WorldWideScience

Sample records for ignition plug insertion

  1. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    Science.gov (United States)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  2. Laser ignition - Spark plug development and application in reciprocating engines

    Science.gov (United States)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged

  3. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  4. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  5. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  6. Device for inserting and removing electric plug in socket- using remote handling apparatus inside radioactive hot cell

    International Nuclear Information System (INIS)

    Chevallereau, R.; Galmard, Y.

    1994-01-01

    A device for pushing an electric plug into a supply socket inside a radioactive hot cell and for withdrawing the plug after use of the appliance attached to it, comprises a pair of pivotally mounted arms. It can be used inside radioactive hot cells, to insert and put in and put off electric plugs

  7. Botulinum neurotoxin type A versus punctal plug insertion in the management of dry eye disease

    Directory of Open Access Journals (Sweden)

    Amal A Bukhari

    2014-01-01

    Full Text Available Purpose: To compare the efficacies of punctal plug insertion and Botulinum toxin injection in dry eye disease not responding to topical medications. Materials and Methods: A non-controlled randomized clinical trial of two parallel groups of 60 dry eye patients seen in the clinic not responding to topical medications were divided into two groups. One group received punctal plugs and the other group received Botulinum toxin injections to prevent lacrimal tear drainage. Results: Of a total of 36 patients with a mean age of 44.5 years who received punctal plugs, 50% of them experienced improvements in the clinical manifestations of their disease. 12/36 (33.3% developed plug extrusion, and 6/36 (16.7% patients developed conjunctival erosions with irritation that necessitated plug removal within one week of insertion. A total of 24 patients with a mean age of 47.5 years received injections of Botulinum toxin. Of these, 83.3% had improvement in all of the clinical manifestations of dry eye. 4/24 (16.7% had no improvement in the degrees to which they experienced foreign body sensations, 33.3% reported shampoo entering the eye while showering. All of the patients who received Botulinum toxin injections were satisfied with the results of their treatment, whereas only 72.3% of the patients who received punctal plugs were satisfied with their results. Conclusion: Botulinum neurotoxin A injections can be a very good alternative to punctal plugs in improving the clinical manifestations of dry eye disease They are associated with the development of fewer and milder complications and with higher levels of patient satisfaction.

  8. Inertial confinement fusion target insertion concepts for the National Ignition Facility

    International Nuclear Information System (INIS)

    Laughon, G.J.; Schultz, K.R.

    1996-01-01

    The National Ignition Facility (NIF) will be used to demonstrate fusion ignition in a laboratory environment in order to support development of inertial fusion as a potential fusion energy source for civilian use. However, target insertion must first be addressed before inertial fusion can become a practical energy source. Since target insertion systems currently utilized are not suitable for multiple shots in quick succession, insertion concepts involving free-falling and artificially accelerated targets are developed and evaluated against a set of predetermined guidelines. It is shown that a system involving a fast retraction positioner would be suitable. 5 refs., 4 figs

  9. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    ), and hence the engine load, was varied between 0.8, 0.9, and 1.0. The test laser was constructed with a 30% output coupler, 32% Q-switch initial transmission, and a 0.5% Nd concentration rod all pumped by approximately 1000 Watts of optical power. The test laser single mode output pulse had an energy of approximately 23 mJ, with a pulsewidth of approximately 10 ns, and an M2 value of 6.55. This output produced focal intensity of approximately 270 GW/cm2 with the modified on-engine optical arrangement. The commercial laser had similar output parameters and both laser systems operated the engine with similar results. Due to the shortening of the focal length of the on-engine optical setup both laser systems produced a spark well within the optical transfer cavity of the laser optics to spark plug adaptor. This shrouded spark led to a very long ignition delay and retarded combustion timing for all three values of equivalence ratio. This was evidenced by the in-cylinder pressure traces and the HRR waveforms. The emissions data indicate that both lasers produced very similar combustion. The ignition delay caused by the shrouded spark cause most of the combustion to happen after TDC which lead to poor combustion that produced high levels of CO and THC. The novelty of this work lies in the combination of the laser parameters to create a single high peak power laser output pulse for use as a spark ignition source. Similar configurations have been investigated in the literature but for different applications such as multiple output pulse trains for various industrial and communications applications. Another point of novelty is the investigation of the laser medium concentration on the output characteristics of a passively Q-switched laser system. This work has shown that lowering the Neodymium concentration in the active media within a passively Q-switched laser produces higher output energy values. This is significant because an actively Q-switched laser shows the

  10. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  11. Hybrid treatment of dysphagia lusoria: right carotid to subclavian bypass and endovascular insertion of an Amplatzer II Vascular Plug

    Directory of Open Access Journals (Sweden)

    Ernesto Cobos-González

    Full Text Available Compression of the esophagus by a retroesophageal aberrant right subclavian artery (ARSA is a rare cause of dysphagia. We present the case of a 47-year-old female with symptoms of progressive dysphagia diagnosed with dysphagia lusoria using barium swallow and contrast computed tomography and successfully treated with a hybrid procedure: right carotid to subclavian bypass and endovascular insertion of an Amplatzer II Vascular Plug through the right superficial femoral artery. We consider this approach safer, less invasive and more complete to avoid recurrent dysphagia.

  12. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  13. An experimental and analytical investigation of glow plug performance in ignition and flame propagation through low concentrations of H2 in a steam/fog environment

    International Nuclear Information System (INIS)

    Davis, B.W.

    1982-01-01

    Thermal igniters proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containments have been tested in mixtures of air, hydrogen, and steam. The igniters, conventional diesel engine glow plugs, were tested in a 10.6 ft 3 pressure vessel with dry hydrogen concentrations from 4% to 29%, and in steam fractions of up to 50%. Dry tests indicated complete combustion consistently occurred at H 2 fractions above 8% with no combustion for concentrations below 5%. Combustion tests in the presence of steam were conducted with hydrogen volume fractions of 8%, 10%, and 12%. Steam concentrations of up to 30% consistently resulted in ignition. Most of the 40% steam fraction tests indicated a pressure rise. Circulation of the mixture improved combustion in both the dry and the steam tests, most notably at low H 2 concentrations. An analysis of the high steam fraction test data yielded evidence of the presence of small, suspended, water droplets in the combustion mixture. The suppressive influence of condensation-generated fog on combustion is evaluated. Analysis of experimental results along with results derived from analytic models have provided consistent evidence of the strong influence of mass condensation rates and fog on experimentally observed ignition and flame propagation phenomena

  14. [Visual functions' detailed evaluating in patients with Sjögren's syndrome before and after intracanalicular implants' (Smart Plug) insertion--(first results)].

    Science.gov (United States)

    Hejcmanová, D; Nemcová, I; Slezák, R

    2006-05-01

    The aim of the study was to determine exact visual functions (log MAR [minimal angle of resolution] and CS [contrast sensitivity]) and to evaluate corneal topographic maps in patients with established (by means of laboratory and biopsy examinations) Sjogren's Syndrome, and to determine the difference in subjective symptoms before and after insertion of the intracanalicular implants as well. Twelve eyes (1 man, 6 women) with established Sjogren's syndrome were examined before and during two months after the insertion of the plugs. The best-corrected visual acuity (BCVA) was assessed on Landolt C rings optotypes. CS was measured on computer-controlled device (Neuroscientific Corp., U.S.A.) in 6 space-frequencies (0.74-29.55 c/deg). The corneal topographic changes (Keraton Opticon) were established by means of comparing total aberrations values before and after the intracanalicular implants' (Smart Plugs type) insertion. The control group for visual functions assessment consisted of 10 woman (20 eyes) of similar middle age. The BCVA on log MAR optotypes was 0.84 (0.69-0.95) before and 0.88 (0.52-1.23) after the insertion, on both occasions, it was lower than in the control group. The CS was before the insertion in all of the spatial frequencies lower, the largest differences were in the frequencies range 1.97-7.29 c/deg (p test, in 100% positive before the treatment, was after the insertion in 75% negative; the height of the tear-meniscus was positive in 100% before the procedure, and after that, its measurement improved to 1 mm in 91%; in 9% it was 1.5 mm. We also noticed changes of the ocular surface by means of lissamine green staining; this test was before the procedure positive in 100%, the improvement after that was in 63%. The regularity of the corneal surface is the determining factor of visual functions in "dry eyes". The measurement of the corneal topography is useful in differential diagnosis and helps to distinguish mild and more serious conditions of dry

  15. Shielding plug device

    International Nuclear Information System (INIS)

    Orii, Shoichi; Hasegawa, Satoshi; Makishima, Kenji.

    1976-01-01

    Object: To reduce the size of and extend the life of a revolving bearing and facilitate the laying of driving cables and duct lines, this being accomplished by providing plug raising means of a fast breeder on a stationary plug mounting base so as to prevent the shearing force of sodium from acting upon the revolving bearing. Structure: The shield plug means comprises a stationary plug secured to the open end of the reactor container, a rotary plug rotatable with respect to the stationary plug, an annular base formed on top of the stationary plug so as to cover the rotary plug, a bearing secured to the rotary plug edge lower face and upper and lower locking plates. At the time of the rotation of the rotary plug, the upper locking plate is withdrawn, the stationary plug is raised to release the seal structure, and the lower locking plate is inserted between the bearing and stationary plug. In this way, smooth rotation of the rotary plug can be obtained. (Horiuchi, T.)

  16. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  17. Socket for a central connection for measuring equipment into a transistor ignition system of an internal combustion engine. Steckdose einer Zentralsteckverbindung fuer den Anschluss von Messgeraeten an eine Transistorzuendung einer Brennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, H

    1980-09-25

    The invention refers to the socket of a central connection for measuring equipment into a transistor ignition system of an internal combustion engine. Various cables are looped into the transistor ignition system via the pins of this socket. By plugging in a multi-pole plug, the individual circuits of the ignition system are made. In this way, apart from connecting the measuring equipment for testing the transistor ignition system, it is possible to prevent the ignition system working in case of theft of the vehicle, by inserting a 'blind plate' which leaves individual circuits of the transistor system open. Structural details of this cylindrical socket and the multiple plug are explained in some crossection diagrams. The ideas of the invention are described in 7 patent claims.

  18. Aspergillus fumigatus colonization of punctal plugs.

    Science.gov (United States)

    Tabbara, Khalid F

    2007-01-01

    Punctal plugs are used in patients with dry eye syndrome to preserve the tears. In this report, I present two cases of Aspergillus fumigatus colonization of punctal plugs. Observational series of two cases. Approval was obtained from the institutional review board. Two men aged 29 and 31 years developed black spots inside the hole of punctal plug, which looked like eyeliner deposits. The deposits inside the hole of the plug in each patient were removed and cultured. Cultures of the two punctal plugs black deposits grew A fumigatus. Bacterial cultures were negative. Colonization of the punctal plug hole with A fumigatus was observed in two cases. It is recommended that punctal plugs be removed in patients undergoing refractive or intraocular procedures or in patients who are receiving topical corticosteroids. Current punctal plugs should be redesigned to avoid the presence of an inserter hole.

  19. Rotary plug

    International Nuclear Information System (INIS)

    Yamada, Keiji.

    1979-01-01

    Purpose: In a rotating plug of a reactor using a liquid metal as a coolant as in the case of a fbr type reactor, to prevent the ingress of Na vapor into the sliding surface of the rotating plug. Constitution: A rotating plug comprising a large disc covering the upper part of a reactor pressure vessel containing therein a liquid metal and forming surfaces for mounting a shielding device and various other devices, and at least one or more of small discs provided rotatably and eccentrically within said large disc, which is characterized in that an elastic member consisting of bellows and a sealing is interposed between said large disc and said small discs. (Nakamura, S.)

  20. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharipov, A U; Yangirov, I Z

    1982-01-01

    A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.

  1. Advanced ignition for automotive engines

    OpenAIRE

    Pineda, Daniel Ivan

    2017-01-01

    Spark plugs have been igniting combustible mixtures like those found in automotive engines for over a century, and the principles of the associated ignition techniques using thermal plasma (inductive or capacitive sparks) have remained relatively unchanged during that time. However, internal combustion engines are increasingly operating with boosted intake pressures (i.e. turbo- or super-charged) in order to maintain power output while simultaneously reducing engine size and weight, and they ...

  2. Plug Power

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, A. [Plug Power Inc., New York, NY (United States)

    2009-07-01

    This presentation described Plug Power's GenDrive hydrogen fuel cell unit that supplies the power needs for folk lift trucks used in high-throughput distribution and high-volume manufacturing operations. The system offers an alternative to lead acid batteries, providing maximum performance at all times during use. The system is particularly useful in the material handling industry, where the revenue generated is based on operator uptime and lift truck productivity. The use of the system allows customers to reduce operational costs and expand valuable floor space by eliminating batteries and associated recharging infrastructure. Fuel cell units also reduce the wear on truck motors. Truck operators can easily and safely refuel at hydrogen fueling stations in 1-5 minutes. GenDrive works with all major OEM lift trucks, making the transition seamless. Commercial customers are investing in this solution to improve their current operations. In 2008, Plug Power sold to Wal-Mart, Bridgestone Firestone and Nestle. Most notably, Central Grocers purchased 220 fuel cell units for a new greenfield distribution center. Plug Power currently has more than 380 systems in operation.

  3. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  4. Dual Spark Plugs For Stratified-Charge Rotary Engine

    Science.gov (United States)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  5. Plug testing and removal tool

    International Nuclear Information System (INIS)

    Baric, T.J.; Kauric, C.E.; Garcia, C.N.

    1987-01-01

    This patent describes an apparatus for testing and removing a plug from an aperture in the cylindrical core barrel wall of a nuclear reactor. The plug has an enlarged head disposed along the wall in a narrow annular access space between the wall and a surrounding cylindrical thermal neutron shield. The apparatus comprises: fixed jaw means; movable jaw means pivotally connected to the fixed jaw means for movement with respect thereto between an open position accommodating reception of the plug head between the fixed and movable jaw means and a closed position for securely gripping the plug head between the fixed and movable jaw means; drive means carried by the fixed jaw means and coupled to the movable jaw means for effecting movement thereof between the open and closed positions thereof; and tensioning means carried by the jaw means for engagement with the core barrel when the jaw means are disposed in gripping engagement with the plug head for exerting on the jaw means and the gripped plug a predetermined force in a direction radially outwardly of the wall. The jaw means and the drive means and the tensioning means all have dimensions radially of the wall substantially less than the radial thickness of the access space to permit insertion into, movement within and removal from the access space

  6. 3rd Conference on Ignition Systems for Gasoline Engines

    CERN Document Server

    Sens, Marc

    2017-01-01

    The volume includes selected and reviewed papers from the 3rd Conference on Ignition Systems for Gasoline Engines in Berlin in November 2016. Experts from industry and universities discuss in their papers the challenges to ignition systems in providing reliable, precise ignition in the light of a wide spread in mixture quality, high exhaust gas recirculation rates and high cylinder pressures. Classic spark plug ignition as well as alternative ignition systems are assessed, the ignition system being one of the key technologies to further optimizing the gasoline engine.

  7. Physical Improvements in Exciter/Igniter Units, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 2 project consists of the physical integration of our Phase 1 small, compact exciter with a "flight like" igniter or spark plug capable of...

  8. Progress in catalytic ignition fabrication and modeling : fabrication part 2.

    Science.gov (United States)

    2012-06-01

    The ignition temperature and heat generation from oxidation of methane on a platinum catalyst were : determined experimentally. A 127 micron diameter platinum coiled wire was placed crosswise in a : quartz tube of a plug flow reactor. A source meter ...

  9. Glow plug ignitor tests in H2 mixtures

    International Nuclear Information System (INIS)

    Liparulo, N.J.; Olhoeft, J.E.; Paddleford, D.F.

    1981-01-01

    The AEP, TVA and DUKE Electric Power companies, in cooperation with Westinghouse Electric Corporation have defined a testing program to determine the effectiveness of a glow plug hydrogen ignition system. The ignitor's capability was demonstrated for both static and dynamic conditions. Tests were performed with both spray addition and fan induced turbulence. It ignited hydrogen for all tests performed. The results of tests did not differ significantly from similar tests data previously reported. This report presents a discussion of the test results

  10. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  11. Plug the socket of the main closing valve in a nuclear power plant

    International Nuclear Information System (INIS)

    Neupauer, J.; Bednar, B.

    1988-01-01

    The plug is designed for closing the main closing valve socket during a refuelling shutdown of a nuclear power plant. The plug is fixed in the using jaws forced against the socket ring part. The socket is sealed by expanding a ring between two cone trays. A valve provided in the plug allows draining the pipe. The plug is inserted in the socket using a jib suspended on a rail. Following sealing both sockets the inner surfaces of the closing valve can be decontaminated. Following decontamination, a water-proof cover is slid over the plug protecting the plug moving mechanism from damage. (J.B.). 1 fig

  12. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  13. Removable pipeline plug

    International Nuclear Information System (INIS)

    Vassalotti, M.; Anastasi, F.

    1984-01-01

    A removable plugging device for a pipeline, and particularly for pressure testing a steam pipeline in a boiling water reactor, wherein an inflatable annular sealing member seals off the pipeline and characterized by radially movable shoes for holding the plug in place, each shoe being pivotally mounted for self-adjusting engagement with even an out-of-round pipeline interior

  14. Retained Herrick Plug

    Directory of Open Access Journals (Sweden)

    Justin B. Hellman

    2018-05-01

    Full Text Available A 79-year-old female with a history of keratoconjunctivitis sicca presented with several years of epiphora of both eyes. Thirteen years earlier, intracanalicular Herrick lacrimal plugs (Lacrimedics, Eastsound, WA, USA had been placed in both eyes to treat her dry eye syndrome. After 13 years the patient felt the epiphora was intolerable and underwent endoscopic dacryocystorhinostomy (DCR of the left, then the right side. Intraoperatively, during the right endoscopic DCR, a Herrick lacrimal plug was found in the common canaliculus into the lacrimal sac. Postoperatively, the patient did well with improved epiphora. The Herrick plug is designed to be intracanalicular, and this case illustrates that the plug can migrate and be retained for many years. Collared punctal plugs have a lower risk of this type of complication.

  15. Plug Load Data

    Data.gov (United States)

    National Aeronautics and Space Administration — We provide MATLAB binary files (.mat) and comma separated values files of data collected from a pilot study of a plug load management system that allows for the...

  16. Modelling auto ignition of hydrogen in a jet ignition pre-chamber

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353 (Australia)

    2010-04-15

    Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation. (author)

  17. Rotary plug seal

    International Nuclear Information System (INIS)

    Ito, Koji; Abiko, Yoshihiro.

    1981-01-01

    Purpose: To enable fuel exchange even upon failure of regular seals and also to enable safety seal exchange by the detection of the reduction in the contact pressure of a rotary plug seal. Constitution: If one of a pair of regular tube seals for the rotary plug is failed during ordinary operation of a FBR type reactor, the reduction in the contact pressure of the seal to the plug gibbousness is detected by a pressure gauge and a solenoid valve is thereby closed. Thus, a back-up-tube seal provided above or below the tube seal is press-contacted by way of argon gas to the gibbousness to enter into operation state and lubricants are supplied from an oil tank. In such a structure, the back-up-tube seal is operated before the failure of the tube seal to enable to continue the fuel exchange work, as well as safety exchange for the tube seal. (Moriyama, K.)

  18. Core barrel plug

    International Nuclear Information System (INIS)

    Tolino, R.W.; Hopkins, R.J.; Congleton, R.L.; Popalis, C.H.

    1986-01-01

    A plug is described for preventing flow through a port in a core barrel of a pressurized water nuclear reactor which consists of: a substantially cylindrical body formed with a cylindrical portion and a flange and defining a tapered leading open end with the other end being closed by an end plug attached to the flange, the body defining a bore therein extending from the open end to the end plug with the bore having a smaller diameter near the open end than near the end plug, the cylindrical portion having a lip near the open end and being formed with longitudinal slots extending from the open end toward the flange and extending entirely through the thickness of the cylindrical portion, the cylindrical portion having a circumferential first groove on the outer surface thereof located near the forwardmost portion of the cylindrical portion but not in the section of the cylindrical portion that has the slots therein, and a plurality of circumferential second grooves on the outer surface thereof located in the section of the cylindrical portion that has the slots therein, the first and second grooves establishing a seal between the cylindrical portion and the inside surface of the port when the cylindrical portion is expanded, and the flange and the end plug having a passageway defined therein for introducing a fluid into the body; a metal ring disposed in each of the second grooves; a mandrel slidably disposed and captured in the body and capable of being moved toward the open end of the body when the fluid is introduced through the passageway, thereby causing the cylindrical portion to be expanded into contact with the inside surface of the port; and a locking mechanism disposed in the end plug for preventing inadvertent movement of the mandrel

  19. Visualizing ignition and combustion of methanol mixtures in a diesel engine; Methanol funmu no glow chakka to nensho no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Inomoto, Y; Harada, T; Kusaka, J; Daisho, Y; Kihara, R; Saito, T [Waseda University, Tokyo (Japan)

    1997-10-01

    A glow-assisted ignition system tends to suffer from poor ignitability and slow flame propagation at low load in a direct-injection diesel engine fueled with methanol. To investigate the ignition process and improve such disadvantages, methanol sprays, their ignition and flames were visualized at high pressures and temperatures using a modified two-stroke engine. The results show that parameters influencing ignition, the location of a glow-plug, swirl level, pressure and temperature are important. In addition, a full kinetics calculation was conducted to predict the delay of methanol mixture ignition by taking into account 39 chemical species and 157 elementary reactions. 3 refs., 9 figs.

  20. Piezoelectrically Initiated Pyrotechnic Igniter

    Science.gov (United States)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  1. Providing free autopoweroff plugs

    DEFF Research Database (Denmark)

    Jensen, Carsten Lynge; Hansen, Lars Gårn; Fjordbak, Troels

    2012-01-01

    Experimental evidence of the effect of providing households with cheap energy saving technology is sparse. We present results from a field experiment in which autopoweroff plugs were provided free of charge to randomly selected households. We use propensity score matching to find treatment effects...

  2. Fuel rod end plug

    International Nuclear Information System (INIS)

    McGeary, R.K.; Bucher, G.D.

    1989-01-01

    This patent describes an end plug for welded disposition within the end of a tube. It comprises a circumferentially extending, axially oriented land surface, having a radial extent defined by means of a first predetermined dimension, for disposition within the end of the tube; a circumferentially extending, axially oriented land surface, having a radial extent defined by means of a second predetermined dimension which is greater than the first predetermined dimension, for disposition outside of the end of the tube. The second land surface being disposed upstream of the first land surface; an annularly extending, radially oriented shoulder portion, defined at the downstream end of the second land surface and having a radially inward depth which is greater than the difference defined between the first and second radial dimensions of the first and second land surfaces, for engaging the end of the tube in a butt contact fashion; and annular groove means defined between the upstream end of the first land surface and the shoulder portion of the end plug, for eliminating porosity defects normally developed within a weldment defined between the tube end and the end plug when the end plug is welded within the tube end, and including a conical surface which extends radially outwardly from the innermost radial depth extent of the shoulder portion to the upstream end of the first land surface

  3. Report on ignitability testing of ''no-flow'' push bit

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1997-01-01

    Testing was done to determine if an ignition occurs during a sixty foot drop of a Universal Sampler onto a push-mode bit in a flammable gas environment. Ten drops each of the sampler using both a push-mode and rotary mode insert onto a push-mode bit were completed. No ignition occurred during any of the drops

  4. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    Science.gov (United States)

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.

  5. Ignition system for an internal combustion engine with rotary system

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, P A

    1977-05-18

    In the Wankel engine, the sparking plugs spark three times per rotation of the rotor and are never cooled by the incoming mixture. This constant high temperature environment necessitates the use of special sparking plugs. The covered top of the sparking plug is particularly liable to carbon deposits. This invention makes it possible to use sparking plugs on the rotor, without the disadvantages due to the use of high voltage. Further, the use of distributors or mechanical devices determining the ignition timing is no longer necessary. The fuel/air mixture is ignited in a combustion chamber, which is limited by first and second components moving relative to one another in repeated cycles. A generator device is fitted to the first components and an ignition device to the second components. The magnetic flux linking takes place in a predetermined area of the relative movement between the first and second components in a repeated cycle. An ignition signal is produced in the combustion chamber by the magnetic flux linking.

  6. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    Science.gov (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  7. Experimental insertions

    International Nuclear Information System (INIS)

    Sandweiss, J.; Kycia, T.F.

    1975-01-01

    A discussion is given of the eight identical experimental insertions for the planned ISABELLE storage rings. Four sets of quadrupole doublets are used to match the β functions in the insertions to the values in the cells, and the total free space available at the crossing point is 40 meters. An asymmetric beam energy operation is planned, which will be useful in a number of experiments

  8. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    An apparatus is described for sealing a cold leg nozzle of a nuclear reactor pressure vessel from a remote location comprising: at least one sealing plug for mechanically sealing the nozzle from the inside of the reactor pressure vessel. The sealing plug includes a plate and a cone assembly having an end part receptive in the nozzle, the plate being axially moveable relative to the cone assembly. The plate and cone assembly have confronting bevelled edges defining an opening therebetween. A primary O-ring is disposed about the opening and is supported on the bevelled edges, the plate being guidably mounted to the cone assembly for movement toward the cone assembly to radially expand the primary O-ring into sealing engagement with the nozzle. A means is included for providing relative movement between the outer plate and the cone assembly

  9. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  10. End plug for fuel rod and welding method therefor

    International Nuclear Information System (INIS)

    Yoneda, Hiroshi; Murakami, Kazuo; Oyama, Jun-ichi.

    1996-01-01

    An end plug of a fuel rod comprises a pressure-insertion portion having a diameter somewhat greater than the inner diameter of a fuel cladding tube and a welding portion having a diameter substantially the same as the outer diameter of the cladding tube. A V-shaped recess having an outer diameter smaller than the greatest outer diameter of the pressure-insertion portion is formed over the entire circumferential surface of the outer circumference of the connection portion of the pressure-insertion portion and the welding portion. The pressure-insertion portion of the end plug is inserted to the end of the cladding tube till the end of the cladding tube abuts against the inclined surface of the V-shaped recess. The abutting surfaces of the end plug and the cladding tube are subjected to resistance welding in this state. The inner portion bulged from the inclined surface of the V-shaped recess is filled in the recess in a molten state. Lowering of temperature of the cladding tube in the vicinity of the welded portion is decreased by γ heat during reactor operation. Accordingly, lowering of ductility of the cladding tube and degradation of material of the welded region due to segregation of hydrogen in the cladding tube can be suppressed. (I.N.)

  11. Corneal sensitivity, ocular surface health and tear film stability after punctal plug therapy of aqueous deficient dry eye

    Directory of Open Access Journals (Sweden)

    Azza Mohamed Ahmed Said

    2016-11-01

    Full Text Available AIM: To evaluate the effect of punctal occlusion using thermosensitive (smart plug versus silicone plug for management of aqueous deficient dry eye on corneal sensitivity, ocular surface health and tear film stability. METHODS: A comparative prospective interventional case study included 45 patients with bilateral severe form of aqueous deficient dry eye. In each patient, the smart plug was inserted in the lower punctum of the right eye which was considered as study group 1 and silicone plug was inserted in the lower punctum of the left eye of the same patient which was considered as study group 2. All patients were subjected to careful history taking and questionnaire for subjective assessment of severity of symptoms. Corneal sensitivity, corneal fluorescein, rose bengal staining, Schirmer’s I test, tear film break up time and conjunctival impression cytology were performed pre and 1, 3 and 6mo post plug insertion. RESULTS: A statistically significant improvement in subjective and objective manifestations occurred following treatment with both types of plugs (P<0.01. The thermosensitive plug caused significant overall improvement, decrease in frequency of application of tear substitutes and improvement of conjunctival impression cytology parameters in the inserted side (P<0.01. Canaliculitis was reported in two eyes (4.4% following punctal occlusion using thermosensitive plug (study group 1. Spontaneous plug loss occurred in 21 eyes (46.6% in the silicone plug group (study group 2. CONCLUSION: Improvement of subjective and objective manifestations of aqueous deficient dry eye occurs following punctal plug occlusion. Thermosensitive plug has good patient's compliance with fewer complications and lower rates of loss compared to the silicone plug.

  12. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  13. Antiproton fast ignition for inertial confinement fusion

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1999-01-01

    With 180 MJ/microg, antiprotons offer the highest stored energy per unit mass of any known entity. The use of antiprotons to promote fast ignition in an inertial confinement fusion (ICF) capsule and produce high target gains with only modest compression of the main fuel is investigated. Unlike standard fast ignition where the ignition energy is supplied by energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. This can be considered in-situ fast ignition as it obviates the need for the external injection of the ignition energy. In the first of two candidate schemes, the antiproton package is delivered by a low-energy ion beam. In the second, autocatalytic scheme, the antiprotons are preemplaced at the center of the capsule prior to compression. In both schemes, the author estimates that ∼10 12 antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition within the ignitor zone. In addition to eliminating the need for a second, energetic fast laser and vulnerable final optics, this scheme would achieve central ignition without reliance on laser channeling through halo plasma or Hohlraum debris. However, in addition to the practical difficulties of storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a speculative scheme is the ultimate efficiency of antiproton production in an external, optimized facility. Estimates suggest that the electrical wall plug energy per pulse required for the separate production of the antiprotons is of the same order as that required for the conventional slow compression driver

  14. A plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Gen, O P; Azhigaliyev, G K; Dodonova, S Ye; Dyaltlova, N M; Novokhatskaya, I D; Ryabova, L I

    1984-01-01

    The purpose of the invention is to increase the durability of cement stone at 150 to 200C. The patent covers a plugging solution which consists of Portlandcement, sand and water. It additionally contains metal organic complexes of nitrylotrimethylphosphonic acid and organosiliconates of alkali or alkaline earth metals with the following component relationship in percent by mass: Portland cement, 42 to 43; sand, 27 to 28; metal organic complexes of nitrylotrimethylphosphonic acid, 0.01 to 1.5; organosiliconates of alkaline or alkaline earthmetals, 0.0025 to 0.375 and water, the remainder.

  15. Double-plug seismic connector

    International Nuclear Information System (INIS)

    Annoot, I.R.

    1984-01-01

    The double-plug seismic electric connector comprises an elongated insulating body. A male connector plug is at one end of the body and a female connector plug is at the opposite end of the body. Each plug has a pair of male and female contacts. A pair of spaced axial conductors is embedded within the insulating body for interconnecting the opposite male and female contacts. The inner end of a double-wire cable is embedded within the insulating body and each wire inner end is connected to one of the conductors

  16. Grooved tube plug rolls in

    International Nuclear Information System (INIS)

    Krausser, P.

    1991-01-01

    The removable plugs used to date by the Power Generation Group (KWU) of Siemens to seal defective steam generator tubes have a good track record. Their sealing principle is based on the elastic tensioning of three seal disks against the inside wall of the tube. Now a further removable plug is available -a roll-in plug with a metal-coated surface. It is particularly suitable for use in the roller-expanded zone of the tubes at the tube sheet. The plugs can be used in both Siemens-KWU steam generators and in steam generators manufactured in compliance with the guidelines of the ASME Code. (author)

  17. Engineering activities on the ITER representative diagnostic equatorial port plug

    International Nuclear Information System (INIS)

    Meunier, L.; Doceul, L.; Salasca, S.; Martins, J.-P.; Jullien, F.; Dechelle, Christian; Bidaud, Pierre; Pilard, Vincent; Terra, Alexis; Ogea, Mathieu; Ciattaglia, Emanuela; Walker, Christopher

    2009-01-01

    Most of ITER diagnostic systems are integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum vessel ports. The port plug must provide basic functions such as neutron and gamma shielding, supporting the first wall armour (BSM), closing the vacuum vessel ports, while supporting the diagnostic equipments. ITER diagnostic port plug must resist a severe environment like high temperature due to neutron interaction with the structures and high electromechanical loading during disruptions events. CEA has contributed to the design and integration tasks in the frame of the representative equatorial port plug EQ no. 01, in particular on the engineering, structural and thermal finite element analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: -The static mechanical calculations of the top plate closure system under disruption load. -The static mechanical calculations of the BSM attachment to the port plug. These two first studies led to design changes proposals which significantly improved the behaviour of the structures but also showed that the safety margin with respect to design limits is quite low. -The design of a Diagnostic Shield Module (DSM) integrated inside the port plug and a proposition of attachment scheme, with respect to disruption loads. The manufacturing of the DSM has been taken into account, as well as diagnostic integration inside the structure and maintenance aspects. -The thermal assessment of the port plug under neutronic load during normal operation, with the optimization of the cooling system. The maximum temperature calculated in normal operation has been reduced from 900 deg. C to less than 400 deg. C in the front plate; and the cooling arrangement at the back of the port plug has been simplified without important temperature increase.

