, Amy; Jacobson, David A; Colbran, Roger J

    2017-10-20

    Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca 2+ channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca 2+ -sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of Ca V 1 LTCC α1 subunits that is not conserved in Ca V 2 or Ca V 3 voltage-gated Ca 2+ channel subunits. Mutations in the Ca V 1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the in vitro interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. ELUCID—Exploring the Local Universe with the reConstructed Initial Density Field. II. Reconstruction Diagnostics, Applied to Numerical Halo Catalogs

    Energy Technology Data Exchange (ETDEWEB)

    Tweed, Dylan; Yang, Xiaohu; Li, Shijie; Jing, Y. P. [Center for Astronomy and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Cui, Weiguang [Departamento de Física Teórica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Zhang, Youcai [Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Mo, H. J., E-mail: dtweed@sjtu.edu.cn [Department of Astronomy, University of Massachusetts, Amherst MA, 01003-9305 (United States)

    2017-05-20

    The ELUCID project aims to build a series of realistic cosmological simulations that reproduce the spatial and mass distributions of the galaxies as observed in the Sloan Digital Sky Survey. This requires powerful reconstruction techniques to create constrained initial conditions (ICs). We test the reconstruction method by applying it to several N -body simulations. We use two medium-resolution simulations, which each produced three additional constrained N -body simulations. We compare the resulting friend-of-friend catalogs by using the particle indexes as tracers, and quantify the quality of the reconstruction by varying the main smoothing parameter. The cross-identification method we use proves to be efficient, and the results suggest that the most massive reconstructed halos are effectively traced from the same Lagrangian regions in the ICs. A preliminary time-dependence analysis indicates that high-mass-end halos converge only at a redshift close to the reconstruction redshift. This suggests that, for earlier snapshots, only collections of progenitors may be effectively cross-identified.

  17. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  18. Potential environmental benefits from regulatory consideration of synthetic drilling muds

    International Nuclear Information System (INIS)

    Burke, C.J.; Veil, J.A.

    1995-02-01

    When drilling exploration and production wells for oil and gas, drillers use specialized drilling fluids, referred to as muds, to help maintain well control and to remove drill cuttings from the hole. Historically, either water-based muds (WBMs) or oil-based muds (OBMs) have been used for offshore wells. Recently, in response to US Environmental Protection Agency (EPA) regulations and drilling-waste discharge requirements imposed by North Sea nations, the drilling industry has developed several types of synthetic-based muds (SBMs) that combine the desirable operating qualities of OBMs with the lower toxicity and environmental impact qualities of WBMs. This report describes the operational, environmental, and economic features of all three types of muds and discusses potential EPA regulatory barriers to wider use of SBMs

  19. Geothermal gradient drilling, north-central Cascades of Oregon, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Youngquist, W.

    1980-01-01

    A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

  20. Visualization of Stress Distribution on Ultrasonic Vibration Aided Drilling Process

    Science.gov (United States)

    Isobe, Hiromi; Uehara, Yusuke; Okada, Manabu; Horiuchi, Tomio; Hara, Keisuke

    The ultrasonically assisted machining is suitable to achieve sub-millimeter drilling on difficult-to-cut materials such as ceramics, hardened steel, glass and heat-resistant steel. However, it is difficult to observe the high-frequency and micron-scale phenomenon of ultrasonic cutting. In this report, high speed camera based on photoelastic analysis realized the visualization of stress distribution on drilling process. For the conventional drilling, the stress distribution diagram showed the intensive stress occurred under the chisel because the chisel edge of drill produces large plastic deformation. On the other hand, the ultrasonic drilling produced spread stress distribution and stress boundary far away from the chisel. Furthermore, chipping or cracking of inner wall of silica glass was influenced considerably by cutting fluid.

  1. Engineering report on drilling in the Owens Lake area, California

    International Nuclear Information System (INIS)

    1980-07-01

    The Owens Lake Drilling Project was conducted by Bendix Field Engineering Corporation in support of the Department of Energy's (DOE) National Uranium Resource Evaluation (NURE) program. This project consisted of eight drill holes ranging in depth from 420 to 3.500 feet (128.02 to 1,066.80 m). A total of 19,205 feet (5,853.68 m) was drilled, of which 135.5 feet (41.30 m) were cored. The purpose of the Owens Lake project was to test the uranium potential of the Coso formation, Pliocene (upper) and Pleistocene (lower) in areas downdip from known zones of mineralization. This project started on June 22, 2979 and continued until February 21, 1980. Restoration and seeding started on February 22, 1980 and was completed on March 1, 1980. Engineering details, statistics, individual borehole histories, and geophysical logs of the eight holes drilled in Owens Lake, California drilling program are presented

  2. Drilling rate for the Cerro Prieto stratigraphic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Prian C, R.

    1981-01-01

    Drilling practice at the field has been modified in several ways as better information is being obtained. The stratigraphic sequence of the area is made up of three sedimentary rock units of deltaic origin having different densities. These units have been named non-consolidated, semi-consolidated, and consolidated rocks; the thermal reservoirs are located in the latter. To investigate how the drilling rates are affected by the three rock units, plots of drilling advance versus time were made for a large number of wells. A typical plot is shown and drilling rates are practically constant in three different zones; that is, the drilling rate has only two breaks or changes in slope.

  3. Communication Solution at Drilling Stand Monitoring

    Directory of Open Access Journals (Sweden)

    František Blaško

    2004-12-01

    Full Text Available The contribution deals with the communication in frame of monitoring system of drilling process by utilizaing internet technologies. The attention is devoted to the data transfer between the monitoring and control system and the web monitoring application. The paper describes the communication between the server‘s and client’s part of application. The server part is developed in the Delphi environment. The client part is realized in the programming language Java. The communication is based on the socket base. The java applet has two classes with the mutual information exchange between both classes (static and dynamic part. The monitoring process is illustrated in the form of selected samples.