  18. Engineering activities on the ITER representative diagnostic equatorial port plug

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, L. [Association Euratom CEA, CEA/DSM/IRFM (France)], E-mail: lmeunier@cea.fr; Doceul, L.; Salasca, S.; Martins, J.-P.; Jullien, F.; Dechelle, Christian; Bidaud, Pierre; Pilard, Vincent; Terra, Alexis; Ogea, Mathieu [Association Euratom CEA, CEA/DSM/IRFM (France); Ciattaglia, Emanuela [EFDA CSU, Garching (Germany); Walker, Christopher [ITER International Organisation (France)

    2009-06-15

    Most of ITER diagnostic systems are integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum vessel ports. The port plug must provide basic functions such as neutron and gamma shielding, supporting the first wall armour (BSM), closing the vacuum vessel ports, while supporting the diagnostic equipments. ITER diagnostic port plug must resist a severe environment like high temperature due to neutron interaction with the structures and high electromechanical loading during disruptions events. CEA has contributed to the design and integration tasks in the frame of the representative equatorial port plug EQ no. 01, in particular on the engineering, structural and thermal finite element analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: -The static mechanical calculations of the top plate closure system under disruption load. -The static mechanical calculations of the BSM attachment to the port plug. These two first studies led to design changes proposals which significantly improved the behaviour of the structures but also showed that the safety margin with respect to design limits is quite low. -The design of a Diagnostic Shield Module (DSM) integrated inside the port plug and a proposition of attachment scheme, with respect to disruption loads. The manufacturing of the DSM has been taken into account, as well as diagnostic integration inside the structure and maintenance aspects. -The thermal assessment of the port plug under neutronic load during normal operation, with the optimization of the cooling system. The maximum temperature calculated in normal operation has been reduced from 900 deg. C to less than 400 deg. C in the front plate; and the cooling arrangement at the back of the port plug has been simplified without important temperature increase.

  19. Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas

    International Nuclear Information System (INIS)

    Fan, Baowei; Pan, Jianfeng; Liu, Yangxian; Zhu, Yuejin

    2015-01-01

    Highlights: • A 3-D simulation model based on the chemical reaction kinetics is established. • The tumble near the trailing spark plug is beneficial for the combustion rate. • The best position of the trailing spark plug is at the rear of the tumble zone. • An increase of the tumble effect time can improve the combustion rate. • Considering the rate of pressure rise, the best ignition timing is 50 °CA (BTDC). - Abstract: The side-ported rotary engine fueled with natural gas is a new, clean, efficient energy system. This work aims to numerically study the performance, combustion and emission characteristics of a side-ported rotary engine fueled with natural gas under different ignition positions and ignition timings. Simulations were performed using multi-dimensional software ANASYS Fluent. On the basis of the software, a three-dimensional dynamic simulation model was established by writing dynamic mesh programs and choosing a detailed reaction mechanism. The three-dimensional dynamic simulation model, based on the chemical reaction kinetics, was also validated by the experimental data. Meanwhile, further simulations were then conducted to investigate how to impact the combustion process by the coupling function between ignition operating parameter and the flow field inside the cylinder. Simulation results showed that in order to improve the combustion efficiency, the trailing spark plug should be located at the rear of the tumble zone and the ignition timing should be advanced properly. This was mainly caused by the trailing spark plug being located at the rear of the tumble zone, as it not only allowed the fuel in the rear of combustion chamber to be burnt without delay, but also permitted the acceleration of the flame propagation by the tumble. Meanwhile, with advanced ignition timing, the time between ignition timing and the timing of the tumble disappearance increased, which led to an increase of the tumble effect time used to improve the combustion

  20. Stability of Ignition Transients

    OpenAIRE

    V.E. Zarko

    1991-01-01

    The problem of ignition stability arises in the case of the action of intense external heat stimuli when, resulting from the cut-off of solid substance heating, momentary ignition is followed by extinction. Physical pattern of solid propellant ignition is considered and ignition criteria available in the literature are discussed. It is shown that the above mentioned problem amounts to transient burning at a given arbitrary temperature distribution in the condensed phase. A brief survey...

  1. Mechanics Model of Plug Welding

    Science.gov (United States)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  2. Flexible Plug Repair for Shuttle Wing Leading Edge

    Science.gov (United States)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  3. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  4. Fusion ignition via a magnetically-assisted fast ignition approach

    OpenAIRE

    Wang, W. -M.; Gibbon, P.; Sheng, Z. -M.; Li, Y. T.; Zhang, J.

    2016-01-01

    Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-pr...

  5. Borehole Plugging Program. Plugging of ERDA No. 10 drill hole

    International Nuclear Information System (INIS)

    Gulick, C.W. Jr.

    1979-06-01

    A requirement exists to plug exploratory drill holes located in the proposed Waste Isolation Pilot Plant area of Southeastern New Mexico. Sandia Laboratories, in cooperation with the US Army Corps of Engineers, Waterways Experiment Station, Concrete Laboratory, developed pumpable and durable cement grouts. These grouts were successfully used to plug an existing drill hole in the area. Results of this project are presented, along with comments and conclusions

  6. Welding nuclear reactor fuel rod end plugs

    International Nuclear Information System (INIS)

    Yeo, D.

    1984-01-01

    Apparatus for applying a vacuum to a nuclear fuel rod cladding tube's interior through its open end while girth welding an inserted end plug to its other end. An airtight housing has an orifice with a seal which can hermetically engage the tube's open end. A vacuum hose has one end connected to the housing and the other end connected to a vacuum pump. A mechanized device which moves the housing to engage or disengage its seal with the tube's open end includes at least one arm having one end attached to the housing and the other end pivotally attached to a movable table; an arm rotating device to coaxially align the housing's orifice with the welding-positioned tube; and a table moving device to engage the seal of the coaxially aligned orifice with the tube's open end. (author)

  7. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  8. Reaching ignition in the tokamak

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-06-01

    This review covers the following areas: (1) the physics of burning plasmas, (2) plasma physics requirements for reaching ignition, (3) design studies for ignition devices, and (4) prospects for an ignition project

  9. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2014-01-01

    Full Text Available An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  10. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    Stotler, D.P.; Goldston, R.J.

    1989-09-01

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  11. Ignition tuning for the National Ignition Campaign

    Directory of Open Access Journals (Sweden)

    Landen O.

    2013-11-01

    Full Text Available The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix.

  12. Interaction of clay and concrete plugs - Plugging of 5 m deep hole KA1621G01 at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Drawrite AB, Lund (Sweden); Luleaa Technical Univ., Luleaa (Sweden); Ramqvist, Gunnar [Eltekno AB, Figeholm (Sweden)

    2011-11-15

    Sealing of deep boreholes in repository rock is planned to be made by installing dense smectite clay plugs where the rock is low-permeable and casting concrete where the holes intersect water-bearing fracture zones. Such zones have to be stabilized before sealing starts because fragments of rock can otherwise fall off and make it difficult to bring equipment for concrete casting and clay plug units down. These parts of the holes are filled with concrete and clay plugs are then inserted up to the nearest fracture zone where concrete is filled to the required level etc. The role of the concrete in the hole and in the closest part of the surrounding fracture zone is to provide stable parts that are sufficiently fine-porous to prevent clay particles from contacting clay plugs to migrate into the fractures and be lost by erosion. While the larger parts of long clay plugs are believed to stay largely intact chemically for hundreds of thousands of years, the parts adjacent to concrete plugs may undergo changes and so can the concrete plugs themselves. The objective of the presently reported project was to identify the detailed processes and quantify associated changes in physical properties by investigating samples of clay and concrete from a 2.5 m long plug of clay over which an equally long concrete plug had been cast and left to rest for 3 years. The outcome of the investigations was that significant chemically induced changes in mineralogy and physical performance had occurred within a few centimetres distance from the clay/concrete contact but that virtually no changes had taken place at larger distance. A comprehensive laboratory study including X-ray diffraction (XRD), X-ray fluorescence (XRF) and electron microscopy study (SEM and TEM) on the sample material was performed including also dual beam (combined ion and electron) microscopy. It was found that the clay had infiltrated the contacting concrete plug after filling of the borehole since clay was detected both

  13. Interaction of clay and concrete plugs - Plugging of 5 m deep hole KA1621G01 at Aespoe

    International Nuclear Information System (INIS)

    Pusch, Roland; Ramqvist, Gunnar

    2011-11-01

    Sealing of deep boreholes in repository rock is planned to be made by installing dense smectite clay plugs where the rock is low-permeable and casting concrete where the holes intersect water-bearing fracture zones. Such zones have to be stabilized before sealing starts because fragments of rock can otherwise fall off and make it difficult to bring equipment for concrete casting and clay plug units down. These parts of the holes are filled with concrete and clay plugs are then inserted up to the nearest fracture zone where concrete is filled to the required level etc. The role of the concrete in the hole and in the closest part of the surrounding fracture zone is to provide stable parts that are sufficiently fine-porous to prevent clay particles from contacting clay plugs to migrate into the fractures and be lost by erosion. While the larger parts of long clay plugs are believed to stay largely intact chemically for hundreds of thousands of years, the parts adjacent to concrete plugs may undergo changes and so can the concrete plugs themselves. The objective of the presently reported project was to identify the detailed processes and quantify associated changes in physical properties by investigating samples of clay and concrete from a 2.5 m long plug of clay over which an equally long concrete plug had been cast and left to rest for 3 years. The outcome of the investigations was that significant chemically induced changes in mineralogy and physical performance had occurred within a few centimetres distance from the clay/concrete contact but that virtually no changes had taken place at larger distance. A comprehensive laboratory study including X-ray diffraction (XRD), X-ray fluorescence (XRF) and electron microscopy study (SEM and TEM) on the sample material was performed including also dual beam (combined ion and electron) microscopy. It was found that the clay had infiltrated the contacting concrete plug after filling of the borehole since clay was detected both

  14. Preliminary results of thermal igniter experiments in H2-air-steam environments

    International Nuclear Information System (INIS)

    Lowry, W.

    1981-01-01

    Thermal igniters (glow plugs), proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containment, have been tested for functionability in mixtures of air, hydrogen, and steam. Test environments included 6% to 16% hydrogen concentrations in air, and 8%, 10%, and 12% hydrogen in mixtures with 30% and 40% steam fractions. All were conducted in a 10.6 ft 3 insulated pressure vessel. For all of these tests the glow plug successfully initiated combustion. Dry air/hydrogen tests exhibited a distinct tendency for complete combustion at hydrogen concentrations between 8% and 9%. Steam suppressed both peak pressures and completeness of combustion. No combustion could be initiated at or above a 50% steam fraction. Circulation of the mixture with a fan increased the completeness of combustion. The glow plug showed no evidence of performance degradation throughout the program

  15. [Plug-technique for umbilical hernia repair in the adult].

    Science.gov (United States)

    Brancato, G; Privitera, A; Gandolfo, L; Donati, M; Caglià, P

    2002-02-01

    Umbilical hernia represents 6% of all abdominal wall hernias in the adult. Surgical repair should always be carried out due to possible occurrence of complications. Aim of this paper is to evaluate the efficacy of the plug-technique. From October 1995 to April 2000, the authors performed 21 operations for acquired umbilical hernia with a defect smaller than 4 cm. Local anesthesia was used and a light intravenous sedation added in particularly anxious patients. The repair was achieved by insertion of a polypropylene dart plug sutured to the margins of the hernial defect. All patients were up and about straightaway and were discharged within 24 hours of surgery. Postoperative pain was mild and required hospital analgesia in only 19% of cases and domiciliary analgesia in 24%. During a follow-up ranging from 6 to 60 months (mean 30), only one recurrence has been recorded. This tension-free technique allows immediate rehabilitation, with few complications and a low recurrence rate.

  16. Repair of steam generator heating tubes by roll-expanded plugs: approach to cover multiple national regulations

    Energy Technology Data Exchange (ETDEWEB)

    Beck, J.; Ziegler, B.; Schoenheit, N. [AREVA NP Gmbh, Erlangen (Germany); Kostroun, F. [AREVA NP Canada Ltd., Pickering, ON (Canada)

    2012-07-01

    During operation, steam generators in nuclear power plants are subject to degradation mechanisms which have an impact on the component life-time. Most affected are the heating tubes which constitute the barrier of the contaminated primary cycle to the secondary side. Various corrosive attacks may cause wall thinning which requires tube repair. A common repair method is to plug the tubes by roll expanded plugs. This is a fast method, easily applicable and requires less equipment or personnel qualification as needed for weld plugs. After insertion, the plugs act as a pressure boundary from primary to secondary side. Although the function of the roll plug is simple, the different national regulations define the requirements which need to be fulfilled by a roll plug differently. In order to reduce the tooling as well as the plug types to a minimum, an approach according to one common design for different regulations and steam generator types is profitable. It was found, that the regulations according to the ASME Boiler and Pressure Vessel code in combination with the German Safety Standards of the German Nuclear Safety Standards Commission covers the regulations of the majority of utilities. To develop a roll plug which suits the different regulatory demands, efforts were made to consider all technical and regulatory boundary conditions implied on roll expanded plugs. This covering approach had an impact on the plug design, which was required to be Helium tight after installation and suitable for a 40 year component lifetime also in accident and emergency conditions. To prove the suitability of the plug design a comprehensive testing programme of the mechanical and chemical properties of the designed roll-expanded plug was launched. A summary of the plug design and testing as well as the main test results are described. (author)

  17. Repair of steam generator heating tubes by roll-expanded plugs: approach to cover multiple national regulations

    International Nuclear Information System (INIS)

    Beck, J.; Ziegler, B.; Schoenheit, N.; Kostroun, F.

    2012-01-01

    During operation, steam generators in nuclear power plants are subject to degradation mechanisms which have an impact on the component life-time. Most affected are the heating tubes which constitute the barrier of the contaminated primary cycle to the secondary side. Various corrosive attacks may cause wall thinning which requires tube repair. A common repair method is to plug the tubes by roll expanded plugs. This is a fast method, easily applicable and requires less equipment or personnel qualification as needed for weld plugs. After insertion, the plugs act as a pressure boundary from primary to secondary side. Although the function of the roll plug is simple, the different national regulations define the requirements which need to be fulfilled by a roll plug differently. In order to reduce the tooling as well as the plug types to a minimum, an approach according to one common design for different regulations and steam generator types is profitable. It was found, that the regulations according to the ASME Boiler and Pressure Vessel code in combination with the German Safety Standards of the German Nuclear Safety Standards Commission covers the regulations of the majority of utilities. To develop a roll plug which suits the different regulatory demands, efforts were made to consider all technical and regulatory boundary conditions implied on roll expanded plugs. This covering approach had an impact on the plug design, which was required to be Helium tight after installation and suitable for a 40 year component lifetime also in accident and emergency conditions. To prove the suitability of the plug design a comprehensive testing programme of the mechanical and chemical properties of the designed roll-expanded plug was launched. A summary of the plug design and testing as well as the main test results are described. (author)

  18. Acoustic Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  19. Progress of impact ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Johzaki, T.

    2010-11-01

    In impact ignition scheme, a portion of the fuel (the impactor) is accelerated to a super-high velocity, compressed by convergence, and collided with a precompressed main fuel. This collision generates shock waves in both the impactor and the main fuel. Since the density of the impactor is generally much lower than that of the main fuel, the pressure balance ensures that the shock-heated temperature of the impactor is significantly higher than that of the main fuel. Hence, the impactor can reach ignition temperature and thus become an igniter. Here we report major new results on recent impact ignition research: (1) A maximum velocity ∼ 1000 km/s has been achieved under the operation of NIKE KrF laser at Naval Research Laboratory (laser wavelength=0.25μm) in the use of a planar target made of plastic and (2) We have performed two-dimensional simulation for burn and ignition to show the feasibility of the impact ignition. (author)

  20. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  1. Ignition tuning for the National Ignition Campaign

    OpenAIRE

    Landen O.; Edwards J.; Haan S.W.; Lindl J.D.; Boehly T.R.; Bradley D.K.; Callahan D.A.; Celliers P.M.; Dewald E.L.; Dixit S.; Doeppner T.; Eggert J.; Farley D.; Frenje J.A.; Glenn S.

    2013-01-01

    The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and caps...

  2. Combined fuel assembly and thimble plug gripper for a nuclear reactor

    International Nuclear Information System (INIS)

    1977-01-01

    This invention relates to an apparatus for loading and unloading a fuel assembly into and from the core of a nuclear reactor and for removing and inserting control rod guide thimble plugs from and into the fuel assembly during a reactor refueling operation in substantially less time than that presently required and in a more reliable, safe and efficient manner. (UK)

  3. The volume ignition for ICF ignition target

    International Nuclear Information System (INIS)

    Li, Y. S.; He, X. T.; Yu, M.

    1997-01-01

    Compared with central model, volume ignition has no hot spot, avoids the mixing at the hot-cold interface, the α-particle escaping, and the high convergence, greatly reduces the sharp demanding for uniformity. In laser indirect driving, from theoretical estimation and computational simulation, we have proved that using a tamper with good heat resistance, the DT fuel can be ignited in LTE at ∼3 KeV and then evolves to the non-LTE ignition at >5 KeV. In this case, 1 MJ radiation energy in the hohlraum could cause near 10 MJ output for a pellet with 0.2 mg DT fuel. We have compared results with and without α-particle transport, it shows that in the condition of ρR>0.5 g/cm 2 of DT fuel, both have the same results. For the system with ρR≅0.5 g/cm 2 we can use α-particle local deposition scheme. The non-uniformly doped tamper with density ρ≅1-5 g/cc can reduce mixing due to the small convergence ratio. The input energy is deposited in DT and tamper during the implosion, we try to reduce the tamper energy by changing the ratio of CH and doped Au and the thickness of the tamper

  4. Laser ignition of liquid petroleum gas at elevated pressures

    Science.gov (United States)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  5. Probability of ignition - a better approach than ignition margin

    International Nuclear Information System (INIS)

    Ho, S.K.; Perkins, L.J.

    1989-01-01

    The use of a figure of merit - the probability of ignition - is proposed for the characterization of the ignition performance of projected ignition tokamaks. Monte Carlo and analytic models have been developed to compute the uncertainty distribution function for ignition of a given tokamak design, in terms of the uncertainties inherent in the tokamak physics database. A sample analysis with this method indicates that the risks of not achieving ignition may be unacceptably high unless the accepted margins for ignition are increased. (author). Letter-to-the-editor. 12 refs, 2 figs, 2 tabs

  6. Shielding plug for LMFBR type reactors

    International Nuclear Information System (INIS)

    Hashiguchi, Ko.

    1979-01-01

    Purpose: To enable effective removal of liquid metals deposited, if any, in the gaps between a rotary plug and a fixed plug in LMFBR type reactors. Constitution: A plate incorporated with a heater and capable of projecting in a gap between a rotary plug and a fixed plug, and a scraper connected in perpendicular to it are provided to the rotary plug. Solidified liquid metals such as sodium deposited in the gap are effectively removed by the heating with the heater and the scraping action due to the rotation. (Horiuchi, T.)

  7. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  8. Magnetically Assisted Fast Ignition

    OpenAIRE

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.

    2015-01-01

    Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation andtransport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of300 g cm−3 and areal density of 0.49 g cm−2 at the core are taken. When a 20 MG static magnetic field isimposed across a conventional cone-free target, the energy coupling from the laser to the core is enhancedby sevenfold and reaches 14%. This value even exceeds that obtained u...

  9. Refueling system with small diameter rotatable plugs

    International Nuclear Information System (INIS)

    Ritz, W.C.

    1987-01-01

    This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means

  10. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube

    Science.gov (United States)

    Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  11. Operation of neat pine oil biofuel in a diesel engine by providing ignition assistance

    International Nuclear Information System (INIS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Lee, P.S.

    2014-01-01

    Highlights: • Operational feasibility of neat pine oil biofuel has been examined. • Pine oil suffers lower cetane number, which mandates for necessary ignition assistance. • Ignition support is provided by preheating the inlet air and incorporating a glow plug. • At an inlet air temperature of 60 °C, the BTE for pine oil was found to be in par with diesel. • CO and smoke emissions were reduced by 13.2% and 16.8%, respectively, for neat pine oil. - Abstract: The notion to provide ignition support for the effective operation of lower cetane fuels in a diesel engine has been ably adopted in the present study for the sole fuel operation of pine oil biofuel. Having noted that the lower cetane number and higher self-ignition temperature of pine oil biofuel would inhibit its direct use in a diesel engine, combined ignition support in the form of preheating the inlet air and installing a glow plug in the cylinder head has been provided to improve the auto-ignition of pine oil. While, an air preheater, installed in the inlet manifold of the engine, preheated the inlet air so as to provide ignition assistance partially, the incorporation of glow plug in the cylinder head imparted the further required ignition support appropriately. Subsequently, the operational feasibility of neat pine oil biofuel has been examined in a single cylinder diesel engine and the engine test results were analyzed. From the experimental investigation, though the engine performance and emissions such as CO (carbon monoxide) and smoke were noted to be better for pine oil with an inlet air temperature of 40 °C, the engine suffered the setback of knocking due to delayed SOC (start of combustion). However, with the ignition support through glow plug and preheating of inlet air, the engine knocking was prevented and the normal operation of the engine was ensured. Categorically, at an inlet air temperature of 60 °C, BTE (brake thermal efficiency) was found to be in par with diesel, while

  12. Lattice insertions for POPAE

    International Nuclear Information System (INIS)

    Cho, Y.; Crosbie, E.A.; Diebold, R.; Johnson, D.E.; Ohnuma, S.; Ruggiero, A.G.; Teng, L.C.

    1977-01-01

    Four types of insertions are described for the six 200-m straight sections of POPAE. All have dispersion matched to zero. (1) Injection-ejection insertion--This has proper high-β values and phase advances for horizontal injection and vertical ejection. (2) Phase-adjust insertion--The phase advance in this insertion is adjustable over a range of approximately 100 0 . (3) General-purpose insertion--The β* is adjustable from 2.5. to 200 m and the crossing angle is adjustable from 0 to 11 mrad. (4) High-luminosity insertion--This gives an even lower β + of meter

  13. Plugger guide for aligning an end plug and a fuel rod tube end

    International Nuclear Information System (INIS)

    Klapper, K.K.; Boatwright, D.A.

    1987-01-01

    A pin driving tool is described for inserting or removing pins from teeth on a digging means, comprising: fuel rod tube toward an end plug for application of the end plug into the tube end, the apparatus comprising: (a) a guide housing having an elongated central longitudinal bore with one end for receiving the end plug and an opposite end for receiving the fuel rod tube end; (b) sets of rolling elements disposed in the housing at axially spaced positions along and about the bore thereof. The rolling elements in each set are positioned in fixed relation with respect to one another to receive the fuel rod tube end therebetween and align the tube end with the end plug as the tube end is moved through the bore and into engagement with the end plug; and (c) retaining means disposed adjacent to the open end of the housing bore for engaging the end plug so as to maintain it in a stationary seated position at the one end of the housing bore

  14. CEA engineering studies and integration of the ITER diagnostic port plugs

    International Nuclear Information System (INIS)

    Doceul, L.; Walker, C.; Ingesson, C.; Ciattaglia, E.; Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C.

    2007-01-01

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel

  15. CEA engineering studies and integration of the ITER diagnostic port plugs

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, L. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)], E-mail: louis.doceul@cea.fr; Walker, C. [ITER International Team, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Ingesson, C.; Ciattaglia, E. [EFDA CSU - Garching, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)

    2007-10-15

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel.

  16. Ignition experiment - alternatives

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1979-10-01

    This report comprises three short papers on cost estimates, integral burn time and alternative versions of Tokamak ignition experiments. These papers were discussed at the ZEPHYR workshop with participants from IPP Garching, MIT Cambridge and PPPL Princeton (Garching July 30 - August 2 1979) (Chapters A, B, C). It is shown, that starting from a practical parameter independent minimum integral burn time of Tokamak ignition experiments (some 10 3 s) by adding a shield for protection of the magnet insulation (permitted neutron dose 10 9 rad) an integral burn time of some 10 4 s can be achieved for only about 30% more outlay. For a substantially longer integral burn time the outlay approaches rather quickly that for a Tokamak reactor. Some examples for alternatives to ZEPHYR are being given, including some with low or no compression. In a further chapter D some early results of evaluating an ignition experiment on the basis of the energy confinement scaling put forward by Coppi and Mazzucato are presented. As opposed to the case of the Alcator scaling used in chapters A through C the minimum integral burn time of Tokamak ignition experiments here depends on the plasma current. Provided neutral injectors up to about 160 keV are available compression boosting is not required with this scaling. The results presented have been obtained neglecting the effects of the toroidal field ripple. (orig.) 891 HT/orig. 892 RKD [de

  17. Plug Load Behavioral Change Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  18. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  19. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  20. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  1. Multimeediaetendus : Opera Gets Plugged / Eve Arpo

    Index Scriptorium Estoniae

    Arpo, Eve

    2008-01-01

    Eesti Muusika- ja Teatriakadeemia lühiooperite õhtul "Opera Gets Plugged" etendunud lavastustest - Monika Mattieseni "DMeeter" ja Age Hirve "Tuleloitsija": Mõlema lavastaja ja projektijuht Liis Kolle

  2. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    Science.gov (United States)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  3. Equilibrium ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-01-01

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative

  4. Effect of spark plug and fuel injector location on mixture stratification in a GDI engine - A CFD analysis

    Science.gov (United States)

    Saw, O. P.; Mallikarjuna, J. M.

    2017-09-01

    The mixture preparation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, with a late fuel injection strategy, piston top surface is designed in such a way that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In addition, in these engines, location of spark-plug and fuel injector, fuel injection pressure and timing are also important to create a combustible mixture near the spark plug. Therefore, understanding the mixture formation under the influence of the location of spark plug and fuel injector is very essential for the optimization of the engine parameters. In this study, an attempt is made to understand the effect of spark plug and fuel injector location on the mixture preparation in a four-stroke, four-valve and wall-guided GDI engine operating under a stratified condition by using computational fluid dynamics (CFD) analysis. All the CFD simulations are carried out at an engine speed of 2000 rev/min., and compression ratio of 10.6, at an overall equivalence ratio (ER) of about 0.65. The fuel injection and spark timings are maintained at 605 and 710 CADs respectively. Finally, it is concluded that, combination of central spark plug and side fuel injector results in better combustion and performance.

  5. Safety and Efficacy of Lacrimal Drainage System Plugs for Dry Eye Syndrome: A Report by the American Academy of Ophthalmology.

    Science.gov (United States)

    Marcet, Marcus M; Shtein, Roni M; Bradley, Elizabeth A; Deng, Sophie X; Meyer, Dale R; Bilyk, Jurij R; Yen, Michael T; Lee, W Barry; Mawn, Louise A

    2015-08-01

    To review the published literature assessing the efficacy and safety of lacrimal drainage system plug insertion for dry eye in adults. Literature searches of the PubMed and Cochrane Library databases were last conducted on March 9, 2015, without date restrictions and were limited to English language abstracts. The searches retrieved 309 unique citations. The primary authors reviewed the titles and abstracts. Inclusion criteria specified reports that provided original data on plugs for the treatment of dry eyes in at least 25 patients. Fifty-three studies of potential relevance were assigned to full-text review. The 27 studies that met the inclusion criteria underwent data abstraction by the panels. Abstracted data included study characteristics, patient characteristics, plug type, insertion technique, treatment response, and safety information. All studies were observational and rated by a methodologist as level II or III evidence. The plugs included punctal, intracanalicular, and dissolving types. Fifteen studies reported metrics of improvement in dry eye symptoms, ocular-surface status, artificial tear use, contact lens comfort, and tear break-up time. Twenty-five studies included safety data. Plug placement resulted in ≥50% improvement of symptoms, improvement in ocular-surface health, reduction in artificial tear use, and improved contact lens comfort in patients with dry eye. Serious complications from plugs were infrequent. Plug loss was the most commonly reported problem with punctal plugs, occurring on average in 40% of patients. Overall, among all plug types, approximately 9% of patients experienced epiphora and 10% required removal because of irritation from the plugs. Canaliculitis was the most commonly reported problem for intracanalicular plugs and occurred in approximately 8% of patients. Other complications were reported in less than 4% of patients on average and included tearing, discomfort, pyogenic granuloma, and dacryocystitis. On the basis of

  6. Principle plug design for deposition tunnels

    International Nuclear Information System (INIS)

    Haaramo, M.; Lehtonen, A.

    2009-06-01

    This report examines the plug structures to be built in the deposition tunnels of the repository. The deposition tunnels located below the depth of 400 metres have been used as input data. Each plug consists of a massive concrete structure. The planned maximum pressure acting on the plug is 7.5 MPa. It consists of 4.5 MPa of groundwater pressure and 3 MPa of swelling pressure of the backfill. Five different plug types have been examined. Two of them (butt and irregular plug) turned out to be difficult from the point of view of other works in the central and deposition tunnels. One type (straight plug) requires a lot of construction material. Wedge-shaped and dome plugs have been examined more carefully. The wedge shaped plug has advantageous properties in comparison with the dome plug, such as a three dimensional state of stress, the wedging effect which increases strength as pressure increases and larger tolerances for the excavation of the slot. Leakage water has a longer path through the wedge shaped plug than through the dome plug. Pressure load affects the wedge shaped plug, creating normal stresses, which are compressive along each coordinate axis. The long-term rise in temperature in the deposition tunnels can produce high extra stresses in all the plug alternatives. These stresses make it necessary to increase the strength of the concrete or the distance between the plug and the nearest deposition hole. The stability effects of different plug distances and deposition tunnel orientations have been examined. The plug does not significantly affect stresses in the surrounding bedrock or the stability of the bedrock. Stresses caused by excavation and temperature rise are decisive factors. A groundwater chloride content of 0-3% in the environment of the repository is used as input data. It affects the tightness of the concrete and the quality of the cement. Cement has to be sulphate resistant with a low pH value. Low pH results in the weakening of the corrosion

  7. Mastering Eclipse plug-in development

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    If you are a Java developer who is familiar with the Eclipse plug-in environment, this book covers the advanced concepts that you need to know to achieve true expertise. Prior experience in creating Eclipse plug-ins is assumed for this book.

  8. Plugging regime in the pump limiter throat

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-08-01

    The plugging regime -with no outstreaming neutral flux- is studied for a closed configuration pump limiter (throat). We derive the plugging length and the neutral density build-up at the neutralizer plate. The analytical expressions are supported by numerical evidence. We find an improved efficiency related to the throat effect mainly due to neutral-sidewall interactions

  9. Plug-In Tutor Agents: Still Pluggin'

    Science.gov (United States)

    Ritter, Steven

    2016-01-01

    "An Architecture for Plug-in Tutor Agents" (Ritter and Koedinger 1996) proposed a software architecture designed around the idea that tutors could be built as plug-ins for existing software applications. Looking back on the paper now, we can see that certain assumptions about the future of software architecture did not come to be, making…

  10. Multiservice utility plug for remote fuel reprocessing

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Jensen, D.A.

    1979-10-01

    This paper presents the design of a multiservice utility plug and drive system to be used for reliably engaging and disengaging all utility connections automatically that serve large portable equipment modules. The modules are arranged into a fuel processing production line within the Fuels and Materials Examination Laboratory. The utility plugs allow the modules to be easily replaced, rearranged or removed for maintenance

  11. Explosive plugging of nuclear heat exchangers

    International Nuclear Information System (INIS)

    Crossland, B.; Bahrani, A.S.; Townsley, W.J.

    1977-01-01

    Explosive welding is a well established process for cladding one metal on another or for welding tubes to tubeplates or lap welding, etc. Recently, the process has been adapted to plugging of heat exchangers in conventional and nuclear power plant, where it has already been accepted especially in situations where the access is difficult and remote from the site of plugging. The paper describes the explosive plugging techniques developed in the Department of Mechanical and Industrial Engineering of The Queen's University of Belfast for the reheater and superheater of the PFR, and for the reheater of the AGR. For the PFR a point charge system has been used which causes a spherical expansion of the plug, which gives two zones of welding. Initially for the much larger plug required for the AGR it was proposed to use a parallel stand-off welding set-up, but it proved difficult or impossible to avoid a crevice. Consequently, a rim charge set-up has been developed which gives a circular ring expansion of the plug with two zones of welding. Besides the problem of the design of the plug and explosive charge geometry it has also been necessary to consider the distortion of holes adjoining the hole in which a plug is welded. Bunging of adjoining holes in order to reduce the distortion has also been investigated

  12. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.

    Science.gov (United States)

    Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N

    2003-02-20

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  13. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour

    2016-12-29

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times. Such measurements may potentially be affected by some non-ideal phenomena. The purpose of this work is to measure long ignition delay times for fuels exhibiting negative temperature coefficient (NTC) and to assess the impact of shock tube non-idealities on ignition delay data. Ignition delay times of n-heptane and n-hexane were measured over the temperature range of 650 – 1250 K and pressures near 1.5 atm. Driver gas tailoring and long length of shock tube driver section were utilized to measure ignition delay times as long as 32 ms. Measured ignition delay times agree with chemical kinetic models at high (> 1100 K) and low (< 700 K) temperatures. In the intermediate temperature range (700 – 1100 K), however, significant discrepancies are observed between the measurements and homogeneous ignition delay simulations. It is postulated, based on experimental observations, that localized ignition kernels could affect the ignition delay times at the intermediate temperatures, which lead to compression (and heating) of the bulk gas and result in expediting the overall ignition event. The postulate is validated through simple representative computational fluid dynamic simulations of post-shock gas mixtures which exhibit ignition advancement via a hot spot. The results of the current work show that ignition delay times measured by shock tubes may be affected by non-ideal phenomena for certain conditions of temperature, pressure and fuel reactivity. Care must, therefore, be exercised in using such data for chemical kinetic model development and validation.

  14. Process for measuring the force of a pressure spring which is situated at the side of a mesh of a grid spacer for a nuclear reactor fuel element and measuring plug gauge for carrying out this process

    International Nuclear Information System (INIS)

    Bezold, H.; Block, B.

    1984-01-01

    A measuring plug gauge is inserted into the mesh, which has a measuring element on the outside of its jacket, until a stop on the outside of the measuring plug gauge is adjacent to the spacer and the spring is adjacent to the measuring element; in order to measure the spring force, the stop lifted from the spacer. (orig./HP) [de

  15. Mixture for plugging absorption zones

    Energy Technology Data Exchange (ETDEWEB)

    Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh

    1981-01-17

    A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.

  16. Plug-in Hybrid Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  17. Pulse heating and ignition for off-centre ignited targets

    International Nuclear Information System (INIS)

    Mahdy, A.I.; Takabe, H.; Mima, K.

    1999-01-01

    An off-centre ignition model has been used to study the ignition conditions for laser targets related to the fast ignition scheme. A 2-D hydrodynamic code has been used, including alpha particle heating. The main goal of the study is the possibility of obtaining a high gain ICF target with fast ignition. In order to determine the ignition conditions, samples with various compressed core densities having different spark density-radius product (i.e. areal density) values were selected. The study was carried out in the presence of an external heating source, with a constant heating rate. A dependence of the ignition conditions on the heating rate of the external pulse is demonstrated. For a given set of ignition conditions, our simulation showed that an 11 ps pulse with 17 kJ of injected energy into the spark area was required to achieve ignition for a compressed core with a density of 200 g/cm 3 and 0.5 g/cm 2 spark areal density. It is shown that the ignition conditions are highly dependent on the heating rate of the external pulse. (author)

  18. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  19. Central ignition scenarios for TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Redi, M.H.; Bateman, G.

    1986-03-01

    The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs

  20. Technical evaluation of vehicle ignition systems: conduct differences between a high energy capacitive system and a standard inductive system

    Directory of Open Access Journals (Sweden)

    Bruno Santos Goulart

    2014-09-01

    Full Text Available An efficient combustion depends on many factors, such as injection, turbulence and ignition characteristics. With the improvement of internal combustion engines the turbulence intensity and internal pressure have risen, demanding more efficient and powerful ignition systems. In direct injection engines, the stratified charge resultant from the wall/air-guided or spray-guided system requires even more energy. The Paschen’s law shows that spark plug gap and mixture density are proportional to the dielectric rupture voltage. It is known that larger spark gaps promote higher efficiency in the internal combustion engines, since the mixture reaction rate rises proportionally. However, the ignition system must be adequate to the imposed gap, not only on energy, but also on voltage and spark duration. For the reported study in this work two test benches were built: a standard inductive ignition system and a capacitive discharge high energy ignition system, with variable voltage and capacitance. The influence of the important parameters energy and ignition voltage on the spark duration, as well as the electrode gap and shape were analyzed. It was also investigated the utilization of a coil with lower resistance and inductance values, as well as spark plugs with and without internal resistances.

  1. Combined fuel assembly and thimble plug gripper for a nuclear reactor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Satterlee, A.E.

    1978-01-01

    A combined fuel assembly and thimble plug gripper for raising and lowering a fuel assembly into a nuclear reactor core, and for lifting and lowering a thimble plug assembly into the fuel assembly is described. It includes a vertically movable mast housing a mechanism which causes pivotally mounted fingers on the bottom of the mast to be moved into and out of latching engagement with the nozzle of a fuel assembly when the mast is resting on the assembly. The mast includes a second mechanism which supports second fingers pivotally mounted thereon and actuable by a third mechanism into and out of engagement with a thimble plug assembly supporting plugs adapted to be inserted in control rod guide thimbles in the fuel assembly. The second mechanism further includes an arrangement for lowering or raising the plug assembly respectively into or out of the guide thimbles in the fuel assembly. The apparatus includes control and interlock systems which preclude operation of the mechanisms under certain prescribed conditions

  2. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  3. Plug cementing: Horizontal to vertical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  4. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  5. Electrically heated 3D-macro cellular SiC structures for ignition and combustion application

    International Nuclear Information System (INIS)

    Falgenhauer, Ralf; Rambacher, Patrick; Schlier, Lorenz; Volkert, Jochen; Travitzky, Nahum; Greil, Peter; Weclas, Miroslaw

    2017-01-01

    Highlights: • 3D-printed macro cellular SiC structure. • Directly integrated electrically heated ignition element used in combustion reactor. • Experimental investigation of the ignition process. - Abstract: The paper describes different aspects of porous combustion reactor operation especially at cold start conditions. Under cold start conditions it is necessary to increase the internal energy of the combustion reactor, to accumulate enough energy inside its solid phase and to reach at least the ignition temperature on the reactors inner surface. The most practicable method to preheat a cold porous reactor is to use its surface as a flame holder and to apply free flame combustion as a heat source for the preheating process. This paper presents a new electrically heated ignition element, which gets integrated in a three dimensional macro-cellular SiSiC reactor structure. For the development of the ignition element it was assumed, that the element is made of the same material as the combustion reactor itself and is fully integrated within the three-dimensional macro-cellular structure of the combustion reactor. Additive manufacturing like three-dimensional (3D) printing permits the production of regular SiSiC structures with constant strut thickness and a defined current flow path. To get a controlled temperature distribution on the ignition element it is necessary to control the current density distribution in the three-dimensional macro-cellular reactor structure. The ignition element used is designed to be an electrical resistance in an electric current system, converting flowing current into heat with the goal to get the highest temperature in the ignition region (glow plug). First experiments show that the ignition element integrated in a combustion reactor exhibits high dynamics and can be heated to the temperatures much above 1000 °C in a very short time (approx. 800 ms) for current of I = 150 A.

  6. EBR-II rotating plug seal maintenance

    International Nuclear Information System (INIS)

    Allen, K.J.

    1986-01-01

    The EBR-II rotating plug seals require frequent cleaning and maintenance to keep the plugs from sticking during fuel handling. Time consuming cleaning on the cover gas and air sides of the dip ring seal is required to remove oxidation and sodium reaction products that accumulate and stop plug rotation. Despite severely limited access, effective seal cleaning techniques have removed 11 800 lb (5 352 kg) of deposits from the seals since 1964. Temperature control modifications and repairs have also required major maintenance work. Suggested seal design recommendations could significantly reduce maintenance on future similar seals

  7. Compact ignition experiments

    International Nuclear Information System (INIS)

    Angelini, A.; Coppi, B.; Nassi, M.

    1992-01-01

    This paper reports on high magnetic field experiments which can be designed to investigate D-T ignition conditions based on present-day experimental results and theoretical understanding of plasma phenomena. The key machine elements are: large plasma currents, compact dimensions, tight aspect ratios, moderate elongations and significant triangularities of the plasma column. High plasma densities, strong ohmic heating, the needed degree of energy confinement, good plasma purity and robust stability against ideal and resistive instabilities can be achieved simultaneously. The Ignitor design incorporates all these characteristics and involves magnet technology developments, started with the Alcator experiment, that use cryogenically cooled normal conductors

  8. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm 3 -sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  9. Experiences from the design and construction of plug II in the Prototype Repository

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstroem, Lars-Olof (NCC Teknik (Sweden))

    2009-12-15

    The intention with this document is to summarise the comprehensive documentation and experience that was gained during the design and construction of the temporary plugs in the Prototype Repository experiment at Aespoe HRL. The Prototype Repository experiment was designed to in full scale test the engineered barriers and their function, including the plug that separate the deposition tunnel from the temporary access- and transportation tunnels that are at atmospheric pressure. This plug is designed and constructed as a concrete plug with a spherical front side and a flat pressurised side. This report presents the processes and operations that were considered when developing the 'plug', design, construction and verification. In the Prototype Repository the demand of leakage control is very high and the maximum length of the plugs is constrained due to available clearance space, experimental set-up and configuration. Therefore a typical 'friction plug' normally used to block waterways in connection with hydropower plants, is not suitable. Instead a plug constructed as an 'arch plug' with abutments was considered. In order to minimize the Excavation Disturbed Zone (EDZ) the abutments, in which the plug is inserted, was excavated by seam drilling with coring technique. The steel formwork was pre-assembled at the ground surface before taken down to the tunnel. The steel was bolted and welded together and crossbars and plywood were mounted on top. Before taken down to the tunnel, the formwork was separated into smaller pieces that were easier to transport down the tunnel but easy to assembly at the Prototype Repository experiment. Before assembling the formwork, a retaining wall was installed to resist the earth and compaction pressure developed from the backfill material. The retaining wall consists of pre-fabricated concrete beams that were installed parallel with the installation of the backfill. Reinforcement was cut and bent at the

  10. Experiences from the design and construction of plug II in the Prototype Repository

    International Nuclear Information System (INIS)

    Dahlstroem, Lars-Olof

    2009-12-01

    The intention with this document is to summarise the comprehensive documentation and experience that was gained during the design and construction of the temporary plugs in the Prototype Repository experiment at Aespoe HRL. The Prototype Repository experiment was designed to in full scale test the engineered barriers and their function, including the plug that separate the deposition tunnel from the temporary access- and transportation tunnels that are at atmospheric pressure. This plug is designed and constructed as a concrete plug with a spherical front side and a flat pressurised side. This report presents the processes and operations that were considered when developing the 'plug', design, construction and verification. In the Prototype Repository the demand of leakage control is very high and the maximum length of the plugs is constrained due to available clearance space, experimental set-up and configuration. Therefore a typical 'friction plug' normally used to block waterways in connection with hydropower plants, is not suitable. Instead a plug constructed as an 'arch plug' with abutments was considered. In order to minimize the Excavation Disturbed Zone (EDZ) the abutments, in which the plug is inserted, was excavated by seam drilling with coring technique. The steel formwork was pre-assembled at the ground surface before taken down to the tunnel. The steel was bolted and welded together and crossbars and plywood were mounted on top. Before taken down to the tunnel, the formwork was separated into smaller pieces that were easier to transport down the tunnel but easy to assembly at the Prototype Repository experiment. Before assembling the formwork, a retaining wall was installed to resist the earth and compaction pressure developed from the backfill material. The retaining wall consists of pre-fabricated concrete beams that were installed parallel with the installation of the backfill. Reinforcement was cut and bent at the factory and was ready for

  11. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  12. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  13. Effectiveness of thermal ignition devices in lean hydrogen-air-steam mixtures

    International Nuclear Information System (INIS)

    Tamm, H.; McFarlane, R.; Liu, D.D.S.

    1985-03-01

    Deliberate ignition of hydrogen at low concentrations in reactor containment systems is one method of controlling hydrogen during degraded core accidents. Since many postulated accident conditions have substantial amounts of steam present, experiments have been performed to determine the hydrogen-air-steam concentration regimes in which ignitors would be effective. In these experiments, both a GM AC 7G thermal flow plug and a Tayco Model 3442 ignitor have been used. These ignitors have been installed in PWR containments with ice condensers and in BWR Mark III containments. This report presents the results of these ignitor effectiveness experiments, and gives the ignition limits and the effect of steam on the ignitor surface temperatures required for ignition

  14. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  15. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  16. PLUGGING AND UNPLUGGING OF WASTE TRANSFER PIPELINES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    This project, which began in FY97, involves both the flow loop research on plugging and unplugging of waste transfer pipelines, and the large-scale industrial equipment test of plugging locating and unplugging technologies. In FY98, the related work was performed under the project name ''Mixing, Settling, and Pipe Unplugging of Waste Transfer Lines.'' The mixing, settling, and pipeline plugging and unplugging are critical to the design and maintenance of a waste transfer pipeline system, especially for the High-Level Waste (HLW) pipeline transfer. The major objective of this work is to recreate pipeline plugging conditions for equipment testing of plug locating and removal and to provide systematic operating data for modification of equipment design and enhancement of performance of waste transfer lines used at DOE sites. As the waste tank clean-out and decommissioning program becomes active at the DOE sites, there is an increasing potential that the waste slurry transfer lines will become plugged and unable to transport waste slurry from one tank to another or from the mixing tank to processing facilities. Transfer systems may potentially become plugged if the solids concentration of the material being transferred increases beyond the capability of the prime mover or if upstream mixing is inadequately performed. Plugging can occur due to the solids' settling in either the mixing tank, the pumping system, or the transfer lines. In order to enhance and optimize the slurry's removal and transfer, refined and reliable data on the mixing, sampling, and pipe unplugging systems must be obtained based on both laboratory-scale and simulated in-situ operating conditions

  17. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov (United States)

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to between fill-ups) that's very similar to the range of a conventional vehicle. A plug-in hybrid vehicle's

  18. Insertion Modeling and Its Applications

    OpenAIRE

    Alexander Letichevsky; Oleksandr Letychevskyi; Vladimir Peschanenko

    2016-01-01

    The paper relates to the theoretical and practical aspects of insertion modeling. Insertion modeling is a theory of agents and environments interaction where an environment is considered as agent with a special insertion function. The main notions of insertion modeling are presented. Insertion Modeling System is described as a tool for development of different kinds of insertion machines. The research and industrial applications of Insertion Modeling System are presented.

  19. The Ignition Target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-01-01

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10 8 K), pressures (10-GBar) and matter densities (> 100 g/cm 3 ). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art

  20. Percutaneous Ureteral stent insertion

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yup; Sung, Dong Wook; Choi, Woo Suk; Lee, Dong Ho; Ko, Young Tae; Lee, Sun Wha; Lim, Jae Hoon [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1990-10-15

    Percutaneous ureteral stent insertion is a treatment of permanent or temporary urinary diversion to maintain continuity and function of the obstructed and injured ureter. We performed 31 cases of percutaneous double pig tall ureteral stent insertion in 21 patients, included 13 patients with malignant ureteral obstruction and eight patients with injured ureter as well as benign inflammatory stricture. Satisfactory resulted was obtained in all patients but one, who need percutaneous nephrostomy on week later for urinary diversion. No significant complication was encountered. The authors concluded that percutaneous ureteral stent insertion, an interventional procedure alternative to urologic retrograde method, is an effective method for urinary diversion.

  1. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs

  2. Test plan: Potash Core Test. WIPP experimental program borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.

    1979-09-01

    The Potash Core Test will utilize a WIPP emplaced plug to obtain samples of an in-situ cured plug of known mix constituents for bench scale testing. An earlier effort involved recovery at the salt horizon of Plug 217, a 17 year old plug in a potash exploration hole for bond testing, but the lack of particulars in the emplacement precluded significant determination of plug performance

  3. The National Ignition Facility

    International Nuclear Information System (INIS)

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.M.

    2001-01-01

    The National Ignition Facility (NIF) is the largest construction project ever undertaken at Lawrence Livermore National Laboratory (LLNL). NIF consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. NIF is being designed and built by an LLNL-led team from Los Alamos National Laboratory, Sandia National Laboratories, the University of Rochester, and LLNL. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. (author)

  4. The Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  5. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  6. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour; Badra, J.; Jaasim, Mohammed; Es-sebbar, Et-touhami; Labastida, M.F.; Chung, Suk-Ho; Im, Hong G.; Farooq, Aamir

    2016-01-01

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times

  7. Whist code calculations of ignition margin in an ignition tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    A simple global model was developed to determine the ignition margin of tokamaks including electron and ion conduction losses. A comparison of this model with results from a 1 1/2 dimensional Whist code is made

  8. Development and testing of hydrogen ignition devices

    International Nuclear Information System (INIS)

    Renfro, D.; Smith, L.; Thompson, L.; Clever, R.

    1982-01-01

    Controlled ignition systems for the mitigation of hydrogen produced during degraded core accidents have been installed recently in several light water reactor (LWR) containments. This paper relates the background of the thermal igniter approach and its application to LWR controlled ignition systems. The process used by the Tennessee Valley Authority (TVA) to select a hydrogen mitigation system in general and an igniter type in particular is described. Descriptions of both the Interim Distributed Ignition System and the Permanent Hydrogen Mitigation System installed by TVA are included as examples. Testing of igniter durability at TVA's Singleton Materials Engineering Laboratory and of igniter performance at Atomic Energy of Canada's Whiteshell Nuclear Research Establishment is presented

  9. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  10. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  11. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  12. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  13. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  14. ALS insertion devices

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.V.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D.

    1990-11-01

    The Advanced Light Source (ALS), the first US third generation synchrotron radiation source, is currently under construction at the Lawrence Berkeley Laboratory. The low-emittance, 1.5 GeV electron storage ring and the insertion devices are specifically designed to produce high brightness beams in the UV to soft X-Ray range. The planned initial complement of insertion devices includes four 4.6 m long undulators, with period lengths of 3.9 cm, 5.0 cm (2) and 8.0 cm, and a 2.9 m long wiggler of 16 cm period length. Undulator design is well advanced and fabrication has begun on the 5.0 cm and 8.0 cm period length undulators. This paper discusses ALS insertion device requirements; general design philosophy; and design of the magnetic structure, support structure/drive systems, control system and vacuum system. 18 refs., 9 figs., 5 tabs

  15. Ignition inhibitors for cellulosic materials

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1976-01-01

    By exposing samples to various irradiance levels from a calibrated thermal radiation source, the ignition responses of blackened alpha-cellulose and cotton cloth with and without fire-retardant additives were compared. Samples treated with retardant compounds which showed the most promise were then isothermally pyrolyzed in air for comparisons between the pyrolysis rates. Alpha-cellulose samples containing a mixture of boric acid, borax, and ammonium di-hydrogen phosphate could not be ignited by irradiances up to 4.0 cal cm -2 s-1 (16.7 W/cm 2 ). At higher irradiances the specimens ignited, but flaming lasted only until the flammable gases were depleted. Cotton cloth containing a polymeric retardant with the designation THPC + MM was found to be ignition-resistant to all irradiances below 7.0 cal cm -2 s -1 (29.3 W/cm 2 ). Comparison of the pyrolysis rates of the retardant-treated alpha-cellulose and the retardant-treated cotton showed that the retardant mechanism is qualitatively the same. Similar ignition-response measurements were also made with specimens exposed to ionizing radiation. It was observed that gamma radiation results in ignition retardance of cellulose, while irradiation by neutrons does not

  16. Experimental investigation of the vibrational and thermal response of a laser spark plug

    Science.gov (United States)

    Yoder, Gregory S.

    A study was conducted in order to evaluate the external thermal and vibrational effects on the operation of a laser ignition system for internal combustion (IC) engine applications. West Virginia University (WVU) in conjunction with the National Energy Technology Laboratory (NETL) have constructed a prototype laser spark plug which has been designed to mount directly onto the head of a natural gas engine for the purpose of igniting an air/fuel (A/F) mixture in the engine's combustion chamber. To be considered as a viable replacement for the conventional electrode-based ignition system, integrity, durability and reliability must be justified. Thermal and oscillatory perturbations induced upon the ignition system are major influences that affect laser spark plug (LSP) operation and, therefore, quantifying these effects is necessary to further the advancement and development of this technology. The passively q-switched Nd:YAG laser was mounted on Bruel & Kjaer (B&K) Vibration Exciter Type 4808 Shaker in conjunction with at B&K Power Amplifier Type 2719, which was oscillated in 10 Hz intervals from 0 to 60 Hz using a sine wave to mimic natural gas engine operation. The input signal simulated the rotational velocity of the engine operating from 0 to 3600 RPM with the laser mounted in three different axial orientations. The laser assembly was wrapped with medium-temperature heat tape, outfitted with thermocouples and heated from room temperature to 140 ºF to simulate the temperatures that the LSP may experience when installed on an engine. The acceleration of the payload was varied between 50% and 100% of the oscillator's maximum allowable acceleration in each mounting orientation resulting in a total of 294 total setpoints. For each setpoint, pulse width, pulse width variation, q-switch delay, jitter and output energy were measured and recorded. Each of these dependent variables plays a critical role in multi photon ionization and precise control is necessary to limit

  17. Reactivity insertion accident analysis

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Nakata, H.; Yorihaz, H.

    1990-04-01

    The correct prediction of postulated accidents is the fundamental requirement for the reactor licensing procedures. Accident sequences and severity of their consequences depend upon the analysis which rely on analytical tools which must be validated against known experimental results. Present work presents a systematic approach to analyse and estimate the reactivity insertion accident sequences. The methodology is based on the CINETHICA code which solves the point-kinetics/thermohydraulic coupled equations with weighted temperature feedback. Comparison against SPERT experimental results shows good agreement for the step insertion accidents. (author) [pt

  18. ISABELLE insertion quadrupoles

    International Nuclear Information System (INIS)

    Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.

    1979-01-01

    Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented

  19. Low-Load Limit in a Diesel-Ignited Gas Engine

    Directory of Open Access Journals (Sweden)

    Richard Hutter

    2017-09-01

    Full Text Available The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

  20. Characterisation of laser ignition in hydrogen-air mixtures in a combustion bomb

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Dhananjay Kumar; Agarwal, Avinash Kumar [Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Weinrotter, Martin; Wintner, Ernst [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna (Austria); Iskra, Kurt [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2009-03-15

    Laser-induced spark ignition of lean hydrogen-air mixtures was experimentally investigated using nanosecond pulses generated by Q-switched Nd:YAG laser (wavelength 1064 nm) at initial pressure of 3 MPa and temperature 323 K in a constant volume combustion chamber. Laser ignition has several advantages over conventional ignition systems especially in internal combustion engines, hence it is necessary to characterise the combustion phenomena from start of plasma formation to end of combustion. In the present experimental investigation, the formation of laser plasma by spontaneous emission technique and subsequently developing flame kernel was measured. Initially, the plasma propagates towards the incoming laser. This backward moving plasma (towards the focusing lens) grows much faster than the forward moving plasma (along the direction of laser). A piezoelectric pressure transducer was used to measure the pressure rise in the combustion chamber. Hydrogen-air mixtures were also ignited using a spark plug under identical experimental conditions and results are compared with the laser ignition ones. (author)

  1. Fast ignition breakeven scaling

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Vesey, Roger Alan

    2005-01-01

    A series of numerical simulations have been performed to determine scaling laws for fast ignition break even of a hot spot formed by energetic particles created by a short pulse laser. Hot spot break even is defined to be when the fusion yield is equal to the total energy deposited in the hot spot through both the initial compression and the subsequent heating. In these simulations, only a small portion of a previously compressed mass of deuterium-tritium fuel is heated on a short time scale, i.e., the hot spot is tamped by the cold dense fuel which surrounds it. The hot spot tamping reduces the minimum energy required to obtain break even as compared to the situation where the entire fuel mass is heated, as was assumed in a previous study [S. A. Slutz, R. A. Vesey, I. Shoemaker, T. A. Mehlhorn, and K. Cochrane, Phys. Plasmas 7, 3483 (2004)]. The minimum energy required to obtain hot spot break even is given approximately by the scaling law E T = 7.5(ρ/100) -1.87 kJ for tamped hot spots, as compared to the previously reported scaling of E UT = 15.3(ρ/100) -1.5 kJ for untamped hotspots. The size of the compressed fuel mass and the focusability of the particles generated by the short pulse laser determines which scaling law to use for an experiment designed to achieve hot spot break even

  2. Maintenance features of the Compact Ignition Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Hager, E.R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is envisaged to be the next experimental machine in the US Fusion Program. Its use of deuterium/tritium fuel requires the implementation of remote handling technology for maintenance and disassembly operations. The reactor is surrounded by a close-proximity nuclear shield which is designed to permit personnel access within the test cell, one day after shutdown. With the shield in place, certain maintenance activities in the cell may be done hands-on. Maintenance on the reactor is accomplished remotely using a boom-mounted manipulator after disassembling the shield. Maintenance within the plasma chamber is accomplished with two articulated boom manipulators that are capable of operating in a vacuum environment. They are stored in a vacuum enclosure behind movable shield plugs

  3. Method of inserting fuel rod

    International Nuclear Information System (INIS)

    Kamimoto, Shuji; Imoo, Makoto; Tsuchida, Kenji.

    1991-01-01

    The present invention concerns a method of inserting a fuel rod upon automatic assembling, automatic dismantling and reassembling of a fuel assembly in a light water moderated reactor, as well as a device and components used therefor. That is, a fuel rod is inserted reliably to an aimed point of insertion by surrounding the periphery of the fuel rod to be inserted with guide rods, and thereby suppressing the movement of the fuel rod during insertion. Alternatively, a fuel rod is inserted reliably to a point of insertion by inserting guide rods at the periphery of the point of insertion for the fuel rod to be inserted thereby surrounding the point of insertion with the guide rods or fuel rods. By utilizing fuel rods already present in the fuel assembly as the guide rods described above, the fuel rod can be inserted reliably to the point of insertion with no additional devices. Dummy fuel rods are previously inserted in a fuel assembly which are then utilized as the above-mentioned guide rods to accurately insert the fuel rod to the point of insertion. (I.S.)

  4. Insertion in Persian

    Science.gov (United States)

    Kambuziya, Aliyeh Kord-e Zafaranlu; Dehghan, Masoud

    2011-01-01

    This paper investigates epenthesis process in Persian to catch some results in relating to vowel and consonant insertion in Persian lexicon. This survey has a close relationship to the description of epenthetic consonants and the conditions in which these consonants are used. Since no word in Persian may begin with a vowel, so that hiatus can't be…

  5. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  6. Device for facilitating the insertion and withdrawal of fuel assemblies from a nuclear reactor

    International Nuclear Information System (INIS)

    Andrea, C.; Siegel, E.A.

    1976-01-01

    A device is provided which is installed in a reactor prior to carrying out refueling operations and which accurately locates and isolates a selected core location to permit rapid withdrawal and insertion of fuel subassemblies at that location. A shielded plug designed to cooperate with the refueling apparatus is inserted into an access port in the reactor head. A structural shroud extends down from the plug and carries at its lower end a radially floating, hexagonal spreader tube with mechanisms to rotate it for angular alignment purposes and a linear drive for inserting it into the core. The upper end of the spreader tube serves as a guide for leading the fuel handling apparatus into alignment with the chosen subassembly

  7. Multimodal Friction Ignition Tester

    Science.gov (United States)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  8. Spectroscoping analysis of ignition in a spark ignition engine with jet-controlled combustion; Spektroskopische Untersuchung der Entflammung an einem Ottomotor mit strahlgefuehrtem Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Palaveev, S. [MOT Forschungs- und Entwicklungsgesellschaft fuer Motorentechnik, Optik und Thermodynamik GmbH, Karlsruhe (Germany); Buri, S.; Xander, B.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2007-07-01

    The gasoline direct injection engine is one of the most promising strategies today to reduce the fuel consumption and CO{sub 2}-emissions of spark-ignition engines. The commercial launch of that combustion system was possible only through the development of new optical measurement techniques, which have been a major contribution for understanding the basics of the combustion in a stratified mode. In terms of space and time, compared to the homogeneous approach, the air-fuel-ratio for a stratified mode may vary significantly. This fluctuation affects in a critical way the process of ignition and combustion. The knowledge of the air-fuel-ratio in the spark plug area both at time of ignition and in during the combustion is therefore critical for the development of this combustion system and it components. This paper presents the spark-emission spectroscopy as a non invasive optical technique for measuring the air-fuel-ratio {lambda} in the spark gap at time of ignition. (orig.)

  9. Progress Toward Ignition on the National Ignition Facility

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    2011-01-01

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is ∼0.5 cm diameter by ∼1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a ∼2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer

  10. Downhole television (DHTV) applications in borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.; Statler, R.D.; Peterson, E.W.

    1980-05-01

    The Borehole Plugging (BHP) Program is a part of the Sandia experimental program to support the Waste Isolation Pilot Plant (WIPP). The Sandia BHP program is an Office of Nuclear Waste Isolation (ONWI)-funded program designed to provide inputs to the generic plugging program while simultaneously acquiring WIPP-specific data. For this reason a close liaison is maintained between the Sandia WIPP project and the ONWI generic program. Useful technology developed within the Sandia BHP to support WIPP is made available and considered for further development and application to the generic Borehole Plugging and Repository Sealing Program at ONWI. The purpose of this report is to illustrate the usefulness of downhole television (DHTV) observations of a borehole to plan plugging operations. An indication of the wellbore conditions observed is provided. The equipment and setup procedure used in the evaluation of AEC-7 for the Bell Canyon test series are illustrated. A sequence of pictures at various depths as the DHTV rig is lowered through the wellbore is presented. Sample photographs taken with both dry and underwater lamps for illumination are included. The caliper logs for the same depth are included for comparison. General comments are provided on the illustrations

  11. FY-1979 progress report. Hydrotransport plugging study.

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Lombardo, N.J.

    1980-01-01

    The objective of the Hydrotransport Plugging Study is to investigate phenomena associated with predicting the onset and occurrence of plugging in pipeline transport of coal. This study addresses large particle transport plugging phenomena that may be encountered in run-of-mine operations. The project is being conducted in four tasks: review and analysis of current capabilities and available data, analytical modeling, experimental investigations, and unplugging and static start-up. This report documents work completed in FY-1979 as well as work currently in progress. A review of currently available prediction methods was completed. Applicability of the methods to large particle hydrotransport and the prediction of plugging was evaluated. It was determined that available models were inadequate, either because they are empirical and tuned to a given solid or because they are simplified analytical models incapable of accounting for a wide range of parameters. Complicated regression curve fit models lacking a physical basis cannot be extrapolated with confidence. Several specific conclusions were reached: Recent developments in mechanistic modeling, describing flow conditions at the limit of stationary deposition, provide the best basis for prediction and extrapolation of large particle flow. Certain modeled phenomena require further analytical and experimental investigation to improve confidence levels. Experimental work needs to be performed to support modeling and to provide an adequate data base for comparison purposes. No available model permits treatment of solids mixtures such as coal and rock.

  12. An Overview of the HomePlug AV2 Technology

    Directory of Open Access Journals (Sweden)

    Larry Yonge

    2013-01-01

    Full Text Available HomePlug AV2 is the solution identified by the HomePlug Alliance to achieve the improved data rate performance required by the new generation of multimedia applications without the need to install extra wires. Developed by industry-leading participants in the HomePlug AV Technical Working Group, the HomePlug AV2 technology provides Gigabit-class connection speeds over the existing AC wires within home. It is designed to meet the market demands for the full set of future in-home networking connectivity. Moreover, HomePlug AV2 guarantees backward interoperability with other HomePlug systems. In this paper, the HomePlug AV2 system architecture is introduced and the technical details of the key features at both the PHY and MAC layers are described. The HomePlug AV2 performance is assessed, through simulations reproducing real home scenarios.

  13. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  14. Review: laser ignition for aerospace propulsion

    Directory of Open Access Journals (Sweden)

    Steven A. O’Briant

    2016-03-01

    This paper aims to provide the reader an overview of advanced ignition methods, with an emphasis on laser ignition and its applications to aerospace propulsion. A comprehensive review of advanced ignition systems in aerospace applications is performed. This includes studies on gas turbine applications, ramjet and scramjet systems, and space and rocket applications. A brief overview of ignition and laser ignition phenomena is also provided in earlier sections of the report. Throughout the reading, research papers, which were presented at the 2nd Laser Ignition Conference in April 2014, are mentioned to indicate the vast array of projects that are currently being pursued.