  4. Superhard nanophase materials for rock drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadangi, R.K.; Voronov, O.A.; Tompa, G.S. [Diamond Materials Inc., Pisctaway, NJ (United States); Kear, B.H. [Rutgers Univ., Piscataway, NJ (United States)

    1997-12-31

    Diamond Materials Incorporated is developing new class of superhard materials for rock drilling applications. In this paper, we will describe two types of superhard materials, (a) binderless polycrystalline diamond compacts (BPCD), and (b) functionally graded triphasic nanocomposite materials (FGTNC). BPCDs are true polycrystalline diamond ceramic with < 0.5 wt% binders and have demonstrated to maintain their wear properties in a granite-log test even after 700{degrees}C thermal treatment. FGTNCs are functionally-graded triphasic superhard material, comprising a nanophase WC/Co core and a diamond-enriched surface, that combine high strength and toughness with superior wear resistance, making FGTNC an attractive material for use as roller cone stud inserts.

  5. COST ESTIMATING RELATIONSHIPS IN ONSHORE DRILLING PROJECTS

    Directory of Open Access Journals (Sweden)

    Ricardo de Melo e Silva Accioly

    2017-03-01

    Full Text Available Cost estimating relationships (CERs are very important tools in the planning phases of an upstream project. CERs are, in general, multiple regression models developed to estimate the cost of a particular item or scope of a project. They are based in historical data that should pass through a normalization process before fitting a model. In the early phases they are the primary tool for cost estimating. In later phases they are usually used as an estimation validation tool and sometimes for benchmarking purposes. As in any other modeling methodology there are number of important steps to build a model. In this paper the process of building a CER to estimate drilling cost of onshore wells will be addressed.

  6. Ergonomic exposure on a drilling rig

    DEFF Research Database (Denmark)

    Jensen, Carsten; Jensen, Chris

    , but for some of the most frequent problems, such as musculoskeletal problems, it is difficult to determine whether the causes are work‐related or not. As manual handling (lifting, pushing, etc.) in awkward body postures increase the risk of developing musculoskeletal disorders, it should be expected that work....... In a relatively old study on American drilling rigs it was indicated that lower back problems was a frequent cause of absence (Clemmer et al. 1991). Most of the incidents causing lower back injuries were associated with heavy lifting or pushing/pulling objects by roustabouts, floorhands, derrickmen and welders......The offshore oil and gas industry is characterized by a constant focus on safety at work in order to reduce the number of work‐related accidents. In companies, the management systems and commitment, which include safety courses for all personnel, formal safety procedures, work permits, near...

  7. 76 FR 11758 - Drill Pipe From the People's Republic of China: Countervailing Duty Order

    Science.gov (United States)

    2011-03-03

    ... collars without regard to the specific chemistry of the steel (i.e., carbon, stainless steel, or other... (including all drill collar green tubes) and unfinished drill pipe (including drill pipe green tubes, which...

  8. Optimizing Drilling Efficiency by PWD (Pressure-While-Drilling) Sensor in wells which were drilled in the Khazar-Caspian Sea of the Azerbaijan Republic

    Science.gov (United States)

    Amirov, Elnur

    2017-04-01

    Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig

  9. Environmental effects monitoring for exploration drilling

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Cook, J.A.; Mathieu, A.

    2003-01-01

    Strategies for monitoring the environmental effects of single exploratory offshore wells on the east coast of Canada were evaluated. The report was compiled from consultations with scientists, regulators and stakeholders as well as a review of regulatory regimes and toxicity results. The aim of the report was to develop a decision tree for determining when to conduct environmental effects monitoring (EEM). Respondents evinced lower levels of concern for single exploratory wells than for production developments. A number of scientists argued for full statistical treatment of all data, and many people argued that more assurance was needed that the marine environment was not being unduly harmed. Respondents also considered that biological effects should be a primary focus, rather than the occurrence of trace chemical signals, and that seabirds and mammals should be monitored. Concern was expressed over the value of data collected from monitoring the effects of exploratory drilling activities. It was suggested that local and site-specific issues should be considered in the design of EEM programs. Respondents expressed strong concern about potential cumulative effects with other industrial activities, and suggested that test cases should be established and monitored to develop a scientific rationale for the inclusion or exclusion of specific variables in future EEM programs. A decision tree was developed based on 3 scenarios: (1) compliance monitoring only in well known areas with no sensitive issues; opportunistic EEM surveys of sediments, benthos, seabirds and marine mammals in shallow or deep areas with no known sensitive issues; and (3) custom EEM surveys for sensitive areas. Currently, there are EEM requirements for drilling exploratory wells offshore Canada's east coast. 58 refs., 2 tabs., 7 figs

  10. Overview of Hole GT2A: Drilling middle gabbro in Wadi Tayin massif, Oman ophiolite

    Science.gov (United States)

    Takazawa, E.; Kelemen, P. B.; Teagle, D. A. H.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.

    2017-12-01

    Hole GT2A (UTM: 40Q 655960.7E / 2529193.5N) was drilled by the Oman Drilling Project (OmDP) into Wadi Gideah of Wadi Tayin massif in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT2A was diamond cored in 25 Dec 2016 to 18 Jan 2017 to a total depth of 406.77 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. 33 shipboard scientists were divided into six teams (Igneous, Alteration, Structural, Geochem, Physical Properties, Paleomag) to describe and analyze the cores. Hole GT2A drilled through the transition between foliated and layered gabbro. The transition zone occurs between 50 and 150 m curation corrected depth (CCD). The top 50 m of Hole GT2A is foliated gabbro whereas the bottom 250 m consists of layered gabbro. Brittle fracture is observed throughout the core. Intensity of alteration vein decreases from the top to the bottom of the hole. On the basis of changes in grain size and/or modal abundance and/or appearance/disappearance of igneous primary mineral(s) five lithological units are defined in Hole GT2A (Unit I to V). The uppermost part of Hole GT2A (Unit I) is dominated by fine-grained granular olivine gabbro intercalated with less dominant medium-grained granular olivine gabbro and rare coarse-grained varitextured gabbro. The lower part of the Hole (Units II, III and V) is dominated by medium-grained olivine gabbro, olivine melagabbro and olivine-bearing gabbro. Modally-graded rhythmic layering with

  11. Unique microbial community in drilling fluids from Chinese continental scientific drilling

    Science.gov (United States)

    Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.

    2006-01-01

    Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.

  12. Estimation of lost circulation amount occurs during under balanced drilling using drilling data and neural network

    Directory of Open Access Journals (Sweden)

    Pouria Behnoud far

    2017-09-01

    Full Text Available Lost circulation can cause an increase in time and cost of operation. Pipe sticking, formation damage and uncontrolled flow of oil and gas may be consequences of lost circulation. Dealing with this problem is a key factor to conduct a successful drilling operation. Estimation of lost circulation amount is necessary to find a solution. Lost circulation is influenced by different parameters such as mud weight, pump pressure, depth etc. Mud weight, pump pressure and flow rate of mud should be designed to prevent induced fractures and have the least amount of lost circulation. Artificial neural network is useful to find the relations of parameters with lost circulation. Genetic algorithm is applied on the achieved relations to determine the optimum mud weight, pump pressure, and flow rate. In an Iranian oil field, daily drilling reports of wells which are drilled using UBD technique are studied. Asmari formation is the most important oil reservoir of the studied field and UBD is used only in this interval. Three wells with the most, moderate and without lost circulation are chosen. In this article, the effect of mud weight, depth, pump pressure and flow rate of pump on lost circulation in UBD of Asmari formation in one of the Southwest Iranian fields is studied using drilling data and artificial neural network. In addition, the amount of lost circulation is predicted precisely with respect to two of the studied parameters using the presented correlations and the optimum mud weight, pump pressure and flow rate are calculated to minimize the lost circulation amount.

  13. IODP Expedition 319, NanTroSEIZE Stage 2: First IODP Riser Drilling Operations and Observatory Installation Towards Understanding Subduction Zone Seismogenesis

    Directory of Open Access Journals (Sweden)

    Sean Toczko

    2010-09-01

    Full Text Available The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE is a major drilling project designed to investigate fault mechanics and the seismogenic behavior of subduction zone plate boundaries. Expedition 319 is the first riser drilling operation within scientific ocean drilling. Operations included riser drilling at Site C0009 in the forearc basin above the plate boundary fault, non-riser drilling at Site C0010 across the shallow part of the megasplay faultsystem—which may slip during plate boundary earthquakes—and initial drilling at Site C0011 (incoming oceanic plate for Expedition 322. At Site C0009, new methods were tested, including analysis of drill mud cuttings and gas, and in situ measurements of stress, pore pressure, and permeability. These results, in conjunction with earlier drilling, will provide a the history of forearc basin development (including links to growth of the megasplay fault system and modern prism, b the first in situ hydrological measurements of the plate boundary hanging wall, and c integration of in situ stress measurements (orientation and magnitude across the forearc and with depth. A vertical seismic profile (VSP experiment provides improved constraints on the deeper structure of the subduction zone. At Site C0010, logging-while-drilling measurements indicate significantchanges in fault zone and hanging wall properties over short (<5 km along-strike distances, suggesting different burial and/or uplift history. The first borehole observatory instruments were installed at Site C0010 to monitor pressure and temperature within the megasplay fault zone, and methods of deployment of more complex observatoryinstruments were tested for future operations.

  14. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    Science.gov (United States)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  15. Evaluation of low toxicity mineral oil base drilling fluids; Avaliacao de fluidos de perfuracao a base de oleo mineral de baixa toxidez

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ielton Frederico da [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1989-12-31

    In order to introduce low toxicity mineral oil base drilling fluids in Brazil, we carried out a series with a low aromatic content basic oil for lubricants, produced by PETROBRAS: the Lubrax Industrial OB-9 (Lubind OB-9). This oil, as well as its mixture with aviation kerosene to reduce viscosity, was found adequate for use in drilling fluids together with other national products developed by companies that supply additives for drilling fluids in Brazil. We present the results of laboratory tests with systems of four different manufacturers, one of which was chosen for initial field tests. These tests, which were carried out at the Miranga and Bu River Fields, in the Drilling District of Bahia, produced satisfactory results. We anticipate the use of these fluids in other areas where the company operates. (author) 2 refs., 3 tabs.

  16. The Ocean Colour Climate Change Initiative: II. Spatial and Temporal Homogeneity of Satellite Data Retrieval Due to Systematic Effects in Atmospheric Correction Processors

    Science.gov (United States)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Brockmann, Carsten; Deschamps, Pierre-Yves; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; hide

    2015-01-01

    The established procedure to access the quality of atmospheric correction processors and their underlying algorithms is the comparison of satellite data products with related in-situ measurements. Although this approach addresses the accuracy of derived geophysical properties in a straight forward fashion, it is also limited in its ability to catch systematic sensor and processor dependent behaviour of satellite products along the scan-line, which might impair the usefulness of the data in spatial analyses. The Ocean Colour Climate Change Initiative (OC-CCI) aims to create an ocean colour dataset on a global scale to meet the demands of the ecosystem modelling community. The need for products with increasing spatial and temporal resolution that also show as little systematic and random errors as possible, increases. Due to cloud cover, even temporal means can be influenced by along-scanline artefacts if the observations are not balanced and effects cannot be cancelled out mutually. These effects can arise from a multitude of results which are not easily separated, if at all. Among the sources of artefacts, there are some sensor-specific calibration issues which should lead to similar responses in all processors, as well as processor-specific features which correspond with the individual choices in the algorithms. A set of methods is proposed and applied to MERIS data over two regions of interest in the North Atlantic and the South Pacific Gyre. The normalised water leaving reflectance products of four atmospheric correction processors, which have also been evaluated in match-up analysis, is analysed in order to find and interpret systematic effects across track. These results are summed up with a semi-objective ranking and are used as a complement to the match-up analysis in the decision for the best Atmospheric Correction (AC) processor. Although the need for discussion remains concerning the absolutes by which to judge an AC processor, this example demonstrates