  15. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  16. Progress Towards Ignition on the National Ignition Facility

    Science.gov (United States)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Enhanced Model for Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Rodney J. [Research Applications Corporation, Los Alamos, NM (United States)

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  18. An optimal design for millimeter-wide facture plugging zone

    Directory of Open Access Journals (Sweden)

    Yili Kang

    2015-01-01

    Full Text Available Lost circulation control in millimeter-wide fractures has been a challenge in well drilling all the time. Low pressure-bearing capacity of a plugging zone will result in excessive consumption of lost circulation materials (LCMs and extra down time. In this study, laboratory experiments were conducted on the plugging of millimeter-wide fractures to evaluate the plugging effects of different types of LCM including rigid granules, elastic particles and fiber. Maximum plugging pressure, total loss volume before sealing and plugging time were taken as the evaluation index of the LCM plugging effect. According to the experimental results, the synergistic plugging mechanisms of different LCM combinations were also analyzed. Experimental results showed that the total loss volume of the plugging zone formed by rigid and elastic particle combination was generally greater than 400 mL, and the maximum plugging pressure of the plugging zone formed by elastic particle and fiber combination was generally less than 6 MPa. In contrast, the plugging zone formed by the combination of the three types of LCMs has the maximum plugging pressure of up to 13 MPa and total loss volume before sealing of 75 mL. In the synergistic plugging process, rigid granules form a frame with high pressure-bearing capacity in the narrower parts of the fractures; elastic particles generate elastic force through elastic deformation to increase the friction between a fracture and a plugging zone to make the plugging zone more stable; fibers filling in the pore space between the particles increase the tightness and integrity of the plugging zone. The experimental results can provide guidance for the optimal design of LCMs used in the field.

  19. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  20. Effect of cloacal plugging on microbial recovery from partially processed broilers.

    Science.gov (United States)

    Musgrove, M T; Cason, J A; Fletcher, D L; Stern, N J; Cox, N A; Bailey, J S

    1997-03-01

    Experiments were performed to test the contribution of bacteria contained in the intestinal tract of broilers at the beginning of processing to counts on the exterior of modified New York-dressed carcasses. Thirty-two birds were processed for each of seven replications. Within each replication, batches of four birds were electrocuted, scalded, and picked, with batches alternating between treatment and control groups. Treated birds were cloacally plugged with rayon fiber tampons prior to electrocution to prevent escape of intestinal contents during scalding and picking. Control birds were processed in the same manner, except that cloacal plugs were inserted immediately after defeathering to reduce escape of intestinal contents during sampling. Gram-negative enteric bacteria and Campylobacter spp. were enumerated on carcasses by whole carcass rinse procedure and in cecal contents. Counts were converted to log10 and subjected to analysis of variance. Cecal levels of Gram-negative enterics were significantly higher for plugged birds, but there was not a significant difference between levels of cecal Campylobacter spp. between treatment groups. Plugging before electrocution resulted in significantly lower levels (2.5 vs 3.0 log10 cfu/mL) of Campylobacter spp. and Gram-negative enteric bacteria (3.0 vs 3.4 log10 cfu/mL) in carcass rinses of treatment birds than in those of controls. All carcasses were positive for Gram-negative enterics. Cloacal plugging resulted in significantly lower incidence of Campylobacter spp. carcass contamination as determined by chi-square. Intestinal carriage of both campylobacters and Gram-negative enteric bacteria appears to influence the microbial quality of the carcass during processing.

  1. Generic Diagnostic Port Integration for the Equatorial Port Plug of ITER

    International Nuclear Information System (INIS)

    Doceul, L.; Chappuis, Ph.; Portafaix, Ch.; Guillaume, T.; Bruyere, Ch.; Walker, Ch.; Ingesson, Ch.; Ciattaglia, E.; Salasca, S.; Eric, T.

    2006-01-01

    ITER requires an extensive set of diagnostic systems to provide several key functions such as protection of the device, input to plasma control systems and evaluation of the plasma performance. Most of these diagnostics system are to be integrated in port plugs, which are water cooled stainless steel structures (approximately: 50 t, 2 m x 2 m x 4 m) inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, supporting the diagnostic equipment (within the primary vacuum, on the primary vacuum boundary and in the port interspace). CEA (Commissariat l'Energie Atomique) has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug EQ01. The specific CEA contributions were to perform the general engineering, structural and thermal analysis. These detailed analysis have highlighted some design issues which were worked out through different solutions. This paper will contain the description of the engineering activities performed such as: - The conceptual design of the EQ01 and the associated diagnostics, such as the visible and infrared optical diagnostic, - The static mechanical calculations, taking into account the electromagnetic loads occurring during fast transient plasma events, - The dynamic calculation constituted of modal and transient analysis under the same electromagnetic loads to estimate the dynamic amplification factor due to the resonance phenomenon, - The thermal assessment under the neutronic load of the water-cooled stainless steel structure, - The seismic response of the port plug inside the vacuum vessel, taking into account the ground spectra and soil conditions in the Cadarache site. (author)

  2. Options for an ignited tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon β/sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed

  3. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  4. Fuel insert shuffler

    International Nuclear Information System (INIS)

    Naser, J.; Colley, R.; Gaiser, J.; Brookmire, T.; Engle, S.

    1987-01-01

    The potential for the use of expert systems in the nuclear power industry is widely recognized. The benefits of such systems include consistency of reasoning during off-normal situations when humans are under great stress, the reduction of time required to perform certain functions and the retention of human expertise in performing specialized functions. As the potential benefits are more and more demonstrated and realized, the development of expert systems becomes a necessary part of the nuclear power industry. The development of the fuel insert shuffle expert system is used as a case study. In fact, it shows that the potential benefits are realizable. Currently, the development of the insert shuffle plan requires three to four man-weeks of effort. Further modifications to this plan are sometimes required dur to either changes in the desired core load pattern or damaged fuel assemblies or inserts. These changes generally require two to four man-days of effort and could be stressful if they are critical path items on the outage schedule

  5. Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER

    International Nuclear Information System (INIS)

    Rosa, Elena V.; Rios, Luis; Queral, Vicente

    2013-01-01

    Highlights: ► UPP interface requirements in the plug RH extraction/insertion for ITER. ► Analyze of maximum misalignment between port duct and port cell. ► Friction study between plug skids and VV port/ramp rails during the plug transfer. ► Definition of the tolerance in the plug skids to avoid the plug jamming. ► Concepts of gripping tools based on one gripping point and avoiding force feedback. -- Abstract: EFDA finances a training programme called Goal Oriented Training Programme for Remote Handling (GOT RH), whose goal is to train engineers in Remote Handling for ITER. As part of this training programme, the conceptual design of the mechanical interface between Upper Port Plug (UPP) and Cask and Plug Remote Handling System (CPRHS) as well as the conceptual design of the needed tools for UPP Remote Handling is carried out. The paper presents the conceptual design of the UPP/Gripping Tool Interface. This includes the conceptual design of the gripping tool for introducing/removing the UPP in/from the ITER port and the mechanical features on both sides of the UPP/Gripping Tool Interface (e.g. alignment features, mechanical connectors, fasteners). In order to develop the design of the interface between UPP and CPRHS it is necessary to first identify the functional requirements of the Transfer Cask System (TCS) and the CPRHS, such as required degrees of freedom (DoF), required performances of system, geometrical constraints, loading conditions, alignment requirements, RAMI requirements. These requirements are the input data for the design of the interface between UPP and gripping tool and some of them are also described in the paper

  6. Installation of the backfill and plug test

    International Nuclear Information System (INIS)

    Gunnarsson, D.; Borgesson, L.; Hokmark, H.; Hohannesson, L.E.; Sanden, T.

    2003-01-01

    The Backfill and Plug Test is a full scale test of backfill material, backfilling technique and a tunnel plug. The main objectives of the Backfill and Plug Test are: - to develop and test different materials and compaction techniques for backfilling of tunnels excavated by blasting; - to test the function of the backfill and its interaction with the surrounding rock in a tunnel excavated by blasting; - to develop technique for building tunnel plugs and to test the function. The installation was made in the Swedish underground laboratory, Aspo HRL, during 1999. The inner part of the tunnel is not used for the test but was filled with drainage material. The test volume, which is about 28 m long, can be divided into the following three parts: - the inner part filled with backfill containing 30% bentonite; - the outer part filled with backfill without bentonite and bentonite blocks and pellets at the roof; - the plug. Permeable layers divide the test volume into 11 test sections. The permeable layers are used for increasing the water saturation rate in the backfill and for applying hydraulic gradients between the layers for studying the flow of water in the backfill and in the near field rock. The permeable layers were installed every 2.2 m and each layer is divided into three units in order to separately measure the flow close to the roof, in the central areas of the tunnel and close to the floor. The outer part ends with a wall of prefabricated concrete beams that were used for temporary support of the backfill during the casting of the plug. The upper volume close to the plug is filled with bentonite pellets and blocks consisting of 20% bentonite and 80% sand. The backfill is instrumented with 34 pore water pressure cells, 21 total pressure cells, 57 sensors for monitoring the water saturation and 13 gauges for measuring the local hydraulic conductivity. The water pressures in the permeable mats are measured in all sections. Four pressure cylinders, 2 in the roof

  7. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    Science.gov (United States)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  8. Flow Friction or Spontaneous Ignition?

    Science.gov (United States)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  9. PITR: Princeton Ignition Test Reactor

    International Nuclear Information System (INIS)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection

  10. Recent developments in plugging of steam generator tubes

    International Nuclear Information System (INIS)

    Buhay, S.; Abucay, R.C.

    1995-01-01

    Mechanical Plugging capability has been developed for Bruce Nuclear Generating Station (BNGS) steam generator (SG) tubes and Darlington Nuclear Generating Station (DNGS) SG tubes and tubesheet holes. The plug concept was a modified ABB/Combustion Engineering Inconel 690 plug with a nickel band, rolled into the tube or tubesheet hole from the primary side of the tubesheet. The qualification program included analytical justification of the plug body and experimental testing to verify the leak tightness of the rolled joint under conditions which meet or exceed all service or design requirements. Tools and procedures were developed and tested for manual and remote/robotic installation and removal of the mechanical plugs. Additionally, tools and procedures were developed to plug tubes/tubesheet holes at DNGS in the event the steam generator is recalled to service to act as a heat sink. A crew of Ontario Hydro personnel were trained and qualified for the installation of mechanical plugs for permanent and recall applications. During the DNGS Unit 4 spring 1995 outage, 6 tubes were plugged and the 'Recall Plugging Capability' was deployed and ready for use during a primary side SG tube removal. The mechanical plugs were installed manually with a typical 3 minute/plug in-bowl duration time with an average radiation dose of 12.5 mrem per plug. This compares favourably with manual plug welding during the same outage in the same SG bowl at approximately 15-30 minutes/plug in-bowl duration with an average radiation dose of 117 mrem/plug. (author)

  11. Plugging of feed inlet tube upstands with Ni/Ti shape memory alloy plugs - Heysham 1 power station

    International Nuclear Information System (INIS)

    Mathews, A.J.

    1988-01-01

    The paper contains a description of a new approach for Plugging feed inlet tubes of Gas-Cooled Reactors. Instead of utilizing the original explosive method plugging by fitting a shape memory alloy plug into the upstand is being described. (author)

  12. Confinement of ignition and yield on the National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-01-01

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented

  13. Büroo Ignite = Ignite office / Priit Põldme, Reet Sepp

    Index Scriptorium Estoniae

    Põldme, Priit, 1971-

    2013-01-01

    Büroo Ignite (Tatari 25, Tallinn) sisekujundusest. Sisearhitektid Priit Põldme ja Reet Sepp (SAB Joonprojekt). Arhitektid Heiki Taras ja Ahti Luhaäär (Arhitektibüroo Pilter ja Taras). Sisearhitekti ja ESLi aastapreemiate žürii esimehe Kaido Kivi arvamus

  14. The national ignition facility: path to ignition in the laboratory

    International Nuclear Information System (INIS)

    Moses, E.I.; Bonanno, R.E.; Haynam, C.A.; Kauffman, R.L.; MacGowan, B.J.; Patterson Jr, R.W.; Sawicki, R.H.; Van Wonterghem, B.M.

    2007-01-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at Lawrence Livermore National Laboratory. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition of deuterium-tritium plasmas in ICF (Inertial Confinement Fusion) targets and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. The NIF facility will consist of 2 laser bays, 4 capacitor areas, 2 laser switchyards, the target area and the building core. The laser is configured in 4 clusters of 48 beams, 2 in each laser bay. Four of the NIF beams have been already commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF has demonstrated on a single-beam basis that it will meet its performance goals and has demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed 4 important experiments for ICF and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition. (authors)

  15. Surface breakdown igniter for mercury arc devices

    Science.gov (United States)

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  16. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  17. Structure ignition assessment model (SIAM)\\t

    Science.gov (United States)

    Jack D. Cohen

    1995-01-01

    Major wildland/urban interface fire losses, principally residences, continue to occur. Although the problem is not new, the specific mechanisms are not well known on how structures ignite in association with wildland fires. In response to the need for a better understanding of wildland/urban interface ignition mechanisms and a method of assessing the ignition risk,...

  18. 14 CFR 33.69 - Ignitions system.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignitions system. 33.69 Section 33.69...

  19. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  20. CDF End Plug calorimeter Upgrade Project

    International Nuclear Information System (INIS)

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R ampersand D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R ampersand D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, γ and π 0 has been designed. Its performance requirements, R ampersand D results and mechanical design are discussed

  1. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the

  2. Fuel assembly insertion system

    International Nuclear Information System (INIS)

    Barkhurst, D.J.

    1987-01-01

    This patent describes a nuclear reactor facility having fuel bundles: a system for the insertion of a fuel bundle into a position where vertically arranged fuel bundles surround and are adjacent the system comprising, in combination, separate and individual centering devices secured to and disposed on top of each fuel bundle adjacent the position. Each such centering device has a generally box-like cap configuration on the upper end of each fuel bundle and includes: a top wall; first and second side walls, each secured along and upper edge to the top wall; a rear plate attached along opposite vertical edges to the first and second side walls; a front inclined wall joined along an upper edge to the top to the wall and attached along opposite vertical edges first and second side walls; pad means secured to the lower edge of the first and second side walls, the front inclined wall and the rear plate for mounting each centering device on top of an associated fuel bundle; pin means carried by at least two of the pad means engageable with an associated aperature for locating and laterally fixing each centering device on top of its respective fuel bundle. Each front inclined wall of each of the centering devices is orientated on top of its respective fuel bundle to slope upwardly and away from the position where upon downward insertion of a fuel bundle any contact between the lower end of the fuel bundle inserted with a front inclined wall of a centering device will laterally deflect the fuel bundle. Each centering device further includes a central socket means secured to the top wall, and an elongated handling pole pivotally attached to the socket

  3. Cost estimate for electrostatically plugged cusp reactor

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1977-01-01

    A preliminary design of an electrostatically plugged cusp reactor was presented in (UCRL-52142(1976)). The capital costs of the various components of this reactor are estimated and totaled for two different blanket configurations: one having an energy multiplication factor M = 1.2, and the other having M = 1.68. The unoptimized direct capital costs for these cases are found to be about 1400 and 950 $/kWe, respectively

  4. Borehole plugging by hydrothermal transport. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; White, W.B.

    1976-02-28

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250/sup 0/C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H/sub 2/O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO/sub 3/ and CaMg(CO/sub 3/)/sub 2/ in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes.

  5. Borehole plugging by hydrothermal transport. Final report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1976-01-01

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250 0 C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H 2 O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO 3 and CaMg(CO 3 ) 2 in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes

  6. Plug and abandonment operations and tool positioning

    OpenAIRE

    Saad, Idrees

    2014-01-01

    Master's thesis in Petroleum engineering With aging oil fields, the Norwegian petroleum authorities are focusing on Plug and Abandonment (P&A) plans. Therefore efforts are being made, by relevant authorities, to improve standards and procedures for the P&A operations. Regulations for UK part of the North Sea define the P&A operation plans and execution phases in a way that may help improve the standards on the Norwegian Continental Shelf. Halliburton like its competitors is focusing on ...

  7. Development of simplified rotating plug seal structure

    International Nuclear Information System (INIS)

    Ueta, M.; Ichimiya, M.; Kanaoka, T.; Sekiya, H.; Ueda, S.; Ishibashi, S.

    1991-01-01

    We studied a compact and simplified rotating plug seal structure and conducted experiments for key elements of the concept such us the mechanical seal structure and sodium deposit prevention system. Good characteristics were confirmed for the mechanical seal structure, which utilizes an elastomer seal and thin lathe bearing. Applicability of the density barrier concept was also confirmed as the sodium deposit prevention system. This concept can be applied to actual plants. (author)

  8. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  9. Borehole Plugging-Materials Development Program

    International Nuclear Information System (INIS)

    Gulick, C.W. Jr.

    1978-06-01

    This report discusses the background and first year's results of the grouting materials development program for plugging boreholes associated with the Nuclear Waste Isolation Pilot Plant. The grouts are to be pumpable, impermeable, and durable for many thousands of years. The work was done at the Concrete Laboratory of the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. The workability, strength, porosity, bonding, expansion, and permeability data are summarized and discussed. The work is continuing at WES

  10. Plasma ignition of LOVA propellants

    NARCIS (Netherlands)

    Driel, C.A. van; Boluijt, A.G.; Schilt, A.

    2010-01-01

    Ignition experiments were performed using a gun simulator which is equipped with a burst disk. This equipment facilitates the application of propellant loading densities which are comparable to those applied in regular ammunitions. For this study the gun simulator was equipped with a plasma jet

  11. AC ignition of HID lamps

    NARCIS (Netherlands)

    Sobota, A.; Kanters, J.H.M.; Manders, F.; Veldhuizen, van E.M.; Haverlag, M.

    2010-01-01

    Our aim was to examine the starting behaviour of mid-pressure argon discharges in pin-pin (point-to-point) geometry, typically used in HID lamps. We focused our work on AC ignition of 300 and 700 mbar Ar discharges in Philips 70W standard burners. Frequency was varied between 200 kHz and 1 MHz. In

  12. Discharge ignition near a dielectric

    NARCIS (Netherlands)

    Sobota, A.; Veldhuizen, van E.M.; Stoffels, W.W.

    2008-01-01

    Electrical breakdown in noble gas near a dielectric is an important issue in lighting industry. In order to investigate the influence of the dielectric on the ignition process, we perform measurements in argon, with pressure varying from 0.1 to 1 bar, using a pin–pin electrode geometry. Here, we

  13. Tank farm potential ignition sources

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks

  14. Data Insertion in Bitcoin's Blockchain

    Directory of Open Access Journals (Sweden)

    Andrew Sward

    2018-04-01

    Full Text Available This paper provides the first comprehensive survey of methods for inserting arbitrary data into Bitcoin’s blockchain. Historical methods of data insertion are described, along with lesser-known techniques that are optimized for efficiency. Insertion methods are compared on the basis of efficiency, cost, convenience of data reconstruction, permanence, and potentially negative impact on the Bitcoin ecosystem.

  15. Desensitizing nano powders to electrostatic discharge ignition

    International Nuclear Information System (INIS)

    Steelman, Ryan; Daniels, Michael A.

    2015-01-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  16. Remote Handling behind port plug in ITER

    International Nuclear Information System (INIS)

    Bede, O.; Neuberger, H.

    2006-01-01

    Different Test Blanket Modules (TBM) will be used in succession in the same equatorial ports of ITER. The remote handling operations for connection/disconnection of an interface between the port plug of the EU-HCPB-TBM and the port cell equipment are investigated with the goal to reach a quick and simple TBM exchange procedure. This paper describes the operations and systems which are required for connection of the TBM to its supply lines at this interface. The interface is located inside the free space of the port plug flange between the port plug shield and the bioshield of the port cell behind. The approach of the operation place is only available through a narrow gate in the bioshield opened temporarily during maintenance periods. This gate limits the dimensions of the whole system and its tools. The current design of the EU-HCPB-TBM foresees up to 9 supply lines which have to be connected inside the free space of one half of the port plug flange. The connection operations require positioning and adjustment of the tools for each pipe separately. Despite the strict circumstances it is still possible to find such an industrial jointed-arm robot with sufficient payload, which can penetrate into the working area. A mechanical system is necessary to move the robot from its storing place in the hot cell to the port plug on 6 m distance. Each operation requires different end-of-arm tools. The most special one is a pipe positioner tool, which can position and pull the pipe ends to each other and align the tool before welding and hold them in proper position during the welding process. Weld seams can be made by orbital welding tool. The pipe positioner tool has to provide place for welding tool. Using of inbore tool is impossible because pipes have no open ends where the tool could leave it. Orbital tool must be modified to meet requirements of remote handling because it is designed for human handling. The coolant is helium, so for eliminating the leak of helium it is

  17. Physical studies of fast ignition in China

    International Nuclear Information System (INIS)

    He, X T; Cai, Hong-bo; Wu, Si-zhong; Cao, Li-hua; Zhang, Hua; He, Ming-qing; Chen, Mo; Wu, Jun-feng; Zhou, Cang-tao; Zhou, Wei-Min; Shan, Lian-qiang; Wang, Wei-wu; Zhang, Feng; Bi, Bi; Zhao, Zong-qing; Gu, Yu-qiu; Zhang, Bao-han; Wang, Wei; Fang, Zhi-heng; Lei, An-le

    2015-01-01

    Fast ignition approach to inertial confinement fusion is one of the important goals today, in addition to central hot spot ignition in China. The SG-IIU and PW laser facilities are coupled to investigate the hot spot formation for fast ignition. The SG-III laser facility is almost completed and will be coupled with tens kJ PW lasers for the demonstration of fast ignition. In recent years, for physical studies of fast ignition, we have been focusing on the experimental study of implosion symmetry, M-band radiation preheating and mixing, advanced fast ignition target design, and so on. In addition, the modeling capabilities and code developments enhanced our ability to perform the hydro-simulation of the compression implosion, and the particle-in-cell (PIC) and hybrid-PIC simulation of the generation, transport and deposition of relativistic electron beams. Considerable progress has been achieved in understanding the critical issues of fast ignition. (paper)

  18. Mechanism of Randall’s Plugs Development

    Directory of Open Access Journals (Sweden)

    Felix Grases

    2017-09-01

    Full Text Available Mechanism of formation and development of intraluminal concretion, also called Randall's plug, extracted from a female patient forming calcium oxalate dihydrate (COD calculi was examined. Some of these calculi were connected to the papillary tip, and had connections with the interior of the papilla with finger-like extensions in the collecting duct (CD. The intraluminal concretion consisted of inter-grown COD crystals of irregular size (30–100 μm, approximately 5% of biological hydroxyapatite (BHAP and an organic matter. Urine of the patient was moderately supersaturated with respect to COD and amorphous calcium phosphate (ACP. Model of kidney, recently refined by Robertson, was used in calculations. Calculated Reynolds number indicated that the flow of liquid through tubules was purely laminar with parabolic velocity profile. COD crystals formed at the beginning of ascending loop of Henle by heterogeneous nucleation. Concentration of COD crystals in urine was limited and considered equal to concentration of crystals during crystaluria. The free particle and the fixed particle mechanisms were considered. The free particle mechanism assumes formation of a single crystal or agglomerate of crystals blocking the CD by virtue of size. The growth of COD crystals at concrete urinary supersaturation was too slow for a single crystal to attain size with settling velocity faster than the translation flow rate of liquid. Hydrodynamic shear caused aggregation of COD solid particles dispersed in a liquid flowing in the nephron. Number of COD crystals present in urine was not sufficient for formation of fractal agglomerate blocking the Bellini duct. Similarly, a fractal agglomerate of urinary phosphate present in the form of Posner's clusters was not large enough to obstruct the Bellini duct. The opening of the CD could not be obstructed by a single crystal of COD or fractal agglomerate composed of either COD crystals or calcium phosphate clusters, formed

  19. Final design of the generic equatorial port plug structure for ITER diagnostic systems

    International Nuclear Information System (INIS)

    Udintsev, V.S.; Maquet, P.; Alexandrov, E.; Casal, N.; Cuenca, D.; Drevon, J.-M.; Feder, R.; Friconneau, J.P.; Giacomin, T.; Guirao, J.; Iglesias, S.; Josseaume, F.; Levesy, B.; Loesser, D.; Ordieres, J.; Quinn, E.; Pak, S.; Penot, C.; Pitcher, C.S.; Portalès, M.

    2015-01-01

    The Diagnostic Generic Equatorial Port Plug (GEPP) is designed to be common to all equatorial port-based diagnostic systems. It is designed to survive throughout the lifetime of ITER for 20 years, 30,000 discharges, and 3000 disruptions. The EPP structure dimensions (without Diagnostic First Walls and Diagnostic Shield Modules) are L2.9 × W1.9 × H2.4 m"3. The length of the fully integrated EPP is 3174 mm. The weight of the EPP structure is about 15 t, whereas the total weight of the integrated EPP may be up to 45 t. The EPP structure provides a flexible platform for a variety of diagnostics. The Diagnostic Shield Module assemblies, or drawers, allow a modular approach with respect to diagnostic integration and maintenance. In the nuclear phase of ITER operations, they will be remotely inserted into the EPP structure in the Hot Cell Facility. The port plug structure must also contribute to the nuclear shielding, or plugging, of the port and further contain circulated water to allow cooling during operation and heating during bake-out. The Final Design of the GEPP has been successfully passed in late 2013 and is now heading toward manufacturing. The final design of the GEPP includes interfaces, manufacturing, R&D, operation and maintenance, load cases and analysis of failure modes.

  20. A polar-drive shock-ignition design for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

    2013-05-15

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  1. Shock ignition targets: gain and robustness vs ignition threshold factor

    Science.gov (United States)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  2. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  3. Thermoplasmonic Ignition of Metal Nanoparticles.

    Science.gov (United States)

    Mutlu, Mehmet; Kang, Ju-Hyung; Raza, Søren; Schoen, David; Zheng, Xiaolin; Kik, Pieter G; Brongersma, Mark L

    2018-03-14

    Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.

  4. The Ignition Physics Study Group

    International Nuclear Information System (INIS)

    Sheffield, J.

    1987-01-01

    In the US magnetic fusion program there have been relatively few standing committees of experts, with the mandate to review a particular sub-area on a continuing basis. Generally, ad hoc committees of experts have been assembled to advise on a particular issue. There has been a lack of broad, systematic and continuing review and analysis, combining the wisdom of experts in the field, in support of decision making. The Ignition Physics Study Group (IPSG) provides one forum for the systematic discussion of fusion science, complementing the other exchanges of information, and providing a most important continuity in this critical area. In a similar manner to the European program, this continuity of discussion and the focus provided by a national effort, Compact Ignition Tokamak (CIT), and international effort, Engineering Test Reactor (ETR), are helping to lower those barriers which previously were an impediment to rational debate

  5. A study on stress corrosion cracking of explosive plugged part

    International Nuclear Information System (INIS)

    Kaga, Seiichi; Fujii, Katsuhiro; Yamamoto, Yoshiaki; Sakuma, Koosuke; Hibi, Seiji; Morimoto, Hiroyoshi.

    1986-01-01

    Studies on the stress corrosion cracking of explosive plugged part are conducted. SUS 304 stainless steel is used as testing material. The distribution of residual stress in plug and tube plate after plugging is obtained. The effect of residual stress on the stress corrosion cracking is studied. Residual stress in tube plate near the plug is compressive and stress corrosion cracking dose not occur in the tube plate there, and it occurs on the inner surface of plug because of residual tensile stress in axial direction of the plug. Stress corrosion test in MgCl 2 solution under constant load is conducted. The susceptibility to stress corrosion cracking of the explosive bonded boundary is lower than that of base metal because of greater resistance to plastic deformation. Stress corrosion test in high temperature and high pressure pure water is also conducted by means of static type of autoclave but stress corrosion cracking does not occur under the testing condition used. (author)

  6. Low current approach to ignition

    International Nuclear Information System (INIS)

    Cenacchi, G.; Sugiyama, L.; Airoldi, A.; Coppi, B.

    1996-01-01

    The open-quotes standardclose quotes path to achieve ignition conditions so far has been that of producing plasmas with the maximum current and poloidal field that axe compatible with the applied toroidal field and the geometry of the adopted configuration (the low q a approach.) The other approach is that motivated by recent experiments with reversed shear configurations, with relatively low currents and high fields corresponding to high values of q a (e-g., q a ≅ 6). While the first approach can be pursued with ohmic heating alone, the second one necessarily involves an auxiliary heating system. One of the advantages of this approach is that the onset of large scale internal modes can be avoided as q(ψ) is kept above 1 over the entire plasma column. Since quite peaked density profiles are produced in the regimes where enhanced confinement is observed, the α-particle power levels for which ignition can be reached and therefore the thermal wall loading on the first wall, can be reduced relatively to the standard, low q a , approach. The possibility is considered that ignition is reached in the reversed shear, high q a , regime and that this is followed by a transition to non-reversed profiles, or even the low q a regime, assuming that the excitation of modes involving magnetic reconnection will not undermine the needed degree of confinement. These results have been demonstrated by numerical transport simulation for the Ignitor-Ult machine, but are applicable to all high field ignition experiments

  7. The remote handling compatibility analysis of the ITER generic upper port plug structure

    Energy Technology Data Exchange (ETDEWEB)

    Ronden, D.M.S., E-mail: d.m.s.ronden@differ.nl [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Dammann, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Elzendoorn, B. [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Giacomin, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Heemskerk, C. [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Loesser, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Maquet, P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Oosterhout, J. van [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2014-10-15

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements.

  8. The remote handling compatibility analysis of the ITER generic upper port plug structure

    International Nuclear Information System (INIS)

    Ronden, D.M.S.; Dammann, A.; Elzendoorn, B.; Giacomin, T.; Heemskerk, C.; Loesser, D.; Maquet, P.; Oosterhout, J. van; Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J.

    2014-01-01

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements

  9. Mucous plug syndrome. A pulmonary embolism mimic

    International Nuclear Information System (INIS)

    Bray, S.T.; Johnstone, W.H.; Dee, P.M.; Pope, T.L. Jr.; Teates, C.D.; Tegtmeyer, C.J.

    1984-01-01

    Reported are ten instances of major bronchial obstruction by mucous plugs in eight patients during which the clinical features resembled pulmonary embolism. Perfusion lung studies showed significantly diminished perfusion of the involved portions of the lungs. The chest radiographs generally did not, however, reflect the severity of the airway obstruction and in some instances were completely normal. The ventilation studies indicated the extent and severity of the obstruction and matched with the perfusion scans. Pulmonary arteriograms were performed in three patients and gave direct evidence of focally diminished lung perfusion without embolism. The physiologic mechanisms underlying the condition are discussed

  10. Plug ‘n’ Play with DNA

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Andreasen, Elisa W.; Korgaard, Jaide V.

    Synthetic biology has evolved dramatically within the past decade, which calls for a revolution of the Standard Assembly method that makes the foundation of BioBricks. We believe that iGEM should be about fast assembly of BioBricks, where any thinkable part, device or existing BioBrick can be com...... be combined for any type of organism within one day. Therefore, we have designed a new BioBrick Kit based on a novel assembly standard; called “Plug 'n' Play with DNA”....

  11. Thermographic study of the preheating plugs in diesel engines

    OpenAIRE

    Royo Pastor, Rafael; Albertos Arranz, M.A.; CÁRCEL CUBAS, JUAN ANTONIO; Payá Herrero, Jorge

    2012-01-01

    The use of direct injection diesel engines has been widely applied during the past ten years. In such engines, the preheating plugs are a key element which has a significant contribution in the pollutant emissions. In this paper, two different plug designs from Renault are analyzed. The new plug reduces substantially the required electrical consumption. Nevertheless, the pollutant emissions are higher (fundamentally CO and HCs) and hereby a thorough analysis is required to underst...

  12. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  13. Knowledge-Based System to Support Plug Load Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical plug loads comprise an increasingly larger share of building energy consumption as improvements have been made to Heating, Ventilation, and Air...

  14. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    OpenAIRE

    Hadryś D.

    2016-01-01

    New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF) in weld metal deposit...

  15. An Overview of the HomePlug AV2 Technology

    OpenAIRE

    Yonge, Larry; Abad, Jose; Afkhamie, Kaywan; Guerrieri, Lorenzo; Katar, Srinivas; Lioe, Hidayat; Pagani, Pascal; Riva, Raffaele; Schneider, Daniel M.; Schwager, Andreas

    2013-01-01

    HomePlug AV2 is the solution identified by the HomePlug Alliance to achieve the improved data rate performance required by the new generation of multimedia applications without the need to install extra wires. Developed by industry-leading participants in the HomePlug AV Technical Working Group, the HomePlug AV2 technology provides Gigabit-class connection speeds over the existing AC wires within home. It is designed to meet the market demands for the full set of future in-home networking co...

  16. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  17. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    . This is not very well explained by apply-ing conventional thermal ignition theory. An experimental study at lab scale, using pinewood as an example fuel, was conducted to examine self-heating and self-ignition. Supplemental experiments were performed with bituminous coal. Instead of characterizing ignition......Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...... temperature in terms of sample volume, mass-scaling seems more physically correct for the self-ignition of solids. Findings also suggest that the transition between self-heating and self-ignition is controlled both by the availability of reactive material and temperature. Comparison of experiments at 20...

  18. Laser Ignition Microthruster Experiments on KKS-1

    Science.gov (United States)

    Nakano, Masakatsu; Koizumi, Hiroyuki; Watanabe, Masashi; Arakawa, Yoshihiro

    A laser ignition microthruster has been developed for microsatellites. Thruster performances such as impulse and ignition probability were measured, using boron potassium nitrate (B/KNO3) solid propellant ignited by a 1 W CW laser diode. The measured impulses were 60 mNs ± 15 mNs with almost 100 % ignition probability. The effect of the mixture ratios of B/KNO3 on thruster performance was also investigated, and it was shown that mixture ratios between B/KNO3/binder = 28/70/2 and 38/60/2 exhibited both high ignition probability and high impulse. Laser ignition thrusters designed and fabricated based on these data became the first non-conventional microthrusters on the Kouku Kousen Satellite No. 1 (KKS-1) microsatellite that was launched by a H2A rocket as one of six piggyback satellites in January 2009.

  19. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  20. Insertion device and method for accurate and repeatable target insertion

    Science.gov (United States)

    Gubeli, III, Joseph F.; Shinn, Michelle D.; Bevins, Michael E.; Dillon-Townes, Lawrence; Neil, George R.

    2017-07-04

    The present invention discloses a device and a method for inserting and positioning a target within a free electron laser, particle accelerator, or other such device that generates or utilizes a beam of energy or particles. The system includes a three-point registration mechanism that insures angular and translational accuracy and repeatability of positioning upon multiple insertions within the same structure.

  1. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  2. Ford C-Max plug-in hybrid; Ford C-Max mit Plug-in-Hybridtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, Andreas; D' Annunzio, Julie; Iorio, Rob [Ford Motor Company, Dearborn, MI (United States); Schmitz, Peter [Ford-Forschungszentrum Aachen GmbH, Aachen (Germany)

    2013-03-01

    Ford provides consumers a broad choice of electrified vehicles globally, including full hybrids, plug-in hybrids and all-electric vehicles. The all-new 2013 model year C-Max Energi Plug-in Hybrid utilises the third generation of Ford hybrid technology. This article discusses the hybrid powersplit architecture and components, as well as the charging capability and human-machine interfaces, used in the C-Max Energi Plug-In Hybrid. (orig.)

  3. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  4. Studies into laser ignition of confined pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.R.; Russell, D.A. [Centre for Applied Laser Spectroscopy, DASSR, Defence Academy, Cranfield University, Shrivenham, Swindon (United Kingdom)

    2008-10-15

    Ignition tests were carried out on three different pyrotechnics using laser energy from the multimode output from an Ar-Ion laser (av) at 500 nm and a near-IR diode laser pigtailed to a fibre optic cable and operating at 808 nm. The pyrotechnics investigated were: G20 black powder, SR44 and SR371C. The confined ignition tests were conducted in a specially designed ignition chamber. Pyrotechnics were ignited by a free space beam entering the chamber through an industrial sapphire window in the case of the Ar-ion laser. For the NIR diode laser, fibre was ducted through a block into direct contact with the pyrotechnic. The Ar-Ion laser was chosen as this was found to ignite all three pyrotechnics in the unconfined condition. It also allowed for a direct comparison of confined/unconfined results to be made. The threshold laser flux densities to initiate reproducible ignitions at this wavelength were found to be between {proportional_to}12.7 and {proportional_to}0.16 kW cm{sup -2}. Plotted on the ignition maps are the laser flux densities versus the start of ignition times for the three confined pyrotechnics. It was found from these maps that the times for confined ignition were substantially lower than those obtained for unconfined ignition under similar experimental conditions. For the NIR diode laser flux densities varied between {proportional_to}6.8 and {proportional_to}0.2 kW cm{sup -2}. The minimum ignition times for the NIR diode laser for SR371C ({proportional_to}11.2 ms) and G20 ({proportional_to}17.1 ms) were faster than those achieved by the use of the Ar-ion laser. However, the minimum ignition time was shorter ({proportional_to}11.7 ms) with the Ar-ion laser for SR44. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Progress towards ignition on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  6. Electron Shock Ignition of Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  7. Modelling piloted ignition of wood and plastics

    International Nuclear Information System (INIS)

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-01-01

    Highlights: ► We model piloted ignition times of wood and plastics. ► The model is applied on a packed bed. ► When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  8. Biomass plug development and propagation in porous media.

    Science.gov (United States)

    Stewart, T L; Fogler, H S

    2001-02-05

    Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright

  9. Lithium insertion in nanostructured titanates

    NARCIS (Netherlands)

    Borghols, W.J.H.

    2010-01-01

    Upon nano-sizing of insertion compounds several significant changes in Li-insertion behavior have been observed for sizes below approximately 50 nm. Although the origins of the phenomena are interrelated, the changes can be divided in three main observations. (1) The formation of new phases, leading

  10. Chest tube insertion - series (image)

    Science.gov (United States)

    Chest tubes are inserted to drain blood, fluid, or air and allow full expansion of the lungs. The tube is placed in the pleural space. The area where the tube will be inserted is numbed (local anesthesia). The patient may also be sedated. The chest ...

  11. Developing quality standards for physical properties of mineral wool plugs

    NARCIS (Netherlands)

    Blok, C.; Berg, van den C.C.; Winkel, van A.

    2014-01-01

    The KIWA certification guidelines for mineral wool products contain standards for slabs and blocks. Propagators would like to introduce quality standards for mineral wool plugs as well. Main concerns were effects of too dense plugs on plant growth, and handling problems with too fluffy or broken

  12. Plug and Play Process Control of a District Heating System

    DEFF Research Database (Denmark)

    Trangbaek, Klaus; Knudsen, Torben; Skovmose Kallesøe, Carsten

    2009-01-01

    The main idea of plug and play process control is to initialise and reconfigure control systems automatically. In this paper these ideas are applied to a scaled laboratory model of a district heating pressure control system.  First of all this serves as a concrete example of plug and play control...

  13. Capillarity Induced Negative Pressure of Water Plugs in Nanochannels

    NARCIS (Netherlands)

    Tas, Niels Roelof; Mela, P.; Kramer, Tobias; Berenschot, Johan W.; van den Berg, Albert

    2003-01-01

    We have found evidence that water plugs in hydrophilic nanochannels can be at significant negative pressure due to tensile capillary forces. The negative pressure of water plugs in nanochannels induces bending of the thin channel capping layer, which results in a visible curvature of the liquid

  14. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  15. Analyzing the Risk of Well Plug Failure after Abandonment

    International Nuclear Information System (INIS)

    Mainguy, M.; Longuemare, P.; Audibert, A.; Lecolier, E.

    2007-01-01

    All oil and gas wells will have to be plugged and abandoned at some time. The plugging and abandonment procedure must provide an effective isolation of the well fluids all along the well to reduce environmental risks of contamination and prevent from costly remedial jobs. Previous works have analyzed the plug behavior when submitted to local pressure or thermal changes but no work has looked to the effects of external pressure, thermal and stress changes resulting from a global equilibrium restoration in a hydrocarbon reservoir once production has stopped. This work estimates those changes after abandonment on a reservoir field case using a reservoir simulator in conjunction with a geomechanical simulator. Such simulations provide the pressure and thermal changes and the maximum effective stress changes in the reservoir cap rock where critical plugs are put in place for isolating the production intervals. These changes are used as loads in a well bore stress model that explicitly models an injector well and predict stress rearrangements in the plug after abandonment. Results obtained with the well bore stress model for a conventional class G cement plug show that the main risk of failure is tensile failure because of the low tensile strength of the cement. Actually, soft sealing materials or initially pre-stressed plug appears to be more adapted to the downhole conditions changes that may occurs after well plugging and abandonment. (authors)

  16. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  17. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-15

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  18. Eddy current inspection of steam generator tubing plugs

    International Nuclear Information System (INIS)

    Cullen, W.K.

    1990-01-01

    In response to the issues raised regarding the integrity of nuclear steam generator tubing plugs manufactured from certain heats of Inconel 600, Westinghouse engineers have developed, qualified and implemented an eddy current inspection system for the in-place assessment of these plugs. The heart of the system is a robotic and effector which delivers an eddy current sensor through the reduced diameter of the plug expander and actuates the coil to physical contact with the expanded inside bore of the plug. Once deployed, the eddy current sensor is rotated along a helical path to produce a detailed scan of the plug surface above the final position of the expander. This testing produces an isometric display of degradation due to primary water stress corrosion cracking, on the inside surface of the plug. To date, successful inspections have been conducted at two nuclear units with two different robotic delivery systems. While designed specifically for mechanical plugs with a bottle bore cavity, the inspection system can also be used for expanded straight bore plugs. Details of the inspection system along with a discussion of qualification activities and actual field results are presented in this paper

  19. Proceedings of the workshop on borehole and shaft plugging

    International Nuclear Information System (INIS)

    1980-01-01

    Geologic disposal of radioactive waste relies on the capability of many geological formations to provide long-term containment of the waste. The disposal operations could significantly modify the original conditions. In addition to the underground excavations and the thermal input of the waste their is the problem of boreholes and shafts that constitute a potential by-pass of the geological barriers. It is therefore essential to develop techniques and procedures for effective plugging of all penetrations connecting the disposal zone with the surface or with water bearing layers. It will be necessary to produce plugs which effectively restore the original characteristics of the isolating formations. In addition these plugs must be chemically stable in the existing geochemical environment in order to remain effective for very long periods of time and the plugs of disposal holes can be exposed to high temperatures and radiation doses. All countries with geologic disposal programmes will have to face the problem of borehole and shapt plugging

  20. Development of sealing plug for sweep gas line

    International Nuclear Information System (INIS)

    Kikuchi, Taiji; Yamada, Hirokazu; Saitoh, Takashi; Nakamichi, Masaru; Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2004-03-01

    On the irradiation capsule for neutron irradiation test of the tritium breeder, the sealing plug is necessary to prevent a leak of tritium gas when the tritium breeder is picked up from the irradiation capsule after irradiation test. However, the general valve and plug cannot apply to sealing of the sweep gas line because of the following factors, the neutron irradiation effect, limited space in the irradiation capsule, high sealing efficiency, simple method and operation for control. Therefore, the sealing plug for sweep gas line has to be developed. This paper reports the development of the sealing plug for sweep gas line and the operating procedure of the sealing plug in the irradiation capsule. (author)

  1. A Genre Classification Plug-in for Data Collection

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue; Arenas-García, Jerónimo; Petersen, Kaare Brandt

    2006-01-01

    This demonstration illustrates how the methods developed in the MIR community can be used to provide real-time feedback to music users. By creating a genre classifier plug-in for a popular media player we present users with relevant information as they play their songs. The plug-in can furthermor...... be used as a data collection platform. After informed consent from a selected set of users the plug-in will report on music consumption behavior back to a central server.......This demonstration illustrates how the methods developed in the MIR community can be used to provide real-time feedback to music users. By creating a genre classifier plug-in for a popular media player we present users with relevant information as they play their songs. The plug-in can furthermore...

  2. Borehole plugging by compaction process. Final report

    International Nuclear Information System (INIS)

    Fernandez, R.; MacGowan, C.; Nolan, E.; Morey, R.; Palty, A.

    1976-08-01

    The requirements of an overall program to preserve the integrity of a repository formation are documented. The repository is intended to be in stable earth stratum used as a safe and permanent storage area for nuclear waste material. These wastes represent an environmental hazard for a period of up to 200,000 years. An engineering analysis, a reliability and quality-assurance program, and a development program for borehole plugging by compaction process, using natural earthen materials, are presented. Part 1 provides the engineering analysis of downhole compaction methods and related instrumentation along with a recommended development plan from concept through a pilot in-situ experiment. Part 2 provides a reliability and quality-assurance program from laboratory testing of materials through an in-situ experiment

  3. Mitigation of Syngas Cooler Plugging and Fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bockelie, Michael J. [Reaction Engineering International, Salt Lake City, UT (United States)

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  4. Plugging criteria for WWER SG tubes

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L.; Wilam, M. [Vitkovice NPP Services (Switzerland); Herman, M. [Vuje, Trnava (Slovakia)

    1997-12-31

    At operated Czech and Slovak nuclear power plants the 80 % criteria for crack or other bulk defect depth is used for steam generator heat exchanging tubes plugging. This criteria was accepted as the recommendation of designer of WWER steam generators. Verification of this criteria was the objective of experimental program performed by Vitkovice, J.S.C., UJV Rez, J.S.C. and Vuje Trnava, J.S.C .. Within this program the following factors were studied: (1) Influence of secondary water chemistry on defects initiation and propagation, (2) Statistical evaluation of corrosion defects progression at operated SG, and (3) Determination of critical pressure for tube rupture as a function of eddy current indications. In this presentation items (2) and (3) are considered.

  5. Experimental plug and play quantum coin flipping

    Science.gov (United States)

    Pappa, Anna; Jouguet, Paul; Lawson, Thomas; Chailloux, André; Legré, Matthieu; Trinkler, Patrick; Kerenidis, Iordanis; Diamanti, Eleni

    2014-04-01

    Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications.

  6. Plugging criteria for WWER SG tubes

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L; Wilam, M [Vitkovice NPP Services (Switzerland); Herman, M [Vuje, Trnava (Slovakia)

    1998-12-31

    At operated Czech and Slovak nuclear power plants the 80 % criteria for crack or other bulk defect depth is used for steam generator heat exchanging tubes plugging. This criteria was accepted as the recommendation of designer of WWER steam generators. Verification of this criteria was the objective of experimental program performed by Vitkovice, J.S.C., UJV Rez, J.S.C. and Vuje Trnava, J.S.C .. Within this program the following factors were studied: (1) Influence of secondary water chemistry on defects initiation and propagation, (2) Statistical evaluation of corrosion defects progression at operated SG, and (3) Determination of critical pressure for tube rupture as a function of eddy current indications. In this presentation items (2) and (3) are considered.

  7. Plugging of drinking water flow into horizontal high diameter pipeline with artificial ice plug

    International Nuclear Information System (INIS)

    Gyongyosi, T.; Valeca, S.; Panaitescu, V. N.; Prisecaru, I.

    2013-01-01

    Local isolation of a pipeline section, placed horizontally into a loop of drinking water supply network, can be made with an ice plug resulting after controlled process inside of pipeline without stopping the consumer supply. The technique is applying in order to perform repairs or items replacement, without closing the drinking water supply network at the same time decreasing the fluid loss resulted after discharge of the affected loop. In facts, the technique is simple one and assumes to apply a special device sized for each case using a freezing liquid agent injected continuously. The paper contains a constructive description of the experimental technological facilities and of the experimental model for ice plugging device used. The test, the first results get and some conclusion are following. The paper is dedicated to the specialists working in the research and technological engineering. (authors)

  8. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheppy, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  9. Physical characteristics of welding arc ignition process

    Science.gov (United States)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  10. Modelling piloted ignition of wood and plastics

    NARCIS (Netherlands)

    Blijderveen, M.; Bramer, Eduard A.; Brem, Gerrit

    2012-01-01

    To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The

  11. Heating and ignition of small wood cylinders

    Science.gov (United States)

    Wallace L. Fons

    1950-01-01

    The literature provides limited information on the time of ignition of wood under conditions of rapid heating such as occur in forest and structure fires. An investigation was made of ease of ignition as affected by such physical properties of wood as initial temperature, size, and moisture content and by temperature of ambient gas or rate of heating. Temperature-time...

  12. Isochoric Implosions for Fast Ignition

    International Nuclear Information System (INIS)

    Clark, D S; Tabak, M

    2007-01-01

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hot spot ignition counterpart [e.g., S. Atzeni, Phys. Plasmas 6, 3316 (1999); M. Tabak et al., Fusion Sci. and Technology 49, 254 (2006)]. These gain models, however, all assume nearly uniform-density fuel assemblies. In contrast, conventional ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hot spot. Hence, to realize fully the advantages of FI, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hot spots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters and at the scales and energies of interest in ICF. A direct-drive implosion scheme is presented which meets all of these requirements and reaches a nearly isochoric assembled density of 300 g=cm 3 and areal density of 2.4 g=cm 2 using 485 kJ of laser energy

  13. Cyclic variation of heat flux on spark plug; Tenka plug bu no netsuryusoku hendo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Sasaki, T.; Urata, Y. [Honda Motor Co. Ltd., Tokyo (Japan); Kagawa, J.; Matsutani, W. [NGK Spark Plug Co. Ltd., Nagoya (Japan)

    1998-02-25

    This paper examines the relationship between the magnitude of the heat flux to the spark plug ground electrode, averaged over an 80` crank angle (CA) of early compression stroke, and the initial burning rate, defined as the CA at which 5% of mass is burned. The heat flux was measured by a thin-film thermocouple with the hot junction on the surface of ground electrode. The results demonstrate that faster initial burning rate correlated well with increasing heat flux from the spark plug to the mixture. The difference in the magnitude and direction of the heat flux is associated with the amount of residual gas concentration and thus the results show the effect of residual gas concentration. The cycle-averaged heat flux from the hot junction is 0.367 MW/m{sup 2}, corresponding to a total heat flow of 20 W from the total surface area of ground electrode. This value is about an order of magnitude larger than that previously reported in the literature for locations away from the spark plug, e. g. at the cylinder wall. 11 refs., 9 figs., 1 tab.

  14. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System

    Directory of Open Access Journals (Sweden)

    Rafał Ślefarski

    2018-02-01

    Full Text Available Application of a pre-combustion chamber (PCC ignition system is one of the methods to improve combustion stability and reduce toxic compounds emission, especially NOx. Using PCC allows the operation of the engine at lean combustion conditions or the utilization of low calorific gaseous fuels such as syngas or biogas. The paper presents the results of an experimental study of the combustion process in two stroke, large bore, stationary gas engine GMVH 12 equipped with two spark plugs (2-SP and a PCC ignition system. The experimental research has been performed during the normal operation of the engine in an industrial compression station. It was observed that application of PCC provides less cycle-to-cycle combustion variation (more than 10% and nitric oxide and carbon monoxide emissions decreased to 60% and 26% respectively. The total hydrocarbon (THC emission rate is 25% higher for the engine equipped with PCC, which results in roughly two percent engine efficiency decrease. Another important criterion of engine retrofitting was the PCC location in the engine head. The experimental results show that improvement of engine operating parameters was recorded only for a configuration with one port offset by 45° from the axis of the main chamber. The study of the ignition delay angle and equivalence ratio in PCC did not demonstrate explicit influence on engine performance.

  15. Research of combustion in older generation spark-ignition engines in the condition of use leaded and unleaded petrol

    Directory of Open Access Journals (Sweden)

    Bulatović Željko M.

    2014-01-01

    Full Text Available This paper analyzes the potential problems in the exploitation of the older generation of spark-ignition engines with higher octane number of petrol (unleaded petrol BMB 95 than required (leaded petrol MB 86. Within the experimental tests on two different engines (STEYR-PUCH model 712 and GAZ 41 by applying piezoelectric pressure sensors integrated with the engine spark plugs, acceleration sensors (accelerometers and special electronic block connected with distributor, show that the cumulative first and second theoretical phase of combustion when petrol of higher octane number (BMB 95 is used lasts slightly longer than when the low-octane petrol MB 86 is used. For new petrol (BMB 95 higher optimal angles of pre-ignition have been determined by which better performances of the engine are achieved without a danger of the combustion with detonation (also called knocking.

  16. Evaluation of preconceptual plug designs using experts' judgement

    International Nuclear Information System (INIS)

    Sioshansi, F.P.; O'Rourke, J.E.

    1980-03-01

    A number of preconceptual plug designs for an underground nuclear waste repository were to be evaluated based on the available information on plug materials and placement techniques. Because of complex environment and loading conditions, long time frame under consideration, rigid performance characteristics and considerable uncertainties present in preconceptual design and material properties, a qualitative and judgmental evaluation procedure was needed to supplement technical studies. A structured procedure was developed to qualitatively capture evaluator's views and reservations on the proposed preconceptual schemes. Since a thorough evaluation of each proposed plug scheme required in-depth experience and familiarity with many components of the plug, three knowledgeable experts with specialties in the most relevant aspects of the problem were independently interviewed. Each plug scheme was broken down into three subcomponents and each subcomponent was evaluated separately. The proposed schemes were then rated taking their subcomponents into consideration. Because the experts had different specialties, their subcomponent and overall ratings were not in full agreement. Each plug scheme's lowest overall rating was used as the most significant determinant of the judgmental preference categories reported in this study. The approach used discriminated between the proposed schemes for those with highest probability of being successful. The most preferred schemes were then reviewed with respect to the data produced in the technical analysis performed during the project. The results of the judgmental analysis were then synthesized and modified with results of the technical analysis to produce the preconceptual plug designs

  17. Development of weld plugging for steam generator tubes of FBR

    International Nuclear Information System (INIS)

    Shimoyama, T.; Matsuyama, T.; Matsumoto, O.; Nagura, Y.; Nakamura, H.; Tohguchi, Y.; Kurokawa, M.; Fukada, T.

    2002-01-01

    This study was undertaken to develop a method of weld plugging of the heat-exchanger tubes of steam generator of Prototype FBR 'MONJU' in case these tubes are damaged for some reason. We studied mainly the shape of plug, welding procedure and effect of postweld heat treatment (PWHT). Evaporator tube sheet, tube and plug are made of 2-1/4Cr-1Mo steel and usually preheating and PWHT will be required for welding of this steel. The results of this study is as follows. 1) Plug was designed to make butt joint welding with grooved tube sheet around the tube hole to satisfy the requirements of plug designing, stress analysis, and good weldability. 2) TIG welding process was selected and certified its good weldability and good performance. 3) PWHT can be done by using high frequency induction heating method locally and also designing the plug to weld joint with tube sheet which was grooved around the tube hole. 4) Mock up test was done and it was certified that this plugging procedure has good weldability and good performance ability for Non Destructive Inspection. (author)

  18. Borehole plugging by hydrothermal transport. A feasibility report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    The possibility of forming borehole plugs by hydrothermal transport was examined with respect to five systems, utilizing available literature data. In general, it would appear possible to create plugs with hydrothermal cements, with hydrothermally transported quartz, and with carbonates precipitated in-situ using carbon dioxide or carbon dioxide and water as reacting fluids. Hydrothermal cements appear to be most feasible from an engineering and economic point of view using a slurry with a lime-alumina-silica composition carried into the hole in a single pipe at temperatures in the range of 200 0 C and requiring only enough pressure to drive the mixture into the hole. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be most compatible with the wall rock. Deposition is likely to be slow, and there are severe engineering problems associated with a single pipe system carrying silica-rich solutions at temperatures in excess of 500 0 C at pressure of 2000 bars (30,000 psi). Calcite plugs could be formed as compatible plug materials in contact with a limestone or dolomite wall rock. It is not known whether non-porous plugs can be readily formed and there is also a problem of chemical reaction with percolating groundwater. The clay-water and sulfur-water systems do not appear to be viable plug systems. In-situ reconstitution of the wall rock does not appear to be an economically feasible possibility

  19. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  20. Maintenance and plugging technology for CANDU steam generator tubing

    International Nuclear Information System (INIS)

    Prince, J.; Nicholson, A.; Hare, J.; McGoey, L.; Stafford, T.; Gowthorpe, P.

    2006-01-01

    In order to keep aging steam generators in service and to successfully manage the life of these critical components, the capability must exist to perform tube plugging and other complex maintenance activities in-situ. In the early days of CANDU steam generator operation, the only option was to perform these activities manually, which had inherent safety and quality risks. The challenge was to be able to perform these activities remotely thus eliminating some of the confined space and radiological exposure risks. The additional challenge was to develop equipment and techniques which would result in significantly improved quality, particularly for the completed plug welds which would be returned to service. Over the past fifteen years, this technology has matured and has produced remarkable results in field application. Some 14000 tube plugs have been successfully installed to date using automated plugging techniques. This paper presents an overview of the development of techniques available to utilities for steam generator tube plugging as well as some highlights of other steam generator tube maintenance activities such as primary side tube removal and tube end damage repair. Aspects covered in the paper include plug and procedure development, automated equipment and manipulators for tool deployment, process controls and personnel requirements. Recently, the steam generator tube plugging performed by OPG has been incorporated into a formal quality program under the requirements of ASME NCA 4000. An overview of the quality program will be presented and details of some of the important aspects of the quality program will be discussed. (author)

  1. Mechanical and thermo-mechanical analyses of the tapered plug for plugging of deposition tunnels. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Faelth, Billy (Clay Technology AB, Lund (Sweden)); Gatter, Patrik (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2009-09-15

    This report presents results from a study that was carried out in order to examine the applicability of the tapered plug concept for plugging of deposition tunnels in the deep repository for spent nuclear fuel. The report presents results from mechanical and thermo-mechanical models of the tapered plug. The models were analyzed with 3DEC. The models included a portion of a deposition tunnel and its intersection with a main tunnel. In the deposition tunnel, a tapered concrete plug was installed. The plug was subjected to the combined load from the swelling backfill material and from pore pressure inside the deposition tunnel. The thermo-mechanical effects due to the heat generation in the spent fuel were also included in the analyses. Generic material parameter values for the concrete were used. The following items were studied: - Stresses and displacements in the plug. - Shear stresses and shear displacements in the rock-concrete interface. - Stress additions in the rock due to the loads. The sensitivity of the results to changes of constitutive models, to changes of the plug geometry and to pore water pressure in the rock-concrete interface was examined. The results indicate that the displacements in the plug will be within reasonable ranges but the stresses may locally be high enough that they exceed acceptable levels. However, they can be reduced by choice of advantageous plug geometry and by having a good rock-concrete bond. The results also show that the stress additions in the rock due to the thermal load may yield stresses that locally exceed the spalling strength of the rock. At most locations, however, the rock stresses will amount at lower levels. It was concluded that, with choice of an appropriate design, the tapered plug seems to be an applicable concept for plugging of deposition tunnels. It was also concluded that further studies of the tapered plug concept should use material properties parameter values for low-pH concrete. Further, they should also

  2. DEMO port plug design and integration studies

    Science.gov (United States)

    Grossetti, G.; Boccaccini, L. V.; Cismondi, F.; Del Nevo, A.; Fischer, U.; Franke, T.; Granucci, G.; Hernández, F.; Mozzillo, R.; Strauß, D.; Tran, M. Q.; Vaccaro, A.; Villari, R.

    2017-11-01

    The EUROfusion Consortium established in 2014 and composed by European Fusion Laboratories, and in particular the Power Plant Physics and Technology department aims to develop a conceptual design for the Fusion DEMOnstration Power Plant, DEMO. With respect to present experimental machines and ITER, the main goals of DEMO are to produce electricity continuously for a period of about 2 h, with a net electrical power output of a few hundreds of MW, and to allow tritium self-sufficient breeding with an adequately high margin in order to guarantee its planned operational schedule, including all planned maintenance intervals. This will eliminate the need to import tritium fuel from external sources during operations. In order to achieve these goals, extensive engineering efforts as well as physics studies are required to develop a design that can ensure a high level of plant reliability and availability. In particular, interfaces between systems must be addressed at a very early phase of the project, in order to proceed consistently. In this paper we present a preliminary design and integration study, based on physics assessments for the EU DEMO1 Baseline 2015 with an aspect ratio of 3.1 and 18 toroidal field coils, for the DEMO port plugs. These aim to host systems like electron cyclotron heating launchers currently developed within the Work Package Heating and Current Drive that need an external radial access to the plasma and through in-vessel systems like the breeder blanket. A similar approach shown here could be in principle followed by other systems, e.g. other heating and current drive systems or diagnostics. The work addresses the interfaces between the port plug and the blanket considering the helium-cooled pebble bed and the water cooled lithium lead which are two of four breeding blanket concepts under investigation in Europe within the Power Plant Physics and Technology Programme: the required openings will be evaluated in terms of their impact onto the

  3. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Kjær Bastholm, Sara; Becher, Naja; Stubbe, Peter Reimer

    2013-01-01

    The objective of this study was to characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. Spontaneously shed cervical mucus plugs from healthy women in active labor, were tested. The viscoelastic properties of cervical mucus plugs were investigated...... with using frequency and stress sweep experiments within the linear viscoelastic region. Random-effects regression was used for statistical analysis. The CMPs are solid-like viscoelastic structures and the elastic modulus dominated the viscous modulus at all frequencies. These rheological characteristics...

  4. National Ignition Facility site requirements

    International Nuclear Information System (INIS)

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline

  5. Definition of Ignition in Inertial Confinement Fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.

    2017-10-01

    Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =EαEα 2Ehs 2Ehs (a measurable quantity), it appears possible not only to define ignition but also to measure the onset of ignition by the experimental inference of the fractional alpha energy and yield amplification. This material is based upon work supported by the Department of Energy Office of Fusion Energy Services under Award Number DE-FC02-04ER54789 and National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Approach to ignition of tokamak reactors

    International Nuclear Information System (INIS)

    Sigmar, D.J.

    1981-02-01

    Recent transport modeling results for JET, INTOR, and ETF are reviewed and analyzed with respect to existing uncertainties in the underlying physics, the self-consistency of the very large numerical codes, and the margin for ignition. The codes show ignition to occur in ETF/INTOR-sized machines if empirical scaling can be extrapolated to ion temperatures (and beta values) much higher than those presently achieved, if there is no significant impurity accumulation over the first 7 s, and if the known ideal and resistive MHD instabilities remain controllable for the evolving plasma profiles during ignition startup

  7. Overview of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Flanagan, C.A.

    1986-01-01

    The mission of CIT is to realize, study, and optimize fully ignited plasma discharges. The physics requirements have been established to provide reasonable assurance that the mission will be achieved: (1) plasma confinement guidelines consider all present scaling laws; ohmic, auxiliary heated L-mode, auxiliary heated H-mode, (2) figure-of-merit established: X = aB/q; this is proportional to ignition margin; X must be >25, (3) burn pulse duration set at ten times tau-E; an additional two times tau-E specified to heat to ignition, and (4) capability to operate both in limiter and divertor mode

  8. HEPA-filter smoke plugging problem

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Magee, M.W.

    1975-01-01

    Actual experiences indicate that during the early stages of a fire, pyrolysis and incomplete combustion of organic materials used in the furnishings or interior finishes of laboratories yield copious quantities of smoke particulates, both liquid and solid. Furthermore, the use of fire retardants in materials used for the above purpose interferes with the combustion process, so that burning of such materials in later stages of a fire will yield dense smoke. These particulates can plug up a HEPA filter or even a more porous prefilter, and thus effectively shut off the exhaust ventilation. In this case, the fire room will pressurize and contamination may spread in an uncontrolled manner. Both small- and large-scale tests have been conducted to evaluate the nature and degree of the problem as a function of materials involved, rate of exposure to the fire, and kinds and temperatures of smoke so generated. Some test work has also been done on scrubbing of smoke. Proposed future work is described. (U.S.)

  9. Amplatzer vascular plugs in congenital cardiovascular malformations

    International Nuclear Information System (INIS)

    Barwad, Parag; Ramakrishnan, Sivasubramanian; Kothari, Shyam S; Saxena, Anita; Gupta, Saurabh K; Juneja, Rajnish; Gulati, Gurpreet Singh; Jagia, Priya; Sharma, Sanjiv

    2013-01-01

    Amplatzer vascular plugs (AVPs) are devices ideally suited to close medium-to-large vascular communications. There is limited published literature regarding the utility of AVPs in congenital cardiovascular malformations (CCVMs). To describe the use of AVPs in different CCVMs and to evaluate their safety and efficacy. All patients who required an AVP for the closure of CCVM were included in this retrospective review of our catheterization laboratory data. The efficacy and safety of AVPs are reported. A total of 39 AVPs were implanted in 31 patients. Thirteen (33%) were AVP type I and 23 (59%) were AVP type II. AVP type III were implanted in two patients and type IV in one patient. The major indications for their use included closure of pulmonary arteriovenous malformation (AVM) (n = 7), aortopulmonary collaterals (n = 7), closure of a patent Blalock-Taussig shunt (n = 5), systemic AVM (n = 5), coronary AVM (n = 4), patent ductus arteriosus (PDA) (n = 3), pulmonary artery aneurysms (n = 3), and venovenous collaterals (n = 2). Deployment of the AVP was done predominantly via the 5 – 7F Judkin's right coronary guide catheter. Overall 92% of the AVPs could be successfully deployed and resulted in occlusion of the target vessel in all cases, within 10 minutes. No procedure-related or access site complication occurred. AVPs are versatile, easy to use, and effective devices to occlude the vascular communications in a variety of settings. AVP II is especially useful in the closure of tubular structures with a high flow

  10. Development status of the ignition system for Vinci

    NARCIS (Netherlands)

    Frenken, G.; Vermeulen, E.; Bouquet, F.; Sanders, H.M.