  17. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  18. Initial dosimetric experience with mega voltage computed tomography detectors and estimation of pre and post-repair dosimetric parameters of a first helical Hi-Art II tomotherapy machine in India

    Directory of Open Access Journals (Sweden)

    Kinhikar Rajesh

    2009-01-01

    Full Text Available A Helical Tomotherapy TM (HT Hi-Art II (TomoTherapy, Inc., Madison, WI, USA has been one of the important innovations to help deliver IMRT with image guidance. On-board, mega voltage computed tomography (MVCT detectors are used for imaging and dosimetric purpose. The two objectives of this study are: (i To estimate the dosimetric and general capability (TomoImage registration, reconstruction, contrast and spatial resolution, artifacts-free image and dose in TomoImage of on-board MVCT detectors. (ii To measure the dosimetric parameters (output and energy following major repair. The MVCT detectors also estimated the rotational output constancy well. During this study, dosimetric tests were repeated after replacing MVCT detectors and the target. fixed-gantry/fixed-couch measurements were measured daily to investigate; the system stability. Thermoluminescense dosimeter (TLD was used during both the measurements subsequently. The MVCT image quality with old and new detectors was comparable and hence acceptable clinically. The spatial resolution was optimal and the dose during TomoImage was 2 cGy (well within the manufacturer tolerance of 4 cGy. The results of lateral beam profiles showed an excellent agreement between the two normalized plots. The output from the rotational procedure revealed 99.7% while the energy was consistent over a period of twelve months. The Hi-Art II system has maintained its calibration to within +/- 2% and energy to within +/- 1.5% over the initial twelve-month period. Based on the periodic measurements for rotational output and consistency in the lateral beam profile shape, the on-board detector proved to be a viable dosimetric quality assurance tool for IMRT with Tomotherapy. Tomotherapy was stable from the dosimetric point of view during the twelve-month period.

  19. Sample Acqusition Drilling System for the the Resource Prospector Mission

    Science.gov (United States)

    Zacny, K.; Paulsen, G.; Quinn, J.; Smith, J.; Kleinhenz, J.

    2015-12-01

    The goal of the Lunar Resource Prospector Mission (RPM) is to capture and identify volatiles species within the top meter of the lunar regolith. The RPM drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RPM drill is based on the Mars Icebreaker drill developed for capturing samples of ice and ice cemented ground on Mars. The drill weighs approximately 10 kg and is rated at ~300 Watt. It is a rotary-percussive, fully autonomous system designed to capture cuttings for analysis. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing station, 4. Z-stage, 5. Deployment stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in ~10 cm intervals. The first generation drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama in 2012. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The third generation drill was tested in NASA GRC's vacuum chamber, VF13, at 10-5 torr and approximately 200 K. It demonstrated successful capture and transfer of icy samples to a crucible. The drill has been modified and

  20. Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos 21 B well

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.; Lewis, K.A.

    2012-01-01

    Through the use of 3-D seismic amplitude mapping, several gashydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of MexicoGasHydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ~2 ohm-m and P-wave velocity in the range of ~1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gashydrate in the logged sand interval, mainly because largewashouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gashydratesaturations in the sedimentary section drilled in the Alaminos Canyon 21B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gashydratesaturation in the target sand section in the AC21-Bwell can be constrained to the range of 8–28%, with 20% being our best estimate.

  1. Relevance of East African Drill Cores to Human Evolution: the Case of the Olorgesailie Drilling Project

    Science.gov (United States)

    Potts, R.

    2016-12-01

    Drill cores reaching the local basement of the East African Rift were obtained in 2012 south of the Olorgesailie Basin, Kenya, 20 km from excavations that document key benchmarks in the origin of Homo sapiens. Sediments totaling 216 m were obtained from two drilling locations representing the past 1 million years. The cores were acquired to build a detailed environmental record spatially associated with the transition from Acheulean to Middle Stone Age technology and extensive turnover in mammalian species. The project seeks precise tests of how climate dynamics and tectonic events were linked with these transitions. Core lithology (A.K. Behrensmeyer), geochronology (A. Deino), diatoms (R.B. Owen), phytoliths (R. Kinyanjui), geochemistry (N. Rabideaux, D. Deocampo), among other indicators, show evidence of strong environmental variability in agreement with predicted high-eccentricity modulation of climate during the evolutionary transitions. Increase in hominin mobility, elaboration of symbolic behavior, and concurrent turnover in mammalian species indicating heightened adaptability to unpredictable ecosystems, point to a direct link between the evolutionary transitions and the landscape dynamics reflected in the Olorgesailie drill cores. For paleoanthropologists and Earth scientists, any link between evolutionary transitions and environmental dynamics requires robust evolutionary datasets pertinent to how selection, extinction, population divergence, and other evolutionary processes were impacted by the dynamics uncovered in drill core studies. Fossil and archeological data offer a rich source of data and of robust environment-evolution explanations that must be integrated into efforts by Earth scientists who seek to examine high-resolution climate records of human evolution. Paleoanthropological examples will illustrate the opportunities that exist for connecting evolutionary benchmarks to the data obtained from drilled African muds. Project members: R. Potts, A

  2. Tool geometry optimization for drilling CFRP/Al-Li stacks with a lightning strike protection

    Science.gov (United States)

    El Bouami, Souhail; Habak, Malek; Velasco, Raphaël; Santos, Baptise Dos; Franz, Gérald; Vantomme, Pascal