    2002-01-01

    The development status of ignition system for the new cryogenic upper stage engine Vinci is presented. The concept differs from existing upper stage ignition systems as its functioning is engine independent. The system consists of a spark torch igniter, a highpressure igniter feed system and an

  11. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    Science.gov (United States)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  12. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  13. Waste isolation pilot plant (WIPP) borehole plugging program description

    International Nuclear Information System (INIS)

    Christensen, C.L.; Hunter, T.O.

    1979-08-01

    The tests and experiments described attempt to provide a mix of borehole (with limited access) and in-mine (with relatively unlimited access) environments in which assessment of the various issues involved can be undertaken. The Bell Canyon Test provides the opportunity to instrument and analyze a plug in a high pressure region. The Shallow Hole Test permits application of best techniques for plugging and then access to both the top and bottom of the plug for further analysis. The Diagnostic Test Hole permits recovery of bench scale size samples for analysis and establishes an in-borehole laboratory in which to conduct testing and analysis in all strata from the surface into the salt horizon. The additional in mine experiments provide the opportunity to investigate in more detail specific effects on plugs in the salt region and allows evaluation of instrumentation systems

  14. Rotary plug device for use in LMFBR type reactors

    International Nuclear Information System (INIS)

    Azuma, Kazuhiko; Imayoshi, Sho.

    1988-01-01

    Purpose: To prevent adhesion of sodium in the rotational gap of a rotational plug. Constitution: One of the walls of a cylindrical gap formed between the outer circumference of a small rotary plug and a large rotary plug that constitute a double rotary plug is cooled to lower than the sodium coagulation temperature, while a stater of a linear motor in a cylindrical shape and wound with linear coils around the iron core is attached to the inside of the other of the walls. Then, one of the walls of the gap to which sodium adheres is cooled to less than sodium coagulation temperature, so that sodium is or tends to be deposited to the wall. Then, eddy currents are resulted to sodium by the current supplied to the stater of the linear motor attached to the other of the walls, to produce thrusting force. Sodium on the wall surface is scraped off by this. (Yoshihara, H.)

  15. Application of Inductive Monitoring System to Plug Load Anomaly Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Ames Research Center’s Sustainability Base is a new 50,000 sq. ft. LEED Platinum office building. Plug loads are expected to account for a significant portion...

  16. Modular, Plug and Play, Distributed Avionics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this SBIR effort was to prove the viability of an Ethernet version of the MicroSat Systems, Inc. (MSI) modular, plug and play (PnP) spacecraft...

  17. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.

    Science.gov (United States)

    Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2017-09-13

    Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.

  18. Comparative simulation analysis on the ignition threshold of atmospheric He and Ar dielectric barrier discharge

    Science.gov (United States)

    Yao, Congwei; Chang, Zhengshi; Chen, Sile; Ma, Hengchi; Mu, Haibao; Zhang, Guan-Jun

    2017-09-01

    Dielectric barrier discharge (DBD) is widely applied in many fields, and the discharge characteristics of insert gas have been the research focus for years. In this paper, fluid models of atmospheric Ar and He DBDs driven by 22 kHz sinusoidal voltage are built to analyze their ignition processes. The contributions of different electron sources in ignition process are analyzed, including the direct ionization of ground state atom, stepwise ionization of metastable particles, and secondary electron emission from dielectric wall, and they play different roles in different discharge stages. The Townsend direct ionization coefficient of He is higher than Ar with the same electrical field intensity, which is the direct reason for the different ignition thresholds between He and Ar. Further, the electron energy loss per free electron produced in Ar and He DBDs is discussed. It is found that the total electron energy loss rate of Ar is higher than He when the same electrical field is applied. The excitation reaction of Ar consumes the major electron energy but cannot produce free electrons effectively, which is the essential reason for the higher ignition threshold of Ar. The computation results of He and Ar extinction voltages can be explained in the view of electron energy loss, as well as the experimental results of different extinction voltages between Ar/NH3 and He DBDs.

  19. Setting plug & abandonment barriers with minimum removal of tubulars

    OpenAIRE

    Nessa, Jon Olav

    2012-01-01

    Master's thesis in Petroleum engineering The useful life of an offshore well is determined by the reserves which it contacts, the pressure support within the reservoir and the continued integrity of the wellbore. When a well has reached the end of its lifetime, plugging operations have to be conducted before permanent abandonment. Conventional Plug and Abandonment (P&A) operations will often require removing a section of the casing in order to create cross sectional barriers for well aband...

  20. Nanosatellite and Plug-and-Play Architecture 2 (NAPA 2)

    Science.gov (United States)

    2017-02-28

    development of a 6U- format Space Plug-and-play Architecture (SPA) Research Cubesat (SPARC). SPARC-1 (first and only pursued under this PA) demonstrates...development of a six unit (6U)- format Space Plug-and-play Architecture (SPA) Research Cubesat (SPARC). SPARC-1 (first and only pursued under this PA...computers – More capable, more centralized, bigger wiring bundle Elimination of central computers, distribution of intelligence in systems Rad- hard

  1. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  2. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  3. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1991-01-01

    This patent describes, for use in facilitating replacement of a neutron absorber control rod on a control assembly spider structure, an end plug. It comprises a pair of separate upper and lower plug portions; the upper section of the upper plug portion being configured for rigid attachment; the middle section of the upper plug portion having angularly displaced flat surfaces formed on the exterior

  4. Numerical simulation of ion confinement in the Phaedrus plugs

    International Nuclear Information System (INIS)

    Horne, S.F.

    1984-01-01

    Neutral beams of up to 60 amps were injected into the plugs of the tandem mirror Phaedrus. Substantial heating of the target RF-sustained plasma has been observed, but fueling has been negligible. In order to understand the lack of significant fueling, a model of the trapping and loss processes occurring in the Phaedrus plug was developed, and is presented in this thesis. The model includes neutral beam effects, RF trapping, Coulomb losses, and charge exchange on background gas, in a framework which includes finite gyro-orbit effects. A numerical simulation based on the model is compared to data from 2XIIB and TMX, and shows good agreement. The model is then applied to the Phaedrus plugs, and compared to RF-sustained and neutral-beam data obtained during machine operation in hydrogen and deuterium. The modeling of the Phaedrus plugs indicates that during beam injection, a two-step process occurs that results in the rapid loss of ions. Charge exchange of trapped plasma on the energetic neutral beam causes rapid radial diffusion of the plasma, which then charge exchanges on the background gas, or is lost to the limiter. Because this is a finite gyro-orbit effect, increasing the plug magnetic field should improve the net beam fueling by reducing this diffusion. Results from the model indicate that increasing the plug midplane field from 2600 to 4000 gauss will improve the beam fueling significantly

  5. Ignition in Convective-Diffusive Systems

    National Research Council Canada - National Science Library

    Law, Chung

    1999-01-01

    ... efficiency as well as the knock and emission characteristics. The ignition event is clearly controlled by the chemical reactions of fuel oxidation and the fluid mechanics of convective and diffusive transport...

  6. Ignition properties of nuclear grade activated carbons

    International Nuclear Information System (INIS)

    Freeman, W.P.; Hunt, J.R.; Kovach, J.L.

    1983-01-01

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH 3 131 I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  7. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  8. Test plan for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    The objective of this testing is to determine if ignition occurs while core drilling in a flammable gas environment. Drilling parameters are chosen so as to provide bounding conditions for the core sampling environment. If ignition does not occur under the conditions set forth in this test, then a satisfactory level of confidence will be obtained which would allow field operations under the normal drilling conditions

  9. Dynamic Regime of Ignition of Solid Propellant

    Directory of Open Access Journals (Sweden)

    Zolotorev Nikolay

    2016-01-01

    Full Text Available This article presents a dynamic regime of exposure of the radiant flux on the sample of gun-cotton. Obtained time the ignition of gun-cotton in the heating conditions of increasing heat flux in the range from 0.2 W/cm2 to 22 W/cm2. A comparison of the delay times of the ignition when heated variable and constant heat flux.

  10. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  11. Confinement scaling and ignition in tokamaks

    International Nuclear Information System (INIS)

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10 15 cm -3 , high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition

  12. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  13. LOFT voltage insertion calibaration program

    International Nuclear Information System (INIS)

    Tillitt, D.N.; Miyasaki, F.S.

    1975-08-01

    The Loss-of-Fluid Test (LOFT) Facility is an experimental facility built around a ''scaled'' version of a large pressurized water reactor (LPWR). Part of this facility is the Data Acquisition and Visual Display System (DAVDS) as defined by the LOFT System Design Document SDD 1.4.2C. The DAVDS has a 702 data channel recording capability of which 548 are recorded digitally. The DAVDS also contains a Voltage Insertion Calibration Subsystem used to inject precise and known voltage steps into the recording systems. The computer program that controls the Voltage Insertion Calibration Subsystem is presented. 7 references. (auth)

  14. Complex anal fistulas: plug or flap?

    Science.gov (United States)

    Muhlmann, Mark D; Hayes, Julian L; Merrie, Arend E H; Parry, Bryan R; Bissett, Ian P

    2011-10-01

    Rectal mucosal advancement flaps (RMAF) and fistula plugs (FP) are techniques used to manage complex anal fistulas. The purpose of this study was to review and compare the results of these methods of repair. A retrospective review of all complex anal fistulas treated by either a RMAF or a FP at Auckland City Hospital from 2004 to 2008. Comparisons were made in terms of successful healing rates, time to failure and the use of magnetic resonance imaging. Overall, 70 operations were performed on 55 patients (55.7% male). The mean age was 44.9 years. Twenty-one patients (30%) had had at least one previous unsuccessful repair. Indications for repair included 57 high cryptoglandular anal (81%), 4 Crohn's anal (6%), 7 rectovaginal (10%), 1 rectourethral (1%) and 1 pouch-vaginal fistula (1%). All patients were followed up with a mean of 4.5 months. Forty-eight RMAFs (69% of total) were performed with 16 successful repairs (33%). Twenty-two FPs (31% of total) were performed with 7 successful repairs (32%, P = 0.9). In failed repairs, there was no difference in terms of mean time to failure (RMAF 4.8 months versus FP 4.1 months, P = 0.62). Magnetic resonance imaging was performed in 21 patients (37%) before the repair. The success rate in these patients was 20%. The results of treatment of complex anal fistulas are disappointing. The choice of operation of either a RMAF or a FP did not alter the poor healing rates of about one third of patients in each group.

  15. Amplatzer vascular plugs in congenital cardiovascular malformations

    Directory of Open Access Journals (Sweden)

    Parag Barwad

    2013-01-01

    Full Text Available Background: Amplatzer vascular plugs (AVPs are devices ideally suited to close medium-to-large vascular communications. There is limited published literature regarding the utility of AVPs in congenital cardiovascular malformations (CCVMs. Aims: To describe the use of AVPs in different CCVMs and to evaluate their safety and efficacy. Materials and Methods: All patients who required an AVP for the closure of CCVM were included in this retrospective review of our catheterization laboratory data. The efficacy and safety of AVPs are reported. Results: A total of 39 AVPs were implanted in 31 patients. Thirteen (33% were AVP type I and 23 (59% were AVP type II. AVP type III were implanted in two patients and type IV in one patient. The major indications for their use included closure of pulmonary arteriovenous malformation (AVM (n = 7, aortopulmonary collaterals (n = 7, closure of a patent Blalock-Taussig shunt (n = 5, systemic AVM (n = 5, coronary AVM (n = 4, patent ductus arteriosus (PDA (n = 3, pulmonary artery aneurysms (n = 3, and venovenous collaterals (n = 2. Deployment of the AVP was done predominantly via the 5 - 7F Judkin′s right coronary guide catheter. Overall 92% of the AVPs could be successfully deployed and resulted in occlusion of the target vessel in all cases, within 10 minutes. No procedure-related or access site complication occurred. Conclusions: AVPs are versatile, easy to use, and effective devices to occlude the vascular communications in a variety of settings. AVP II is especially useful in the closure of tubular structures with a high flow.

  16. Plasma transport in a compact ignition tokamak

    International Nuclear Information System (INIS)

    Singer, C.E.; Ku, L.P; Bateman, G.

    1987-02-01

    Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the 3 He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved

  17. Does charge transfer correlate with ignition probability?

    International Nuclear Information System (INIS)

    Holdstock, Paul

    2008-01-01

    Flammable or explosive atmospheres exist in many industrial environments. The risk of ignition caused by electrostatic discharges is very real and there has been extensive study of the incendiary nature of sparks and brush discharges. It is clear that in order to ignite a gas, an amount of energy needs to be delivered to a certain volume of gas within a comparatively short time. It is difficult to measure the energy released in an electrostatic discharge directly, but it is possible to approximate the energy in a spark generated from a well defined electrical circuit. The spark energy required to ignite a gas, vapour or dust cloud can be determined by passing such sparks through them. There is a relationship between energy and charge in a capacitive circuit and so it is possible to predict whether or not a spark discharge will cause an ignition by measuring the charge transferred in the spark. Brush discharges are in many ways less well defined than sparks. Nevertheless, some work has been done that has established a relationship between charge transferred in brush discharges and the probability of igniting a flammable atmosphere. The question posed by this paper concerns whether such a relationship holds true in all circumstances and if there is a universal correlation between charge transfer and ignition probability. Data is presented on discharges from textile materials that go some way to answering this question.

  18. TOPICAL REVIEW: Plasma assisted ignition and combustion

    Science.gov (United States)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  19. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  20. Summary of experimental insertions workshop

    International Nuclear Information System (INIS)

    Sandweiss, J.; Month, M.

    1976-01-01

    An ISABELLE workshop of the summer 1976 series, which was held at Brookhaven August 16--20, focused on the design and utilization of the experimental insertions. The goals of the workshop are outlined, and a few general remarks about the results are presented

  1. Concepts for stereoselective acrylate insertion

    KAUST Repository

    Neuwald, Boris

    2013-01-23

    Various phosphinesulfonato ligands and the corresponding palladium complexes [{((PaO)PdMeCl)-μ-M}n] ([{( X1-Cl)-μ-M}n], (PaO) = κ2- P,O-Ar2PC6H4SO2O) with symmetric (Ar = 2-MeOC6H4, 2-CF3C6H4, 2,6-(MeO)2C6H3, 2,6-(iPrO)2C 6H3, 2-(2′,6′-(MeO)2C 6H3)C6H4) and asymmetric substituted phosphorus atoms (Ar1 = 2,6-(MeO)2C6H 3, Ar2 = 2′-(2,6-(MeO)2C 6H3)C6H4; Ar1 = 2,6-(MeO)2C6H3, Ar2 = 2-cHexOC 6H4) were synthesized. Analyses of molecular motions and dynamics by variable temperature NMR studies and line shape analysis were performed for the free ligands and the complexes. The highest barriers of ΔGa = 44-64 kJ/mol were assigned to an aryl rotation process, and the flexibility of the ligand framework was found to be a key obstacle to a more effective stereocontrol. An increase of steric bulk at the aryl substituents raises the motional barriers but diminishes insertion rates and regioselectivity. The stereoselectivity of the first and the second methyl acrylate (MA) insertion into the Pd-Me bond of in situ generated complexes X1 was investigated by NMR and DFT methods. The substitution pattern of the ligand clearly affects the first MA insertion, resulting in a stereoselectivity of up to 6:1 for complexes with an asymmetric substituted phosphorus. In the consecutive insertion, the stereoselectivity is diminished in all cases. DFT analysis of the corresponding insertion transition states revealed that a selectivity for the first insertion with asymmetric (P aO) complexes is diminished in the consecutive insertions due to uncooperatively working enantiomorphic and chain end stereocontrol. From these observations, further concepts are developed. © 2012 American Chemical Society.

  2. Plug pattern optimization for gamma knife radiosurgery treatment planning

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Wu, Jackie; Dean, David; Xing Lei; Xue Jinyue; Maciunas, Robert; Sibata, Claudio

    2003-01-01

    Purpose: To develop a novel dose optimization algorithm for improving the sparing of critical structures during gamma knife radiosurgery by shaping the plug pattern of each individual shot. Method and Materials: We first use a geometric information (medial axis) aided guided evolutionary simulated annealing (GESA) optimization algorithm to determine the number of shots and isocenter location, size, and weight of each shot. Then we create a plug quality score system that checks the dose contribution to the volume of interest by each plug in the treatment plan. A positive score implies that the corresponding source could be open to improve tumor coverage, whereas a negative score means the source could be blocked for the purpose of sparing normal and critical structures. The plug pattern is then optimized via the GESA algorithm that is integrated with this score system. Weight and position of each shot are also tuned in this procedure. Results: An acoustic tumor case is used to evaluate our algorithm. Compared to the treatment plan generated without plug patterns, adding an optimized plug pattern into the treatment planning process boosts tumor coverage index from 95.1% to 97.2%, reduces RTOG conformity index from 1.279 to 1.167, lowers Paddick's index from 1.34 to 1.20, and trims the critical structure receiving more than 30% maximum dose from 16 mm 3 to 6 mm 3 . Conclusions: Automated GESA-based plug pattern optimization of gamma knife radiosurgery frees the treatment planning team from the manual forward planning procedure and provides an optimal treatment plan

  3. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal

    2017-04-21

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  4. Recent progress in ignition fusion research on the National Ignition Facility

    International Nuclear Information System (INIS)

    Leeper, Ramon J.

    2011-01-01

    This paper will review the ignition fusion research program that is currently being carried out on the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory. This work is being conducted under the auspices of the National Ignition Campaign (NIC) that is a broad collaboration of national laboratories and universities that together have developed a detailed research plan whose goal is ignition in the laboratory. The paper will begin with a description of the NIF facility and associated experimental facilities. The paper will then focus on the ignition target and hohlraum designs that will be tested in the first ignition attempts on NIF. The next topic to be introduced will be a description of the diagnostic suite that has been developed for the initial ignition experiments on NIF. The paper will then describe the experimental results that were obtained in experiments conducted during the fall of 2009 on NIF. Finally, the paper will end with a description of the detailed experimental plans that have been developed for the first ignition campaign that will begin later this year. (author)

  5. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  6. Report on electric cars and plug-in hybrid cars; Redegoerelse - elbiler og plug-in hybridbiler

    Energy Technology Data Exchange (ETDEWEB)

    Elkjaer Toennesen, A.; Winther, K.; Noerregaard, K. (Teknologisk Institut, Taastrup (Denmark)); Larsen, Esben; Christensen, Linda; Kveiborg, O. (Danmarks Teknologiske Univ., Kgs. Lyngby (DTU) (Denmark))

    2010-04-15

    The Center for Green Transport at the Danish Transport Authority has prepared this statement in order to uncover driving technical aspects, user expectations and needs, and the environmental consequences of using electric and plug-in hybrid cars. An electric car is defined as a car driven by an electric motor that has a battery that can be charged with power from the grid. A plug-in hybrid car is defined as a car that combines gasoline or diesel engine with an electric motor with a battery which can be recharged with power from the grid. From an overall consideration related to the transport sector electric cars and plug-in hybrid cars have the major advantage that negative impacts on environment and climate from traffic can be reduced while the high mobility is maintained. Through an increased use of electric cars and plug-in hybrid cars, the many advantages attached to the car as an individual transportation form is maintained, while CO{sub 2} emissions etc. are reduced. Electric cars and plug-in hybrid cars is one of the technologies that are considered to have particularly great prospects in the medium term when it comes to promoting new technologies in transport. Another advantage of using electric vehicles is the power supply factor. An increased use of electricity in transport will reduce the need for and dependence on fossil fuels in the sector. Both electric cars and plug-in hybrid cars are expected to be used for storage of wind power, a possibility which is hardly available today. The plug-in hybrid car could meet some of the challenges facing the pure electric car, because it also can use conventional fuel. The report presents analyses based on three focus areas: a) Users' needs, expectations and economics in relation to vehicles; b) The technology - and hence the manufacturers' opportunities and challenges; c) Connection to the power grid. (ln)

  7. The Plug-in Concept: Technology and Aesthetics of Change

    Directory of Open Access Journals (Sweden)

    Peter Šenk

    2013-01-01

    Full Text Available The architecture concept of plug-in is based on the duality of the infrastructure system and units or elements connected to it. In the context of megastructures, the concept was most vividly characterised by works of Archigram and Japanese Metabolists in the 1960s and early 1970s. Blurring the boundary between the building and the city, the plug-in concept outgrew architectural boundaries and was slowly transformed into an urbanistic concept.The paper presents the cultural context relevant to contemporaneity, which influenced specific development of the technology-driven concept of plug-in in the British Archigram Group and Japanese Metabolists. Based on the aesthetics of change and incompleteness, which was characterised by similar architectural manifestations despite entirely different cultural backgrounds, the plug-in concept foreshadowed social transformation based on freedom, individualisation and mobility in an utopian manner and held a promise of urban development with adaptability to unpredictable needs and desires of residents, who would become its co-creators with an active approach.Although the revolutionary sixties are quite some time behind, the plug-in concept in its commodified form has become and remained operational and relevant at least on the metaphorical level; in the contemporary space it is evident primarily in urbanism and not as much in its original architectural form.

  8. RCC Plug Repair Thermal Tools for Shuttle Mission Support

    Science.gov (United States)

    Rodriguez, Alvaro C.; Anderson, Brian P.

    2010-01-01

    A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.

  9. Manitoba plug-in hybrid electric vehicle (PHEV) demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hoemsen, R. [Red River College, Winnipeg, MB (Canada); Parsons, R. [Government of Manitoba, Winnipeg, MB (Canada). Centre for Emerging Renewable Energy

    2010-07-01

    Manitoba has low electricity rates, the highest proportion of renewables, and a legislated commitment to reduce greenhouse gases. However, the province still relies heavily on oil as everyone else. The mix of energy opportunities in Manitoba were highlighted in this presentation, with particular reference to the commercialization of electric vehicles. Several photographs were presented of the Toyota plug-in hybrid vehicle and a plug-in hybrid electric demonstration vehicle. A demonstration project overview was offered that used technology from A123 Systems Inc. The conversion module and vehicle users were profiled. Topics that were presented related to the demonstration project included monitoring; gasoline fuel economy results; fuel economy variability; cold weather operation; cold weather issues; battery upgrade solutions; and highly qualified personnel. It was concluded that in terms of follow-up, there is a need to combine findings of current plug-in hybrid electric vehicle demonstration with those for the new Toyota production plug-in hybrid vehicles. Key next steps for the demonstration are to address cabin heating requirements; better characterizing winter performance; and implementation of IPLC units on all plug-in hybrid electric vehicles for electricity consumption. figs.

  10. Method for preventing plugging of water wells by clay

    Energy Technology Data Exchange (ETDEWEB)

    Blazhkov, V I

    1966-01-01

    A method is suggested for preventing the plugging of water-bearing sands by clay from drilling fluids. It consists in placing a cement plug in the upper nipple above the filter, in order to prevent its plugging during the installation. The drilling mud passes through the rinsing windows and fills the internal void of the filter column, thus preventing further percolation and plugging of the filter during its lowering. When a 2-filter column is lowered, the clay solution is pumped into the interval between the cement plug and the next filter; this is done gradually in proportion to the addition of new pipes. When the drilling mud level lowers in the annular space between the pipes, the mud cake, together with water-saturated sand, passes through the rinsing windows into the pipes and is removed to the surface by airlift or other methods. This procedure is described in detail, discussed for various conditions of well structure, and illustrated by schematic drawings. Its advantage is in the possibility of separate testing and production of all water-bearing zones in the well, and it does not require the use of pure water for well washing.

  11. Design approaches for access plugs in a basalt repository

    International Nuclear Information System (INIS)

    O'Rourke, J.; Allirot, D.; O'Connor, K.

    1982-01-01

    This paper describes research, laboratory testing, and analytical approaches taken toward the development of designs for sealing boreholes, shafts, and tunnels penetrating from ground surface to a deep, mined nuclear waste repository in basalt. A material selection process leading to identification of preferred sealing materials is discussed, and the laboratory testing program to define the geochemical and geotechnical performance of these materials is described. Analysis of the environmental conditions in the Columbia Plateau basalt flows leads to identification of tentative design criteria for plug systems. These design criteria include performance of the plug as a hydraulic barrier and as a radionuclide barrier. An important problem for effective performance of a plug system as a hydraulic barrier is shown to be a potentially disturbed zone surrounding the excavation in the stressed and jointed host rock. An idealized one-dimensional numerical model is described for analyzing the performance of the plug as a barrier to radionuclide transport. The preliminary analyses led to the conclusion that the composition and dimensions of practical candidate plugs can satisfy both hydraulic and radionuclide barrier criteria. Examples of candidate designs are shown for boreholes, shafts, and tunnels. 9 references, 6 figures, 6 tables

  12. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  13. Ion beam heating for fast ignition

    International Nuclear Information System (INIS)

    Gus'kov, S.Yu.; Limpouch, J.; Klimo, O.

    2010-01-01

    Complete text of publication follows. The characteristics features of the formation of the spatial distribution of the energy transferred to the plasma from a beam of ions with different initial energies, masses and charges under fast ignition conditions are determined. The motion of the Bragg peak is extended with respect to the spatial distribution of the temperature of the ion-beam-heated medium. The parameters of the ion beams are determined to initiate different regimes of fast ignition of thermonuclear fuel precompressed to a density of 300-500 g/cm 3 - the edge regime, in which the ignition region is formed at the outer boundary of the fuel, and the internal regime, in which the ignition region is formed in central parts of the fuel. The conclusion on the requirements for fast ignition by light and heavy ion beams is presented. It is shown that the edge heating with negative temperature gradient is described by a self-similar solution. Such a temperature distribution is the reason of the fact that the ignited beam energy at the edge heating is larger than the minimal ignition energy by factor 1.65. The temperature Bragg peak may be produced by ion beam heating in the reactor scale targets with pR-parameter larger than 3-4 g/cm 2 . In particular, for central ignition of the targets with pR-parameters in the range of 4-8 g/cm 2 the ion beam energy should be, respectively, from 5 to 7 times larger than the minimal ignition energy. The work by S.Ye. Gus'kov, D.V. Il'in, and V.E. Sherman was supported by the Ministry of Education and Science of the Russian Federation under the program 'Development of the Scientific Potential of High Education for 2009-2010' (project no. 2.1.1/1505) and the Russian Foundation for Basic Research (project no. 08-02-01394 a ). The work by J. Limpouch and O. Klimo was supported by the Czech Ministry of Education (project no. LC528, MSM6840770022).

  14. Dark Matter Ignition of Type Ia Supernovae.

    Science.gov (United States)

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  15. Low power arcjet thruster pulse ignition

    Science.gov (United States)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  16. Physics aspects of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Post, D.; Bateman, G.; Houlberg, W.

    1986-11-01

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ ∼ 2 x 10 20 sec m -3 required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k ∼ 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided

  17. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  18. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  19. Insertion device calculations with mathematica

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R. [Stanford Synchrotron Radiation Lab., CA (United States); Lidia, S. [Univ. of California, Davis, CA (United States)

    1995-02-01

    The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.

  20. Ring insertions as light sources

    International Nuclear Information System (INIS)

    Green, G.K.

    1975-01-01

    Bending magnets can be inserted in the long straight sections of electron storage rings to produce synchrotron radiation. If the design is carefully proportioned, the bending magnets create only a small perturbation of the properties of the ring. The resulting spectra have favorable optical properties as sources for spectroscopy and diffraction studies. The characteristics of the source are discussed, and the geometrical requirements of the magnets are presented

  1. Vacuum guidelines for ISA insertions

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1976-01-01

    Vacuum requirements place design restrictions on the ISA insertions. The vacuum tube diameter, given a distance L between pumps, is determined by the desorption of molecules from the wall under the impact of ions created by the beam, whereas the thickness of the tube must be sufficient to prevent collapse. In addition, the entire vacuum chamber must be able to be baked out at approximately 200 0 C

  2. Inserts for nuclear fuel elements

    International Nuclear Information System (INIS)

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  3. ATLAS insertable B-layer

    Czech Academy of Sciences Publication Activity Database

    Marčišovský, Michal

    2011-01-01

    Roč. 633, č. 1 (2011), "S224"-"S225" ISSN 0168-9002. [International workshop on radiation imaging detectors /11./. Praha, 26.06.2009-02.07.2009] R&D Projects: GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * pixel detector * insertable B-layer Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011

  4. HTS Insert Magnet Design Study

    CERN Document Server

    Devaux, M; Fleiter, J; Fazilleau, P; Lécrevisse, T; Pes, C; Rey, J-M; Rifflet, J-M; Sorbi, M; Stenvall, A; Tixador, P; Volpini, G

    2011-01-01

    Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb$_{3}$Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb$_{3}$Sn m...

  5. Ignition modes of nanosecond discharge with bubbles in distilled water

    International Nuclear Information System (INIS)

    Hamdan, Ahmad; Cha, Min Suk

    2015-01-01

    Here, we present the microscopic physical characteristics of nanosecond discharges with an array of bubbles in distilled water. In particular, applying a single high-voltage pulse, four delayed intensified charge-coupled device cameras successfully visualized four successive images during a single discharge event. We identified three distinctive modes of ignition inside a bubble, depending on the relative location of the bubble with respect to pin-to-hollow needle electrodes when a single bubble was located in an inter-electrode gap of 1 mm: anode-driven ignition, cathode-driven ignition, and co-ignition near both electrodes. Anode- and cathode-driven ignitions evolved into either a complete propagation of the streamer or an incomplete propagation, which were limited in location by proximity to an ignition location, while co-ignitions consistently showed complete propagation. When we increased the gap to 2 mm to accommodate multiple bubbles in the gap, an ignited bubble near the cathode was able to cause the ignition of an upper adjacent bubble. Bubble–bubble interface zones can also be spots of ignition, such that we observed simultaneous co-ignitions in the zones of bubble–bubble interfaces and near electrodes with triple bubbles. We compared the experimental results of discharge propagation with different ignition modes between Ar, He, and N 2 bubbles. In addition, numerical simulations for static electric fields reasonably supported observed ignition behavior such that field intensity was locally enhanced. (paper)

  6. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  7. Device for sealing a rotating plug in a nuclear reactor

    International Nuclear Information System (INIS)

    Brandstetter, R.

    1975-01-01

    The invention relates to the sealing of a rotating plug in a nuclear reactor. The sealing arrangement comprises a friction track which is formed along the periphery of the top of a ring mounted on a stationary element. An annular base coaxial with the plug is secured in sealing-tight manner to the stationary bearing around the ring and the track by means of a seal which rests on the annular base and also on the friction track of the ring and which comprises at least one friction ring and a clamping spring ring. The seal is clamped against the friction track to retractable clamping means when the plug is stationary, the retractable clamping means being carried by a ring secured to the first-mentioned ring. (U.S.)

  8. Revascularization and Apical Plug in an Immature Molar

    Science.gov (United States)

    Roghanizadeh, Leyla; Fazlyab, Mahta

    2018-01-01

    Managing of necrotic permanent teeth with immature apices is a treatment challenges. Treatment of such teeth includes apexification, apical plug and more recently, revascularization technique with the probable advantage of continuation of root development. In the present case report the referred patient had discomfort with a necrotic immature mandibular first molar. Periapical radiography showed a rather large apical lesion around immature roots. Revascularization protocol using calcium-enriched mixture (CEM) cement was indicated for the mesial root. However, in distal canal apical plug technique was applied. At 2-year follow-up, both procedures were successful in relieving patient’s symptoms. Dentin formation and increase in length of the mesial root was obvious. Apical plug and revascularization technique proved to be successful in management of necrotic immature teeth; moreover, revascularization carried the advantage of continuation of root development. PMID:29692851

  9. Structural integrity investigations of feeder pipe ice plugging procedures

    International Nuclear Information System (INIS)

    Flaman, M.T.; Shah, N.N.

    1985-03-01

    A procedure involving the use of a liquid nitrogen cooled heat exchanger to form internal ice plugs in feeder pipes is routinely used in nuclear generating stations. The use of this procedure has caused concerns with regard to the safety of station maintenance personnel, and in regard to the integrity of the feeder pipes. This report describes the results of laboratory stress and pressure measurements which were performed on a feeder pipe section during ice plugging operations to investigate these concerns. From the results of this study, and from the results of previous studies of material behaviour at low temperatures, it has been determined that the ice plugging procedure can be performed on feeder pipes in a safe and effective manner

  10. Plug and Play PV Systems for American Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, Christian [Fraunhofer USA, Inc., Boston, MA (United States)

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work during this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.

  11. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  12. MFTF-α+T end plug magnet design

    International Nuclear Information System (INIS)

    Srivastava, V.C.; O'Toole, J.A.

    1983-01-01

    The conceptual design of the end-plug magnets for MFTF-α+T is described. MFTF-α+ T is a near-term upgrade of MFTF-B, which features new end plugs to improve performance. The Fusion Engineering Design Center has performed the engineering design of MFTF-α+T under the overall direction of Lawrence Livermore National Laboratory. Each end plug consists of two Yin-Yang pairs, each with approx.2.5:1 mirror ratio and approx.5-T peak field on axis; two transition coils; and a recircularizing solenoid. This paper describes the end-plug magnet system functional requirements and presents a conceptual design that meets them. The peak field at the windings of the end-plug coils is approx.6-T. These coils are designed using the NbTi MFTF-B conductor and cooled by a 4.2K liquid helium bath. All the end-plug magnets are designed to operate in the cryostable mode with adequate quench protection for safety. Shielding requirements are stated and a summary of heat loads is provided. Field and force calculations are discussed. The field on axis is shown to meet the functional requirements. Force resultants are reported in terms of winding running loads and resultant coil forces are also given. The magnet structural support is described. A trade study to determine the optimum end-cell coil internal nuclear shield thickness and the resulting coil size based on minimizing the end-cell life cycle cost is summarized

  13. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  14. Improving the ignition quality of fuels

    KAUST Repository

    Sarathy, Mani

    2017-06-08

    Provided herein are compounds and methods of producing compounds for improving ignition quality and combustion efficiency of fuels, for example fossil fuels. In various aspects we generate highly oxygenated compounds from hydrocarbon feedstocks. The feedstock can be a branched alkane or n-alkane having a chain length greater than or equal to 6, a cycloalkane with a 5 or 6 membered ring structure, or a alkylated cycloalkane with 5 or more carbon atoms. The reactant can be fed in the gas- phase to a partial oxidation reactor (with or without a catalyst), and at a fixed temperature, mixture composition, and residence time. The reactant can be converted to a mixture of products including keto hydroperoxides, diketo hydroperoxides, keto dihydroperoxides, hydroperoxyl cyclic ethers, and alkenyl hydroperoxides. The compounds are inherently unstable and can quickly decompose to highly reactive radical species that can be used to improve the ignition quality of a fuel and advance ignition in an engine.

  15. Spatial determination of magnetic avalanche ignition points

    International Nuclear Information System (INIS)

    Jaafar, Reem; McHugh, S.; Suzuki, Yoko; Sarachik, M.P.; Myasoedov, Y.; Zeldov, E.; Shtrikman, H.; Bagai, R.; Christou, G.

    2008-01-01

    Using time-resolved measurements of local magnetization in the molecular magnet Mn 12 -ac, we report studies of magnetic avalanches (fast magnetization reversals) with non-planar propagating fronts, where the curved nature of the magnetic fronts is reflected in the time-of-arrival at micro-Hall sensors placed at the surface of the sample. Assuming that the avalanche interface is a spherical bubble that grows with a radius proportional to time, we are able to locate the approximate ignition point of each avalanche in a two-dimensional cross-section of the crystal. We find that although in most samples the avalanches ignite at the long ends, as found in earlier studies, there are crystals in which ignition points are distributed throughout an entire weak region near the center, with a few avalanches still originating at the ends

  16. Spatial determination of magnetic avalanche ignition points

    Energy Technology Data Exchange (ETDEWEB)

    Jaafar, Reem; McHugh, S.; Suzuki, Yoko [Physics Department, City College of the City University of New York, New York, NY 10031 (United States); Sarachik, M.P. [Physics Department, City College of the City University of New York, New York, NY 10031 (United States)], E-mail: sarachik@sci.ccny.cuny.edu; Myasoedov, Y.; Zeldov, E.; Shtrikman, H. [Department Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Bagai, R.; Christou, G. [Department of Chemistry, University of Florida, Gainesville, FL 32611 (United States)

    2008-03-15

    Using time-resolved measurements of local magnetization in the molecular magnet Mn{sub 12}-ac, we report studies of magnetic avalanches (fast magnetization reversals) with non-planar propagating fronts, where the curved nature of the magnetic fronts is reflected in the time-of-arrival at micro-Hall sensors placed at the surface of the sample. Assuming that the avalanche interface is a spherical bubble that grows with a radius proportional to time, we are able to locate the approximate ignition point of each avalanche in a two-dimensional cross-section of the crystal. We find that although in most samples the avalanches ignite at the long ends, as found in earlier studies, there are crystals in which ignition points are distributed throughout an entire weak region near the center, with a few avalanches still originating at the ends.

  17. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2009-12-15

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  18. Progress on LMJ targets for ignition

    International Nuclear Information System (INIS)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Lambert, F; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L

    2010-01-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  19. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Lambert, F; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2010-08-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  20. Progress on LMJ targets for ignition

    International Nuclear Information System (INIS)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L

    2009-01-01

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  1. The National Ignition Facility and Industry

    Science.gov (United States)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  2. The National Ignition Facility and industry

    International Nuclear Information System (INIS)

    Harri, J.G.; Lowdermilk, W.H.; Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.S.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of national construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project

  3. Target Visualization at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel Abraham [Univ. of California, Davis, CA (United States)

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  4. Ignition in the next step tokamak

    International Nuclear Information System (INIS)

    Johner, J.

    1990-07-01

    A 1/2-D model for thermal equilibrium of a thermonuclear plasma with transport described by an empirical global energy confinement time is described. Ignition in NET and ITER is studied for a number of energy confinement time scaling expressions. Ignited operation of these machines at the design value of the neutron wall load is shown to satisfy both beta and density constraints. The value of the confinement time enhancement factor required for such operation is found to be lower for the more recently proposed scaling expressions than it is for the oldest ones. With such new scalings, ignition could be obtained in H-mode in NET and ITER even with relatively flat density profiles

  5. Laser ignited engines: progress, challenges and prospects.

    Science.gov (United States)

    Dearden, Geoff; Shenton, Tom

    2013-11-04

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

  6. Improving the ignition quality of fuels

    KAUST Repository

    Sarathy, Mani; Wang, Zhandong; Shankar, Vijai Shankar Bhavani

    2017-01-01

    Provided herein are compounds and methods of producing compounds for improving ignition quality and combustion efficiency of fuels, for example fossil fuels. In various aspects we generate highly oxygenated compounds from hydrocarbon feedstocks. The feedstock can be a branched alkane or n-alkane having a chain length greater than or equal to 6, a cycloalkane with a 5 or 6 membered ring structure, or a alkylated cycloalkane with 5 or more carbon atoms. The reactant can be fed in the gas- phase to a partial oxidation reactor (with or without a catalyst), and at a fixed temperature, mixture composition, and residence time. The reactant can be converted to a mixture of products including keto hydroperoxides, diketo hydroperoxides, keto dihydroperoxides, hydroperoxyl cyclic ethers, and alkenyl hydroperoxides. The compounds are inherently unstable and can quickly decompose to highly reactive radical species that can be used to improve the ignition quality of a fuel and advance ignition in an engine.

  7. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  8. Warning: safety risk with some Apple AC Wall Plug Adapters

    CERN Multimedia

    CERN IT department

    2016-01-01

    Dear Mac and iOS Users, Apple has determined that some of its two prong Apple AC wall plug adapters may break and create a risk of electrical shock.   CERN users can now exchange their affected Apple wall plug adapters at the Service Desk. To find out if your adapter is affected and for any further information concerning the procedure to follow to exchange it, please check the following URL: https://cern.service-now.com/service-portal/view-outage.do?n=OTG0028639.

  9. Transport simulations of ohmic ignition experiment: IGNITEX

    International Nuclear Information System (INIS)

    Uckan, N.A.; Howe, H.C.

    1987-01-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large (≤2), and anomalous radiation and alpha losses and/or other enhanced transport losses (/eta//sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters (aB 0 2 /q* /approximately/ IB 0 , etc.) are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab

  10. Transport simulations of ohmic ignition experiment: IGNITEX

    International Nuclear Information System (INIS)

    Uckan, N.A.; Howe, H.C.

    1987-12-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large, and anomalous radiation and alpha losses and/or other enhanced transport losses (eta/sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab

  11. Robustness studies of ignition targets for the National Ignition Facility in two dimensions

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.

    2008-01-01

    Inertial confinement fusion capsules are critically dependent on the integrity of their hot spots to ignite. At the time of ignition, only a certain fractional perturbation of the nominally spherical hot spot boundary can be tolerated and the capsule still achieve ignition. The degree to which the expected hot spot perturbation in any given capsule design is less than this maximum tolerable perturbation is a measure of the ignition margin or robustness of that design. Moreover, since there will inevitably be uncertainties in the initial character and implosion dynamics of any given capsule, all of which can contribute to the eventual hot spot perturbation, quantifying the robustness of that capsule against a range of parameter variations is an important consideration in the capsule design. Here, the robustness of the 300 eV indirect drive target design for the National Ignition Facility [Lindl et al., Phys. Plasmas 11, 339 (2004)] is studied in the parameter space of inner ice roughness, implosion velocity, and capsule scale. A suite of 2000 two-dimensional simulations, run with the radiation hydrodynamics code LASNEX, is used as the data base for the study. For each scale, an ignition region in the two remaining variables is identified and the ignition cliff is mapped. In accordance with the theoretical arguments of Levedahl and Lindl [Nucl. Fusion 37, 165 (1997)] and Kishony and Shvarts [Phys. Plasmas 8, 4925 (2001)], the location of this cliff is fitted to a power law of the capsule implosion velocity and scale. It is found that the cliff can be quite well represented in this power law form, and, using this scaling law, an assessment of the overall (one- and two-dimensional) ignition margin of the design can be made. The effect on the ignition margin of an increase or decrease in the density of the target fill gas is also assessed

  12. An Additively Manufactured Torch Igniter for Liquid Propellants

    Data.gov (United States)

    National Aeronautics and Space Administration — Consistent and reliable rocket engine ignition has yet to be proven through an additively manufactured torch igniter for liquid propellants. The coupling of additive...

  13. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  14. Thermonuclear ignition in the next generation tokamaks

    International Nuclear Information System (INIS)

    Johner, J.

    1989-04-01

    The extrapolation of experimental rules describing energy confinement and magnetohydrodynamic - stability limits, in known tokamaks, allow to show that stable thermonuclear ignition equilibria should exist in this configuration, if the product aB t x of the dimensions by a magnetic-field power is large enough. Quantitative application of this result to several next-generation tokamak projects show that those kinds of equilibria could exist in such devices, which would also have enough additional heating power to promote an effective accessible ignition

  15. Nova Upgrade program: ignition and beyond

    International Nuclear Information System (INIS)

    Storm, E.; Campbell, E.M.; Hogan, W.J.; Lindl, J.D.

    1993-01-01

    The Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program is addressing the critical physics and technology issues directed toward demonstrating and exploiting ignition and propagating burn to high gain with ICF targets for both defense and civilian applications. Nova is the primary U.S. facility employed in the study of the X-ray-driven (indirect drive) approach to ICF. Nova's principal objective is to demonstrate that laser-driven hohlraums can achieve the conditions of driver-target coupling efficiency, driver irradiation symmetry, driver pulseshaping, target preheat, and hydrodynamic stability required by hot-spot ignition and fuel compression to realize a fusion gain. (author)

  16. Structural features of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Citrolo, J.; Brown, G.; Rogoff, P.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is undergoing preliminary structural design and definitions. It will be relatively inexpensive with ignition capabilities. During the definition phase it was concluded that the TF coil should be assembled from the laminate copper-Inconel plates since copper alone cannot sustain the expected magnetic and thermal loads. An extensive test program is being initiated to investigate the various materials, and their elastic and inelastic response and to develop the constitutive equations required for the selection of design criteria and for the stress analysis of this device. Finite element analysis nonlinear material capabilities are being used to study, predict and correlate the machine behavior

  17. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  18. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  19. Ignition experiment in a single-turn-coil tokamak

    International Nuclear Information System (INIS)

    Carrera, R.; Driga, M.; Gully, J.H.

    1989-01-01

    A novel concept for a fusion ignition experiment, IGNITEX proposed along the lines of previous ideas for a compact thermonuclear device is analyzed. A single-turn-coil tokamak is analyzed. A single-turn-coil tokamak supplied by homopolar generators can ohmically heat a DT plasma to ignition conditions and maintain a thermally stable ignited phase for about ten energy confinement times. The IGNITEX experiment can provide a simple and relatively inexpensive way to produce and control ignited plasmas for scientific study

  20. Field errors in hybrid insertion devices

    International Nuclear Information System (INIS)

    Schlueter, R.D.

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed

  1. Field errors in hybrid insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, R.D. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  2. Regional insertion: an emergent approach

    International Nuclear Information System (INIS)

    Serra, M.T.F.; Nascimento Teixeira, P. do

    1989-01-01

    The Brazilian Electrical Sector incorporates new variables that expressing the extensive spectrum of environmental impacts in the take of decisions, referring to the viability of realizing a electrical undertaking, attends the several restrictions that are important by the sector and by the society in the environment area and promotes the adequate generation of liquid benefits, consequential of the electrical undertaking. Due to these factors, the Electrical Sector is improving the concept of regional insertion, with the sectorial expansion in long-dated and the created demand in the environmental and social area, focalizing the solution for these questions. (C.G.C.). 1 fig, 2 tabs

  3. Recent advances in insertion devices

    International Nuclear Information System (INIS)

    Gluskin, E.; Moog, E.R.

    1995-01-01

    Demand for more and better insertion devices (IDs) at new third-generation synchrotron radiation facilities has led to significant advances in ID technology at different laboratories around the world. In this overview of this progress, focus is on those results that apply to IDs in general rather than one specific ID or laboratory. The advances fall into two general categories: those that reduce the net effect that the ID has on the particle beam, and those that enhance the quality of the emitted light spectrum. The need for these advances, factors that are most important inaachieving them, and the current state of the art are discussed

  4. Summary of experimental insertions workshop

    International Nuclear Information System (INIS)

    Sandweiss, J.; Month, M.

    1976-01-01

    The last ISABELLE workshop of the summer 1976 series, which was held at Brookhaven, August 16-20, focused on the design and utilization of the experimental insertions. The goals of the workshop, which were somewhat more general than might be suggested by the title, are: (1) review the ISABELLE proposal from the point of view of experimental use; (2) contribute useful information on the ''open questions'' in the ISABELLE design; (3) develop data for experimental equipment and operating cost estimates; and (4) project a first approximation to ISABELLE operating modes

  5. Analysis of cyclic variations during mode switching between spark ignition and controlled auto-ignition combustion operations

    OpenAIRE

    Chen, T; Zhao, H; Xie, H; He, B

    2014-01-01

    © IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research...

  6. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  7. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  8. Biodegradable microfabricated plug-filters for glaucoma drainage devices.

    Science.gov (United States)

    Maleki, Teimour; Chitnis, Girish; Park, Jun Hyeong; Cantor, Louis B; Ziaie, Babak

    2012-06-01

    We report on the development of a batch fabricated biodegradable truncated-cone-shaped plug filter to overcome the postoperative hypotony in nonvalved glaucoma drainage devices. Plug filters are composed of biodegradable polymers that disappear once wound healing and bleb formation has progressed past the stage where hypotony from overfiltration may cause complications in the human eye. The biodegradable nature of device eliminates the risks associated with permanent valves that may become blocked or influence the aqueous fluid flow rate in the long term. The plug-filter geometry simplifies its integration with commercial shunts. Aqueous humor outflow regulation is achieved by controlling the diameter of a laser-drilled through-hole. The batch compatible fabrication involves a modified SU-8 molding to achieve truncated-cone-shaped pillars, polydimethylsiloxane micromolding, and hot embossing of biodegradable polymers. The developed plug filter is 500 μm long with base and apex plane diameters of 500 and 300 μm, respectively, and incorporates a laser-drilled through-hole with 44-μm effective diameter in the center.

  9. Height suppression of tomato plug seedlings by an environment ...

    African Journals Online (AJOL)

    Experiments were conducted to investigate appropriate concentrations of plant growth retardants (PGRs) and duration of seed soaking in order to suppress hypocotyl length and plug seedling height of 2 tomato cultivars ( Lycopersicum esculentum Mill. cv. Seogeon and Seokwang). Daminozide (B-9), uniconazole ...

  10. Project Gasbuggy well plugging and site restoration plan

    International Nuclear Information System (INIS)

    1978-07-01

    The operational plan for conducting the final restoration work at the site of the first U.S. underground nuclear experiment for the stimulation of low-productivity natural gas reservoirs is given. The plan includes well plugging procedures, surface facilities decontamination and removal procedures, radiological guidelines, and environmental considerations

  11. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Singh, S.; Aniruddha Kumar; Amit; Arun Kumar; Panakkal, J.P.; Kamath, H.S.

    2004-01-01

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O 2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  12. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  13. Axicell design for the end plugs of MFTF-B

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Karpenko, V.N.

    1982-01-01

    Certain changes in the end-plug design in the Mirror Fusion Test Facility (MFTF-B) are described. The Laboratory (LLNL) proposes to implement these changes as soon as possible in order to construct the machine in an axicell configuration. The present physics and technology goals as well as the project cost and schedule will not be affected by these changes

  14. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)

  15. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  16. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    Science.gov (United States)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  17. Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Terry, Matthew R.; Perkins, L. John; Sepke, Scott M.

    2012-01-01

    Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes “day one” NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

  18. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal; Singh, Eshan; Ahmed, Ahfaz; Sarathy, Mani

    2017-01-01

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better

  19. Choosing Wisely When It Comes to Eye Care: Punctal Plugs for Dry Eye

    Science.gov (United States)

    ... of Our 5-Part Series: Punctal Plugs for Dry Eye Making healthy lifestyle choices can help you protect ... discuss each item in detail. Punctal Plugs for Dry Eye Dry eye is a condition that millions of ...

  20. Instrumentation development for the Waste Isolation Pilot Plant (WIPP) borehole plugging program (BHP)

    International Nuclear Information System (INIS)

    Cook, C.W.

    1979-11-01

    This report discusses the instrumentation development needs of the borehole testing program as it now exists. Although requirements may change as the program progresses, the items indicated are basic to any borehole plugging program. Instrumentation is discussed both for the plug environment and for the plug itself. For the plug environment, a probe for measuring the disturbed region and a coordinate logging tool are required. For the plug itself, instrumentation includes measurements above, within, and below the plug. Instrumentation for most measurements above the plug is currently available; for measurements within and below the plug, however, further development is required. Specifically, resistivity, induction, and acoustic probes; an in situ stressmeter; and a hardwire, feedthrough system need to be developed

  1. Process and device for extracting a cylindrical element such a plug of a small diameter tube

    International Nuclear Information System (INIS)

    Ferlay, J.C.; Gente, D.; Jouin, D.

    1992-01-01

    The plug engaged in a steam generator tube is extracted by first machining away the expander and a part of its side wall then pulling the remainder of the plug from the tube with a tool engaging its closed end

  2. National Ignition Facility Title II Design Plan

    International Nuclear Information System (INIS)

    Kumpan, S

    1997-01-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed

  3. Physics of ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1989-01-01

    The implosion of an ICF capsule must accomplish both compression of the main fuel to several hundred grams per cubic centimeter and heating and compression of the central region of the fuel to ignition. This report discusses the physics of these conditions

  4. Tests of an experimental slash ignition unit

    Science.gov (United States)

    James L. Murphy; Harry E. Schimke

    1965-01-01

    A prototype ignition package containing an incendiary powder and designed for slash and brush burning jobs showed some promise, but the unit tested was not superior to such conventional devices as fusees, diesel backpack type flamethrowers, Very pistols, and drip torches.

  5. Impacts assessment for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bay Area Economics

    1996-12-01

    This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

  6. Piloted ignition of live forest fuels

    Science.gov (United States)

    S. McAllister; I. Grenfell; A. Hadlow; W. M. Jolly; M. Finney; J. Cohen

    2012-01-01

    The most unpredictable and uncontrollable wildfires are those that burn in the crowns of live vegetation. The fuels that feed these crown fires are mostly live, green foliage. Unfortunately, little is known about how live fuels combust. To understand how live fuels burn, piloted ignition experiments were performed with lodgepole pine and Douglas-fir. The thermal...

  7. Plasma ignition for medium calibre ammunition

    NARCIS (Netherlands)

    Driel, C.A. van; Schilt, A.; Simor, M.; Schaffers, P.; Weise, T.

    2012-01-01

    Gun performance is usually affected by the operating temperature of the ammunition or weapon. This is caused by several factors, amongst which the temperature dependency of the propellant ignition and combustion processes. Compensation of temperature effects on weapon or ammunition performance is

  8. National Ignition Facility design focuses on optics

    International Nuclear Information System (INIS)

    Hogan, W.J.; Atherton, L.J.; Paisner, J.A.

    1996-01-01

    Sometime in the year 2002, scientists at the National Ignition Facility (NIF) will focus 192 separate high-power ultraviolet laser beams onto a tiny capsule of deuterium and tritium, heating and compressing the material until it ignites and burns with a burst of fusion energy. The mission of NIF, which will contain the largest laser in the world, is to obtain fusion ignition and gain and to use inertial confinement fusion capabilities in nuclear weapons science experiments. The physics data provided by NIF experiments will help scientists ensure nuclear weapons reliability without the need for actual weapons tests; basic sciences such as astrophysics will also benefit. The facility faces stringent weapons-physics user requirements demanding peak pulse powers greater than 750 TW at 0.35 microm (only 500 TW is required for target ignition), pulse durations of 0.1 to 20 ns, beam steering on the order of several degrees, and target isolation from residual 1- and 0.5-microm radiation. Additional requirements include 50% fractional encircled beam energy in a 100-microm-diameter spot, with 95% encircled in a 200-microm spot. The weapons-effects community requires 1- and 0.5-microm light on target, beam steering to widely spaced targets, a target chamber accommodating oversized objects, well-shielded diagnostic areas, and elimination of stray light in the target chamber. The beamline design, amplifier configuration and requirements for optics are discussed here

  9. Diagnosing ignition with DT reaction history

    International Nuclear Information System (INIS)

    Wilson, D. C.; Bradley, P. A.; Herrmann, H. W.; Cerjan, C. J.; Salmonson, J. D.; Spears, B. K.; Hatchet, S. P. II; Glebov, V. Yu.

    2008-01-01

    A full range DT reaction history of an ignition capsule, from 10 9 to 10 20 neutrons/ns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final ∼100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within ∼50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium (∼1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules.

  10. Physics evaluation of compact tokamak ignition experiments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/ 2 /q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs

  11. Power conditioning for the National Ignition Facility

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1994-01-01

    A cost-effective, 320-MJ power-conditioning system has been completed for the proposed National Ignition Facility (NIF). The design features include metallized dielectric capacitors, a simple topology, and large (1.6-MJ) module size. Experimental results address the technical risks associated with the design

  12. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...

  13. Ignition of Propellants Through Nanostructured Materials

    Science.gov (United States)

    2016-03-31

    aluminum nano-particles and solid oxidizers such as ammonium perchlorate on the photo-ignition characteristics. We found that by mixing carbon...sensitive microphone (Piezotronic Inc. model S05692) for detection of any photo-acoustic signal, and an XYZ traversing stage with a filter wheel for

  14. National Ignition Facility frequency converter development

    International Nuclear Information System (INIS)

    Barker, C.E.; Auerbach, J.M.; Adams, C.H.

    1996-01-01

    A preliminary error budget for the third harmonic converter for the National Ignition Facility (NIF) laser driver has been developed using a root-sum-square-accumulation of error sources. Such a budget sets an upper bound on the allowable magnitude of the various effects that reduce conversion efficiency. Development efforts on crystal mounting technology and crystal quality studies are discussed

  15. Insertion and crossing region design

    International Nuclear Information System (INIS)

    Wienands, U.; Beloshitsky, P.

    2001-01-01

    This article is the summary of the 5-afternoon tutorial on insertions for circular machines. Roughly half the course (Part 1) was spent discussing interaction regions, We start by recapitulating basic beam optics including building blocks. This provides the tools to analyze the basic structure of interaction regions and explore the parameter space. This simple example is then successively refined and made more realistic. Examples of realized interaction regions for both hadron and electron machines are shown and their salient features and differences explained. A brief discussion of solenoid-decoupling brings Part 1 to a close. In Part 2 we discussed various utility sections. Dispersion suppressors are presented in detail discussing the principles as well as the practical implementation of flexible suppressors using LEP as an example. Injection schemes, both single-turn and multi-turn stacking, are presented in depth. The matching of wiggler and undulator insertions and a discussion of the impact of these devices on beam parameters closes out Part 2

  16. Lubricant induced pre-ignition in an optical spark-ignition engine

    OpenAIRE

    Dingle, Simon Frederick

    2014-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London This work focuses on the introduction of lubricant into the combustion chamber and the effect that this has on pre-ignition. Apparently for the first time, the work presented provides detailed full-bore optical data for lubricant induced pre-ignition and improves understanding of the super-knock phenomena that affects modern downsized gasoline engines. A new single-cylinder optical r...

  17. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

    KAUST Repository

    Naser, Nimal; Yang, Seung Yeon; Kalghatgi, Gautam; Chung, Suk-Ho

    2016-01-01

    an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures

  18. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  19. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  20. Polysaccharides and bacterial plugging. Final report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.

    1995-02-01

    In situ core plugging experiments and transport experiments, using the model bacteria Leuconostoc m., have been conducted. Results demonstrated that cellular polysaccharide production increases cell distribution in porous media and caused an overall decrease in media permeability. Further, a parallel core plugging experiment was conducted and showed the feasibility of this system to divert injection fluid from high permeability zones into low permeability zones within porous media as is needed for profile modification. To implement this type of application, however, controlled placement of cells and rates of polymer production are needed. Therefore, kinetic studies were performed. A kinetic model was subsequently developed for Leuconostoc m. bacteria. This model is based on data generated from batch growth experiments and allows for the prediction of saccharide utilization, cell generation, and dextran production. These predictions can be used to develop injection strategies for field implementation. Transport and in situ growth micromodel experiments have shown how dextran allow cells to remain as clusters after cell division which enhanced cell capture and retention in porous media. Additional Damkohler experiments have been performed to determine the effects of the nutrient injection rate and nutrient concentration on the rate of porous media plugging. As shown experimentally and as predicted by a model for in situ growth, an increase in nutrient concentration and/or its injection rate will result in a faster rate of porous media plugging. Through continuum model simulations, it has been shown that the initial cell profiles play a key role on the core plugging rate. Controlling the location of the inoculating cells is thus another key factor in using bacteria for profile modification.

  1. Oscillation of an isolated liquid plug inside a dry capillary

    Science.gov (United States)

    Srinivasan, Vyas; Kumar, Siddhartha; Asfer, Mohammed; Khandekar, Sameer

    2017-11-01

    The present work reports an experimental study on the dynamics of partially wetting isolated liquid plug (DI water), which is made to oscillate inside a square, glass capillary tube (1 mm × 1 mm; 60 mm length). The liquid plug is made to oscillate pneumatically at two different frequencies (0.25 and 0.35 Hz), using a cam-follower mechanism. Bright field imaging is used to visualize the three-phase contact line behavior, while, micro-Particle Imaging Velocimetry (PIV) apparatus is used to discern the nature of flow inside the oscillating liquid plug. During a cycle, due to the partial wetting nature of DI water, the three-phase contact line at the menisci gets pinned at the extreme end of each stroke, where the dynamic apparent contact angle gets drastically altered before the initiation of the next stroke. The difference between the apparent contact angle of the front and rear meniscus are seen to be a function of the oscillating frequency; the difference increasing with increasing frequency. The flow inside the liquid plug reveals unique non-Poiseuille flow features near the meniscus, due to free-slip boundary condition, which leads to formation of distinct vortex pairs behind it. The vortices too change their direction during each stroke of the oscillation, eventually leading to an alternating recirculation pattern inside the plug. The results clearly indicate that improved mathematical models are required for predicting transport parameters in such flows, which are important in engineering systems such as pulsating heat pipes, lab-on-chip devices and PEM fuel cells.

  2. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  3. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  4. Progress in the indirect-drive National Ignition Campaign

    International Nuclear Information System (INIS)

    Landen, O L; Benedetti, R; Bleuel, D; Bradley, D K; Caggiano, J A; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D; Collins, G W; Dewald, E L; Dixit, S N; Doeppner, T; Eggert, J; Farley, D; Glenn, S M; Boehly, T R; Edgell, D; Glebov, V; Frenje, J A

    2012-01-01

    We have carried out precision optimization of inertial confinement fusion ignition scale implosions. We have achieved hohlraum temperatures in excess of the 300 eV ignition goal with hot-spot symmetry and shock timing near ignition specs. Using slower rise pulses to peak power and extended pulses resulted in lower hot-spot adiabat and higher main fuel areal density at about 80% of the ignition goal. Yields are within a factor of 5–6 of that required to initiate alpha dominated burn. It is likely we will require thicker shells (+15–20%) to reach ignition velocity without mixing of ablator material into the hot spot. (paper)

  5. Experimental results pertaining to the performance of thermal igniters

    International Nuclear Information System (INIS)

    Carmel, M.K.

    1989-10-01

    This report summarizes the results of various experimental programs regarding the performance of thermal igniters for the deliberate ignition of hydrogen in light water reactors. Experiments involving both premixed combustion and combustion with continuous hydrogen injection are reviewed. Combustion characteristics examined include flammability limits of hydrogen:air and hydrogen:air:steam mixtures, combustion pressure rises, combustion completeness, flame speeds, and heat transfer aspects. Comparisons of igniter type and igniter reliability under simulated reactor accident conditions are included. The results of the research programs provide a broad data base covering nearly all aspects of hydrogen combustion related to the performance of deliberate ignition systems

  6. Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

    Science.gov (United States)

    Send a link to Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

  7. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov (United States)

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative

  8. Test Confessions : A Study of Testing Practices for Plug-in Systems

    NARCIS (Netherlands)

    Greiler, M.; Van Deursen, A.; Storey, M.A.

    2011-01-01

    Testing plug-in-based systems is challenging due to complex interactions among many different plug-ins, and variations in version and configuration. The objective of this paper is to increase our understanding of what testers and developers think and do when it comes to testing plug-inbased systems.

  9. Rotating plug size study for liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Nemeth, L.J.

    1980-01-01

    A study was performed to evaluate possible rotating plug arrangements. The three-, two-, and one-rotating plug schemes were developed using a set of established restrictions and component sizes. The three-rotating plug configuration is the recommended reference design

  10. 30 CFR 250.1711 - When will MMS order me to permanently plug a well?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When will MMS order me to permanently plug a well? 250.1711 Section 250.1711 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Activities Permanently Plugging Wells § 250.1711 When will MMS order me to permanently plug a well? MMS will...

  11. Ignition of Cellulosic Paper at Low Radiant Fluxes

    Science.gov (United States)

    White, K. Alan

    1996-01-01

    The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.

  12. Comprehensive study of ignition and combustion of single wooden particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass co-firing design and optimization. In this paper, the ignition and burnout of the largest possible...... for all the test conditions. As the particle is further heated up and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement...... with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced...