    2017-10-01

    One-shot drilling of Carbon Fiber-Reinforced Polymer materials with a Lightning Strike Protection (LSP)/metal stacks is a challenging task due to the inherent difference physical and mechanical properties and processing mechanisms of each component. The objective of the present work is to optimize tool geometry width in drilling of CFRP/Al-Li with a LSP. Firstly, a set of conventional uncoated carbide drills which are commercially available for the drilling of aeronautic composites was used to study the effect of tool geometry on drilled-hole quality. The set encompasses a twist drill bit, a step drill bit and a point spur drill bit. Based on references and cutting conditions recommended by drill manufacturers, the drilling tests performed are based on full-factorial experimental design using three cutting speeds and two feed rates. Results showed that, on the one hand, spur drill gave the best results causing small damage extension in the hole perimeter but we noticed a rapid tool wear at the spur which increases with feed. On the other hand, step drill presented higher LSP delamination located at the hole entrance but reduces the level of thrust force. The choice of tool geometry process should be a compromise in drilling aluminium as well as drilling carbon fiber with LSP. In the second phase of the current work, three different new uncoated carbide geometries were developed: a Spur Step Drill, a Three Steps Drill and a Square Step Drill. Same cutting conditions were used for the three drills. Results showed a rapid tool wear for the Spur Step Drill at the spur. In terms of LSP delamination, burr and drill wear, the drill adapted to drilling CFRP/Al-Li with LSP stacks is the three steps drill.

  3. DOLOMITE AS AN ALTERNATIVE WEIGHTING AGENT IN DRILLING FLUIDS

    Directory of Open Access Journals (Sweden)

    M. J. BADRUL

    2007-08-01

    Full Text Available A series of experimental tests have been conducted to assess the suitability of using dolomite as an alternative weighting agent in drilling fluids. Currently, barite is widely used as weighting agent in drilling fluids slurry to ensure proper weights are achieved. However, barite contains toxic materials which make it unattractive from health and environment point of views. This is especially true when drilling operations are offshore, where most of the used drilling fluids will be dumped back into the sea. In this work, rheological properties of dolomite blend drilling fluids slurry were studied. Dolomite rocks were first crushed to produce dolomite powder, before being mixed with water and bentonite at various proportions. A total of 10 samples which contains various percentages of water, bentonite and dolomite were studied. For each sample, its rheological properties were determined. Such properties include density from mud balance, viscosity from viscometer, filtrate loss from API filter press and gel strength. The effect of aging on the properties of drilling fluids was also studied. From the study, it is concluded that Sample E, which consists of 70% dolomite by weight, produces the most stable drilling fluids. It is also observed that the amount of 336 g of dolomite in the sample shows the similar physical and rheological properties to that of the 480 g barite in the sample although the density for both samples is not same.

  4. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  5. Determining Priorities for a New International Ocean Drilling Program

    Science.gov (United States)

    Ravelo, Christina; Bach, Wolfgang

    2010-01-01

    Integrated Ocean Drilling Program New Ventures in Exploring Scientific Targets (INVEST); Bremen, Germany, 23-25 September 2009; A multidisciplinary, international community meeting was held in Germany to define the research goals of the new Integrated Ocean Drilling Program (IODP) New Ventures in Exploring Scientific Targets (INVEST) program. The meeting, attended by 584 participants from 21 countries and more than 200 institutions and agencies, featured 12 keynote lectures and 50 working groups. Participants defined five innovative research directions that are central to the study of the Earth system and that require ocean drilling. First, climate change impacts can be studied through ocean drilling. The study of long-term climate change impacts on the environment is only possible through examination of the geologic record. Meeting attendees agreed that future ocean drilling is essential to the study of cryosphere dynamics and sea level change. Drilled ocean sediments will provide critical high-fidelity records of marine and terrestrial ecosystem responses and feedbacks to climate change. Ocean drilling is vital to studies of long-term changes in the hydrologic cycle as they relate to greenhouse gas and other forcings and to studies of the processes that account for abrupt climate changes and climate extremes.

  6. Vibration excitation and energy transfer during ultrasonically assisted drilling

    Science.gov (United States)

    Babitsky, V. I.; Astashev, V. K.; Meadows, A.

    2007-12-01

    Successful application of ultrasonically assisted drilling needs dynamic matching of the transducer with the drill bit considered as a continuous system loaded by the nonlinear processing load. When using standard tools this leads to the compatible choice of the transducer and accurate matching of the transducer and tool. The principal dynamical features of this matching are considered. Optimal position of excitation cross section of the drill bit, which depends on the relationship between elasto-dissipative characteristics of the transducer, the drill bit and the work load, is found in general analytical form. The optimal matching preserves the resonant tuning of the transducer and compensates the additional energy losses in the drill bit and processing. This produces also an amplification of vibration amplitude. The effect is achieved through the generation and maintenance of a nonlinear resonant mode of vibration and by active matching of the oscillating system with the dynamic loads imposed by the cutting process with the help of the intelligent electronic feedback circuitry. A prototype of an ultrasonic drilling system has been designed, manufactured. and tested. Improvements of machining characteristics due to superposition of ultrasonic vibration are demonstrated. Substantial improvements in the cutting performance of drill bits lead to benefits in drilling performance, which include faster penetration rates, reduction of tool wear, improvements in the surface finish, roundness and straightness of holes and, in ductile materials, the reduction or even complete elimination of burrs on both the entrance and exit faces of plates. The reduction in the reactive force experienced also causes greatly reduced deformation when drilling through thin, flexible plates and helps to alleviate delamination hazard.

  7. Drill Penetration Injury to Extensor Tendons: A Biomechanical Analysis.

    Science.gov (United States)

    Mahylis, Jared M; Burwell, Anora K; Bonneau, Laura; Marshall, Lynn M; Mirarchi, Adam J

    2017-05-01

    Little is known about extensor tendon failure following drill injury at the time of volar plate fixation. Our goals were to analyze extensor tendon injury following simulated drill penetration, and change in tendon displacement during cyclic loading following simulated drill penetration injury. Extensor pollicis longus (EPL) and extensor carpi radialis brevis (ECRB) tendons were harvested from 9 fresh frozen cadaveric arms. Eighteen EPL and 18 ECRB samples were created from harvested tendons. Drill penetration injury was performed in either a continuous or an oscillating mode. Injured tendons were subjected to 1200 cycles at 1- to 15-kg cyclic load at a frequency of 1 Hz, and analyzed for failure at drill sites and change in displacement throughout the testing cycle. Ten EPL samples and 16 ECRB samples completed testing without failure. Tendon type (ECRB, EPL), mode of injury (continuous, oscillating), and location (proximal, distal) did not affect tendon displacement during loading. A single EPL tendon failed following continuous drill penetration injury. Extensor carpi radialis brevis samples had a mean change in displacement of 2.8 (standard deviation [SD]: 1.5 mm) and 5.9 mm (SD: 4.7 mm) for oscillating and continuous modes, respectively. Six EPL samples had a mean change in displacement of 4.7 (SD: 2.7 mm) and 4.3 mm (SD: 1.8 mm) for oscillating and continuous modes, respectively. Complete extensor tendon failure due to drill penetration was rare. Drill mode did not affect the degree of elongation. Increasing cyclic loading of extensor tendons after drill injury caused modest extensor tendon elongation.

  8. The impact of environmental regulations on drilling fluid technology

    International Nuclear Information System (INIS)

    Clark, R.K.

    1994-01-01

    A multitude of new drilling fluid products, systems, and treatment processes have been developed in recent years in response to increasingly stringent environmental regulations. Many fluid additives and systems that once played a major role in the drilling industry are little used today or are no longer available. New water-base mud systems are approaching the performance levels typical of conventional oil-base muds, levels largely achieved by the new synthetic-base fluids. However, these new drilling fluids do not have the adverse environmental impact associated with oil-base systems when waste fluids and cuttings are discarded. 65 refs., 3 tabs

  9. Drilling in tempered glass – modelling and experiments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    The present paper reports experimentally and numerically obtained results for the process of drilling in tempered glass. The experimental results are drilling depths on the edge in 19mm tempered glass with a known residual stress state measured by a scattered light polariscope. The experiments have...... of applying forces in such holes and thereby being able to mechanically assemble tempered glass without the need of drilling holes before the tempering process. The paper is the result of currently ongoing research and the results should be treated as so....

  10. A New Triangular Flat Shell Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2008-01-01

    A new flat triangular shell element has been developed based on a newly developed triangular plate bending element by the author and a new triangular membrane element with drilling degrees of freedom. The advantage of the drilling degree of freedom is that no special precautions have to be made...... in connecting with assembly of elements. Due to the drilling rotations all nodal degrees of freedom have stiffness, and therefore no artificial suppression of degrees of freedom are needed for flat or almost flat parts of the shell structure....

  11. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  12. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling

    Directory of Open Access Journals (Sweden)

    Na Wei

    2013-01-01

    Full Text Available Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport mathematical model according to gas-liquid-solid flow mechanism and large plane dunes particle transport theory.

  13. Engineering Safety in the Ocean Margin Drilling Program.

    Science.gov (United States)

    1981-01-01

    independent safety review of every drilling site became apparent in 1968 when drilling operations in the Sigabee Knolls area of the Carribean encountered...AD-A098 695 NATIONAL RESEARCH COUNCIL WASHINGTON DC MARINE BOARD F/6 13/2 1981ENGINEERING SAFETY IN THE OCEAN MARGIN DRILLING PROGRAM.(U...UNCLASSIFIED I lEEIEIEE,IiflllflI//lll/ IIIIIIIIIIIIII..... EEIII fl11111111_.5 V 1: 1.25 I fl1W*4 1 .64 , LEVEL ai Engineering Safety in the Ocean Margin

  14. Radon/radium detection increases uranium drilling effectiveness

    International Nuclear Information System (INIS)

    Morse, R.H.; Cook, L.M.

    1979-01-01

    The use of portable radon detectors has become routine in reconnaissance uranium surveys where water and sediment samples are analyzed in field labs for radon and radium, and in detailed work where drill hole locations are pinpointed by field determinations of radon in soil gas from shallow holes. During the drilling program itself, however, very few operators are taking advantage of radon and radium analyses to decide whether a barren drill hole was a near miss or whether the immediate area can be written off. The technique, which is outlined here, is effective both above and below the water table

  15. Tokapole II device

    International Nuclear Information System (INIS)

    Sprott, J.G.

    1978-05-01

    A discussion is given of the design and operation of the Tokapole II device. The following topics are considered: physics considerations, vacuum vessel, poloidal field, ring and support design, toroidal field, vacuum system, initial results, and future plans

  16. Objectives, specification and elaboration of technical scenarios for emergency drills involving a French PWR

    International Nuclear Information System (INIS)

    Duco, J.

    1989-08-01

    All safety measures taken during the design, the construction and the operation of a nuclear power plant decrease to an extremely low level the probability of an accident with unacceptable consequences for the public. Nevertheless, for the case such an accident should be initiated, emergency plans have been elaborated: the on-site emergency plan to protect the plant personnel, terminate the accident and mitigate the consequences; the short-term and longer-term off-side emergency plans to protect the public and organise the return to acceptable living conditions. The appropriateness and preparedness of such plans have to be checked regularly by means of drills, which may be restricted to technical aspects concerning the nuclear units, or involve all actors, i.e. the utility, all the branches of the administration concerned and a media simulation. Some aspects of the choice of goals and preparation of drills are presented and illustrated by the national EPAULE exercice in 1987. Technically speaking, the drills have proved the validity of the current organization and evidenced its operability: uncertainties remain as regards the actual vs expected behavior of the population, due to emotional aspects linked to the lack of direct perception of the degree of danger and to the information received in an actual nuclear emergency

  17. Finite element modeling of a micro-drill and experiments on high speed ultrasonically assisted micro-drilling

    Science.gov (United States)

    Zhang, Z.; Babitsky, V. I.

    2011-05-01

    Modal characteristics of a generic micro-drill and experiments on the micro-drilling with superimposing of longitudinal ultrasonic vibration are presented. Finite element (FE) analysis is used for identification of eigenfrequencies and modes of the drill. Dynamic influence of the drill shank is discussed and a hybrid model is proposed to account for it. The model is proven to be efficient for complicated drill models and advanced analysis. A high speed ultrasonically assisted micro-drilling (UAMD) system is established with air bearings and longitudinally vibrating workpiece. During the experiments the thrust force reduction is studied as well as effects of ultrasonic vibration frequency and rotational speed. A correlation study was conducted between the thrust force measurements and simulations from a nonlinear force model. It can be seen that the current one-dimensional model is not sufficient to describe the complete behavior of the drill. The FE model and force experimental results can be utilized for a full dynamic model of the UAMD system to study vibration and the cutting mechanism in the future.

  18. Cetuximab in combination with irinotecan/5-fluorouracil/folinic acid (FOLFIRI in the initial treatment of metastatic colorectal cancer: a multicentre two-part phase I/II study

    Directory of Open Access Journals (Sweden)

    Cals Laurent

    2009-04-01

    Full Text Available Abstract Background This study was designed to investigate the efficacy and safety of the epidermal growth factor receptor (EGFR inhibitor cetuximab combined with irinotecan, folinic acid (FA and two different doses of infusional 5-fluorouracil (5-FU in the first-line treatment of EGFR-detectable metastatic colorectal cancer. Methods The 5-FU dose was selected on the basis of dose-limiting toxicities (DLTs during part I of the study. Patients received cetuximab (400 mg/m2 initial dose and 250 mg/m2/week thereafter and every 2 weeks irinotecan (180 mg/m2, FA (400 mg/m2 and 5-FU (either low dose [LD], 300 mg/m2 bolus plus 2,000 mg/m2 46-hour infusion, n = 7; or, high-dose [HD], 400 mg/m2 bolus plus 2,400 mg/m2; n = 45. Results Only two DLTs occurred in the HD group, and HD 5-FU was selected for use in part II. Apart from rash, commonly observed grade 3/4 adverse events such as leucopenia, diarrhoea, vomiting and asthenia occurred within the expected range for FOLFIRI. Among 52 patients, the overall response rate was 48%. Median progression-free survival (PFS was 8.6 months (counting all reported progressions and the median overall survival was 22.4 months. Treatment facilitated the resection of initially unresectable metastases in fourteen patients (27%: of these, 10 patients (71% had no residual tumour after surgery, and these resections hindered the estimation of PFS. Conclusion The combination of cetuximab and FOLFIRI was active and well tolerated in this setting. Initially unresectable metastases became resectable in one-quarter of patients, with a high number of complete resections, and these promising results formed the basis for the investigation of FOLFIRI with and without cetuximab in the phase III CRYSTAL trial.

  19. Determining temperature limits of drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.; Szymanski, E.; Arkeketa, P.

    1979-01-01

    A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud is necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.

  20. Recent developments in geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

    1981-01-01

    Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

  1. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  2. Drilled Shaft Foundations for Noise Barrier Walls and Slope Stabilization

    Science.gov (United States)

    2002-12-01

    This research project is focused on two primary objectives. The first objective relates to the development of a methodology for using the SPT (Standard Penetration Test) results to design the laterally loaded drilled shafts. The second objective aims...

  3. Data Drilled for Stellwagen Bank National Marine Sanctuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTif images of chlorophyll, turbidity, and SST were created of the region. Then an EASI script was run on the geotifs to extract the data (drill the data) from...

  4. Drill failure during ORIF of the mandible : complication management

    OpenAIRE

    Bodner, Lipa; Woldenberg, Yitzhak; Puterman, Max

    2007-01-01

    A case of a drill breakage during open reduction and internal fixation (ORIF) of a mandibular fracture is reported. The clinical decision, diagnosis and surgical management of the complication are described.

  5. Drill failure during ORIF of the mandible. Complication management.

    Science.gov (United States)

    Bodner, Lipa; Woldenberg, Yizthak; Puterman, Max

    2007-12-01

    A case of a drill breakage during open reduction and internal fixation (ORIF) of a mandibular fracture is reported. The clinical decision, diagnosis and surgical management of the complication are described.

  6. Superhard nanophase cutter materials for rock drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  7. One-Meter Class Drilling for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposed effort is to understand and characterize the fundamental limitations of drilling one to three meters into challenging materials which may...

  8. Database system for analysing and managing coiled tubing drilling data

    Science.gov (United States)

    Suh, J.; Choi, Y.; Park, H.; Choe, J.

    2009-05-01

    This study present a prototype of database system for analysing and managing petrophysical data from coiled tubing drilling in the oil and gas industry. The characteristics of coiled tubing drilling data from cores were analyzed and categorized according to the whole drilling process and data modeling including object relation diagram, class diagram was carried out to design the schema of effective database system such as the relationships between tables and key index fields to create the relationships. The database system called DrillerGeoDB consists of 22 tables and those are classified with 4 groups such as project information, stratum information, drilling/logging information and operation evaluate information. DrillerGeoDB provide all sort of results of each process with a spreadsheet such as MS-Excel via application of various algorithm of logging theory and statistics function of cost evaluation. This presentation describes the details of the system development and implementation.

  9. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  10. Drill-specific head impact exposure in youth football practice.

    Science.gov (United States)

    Campolettano, Eamon T; Rowson, Steven; Duma, Stefan M

    2016-11-01

    OBJECTIVE Although 70% of football players in the United States are youth players (6-14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices. METHODS A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact. RESULTS A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6-68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7-21.9 impacts/hr] and those with a blocker [95% CI 10.5-23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2-21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g. CONCLUSIONS In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle

  11. Results of the drilling cuttings reuse and recycling program of PetroPiar, S.A. (formerly Petrolera Ameriven, S.A.)

    Energy Technology Data Exchange (ETDEWEB)

    Arrocha, A.; Ellis, G.; Camacho, R.; Crespo, A.; Jimenez, C. [PetroPiar, Caracas (Venezuela); Morales, F. [Simon Bolivar Univ., Caracas (Venezuela)

    2008-07-01

    Venezuela's Orinoco Oil Belt has been divided into 27 blocks depending on their technical characteristics. PetroPiar's area of exploration and production is located in the Ayacucho block. In an effort to support sustainable development, the company has initiated a research program to reuse and recycle the drill cuttings produced in the area. The drill cuttings are produced using a water based drilling mud. This paper presented the results of the program from year 2000. The drillings cuttings were shown to have excellent physical and mechanical properties. To date, approximately 81,860 m{sup 3} of drilling cuttings have been reused as blended or fill material in the construction of sub-bases and bases for well pads. A series of geophysical treatability tests are scheduled for 2007-2008 along with environmental characterizations to develop Cold Mix Asphalt with asphalt emulsions, through the reuse of oily drilling cuttings, to substitute a surface hot mix asphalt carpet. The optimum compaction humidity was shown to be 8 per cent. The equivalent of sand above 34 per cent allows for good compaction of the binder and the aggregate, producing a workable mix. Six per cent residual asphalt was shown to be the optimal binder for these mixes. 18 refs., 8 tabs., 15 figs.

  12. Wireline Deep Drill for the Exploration of Icy Bodies

    Science.gov (United States)

    Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.

    2013-01-01

    One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.

  13. Particle settling in non-Newtonian drilling fluids

    OpenAIRE

    Omland, Tor Henry

    2009-01-01

    PhD thesis in Petroleum engineering Particle settling is relevant for several aspects of drilling and completion operations, and is directly related to safety and operational efficiency. The primary function of particles added to drilling fluids is to provide density stabilizing the wellbore and hinder influx of fluids and gas, causing a kick situation. Keeping the particles suspended in the fluids is also critical to avoid problems such as stuck down hole equipment, poor ce...

  14. Modified drilling process of AISI 1045 steel: A hybrid optimization

    OpenAIRE

    Saeid Amini; Iman Alinaghian; Mohammad Lotfi; Reza Teimouri; Mahnoush Alinaghian

    2017-01-01

    The hybrid methods, such as minimum quantity lubrication (MQL) and ultrasonic vibration (UV) can be employed in the drilling process to improve cutting condition and tool life. In the present study, an experimental analysis has been carried out on drilling process under four types of condition (i.e. Ordinary, MQL, UV, and UV-MQL) where thrust force (Fz) and surface roughness (Ra) were measured for certain rotational spindle speeds and feeding rates. Then a hybrid optimization method proposed ...

  15. Drilling methods to keep the hydrogeological parameters of natural aquifer

    International Nuclear Information System (INIS)

    Chen Xiaoqin

    2004-01-01

    In hydrogeological drilling, how to keep the hydrogeological parameters of natural aquifer unchanged is a deeply concerned problem for the technicians, this paper introduces the methods taken by the state-owned 'Red Hill' geological company of Uzbekistan. By the research and contrast of different kinds of flush liquid, the company has found the methods to reduce the negative effects of drilling on the permeability of the vicinal aquifer. (author)

  16. The JABE project: geological studies with a backpack drilling system.

    Science.gov (United States)

    Jago, Alban; van Vynckt, Delphine; de Crombrugghe, Guerric; Denies, Jonathan; Le Maire, Victor; Reydams, Marc

    Besides those geological surveys, we will also study how this drilling system could be used to fix some installations on the ground. As part of the JUMP mission we are also developing a cosmic ray detector and a radio telescope. Those experiments have to be securely fixed and this is what we will try to do using the backpack drilling system and EVA's suits. We shall report on the science and technical results, and implications for Earth-Mars compar-ative studies.

  17. Evaluating the Effectiveness of Biomaterial Removal from Dental Implant Drills

    Science.gov (United States)

    2016-06-13

    patient to patient transfer of Hepatitis B in 2001 involving an oral surgery clinic. A subsequent investigation discovered no breakdown in infection...quad shaping), the drills were placed in a stainless steel surgical cup of sterile saline until all osteotomies were completed. Drills were returned to...sterile saline solution used in the surgery, whereas the manufacturer recommends a neutral pH. Saline can have a pH 4.6-5.5.47,48 This slight acidity

  18. Development of a Drilling Simulator for Dental Implant Surgery.

    Science.gov (United States)

    Kinoshita, Hideaki; Nagahata, Masahiro; Takano, Naoki; Takemoto, Shinji; Matsunaga, Satoru; Abe, Shinichi; Yoshinari, Masao; Kawada, Eiji

    2016-01-01

    The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone.

  19. Drilling in Underground Coal Gasification with Coiled Tubing Technologies

    OpenAIRE

    Monika Blišťanová; Lucia Sciranková

    2006-01-01

    Underground coal gasification is the potential to provide a clean, efficient and convenient source of energy from coal seams where traditional mining methods are either impossible or uneconomical. The latest drilling technology – drilling directional injection well with down well assembly. The is used world- wide from 1990 injection well is transmitting the coal seam along its location. The coil – tubing equipment transport the gasification agents (oxygen and water) into the coal cavity, wher...

  20. Drilling in Underground Coal Gasification with Coiled Tubing Technologies

    Directory of Open Access Journals (Sweden)

    Monika Blišťanová

    2006-04-01

    Full Text Available Underground coal gasification is the potential to provide a clean, efficient and convenient source of energy from coal seams where traditional mining methods are either impossible or uneconomical. The latest drilling technology – drilling directional injection well with down well assembly. The is used world- wide from 1990 injection well is transmitting the coal seam along its location. The coil – tubing equipment transport the gasification agents (oxygen and water into the coal cavity, where give out gasification.