  13. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  14. Development of a pre-ignition submodel for hydrogen engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Sadiq [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2005-10-15

    In hydrogen-fuelled spark ignition engine applications, the onset of pre-ignition remains one of the prime limitations that needs to be addressed to avoid its incidence and achieve superior performance. This paper describes a new pre-ignition submodel for engine modelling codes. The effects of changes in key operating variables, such as compression ratio, spark timing, intake pressure, and temperature on pre-ignition limiting equivalence ratios are established both analytically and experimentally. With the established pre-ignition model, it is possible not only to investigate whether pre-ignition is observed with changing operating and design parameters, but also to evaluate those parameters' effects on the maximum possible pre-ignition intensity. (author)

  15. Ignition characteristics of coal blends in an entrained flow furnace

    Energy Technology Data Exchange (ETDEWEB)

    J. Faundez; B. Arias; F. Rubiera; A. Arenillas; X. Garcia; A.L. Gordon; J.J. Pis [Universidad de Concepcion, Concepcion (Chile)

    2007-09-15

    Ignition tests were carried out on blends of three coals of different rank - subbituminous, high volatile and low volatile bituminous - in two entrained flow reactors. The ignition temperatures were determined from the gas evolution profiles (CO, CO{sub 2}, NO, O{sub 2}), while the mechanism of ignition was elucidated from these profiles and corroborated by high-speed video recording. Under the experimental conditions of high carbon loading, clear interactive effects were observed for all the blends. Ignition of the lower rank coals (subbituminous, high volatile bituminous) enhanced the ignition of the higher rank coal (low volatile bituminous) in the blends. The ignition temperatures of the blends of the low rank coals (subbituminous-high volatile bituminous) were additive. However, for the rest of the blends the ignition temperatures were always closer to the lower rank coal in the blend. 21 refs., 8 figs.

  16. Ignition analysis for burn control and diagnostic developments in ITER

    International Nuclear Information System (INIS)

    Mitarai, O.; Muraoka, K.

    1997-01-01

    The temporal evolutions of the operating point during the ignition access and ignited operation phases are analysed on the basis of zero dimensional (0-D) equations in order to clarify the requirements for safe control of ignited operation and for the development of diagnostic systems in ITER. A stable and safe method of reaching the ignited operating point is identified as the 'higher temperature access' method, being compatible with the H mode power threshold constraints. It is found that the ignition boundary can be experimentally determined by a 'thermonuclear oscillation' of the operating point without knowing the power balance equation. On the other hand, the ignition boundary determined by the power balance equation has a larger error bar depending on the accuracy of the diagnostic system. The plasma waveform response to sudden changes in the various plasma parameters during ignited operation is also calculated, and fusion power regulation is demonstrated by feedback control of the fuelling and auxiliary heating power. (author)

  17. Temperature analysis of laser ignited metalized material using spectroscopic technique

    Science.gov (United States)

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  18. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION; FINAL

    International Nuclear Information System (INIS)

    Samuel Owusu-Ofori; John C. Chen

    1999-01-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals as well as the ignition rate of reaction. furthermore, there have been no previous studies aimed at examining these factors under various experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition temperature of various coals by direct measurement, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. The authors propose to use a novel laser-based ignition experiment to achieve their first objective. Laser-ignition experiments offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature measurement. The ignition temperature of different coals under various experimental conditions can therefore be easily determined by direct measurement using two-color pyrometry. The ignition rate-constants, when the ignition occurs heterogeneously, and the particle heating rates will both be determined from analyses based on these measurements

  19. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  20. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F.

    2007-01-01

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≅4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≅790 atm) in the inner shell, strict concentricity requirements on the two shells ( 2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010

  1. Field-test programs of borehole plugs in southeastern New Mexico

    International Nuclear Information System (INIS)

    Christensen, C.L.; Peterson, E.W.

    1981-01-01

    This paper gives a general overview of the repository-sealing field test effort being conducted by Sandia National Laboratories in support of the Waste Isolation Pilot Plant in southeast New Mexico. Summary descriptions of supporting activities, such as performance assessment and plugging materials development, are included to create the connection between modeling and laboratory activities as they relate to field results. Results of tests on a portion of a 17-year-old plug (Plug 217) recovered from a mine horizon and the Bell Canyon Test, in which a cement plug was emplaced to isolate a naturally pressurized aquifer, are given. Conclusions from these field plugging tests are included

  2. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  3. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  4. Test report for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing

  5. Fast ignition schemes for inertial confinement fusion

    International Nuclear Information System (INIS)

    Deutsch, C.

    2003-01-01

    The controlled production of a local hot spot in super-compressed deuterium + tritium fuel is examined in details. Relativistic electron beams (REB) in the MeV and proton beams in the few tens MeV energy range produced by PW-lasers are respectively considered. A strong emphasis is given to the propagation issues due to large density gradients in the outer core of compressed fuel. A specific attention is also paid to the final and complete particle stopping resulting in hot spot generation as well as to the interplay of collective vs. particle stopping at the entrance channel on the low density side in plasma target. Moreover, REB production and fast acceleration mechanisms are also given their due attention. Proton fast ignition looks promising as well as the wedged (cone angle) approach circumventing most of transport uncertainties between critical layer and hot spot. Global engineering perspectives for fast ignition scenario (FIS) driven inertial confinement fusion are also detailed. (author)

  6. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  7. Integrated thermodynamic model for ignition target performance

    Directory of Open Access Journals (Sweden)

    Springer P.T.

    2013-11-01

    Full Text Available We have derived a 3-dimensional synthetic model for NIF implosion conditions, by predicting and optimizing fits to a broad set of x-ray and nuclear diagnostics obtained on each shot. By matching x-ray images, burn width, neutron time-of-flight ion temperature, yield, and fuel ρr, we obtain nearly unique constraints on conditions in the hotspot and fuel in a model that is entirely consistent with the observables. This model allows us to determine hotspot density, pressure, areal density (ρr, total energy, and other ignition-relevant parameters not available from any single diagnostic. This article describes the model and its application to National Ignition Facility (NIF tritium–hydrogen–deuterium (THD and DT implosion data, and provides an explanation for the large yield and ρr degradation compared to numerical code predictions.

  8. Ignitability and explosibility of gases and vapors

    CERN Document Server

    Ma, Tingguang

    2015-01-01

    The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but al...

  9. Transport Simulations for Fast Ignition on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Strozzi, D J; Tabak, M; Grote, D P; Cohen, B I; Shay, H D; Town, R J; Kemp, A J; Key, M

    2009-10-26

    We are designing a full hydro-scale cone-guided, indirect-drive FI coupling experiment, for NIF, with the ARC-FIDO short-pulse laser. Current rad-hydro designs with limited fuel jetting into cone tip are not yet adequate for ignition. Designs are improving. Electron beam transport simulations (implicit-PIC LSP) show: (1) Magnetic fields and smaller angular spreads increase coupling to ignition-relevant 'hot spot' (20 um radius); (2) Plastic CD (for a warm target) produces somewhat better coupling than pure D (cryogenic target) due to enhanced resistive B fields; and (3) The optimal T{sub hot} for this target is {approx} 1 MeV; coupling falls by 3x as T{sub hot} rises to 4 MeV.

  10. Radiological assessments for the National Ignition Facility

    International Nuclear Information System (INIS)

    Hong, Kou-John; Lazaro, M.A.

    1996-01-01

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer

  11. Activation analysis of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  12. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-01-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  13. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Flow induced vibration studies on Prototype Fast Breeder Reactor control plug model carried out. Black-Right-Pointing-Pointer Velocity similitude was followed for the study. Black-Right-Pointing-Pointer Frequencies and amplitude of vibrations of various control plug components measured. Black-Right-Pointing-Pointer Overall values of vibration are well within permissible limits. - Abstract: The construction of Prototype Fast Breeder Reactor (PFBR), a 500 MWe liquid sodium cooled reactor, is in progress at Kalpakkam in India. Control plug (CP) is located right above the core subassemblies in the hot pool. Control plug is an important component as many of the critical reactor parameters are sensed and controlled by the components housed in the control plug assembly. In PFBR primary circuit, components are basically thin walled, slender shells with diameter to thickness ratio ranging from 100 to 650. These components are prone to flow induced vibrations. The existence of free liquid (sodium) surfaces, which is the source of sloshing phenomenon and the operation of primary sodium pump in the primary pool are other potential sources of vibration of reactor components. Control plug is a hollow cylindrical shell structure and provides passages and support for 12 absorber rod drive mechanisms (ARDM) which consists of 9 control and safety rods and 3 diverse safety rods, 210 thermo wells to measure the sodium temperature at the exit of various fuel subassemblies, three failed fuel localization modules (FFLM) and acoustic detectors. It consists of a core cover plate (CCP), which forms the bottom end, two intermediate supports plate, i.e. lower stay plate (LSP) and upper stay plate (USP) and an outer shell. The CCP is located at a distance of 1.3 m from the core top. With such a gap, there will be long free hanging length of the thermocouple sleeves, Delayed neutron detector (DND) sampling tubes and ARDM shroud tubes and hence they are

  14. Wireless Plug and Play Control Systems: Hardware, Networks, and Protocols

    DEFF Research Database (Denmark)

    Meybodi, Soroush Afkhami

    2012-01-01

    This dissertation reports the result of efforts to identify and solve the problems that arise when a control system is to be designed for various industrial case studies of the Plug and Play Process Control (P3C) project that require autonomous addition/removal of sensors, actuators and subsystems...... in only one of the P3C case studies where all of the nodes of the wireless networked control system are placed underground and should be able to transmit data among themselves. It is not a trivial problem because the well known radio frequency electromagnetic waves face serious difficulties penetrating...... is recommended for wireless plug and play control systems. Formation and maintenance of clusters of nodes are directly linked to the top level application layer via a novel application-based routing metric. The proposed routing metric facilitates implementation of the networking topology in accordance...

  15. A Plug and Produce Framework for Industrial Collaborative Robots

    DEFF Research Database (Denmark)

    Schou, Casper; Madsen, Ole

    2017-01-01

    Collaborative robots are today ever more interesting in response to the increasing need for agile manufacturing equipment. Contrary to traditional industrial robots, collaborative robots are intended for working in dynamic environments alongside the production staff. To cope with the dynamic...... environment and workflow, new configuration and control methods are needed compared to those of traditional industrial robots. The new methods should enable shop floor operators to reconfigure the robot. This article presents a plug and produce framework for industrial collaborative robots. The article...... focuses on the control framework enabling quick and easy exchange of hardware modules as an approach to achieving plug and produce. To solve this, an agent-based system is proposed building on top of the robot operating system. The framework enables robot operating system packages to be adapted...

  16. Plug and Process Loads Capacity and Power Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  17. Strength and stability of microbial plugs in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sharma, M.M.; Georgiou, G. [Univ. of Texas, Austin, TX (United States)

    1995-12-31

    Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.

  18. Plug and Play Framework for Theories of Social Group Dynamics

    DEFF Research Database (Denmark)

    Rehm, Matthias; Endrass, Birgit; André, Elisabeth

    2006-01-01

    We present an extensible framework for behavior control of social agents in a multi-agent system that has the following features. It implements a basic repertoire of socio-psychological models of behavior and interpersonal interactions that can be plugged and unplugged at will depending on the sp......We present an extensible framework for behavior control of social agents in a multi-agent system that has the following features. It implements a basic repertoire of socio-psychological models of behavior and interpersonal interactions that can be plugged and unplugged at will depending...... on the specific context of the application. This enables us to test several theories in isolation or combination to increase the transparency of the system and to investigate how the inclusion of a certain theory influences the behavior of the agents. Unlike earlier approaches, our approach is not bound...

  19. Sequential cooling insert for turbine stator vane

    Science.gov (United States)

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  20. A mechanistic approach to safe igniter implementation for hydrogen mitigation

    International Nuclear Information System (INIS)

    Breitung, W.; Dorofeev, S.B.; Travis, J.R.

    1997-01-01

    A new methodology for safe igniter implementation in a full-scale 3-d containment is described. The method consists of the following steps: determination of bounding H 2 /steam sources; high-resolution analysis of the 3-d transport and mixing processes; evaluation of the detonation potential at the time of ignition; optimization of the igniter system such that only early ignition and nonenergetic combustion occurs; and modelling of the continuous deflagration processes during H 2 -release. The method was implemented into the GASFLOW code. The principle and the feasibility is demonstrated for a single room geometry. A full-scale 3-d reactor case is analyzed without and with deliberate ignition, assuming a severe dry H 2 release sequence (1200 kg). In the unmitigated case significant DDT potential in the whole containment develops, including the possibility of global detonations. The analysis with igniters in different positions predicted deflagration or detonation in the break compartment, depending on the igniter location. Igniter positions were found which lead to early ignition, effective H 2 -removal, and negligible pressure loads. The approach can be used to determine number, position and frequency of a safe igniter system for a given large dry containment. (author)

  1. Heavy ion fusion targets; issues for fast ignition

    International Nuclear Information System (INIS)

    Bangerter, Roger O.

    2014-01-01

    During the last 36 years researchers have suggested and evaluated a large number of target designs for heavy ion inertial fusion. The different target designs can be classified according to their mode of ignition, their method of implosion, and their size. Ignition modes include hot-spot ignition and fast ignition. Methods of implosion include direct drive and indirect drive. Historically there has been significant work on indirectly driven targets with hot-spot ignition. Recently there has been increasing interest in directly driven targets with ion driven fast ignition. In principle, fast ignition might lead to improved target performance. On the other hand, fast ignition imposes stringent requirements on accelerators and beam physics. Furthermore, fast ignition magnifies the importance of a number of traditional target physics issues associated with ion beam energy deposition and fuel preheat. This paper will discuss the advantages and disadvantages of the various classes of targets. It will also discuss some issues that must be resolved to assess the feasibility of ion fast ignition

  2. Ignition of a combustible half space

    Science.gov (United States)

    Olmstead, W. E.

    1983-01-01

    A half space of combustible material is subjected to an arbitrary energy flux at the boundary where convection heat loss is also allowed. An asymptotic analysis of the temperature growth reveals two conditions necessary for ignition to occur. Cases of both large and order unity Lewis number are shown to lead to a nonlinear integral equation governing the thermal runaway. Some global and asymptotic properties of the integral equation are obtained.

  3. Prechamber Compression-Ignition Engine Performance

    Science.gov (United States)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  4. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  5. Investigating antennas as ignition aid for automotive HID lamps

    International Nuclear Information System (INIS)

    Bergner, A; Engelhardt, M; Bienholz, S; Ruhrmann, C; Hoebing, T; Groeger, S; Mentel, J; Awakowicz, P

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case. (paper)

  6. Enhancements to the Redmine Database Metrics Plug in

    Science.gov (United States)

    2017-08-01

    management web application has been adopted within the US Army Research Laboratory’s Computational and Information Sciences Directorate as a database...project management web application.∗ The Redmine plug-in† enabled the use of the numerous, powerful features of the web application. The many...distribution is unlimited. 2 • Selectable export of citations/references by type, writing style , and FY • Enhanced naming convention options for

  7. "Plug-and-play" edge-preserving regularization

    DEFF Research Database (Denmark)

    Chen, Donghui; Kilmer, Misha E.; Hansen, Per Christian

    2014-01-01

    In many inverse problems it is essential to use regularization methods that preserve edges in the reconstructions, and many reconstruction models have been developed for this task, such as the Total Variation (TV) approach. The associated algorithms are complex and require a good knowledge of large...... cosine transform.hence the term "plug-and-play" . We do not attempt to improve on TV reconstructions, but rather provide an easy-to-use approach to computing reconstructions with similar properties....

  8. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  9. A Rigorous Methodology for Analyzing and Designing Plug-Ins

    DEFF Research Database (Denmark)

    Fasie, Marieta V.; Haxthausen, Anne Elisabeth; Kiniry, Joseph

    2013-01-01

    . This paper addresses these problems by describing a rigorous methodology for analyzing and designing plug-ins. The methodology is grounded in the Extended Business Object Notation (EBON) and covers informal analysis and design of features, GUI, actions, and scenarios, formal architecture design, including...... behavioral semantics, and validation. The methodology is illustrated via a case study whose focus is an Eclipse environment for the RAISE formal method's tool suite....

  10. Mesh Plug Repair of Inguinal Hernia; Single Surgeon Experience

    Directory of Open Access Journals (Sweden)

    Ahmet Serdar Karaca

    2013-10-01

    Full Text Available Aim: Mesh repair of inguinal hernia repairs are shown to be an effective and reliable method. In this study, a single surgeon%u2019s experience with plug-mesh method performs inguinal hernia repair have been reported. Material and Method: 587 patients with plug-mesh repair of inguinal hernia, preoperative age, body / mass index, comorbid disease were recorded in terms of form. All of the patients during the preoperative and postoperative hernia classification of information, duration of operation, antibiotics, perioperative complications, and later, the early and late postoperative complications, infection, recurrence rates and return to normal daily activity, verbal pain scales in terms of time and postoperative pain were evaluated. Added to this form of long-term pain ones. The presence of wound infection was assessed by the presence of purulent discharge from the incision. Visual analog scale pain status of the patients was measured. Results: 587 patients underwent repair of primary inguinal hernia mesh plug. One of the patients, 439 (74% of them have adapted follow-ups. Patients%u2019 ages ranged from 18-86. Was calculated as the mean of 47±18:07. Follow-up period of the patients was found to be a minimum of 3 months, maximum 55 months. Found an average of 28.2±13.4 months. Mean duration of surgery was 35.07±4.00 min (min:22mn-max:52mn, respectively. When complication rates of patients with recurrence in 2 patients (0.5%, hematoma development (1.4% in 6 patients, the development of infection in 11 patients (2.5% and long-term groin pain in 4 patients (0.9% appeared. Discussion: In our experience, the plug-mesh repair of primary inguinal hernia repair safe, effective low recurrence and complication rates can be used.

  11. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Seshadri [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  12. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Sesha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-07

    This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  13. Insertion devices at the advanced photon source

    International Nuclear Information System (INIS)

    Moog, E.R.

    1996-01-01

    The insertion devices being installed at the Advanced Photon Source cause the stored particle beam to wiggle, emitting x-rays with each wiggle. These x-rays combine to make an intense beam of radiation. Both wiggler and undulator types of insertion devices are being installed; the characteristics of the radiation produced by these two types of insertion devices are discussed, along with the reasons for those characteristics

  14. Node insertion in Coalescence Fractal Interpolation Function

    International Nuclear Information System (INIS)

    Prasad, Srijanani Anurag

    2013-01-01

    The Iterated Function System (IFS) used in the construction of Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) depends on the interpolation data. The insertion of a new point in a given set of interpolation data is called the problem of node insertion. In this paper, the effect of insertion of new point on the related IFS and the Coalescence Fractal Interpolation Function is studied. Smoothness and Fractal Dimension of a CHFIF obtained with a node are also discussed

  15. The national ignition facility performance status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C.; Auerbach, J.; Bowers, M.; Di-Nicola, J.M.; Dixit, S.; Erbert, G.; Heestand, G.; Henesian, M.; Jancaitis, K.; Manes, K.; Marshall, C.; Mehta, N.; Nostrand, M.; Orth, C.; Sacks, R.; Shaw, M.; Sutton, S.; Wegner, P.; Williams, W.; Widmayer, C.; White, R.; Yang, S.; Van Wonterghem, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2006-06-15

    The National Ignition Facility (NIF) laser has been designed to support high energy density science, including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single 'quad' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the precision diagnostic system (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements. (authors)

  16. The National Ignition Facility Performance Status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C; Auerbach, J; Nicola, J D; Dixit, S; Heestand, G; Henesian, M; Jancaitis, K; Manes, K; Marshall, C; Mehta, N; Nostrand, M; Orth, C; Sacks, R; Shaw, M; Sutton, S; Wegner, P; Williams, W; Widmayer, C; White, R; Yang, S; Van Wonterghem, B

    2005-08-30

    The National Ignition Facility (NIF) laser has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single ''quad'' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the Precision Diagnostics System (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements.

  17. Innovative ICF scheme-impact fast ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Sakaiya, T.; Karasik, M.; Gardner, J.; Bates, J.

    2007-01-01

    A totally new ignition scheme for ICF, impact fast ignition (IFI), is proposed [1], in which the compressed DT main fuel is to be ignited by impact collision of another fraction of separately imploded DT fuel, which is accelerated in the hollow conical target. Two-dimensional hydrodynamic simulation results in full geometry are presented, in which some key physical parameters for the impact shell dynamics such as 10 8 cm/s of the implosion velocity, 200- 300 g/cm 3 of the compressed density, and the converted temperature beyond 5 keV are demonstrated. As the first step toward the proof-of-principle of IFI, we have conducted preliminary experiments under the operation of GEKKO XII/HYPER laser system to achieve a hyper-velocity of the order of 108 cm/s. As a result we have observed a highest velocity, 6.5 x 10 7 cm/s, ever achieved. Furthermore, we have also done the first integrated experiments using the target and observed substantial amount of neutron yields. Reference: [1] M. Murakami and Nagatomo, Nucl. Instrum. Meth. Phys. Res. A 544(2005) 67

  18. Ultrasonically triggered ignition at liquid surfaces.

    Science.gov (United States)

    Simon, Lars Hendrik; Meyer, Lennart; Wilkens, Volker; Beyer, Michael

    2015-01-01

    Ultrasound is considered to be an ignition source according to international standards, setting a threshold value of 1mW/mm(2) [1] which is based on theoretical estimations but which lacks experimental verification. Therefore, it is assumed that this threshold includes a large safety margin. At the same time, ultrasound is used in a variety of industrial applications where it can come into contact with explosive atmospheres. However, until now, no explosion accidents have been reported in connection with ultrasound, so it has been unclear if the current threshold value is reasonable. Within this paper, it is shown that focused ultrasound coupled into a liquid can in fact ignite explosive atmospheres if a specific target positioned at a liquid's surface converts the acoustic energy into a hot spot. Based on ignition tests, conditions could be derived that are necessary for an ultrasonically triggered explosion. These conditions show that the current threshold value can be significantly augmented. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Opportunities for Integrated Fast Ignition program

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Key, M. H.; Hatchett, S. P.; Tabak, M.; Town, R.; Gregori, G.; Patel, P. K.; Snavely, R.; Freeman, R. R.; Stephens, R. B.; Beg, F.

    2005-01-01

    Experiments designed to investigate the physics of particle transport and heating of dense plasmas have been carried out in an number of facilities around the world since the publication of the fast ignition concept in 1997. To date a number of integrated experiments, examining the capsule implosion and subsequent heating have been carried out on the Gekko facility at the Institute of Laser Engineering (ILE) Osaka, Japan. The coupling of energy by the short pulse into the pre-compressed core in these experiments was very encouraging. More facilities capable of carrying out integrated experiments are currently under construction: Firex at ILEm the Omega EP facility at the University of Rochester, Z PW at Sandia National Lab, LIL in France and eventually high energy PW beams on the NIF. This presentation will review the current status of experiments in this area and discuss the capabilities of integrated fast ignition research that will be required to design the proof of principle and scaling experiments for fast ignition to be carried on the NIF. (Author)

  20. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  1. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1985-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8 to 12 T) and high toroidal currents (7 to 10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  2. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1986-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8-12 T) and high toroidal currents (7-10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  3. FABRICATION AND CHARACTERIZATION OF FAST IGNITION TARGETS

    International Nuclear Information System (INIS)

    HILL, D.W; CASTILLO, E; CHEN, K.C; GRANT, S.E; GREENWOOD, A.L; KAAE, J.L; NIKROO, A; PAGUIO, S.P; SHEARER, C; SMITH, J.N Jr.; STEPHENS, R.B; STEINMAN, D.A; WALL, J.

    2003-09-01

    OAK-B135 Fast ignition is a novel scheme for achieving laser fusion. A class of these targets involves cone mounted CH shells. The authors have been fabricating such targets with shells with a wide variety of diameters and wall thicknesses for several years at General Atomics. In addition, recently such shells were needed for implosion experiments at Laboratory for Laser Energetics (LLE) that for the first time were required to be gas retentive. Fabrication of these targets requires producing appropriate cones and shells, assembling the targets, and characterization of the assembled targets. The cones are produced using micromachining and plating techniques. The shells are fabricated using the depolymerizable mandrel technique followed by micromachining a hole for the cone. The cone and the shell then need to be assembled properly for gas retention and precisely in order to position the cone tip at the desired position within the shell. Both are critical for the fast ignition experiments. The presence of the cone in the shell creates new challenges in characterization of the assembled targets. Finally, for targets requiring a gas fill, the cone-shell assembly needs to be tested for gas retention and proper strength at the glue joint. This paper presents an overview of the developmental efforts and technical issues addressed during the fabrication of fast ignition targets

  4. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  5. A direct digital controller for an automatic sodium plugging meter

    International Nuclear Information System (INIS)

    Tobias, A.

    1977-07-01

    A plugging meter is a device for monitoring the impurity level of liquid sodium. It is used to measure the temperature at which an impurity precipitates or re-dissolves at a restricting orifice. The concentration of the impurity may be then deduced from known solubility/temperature relationships. A software controller for a sodium plugging meter has been implemented on a PDP-11 using SWEPSPEED. The algorithm used to perform both flow and temperature control functions is based on a modified standard three-term controller. Both design and operation of the controller are described. The functions which may be performed by the controller are: (i) maintain a steady temperature at the restricting orifice, (ii) perform a temperature ramp at a rate defined by the operator, and (iii) maintain a partial plug of impurities at the orifice by appropriate manipulation of the temperature. Accuracies so far achieved are approximately +- 5% for flow control and better that +- 1 0 C for temperature control. (author)

  6. Geochemical factors in borehole-shaft plug longevity

    International Nuclear Information System (INIS)

    Roy, D.M.

    1981-01-01

    Geochemical investigations that address factors controlling the longevity of repository sealing materials in a geochemical environment are discussed. Studies are being made of cement-based materials as major candidates for seals for borehole plugging, and shaft and tunnel sealing in certain potential repository environments. Factors controlling the extent of attainment of equilibrium of the plug components with time and the rate of approach to a state of stable equilibrium of the plug component chemical subsystem within the total system are discussed. The effect of these factors on changes in physical, mechanical and thermal properties of a seal system, and the consequent effectiveness of the seal in preventing transport of radioactive waste species are the dominant features to be determined. Laboratory experiments on the effects of anticipated temperature, pressure, and environmental factors (including chemical composition and specific rock type) are described. Thermodynamic studies are used to determine the potentially stable reaction products under conditions similar to those anticipated for the repository boreholes, shafts, and tunnels during and after the operating stage. Multitemperature reaction series are studied, and reaction kinetics are investigated for the purpose of predicting the course of likely reactions. Detailed studies of permeability, diffusion, and interfacial properties and chemical and microphase characterization of the products of experiments are carried out. Characterization studies of old and ancient cements, mortars, and concretes and prototype man-made seal materials are performed to further assess the factors associated with longevity

  7. Selecting a Control Strategy for Plug and Process Loads

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

  8. Predictions of hydrate plug dissociation with electrical heating

    Energy Technology Data Exchange (ETDEWEB)

    Davies, S.R.; Ivanic, J.; Sloan, E.D.

    2005-07-01

    The rate of dissociation for cylindrical hydrate plugs by the application of radial electrical heating was investigated for structure I and structure II hydrates for pressures of 7 MPa (1000 psia) and 14 MPa (2000 psia). Heating rates of 2.3 kWm{sup -3}, 4.5 kWm-3 and 6.8 kWm{sup -3} were investigated for a plug 91.4 cm (36 inches) in length and 2.54 cm (1 inch) in diameter. A heat transfer model was developed in cylindrical coordinates based on Fourier's Law with a boundary condition of constant heat flux at the pipe wall. The equation set was solved numerically using a finite difference grid and the standard explicit scheme. The model was found to replicate well the experimental observations with no fitted parameters. A computer program was formulated to allow the practicing engineer to simulate the dissociation of industrial hydrates with minimal complexity. This program was incorporated into the latest version of our CSMPlug program which has been used by a number of energy companies to predict hydrate plug dissociation rates in the field. (Author)

  9. An Energy Saving Green Plug Device for Nonlinear Loads

    Science.gov (United States)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  10. Amplatzer Vascular Plug Anchoring Technique to Stabilize the Delivery System for Microcoil Embolization

    International Nuclear Information System (INIS)

    Onozawa, Shiro; Murata, Satoru; Mine, Takahiko; Sugihara, Fumie; Yasui, Daisuke; Kumita, Shin-ichiro

    2016-01-01

    PurposeTo evaluate the feasibility of a novel embolization technique, the Amplatzer vascular plug (AVP) anchoring technique, to stabilize the delivery system for microcoil embolization.Materials and methodsThree patients were enrolled in this study, including two cases of internal iliac artery aneurysms and one case of internal iliac arterial occlusion prior to endovascular aortic repair. An AVP was used in each case for embolization of one target artery, and the AVP was left in place. The AVP detachment wire was then used as an anchor to stabilize the delivery system for microcoil embolization to embolize the second target artery adjacent to the first target artery. The microcatheter for the microcoils was inserted parallel to the AVP detachment wire in the guiding sheath or catheter used for the AVP.ResultsThe AVP anchoring technique was achieved and the microcatheter was easily advanced to the second target artery in all three cases.ConclusionThe AVP anchoring technique was found to be feasible to advance the microcatheter into the neighboring artery of an AVP-embolized artery.

  11. Insertion material for controlling reactivity

    International Nuclear Information System (INIS)

    Baba, Iwao.

    1994-01-01

    Moderators and a group of suspended materials having substantially the same density as the moderator are sealed in a hollow rod vertically inserted to a fuel assembly. Specifically, the group of suspended materials is adapted to have a density changing stepwise from density of the moderator at the exit temperature of the reactor core to that at the inlet temperature of the reactor core. Reactivity is selectively controlled for a portion of high power and a portion of high reactivity by utilizing the density of the moderator and the distribution of the density. That is, if the power distribution is flat, the density of the moderators changes at a constant rate over the vertical direction of the reactor core and the suspended materials stay at a portion of the same density, to form a uniform distribution. Further, upon reactor shutdown, since the liquid temperature of the moderators is lowered and the density is increased, all of beads are collected at the upper portion to remove water at the upper portion of the reactor core of low burnup degree thereby selectively controlling the reactivity at a portion of high power and a portion of high reactivity. (N.H.)

  12. A Survey of Studies on Ignition and Burn of Inertially Confined Fuels

    Science.gov (United States)

    Atzeni, Stefano

    2016-10-01

    A survey of studies on ignition and burn of inertial fusion fuels is presented. Potentials and issues of different approaches to ignition (central ignition, fast ignition, volume ignition) are addressed by means of simple models and numerical simulations. Both equimolar DT and T-lean mixtures are considered. Crucial issues concerning hot spot formation (implosion symmetry for central ignition; igniting pulse parameters for fast ignition) are briefly discussed. Recent results concerning the scaling of the ignition energy with the implosion velocity and constrained gain curves are also summarized.

  13. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    Science.gov (United States)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  14. Laser imprint and implications for direct drive ignition with the National Ignition Facility

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Remington, B.A.; Rothenberg, J.E.

    1996-01-01

    For direct drive ICF, nonuniformities in laser illumination can seed ripples at the ablation front in a process called imprint. Such nonuniformities will grow during the capsule implosion and can penetrate the capsule shell impede ignition, or degrade burn. We have simulated imprint for a number of experiments on tile Nova laser. Results are in generally good agreement with experimental data. We leave also simulated imprint upon National Ignition Facility (NIF) direct drive ignition capsules. Imprint modulation amplitude comparable to the intrinsic surface finish of ∼40 nm is predicted for a laser bandwidth of 0.5 THz. Ablation front modulations experience growth factors up to several thousand, carrying modulation well into the nonlinear regime. Saturation modeling predicts that the shell should remain intact at the time of peak velocity, but penetration at earlier times appears more marginal

  15. Fast ignition: Physics progress in the US fusion energy program and prospects for achieving ignition

    International Nuclear Information System (INIS)

    Key, M.; Andersen, C.; Cowan, T.

    2003-01-01

    Fast ignition (FI) has significant potential advantages for inertial fusion energy and it is therefore being studied as an exploratory concept in the US fusion energy program. FI is based on short pulse isochoric heating of pre-compressed DT by intense beams of laser accelerated MeV electrons or protons. Recent experimental progress in the study of these two heating processes is discussed. The goal is to benchmark new models in order to predict accurately the requirements for full-scale fast ignition. An overview is presented of the design and experimental testing of a cone target implosion concept for fast ignition. Future prospects and conceptual designs for larger scale FI experiments using planned high energy petawatt upgrades of major lasers in the US are outlined. A long-term road map for FI is defined. (author)

  16. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  17. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  18. Ignition and combustion characteristics of metallized propellants

    Science.gov (United States)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts

  19. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R. [Dept. of Industrial Engineering, University of Rome Niccolo’ Cusano (Italy); Barbieri, M. [Engineering Dept., University of Naples Parthenope, Centro Direzionale-Isola C4, 80143 Naples (Italy)

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  20. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    International Nuclear Information System (INIS)

    Tribioli, L.; Cozzolino, R.; Barbieri, M.

    2015-01-01

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared