WorldWideScience

Sample records for ignition internal combustion

  1. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  2. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  3. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  4. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  5. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  6. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  7. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  8. Ignition system for an internal combustion engine with rotary system

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, P A

    1977-05-18

    In the Wankel engine, the sparking plugs spark three times per rotation of the rotor and are never cooled by the incoming mixture. This constant high temperature environment necessitates the use of special sparking plugs. The covered top of the sparking plug is particularly liable to carbon deposits. This invention makes it possible to use sparking plugs on the rotor, without the disadvantages due to the use of high voltage. Further, the use of distributors or mechanical devices determining the ignition timing is no longer necessary. The fuel/air mixture is ignited in a combustion chamber, which is limited by first and second components moving relative to one another in repeated cycles. A generator device is fitted to the first components and an ignition device to the second components. The magnetic flux linking takes place in a predetermined area of the relative movement between the first and second components in a repeated cycle. An ignition signal is produced in the combustion chamber by the magnetic flux linking.

  9. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  10. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  11. Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels

    International Nuclear Information System (INIS)

    Duarte, Jorge; Amador, Germán; Garcia, Jesus; Fontalvo, Armando; Vasquez Padilla, Ricardo; Sanjuan, Marco; Gonzalez Quiroga, Arturo

    2014-01-01

    Control strategies for auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels are presented. Ambient temperature and ambient pressure are considered as the disturbing variables. A thermodynamic model for predicting temperature at the ignition point is developed, adjusted and validated with a large experimental data-set from high power turbocharged engines. Based on this model, the performance of feedback and feedforward auto-ignition control strategies is explored. A robustness and fragility analysis for the Feedback control strategies is presented. The feedforward control strategy showed the best performance however its implementation entails adding a sensor and new control logic. The proposed control strategies and the proposed thermodynamic model are useful tools for increasing the range of application of gaseous fuels with low methane number while ensuring a safe running in internal combustion engines. - Highlights: • A model for predicting temperature at the ignition point. • Robust PID, modified PID, and feedforward strategies for auto-ignition control. • λ′ were the best set of tuning equations for calculating controller parameters. • Robust PID showed significant improvements in auto-ignition control. • Feedforward control showed the best performance

  12. Non-equilibrium plasma ignition for internal combustion engines

    NARCIS (Netherlands)

    Correale, G.; Rakitin, A.; Nikipelov, A.; Pancheshnyi, S.; Popov, I.; Starikovskii, A.Yu; Shiraishi, T.; Urushihara, T.; Boot, M.D.

    2011-01-01

    High-voltage nanosecond gas discharge has been shown to be an efficient way to ignite ultra-lean fuel air mixtures in a bulk volume, thanks to its ability to produce both high temperature and radical concentration in a large discharge zone. Recently, a feasibility study has been carried out to study

  13. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  14. Electronic ignition device for internal combustion engines. Elektronische Zuendvorrichtung fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Erhard, W

    1983-07-14

    The purpose of the invention is to create an electronic ignition device for internal combustion engines, so that the exact setting of a required ignition timing can be done without troublesome balancing of the circuit and without temperature compensation processes. According to the invention, in order to solve this problem, the ignition device is characterized by an auxiliary circuit, with an auxiliary winding magnetically coupled to the ignition coil, a capacitor and a diode, which is connected in parallel with the control section of the control component. The auxiliary winding charges the capacitor up via the diode, as long as the induction and therefore the voltage in the auxiliary winding are increasing. After exceeding the maximum voltage, this is maintained at the capacitor while the voltage in the auxiliary winding decreases. If the difference reaches the threshold voltage of the control component, in particular of a thyristor, this is switched on and blocks the switching transistor. Due to this circuit, the ignition timing is very close behind the timing of the greatest possible energy input into the primary coil.

  15. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  16. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mullett, J D [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dodd, R [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Williams, C J [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Triantos, G [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dearden, G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Shenton, A T [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Watkins, K G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Carroll, S D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Scarisbrick, A D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Keen, S [GSI Group, Cosford Lane, Swift Valley, Rugby, Warwickshire, CV21 1QN (United Kingdom)

    2007-08-07

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV{sub IMEP}) and the variance in the peak cylinder pressure position (Var{sub PPP}). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air.

  17. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    International Nuclear Information System (INIS)

    Mullett, J D; Dodd, R; Williams, C J; Triantos, G; Dearden, G; Shenton, A T; Watkins, K G; Carroll, S D; Scarisbrick, A D; Keen, S

    2007-01-01

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV IMEP ) and the variance in the peak cylinder pressure position (Var PPP ). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air

  18. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  19. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  20. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  1. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  2. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul

    2014-01-01

    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  3. Transistorized ignition system for internal combustion engines, in particular for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mieras, L F; Skay, F

    1977-05-12

    The invention concerns an ignition system for motor vehicles with solid state control of the power transistor switching the primary current of the ignition coil. A pulse generator driven by the engine is used for this, whose voltage pulses control the switching on of the power transistor and increase in a certain ratio to the engine speed. This ensures that the closing angle, i.e. the mechanical angle of rotation which the machine passes through while loading the ignition coil with mechanical energy, is automatically changed so that for low speeds it is just sufficient for certain ignition, but increases with increasing speed, so that the required ignition energy is always available. At low speeds one avoids charging current flowing through the primary winding of the ignition coil for longer than necessary and thus wasting electrical energy.

  4. Contactless ignition device for an internal combustion engine. Kontaktfreie Zuendanlage fuer eine Brennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Y; Komiya, H

    1980-01-16

    The invention deals with the design of a contactless ignition device with semiconductor elements of the induction discharge type, provided with a self actuator. A short circuit current of the primary transformer coil flows through the transistor system. The emitter is capacitively connected with the primary transformer coil. When the primary short circuit current reaches its maximum, the circuit is interrupted and the ignition begins. Changes of the short circuit current are monitored. The ignition time can be pre-selected. The ignition process is independent from the engine speed.

  5. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    Science.gov (United States)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  6. EXPERIMENTAL STUDY OF HOMOGENEOUS MIXTURE COMPRESSION IGNITION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    ANTHONY OSWALDO ROQUE CCACYA

    2010-01-01

    Com o intuito de reduzir as emissões e melhorar a combustão em uma maior faixa de rotação e carga de um motor, foi proposto o estudo da combustão por compressão de misturas homogêneas (HCCI), este processo apresenta altas eficiências e baixas emissões, principalmente de NOx e fuligem. Assim, o objetivo do presente trabalho é a determinação das faixas de operação estável em um motor diesel, de alta taxa de compressão (20:1). O combustível utilizado foi gasolina tipo A, tendo em vista a sua gra...

  7. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    Science.gov (United States)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  8. TOPICAL REVIEW: Plasma assisted ignition and combustion

    Science.gov (United States)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  9. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  10. Ignition of a combustible half space

    Science.gov (United States)

    Olmstead, W. E.

    1983-01-01

    A half space of combustible material is subjected to an arbitrary energy flux at the boundary where convection heat loss is also allowed. An asymptotic analysis of the temperature growth reveals two conditions necessary for ignition to occur. Cases of both large and order unity Lewis number are shown to lead to a nonlinear integral equation governing the thermal runaway. Some global and asymptotic properties of the integral equation are obtained.

  11. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  12. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    Science.gov (United States)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  13. Socket for a central connection for measuring equipment into a transistor ignition system of an internal combustion engine. Steckdose einer Zentralsteckverbindung fuer den Anschluss von Messgeraeten an eine Transistorzuendung einer Brennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, H

    1980-09-25

    The invention refers to the socket of a central connection for measuring equipment into a transistor ignition system of an internal combustion engine. Various cables are looped into the transistor ignition system via the pins of this socket. By plugging in a multi-pole plug, the individual circuits of the ignition system are made. In this way, apart from connecting the measuring equipment for testing the transistor ignition system, it is possible to prevent the ignition system working in case of theft of the vehicle, by inserting a 'blind plate' which leaves individual circuits of the transistor system open. Structural details of this cylindrical socket and the multiple plug are explained in some crossection diagrams. The ideas of the invention are described in 7 patent claims.

  14. Investigation on the Effects of Internal EGR by Variable Exhaust Valve Actuation with Post Injection on Auto-ignited Combustion and Emission Performance

    Directory of Open Access Journals (Sweden)

    Insu Cho

    2018-04-01

    Full Text Available Variable valve mechanisms are usually applied to a gasoline combustion engine to improve its power performance by controlling the amount of intake air according to the operating load. These mechanisms offer one possibility of resolving the conflict of objectives between a further reduction of raw emissions and an improvement in fuel efficiency. In recent years, variable valve control systems have become extremely important in the diesel combustion engine. Importantly, it has been shown that there are several potential benefits of applying variable valve timing (VVT to a compression ignition engine. Valve train variability could offer one option to achieve the reduction goals of engine-out emissions and fuel consumption. The aim of this study was to investigate the effects on part load combustion and emission performance of internal exhaust gas recirculation (EGR by variable exhaust valve lift actuation using a cam-in-cam system, which is an electronically variable valve device with a variable inside cam retarded to about 30 degrees. Numerical simulation based on GT-POWER has been performed to predict the NOx reduction strategy at the part load operating point of 1200 rpm in a four-valve diesel engine. A GT-POWER model of a common-rail direct injection engine with internal EGR was built and verified with experimental data. As a result, large potential for reducing NOx emissions through the use of exhaust valve control has been identified. Namely, it is possible to utilize heat efficiently as recompression of retarded post injection with downscaled specification of the exhaust valve rather than the intake valve, even if the CIC V1 condition with a reduction of the exhaust valve has a higher internal EGR rate of about 2% compared to that of the CIC V2 condition.

  15. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  16. Ignition and combustion characteristics of metallized propellants

    Science.gov (United States)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts

  17. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  18. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  19. 76 FR 12923 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2011-03-09

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... pollutants for existing stationary spark ignition reciprocating internal combustion engines. The final rule... reciprocating internal combustion generation, engine. transmission, or distribution. 622110 Medical and surgical...

  20. 75 FR 51569 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-08-20

    ... Air Pollutants for Reciprocating Internal Combustion Engines; Final Rule #0;#0;Federal Register / Vol... for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines AGENCY: Environmental... hazardous air pollutants for existing stationary spark ignition reciprocating internal combustion engines...

  1. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  2. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I

    2017-01-01

    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  3. Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder

    Science.gov (United States)

    Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.

    2017-09-01

    Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.

  4. Electrically controlled fuel injection system for an externally ignited internal combustion engine. Elektrisch gesteuerte Kraftstoffeinspritzanlage fuer eine fremdgezuendete Brennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Busse, W; Drews, U; Werner, P

    1980-12-04

    The purpose of the invention is to create an electrically controlled fuel injection system with a pulse shaping stage, which can be manufactured by integrated circuit technique and which is protected against faulty initiation, which could be caused by interference from the ignition system. According to the invention the problem is solved by the pulse shaping stage containing a monostable multivibrator set to a predetermined period for changeover, preferably about 4 millisecs, which includes a first transistor blocked in the de-energised state and a second transistor conducting in the de-energised state, whose base is connected via a coupling capacity determining the period of changeover to the collector of the first transistor, and which also has a charging transistor. This is connected to the collector of the first transistor and its collector is connected via a resistor to the DC supply wire.

  5. 75 FR 37732 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-06-30

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion... combustion engines. 40 CFR 63.6590 was amended by revising paragraphs (b)(1) and (3). Inadvertently...

  6. Electrically heated 3D-macro cellular SiC structures for ignition and combustion application

    International Nuclear Information System (INIS)

    Falgenhauer, Ralf; Rambacher, Patrick; Schlier, Lorenz; Volkert, Jochen; Travitzky, Nahum; Greil, Peter; Weclas, Miroslaw

    2017-01-01

    Highlights: • 3D-printed macro cellular SiC structure. • Directly integrated electrically heated ignition element used in combustion reactor. • Experimental investigation of the ignition process. - Abstract: The paper describes different aspects of porous combustion reactor operation especially at cold start conditions. Under cold start conditions it is necessary to increase the internal energy of the combustion reactor, to accumulate enough energy inside its solid phase and to reach at least the ignition temperature on the reactors inner surface. The most practicable method to preheat a cold porous reactor is to use its surface as a flame holder and to apply free flame combustion as a heat source for the preheating process. This paper presents a new electrically heated ignition element, which gets integrated in a three dimensional macro-cellular SiSiC reactor structure. For the development of the ignition element it was assumed, that the element is made of the same material as the combustion reactor itself and is fully integrated within the three-dimensional macro-cellular structure of the combustion reactor. Additive manufacturing like three-dimensional (3D) printing permits the production of regular SiSiC structures with constant strut thickness and a defined current flow path. To get a controlled temperature distribution on the ignition element it is necessary to control the current density distribution in the three-dimensional macro-cellular reactor structure. The ignition element used is designed to be an electrical resistance in an electric current system, converting flowing current into heat with the goal to get the highest temperature in the ignition region (glow plug). First experiments show that the ignition element integrated in a combustion reactor exhibits high dynamics and can be heated to the temperatures much above 1000 °C in a very short time (approx. 800 ms) for current of I = 150 A.

  7. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  8. Combustion and operating characteristics of spark-ignition engines

    Science.gov (United States)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  9. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  10. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  11. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  12. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  13. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  14. E25 stratified torch ignition engine emissions and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio

    2016-01-01

    Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.

  15. Characterisation of laser ignition in hydrogen-air mixtures in a combustion bomb

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Dhananjay Kumar; Agarwal, Avinash Kumar [Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Weinrotter, Martin; Wintner, Ernst [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna (Austria); Iskra, Kurt [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2009-03-15

    Laser-induced spark ignition of lean hydrogen-air mixtures was experimentally investigated using nanosecond pulses generated by Q-switched Nd:YAG laser (wavelength 1064 nm) at initial pressure of 3 MPa and temperature 323 K in a constant volume combustion chamber. Laser ignition has several advantages over conventional ignition systems especially in internal combustion engines, hence it is necessary to characterise the combustion phenomena from start of plasma formation to end of combustion. In the present experimental investigation, the formation of laser plasma by spontaneous emission technique and subsequently developing flame kernel was measured. Initially, the plasma propagates towards the incoming laser. This backward moving plasma (towards the focusing lens) grows much faster than the forward moving plasma (along the direction of laser). A piezoelectric pressure transducer was used to measure the pressure rise in the combustion chamber. Hydrogen-air mixtures were also ignited using a spark plug under identical experimental conditions and results are compared with the laser ignition ones. (author)

  16. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  17. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  18. Ignition Delay of Combustible Materials in Normoxic Equivalent Environments

    Science.gov (United States)

    McAllister, Sara; Fernandez-Pello, Carlos; Ruff, Gary; Urban, David

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a combustible material to ignite after it has been exposed to an external heat flux. Previous work in the Forced Ignition and Spread Test (FIST) apparatus has shown that the ignition delay in the currently proposed space exploration atmosphere (approximately 58.6 kPa and32% oxygen concentration) is reduced by 27% compared to the standard atmosphere used in the Space Shuttle and Space Station. In order to determine whether there is a safer environment in terms of material flammability, a series of piloted ignition delay tests using polymethylmethacrylate (PMMA) was conducted in the FIST apparatus to extend the work over a range of possible exploration atmospheres. The exploration atmospheres considered were the normoxic equivalents, i.e. reduced pressure conditions with a constant partial pressure of oxygen. The ignition delay time was seen to decrease as the pressure was reduced along the normoxic curve. The minimum ignition delay observed in the normoxic equivalent environments was nearly 30% lower than in standard atmospheric conditions. The ignition delay in the proposed exploration atmosphere is only slightly larger than this minimum. Interms of material flammability, normoxic environments with a higher pressure relative to the proposed pressure would be desired.

  19. Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Izadi Najafabadi

    2013-01-01

    Full Text Available Engine and car manufacturers are experiencing the demand concerning fuel efficiency and low emissions from both consumers and governments. Homogeneous charge compression ignition (HCCI is an alternative combustion technology that is cleaner and more efficient than the other types of combustion. Although the thermal efficiency and NOx emission of HCCI engine are greater in comparison with traditional engines, HCCI combustion has several main difficulties such as controlling of ignition timing, limited power output, and weak cold-start capability. In this study a literature review on HCCI engine has been performed and HCCI challenges and proposed solutions have been investigated from the point view of Ignition Timing that is the main problem of this engine. HCCI challenges are investigated by many IC engine researchers during the last decade, but practical solutions have not been presented for a fully HCCI engine. Some of the solutions are slow response time and some of them are technically difficult to implement. So it seems that fully HCCI engine needs more investigation to meet its mass-production and the future research and application should be considered as part of an effort to achieve low-temperature combustion in a wide range of operating conditions in an IC engine.

  20. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  1. Carburetor for internal combustion engines

    Science.gov (United States)

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  2. Analysis of cyclic variations during mode switching between spark ignition and controlled auto-ignition combustion operations

    OpenAIRE

    Chen, T; Zhao, H; Xie, H; He, B

    2014-01-01

    © IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research...

  3. Predicting auto-ignition characteristics of RCCI combustion using a multi-zone model

    NARCIS (Netherlands)

    Egüz, U.; Maes, N.C.J.; Leermakers, C.A.J.; Somers, L.M.T.; Goey, de L.P.H.

    2013-01-01

    The objective of new combustion concepts is to meet emission standards by improving fuel air mixing prior to ignition. Since there is no overlap between injection and ignition, combustion is governed mainly by chemical kinetics and it is challenging to control the phasing of ignition. Reactivity

  4. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  5. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  7. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  8. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  9. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  10. Unraveling advanced compression ignition combustion using optical diagnostics

    OpenAIRE

    Zegers, R.P.C.

    2012-01-01

    Despite the expected upsurge of hybrid and electric cars in the coming decades, internal combustion will remain the main power supply for (long-distance) transport. Buses, trucks, ships and airplanes will still rely on combustion engines. Nevertheless, emission legislation is becoming more stringent and the oil price continues to rise. Consequently, there still exists a serious interest in new developments that may improve combustion efficiency and fuel flexibility, and reduce emissions; both...

  11. Unraveling advanced compression ignition combustion using optical diagnostics

    NARCIS (Netherlands)

    Zegers, R.P.C.

    2012-01-01

    Despite the expected upsurge of hybrid and electric cars in the coming decades, internal combustion will remain the main power supply for (long-distance) transport. Buses, trucks, ships and airplanes will still rely on combustion engines. Nevertheless, emission legislation is becoming more stringent

  12. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    OpenAIRE

    Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng

    2014-01-01

    In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...

  13. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  14. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  15. Effect of laser induced plasma ignition timing and location on Diesel spray combustion

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2017-01-01

    Highlights: • Laser plasma ignition is applied to a direct injection Diesel spray, compared with auto-ignition. • Critical local fuel/air ratio for LIP provoked ignition is obtained. • The LIP system is able to stabilize Diesel combustion compared to auto-ignition cases. • Varying LIP position along spray axis directly affects Ignition-delay. • Premixed combustion is reduced both by varying position and delay of the LIP ignition system. - Abstract: An experimental study about the influence of the local conditions at the ignition location on combustion development of a direct injection spray is carried out in an optical engine. A laser induced plasma ignition system has been used to force the spray ignition, allowing comparison of combustion’s evolution and stability with the case of conventional autoignition on the Diesel fuel in terms of ignition delay, rate of heat release, spray penetration and soot location evolution. The local equivalence ratio variation along the spray axis during the injection process was determined with a 1D spray model, previously calibrated and validated. Upper equivalence ratios limits for the ignition event of a direct injected Diesel spray, both in terms of ignition success possibilities and stability of the phenomena, could been determined thanks to application of the laser plasma ignition system. In all laser plasma induced ignition cases, heat release was found to be higher than for the autoignition reference cases, and it was found to be linked to a decrease of ignition delay, with the premixed peak in the rate of heat release curve progressively disappearing as the ignition delay time gets shorter. Ignition delay has been analyzed as a function of the laser position, too. It was found that ignition delay increases for plasma positions closer to the nozzle, indicating that the amount of energy introduced by the laser induced plasma is not the only parameter affecting combustion initiation, but local equivalence ratio

  16. Combustion, detonation, shock waves. Proceedings of the Zel'dovich memorial - International conference on combustion. Volume 1

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Frolov, S.M.

    1995-01-01

    This book contains lectures by the experts in various fields of modern research in combustion, detonation and shock waves, presented at the Zel'dovich memorial - International conference on combustion dedicated to the 80-th birthday of academician Ya.B. Zel'dovich. There are eight chapters discussing the state-of-the-art in combustion kinetics, ignition and steady-state flame propagation, diffusion and heterogeneous combustion, turbulent combustion, unsteady combustion, detonation, combustion and detonation analogies, intense shock waves and extreme states of matter [ru

  17. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  18. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  19. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  20. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  1. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  2. An investigation of partially premixed compression ignition combustion using gasoline and spark assistance

    OpenAIRE

    Benajes Calvo, Jesus Vicente; García Martínez, Antonio; Doménech Llopis, Vicente; Durret, Russell

    2013-01-01

    Nowadays the automotive scientific community and companies are focusing part of their efforts on the investigation of new combustion modes in Compression Ignition (Cl) engines, mainly based on the use of locally lean air fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduce pollutant formation. However these combustion concepts have some shortcomings, related to combustion phasing control and combustion stability under th...

  3. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustion

    Science.gov (United States)

    Ryan, Thomas W., III; Schwab, S. T.; Harlowe, W. W.

    1992-01-01

    The subject of this paper is the design of supersonic combustors which will be required in order to achieve the needed reaction rates in a reasonable sized combustor. A fuel additive approach, which is the focus of this research, is the use of pyrophorics to shorten the ignition delay time and to increase the energy density of the fuel. Pyrophoric organometallic compounds may also provide an ignition source and flame stabilization mechanism within the combustor, thus permitting use of hydrocarbon fuels in supersonic combustion systems. Triethylaluminum (TEA) and trimethylaluminum (TMA) were suggested for this application due to their high energy density and reactivity. The objective here is to provide comparative data for the ignition quality, the energy content, and the reaction rates of several different adducts of both TEA and TMA. The results of the experiments indicate the aluminum alkyls and their more stable derivatives reduce the ignition delay and total reaction time to JP-10 jet fuel. Furthermore, the temperature dependence of ignition delay and total reaction time of the blends of the adducts are significantly lower than in neat JP-10.

  4. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  5. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  6. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  7. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  8. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  9. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    Science.gov (United States)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  10. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu

    2016-08-10

    The ignition characteristics of isooctane and n-heptane in an ignition quality tester (IQT) were simulated using a two-stage Lagrangian (TSL) model, which is a zero-dimensional (0-D) reactor network method. The TSL model was also used to simulate the ignition delay of n-dodecane and n-heptane in a constant volume combustion chamber (CVCC), which is archived in the engine combustion network (ECN) library (http://www.ca.sandia.gov/ecn). A detailed chemical kinetic model for gasoline surrogates from the Lawrence Livermore National Laboratory (LLNL) was utilized for the simulation of n-heptane and isooctane. Additional simulations were performed using an optimized gasoline surrogate mechanism from RWTH Aachen University. Validations of the simulated data were also performed with experimental results from an IQT at KAUST. For simulation of n-dodecane in the CVCC, two n-dodecane kinetic models from the literature were utilized. The primary aim of this study is to test the ability of TSL to replicate ignition timings in the IQT and the CVCC. The agreement between the model and the experiment is acceptable except for isooctane in the IQT and n-heptane and n-dodecane in the CVCC. The ability of the simulations to replicate observable trends in ignition delay times with regard to changes in ambient temperature and pressure allows the model to provide insights into the reactions contributing towards ignition. Thus, the TSL model was further employed to investigate the physical and chemical processes responsible for controlling the overall ignition under various conditions. The effects of exothermicity, ambient pressure, and ambient oxygen concentration on first stage ignition were also studied. Increasing ambient pressure and oxygen concentration was found to shorten the overall ignition delay time, but does not affect the timing of the first stage ignition. Additionally, the temperature at the end of the first stage ignition was found to increase at higher ambient pressure

  11. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms

    Science.gov (United States)

    Starikovskaia, S. M.

    2014-09-01

    This review covers the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma-combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P-T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

  12. Numerical simulation of a liquid droplet combustion experiment focusing on ignition process

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    1999-11-01

    SPHINCS (Sodium Fire phenomenology IN multi-Cell System) computer program has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The program can deal with spray combustion and pool surface combustion. In this report the authors investigate a single droplet combustion phenomena focusing on an ignition process. The spray combustion model of SPHINCS is as follows. The liquid droplet-burning rate after ignition is based on the D-square law and a diffusion flame assumption. Before the droplet is ignited, the burning rate is evaluated by mass flux of oxidizer gases. Forced convection effect that skews the sphere shape of the flame zone surrounding a droplet is taken into consideration. It enhances the burning rate. The chemical equilibrium theory is used to determine the resultant fraction of reaction products of Na-O 2 -H 2 O system. It is noted that users have to give an ignition temperature based on empirical evidences. According to this model, it is obvious that a smaller liquid droplet with higher initial temperature tends to burn more easily. What is observed in a recent experiment is that the smallest liquid droplet (2mm diameter) did not ignited of itself and larger droplets (3.7mm and 4.5mm diameter) burnt at 300degC initial temperature. The current model for liquid droplet combustion cannot predict the experimental results. Therefore, in the present study, a surface reaction model has been developed to predict the ignition process. The model has been used to analyze a combustion experiment of a stationary liquid droplet. The authors investigate the validity of the physical modeling of the liquid droplet combustion and surface reaction. It has been found, as the results, that the model can predict the influence of the initial temperature on the temperature lower limit for spontaneous ignition and ignition delay time. Also investigated is the influence of the moisture on the ignition phenomena. From the present study, it has

  13. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    Full Text Available On présente dans cet article, en utilisant la méthode du ruban chauffé, une étude de la compétition entre (1 la dévolatilisation et l'oxydation consécutive des produits de pyrolyse et (2 l'ignition de la matrice solide et sa combustion rapide. La comparaison entre le moment de l'ignition et le début de la pyrolyse permet de déterminer en fonction de la température, de la taille des particules et de la concentration en oxygène, le domaine dans lequel l'ignition d'un combustible solide pyrolysable est du type whole coal ignition (c'est-à-dire lorsque l'ignition intervient avant que la pyrolyse devienne mesurable. Les résultats suggèrent que ce type d'ignition doit s'effectuer en règle générale dans les conditions de mise en oeuvre des combustibles solides pulvérisés dans les flammes industrielles. Dans le cas de l'ignition whole coal , la vitesse de combustion de la matrice solide est inhibée dans la période qui suit l'ignition. Cette inhibition est due d'une part à la difficulté pour l'oxygène de diffuser dans les pores pendant la sortie des produits de pyrolyse, et d'autre part à la consommation préférentielle de l'oxygène dans l'oxydation des produits de pyrolyse, principalement dans le cas où cette oxydation se développe sous forme de flamme. Ce n'est que lorsque la pyrolyse s'achève que la vitesse de combustion hétérogène peut atteindre sa valeur stationnaire normale, qui est alors pratiquement identique à celle du coke. Aux températures situées entre la température d'ignition du combustible solide et la température d'extinction du coke résiduel, la combustion est incomplète, une extinction intervenant à un degré de dévolatilisation d'autant plus grande que la température est élevée. Ce phénomène s'explique qualitativement par la théorie classique d'ignition thermique lorsqu'on l'applique au cas particulier des combustibles solides pyrolysables. Les températures d'ignition ainsi que les d

  14. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aakko-Saksa, P.; Brink, A.; Happonen, M. [and others

    2012-07-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task 'Future Combustion Technology for Synthetic and Renewable Fuels in Transport' of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) prooject was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT), Technical Research Centre of Finland (VTT) and Aabo Akademi University (AAU). The project was funded by TEKES, Waertsilae Oyj, Agro Sisu Power, Aker Arctic Technology Oy and the research partners listed above. Modern renewable diesel fuels have excellent physical and chemical properties, in comparison to traditional crude oil based fuels. Purely paraffinic fuels do not contain aromatic compounds and they are totally sulphur free. Hydrotreated Vegetable Oil (HVO) was studied as an example of paraffinic high cetane number (CN) diesel fuels. HVO has no storage and low temperature problems like the fatty acid methyl esters (FAMEs) have. The combustion properties are better than those of crude oil based fuels and FAME, because they have very high cetane numbers and contain no polyaromatic hydrocarbons (PAH). With low HVO density, viscosity and distillation temperatures, these advantageous properties allow far more advanced combustion strategies, such as very high exhaust gas recirculation (EGR) rates or extreme Miller timings, than has been possible with current fossil fuels. The implementation of these advanced combustion technologies, together with the novel renewable diesel fuel, brought significant nitrogen oxides (NO{sub x}), particulate matter (PM) emission reductions with no efficiency losses. (orig.)

  15. Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas

    International Nuclear Information System (INIS)

    Fan, Baowei; Pan, Jianfeng; Liu, Yangxian; Zhu, Yuejin

    2015-01-01

    Highlights: • A 3-D simulation model based on the chemical reaction kinetics is established. • The tumble near the trailing spark plug is beneficial for the combustion rate. • The best position of the trailing spark plug is at the rear of the tumble zone. • An increase of the tumble effect time can improve the combustion rate. • Considering the rate of pressure rise, the best ignition timing is 50 °CA (BTDC). - Abstract: The side-ported rotary engine fueled with natural gas is a new, clean, efficient energy system. This work aims to numerically study the performance, combustion and emission characteristics of a side-ported rotary engine fueled with natural gas under different ignition positions and ignition timings. Simulations were performed using multi-dimensional software ANASYS Fluent. On the basis of the software, a three-dimensional dynamic simulation model was established by writing dynamic mesh programs and choosing a detailed reaction mechanism. The three-dimensional dynamic simulation model, based on the chemical reaction kinetics, was also validated by the experimental data. Meanwhile, further simulations were then conducted to investigate how to impact the combustion process by the coupling function between ignition operating parameter and the flow field inside the cylinder. Simulation results showed that in order to improve the combustion efficiency, the trailing spark plug should be located at the rear of the tumble zone and the ignition timing should be advanced properly. This was mainly caused by the trailing spark plug being located at the rear of the tumble zone, as it not only allowed the fuel in the rear of combustion chamber to be burnt without delay, but also permitted the acceleration of the flame propagation by the tumble. Meanwhile, with advanced ignition timing, the time between ignition timing and the timing of the tumble disappearance increased, which led to an increase of the tumble effect time used to improve the combustion

  16. Comprehensive study of ignition and combustion of single wooden particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass co-firing design and optimization. In this paper, the ignition and burnout of the largest possible...... for all the test conditions. As the particle is further heated up and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement...... with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced...

  17. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  18. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  19. Ignition of a Droplet of Composite Liquid Fuel in a Vortex Combustion Chamber

    Science.gov (United States)

    Valiullin, T. R.; Vershinina, K. Yu; Glushkov, D. O.; Strizhak, P. A.

    2017-11-01

    Experimental study results of a droplet ignition and combustion were obtained for coal-water slurry containing petrochemicals (CWSP) prepared from coal processing waste, low-grade coal and waste petroleum products. A comparative analysis of process characteristics were carried out in different conditions of fuel droplet interaction with heated air flow: droplet soars in air flow in a vortex combustion chamber, droplet soars in ascending air flow in a cone-shaped combustion chamber, and droplet is placed in a thermocouple junction and motionless in air flow. The size (initial radii) of CWSP droplet was varied in the range of 0.5-1.5 mm. The ignition delay time of fuel was determined by the intensity of the visible glow in the vicinity of the droplet during CWSP combustion. It was established (under similar conditions) that ignition delay time of CWSP droplets in the combustion chamber is lower in 2-3.5 times than similar characteristic in conditions of motionless droplet placed in a thermocouple junction. The average value of ignition delay time of CWSP droplet is 3-12 s in conditions of oxidizer temperature is 600-850 K. Obtained experimental results were explained by the influence of heat and mass transfer processes in the droplet vicinity on ignition characteristics in different conditions of CWSP droplet interaction with heated air flow. Experimental results are of interest for the development of combustion technology of promising fuel for thermal power engineering.

  20. Ignition and combustion characteristics of metallized propellants, phase 2

    Science.gov (United States)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass

  1. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  2. Ignition delay of combustible materials in normoxic equivalent environments

    Science.gov (United States)

    Sara McAllister; Carlos Fernandez-Pello; Gary Ruff; David Urban

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a...

  3. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    Science.gov (United States)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion

  4. Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb

    Science.gov (United States)

    Selden, Robert F

    1938-01-01

    Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

  5. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  6. Combustion and Ignition Studies of Nanocomposite Energetic Materials

    Science.gov (United States)

    2010-12-14

    Characterization of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion,” M. Jackson, M. L. Pantoya and W. Gill, Combustion...of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion,” M. Jackson, M. L. Pantoya and W. Gill, Combustion and...changes in parameters such as particle size. The LFA measures these properties for bulk powders, consolidated pellets or even liquid mediums and is

  7. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  8. Auto-ignition generated combustion. Pt. 2. Thermodynamic fundamentals; Verbrennungssteuerung durch Selbstzuendung. T. 2. Experimentelle Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, P. [Paris-6 Univ. (France). Lab. de Mecanique Physique; Morin, C. [Paris-6 Univ. (France); Mokhtari, S.

    2004-02-01

    The combustion initiation by auto-ignition demonstrates benefits in NO{sub x} reduction and in process stability for both spark-ignited and compression ignited engines. Based on the better thermodynamic particularities of the auto-ignition, which have been presented in the first part, the characteristics of this process are demonstrated in the second part by experimental analysis. For comparison with similar studies, the analyses have been carried out in base of a two stroke loop scavenged spark-ignition single cylinder engine. (orig.) [German] Die Steuerung der Verbrennung durch Selbstzuendung zeigt Vorteile bezueglich Senkung der NO{sub x}-Emission und Prozessstabilitaet, sowohl bei Otto- als auch bei Dieselmotoren. Auf Grundlage der thermodynamischen Besonderheiten der Selbstzuendvorgaenge, die im ersten Teil praesentiert wurden, erfolgt im zweiten Teil eine experimentelle Betrachtung der Prozesscharakteristika. Zur Vergleichbarkeit mit aehnlichen Untersuchungen wird die experimentelle Analyse auf Basis eines Zweitakt-Einzylinder-Ottomotors mit Umkehrspuelung durchgefuehrt. (orig.)

  9. Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation

    KAUST Repository

    Rachidi, Mariam El

    2017-06-12

    This study reports cyclopentane ignition delay measurements over a wide range of conditions. The measurements were obtained using two shock tubes and a rapid compression machine, and were used to test a detailed low- and high-temperature mechanism of cyclopentane oxidation that was presented in part I of this study (Al Rashidi et al., 2017). The ignition delay times of cyclopentane/air mixtures were measured over the temperature range of 650–1350K at pressures of 20 and 40atm and equivalence ratios of 0.5, 1.0 and 2.0. The ignition delay times simulated using the detailed chemical kinetic model of cyclopentane oxidation show very good agreement with the experimental measurements, as well as with the cyclopentane ignition and flame speed data available in the literature. The agreement is significantly improved compared to previous models developed and investigated at higher temperatures. Reaction path and sensitivity analyses were performed to provide insights into the ignition-controlling chemistry at low, intermediate and high temperatures. The results obtained in this study confirm that cycloalkanes are less reactive than their non-cyclic counterparts. Moreover, cyclopentane, a high octane number and high octane sensitivity fuel, exhibits minimal low-temperature chemistry and is considerably less reactive than cyclohexane. This study presents the first experimental low-temperature ignition delay data of cyclopentane, a potential fuel-blending component of particular interest due to its desirable antiknock characteristics.

  10. Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation

    KAUST Repository

    Rachidi, Mariam El; Má rmol, Juan C.; Banyon, Colin; Sajid, Muhammad Bilal; Mehl, Marco; Pitz, William J.; Mohamed, Samah; Alfazazi, Adamu; Lu, Tianfeng; Curran, Henry J.; Farooq, Aamir; Sarathy, Mani

    2017-01-01

    This study reports cyclopentane ignition delay measurements over a wide range of conditions. The measurements were obtained using two shock tubes and a rapid compression machine, and were used to test a detailed low- and high-temperature mechanism of cyclopentane oxidation that was presented in part I of this study (Al Rashidi et al., 2017). The ignition delay times of cyclopentane/air mixtures were measured over the temperature range of 650–1350K at pressures of 20 and 40atm and equivalence ratios of 0.5, 1.0 and 2.0. The ignition delay times simulated using the detailed chemical kinetic model of cyclopentane oxidation show very good agreement with the experimental measurements, as well as with the cyclopentane ignition and flame speed data available in the literature. The agreement is significantly improved compared to previous models developed and investigated at higher temperatures. Reaction path and sensitivity analyses were performed to provide insights into the ignition-controlling chemistry at low, intermediate and high temperatures. The results obtained in this study confirm that cycloalkanes are less reactive than their non-cyclic counterparts. Moreover, cyclopentane, a high octane number and high octane sensitivity fuel, exhibits minimal low-temperature chemistry and is considerably less reactive than cyclohexane. This study presents the first experimental low-temperature ignition delay data of cyclopentane, a potential fuel-blending component of particular interest due to its desirable antiknock characteristics.

  11. Ignition and combustion phenomena on a moving grate: with application to the thermal conversion of biomass and municipal solid waste

    NARCIS (Netherlands)

    Blijderveen, M.

    2012-01-01

    Combustion can be defined as a fast oxidation process of a solid, gaseous or liquid fuel at elevated temperatures. In any combustion process, ignition plays an essential role. Not only to initiate the combustion process, but also to maintain it. Especially in solid fuel combustion on a grate, where

  12. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustors

    Science.gov (United States)

    Ryan, T. W., III; Harlowe, W. W.; Schwab, S.

    1992-01-01

    The work was based on adapting an apparatus and procedure developed at Southwest Research Institute for rating the ignition quality of fuels for diesel engines. Aluminum alkyls and various Lewis-base adducts of these materials, both neat and mixed 50/50 with pure JP-10 hydrocarbon, were injected into the combustion bomb using a high-pressure injection system. The bomb was pre-charged with air that was set at various initial temperatures and pressures for constant oxygen density. The ignition delay times were determined for the test materials at these different initial conditions. The data are presented in absolute terms as well as comparisons with the parent alkyls. The relative heats of reaction of the various test materials were estimated based on a computation of the heat release, using the pressure data recorded during combustion in the bomb. In addition, the global reaction rates for each material were compared at a selected tmperature and pressure.

  13. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion

    International Nuclear Information System (INIS)

    Zhang, Bin; Fu, Peifang; Liu, Yang; Yue, Fang; Chen, Jing; Zhou, Huaichun; Zheng, Chuguang

    2017-01-01

    Highlights: • A new thermal model and measuring method for the ignition temperature are proposed. • Ignition occurs in a region but not a point with ambient conditions changing. • Ignition region is measured from the minimum to maximum ignition temperature. • T_i_g_,_m_a_x of coal char in TG-DSC is in line with the ignition temperature of EFR. - Abstract: Through using a new thermal analysis model and a method of coal/char combustion, the minimum ignition temperature and minimum ignition heat of three different ranks of pulverized coal char were measured by simultaneous Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) experiments. The results show that the ignition of coal char occurs in the range between the minimum ignition temperature and the inflection-point temperature. The thermal acceleration and its gradient G_T increase with increasing heating rate and decrease with increasing coal char rank. The higher the G_T of the coal char, the more easily the ignition occurs and more rapidly the burning and burnout occur. The data show that the G_T of coal char of SLH lignite is 1.6 times more than that of coal char of ZCY bituminous and JWY anthracite in ignition zone, and 3.4 times in burning zone. The characteristic temperatures increase with increasing temperature of prepared char, heating rate and char rank. Moreover, the T_i_g_,_m_a_x calculated in DSC experiment is approximately in line with the ignition temperature obtained in the entrained flow reactor, which demonstrates the feasibility of the proposed theory.

  14. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    fuel consumption (gross indicated fuel consumption Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.

  15. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  16. 3rd International Workshop on Turbulent Spray Combustion

    CERN Document Server

    Gutheil, Eva

    2014-01-01

    This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth ...

  17. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  18. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  19. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Science.gov (United States)

    Wollen, Mark A. (Inventor)

    2018-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved in one or more charging chambers to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  20. Utilisation of VOC in Diesel Engines. Ignition and combustion of VOC released in crude oil tankers

    International Nuclear Information System (INIS)

    Melhus, Oeyvin

    2002-01-01

    The emission of VOC (Volatile Organic Compound) is a significant source of hydrocarbon pollution. In Norway, the offshore oil industry represents a major source. This emission represents both an energy loss and an environmental problem. Gas tankers have used boil-off gas from the cargo tanks as fuel for some time. However, for the current VOC project a new fuel injection concept is designed for tankers to take advantage of the energy present in the VOC evaporated from crude oil. The VOC is mixed with inert gas in these tankers, and thus the utilisation of this gas represents new challenges. The VOC project uses the concept of ''Condensate Diesel Process'' with pilot ignition. An experimental study of ignition and combustion of VOC Fuels reported here was initiated by the time it was decided to start a pilot project converting propulsion engines in shuttle tankers to use VOC Fuel. It is an experimental study carried out at the Marine Technology Centre (MTS). The objective was to study ignition and combustion of the chosen process in comparison with an ordinary diesel process. The experimental results have been discussed and compared with theoretical considerations of injection, ignition and combustion. For experiments on combustion, a rapid compression machine ''DyFo'' was redesigned to use VOC Fuel. The DyFo test rig was initially designed to study ignition and early combustion of spark ignited homogeneous gas/air charges. To study the ignition and early combustion of VOC Fuel injected at high pressure and ignited by pilot diesel fuel, a redesign was necessary. An important feature of the DyFo, is the visualisation of the combustion. The advantage of the DyFo test rig over an engine, is its simplicity and controllability. In an engine the visualisation would suffer from combustion deposits disturbing the view through the quartz glasses, making the images more difficult to interpret. The simplicity is on the other side a drawback. Correct thermal conditions inside

  1. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  2. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  3. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  4. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  5. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Ng, Jo-Han; Ahmad, Solehin; Rajoo, Srithar

    2015-01-01

    Highlights: • Diesel engine test using palm biodiesel and diesel at varying speed and load. • Palm biodiesel shows better performance at late stage of cycle evolution. • Oxygen in palm biodiesel fuel improves local combustion at late stage of combustion. • Emissions of NO are lower at low and medium operating speed for palm biodiesel. • Formulation of trend guide for performance and emissions characteristics for light-duty diesel engines. - Abstract: This paper presents an investigation of oxygenated neat palm biodiesel in a direct injection single cylinder diesel engine in terms of ignition, combustion and emissions characteristics. Conventional non-oxygenated diesel fuel is compared as baseline. The engine testing is performed between the operating speed of 2000–3000 rpm and load of up to 3 bar of brake mean effective pressure. From it, a total of 50 experiment cases are tested to form a comprehensive operational speed-load contour map for ignition and combustion; while various engine-out emissions such as NO, CO, UHCs and CO 2 are compared based on fuel type-speed combinations. The ignition and combustion evolution contour maps quantify the absolute ignition delay period and elucidate the difference between that of palm biodiesel and fossil diesel. Although diesel has shorter ignition delay period by up to 0.6 CAD at 3000 rpm and burns more rapidly at the start of combustion, combustion of palm biodiesel accelerates during the mid-combustion phase and overtakes diesel in the cumulative heat release rates (HRR) prior to the 90% cumulative HRR. This can be attributed to the oxygen contained in palm biodiesel assisting in localized regions of combustion. In terms of performance, the oxygenated nature of palm biodiesel provided mixed performances with improved thermal efficiency and increased brake specific fuel consumption, due to the improved combustion and lower calorific values, respectively. Emission measurements show that NO for palm biodiesel is

  6. Optimum injection and combustion for gaseous fuel engine : characteristics of hydrogen auto-ignition phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, T.; Mikami, S.; Senda, J.; Fujimoto, H. [Doshisha Univ. (Japan). Dept. of Mechanical Engineering; Nakatani, K. [Fuji Heavy Industries Ltd. (Japan); Tokunaga, Y. [Kawasaki Heavy Industries Ltd. (Japan)

    2002-07-01

    A study was conducted in which the auto-ignition characteristics of hydrogen were examined in order to determine which factors dominate auto-ignition delay of hydrogen jets. Experiments were performed in a rapid compression/expansion machine in order to study the effects of ambient gas density and oxygen concentration on the auto-ignition delays. The focus of research was on an inert gas circulation type cogeneration system to apply hydrogen to a medium-sized diesel engine. Freedom of fuel-oxidizer mixing, ignition and combustion in the system could be achieved for stable combustion, high thermal efficiency, and zero emission. The study also involved chemical analysis using a detailed hydrogen reaction model that could simulate auto-ignition delays under various temperature, pressures, equivalence ratio, and dilution. It is shown that auto-ignition delays of hydrogen jets are very dependent on the ambient gas temperature and less dependent on its density and oxygen concentration. Temperature and hydrogen concentrations have significant impacts on the production and consumption rates of H{sub 2}O{sub 2} and OH radicals. 21 refs., 1 tab., 10 figs.

  7. Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhe, E-mail: zhe.liang@cnl.ca; Clouthier, Tony; Thomas, Bryan

    2016-03-15

    Highlights: • Combustion during continuous hydrogen release. • Periodical slow burning with a low release rate or weak turbulence. • Fast global burning with stratified hydrogen or strong turbulence. • Initiation of standing flame. - Abstract: Deliberate hydrogen ignition systems have been widely installed in many water cooled nuclear power plants to mitigate hydrogen risk in a loss-of-coolant accident. Experimental studies were performed at a large scale facility to simulate a post-accident containment scenario, where hydrogen is released into a volume (not closed) with an energized igniter. The test chamber had a volume of 60 m{sup 3}. The test parameters included hydrogen injection mass flow rate, injection elevation, igniter elevation, and level of turbulence in the chamber. Several dynamic combustion behaviors were observed. Under certain conditions, slow burning occurred periodically or locally without significant pressurization, and the hydrogen concentration could be maintained near the lean hydrogen flammability limit or a steady hydrogen distribution profile could be formed with a maximum hydrogen concentration less than 9 vol.%. Under other conditions, a global fast burn or a burn moving along the hydrogen dispersion pathway was observed and was followed by an immediate initiation of a standing flame. The study provided a better understanding of the dynamic combustion behavior induced by a deliberate igniter during a continuous hydrogen release. The data can be used for validation of combustion models used for hydrogen safety analysis.

  8. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  9. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  10. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  11. Intrinsic reaction kinetics of coal char combustion by direct measurement of ignition temperature

    International Nuclear Information System (INIS)

    Kim, Ryang-Gyoon; Jeon, Chung-Hwan

    2014-01-01

    A wire heating reactor that can use a synchronized experimental method was developed to obtain the intrinsic kinetics of large coal char particles ranging in size from 0.4 to 1 mm. This synchronization system consists of three parts: a thermocouple wire for both heating and direct measurement of the particle temperature, a photodetector sensor for determining ignition/burnout points by measuring the intensity of luminous emission from burning particles, and a high-speed camera–long-distance microscope for observing and recording the movement of luminous zone directly. Coal char ignition was found to begin at a spot on the particle's external surface and then moved across the entire particle. Moreover, the ignition point determined according to the minimum of dT/dt is a spot point and not a full growth point. The ignition temperature of the spot point rises as the particle diameter increases. A spot ignition model, which describes the ignition in terms of the internal conduction and external/internal oxygen diffusion, was then developed to evaluate the intrinsic kinetics and predict the ignition temperature of the coal char. Internal conduction was found to be important in large coal char particles because its effect becomes greater than that of oxygen diffusion as the particle diameter increases. In addition, the intrinsic kinetics of coal char obtained from the spot ignition model for two types of coal does not differ significantly from the results of previous investigators. -- Highlights: • A novel technique was used to measure the coal char particle temperature. • The ignition point determined from a dT/dt minimum is a spot ignition point. • A spot ignition model was suggested to analyze the intrinsic reaction kinetics of coal char. • Internal conduction has to be considered in order to evaluate the intrinsic kinetics for larger particle (above 1 mm)

  12. Control of combustion generated emissions from spark ignition engines: a review

    International Nuclear Information System (INIS)

    Mansha, M.; Shahid, E.M.; Qureshi, A.H.

    2012-01-01

    For the past several decades automobiles have been a major source of ground level emissions of various pollutants like CO, HC, NO/sub x/, SO/sub x/ CO/sub 2/, etc. Due to their dangerous effects on human health, vegetation and on climate, various pre combustion, in-cylinder and post. combustion techniques have been tried for their abatement. This paper reviews all of the workable measures taken so far to controlling the combustion generated emissions from 4-stroke Spark Ignition Vehicular Engines ever since the promulgation of emission control legislation/standards and their subsequent enforcement in the late 1960s. (author)

  13. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad; Farooq, Aamir; Sim, Jaeheon; Viollet, Yoann; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  14. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad

    2016-04-05

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  15. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  16. Producer for vegetal combustibles for internal-combustion motors

    Energy Technology Data Exchange (ETDEWEB)

    1943-12-28

    A producer is described for internal-combustion motors fed with wood or agricultural byproducts characterized by the fact that its full operation is independent of the degree of wetness of the material used.

  17. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  18. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System

    Directory of Open Access Journals (Sweden)

    Rafał Ślefarski

    2018-02-01

    Full Text Available Application of a pre-combustion chamber (PCC ignition system is one of the methods to improve combustion stability and reduce toxic compounds emission, especially NOx. Using PCC allows the operation of the engine at lean combustion conditions or the utilization of low calorific gaseous fuels such as syngas or biogas. The paper presents the results of an experimental study of the combustion process in two stroke, large bore, stationary gas engine GMVH 12 equipped with two spark plugs (2-SP and a PCC ignition system. The experimental research has been performed during the normal operation of the engine in an industrial compression station. It was observed that application of PCC provides less cycle-to-cycle combustion variation (more than 10% and nitric oxide and carbon monoxide emissions decreased to 60% and 26% respectively. The total hydrocarbon (THC emission rate is 25% higher for the engine equipped with PCC, which results in roughly two percent engine efficiency decrease. Another important criterion of engine retrofitting was the PCC location in the engine head. The experimental results show that improvement of engine operating parameters was recorded only for a configuration with one port offset by 45° from the axis of the main chamber. The study of the ignition delay angle and equivalence ratio in PCC did not demonstrate explicit influence on engine performance.

  19. DNS and LES/FMDF of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  20. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  1. Laser-assisted ignition and combustion characteristics of consolidated aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Saceleanu, Florin; Wen, John Z., E-mail: john.wen@uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada); Idir, Mahmoud; Chaumeix, Nabiha [Institut de Combustion, Aérothermique, Réactivité et Environnement, UPR3021 du CNRS-INSIS (France)

    2016-11-15

    Aluminum (Al) nanoparticles have drawn much attention due to their high energy density and tunable ignition properties. In comparison with their micronscale counterpart, Al nanoparticles possess large specific surface area and low apparent activation energy of combustion, which reduce ignition delay significantly. In this paper, ignition and subsequently burning of consolidated Al nanoparticle pellets are performed via a continuous wave (CW) argon laser in a closed spherical chamber filled with oxygen. Pellets are fabricated using two types of nanoparticle sizes of 40–60 and 60–80 nm, respectively. A photodiode is used to measure the ignition delay, while a digital camera captures the location of the flame front. It is found that for the 40–60-nm nanoparticle pellets, ignition delay reduces with increasing the oxygen pressure or using the higher laser power. Analysis of the flame propagation rate suggests that oxygen diffusion is an important mechanism during burning of these porous nanoparticle pellets. The combustion characteristics of the Al pellets are compared to a simplified model of the diffusion-controlled oxidation mechanism. While experimental measurements of pellets of 40–60 nm Al particles agree with the computed diffusion-limiting mechanism, a shifted behavior is observed from the pellets of 60–80 nm Al particles, largely due to the inhomogeneity of their porous structures.

  2. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  3. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  4. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2017-12-01

    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  5. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  6. THE MARINE HEAVY FUEL IGNITION AND COMBUSTION BY PLASMA

    Directory of Open Access Journals (Sweden)

    MOROIANU CORNELIU

    2015-05-01

    Full Text Available The continuous damage of the used fuel quality, of its dispersion due to the increasing viscosity, make necessary the volume expansion and the rise of the e electric spark power used at ignition. A similar situation appears to the transition of the generator operation from the marine Diesel heavy fuel to the residues of water-fuel mixture. So, it feels like using an ignition system with high specific energy and power able to perform the starting and burning of the fuels mentioned above. Such a system is that which uses a low temperature plasma jet. Its use involves obtaining a high temperature area round about the jet, with a high discharge power, extending the possibility of obtaining a constant burning of different concentration (density mixtures. Besides the action of the temperature of the air-fuel mixture, the plasma jet raises the rate of oxidation reaction as a result of appearance of lot number of active centers such as loaded molecules, atoms, ions, free radicals.

  7. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  8. Starting procedure for internal combustion vessels

    Science.gov (United States)

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  9. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  10. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  11. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  12. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  13. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of biodiesel on the performance and combustion parameters of a turbocharged compression ignition engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Baluch, A.H.; Chao, H.

    2009-01-01

    Direct injection compression ignition engines have proved to be the best option in heavy duty applications like transportation and power generation ,but rapid depleting sources of conventional fossil fuels, their rising prices and ever increasing environmental issues are the major concerns. Alternative fuels, particularly bio fuels are receiving increasing attention during the last few years. Biodiesel has already been commercialized in the transport sector. In the present work, a turbocharged intercooled and DI diesel engine has been alternatively fuelled with biodiesel and its 20% blend with commercial diesel. The experimental results show that BSFC, maximum combustion pressure and start of injection angle increase; on the other hand BSEC, maximum rate of pressure rise, ignition lag and premixed combustion amount decrease however HRR duration remains almost unaffected in the case of biodiesel as compared to commercial diesel. (author)

  15. A Photographic Study of Combustion and Knock in a Spark-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Spencer, R C

    1938-01-01

    Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.

  16. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  17. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  18. Ignition and combustion of sodium, fire consequences, extinguishment and prevention

    International Nuclear Information System (INIS)

    Malet, J.C.

    1996-01-01

    This document presents the results of work carried out at the IPSN on: sodium inflammation, sodium combustion (pool fires and sprayed jet fires), extinguishment (passive means and extinguishing powder), the physico-chemical behaviour of aerosols and their filtration, the protection means of concretes, intervention during and after a fire, treatment of residues, intervention equipment. The calculation codes developed during these studies are described. The experimental basis which allowed the qualification of these codes and the technological means aimed at prevention and sodium fire fighting, was obtained using programmes carried out in the experimental facilities existing in Cadarache or in collaboration with the German teams of Karlsruhe

  19. Ignition and combustion of sodium, fire consequences, extinguishment and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [Institut de Protection et de Surete Nucleaire, Laboratoire d' Experimentation de Modelisation des Feux, C.E. Cadarache, Saint-Paul-lez-Durance (France). E-mail: malet at ipsncad.cea.fr

    1996-07-01

    This document presents the results of work carried out at the IPSN on: sodium inflammation, sodium combustion (pool fires and sprayed jet fires), extinguishment (passive means and extinguishing powder), the physico-chemical behaviour of aerosols and their filtration, the protection means of concretes, intervention during and after a fire, treatment of residues, intervention equipment. The calculation codes developed during these studies are described. The experimental basis which allowed the qualification of these codes and the technological means aimed at prevention and sodium fire fighting, was obtained using programmes carried out in the experimental facilities existing in Cadarache or in collaboration with the German teams of Karlsruhe.

  20. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  1. Ignition of combustible/air mixtures by small radiatively heated surfaces.

    Science.gov (United States)

    Welzel, M M; Schenk, S; Hau, M; Cammenga, H K; Bothe, H

    2000-02-01

    Optical radiation as an ignition source in potentially explosive atmospheres was investigated for a number of explosive mixtures with respect to the most important case occurring in practice, i.e., absorption of the radiation by a solid target. Iron oxide was used as the target material. The combustibles were selected in compliance with the well-known temperature classes and apparatus groups to allow a useful graduation of the power limits to be applied.

  2. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.

    2016-12-30

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  3. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor

    International Nuclear Information System (INIS)

    Riaza, J.; Alvarez, L.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F.

    2011-01-01

    The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O 2 -79%CO 2 , 30%O 2 -70% O 2 and 35%O 2 -65%CO 2 ) were compared with those attained in air. The replacement of CO 2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O 2 -79%CO 2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O 2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. -- Highlights: → The ignition temperature and the burnout of two thermal coals under oxy-fuel combustion conditions were determined. → The effect of the wet recirculation of flue gas on combustion behaviour was evaluated. → Addition of steam caused a worsening of the ignition temperature and coal burnout.

  4. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  5. Spectroscoping analysis of ignition in a spark ignition engine with jet-controlled combustion; Spektroskopische Untersuchung der Entflammung an einem Ottomotor mit strahlgefuehrtem Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Palaveev, S. [MOT Forschungs- und Entwicklungsgesellschaft fuer Motorentechnik, Optik und Thermodynamik GmbH, Karlsruhe (Germany); Buri, S.; Xander, B.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2007-07-01

    The gasoline direct injection engine is one of the most promising strategies today to reduce the fuel consumption and CO{sub 2}-emissions of spark-ignition engines. The commercial launch of that combustion system was possible only through the development of new optical measurement techniques, which have been a major contribution for understanding the basics of the combustion in a stratified mode. In terms of space and time, compared to the homogeneous approach, the air-fuel-ratio for a stratified mode may vary significantly. This fluctuation affects in a critical way the process of ignition and combustion. The knowledge of the air-fuel-ratio in the spark plug area both at time of ignition and in during the combustion is therefore critical for the development of this combustion system and it components. This paper presents the spark-emission spectroscopy as a non invasive optical technique for measuring the air-fuel-ratio {lambda} in the spark gap at time of ignition. (orig.)

  6. Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.; Giakoumis, E.G.

    2008-01-01

    A previously developed and validated zero-dimensional, multi-zone, thermodynamic combustion model for the prediction of spark ignition (SI) engine performance and nitric oxide (NO) emissions has been extended to include second-law analysis. The main characteristic of the model is the division of the burned gas into several distinct zones, in order to account for the temperature and chemical species stratification developed in the burned gas during combustion. Within the framework of the multi-zone model, the various availability components constituting the total availability of each of the multiple zones of the simulation are identified and calculated separately. The model is applied to a multi-cylinder, four-stroke, turbocharged and aftercooled, natural gas (NG) SI gas engine running on synthesis gas (syngas) fuel. The major part of the unburned mixture availability consists of the chemical contribution, ranging from 98% at the inlet valve closing (IVC) event to 83% at the ignition timing of the total availability for the 100% load case, which is due to the presence of the combustible fuel. On the contrary, the multiple burned zones possess mainly thermomechanical availability. Specifically, again for the 100% load case, the total availability of the first burned zone at the exhaust valve opening (EVO) event consists of thermomechanical availability approximately by 90%, with similar percentages for all other burned zones. Two definitions of the combustion exergetic efficiency are used to explore the degree of reversibility of the combustion process in each of the multiple burned zones. It is revealed that the crucial factor determining the thermodynamic perfection of combustion in each burned zone is the level of the temperatures at which combustion occurs in the zone, with minor influence of the whole temperature history of the zone during the complete combustion phase. The availability analysis is extended to various engine loads. The engine in question is

  7. Influence of test configuration on the combustion characteristics of polymers as ignition sources

    Science.gov (United States)

    Julien, Howard L.

    1993-01-01

    The experimental evaluation of polymers as ignition sources for metals was accomplished at the NASA White Sands Test Facility (WSTF) using a standard promoted combustion test. These tests involve the transient burning of materials in high-pressure oxygen environments. They have provided data from which design decisions can be made; data include video recordings of ignition and non-ignition for specific combinations of metals and polymers. Other tests provide the measured compositions of combustion products for polymers at select burn times and an empirical basis for estimating burn rates. With the current test configuration, the detailed analysis of test results requires modeling a three-dimensional, transient convection process involving fluid motion, thermal conduction and convection, the diffusion of chemical species, and the erosion of sample surface. At the high pressure extremes, it even requires the analysis of turbulent, transient convection where the physics of the problem are not well known and the computation requirements are not practical at this time. An alternative test configuration that can be analyzed with a relatively-simple convection model was developed during the summer period. The principal change constitutes replacing a large-diameter polymer disk at the end of the metal test rod with coaxial polymer cylinders that have a diameter nearer to that of the metal rod. The experimental objective is to assess the importance of test geometries on the promotion of metal ignition by testing with different lengths of the polymer and, with an extended effort, to analyze the surface combustion in the redesigned promoted combustion tests through analytical modeling of the process. The analysis shall use the results of cone-calorimeter tests of the polymer material to model primary chemical reactions and, with proper design of the promoted combustion test, modeling of the convection process could be conveniently limited to a quasi-steady boundary layer

  8. Preliminary study on the combustion and emission in a direct injection LPG spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seungmook; Lee, Seokhwan [Korea Institute of Machinery and Materials (Korea, Republic of)

    2010-07-01

    In the energy sector, with the implementation of stringent regulations on combustion emissions and the depletion of conventional fuels, there is an important need for low carbon fuel and advanced engine technology. Korea is the country with the most LPG vehicles in the world and the aim of this study, performed by the Korea Institute of Machinery and Materials, is to compare the performance of LPG direct injection spark ignition (DISI) with gasoline DISI. Heat release analyses were conducted to determine the combustion characteristics of both systems and experiments were performed to determine gaseous and nanoparticle emissions. Results showed that LPG provides a better thermal efficiency than gasoline and that THC, NOx, and particulate emissions were lower for LPG than for gasoline. This study demonstrated that LPG DISI can provide better combustion efficiency and lower emissions than gasoline DISI.

  9. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin

    2015-01-01

    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  10. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  11. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal; Singh, Eshan; Ahmed, Ahfaz; Sarathy, Mani

    2017-01-01

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better

  12. Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine

    OpenAIRE

    Avinash Alagumalai

    2015-01-01

    Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17....

  13. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2008-09-15

    Oxy-fuel combustion is a GHG abatement technology in which coal is burned using a mixture of oxygen and recycled flue gas, to obtain a rich stream of CO{sub 2} ready for sequestration. An entrained flow reactor was used in this work to study the ignition and burnout of coals and blends with biomass under oxy-fuel conditions. Mixtures of CO{sub 2}/O{sub 2} of different concentrations were used and compared with air as reference. A worsening of the ignition temperature was detected in CO{sub 2}/O{sub 2} mixtures when the oxygen concentration was the same as that of the air. However, at an oxygen concentration of 30% or higher, an improvement in ignition was observed. The blending of biomass clearly improves the ignition properties of coal in air. The burnout of coals and blends with a mixture of 79%CO{sub 2}-21%O{sub 2} is lower than in air, but an improvement is achieved when the oxygen concentration is 30 or 35%. The results of this work indicate that coal burnout can be improved by blending biomass in CO{sub 2}/O{sub 2} mixtures. 26 refs., 7 figs., 1 tab.

  14. Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline

    Directory of Open Access Journals (Sweden)

    Musaab O. El-Faroug

    2016-11-01

    Full Text Available This paper reviews the serviceability of hydrous ethanol as a clean, cheap and green renewable substitute fuel for spark ignition engines and discusses the comparative chemical and physical properties of hydrous ethanol and gasoline fuels. The significant differences in the properties of hydrous ethanol and gasoline fuels are sufficient to create a significant change during the combustion phase of engine operation and consequently affect the performance of spark-ignition (SI engines. The stability of ethanol-gasoline-water blends is also discussed. Furthermore, the effects of hydrous ethanol, and its blends with gasoline fuel on SI engine combustion characteristics, cycle-to-cycle variations, engine performance parameters, and emission characteristics have been highlighted. Higher water solubility in ethanol‑gasoline blends may be obviously useful and suitable; nevertheless, the continuous ability of water to remain soluble in the blend is significantly affected by temperature. Nearly all published engine experimental results showed a significant improvement in combustion characteristics and enhanced engine performance for the use of hydrous ethanol as fuel. Moreover, carbon monoxide and oxides of nitrogen emissions were also significantly decreased. It is also worth pointing out that unburned hydrocarbon and carbon dioxide emissions were also reduced for the use of hydrous ethanol. However, unregulated emissions such as acetaldehyde and formaldehyde were significantly increased.

  15. Analysis of the Effect of Injection Pressure on Ignition Delay and Combustion Process of Biodiesel from Palm Oil, Algae and Waste Cooking Oil

    Science.gov (United States)

    Irham Anas, Mohd; Khalid, Amir; Hakim Zulkifli, Fathul; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin

    2017-10-01

    Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant grease for use in diesel engines. The objective of this research is investigation the effects of the variant injection pressure on ignition delay and emission for different biodiesel using rapid compression machine. Rapid Compression Machine (RCM) is used to simulate a single compression stroke of an internal combustion engine as a real engine. Four types of biodiesel which are waste cooking oil, crude palm oil, algae and jatropha were tested at injection pressure of 80 MPa, 90 MPa and 130 MPa under constant ambient temperature at 950 K. Increased in injection pressure resulted shorter ignition delay proven by WCO5 which decreased from 1.3 ms at 80 MPa to 0.7 ms at 130 MPa. Meanwhile, emission for CO2 increased due to better fuel atomization for fuel-air mixture formation lead to completed combustion.

  16. Science review of internal combustion engines

    International Nuclear Information System (INIS)

    Taylor, Alex M.K.P.

    2008-01-01

    Internal combustion engines used in transportation produce about 23% of the UK's carbon dioxide emission, up from 14% in 1980. The current science described in this paper suggests that there could be 6-15% improvements in internal combustion fuel efficiency in the coming decade, although filters to meet emission legislation reduce these gains. Using these engines as hybrids with electric motors produces a reduction in energy requirements in the order of 21-28%. Developments beyond the next decade are likely to be dominated by four topics: emission legislation and emission control, new fuels, improved combustion and a range of advanced concepts for energy saving. Emission control is important because current methods for limiting nitrogen oxides and particulate emissions imply extra energy consumption. Of the new fuels, non-conventional fossil-derived fuels are associated with larger greenhouse gas emissions than conventional petroleum-based fuels, while a vehicle propelled by fuel cells consuming non-renewable hydrogen does not necessarily offer an improvement in emissions over the best hybrid internal combustion engines. Improved combustion may be developed for both gasoline and diesel fuels and promises better efficiency as well as lower noxious emissions without the need for filtering. Finally, four advanced concepts are considered: new thermodynamic cycles, a Rankine bottoming cycle, electric turbo-compounding and the use of thermoelectric devices. The latter three all have the common theme of trying to extract energy from waste heat, which represents about 30% of the energy input to an internal combustion engine

  17. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  18. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  19. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine

    International Nuclear Information System (INIS)

    Porpatham, E.; Ramesh, A.; Nagalingam, B.

    2013-01-01

    Highlights: • Tests were conducted on a biogas fuelled SI engine with normal and masked valve. • Improvement in brake power and brake thermal efficiency with masked valve. • Lean misfire limit is extended with enhanced swirl from 0.68 to 0.65. • Enhanced swirl decreases HC level from1530 ppm to 1340 ppm and increases NO emission from 2250 ppm to 3440 ppm. • The reduction in ignition delay and higher heat release rate with enhanced swirl. - Abstract: The influence of swirl on the performance, emissions and combustion in a constant speed Spark Ignition (SI) engine was studied experimentally. A single cylinder diesel engine was modified to operate as a biogas operated spark ignition engine. The engine was operated at 1500 rpm at throttle opening of 25% and 100% at various equivalence ratios. The tests covered a range of equivalence ratios from rich to lean operating limits and also at an optimum compression ratio of 13:1 with normal and masked intake valve to enhance swirl. The spark timing was set to MBT (Minimum advance for Best Torque). It was found that masked valve configuration enhanced the power output and brake thermal efficiency at full throttle. The lean limit of combustion also got extended. Heat release rates indicated enhanced combustion rates with masked valve, which are mainly responsible for the improvement in thermal efficiency. NO level increased with masked valve as compared to normal configuration. The spark timings were to be retarded by about 6 °CA and 4 °CA when compared to normal configuration at 25% and 100% throttle respectively

  20. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  1. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  2. Lean hydrous and anhydrous bioethanol combustion in spark ignition engine at idle

    International Nuclear Information System (INIS)

    Chuepeng, Sathaporn; Srisuwan, Sudecha; Tongroon, Manida

    2016-01-01

    Highlights: • Anhydrous ethanol burns fastest in uncalibrated engine at equal equivalence ratio. • The leaner hydrous ethanol combustion tends to elevate the COV in imep. • Hydrous ethanol consumption was 10% greater than anhydrous ethanol at ϕ = 0.67 limit. • Optimizing alternative fuel engine at idle for stability and emission is suggested. - Abstract: The applications of anhydrous bioethanol to substitute or replace gasoline fuel have shown to attain benefits in terms of engine thermal efficiency, power output and exhaust emissions from spark ignition engines. A hydrous bioethanol has also been gained more attention due to its energy and cost effectiveness. The main aim of this work is to minimize fuel quantity injected to the intake ports of a four-cylinder engine under idle condition. The engine running with hydrous ethanol undergoes within lean-burn condition as its combustion stability is analyzed using an engine indicating system. Coefficient of variation in indicated mean effective pressure is an indicator for combustion stability with hydrocarbon and carbon monoxide emission monitoring as a supplement. Anhydrous ethanol burns faster than hydrous ethanol and gasoline in the uncalibrated engine at the same fuel-to-air equivalence ratio under idle condition. The leaner hydrous ethanol combustion tends to elevate the coefficient of variation in indicated mean effective pressure. The experimental results have found that the engine consumes greater hydrous ethanol by 10% on mass basis compared with those of anhydrous ethanol at the lean limit of fuel-to-air equivalence ratio of 0.67. The results of exhaust gas analysis were compared with those predicted by chemical equilibrium analysis of the fuel-air combustion; the resemble trends were found. Calibrating the alternative fueled engine for fuel injection quantity should be accomplished at idle with combustion stability and emissions optimization.

  3. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  4. Exhaust Composition in a Small Internal Combustion Engine Using FTIR Spectroscopy

    Science.gov (United States)

    2015-06-18

    consumption of intake charge by mass xv CAD crank angle degrees CI compression ignition COTS commercial o↵ the shelf CoV coecient of variance C... ignition (SI) and compression ignition (CI). A spark ignition engine ignites the fuel-air mixture via an electric arc across a spark plug located in...two-stroke engines that operate at very high speeds. The heat of combustion is transferred to a fine wire that remains hot enough to auto - ignite the

  5. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  6. Large-Eddy Simulations of Motored Flow and Combustion in a Homogeneous-Charge Spark-Ignition Engine

    Science.gov (United States)

    Shekhawat, Yajuvendra Singh

    Cycle-to-cycle variations (CCV) of flow and combustion in internal combustion engines (ICE) limit their fuel efficiency and emissions potential. Large-eddy simulation (LES) is the most practical simulation tool to understand the nature of these CCV. In this research, multi-cycle LES of a two-valve, four-stroke, spark-ignition optical engine has been performed for motored and fired operations. The LES mesh quality is assessed using a length scale resolution parameter and a energy resolution parameter. For the motored operation, two 50-consecutive-cycle LES with different turbulence models (Smagorinsky model and dynamic structure model) are compared with the experiment. The pressure comparison shows that the LES is able to capture the wave-dynamics in the intake and exhaust ports. The LES velocity fields are compared with particle-image velocimetry (PIV) measurements at three cutting planes. Based on the structure and magnitude indices, the dynamic structure model is somewhat better than the Smagorinsky model as far as the ensemble-averaged velocity fields are concerned. The CCV in the velocity fields is assessed by proper-orthogonal decomposition (POD). The POD analysis shows that LES is able to capture the level of CCV seen in the experiment. For the fired operation, two 60-cycle LES with different combustion models (thickened frame model and coherent frame model) are compared with experiment. The in-cylinder pressure and the apparent heat release rate comparison shows higher CCV for LES compared to the experiment, with the thickened frame model showing higher CCV than the coherent frame model. The correlation analysis for the LES using thickened frame model shows that the CCV in combustion/pressure is correlated with: the tumble at the intake valve closing, the resolved and subfilter-scale kinetic energy just before spark time, and the second POD mode (shear flow near spark gap) of the velocity fields just before spark time.

  7. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  8. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  9. Internal combustion engines history - a review

    International Nuclear Information System (INIS)

    Gaviria Rios, Jorge Enrique; Mora Guzman, Jorge Hernan; Agudelo, John Ramiro

    2002-01-01

    In this article, a chronological analysis of the technologies and events that any way influenced in the evolution of the internal combustion engine is done everything it through the observation of the works carried out for scientific empiric and engineers whose technical and conceptual value meant the motivation of other people for the search of a better development in this engineering field

  10. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  11. Simulation Of The Internal-Combustion Engine

    Science.gov (United States)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  12. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  13. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  14. Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines

    Directory of Open Access Journals (Sweden)

    Lucas Eder

    2018-03-01

    Full Text Available This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z. The predictive capability of the models is investigated using data from single cylinder engine (SCE tests conducted at the Large Engines Competence Center (LEC. The results are discussed and further steps for development are identified.

  15. Experimental results with hydrogen fueled internal combustion engines

    Science.gov (United States)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  16. Validation of a zero-dimensional and two-phase combustion model for dual-fuel compression ignition engine simulation

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2017-01-01

    Increasing demands for the reduction of exhaust emissions and the pursuit to reduce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of

  17. Optimization of combustion chamber geometry for natural gas engines with diesel micro-pilot-induced ignition

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Tie; Ge, Linlin; Ogawa, Hideyuki

    2016-01-01

    Highlights: • Combustion chamber geometry is optimized to reduce the HC/CO emissions. • CFD model is calibrated against the spray visualization and engine bench test data. • Design space is explored by the multi-objective NSGA-II with Kriging meta-model. • HC and CO emissions are respectively reduced by 56.47% and 33.55%. - Abstract: Smokeless, low nitrogen oxides (NOx), and high thermal efficiency have been achieved through the lean-burn concept for natural gas engine with diesel micro-pilot-induced ignition (MPII). However, the combustion chamber is usually not specialized for natural gas combustion, and increases in the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are still a challenge for this type of engines. This paper describes optimization of the combustion chamber geometry to reduce the HC and CO emissions and improve the combustion efficiency in the MPII natural gas engine. The 3-D computational fluid dynamics (CFD) simulation model coupled with a chemical reaction mechanism is described. The temporal development of the short-pulsed diesel spray in a high pressure constant-volume vessel is measured and used to calibrate the spray model in the CFD simulation. The simulation models are validated by the experimental data of the in-cylinder pressure trace, apparent heat release rate (AHRR) and exhaust gas emissions from a single-cylinder MPII natural gas engine. To generate the various combustion chamber geometries, the bowl outline is parameterized by the two cubic Bezier curves while keeping the compression ratio constant. The available design space is explored by the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) with Kriging-based meta-model. With the optimization, the HC and CO emissions are reduced by 56.47% and 33.55%, respectively, while the NOx emissions, the maximum rate of pressure rise and the gross indicated thermal efficiency that are employed as the constraints are slightly improved. Finally, the

  18. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu; Kuti, Olawole Abiola; Naser, Nimal; Chung, Suk-Ho; Sarathy, Mani

    2016-01-01

    The ignition characteristics of isooctane and n-heptane in an ignition quality tester (IQT) were simulated using a two-stage Lagrangian (TSL) model, which is a zero-dimensional (0-D) reactor network method. The TSL model was also used to simulate

  19. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  20. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  1. Advanced ignition for automotive engines

    OpenAIRE

    Pineda, Daniel Ivan

    2017-01-01

    Spark plugs have been igniting combustible mixtures like those found in automotive engines for over a century, and the principles of the associated ignition techniques using thermal plasma (inductive or capacitive sparks) have remained relatively unchanged during that time. However, internal combustion engines are increasingly operating with boosted intake pressures (i.e. turbo- or super-charged) in order to maintain power output while simultaneously reducing engine size and weight, and they ...

  2. Effect of diesel pre-injection timing on combustion and emission characteristics of compression ignited natural gas engine

    International Nuclear Information System (INIS)

    Xu, Min; Cheng, Wei; Zhang, Hongfei; An, Tao; Zhang, Shaohua

    2016-01-01

    Highlights: • Pre-injection timing on combustion and emission of CING engine are studied. • Closely pre-injection operations leads to increase of combustion intensity. • Early pre-injection operations leads to lower combustion intensity. • Early pre-injection modes provide better NO x emission. - Abstract: Pre-injection strategy is considered to be one of the most important ways to improve diesel engine performance, emission and combustion. It is the same important factor in pilot diesel compression ignition natural gas (CING) engine. In this study, effects of pre-injection timing on combustion and emission performances were experimentally studied in a CING engine which was modified from a turbocharged six-cylinder diesel engine. The experiments were conducted at constant speed of 1400 rpm and different engine loads with a constant fuel injection pressure of 1100 bar. Main injection timing was fixed at 10 °CA BTDC in the advance process of pre-injection timing. The cylinder pressure, heart release rate (HRR), pressure rise rate (PRR), start of combustion (SOC) and coefficient of variation (COV IMEP ), as well as NO x , HC and CO emissions were analyzed. The results indicated that closely pre-injection operations lead to the advance of SOC which intensified combustion of in-cylinder mixture, thereby resulting in higher cylinder pressure, HRR and PRR, as well higher NO x emissions and lower HC and CO emissions. However, early pre-injection operations lead to lower cylinder pressure, HRR and PRR due to decreasing in combustion intensity. Pre-injection timing of 70 °CA BTDC is a conversion point in which influence of pre-injection fuel on ignition and combustion of natural gas nearly disappeared and lowest NO x emission could be obtained. Compared with single injection ignition mode, NO x emissions at the conversion point were reduced by 33%, 38% and 7% at engine load of 38%, 60% and 80% respectively. This is important for the conditions that ignition fuel

  3. Cycle-to-cycle fluctuation of combustion in a spark-ignition engine; Hibana tenka engine no nensho hendo

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, Y; Yoshiyama, S; Tomita, E; Hamagami, T [Okayama University, Okayama (Japan); Otsubo, H [Yammer Diesel Engine Co. Ltd. Tokyo (Japan)

    1997-10-01

    In a homogeneous charge spark-ignition engine, the duration of early stage of combustion is a dominant factor for determining the fluctuation of mean effective pressure. And the early stage of combustion varies with the equivalence ratio and turbulence characteristics of the mixture. In this study, the fluctuations of 1% combustion duration and indicated mean effective pressure Pmi were computed as the function of fluctuations both in the equivalence ratio {phi} of the mixture and in the turbulence characteristics of the cylinder charge. And effects of the spark timing {theta}ig and {phi} on the cycle-to-cycle fluctuation in Pmi were investigated. 16 refs., 6 figs.

  4. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  5. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, E.; Kawahara, N. [Okayama Univ., Okayama (Japan); Roy, M.M. [Rajshahi Univ. of Engineering and Technology, Rajshahi (Bangladesh)

    2009-07-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N{sub 2} dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  6. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    International Nuclear Information System (INIS)

    Tomita, E.; Kawahara, N.; Roy, M.M.

    2009-01-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N 2 dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  7. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  8. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  9. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  10. Influence of impurities on the ignition, combustion and explosion properties of Zircaloy filings

    International Nuclear Information System (INIS)

    Muenzel, H.; Praetorius, R.

    1990-11-01

    The influence of solid substances (e.g. UO 2 , MoO 3 , KNO 3 ) and liquids (e.g. water, nitric acid) on the behavior of Zircaloy filings was investigated. The addition of solid substances as well as liquids increases the ignition temperature. Samples with more than 50% water cannot be ignited (except with KCl solutions). With solid impurities added two modes of combustion are observed with propagation velocities of about 1 and >4 cm/s, respectively. The velocity depends on the heat capacity of the sample. In the presence of water the velocity increases by about two orders of magnitude. The maximum pressure observed in dust explosions in the presence of solid impurities depends on the heat capacity and the amount of Zircaloy burnt but not on the chemical properties of the added substances. The maximum pressure can be higher than 20 bar if water or nitric acid are added. With the proposed models and few additional experimental measurements it is possible to predict the behavior of other Zircaloy filings. (orig.) With 32 refs., 20 tabs., 91 figs [de

  11. Self-ignition combustion synthesis of TiFe in hydrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, R. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)], E-mail: ryuta@eng.hokudai.ac.jp; Sasaki, S. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Saita, I. [National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Sato, M. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Uesugi, H. [Bio Coke Lab., Ltd., 5-34-20 Hirato, Totsuka-ku, Yokohama, Kanagawa 244-0802 (Japan); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2009-07-08

    This paper describes the self-ignition combustion synthesis (SICS) of highly active titanium iron (TiFe) in a high-pressure hydrogen atmosphere without employing an activation process. In the experiments, well-mixed powders of Ti and Fe in the molar ratio of 1:1 were uniformly heated up to 1085 deg. C, the eutectic temperature of Ti-Fe binary system, in pressurized hydrogen at 0.9 MPa. The electric source was disconnected immediately after the ignition between Ti and Fe, and the mixture was cooled naturally. In this study, the exothermic reaction Ti + Fe = TiFe + 40 kJ occurred at around 1085 deg. C after the hydrogenation and decomposition of Ti. X-ray diffraction analysis showed that the final product had only one phase-TiFeH{sub 0.06}-which can store hydrogen of 1.55 mass% under hydrogen pressure of 4 MPa. The product obtained by SICS contained considerably more hydrogen quickly as compared to the commercially available product; this fact can be explained by the porous structure of the obtained product, which was observed using a scanning electron microscope. In conclusion, the SICS of TiFe saved time and energy, yields products with high porosity and small crystals, enabled easy hydrogenation, and did not require activation processes.

  12. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  13. The effects of different intake charge diluents on the combustion and emission characteristics of a spark ignition natural gas engine

    International Nuclear Information System (INIS)

    He, Zhuoyao; Jing, Qijian; Zhu, Lei; Zhang, Wugao; Huang, Zhen

    2015-01-01

    Exhaust gas recirculation (EGR) is the most common method to control NO_x emission of internal combustion engine. The major components of EGR are CO_2 and N_2, which have different influences on engine combustion and pollutants formation through thermal, dilution and chemical effects. The main objective of this work is to investigate the different influences of CO_2 and N_2 on engine combustion and emission on a four-cylinder, turbo charged, spark ignition natural gas engine with electronically control unit, simultaneously to separate the thermal effect with the comparison with Ar. It was found that the peak in-cylinder pressure and heat release rate both decreased along with the increase of intake dilution extent regardless of the diluent's type. For each diluent gas, NO_x emission decreases while HC emission increases with the increased dilution ratio. However, CO emission firstly decreased and then increased. Results also revealed that NO_x and CO emission could be simultaneously reduced by intake charge dilution at a little sacrifice of HC emission. The effects of three diluents are different compared with each other. Among these three diluents, it can be found that CO_2 is the most effective on reducing NO_x and CO emission followed by N_2. However, both CO_2 and N_2 dilution deteriorates the thermal efficiency while Ar dilution improved it. Besides, when NO_x emission was reduced to the same level, the thermal efficiency is the highest and CO emission is the lowest for Ar dilution. - Highlights: • CO_2 is the most effective on reducing NO_x and CO emission followed by N_2 and then Ar. • NO_x and CO emission could be simultaneously reduced by intake charge dilution regardless of the diluents when appropriate dilution extent is chosen. • Both CO_2 and N_2 dilution worsen while Ar dilution improves thermal efficiency. • Thermal effect is a dominant factor for reducing NO_x emission.

  14. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    DEFF Research Database (Denmark)

    Ivarsson, Anders

    emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. The complex combustion process of a compression ignition engine may be divided...... it is well suited for optical line of sight diagnostics in both pre and post combustion regions. The work also includes some preliminary studies of radiant emissions from helium stabilized ethylene/air and methane/oxygen flames. It is demonstrated that nano particles below the sooting threshold actually...... of ethylene/air flames well known from the experimental work, was used for the model validation. Two cases were helium stabilized flames with φ = 1 and 2.14. The third case was an unstable flame with φ = 2.14. The unstable case was used to test whether a transient model would be able to predict the frequency...

  15. Measuring the Internal Environment of Solid Rocket Motors During Ignition

    Science.gov (United States)

    Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam

    2003-01-01

    A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.

  16. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  17. A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram

    Directory of Open Access Journals (Sweden)

    Tomić Miroljub V.

    2008-01-01

    Full Text Available In this paper a simplified procedure of an internal combustion engine in-cylinder pressure record analysis has been presented. The method is very easy for programming and provides quick evaluation of the gas temperature and the rate of combustion. It is based on the consideration proposed by Hohenberg and Killman, but enhances the approach by involving the rate of heat transferred to the walls that was omitted in the original approach. It enables the evaluation of the complete rate of heat released by combustion (often designated as “gross heat release rate” or “fuel chemical energy release rate”, not only the rate of heat transferred to the gas (which is often designated as “net heat release rate”. The accuracy of the method has been also analyzed and it is shown that the errors caused by the simplifications in the model are very small, particularly if the crank angle step is also small. A several practical applications on recorded pressure diagrams taken from both spark ignition and compression ignition engine are presented as well.

  18. Performance, emission and combustion analysis of a compression ignition engine using biofuel blends

    Directory of Open Access Journals (Sweden)

    Ors Ilker

    2017-01-01

    Full Text Available This study aimed to investigate the effects on performance, emission, and combustion characteristics of adding biodiesel and bioethanol to diesel fuel. Diesel fuel and blend fuels were tested in a water-cooled compression ignition engine with direct injection. Test results showed that brake specific fuel consumption and volumetric efficiency increased by about 30.6% and 3.7%, respectively, with the addition of bioethanol to binary blend fuels. The results of the blend fuel’s combustion analysis were similar to the diesel fuel’s results. Bioethanol increased maximal in-cylinder pressure compared to biodiesel and diesel fuel at both 1400 rpm and 2800 rpm. Emissions of CO increased by an amount of about 80% for fuels containing a high level of bioethanol when compared to CO emissions for diesel fuel. Using biodiesel, NO emissions increased by an average of 31.3%, HC emissions decreased by an average of 39.25%, and smoke opacity decreased by an average of 6.5% when compared with diesel fuel. In addition, when using bioethanol, NO emissions and smoke opacity decreased by 55% and 17% on average, respectively, and HC emissions increased by an average of 53% compared with diesel fuel.

  19. Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview

    International Nuclear Information System (INIS)

    Verhelst, S.; Sheppard, C.G.W.

    2009-01-01

    'Multi-zone thermodynamic engine model' is a generic term adopted here for the type of model also referred to as quasi-dimensional, two-zone, three-zone, etc.; based on the laws of mass and energy conservation and using a mass burning rate sub-model (as opposed to a prescribed mass burning rate) to predict the in-cylinder pressure and temperature throughout the power cycle. Such models have been used for about three decades and provide valuable tools for rapid evaluation of the influence of key engine parameters. Numerous papers have been published on the development of models of varying complexity and their application. The current work is not intended as a comprehensive review of all these works, but presents an overview of multi-zone thermodynamic models for spark-ignition engines, their pros and cons, the model equations and sub-models used to account for various processes such as turbulent wrinkling, flame development, flame geometry, heat transfer, etc. It is suggested that some past terminology adopted to distinguish combustion models (e.g. 'entrainment' versus 'flamelet') is artificial and confusing; it can also be difficult to compare the different models used. Naturally, different models use varying underlying assumptions; however, the influence of several physical processes has frequently been incorporated into one term, not always well documented or clearly described. The authors propose a unified framework that can be used to compare different sub-models on the same basis, with particular focus on turbulent combustion models.

  20. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  1. Thermochemical Modeling and Experimental Validation of Wood Pyrolysis Occurring During Pre-ignition Combustion

    Science.gov (United States)

    Fawaz, M.; Lautenberger, C.; Bond, T. C.

    2017-12-01

    The use of wood as a solid fuel for cooking and heating is associated with high particle emission which largely contribute to the dispersion of particulate matter (PM) in the atmosphere. The majority of those particles are released during the "pre-ignition" phase, i.e., before flaming of the wood occurs. In this work, we investigate the factors that influence the emission of PM during pre-ignition and lead to high particle emission to the atmosphere. During this combustion phase, at elevated temperature, pyrolysis is responsible for wood degradation and the production of gaseous materials that travel and exit the wood. We model the thermal degradation using Gpyro, an open source finite volume method numerical model to simulate heat, mass, and momentum transfer in the wood. In our analysis, we study factors that vary during combustion and that influence emission of PM: wood sample size and boundary conditions. In a fire the boundary conditions represent the thermal energy a piece of wood receives from the surrounding in the form of heat flux. We find that heat transfer is the limiting process governing the production and transport of gas from the wood, and that the amount of emitted PM is dependent on the size of the wood. The dependence of heat transfer from the boundaries on PM emission becomes more important with increasing wood log size. The model shows that a small log of wood (6cm by 2cm) emits close values of total mass of gas at low and high heat fluxes. For a large log of wood (20cm by 5cm) the total mass of gas emitted increases by 30% between low and high heat flux. We validate the model results with a controlled-temperature reactor that accommodates centimeter scale wood samples. The size of the wood used, indicates the abundance of wood in the region where wood is used a solid fuel. Understanding those factors will allow for defining conditions that result in reducing particle emissions during combustion.

  2. Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • Models for the post flame reactions (CO and hydrocarbons) and heat release rate are proposed. • ‘Freezing’ effect of CO kinetics is captured but equilibrium CO concentrations are low. • Reactive–diffusive processes are modeled for hydrocarbons and the last stage of combustion is captured. - Abstract: Reduced fuel consumption, low pollutant emissions and adequate output performance are key features in the contemporary design of spark ignition engines. Zero-dimensional numerical simulation is an attractive alternative to engine experiments for the evaluation of various engine configurations. Both flame front reaction and post-flame processes contribute to the heat release rate. The contribution of this work is to highlight and model the role of post-flame reactions (CO and hydrocarbons) in the heat release rate. The modeling approach to CO kinetics used two reactions considered to be dominant and thus more suitable for the description of CO chemical mechanism. Equilibrium concentrations of all the species involved were calculated by a two-zone thermodynamic model. The computed characteristic time of CO kinetics was found to be of a similar order to the results of complex chemistry simulations. The proposed model captured the ‘freezing’ effect (reaction rate is almost zero) for temperatures lower than 1800 K and followed the trends of the measured values at exhaust. However, a consistent underestimation of CO levels at the exhaust was observed. The impact of the remaining CO on the combustion efficiency is considerable especially for rich mixtures. For a remaining 0.4% CO mass fraction, the impact on combustion inefficiency is 0.1%. Unburnt hydrocarbon, which have not reacted within the flame front before quenching, diffuse in the burnt gas and react. In this work, a global reaction rate models the kinetic behavior of hydrocarbon. The diffusion process was modeled by a relaxation equation applied on the calculated kinetic concentration

  3. Effects of ethanol added fuel on exhaust emissions and combustion in a premixed charge compression ignition diesel engine

    Directory of Open Access Journals (Sweden)

    Kim Yungjin

    2015-01-01

    Full Text Available The use of diesel engines for vehicle has been increasing recently due to its higher thermal efficiency and lower CO2 emission level. However, in the case of diesel engine, NOx increases in a high temperature combustion region and particulate matter is generated in a fuel rich region. Therefore, the technique of PCCI (premixed charge compression ignition is often studied to get the peak combustion temperature down and to make a better air-fuel mixing. However it also has got a limited operating range and lower engine power produced by the wall wetting and the difficulty of the ignition timing control. In this research, the effect of injection strategies on the injected fuel behavior, combustion and emission characteristics in a PCCI engine were investigated to find out the optimal conditions for fuel injection, and then ethanol blended diesel fuel was used to control the ignition timing. As a result, the combustion pressures and ROHR (rate of heat release of the blended fuel became lower, however, IMEP showed fewer differences. Especially in the case of triple injection, smoke could be reduced a little and NOx emission decreased a lot by using the ethanol blended fuel simultaneously without much decreasing of IMEP compared to the result of 100% diesel fuel.

  4. Near wall combustion modeling in spark ignition engines. Part A: Flame–wall interaction

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • A model for flame–wall interaction in addition to flame wrinkling by turbulence is proposed. • Two sparkplug positions and two lengths are used in a test engine for model validation. • Flame–wall interaction decreases the maximum values of cylinder pressure and heat release rates. • The impact of combustion chamber geometry is taken into account by the flame–wall interaction model. - Abstract: Research and design in the field of spark ignition engines seek to achieve high performance while conserving fuel economy and low pollutant emissions. For the evaluation of various engine configurations, numerical simulations are favored, since they are quick and less expensive than experiments. Various zero-dimensional combustion models are currently used. Both flame front reactions and post-flame processes contribute to the heat release rate. The first part of this study focuses on the role of the flame front on the heat release rate, by modeling the interaction of the flame front with the chamber wall. Post-flame reactions are dealt with in Part B of the study. The basic configurations of flame quenching in laminar flames are also applicable in turbulent flames, which is the case in spark ignition engines. A simplified geometric model of the combustion chamber was used to calculate the mean flame surface, the flame volume and the distribution of flame surface as a function of the distance from the wall. The flame–wall interaction took into account the geometry of the combustion chamber and of the flame, aerodynamic turbulence and the in-cylinder pressure and temperature conditions, through a phenomenological attenuation function of the wrinkling factor. A modified global wrinkling factor as a function of the mean surface distance distribution from the wall was calculated. The impact of flame–wall interaction was simulated for four configurations of the sparkplug position and length: centered and lateral position, and standard and projected

  5. Experimental study of hydrogen as a fuel additive in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Saanum, Inge

    2008-07-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NO{sub x}, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO{sub 2} are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emissions of harmful gases and lower CO{sub 2} emissions. This thesis treats various topics that are relevant when using blends of fuels in different internal combustion engine technologies, with a particular focus on using hydrogen as a fuel additive. The topics addressed are especially the ones that impact the environment, such as emissions of harmful gases and thermal efficiency (fuel consumption). The thesis is based on experimental work performed at four different test rigs: 1. A dynamic combustion rig with optical access to the combustion chamber where spark ignited premixed combustion could be studied by means of a Schlieren optical setup and a high speed video camera. 2. A spark ignition natural gas engine rig with an optional exhaust gas recycling system. 3. A 1-cylinder diesel engine prepared for homogeneous charge compression ignition combustion. 4. A 6-cylinder standard diesel engine The engine rigs were equipped with cylinder pressure sensors, engine dynamometers, exhaust gas analyzers etc. to enable analyses of the effects of different fuels. The effect of hydrogen blended with methane and natural gas in spark ignited premixed combustion was investigated in the dynamic combustion rig and in a natural gas engine. In the dynamic combustion rig, the effect of hydrogen added to methane on the flame speed and the flame structure was investigated at elevated pressure and temperature. A considerable increase in the flame speed was observed when adding 30 vol

  6. Development of a self-ignition and combustion model for diesel engines; Modelisation de l`auto-inflammation et de la combustion pour les moteurs diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pires Da Cruz, A.

    1997-12-09

    The work concerns self-ignition and combustion modelling in Diesel engines. Special attention is given to turbulence induced effects. Only gas fuel injection is taken into account. Turbulent mixing is identified as one of the main parameters controlling self-ignition in Diesel engines. However, turbulence effects are often neglected by models currently used in engine calculation codes. A new model based on results obtained by direct numerical simulation (DNS) is proposed. It includes turbulence effects by means of the scalar dissipation rate and presumed pdf of the mixture fraction and a chemical reaction progress variable. The model is validated through several steps. First, its results are compared to DNS in simple mixing and self-ignition cases. Then, its averaged version is integrated into the KIVA2-MB calculation code, where its behavior is tested in a one dimensional version and compared to other formulations. Finally, the model is validated with comparisons to experimental results of methane injection into a high pressure combustion chamber filled with hot air. The combustion chamber allows large optical access and therefore, optical diagnostics can be made. (author) 101 refs.

  7. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2013-09-05

    ... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY... hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA received three petitions for...

  8. Research of combustion in older generation spark-ignition engines in the condition of use leaded and unleaded petrol

    Directory of Open Access Journals (Sweden)

    Bulatović Željko M.

    2014-01-01

    Full Text Available This paper analyzes the potential problems in the exploitation of the older generation of spark-ignition engines with higher octane number of petrol (unleaded petrol BMB 95 than required (leaded petrol MB 86. Within the experimental tests on two different engines (STEYR-PUCH model 712 and GAZ 41 by applying piezoelectric pressure sensors integrated with the engine spark plugs, acceleration sensors (accelerometers and special electronic block connected with distributor, show that the cumulative first and second theoretical phase of combustion when petrol of higher octane number (BMB 95 is used lasts slightly longer than when the low-octane petrol MB 86 is used. For new petrol (BMB 95 higher optimal angles of pre-ignition have been determined by which better performances of the engine are achieved without a danger of the combustion with detonation (also called knocking.

  9. Fuel injection apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, H; Kobayashi, H; Nagata, S

    1975-01-07

    A fuel injection apparatus for a rapid cut of fuel supply to internal combustion engines during deceleration is described. The fuel cut is achieved by an electromagnetic switch. The number of engine revolutions are determined by the movement of cam shafts, and one of the cam shafts is made of electroconductive and nonconductive materials which generate an intermittent electrical signal to the magnetic switch. The device can cut the fuel in any deceleration condition, therefore it is more advantageous than fuel injection utilizing the intake load variation which can operate only under certain deceleration conditions.

  10. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  11. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    OpenAIRE

    A. SONTHALIA; C. RAMESHKUMAR; U. SHARMA; A. PUNGANUR; S. ABBAS

    2015-01-01

    Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported fro...

  12. Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber

    International Nuclear Information System (INIS)

    Salahi, Mohammad Mahdi; Esfahanian, Vahid; Gharehghani, Ayatallah; Mirsalim, Mostafa

    2017-01-01

    Highlights: • A novel combustion strategy, RCCI with a pre-chamber, is proposed and investigated. • The proposed strategy extends the RCCI operating range to use less intake air temperatures. • The new concept extends the RCCI operating range to use lower portions of the active fuel. • The proposed strategy is sensitive to engine load and is more efficient for high loads. - Abstract: Reactivity controlled compression ignition (RCCI) concept has been proven to be a promising combustion mode for the next generations of internal combustion engines. This strategy is still subject of extensive studies to overcome its operational limitations. In the present work, the effect of using a pre-chamber to extend some operating ranges in a RCCI engine is investigated using coupled multidimensional computational fluid dynamics (CFD) with detailed chemical kinetic mechanisms. To accomplish this, the combustion and flow field in a single cylinder engine with a pre-chamber, working in RCCI mode and fueled with natural gas/diesel are numerically modeled. Experimental data is used to validate the simulation results and then, combustion characteristics and engine emissions in some various operating regions, in terms of initial temperature, fuel equivalence ratio and portions of the two fuels are discussed. The results reveal that the proposed strategy provides the ability to extend the engine operating ranges to use lower intake temperatures, even to 50 K lower for some cases, and also using a larger portion of natural gas instead of diesel fuel. On the other hand, the new strategy could result in incomplete combustion and formation of related emissions in low loads, but for higher engine loads it shows better combustion characteristics.

  13. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad; Viollet, Yoann; Elwardani, Ahmed Elsaid; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have

  14. Combustion and emissions characteristics of a compression ignition engine fueled with n-butanol blends

    Science.gov (United States)

    Yusri, I. M.; Mamat, R.; Ali, O. M.; Aziz, A.; Akasyah, M. K.; Kamarulzaman, M. K.; Ihsan, C. K.; Mahmadul, H. M.; Rosdi, S. M.

    2015-12-01

    The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using 4-cylinder, 4-stroke common rail direct injection CI engine to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.

  15. Investigating the effects of LPG on spark ignition engine combustion and performance

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2005-01-01

    A quasi-dimensional spark ignition (SI) engine cycle model is used to predict the cycle, performance and exhaust emissions of an automotive engine for the cases of using gasoline and LPG. Governing equations of the mathematical model mainly consist of first order ordinary differential equations derived for cylinder pressure and temperature. Combustion is simulated as a turbulent flame propagation process and during this process, two different thermodynamic regions consisting of unburned gases and burned gases that are separated by the flame front are considered. A computer code for the cycle model has been prepared to perform numerical calculations over a range of engine speeds and fuel-air equivalence ratios. In the computations performed at different engine speeds, the same fuel-air equivalence ratios are selected for each fuel to make realistic comparisons from the fuel economy and fuel consumption points of view. Comparisons show that if LPG fueled SI engines are operated at the same conditions with those of gasoline fueled SI engines, significant improvements in exhaust emissions can be achieved. However, variations in various engine performance parameters and the effects on the engine structural elements are not promising

  16. Investigation into the effect of different fuels on ignition delay of M-type diesel combustion process

    Directory of Open Access Journals (Sweden)

    Bibić Dževad

    2008-01-01

    Full Text Available An ignition delay is a very complex process which depends on a great number of parameters. In practice, definition of the ignition delay is based on the use of correlation expressions. However, the correlation expressions have very often limited application field. This paper presents a new correlation which has been developed during the research project on the direct injection M-type diesel engine using both the diesel and biodiesel fuel, as well as different values of a static injection timing. A dynamic start of injection, as well as the ignition delay, is defined in two ways. The first approach is based on measurement of a needle lift, while the second is based on measurement of a fuel pressure before the injector. The latter approach requires calculation of pressure signals delay through the fuel injection system and the variation of a static advance injection angle changing. The start of a combustion and the end of the ignition delay is defined on the basis of measurements of an in-cylinder pressure and its point of separation from a skip-fire pressure trace. The developed correlation gives better prediction of the ignition delay definition for the M-type direct injection diesel engine in the case of diesel and biodiesel fuel use when compared with the classic expression by the other authors available in the literature.

  17. Numerical research of heat and mass transfer at the ignition of system “fabric – combustible liquid – oxidant” by the local energy source

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available A numerical research was executed for macroscopic regularities determination of heat and mass transfer processes under the conditions of phase transformation and chemical reaction at the ignition of vapour coming from fabrics impregnated by typical combustible liquid into oxidant area at the local power supply. Limit conditions of heterogeneous system “fabric – combustible liquid – oxidant” ignition at the heating of single metal particle was established. Dependences of ignition delay time on temperature and rates of local power source were obtained.

  18. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  19. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  20. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    International Nuclear Information System (INIS)

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  1. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines

    Science.gov (United States)

    2014-06-20

    was used [9]. Compression ignition (CI) engines rely on auto - ignition to initiate combustion during an engine cycle. During intake, only air flows...9 Figure 2: Four-stroke IC engine cycle. (a) Intake stroke (b) Compression stroke (c) Ignition (d) Power...CAD crank angle degrees CI compression ignition COTS commercial off the shelf CoV coefficient of variance DAQ data acquisition system DI

  2. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    Science.gov (United States)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  3. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    Science.gov (United States)

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  4. Motor vehicles and internal combustion engines; Kraftfahrwesen und Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Bargende, M.; Wiedemann, J. [eds.

    1999-07-01

    The book comprises the papers presented at the 3rd Stuttgart symposium. It reviews the state of the art in science and engineering and outlines future perspectives in the fields of motor vehicles and internal combustion engines. As the conference, the book comprises three sections: 'Engines' on DI spark ignition engines and diesel engines, mixing, combustion and exhaust purification. 'Motor cars' discusses acoustics and aeroacoustics, aerodynamics and wind tunnel technology, comfort, driving gear and stability control. 'Motor vehicle systems' contains papers on thermomanagement, control and automation, real-time applications in motor car simulation, software tools in the control systems development process, and simulation in motor vehicle systems development. Finally, the plenary paper 'Fuel cells, a solution for non-polluting motor car drives' by Dr.-Ing. F. Panik is also contained in the book. [German] Das vorliegende Buch enthaelt die Vortraege des 3. Stuttgarter Symposiums. Es gibt einen Ueberblick ueber den aktuellen Stand von Wissenschaft und Technik und zeigt zukuenftige Perspektiven im Bereich Kraftfahrwesen und Verbrennungsmotoren. Entsprechend der Tagung gliedert sich das Buch in drei Teile. Teil 1 'Motoren' besteht aus Vortraegen ueber Ottomotoren mit Direkteinspritzung und Dieselmotoren, Gemischbildung, Verbrennung und Abgasnachbehandlung, Analyse, Simulation und Motorkomponenten. Teil 2 'Kraftfahrzeuge' enthaelt Arbeiten ueber Fahrzeugakustik und Aeroakustik, Fahrzeug-Aerodynamik und Windkanaltechnik, Fahrzeugkomfort, Fahrwerk und Fahrdynamik. Teil 3 'Kraftfahrzeugsystemtechnik' enthaelt Beitraege ueber Thermomanagement, Regelungs- und Automatisierungstechnik, Echtzeitanwendungen in der Kfz-Simulationstechnik, Softwaretools im Steuergeraete-Entwicklungsprozess und Simulation in der Kraftfahrzeug-Systementwicklung. Der abschliessende Plenarvortrag des Symposiums &apos

  5. Co-Optimization of Internal Combustion Engines and Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to be realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.

  6. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  7. Starting apparatus for internal combustion engines

    Science.gov (United States)

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  8. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  9. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  10. Spark Ignition LPG for Hydrogen Gas Combustion the Reduction Furnace ME-11 Process

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2007-01-01

    Reverse engineering method for automatic spark-ignition system of LPG to burn hydrogen gaseous in the reducing process of ME-11 furnace has been successfully implemented using local materials. A qualitative study to the initial behaviour of the LPG flame system has created an idea by modification to install an automatic spark-ignition of the LPG on the reducing furnace ME-11. The automatic spark-ignition system has been tested and proved working well. (author)

  11. Variable compression ratio device for internal combustion engine

    Science.gov (United States)

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  12. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    Directory of Open Access Journals (Sweden)

    A. SONTHALIA

    2015-04-01

    Full Text Available Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported from Middle East Asian countries and on the other hand combustion of fossil fuel has negative impact on air quality in urban areas. Use of CNG as a fuel in internal combustion engines can reduce the intensiveness of these pervasive problems. The performance of CNG can further be improved by addition of small percentages of hydrogen to it to overcome the drawbacks like lower energy density of the fuel, drop in engine power and engine out exhaust emissions. When hydrogen is added to CNG it is called as Hythane or Hydrogen enriched Compressed Natural Gas (HCNG. This can be considered as a first step towards promotion of hydrogen in automobiles. In this study, the effects of mixing hydrogen with CNG on a small air cooled four stroke SI engine’s performance, emissions and heat release rate was analyzed. A comparison of performance and emission by running engine separately on gasoline, hydrogen, CNG and HCNG was done. The results show a significant decrease in HC, CO and NOx emissions and marginal increase in specific energy consumption when fuelled with HCNG.

  13. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    A. Gharehghani

    2012-01-01

    Full Text Available Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.

  14. A Completely New Type of Actuator -or- This Ain't Your Grandfather's Internal Combustion Engine

    Science.gov (United States)

    Gore, Brian W.; Hawkins, Gary F.; Hess, Peter A.; Moore, Teresa A.; Fournier, Eric W.

    2010-01-01

    A completely new type of actuator - one that is proposed for use in a variety of environments from sea to land to air to space - has been designed, patented, built, and tested. The actuator is loosely based on the principle of the internal combustion engine, except that it is a completely closed system, only requiring electrical input, and the working fuel is water. This paper outlines the theory behind the electrolysis- and ignition-based cycle upon which the actuator operates and describes the performance capability test apparatus and results for the actuator. A mechanism application that harnessed the unit s power to twist a scaled rotor blade is also highlighted.

  15. Fuel octane effects in the partially premixed combustion regime in compression ignition engines

    NARCIS (Netherlands)

    Hildingsson, L.; Kalghatgi, G.T.; Tait, N.; Johansson, B.H.; Harrison, A.

    2009-01-01

    Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before

  16. 75 FR 75937 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-12-07

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... internal combustion engines. Subsequently, the Administrator received two petitions for reconsideration... Any industry using a stationary 2211 Electric power reciprocating internal generation, combustion...

  17. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-10-03

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Pollutants for Stationary Reciprocating Internal Combustion Engines to solicit comment on specific issues...

  18. 77 FR 33811 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-07

    ... 63 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines; Proposed Rule #0;#0... Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source...

  19. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  20. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo; Chung, Suk-Ho; Lu, Tianfeng; Sarathy, Mani

    2015-01-01

    ) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction

  1. Benchmarking the internal combustion engine and hydrogen

    International Nuclear Information System (INIS)

    Wallace, J.S.

    2006-01-01

    The internal combustion engine is a cost-effective and highly reliable energy conversion technology. Exhaust emission regulations introduced in the 1970's triggered extensive research and development that has significantly improved in-use fuel efficiency and dramatically reduced exhaust emissions. The current level of gasoline vehicle engine development is highlighted and representative emissions and efficiency data are presented as benchmarks. The use of hydrogen fueling for IC engines has been investigated over many decades and the benefits and challenges arising are well-known. The current state of hydrogen-fueled engine development will be reviewed and evaluated against gasoline-fueled benchmarks. The prospects for further improvements to hydrogen-fueled IC engines will be examined. While fuel cells are projected to offer greater energy efficiency than IC engines and zero emissions, the availability of fuel cells in quantity at reasonable cost is a barrier to their widespread adaptation for the near future. In their current state of development, hydrogen fueled IC engines are an effective technology to create demand for hydrogen fueling infrastructure until fuel cells become available in commercial quantities. During this transition period, hydrogen fueled IC engines can achieve PZEV/ULSLEV emissions. (author)

  2. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  3. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion

    1989-01-01

    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  4. Development of an empirical correlation for combustion durations in spark ignition engines

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2004-01-01

    Development of an empirical correlation for combustion duration is presented. For this purpose, the effects of variations in compression ratio engine speed, fuel/air equivalence ratio and spark advance on combustion duration have been determined by means of a quasi-dimensional SI engine cycle model previously developed by the authors. Burn durations at several engine operating conditions were calculated from the turbulent combustion model. Variations of combustion duration with each operating parameter obtained from the theoretical results were expressed by second degree polynomial functions. By using these functions, a general empirical correlation for the burn duration has been developed. In this correlation, the effects of engine operating parameters on combustion duration were taken into account. Combustion durations predicted by means of this correlation are in good agreement with those obtained from experimental studies and a detailed combustion model

  5. Validation of a zero-dimensional and 2-phase combustion model for dual-fuel compression ignition engine simulation

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2017-01-01

    Full Text Available Increasing demands for the reduction of exhaust emissions and the pursuit to re-duce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of liquid fuel injected directly into the cylinder acts as the ignition inhibitor of the gaseous fuel. Achieving the optimum combustion process in such an engine requires the application of advanced control algorithms which require mathematical modelling support. In response to the growing demand for new simulation tools, a 0-D model of a dual-fuel engine was proposed and validated. The validation was performed in a broad range of engine operating points, including various speeds and load condition, as well as different natural gas/diesel blend ratios. It was demonstrated that the average model calculation error within the entire cycle did not exceed 6.2%, and was comparable to the measurement results cycle to cycle variations. The maximum model calculation error in a single point of a cycle was 15% for one of the complex (multipoint injection cases. In other cases, it did not exceed 11%.

  6. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    Science.gov (United States)

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  7. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine

    International Nuclear Information System (INIS)

    Jain, Ayush; Singh, Akhilendra Pratap; Agarwal, Avinash Kumar

    2017-01-01

    Highlights: • NOx and PM emissions were lowest at 700 bar fuel injection pressure (FIP). • PCCI showed lower knocking than compression ignition combustion mode. • Increasing FIP reduced emissions of nitrogen oxides and smoke opacity in PCCI mode. • Increasing FIP reduced nucleation mode particle concentration. • Increasing FIP with advanced main injection timings improved PCCI combustion. - Abstract: This experimental study focuses on developing new combustion concept for compression ignition (CI) engines by achieving partially homogeneous charge, leading to low temperature combustion (LTC). Partially premixed charge compression ignition (PCCI) combustion is a single-stage phenomenon, with combustion shifting towards increasingly premixed combustion phase, resulting in lower in-cylinder temperatures. PCCI leads to relatively lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) simultaneously. To investigate combustion, performance and emission characteristics of the PCCI engine, experiments were performed in a mineral diesel fueled single cylinder research engine, which was equipped with flexible fuel injection equipment (FIE). Effects of fuel injection pressure (FIP) were investigated by changing the FIP from 400 bar to 1000 bar. Experiments were carried out by varying start of main injection (SoMI) timings (from 12° to 24° before top dead center (bTDC)), when using single pilot injection. This experimental study included detailed investigations of particulate characteristics such as particulate number-size distribution using engine exhaust particle sizer (EEPS), particulate bound trace metal analysis using inductively coupled plasma-optical emission spectrometer (ICP-OES), and soot morphology using transmission electron microscopy (TEM). PCCI combustion improved with increasing FIP (up to 700 bar) due to superior fuel atomization however further increasing FIP deteriorated PCCI combustion and engine performance due to intense

  8. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  9. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    Science.gov (United States)

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  10. Air-steam hybrid engine : an alternative to internal combustion.

    Science.gov (United States)

    2011-03-01

    In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...

  11. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  12. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion

    KAUST Repository

    Luong, Minh Bau

    2015-12-01

    The effects of temperature and composition stratifications on the ignition of a lean n-heptane/air mixture at three initial mean temperatures under elevated pressure are investigated using direct numerical simulations (DNSs) with a 58-species reduced mechanism. Two-dimensional DNSs are performed by varying several key parameters: initial mean temperature, T0, and the variance of temperature and equivalence ratio (T\\' and φ\\') with different T-φcorrelations. It is found that for cases with φ\\' only, the overall combustion occurs more quickly and the mean heat release rate (HRR) increases more slowly with increasing φ\\' regardless of T0. For cases with T\\' only, however, the overall combustion is retarded/advanced in time with increasing T\\' for low/high T0 relative to the negative-temperature coefficient (NTC) regime resulting from a longer/shorter overall ignition delay of the mixture. For cases with uncorrelated T-φfields, the mean HRR is more distributed over time compared to the corresponding cases with T\\' or φ\\' only. For negatively-correlated cases, however, the temporal evolution of the overall combustion exhibits quite non-monotonic behavior with increasing T\\' and φ\\' depending on T0. All of these characteristics are found to be primarily related to the 0-D ignition delays of initial mixtures, the relative timescales between 0-D ignition delay and turbulence, and the dominance of the deflagration mode during the ignition. These results suggest that an appropriate combination of T\\' and φ\\' together with a well-prepared T-φdistribution can alleviate an excessive pressure-rise rate (PRR) and control ignition-timing in homogeneous charge compression-ignition (HCCI) combustion. In addition, critical species and reactions for the ignition of n-heptane/air mixture through the whole ignition process are estimated by comparing the temporal evolution of the mean mass fractions of important species with the overall reaction pathways of n

  13. Ignition and combustion of pyrotechnics at low pressures and at temperature extremes

    Directory of Open Access Journals (Sweden)

    Clive Woodley

    2017-06-01

    Full Text Available Rapid and effective ignition of pyrotechnic countermeasure decoy flares is vitally important to the safety of expensive military platforms such as aircraft. QinetiQ is conducting experimental and theoretical research into pyrotechnic countermeasure decoy flares. A key part of this work is the development and application of improved models to increase the understanding of the ignition processes occurring for these flares. These models have been implemented in a two-dimensional computational model and details are described in this paper. Previous work has conducted experiments and validated the computational model at ambient temperature and pressure. More recently the computational model has been validated at pressures down to that equivalent to 40,000 feet but at ambient temperature (∼290 K. This paper describes further experimental work in which the ignition delays of the priming material in inert countermeasure decoy flares were determined for pressures down to 40,000 feet and at temperature extremes of −40 °C and 100 °C. Also included in this paper is a comparison of the measured and predicted ignition delays at low pressures and temperature extremes. The agreement between the predicted and measured ignition delays is acceptable.

  14. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  15. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    OpenAIRE

    Alfredas Rimkus; Mindaugas Melaika; Jonas Matijošius; Šarūnas Mikaliūnas; Saugirdas Pukalskas

    2016-01-01

    In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume) gasoline mixtures and additionally supplied oxygen and hydrogen (HHO) gas mixture (3.6 l/min) in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during comb...

  16. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped

  17. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  18. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  19. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    International Nuclear Information System (INIS)

    Lyon, Elliott; Kuang, Zheng; Dearden, Geoff; Cheng, Hua; Page, Vincent; Shenton, Tom

    2014-01-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion – a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed. (paper)

  20. An Integrated Ignition and Combustion System for Liquid Propellant Micro Propulsion

    Science.gov (United States)

    2008-06-26

    using a microfin electrode array. They demonstrated successful gasification and ignition of the liquid propellant using this concept. The concept has...Transition to Detonation of Stoichiometric Ethylene/Oxygen in Microscale Tubes (with M-H. Wu, M.P. Burke, and S.F. Son) Proceedings of the

  1. Fuel effects on illumination ignition delay and soot lift-off length in diesel combustion

    NARCIS (Netherlands)

    Frijters, P.J.M.; Vallen, R.G.M.; Somers, L.M.T.; Luijten, C.C.M.; Baert, R.S.G.; Skevis, G.

    2007-01-01

    Ignition behavior of different fuels is investigated by recording broadband soot luminosity at high speed (60 kHz).The tested fuels are regular low sulphur EN 590:2004 fuel, EN 14214:2003 (FAME), n-heptane and IDEA (2component surrogate fuel), all with a Cetane Index between 51 and 57. For this an

  2. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  3. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel

    International Nuclear Information System (INIS)

    Lee, Seokhwon; Jeon, Joonho; Park, Sungwook

    2016-01-01

    Highlights: • Pre-blended gasoline-diesel fuel was used with direct injection system. • KIVA-CHEMKIN code modeled dual-fuel fuel spray and combustion processes with discrete multi-component model. • The characteristics of Combustion and emission on pre-blended fuel was investigated with various fuel reactivities. • Optimization of combustion chamber shape improved combustion performance of the gasoline-diesel blended fuel engine. - Abstract: In this study, experiments and numerical simulations were used to improve the fuel efficiency of compression ignition engine using a gasoline-diesel blended fuel and an optimization technology. The blended fuel is directly injected into the cylinder with various blending ratios. Combustion and emission characteristics were investigated to explore the effects of gasoline ratio on fuel blend. The present study showed that the advantages of gasoline-diesel blended fuel, high thermal efficiency and low emission, were maximized using the numerical optimization method. The ignition delay and maximum pressure rise rate increased with the proportion of gasoline. As the gasoline fraction increased, the combustion duration and the indicated mean effective pressure decreased. The homogeneity of the fuel-air mixture was improved due to longer ignition delay. Soot emission was significantly reduced up to 90% compared to that of conventional diesel. The nitrogen oxides emissions of the blended fuel increased slightly when the start of injection was retarded toward top dead center. For the numerical study, KIVA-CHEMKIN multi-dimensional CFD code was used to model the combustion and emission characteristics of gasoline-diesel blended fuel. The micro genetic algorithm coupled with the KIVA-CHEMKIN code were used to optimize the combustion chamber shape and operating conditions to improve the combustion performance of the blended fuel engine. The optimized chamber geometry enhanced the fuel efficiency, for a level of nitrogen oxides

  4. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  5. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  6. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  7. Diagnostics for Combustion and Ignition Enhancement Using the Non-Equilibrium Plasma

    National Research Council Canada - National Science Library

    Ju, Yiguang; Ombrello, Timothy; Won, Sanghee

    2008-01-01

    .... OH concentrations, O3 and O(1D) emissions, temperature distributions in plasma assisted combustion were measured by using the planar laser induced fluorescence, emission spectroscopy, and Rayleigh scattering...

  8. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.; Sim, Jaeheon; Elwardani, Ahmed Elsaid; Jaasim, Mohammed; Viollet, Yoann; Chang, Junseok; Amer, Amer; Im, Hong G.

    2016-01-01

    . An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best

  9. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.; Sim, Jaeheon; Elwardani, Ahmed Elsaid; Jaasim, Mohammed; Viollet, Yoann; Chang, Junseok; Amer, Amer A.; Im, Hong G.

    2016-01-01

    identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons

  10. Experimental studies of thermal preparation of internal combustion engine

    Science.gov (United States)

    Karnaukhov, N. N.; Merdanov, Sh M.; V, Konev V.; Borodin, D. M.

    2018-05-01

    In conditions of autonomous functioning of road construction machines, it becomes necessary to use its internal sources. This can be done by using a heat recovery system of an internal combustion engine (ICE). For this purpose, it is proposed to use heat accumulators that accumulate heat of the internal combustion engine during the operation of the machine. Experimental studies have been carried out to evaluate the efficiency of using the proposed pre-start thermal preparation system, which combines a regular system based on liquid diesel fuel heaters and an ICE heat recovery system. As a result, the stages of operation of the preheating thermal preparation system, mathematical models and the dependence of the temperature change of the antifreeze at the exit from the internal combustion engine on the warm-up time are determined.

  11. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy

    International Nuclear Information System (INIS)

    Das, Pranab; Subbarao, P.M.V.; Subrahmanyam, J.P.

    2015-01-01

    Highlights: • A new dual injection concept is developed by minimum geometry modification. • The occurrence of combustion parameters strongly depend on main injection timing. • At higher load, premixed equivalence ratio dominates over main injection timing. • Retarded of main injection timing tends to retard combustion phasing. • Slightly retarded main injection timing is recommended to avoid intense knocking. - Abstract: Homogeneous charge compression ignition combustion of diesel fuel is implemented using a novel dual injection strategy. A new experimental technique is developed to modify a single cylinder direct injection diesel engine to run on homogeneous combustion mode. Effect of main injection timing is investigated covering a range from 26 to 8 crank angle degrees before top dead center with an interval of 3°. Retarded main injection timing is identified as a control strategy for delaying combustion phasing and a means of controlled combustion phasing of direct injection homogeneous charge compression ignition combustion. Two load conditions were investigated and it was observed that at higher load, start of combustion depends more on fuel air equivalence ratio than main injection timing, whereas at low load, it significantly varies with varying main injection timing. Significant improvements in smoke and oxides of nitrogen emissions are observed when compared with the baseline conventional combustion. By studying different combustion parameters, it is observed that there is an improvement in performance and emissions with marginal loss in thermal efficiency when the main injection timing is 20° before top dead center. This is identified as the optimum main injection timing for such homogeneous combustion under the same operating condition

  12. OPTIMIZING IGNITION AND COMBUSTION OF FUELS TO THE NAVAL STEAM GENERATORS

    Directory of Open Access Journals (Sweden)

    Corneliu MOROIANU

    2013-05-01

    Full Text Available The continuous damage of the used fuel quality, of its dispersion due to the increasingviscosity, make necessary the volume expansion and the rise of the e electric spark power used at ignition. Asimilar situation appears to the transition of the generator operation from the marine Diesel heavy fuel to theresidues of water-fuel mixture. So, it feels like using an ignition system with high specific energy and power ableto perform the starting and burning of the fuels mentioned above. Such a system is that which uses a lowtemperature plasma jet. Its use involves obtaining a high temperature area round about the jet, with a highdischarge power, extending the possibility of obtaining a constant burning of different concentration (densitymixtures. Besides the action of the temperature of the air-fuel mixture, the plasma jet raises the rate of oxidationreaction as a result of appearance of lot number of active centers such as loaded molecules, atoms, ions, freeradicals

  13. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    Science.gov (United States)

    2016-10-05

    R and Pouvesle J M 2009 Experimental study of a compact nanosecond plasma gun Plasma Processes and Polymers 6 795—802 [11] Heinlin J, Morfill G...radially symmetrical geometry. The thickness of the plasma layer in the direction perpendicular to the dielectric plane is about 1 mm. The central coaxial ...Positive and negative polarity discharge at elevated pres- sures Discharge in coaxial geometry has been developed for plasma assisted ignition at high

  14. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  15. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine

    International Nuclear Information System (INIS)

    Ogunkoya, Dolanimi; Fang, Tiegang

    2015-01-01

    Highlights: • Renewable biomass to liquid (BTL) fuel was tested in a direct injection diesel engine. • Engine performance, in-cylinder pressure, and exhaust emissions were measured. • BTL fuel reduces pollutant emission for most conditions compared with diesel and biodiesel. • BTL fuel leads to high thermal efficiency and lower fuel consumption compared with diesel and biodiesel. - Abstract: In this work, the effects of diesel, biodiesel and biomass to liquid (BTL) fuels are investigated in a single-cylinder diesel engine at a fixed speed (2000 rpm) and three engine loads corresponding to 0 bar, 1.26 bar and 3.77 bar brake mean effective pressure (BMEP). The engine performance, in-cylinder combustion, and exhaust emissions were measured. Results show an increase in indicated work for BTL and biodiesel at 1.26 bar and 3.77 bar BMEP when compared to diesel but a decrease at 0 bar. Lower mechanical efficiency was observed for BTL and biodiesel at 1.26 bar BMEP but all three fuels had roughly the same mechanical efficiency at 3.77 bar BMEP. BTL was found to have the lowest brake specific fuel consumption (BSFC) and the highest brake thermal efficiency (BTE) among the three fuels tested. Combustion profiles for the three fuels were observed to vary depending on the engine load. Biodiesel was seen to have the shortest ignition delay among the three fuels regardless of engine loads. Diesel had the longest ignition delay at 0 bar and 3.77 bar BMEP but had the same ignition delay as BTL at 1.26 bar BMEP. At 1.26 bar and 3.77 bar BMEP, BTL had the lowest HC emissions but highest HC emissions at no load conditions when compared to biodiesel and diesel. When compared to diesel and biodiesel BTL had lower CO and CO 2 emissions. At 0 bar and 1.26 bar BMEP, BTL had higher NOx emissions than diesel fuel but lower NOx than biodiesel at no load conditions. At the highest engine load tested, NOx emissions were observed to be highest for diesel fuel but lowest for BTL. At 1

  16. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Science.gov (United States)

    2010-10-01

    ... and vehicles with certain electronic equipment when transported by aircraft or vessel. When an... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles, mechanical...

  17. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  18. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  19. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  20. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    International Nuclear Information System (INIS)

    Shehata, M.S.

    2010-01-01

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the sours of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio γ(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating γ(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio γ(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and LPG due to high

  1. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, M.S. [Mechanical Engineering Technology Department, Higher Institute of Technology, Banha University, 4Zagalol Street, Benha, Galubia 1235 Z (Egypt)

    2010-12-15

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the source of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio {gamma}(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating {gamma}(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio {gamma}(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and

  2. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  3. Bulkhead insert for an internal combustion engine

    Science.gov (United States)

    Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.; Thibault, Mark W.; Ervin, James Douglas; Boileau, James Maurice; McKeough, Bryan

    2017-08-01

    An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions define at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.

  4. 7th international symposium on internal combustion diagnostics. Proceedings; 7. Internationales Symposium fuer Verbrennungsdiagnostik. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At one time combustion pressure indicating was the ''trigger'' for this symposium, and today it still serves as the basis for continued investigation of combustion phenomena. It now finds application throughout the development process, as more sophisticated analysis of conventional signals is possible. Understanding of localized combustion phenomena is substantially simplified by means of optical diagnostic methods, the application of which has reached a certain level of standardization. The presentations will cover specific topics including fuel spray analysis, ignition events and information about gas mixtures. The comparison and combination of results from measurement and simulation shed light on the complex processes in the combustion chamber. What's more, the linkage of two complementary methods offers substantial cost savings through reductions in test hardware and shorter development times. Focused application of all of the available tools allows us better to understand combustion processes, recognize the influential parameters and derive control algorithms. The latter are subsequently to be found in engines that fulfill both regulatory requirements and customer expectations. So it is that the symposium captures the current state of the art in combustion diagnostics through a combination of indicating, optical diagnostics and simulation, and offers both the methodology expert and the engine developer the ideal platform for discussion of today's issues - and to form their own opinions on them. Anyone wanting to keep up to date in this continuously developing and ever more complex area of activity certainly can't afford to miss our symposium. (orig.)

  5. Prototype testing and analysis of a novel internal combustion linear generator integrated power system

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhaoping; Chang, Siqin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2010-04-15

    A novel four-stroke free-piston engine equipped with a linear electric generator (namely internal combustion linear generator integrated power system) is proposed in this paper to achieve efficient energy conversion from fuel to electricity. Unique features of the novel power system are presented and their effects on the continuous running are discussed, along with potential advantages and disadvantages compared to conventional engines. A single cylinder, gasoline and spark ignition prototype is fabricated with reference to the geometric and control parameters of an existing conventional four-stroke engine. Stable running of the prototype is realized, and a 2.2 kW average output power with the generating efficiency of 32% has been obtained up to now. The feasibility and performance of the proposed design are verified. Detailed testing results from the continuous running prototype are analyzed in this paper for giving insight into the performance and dynamic behaviors of the novel power system. (author)

  6. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla

    2009-01-01

    Full Text Available Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’ exhaust pipes. This work also considers how the simulation must be made, based on the previous exploration. The results (presented as e- quations in this first paper show the great influence exerted by pressure wave movement on flow through the engine and there- fore on its final performance.

  7. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, M. A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  8. Experimental investigations on controlled auto-ignition combustion in a four-stroke gasoline engine

    OpenAIRE

    Oakley, Aaron John

    2001-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The effects of air and exhaust gas dilution on the CAI combustion of a range of fuels including three gasoline compositions, four primary reference fuels, and two alcohols are experimentally investigated using a single cylinder research engine. Two of the three gasolines tested are manufactured from standard gasoline during engine operation by a novel fuel system, designed to improve the per...

  9. Powertrain sizing of electrically supercharged internal combustion engine vehicles

    NARCIS (Netherlands)

    Murgovski, N.; Marinkov, S.; Hilgersom, D.; de Jager, B.; Steinbuch, M.; Sjöberg, J.

    2015-01-01

    We assess the concept of electrically supercharged internal combustion engines, where the supercharger, consisting of a compressor and an electric motor, draws electric power from a buffer (a battery or a supercapacitor). In particular, we investigate the scenario of downsizing the engine, while

  10. Results of measurements of emission from internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Jovanovska, Vangelica

    1999-01-01

    A mathematical model for solving the emission from internal combustion engines on the cross roads are made. The exhausted pipes from vehicles are substituted with a pipe in a centre of the cross road. This model is proved with measurement made on vehicles in the city of Bitola (Macedonia). (Author)

  11. Carbon/Carbon Pistons for Internal Combustion Engines

    Science.gov (United States)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  12. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal

    2017-04-21

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  13. Visualizing ignition and combustion of methanol mixtures in a diesel engine; Methanol funmu no glow chakka to nensho no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Inomoto, Y; Harada, T; Kusaka, J; Daisho, Y; Kihara, R; Saito, T [Waseda University, Tokyo (Japan)

    1997-10-01

    A glow-assisted ignition system tends to suffer from poor ignitability and slow flame propagation at low load in a direct-injection diesel engine fueled with methanol. To investigate the ignition process and improve such disadvantages, methanol sprays, their ignition and flames were visualized at high pressures and temperatures using a modified two-stroke engine. The results show that parameters influencing ignition, the location of a glow-plug, swirl level, pressure and temperature are important. In addition, a full kinetics calculation was conducted to predict the delay of methanol mixture ignition by taking into account 39 chemical species and 157 elementary reactions. 3 refs., 9 figs.

  14. A Phenomenological Model for Prediction Auto-Ignition and Soot Formation of Turbulent Diffusion Combustion in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Qinghui Zhou

    2011-06-01

    Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.

  15. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  16. Fuels for internal-combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    1925-10-23

    To reduce knocking in internal-conbustion engines, the fuel is mixed with a small quantity, for instance 10 percent, of the hydrocarbon obtained by extracting with liquid sulfur dioxide hydrocarbon material, such as mineral oil fractions, coal tar and lignite tar distillates of higher boiling point, for example distillates boiling between 150 and 300/sup 0/C.

  17. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  18. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  19. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  20. The production of hydrogen through the uncatalyzed partial oxidation of methane in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ghazi A.; Wierzba, I. [Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary (Canada)

    2008-04-15

    The thermodynamic and kinetic limitations of the uncatalyzed partial oxidation of methane for the production of synthesis gas, which is made up of mostly hydrogen and carbon monoxide in a variety of proportions, are reviewed. It is suggested that such processes can be made to proceed successfully in a conventional internal combustion engine when operated on excessively rich mixtures of methane and oxygenated air. This is achieved while simultaneously producing power and regenerative exhaust gas heating. Experimental results are described that show a dual fuel engine of the compression ignition type with pilot liquid fuel injection can be operated on excessively rich mixtures of methane and air supplemented with oxygen gas to produce hydrogen rich gas with high methane conversion rates. Similarly, a spark ignition engine was reported to be equally capable of such production and performance. It is shown that there are viable prospects for the simultaneous production of synthesis gas in engines with efficient useful mechanical power and exhaust gas regenerative heating. (author)

  1. HYDROGEN USE IN INTERNAL COMBUSTION ENGINE:

    OpenAIRE

    Ciniviz, Murat

    2012-01-01

    Fast depletion of fossil fuels is urgently demanding a carry out work for research to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms. The use of the hydrogen as fuel in the internal combusti...

  2. Combustion characteristics of a turbocharged DI compression ignition engine fueled wth petroleum diesel fuels and biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2007-04-15

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO{sub x} increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO{sub x} and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine. (author)

  3. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  4. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  5. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    Science.gov (United States)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  6. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  7. Experimental investigation of performance, exhaust emission and combustion parameters of stationary compression ignition engine using ethanol fumigation in dual fuel mode

    International Nuclear Information System (INIS)

    Jamuwa, D.K.; Sharma, D.; Soni, S.L.

    2016-01-01

    Highlights: • Potential of renewable fuels as diesel replacement is being emphasized. • Effect of ethanol fumigation on the performance of diesel engine is investigated. • NOx, CO_2 and smoke decreases with simultaneous increase in HC and CO. • Increase in ignition delay with decrease in combustion duration for ethanol substitution observed. - Abstract: Dwindling reserves and steeply increasing prices of the fossil-fuels, concern over climatic change due to release of anthropogenic greenhouse gases and the strict environmental regulations have motivated the researchers for the search for renewable alternative fuel that has clean burning characteristics and may be produced indigenously. Alcohols, being oxygenated fuel improve the combustion and reduce greenhouse gas emissions, thus enhancing agrarian economies and encouraging national economy as a whole. The objective of this paper is to investigate the thermal performance, exhaust emissions and combustion behaviour of small capacity compression ignition engine using fumigated ethanol. Fumigated ethanol at different flow rates is supplied to the cylinder during suction with the help of a simplified low cost ethanol fuelling system. With ethanol fumigation, brake thermal efficiency decreased upto 11.2% at low loads due to deteriorated combustion, whereas improved combustion increased efficiency up to 6% at higher loads, as compared to pure diesel. Maximum reduction of 22%, 41% and 27% respectively in nitrogen oxide, smoke and carbon-di-oxide emissions with simultaneous increase in hydrocarbon and carbon-mono-oxide emissions upto maximum of 144% and 139% respectively for different rates of ethanol fumigation have been observed, when compared to pure diesel operation. This is due to the changes in physico-chemical properties of air fuel mixture, viz combustion temperature, oxygen concentration, latent heat of vaporisation, fuel distribution, cetane number and ignition delay, that occurred with addition of

  8. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  9. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  10. Fuel injection system for internal combustion engines. Kraftstoffeinspritzsystem fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, U.

    1990-09-13

    A fuel injection system for an internal combustion engine is provided with a fuel supply line (13) and at least one electromagnetically actuated fuel injection valve (14) for apportioning a quantity of fuel for injection. A connection muzzle (24) coming from the valve body (23) juts into an opening (22) in the suction pipe (21) of the internal combustion engine. The end of the injection valve opposite the connecting muzzle (24) is connected with the fuel supply line via a fuel entry. The valve body (23) is enclosed by a casing (25) in order to provide the conditions required for a warm start. An annulus (31) extending over a large part of the axial length of the valve remains between the casing and the valve body (23). The annulus (31) communicates with the fuel flow through the fuel supply line (13) via an afflux and an efflux opening (32, 33) (Fig. 1).

  11. Minimal algorithm for running an internal combustion engine

    Science.gov (United States)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  12. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  13. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  14. DESIGNING AND PROTOTYPING OF AN ALTERNATIVE ELLIPTIC INTERNAL COMBUSTION ENGINE

    OpenAIRE

    AKSOY, Nadir; İÇİNGÜR, Yakup

    2010-01-01

    ABSTRACTIn the conventional internal combustion engines, the elements of linear movement cause the friction power to increase the manufacturing economy to deteriorate and also cause vibration. The diameter of intake valves, which is smaller than the diameter of the cylinder, causes the volumetric efficiency to decrease. In the two stroke engines, in which the number of work per cycle is increased, power output per unit volume (kW/liter) is higher; however, specific fuel consumption decreases ...

  15. Thermal Loss Determination for a Small Internal Combustion Engine

    Science.gov (United States)

    2014-03-27

    an engine driven compressor (supercharger) or by means of an exhaust turbine driven compressor (turbocharger). The compressed air has a higher density...low and high adjustment screws were screwed in (leaned) or out (enrich) as needed to bring the air /fuel mixture closer to stoichiometric conditions...THERMAL LOSS DETERMINATION FOR A SMALL INTERNAL COMBUSTION ENGINE THESIS Joshua A. Rittenhouse, Captain, USAF AFIT-ENY-14-M-41 DEPARTMENT OF THE AIR

  16. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  17. Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering college, Avadi, Chennai (India); Saravanan, N. [ERC Engines, Tata Motors, Pimpri, Pune (India); Nagarajan, G. [Department of Mechanical Engineering, Anna University, Chennai (India); Vedaraman, N. [Chemical Engineering Division, Central Leather Research Institute, Adyar, Chennai (India)

    2010-08-15

    Several research works have been carried out on biodiesel combustion, performance and emissions till today. But very few studies have been made about the chemistry of biodiesel that affects the diesel engine operation. Biodiesel is derived from vegetable oil or animal fats, which comprises of several fatty acids with different chain length and bonding. The present work focuses on the effect of biodiesel molecular weight, structure (Cis and Trans), and the number of double bonds on the diesel engine operation characteristics. Three types of biodiesel with different molecular weight and number of double bond were selected for the experimental studies. The biodiesels were prepared and analyzed for fuel properties according to the standards. A constant speed diesel engine, which develops 4.4 kW of power, was run with biodiesels and its performance was compared with diesel fuel. The results show that Linseed oil methyl ester with high linolenic (unsaturated fatty acid ester) does not suit best for diesel engine due to high oxides of nitrogen emission and low thermal efficiency. (author)

  18. 7th international symposium on internal combustion diagnostics. Proceedings; 7. Internationales Symposium fuer Verbrennungsdiagnostik. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At one time combustion pressure indicating was the ''trigger'' for this symposium, and today it still serves as the basis for continued investigation of combustion phenomena. It now finds application throughout the development process, as more sophisticated analysis of conventional signals is possible. Understanding of localized combustion phenomena is substantially simplified by means of optical diagnostic methods, the application of which has reached a certain level of standardization. The presentations will cover specific topics including fuel spray analysis, ignition events and information about gas mixtures. The comparison and combination of results from measurement and simulation shed light on the complex processes in the combustion chamber. What's more, the linkage of two complementary methods offers substantial cost savings through reductions in test hardware and shorter development times. Focused application of all of the available tools allows us better to understand combustion processes, recognize the influential parameters and derive control algorithms. The latter are subsequently to be found in engines that fulfill both regulatory requirements and customer expectations. So it is that the symposium captures the current state of the art in combustion diagnostics through a combination of indicating, optical diagnostics and simulation, and offers both the methodology expert and the engine developer the ideal platform for discussion of today's issues - and to form their own opinions on them. Anyone wanting to keep up to date in this continuously developing and ever more complex area of activity certainly can't afford to miss our symposium. (orig.)

  19. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  20. Self adaptive internal combustion engine control for hydrogen mixtures using piezoelectric transducers for dynamic cylinder pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene

    2004-07-01

    Hydrogen internal combustion engine research at the Hydrogen Research Institute includes the following infrastructure: a 20 square metre test cell, an engine preparation room, a 150 hp dynamometer, exhaust gas analysers and a hydrogen supply. The goal of the research is to develop internal combustion engine technologies that can use hydrogen as a fuel without knocking, backfires, excessive engine wear, and with low emissions. As well as hydrogen, fuels such as biogas are also investigated. Technologies under investigation include adaptive control algorithms, as well as advanced sensors and actuators. The latter include piezolelectrics, optical fibres, nitrogen oxide detectors, and chemical composition detectors. Developments include microprocessor-controlled injection and ignition control systems for both single cylinder and multicylinder engines. Research on the influence of fuel composition on best ignition timing is presented. There is also dynamic cylinder pressure monitoring to prevent knocking make engine state assessments and perform engine calibration. Piezoelectric cylinder pressure sensors are employed, either integrated with the spark plugs, or stand-alone, inserted through separate holes through the cylinder head. tabs, figs.

  1. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    Directory of Open Access Journals (Sweden)

    Alfredas Rimkus

    2016-09-01

    Full Text Available In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume gasoline mixtures and additionally supplied oxygen and hydrogen (HHO gas mixture (3.6 l/min in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during combustion phase and decreases effective specific fuel consumption. Buthanol addition decreases the rate of heat release, the combustion temperature and pressure are lower which have an influence on lower nitrous oxide (NOx emission in exhaust gases. Buthanol lowers hydrocarbon (HC formation, but it increases carbon monoxide (CO concentration and fuel consumption. Combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced buthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved when engine is working with optimal spark timing, as it would work on gasoline fuel.

  2. Large-eddy simulations of turbulent flows in internal combustion engines

    Science.gov (United States)

    Banaeizadeh, Araz

    The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and

  3. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  4. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  5. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  6. 76 FR 12863 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2011-03-09

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... combustion engines. The final rule was published on August 20, 2010. This direct final action amends certain... Emission Standards for Hazardous Air Pollutant for Stationary Reciprocating Internal Combustion Engines...

  7. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  8. Biogas utilization as flammable for internal combustion engine

    International Nuclear Information System (INIS)

    Cardenas, H.

    1995-01-01

    In this work the energetic potential stored in form of generated biogas of organic industrial wastes treatment is analyzed. Biogas utilization as flammable at internal combustion engine coupled to electrical energy generating is studied in the Wastewater Treatment Plant of Bucaramanga city (Colombia). This Plant was designed for 160.000 habitants treatment capacity, 1300 m3/h wealth, 170 BDO/m3 residues concentration and 87% process efficiency. The plant generate 2.000 m3/d of biogas. In laboratory trials was worked with biogas originating from Treatment Plant, both without purifying and purified, and the obtained results were compared with both yields determined with 86-octanes gasoline and natural gas. The analysis of pollutant by-products generated in combustion process as leak gases, present corrosive compounds and not desirable. elements in biogas composition are included

  9. Holographic aids for internal combustion engine flow studies

    Science.gov (United States)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  10. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  11. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  12. Computation and Analysis of EGR Mixing in Internal Combustion Engine Manifolds

    OpenAIRE

    Sakowitz, Alexander

    2013-01-01

    This thesis deals with turbulent mixing processes occurring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the fresh intake air, reducing the oxygen con- centration of the combustion gas and thus the peak combustion temperatures. This temperature decrease results in a reduction of NOx emissions. When applying EGR...

  13. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Science.gov (United States)

    2010-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers...

  14. Effect of water-containing acetone–butanol–ethanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Li, Yuqiang; Nithyanandan, Karthik; Lee, Timothy H.; Donahue, Robert Michael; Lin, Yilu; Lee, Chia-Fon; Liao, Shengming

    2016-01-01

    Highlights: • Water-containing ABE (acetone–butanol–ethanol) was used an alternative fuel. • Water-containing ABE and gasoline blends were investigated in an SI engine. • Water-containing ABE and gasoline blends can enhance engine torque. • Water-containing ABE and gasoline blends can reduce CO, UHC and NO_x emissions. - Abstract: Bio-butanol has proved to be a promising alternative fuel in recent years; it is typically produced from ABE (acetone–butanol–ethanol) fermentation from non-edible biomass feedstock. The high costs for dehydration and recovery from dilute fermentation broth have so far prohibited bio-butanol’s use in internal combustion engines. There is an interesting in studying the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. However, most previous studies covered the use of water-containing ABE–diesel blends. In addition, previous studies on SI engines fueled with ABE did not consider the effect of water. Therefore, the evaluation of water-containing ABE gasoline blends in a port fuel-injected spark-ignition (SI) engine was carried out in this study. Effect of adding ABE and water into gasoline on combustion, performance and emissions characteristics was investigated by testing gasoline, ABE30, ABE85, ABE29.5W0.5 and ABE29W1 (29 vol.% ABE, 1 vol.% water and 70 vol.% gasoline). In addition, ABE29W1 was compared with gasoline under various equivalence ratios (Φ = 0.83–1.25) and engine loads (3 and 5 bar BMEP). It was found that ABE29W1 generally had higher engine toque (3.1–8.2%) and lower CO (9.8–35.1%), UHC (27.4–78.2%) and NO_x (4.1–39.4%) than those of gasoline. The study indicated that water-containing ABE could be used in SI engines as an alternative fuel with good engine performance and low emissions.

  15. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  16. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  17. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  18. Study of Second Generation Biofuels in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Dhandapani

    2012-07-01

    fuel, vis-a-vis neat diesel fuel (DF). The CO, THC, smoke and TPM emissions were reduced significantly, while NOx emissions were somewhat higher with BD blended fuels compared to neat FT fuel. The reductions in CO, THC, smoke and TPM emissions with BD blends were mainly due to the oxygen content in the BD blended fuel, while the increases in NOx emissions with BD fuels were due to advances in injection timing, higher percentages of fatty acids with double bonds in the carbon chain and higher heat release in the pre-mixed combustion. Secondly, a four-stroke, single-cylinder, naturally-aspirated (NA), direct-injection (DI) diesel engine with 8 BHP at 1500 rpm coupled with water-cooled, eddy current dynamometer was used for the experiments. Ethanol (5% by volume) was injected into the intake manifold by the port injection method with the assistance of a mechanical fuel injection pump. Therefore, the volumetric blending percentages of ethanol, BD and diesel fuels (E:D:JME) are (0:100:0), (5:95:0), (5:75:20), (5:55:40), (5:35:60), (5:15:80) (5:0:95) and (0:0:100) respectively. Ethanol pre-mixed with intake air, assisted in improving combustion in both diesel and the JME blends. The addition of ethanol to high-viscosity Jatropha methyl ester (JME) through port injection is investigated in order to determine its effect on the fuels viscosity and thereby on the diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME was studied in particular. It was found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which in turn, alter the engines operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for up to 25% blending of diesel with biofuels, while

  19. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  20. Laser ignited engines: progress, challenges and prospects.

    Science.gov (United States)

    Dearden, Geoff; Shenton, Tom

    2013-11-04

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

  1. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  2. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  3. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  4. Estimation of a noise level using coarse-grained entropy of experimental time series of internal pressure in a combustion engine

    International Nuclear Information System (INIS)

    Litak, Grzegorz; Taccani, Rodolfo; Radu, Robert; Urbanowicz, Krzysztof; HoIyst, Janusz A.; Wendeker, MirosIaw; Giadrossi, Alessandro

    2005-01-01

    We report our results on non-periodic experimental time series of pressure in a single cylinder spark ignition engine. The experiments were performed for different levels of loading. We estimate the noise level in internal pressure calculating the coarse-grained entropy from variations of maximal pressures in successive cycles. The results show that the dynamics of the combustion is a non-linear multidimensional process mediated by noise. Our results show that so defined level of noise in internal pressure is not monotonous function of loading

  5. Acoustic Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  6. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review

    International Nuclear Information System (INIS)

    Fathi, Morteza; Jahanian, Omid; Shahbakhti, Mahdi

    2017-01-01

    Highlights: • Addressing accuracy-speed compromise of HCCI representation is very important. • Phasing, load, exhaust temperature and emissions are the most important outputs. • Separability between the effects of the inputs on the outputs is of great interest. • Existing actuation systems combining inputs are favorable. • An HCCI controller should be a fast and robust one to become a viable solution. - Abstract: Homogeneous charge compression ignition (HCCI) combustion engines are advantageous in terms of good fuel economy and low levels of soot-nitrogen oxides (NOx) emissions. However, they are accompanied with some intrinsic challenges, the most important of which is the lack of any direct control method for ignition trigger. Thus, implementation of HCCI combustion is in fact a control problem, and an optimized control structure is required for attaining the inherent benefits of HCCI. The control structure consists of a proper representation of engine processes; a suitable selection of state variables; useful and applicable set of inputs, outputs and observers; appropriate fixed or variable set-points for controlled parameters; instrumentations including sensors and actuators; and an applicable control law implemented in a controller. The present paper aims at addressing these issues altogether by introducing HCCI engine control structure in progress and presenting highlights from literature. Research should result in appropriately controlled HCCI engines which can provide desired load at rated speed with acceptable performance and emissions characteristics.

  7. Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets

    International Nuclear Information System (INIS)

    Sen, A.K.; Litak, G.; Finney, C.E.A.; Daw, C.S.; Wagner, R.M.

    2010-01-01

    In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel-air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel-air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel-air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.

  8. Fuel formulation and mixing strategy for rate of heat release control with PCCI combustion

    NARCIS (Netherlands)

    Zegers, R.P.C.; Yu, M.; Luijten, C.C.M.; Dam, N.J.; Baert, R.S.G.; Goey, de L.P.H.

    2009-01-01

    Premixed charge compression ignition (or PCCI) is a new combustion concept that promises very low emissions of nitrogen oxides and of particulate matter by internal combustion engines. In the PCCIcombustion mode fuel, products from previous combustion events and air are mixed and compresseduntil the

  9. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  10. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Science.gov (United States)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  11. Assessment of the Potential Impact of Combustion Research on Internal Combustion Engine Emission and Fuel Consumption

    Science.gov (United States)

    1979-01-01

    A review of the present level of understanding of the basic thermodynamic, fluid dynamic, and chemical kinetic processes which affect the fuel economy and levels of pollutant exhaust products of Diesel, Stratified Charge, and Spark Ignition engines i...

  12. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  13. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  14. Impact of Fuel Type on the Internal Combustion Engine Condition

    Directory of Open Access Journals (Sweden)

    Zdravko Schauperl

    2012-07-01

    Full Text Available The paper studies the influence of liquefied petroleum gas as alternative fuel on the condition of the internal combustion engine. The traffic, energy, economic and ecological influence as well as the types of fuel are studied and analyzed in an unbiased manner, objectively, and in detail, and the obtained results are compared with the condition of the engine of a vehicle powered by the stipulated fuel, petrol Eurosuper 95. The study was carried out on two identical passenger cars with one being fitted with gas installation. The obtained results show that properly installed gas installations in vehicles and the usage of LPG have no significant influence on the driving performances, but they affect significantly the ecological and economic parameters of using passenger cars.

  15. Exhaust gas turbocharger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.; Dommes, W.; Gerwig, W.

    1982-01-21

    The invention aimes at the heat protection of a turbocharger for internal combustion engines. The turbine is feeded with exhaust gas and drives the shaft of a compressor. For resolving this problem a thermal shield has been installed on the backside of the turbine. The shaft is sealed with an elastic gasket ring. This gasket avoids the deposition of dust and dirt. As a consequence of this constructive measure a growth of tinder and oxides can be avoided as well as the deposition of dirt. A constant reflection factor is ensured. The thermal shield can be manufactured of thin sheet with a nickel surface and can fastened with distance pieces on the backside of the turbine case. Furthermore it is possible to use a ceramic heat shield.

  16. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  17. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  18. Multiple fuel supply system for an internal combustion engine

    Science.gov (United States)

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  19. Automatic compression adjusting mechanism for internal combustion engines

    Science.gov (United States)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  20. Internal combustion engines fueled by natural gas-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akansu, S.O.; Kahraman, N. [Erciyes University, Kayseri (Turkey). Engineering Faculty; Dulger, Z. [Kocaeli University (Turkey). Engineering Faculty; Veziroglu, T.N. [University of Miami, Coral Gables, FL (United States). College of Engineering

    2004-11-01

    In this study, a survey of research papers on utilization of natural gas-hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO{sub 2}, and CO emissions decrease with increasing H{sub 2}, but NO{sub x} emissions generally increase. If a catalytic converter is used, NO{sub x} emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H{sub 2} amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using. (author)

  1. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    Science.gov (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  2. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard

    2016-01-01

    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  3. Dynamic estimator for determining operating conditions in an internal combustion engine

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  4. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Science.gov (United States)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  5. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  6. Study of ignition, combustion, and production of harmful substances upon burning solid organic fuel at a test bench with a vortex chamber

    Science.gov (United States)

    Burdukov, A. P.; Chernetskiy, M. Yu.; Dekterev, A. A.; Anufriev, I. S.; Strizhak, P. A.; Greben'kov, P. Yu.

    2016-01-01

    Results of investigation of furnace processes upon burning of pulverized fuel at a test bench with a power of 5 MW are presented. The test bench consists of two stages with tangential air and pulverized coal feed, and it is equipped by a vibrocentrifugal mill and a disintegrator. Such milling devices have an intensive mechanical impact on solid organic fuel, which, in a number of cases, increases the reactivity of ground material. The processes of ignition and stable combustion of a mixture of gas coal and sludge (wastes of concentration plant), as well as Ekibastus coal, ground in the disintegrator, were studied at the test bench. The results of experimental burning demonstrated that preliminary fuel grinding in the disintegrator provides autothermal combustion mode even for hardly inflammable organic fuels. Experimental combustion of biomass, wheat straw with different lignin content (18, 30, 60%) after grinding in the disintegrator, was performed at the test bench in order to determine the possibility of supporting stable autothermal burning. Stable biofuel combustion mode without lighting by highly reactive fuel was achieved in the experiments. The influence of the additive GTS-Powder (L.O.M. Leaders Co., Ltd., Republic of Korea) in the solid and liquid state on reducing sulfur oxide production upon burning Mugun coal was studied. The results of experimental combustion testify that, for an additive concentration from 1 to 15% of the total mass of the burned mixture, the maximum SO2 concentration reduction in ejected gases was not more than 18% with respect to the amount for the case of burning pure coal.

  7. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  8. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  9. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  10. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...

  11. Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.

    2008-01-01

    The development of a zero-dimensional, multi-zone combustion model is presented for predicting the performance and nitric oxide (NO) emissions of a spark ignition (SI) engine. The model is validated against experimental data from a multi-cylinder, four-stroke, turbocharged and aftercooled, SI gas engine running with syngas fuel. This alternative fuel, the combustible part of which consists mainly of CO and H 2 with the rest containing non-combustible gases, has been recently identified as a promising substitute of fossil fuels in view of environmentally friendly engine operation. The basic concept of the model is the division of the burned gas into several distinct zones, unlike the simpler two-zone models, for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. The multi-zone formulation provides the chemical species concentrations gradient existing in the burned zones, as well as the relative contribution of each burned zone to the total in-cylinder NO formation. The burning rate required as input to the model is expressed as a Wiebe function, fitted to experimentally derived burn rates. All model's constants are calibrated at one operating point and then kept unchanged. Zone-resolved combustion related information is obtained, assisting in the understanding of the complex phenomena occurring during combustion in SI engines. Combustion characteristics of the lean-burn gas engine tested are provided for the complete load range, aiding the interpretation of its performance and knocking tendency. Computed NO emissions from the multi-zone model for various values of the engine load (i.e. air-fuel ratios) are presented and found to be in good agreement with the respective experimental ones, providing confidence for the predictive capability of the model. The superiority of the multi-zone model over its two

  12. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  13. STUDIES AND EXPERIMENTAL RESEARCH CONCERNING THE PERFORMANCES OF THE INTERNAL COMBUSTION ENGINE, CONTROLLED OVER THE POWERTRAIN CONTROL MODULE

    Directory of Open Access Journals (Sweden)

    Narcis URICANU

    2012-05-01

    Full Text Available the paper present how can be controlled a road vehicle through a powertrain control module, a type of ECU, programmable ECU (Electronic Control Unit, when we want to increase the performances of the engine, compared with the standard performances of the engine. The programmable ECU is a control system which replaces the ECU from the vehicle and is able to manage, better than the standard ECU, the behaviour of the spark ignition engine on increasing the performances. Sports cars need to obtain the best performances from them engine, the specific regimes at which them must function impose certain limits which will be achieved during the competition. Nowadays the vehicles designers and engineering, working for the production cars, have adopted many solutions from the race cars area, due to the advantage offered by these elements (lightweight materials, fasts responses, high speeds and system like programmable ECU. To obtain more power on the engine, we have to find and applied the best solution concerning the internal combustion processes and the consequences concerning the exhaust. This papers present who can be increased the performances of the spark ignition engine through the air-flow ratio, controlled by the programmable ECU and with the sensors help, like water temperature sensor, intake air temperature sensor, throttle position sensor, lambda sensor

  14. Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyubaek; Jeong, Dongsoo [Engine Research Team, Eco-Machinery Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Gunfeel [Department of Clean Environmental system, University of Science and Technology, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea); Bae, Choongsik [Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-10-15

    The characteristics of controlled auto-ignition (CAI) were investigated with a methane-air mixture and simulated residual gas, that represents internal exhaust gas recirculation (IEGR). Supply systems were additionally installed on the conventional rapid compression machine (RCM), and this modified machine - a rapid intake compression and expansion machine (RICEM) - was able to simulate an intake stroke for the evaluation of controlled auto-ignition with fuel-air mixture. The fuel-air mixture and the simulated residual gas were introduced separately into the combustion chamber through the spool valves. Various IEGR rates and temperatures of the IEGR gas were tested. The initial reaction and the development in controlled auto-ignition combustion were compared with spark-ignited combustion by visualization with a high-speed digital camera. Under the controlled auto-ignition operation, multi-point ignition and faster combustion were observed. With increasing the temperature of IEGR gas, the auto-ignition timing was advanced and burning duration was shortened. The higher rate of IEGR had the same effects on the combustion of the controlled auto-ignition. However, this trend was reversed with more than 47 per cent of IEGR. (author)

  15. Numerical Study of Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion with Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model

    Directory of Open Access Journals (Sweden)

    Amir-Hasan Kakaee

    2018-03-01

    Full Text Available In the current study, a comparative study is performed using Large Eddy Simulation (LES and Reynolds-averaged Navier–Stokes (RANS turbulence models on a natural gas/diesel Reactivity Controlled Compression Ignition (RCCI engine. The numerical results are validated against the available research work in the literature. The RNG (Re-Normalization Group k − ε and dynamic structure models are employed to model turbulent flow for RANS and LES simulations, respectively. Parameters like the premixed natural gas mass fraction, the second start of injection timing (SOI2 of diesel and the engine speed are studied to compare performance of RANS and LES models on combustion and pollutant emissions prediction. The results obtained showed that the LES and RANS model give almost similar predictions of cylinder pressure and heat release rate at lower natural gas mass fractions and late SOI2 timings. However, the LES showed improved capability to predict the natural gas auto-ignition and pollutant emissions prediction compared to RANS model especially at higher natural gas mass fractions.

  16. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  17. Experimental results pertaining to the performance of thermal igniters

    International Nuclear Information System (INIS)

    Carmel, M.K.

    1989-10-01

    This report summarizes the results of various experimental programs regarding the performance of thermal igniters for the deliberate ignition of hydrogen in light water reactors. Experiments involving both premixed combustion and combustion with continuous hydrogen injection are reviewed. Combustion characteristics examined include flammability limits of hydrogen:air and hydrogen:air:steam mixtures, combustion pressure rises, combustion completeness, flame speeds, and heat transfer aspects. Comparisons of igniter type and igniter reliability under simulated reactor accident conditions are included. The results of the research programs provide a broad data base covering nearly all aspects of hydrogen combustion related to the performance of deliberate ignition systems

  18. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  19. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  20. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  1. Recurrence plot for parameters analysing of internal combustion engine

    Science.gov (United States)

    Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.

    2015-11-01

    In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.

  2. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  3. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)

    International Nuclear Information System (INIS)

    Vaja, Iacopo; Gambarotta, Agostino

    2010-01-01

    This paper describes a specific thermodynamic analysis in order to efficiently match a vapour cycle to that of a stationary Internal Combustion Engine (ICE). Three different working fluids are considered to represent the main classes of fluids, with reference to the shape of the vapour lines in the T-s diagram: overhanging, nearly isoentropic and bell shaped. First a parametric analysis is conducted in order to determine optimal evaporating pressures for each fluid. After which three different cycles setups are considered: a simple cycle with the use of only engine exhaust gases as a thermal source, a simple cycle with the use of exhaust gases and engine cooling water and a regenerated cycle. A second law analysis of the cycles is performed, with reference to the available heat sources. This is done in order to determine the best fluid and cycle configuration to be employed, the main parameters of the thermodynamic cycles and the overall efficiency of the combined power system. The analysis demonstrates that a 12% increase in the overall efficiency can be achieved with respect to the engine with no bottoming; nevertheless it has been observed that the Organic Rankine Cycles (ORCs) can recover only a small fraction of the heat released by the engine through the cooling water.

  4. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines participating in the voluntary... I am a manufacturer of stationary SI internal combustion engines participating in the voluntary... internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline...

  5. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn..., and must test their engines as specified in that part. Stationary SI internal combustion engine...

  6. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  7. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  8. Experimental investigation of the fluid dynamic efficiency of a high performance multi-valve internal combustion engine during the intake phase: Influence of valve-valve interference phenomena

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2013-01-01

    Full Text Available The purpose of the present work is the analysis of the fluid dynamic behavior of a high performance internal combustion engine during the intake phase. In particular, a four-valve spark-ignition engine has been characterized at the steady flow rig. Dimensionless discharge coefficients have been used to define the global fluid dynamic efficiency of the intake system, while the Laser Doppler Anemometry (LDA technique has been employed to evaluate the mean flow in the valve curtain area and to characterise the interference phenomena between the two intake valves. The investigation has shown the significant influence of the valve lift on the volumetric efficiency of the intake apparatus. Moreover, the experimental analysis has highlighted that the valve-valve interference phenomena have a relevant impact on the head breathability, on the flow development within the combustion chamber and on the velocity standard deviations.

  9. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-12-23

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-HQ-OAR-2008-0708, FRL-9244-2] RIN 2060-AP36 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... combustion engines and requesting public comment on one issue arising from the final rule. Specifically, EPA...

  10. New type of microengine using internal combustion of hydrogen and oxygen

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Sanders, Remco G.P.; Ma, Kechun; Elwenspoek, Michael Curt

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we

  11. Ignition timing advance in the bi-fuel engine

    Directory of Open Access Journals (Sweden)

    Marek FLEKIEWICZ

    2009-01-01

    Full Text Available The influence of ignition timing on CNG combustion process has been presented in this paper. A 1.6 liter SI engine has been tested in the special program. For selected engine operating conditions, following data were acquired: in cylinder pressure, crank angle, fuel mass consumption and exhaust gases temperatures. For the timing advance correction varying between 0 to 15 deg crank angle, the internal temperature of combustion chamber, as well as the charge combustion ratio and ratio of heat release has been estimated. With the help of the mathematical model, emissions of NO, CO and CO2 were additionally estimated. Obtained results made it possible to compare the influence of ignition timing advance on natural gas combustion in the SI engine. The engine torque and in-cylinder pressure were used for determination of the optimum engine timing advance.

  12. Fundamental test results of a hydraulic free piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, A.; Ito, T. [Toyohashi University of Technology (Japan). Dept. of Mechanical Engineering

    2004-10-01

    The hydraulic free piston internal combustion engine pump that has been constructed and tested in this work is the opposed piston, two-stroke cycle, uniflow scavenging, direct fuel injection, and compression ignition type. The opposed engine pistons reciprocate the hydraulic pump pistons directly and the hydraulic power to be used in the hydraulic motors is generated. The hydraulic pressure generated is substantially constant. The opposed free pistons rest after every gas cycle and hydraulic power is continuously supplied by a hydraulic accumulator during the free pistons' rest. The smaller the hydraulic flow output, the longer the duration of the rest. Every gas cycle is performed under a fixed working condition independent of hydraulic power output. The test results in this work indicate that the number of gas cycles per second of the free piston engine pump is directly proportional to hydraulic flow output. The opposed free pistons operate every 53.2 s when hydraulic flow output is 1.02 cm{sup 3}/s; at that time hydraulic power output is 0.0124 kW. Hydraulic thermal efficiency, the ratio of hydraulic energy produced to fuel energy consumed, has been measured in the range 0.0124 kW to 4.88 kW of hydraulic power output and it has become clear that hydraulic thermal efficiency in this range is constant. The measured value of hydraulic thermal efficiency is 31 per cent. It has been demonstrated that hydraulic thermal efficiency is kept constant even if hydraulic power output is very small. (author)

  13. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  14. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine

    International Nuclear Information System (INIS)

    Rimkus, Alfredas; Žaglinskis, Justas; Rapalis, Paulius; Skačkauskas, Paulius

    2015-01-01

    Highlights: • Researched physical–chemical and performance properties of diesel fuel and BTL blend (85/15 V/V). • BTL additive reduced Brake Specific Fuel Consumption, improved engine efficiency. • Simpler BTL molecular chains and lower C/H ratio reduced CO_2 emission and smokiness. • Higher cetane number of BTL reduced heat release in beginning of combustion and NO_x emission. • Advanced start of fuel injection caused reduced fuel consumption and smokiness, increased NO_x emission. - Abstract: This paper presents the comparable research results of the physical–chemical and direct injection (DI) diesel engine properties of diesel fuel and BTL (biomass-to-liquid) blend (85/15 V/V). The energy, ecological and in-cylinder parameters were analysed under medium engine speed and brake torque load regimes; the start of fuel injection was also adjusted. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that the BTL additive shortened the fuel ignition delay phase, reduced the heat release in the pre-mixed intensive combustion phase, reduced the nitrogen oxide (NO_x) concentration in the engine exhaust gases and reduced the thermal and mechanical load of the crankshaft mechanism. BTL additive reduced the rates of carbon dioxide (CO_2), incompletely burned hydrocarbons (HC) emission and smokiness due to its chemical composition and combustion features. BTL also reduced Brake Specific Fuel Consumption (BSFC, g/kW h) and improved engine efficiency (η_e); however, the volumetric fuel consumption changed due to the lower density of BTL. The start of fuel injection was adjusted for maximum engine efficiency; concomitantly, reductions in the CO_2 concentration, HC concentration and smokiness were achieved. However, the NO_x and thermo-mechanical engine load increased.

  15. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Srinivasan, Kalyan K. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Krishnan, Sundar R. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Som, Sibendu [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Transportation Research

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.

  16. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  17. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  18. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  19. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    Science.gov (United States)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  20. Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng; Liu, Xiaolong

    2014-01-01

    Methanol is a promising alternative fuel for the spark-ignition engines. This paper experimentally investigated the performance of a hydrogen-blended methanol engine at lean and various load conditions. The test was conducted on a four-cylinder commercial spark-ignition engine equipped with an electronically controlled hydrogen port injection system. The test was conducted under a typical city driving speed of 1400 rpm and a constant excess air ratio of 1.20. Two hydrogen volume fractions in the intake of 0 and 3% were adopted to investigate the effect of hydrogen addition on combustion and emissions performance of the methanol engine. The test results showed that brake thermal efficiency was improved after the hydrogen addition. When manifolds absolute pressure increased from about 38 to 83 kPa, brake thermal efficiencies after the hydrogen addition were increased by 6.5% and 4.2%. The addition of hydrogen availed shortening flame development and propagation periods. The peak cylinder temperature was raised whereas cylinder temperature at the exhaust valve opening was decreased after the hydrogen addition. The addition of hydrogen contributed to the dropped hydrocarbon and carbon monoxide. However, nitrogen oxides were slightly raised after the hydrogen enrichment. - Highlights: • Load characteristics of a H 2 -blended methanol engine are experimentally studied. • H 2 addition is more effective on raising engine efficiency at low loads. • Flame development and propagation periods are shortened after H 2 addition. • H 2 enrichment contributes to the smooth operation of the methanol engine. • HC and CO emissions from the methanol engine are reduced after H 2 addition

  1. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  2. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  3. Ignition delay time correlation of fuel blends based on Livengood-Wu description

    KAUST Repository

    Khaled, Fathi; Badra, Jihad; Farooq, Aamir

    2017-01-01

    observed for combustion phasing in homogeneous charge compression ignition (HCCI) predictions between simulations performed with detailed chemistry and calculations using the developed ignition delay correlation.

  4. Combustion Characterization and Ignition Delay Modeling of Low- and High-Cetane Alternative Diesel Fuels in a Marine Diesel Engine

    OpenAIRE

    Petersen, John; Seivwright, Doug; Caton, Patrick; Millsaps, Knox

    2014-01-01

    The article of record as published may be found at http://dx.doi.org/10.1021/ef500565t In support of an ongoing U.S. Navy alternative fuel evaluation program, the combustion characteristics of two very different alternative diesel fuels were evaluated in a direct-injection marine diesel engine across a variety of speeds and loads. The fuels were an algal-based hydrotreated renewable diesel fuel (HRD) with cetane number of ∼75 and a synthetic paraffinic kerosene (SPK) with cetane n...

  5. Experimental investigation of combustion, emissions and thermal balance of secondary butyl alcohol-gasoline blends in a spark ignition engine

    International Nuclear Information System (INIS)

    Yusri, I.M.; Mamat, Rizalman; Azmi, W.H.; Najafi, G.; Sidik, N.A.C.; Awad, Omar I.

    2016-01-01

    Highlights: • 2-Butanol-gasoline blends up to 15% of volume were examined. • Combustion emissions and thermal balance for blended fuel were discussed. • Significant of improvement for energy utilisation by using blended fuels. - Abstract: An experimental investigation of butanol as an alternative fuel was conducted. A four-cylinder, four-stroke gasoline engine was used to investigate the engine combustion emissions and thermal balance characteristics using 2-butanol–gasoline blended fuels at 50% throttle wide open. In this experimental study, the gasoline engine was tested at 2-butanol–gasoline percentage volume ratios of 5:95 (GBu5), 10:90 (GBu10) and 15:85 (GBu15) of gasoline to butanol, respectively. Combustion analysis results showed that 2-butanol–gasoline blends have a lower in-cylinder pressure, rate of pressure rise and rate of heat release. However, as the 2-butanol addition increases in the blended fuels, increasing trends of in-cylinder pressure, rate of pressure rise and rate of heat release are observed, but it is still lower than G100 fuels. Moreover, even 5%, 10% and 15% additions of 2-butanol in the gasoline fuels improve the COV of IMEP by 3.7, 3.46 and 3.26, respectively, which indicates that the presence of 2-butanol stabilises the combustion process. Comparative analysis of the experimental results by exhaust emissions produced an average of 7.1%, 13.7%, and 19.8% lower NO_x for GBu5, GBu10 and GBu15, respectively, over the speed range of 1000–4000 RPM. Other emission contents indicate lower CO and HC but higher CO_2 from 2500 to 4000 RPM for the blended fuels with regard to G100. The thermal balance analysis mainly exhibits an improvement in effective power, cooling energy and exhaust energy by average differences of 3.3%, 0.8% and 2.3% for GBu15 compared with G100.

  6. Impact of ignition temperature on particle size and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles prepared by self-propagated MILD combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Kaliyamoorthy, Venkatesan; Rajan Babu, D., E-mail: drajanbabu@vit.ac.in; Saminathan, Madeswaran

    2016-11-15

    We prepared nanocrystalline CoFe{sub 2}O{sub 4} by changing its ignition temperatures, using moderate and intense low-oxygen dilution (MILD) combustion technique. The effect of ignition temperature on the particle size and its magnetic behavior was investigated by HR-TEM and VSM respectively. We observed a vast change in the structural behavior and the magnetic properties of the prepared samples. X-ray diffraction studies revealed that the resultant samples had single phase with different grain sizes from 23±5 nm to 16±5 nm, which was understood by observing the growth of the grains through heat released from the combustion reaction. FE-SEM analysis showed high porosity with heterogeneous distribution of the pore size based on the adiabatic temperature and EPMA analysis, which confirmed the elemental compositions of the prepared samples. The saturation magnetization values measured at room temperature, employing vibrating sample magnetometer (VSM) decreased gradually from 50 to 34 emu/g when the ignition temperature was increased from 243 °C to 400 °C. Some of Fe ions on the B sites moved periodically to the A sites because of quenching treatment. The presence of Fe{sup 2+} ions in the existing ferrite structure ruled the magnetic behavior of the sample, as confirmed by the Mössbauer analysis. - Highlights: • CoFe{sub 2}O{sub 4} magnetic nanoparticles were prepared by MILD combustion technique. • Structural behavior and magnetic properties were changed by ignition temperature. • Formation of ferrite complex was confirmed by using FT-IR spectroscopy. • FE-SEM image confirmed the combustion nature by exhibiting the pores and voids. • The cationic distributions were investigated by the Mössbauer analysis.

  7. EDWARDS' REFERENCE CYCLE FOR INTERNAL AND EXTERNAL COMBUSTION ENGINES

    OpenAIRE

    A. E. Piir

    2014-01-01

    Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.

  8. Laser ignition of liquid petroleum gas at elevated pressures

    Science.gov (United States)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  9. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    Science.gov (United States)

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.

  10. The individual effects of cetane number, oxygen content or fuel properties on the ignition delay, combustion characteristics, and cyclic variation of a turbocharged CRDI diesel engine – Part 1

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys; Kanapkienė, Irena

    2017-01-01

    Highlights: • Diesel-HRD fuel blends involving ethanol (E) or biodiesel (B) were investigated in a turbocharged CRDI engine. • Improved cetane number of fuel blends ambiguously affected the ignition delay and maximum heat release rate. • Increased fuel-bound oxygen content enhanced combustion, heat release and in-cylinder pressure at 2500 rpm. • Fuel properties almost did not change premixed phase, but affected burn angle MBF 50 and the end of combustion. • Burn angles MBF 50 and MBF 90 were 1.0° and 5.7° CADs shorter when using oxygenated blend OE4 (3.6 wt%) at 2000 rpm. - Abstract: The study deals with the effects made by individual variation of cetane number, fuel-oxygen content, or widely differing properties of diesel-HRD fuel blends involving ethanol (E) or biodiesel (B) on the ignition delay, combustion phenomenon, maximum heat release rate, and the cyclic variation of a turbocharged CRDI diesel engine. The most important control factors one after another operated separately in this study to make a difference. Load characteristics were taken when running with a straight diesel and various (18) diesel-HRD fuel blends at maximum torque mode of 2000 rpm and speeds of 1500 and 2500 rpm to provide correct interpretation of the test results. Then, load (bmep) characteristics were plotted as a function of the relative air-fuel ratio (λ) and the analysis of combustion parameters was conducted for the ‘lambda’ values of λ = 1.30, 1.25 and 1.20, at the respective speeds of 1500, 2000 and 2500 rpm. Analysis of changes in the ignition delay, combustion characteristics, and the cyclic variation of parameters when using fuel blends of both origins was performed on comparative bases with the corresponding values measured with ‘base-line’ blends with CN = 51.2 or zero oxygen content and a straight diesel to reveal the potential developing trends. The enhanced cetane number of oxygenated fuels improved combustion and reduced cyclic variation when

  11. Biomass downdraft gasifier with internal cyclonic combustion chamber: design, construction, and experimental results.

    Science.gov (United States)

    Patil, Krushna; Bhoi, Prakash; Huhnke, Raymond; Bellmer, Danielle

    2011-05-01

    An exploratory downdraft gasifier design with unique biomass pyrolysis and tar cracking mechanism is evolved at Oklahoma State University. This design has an internal separate combustion section where turbulent, swirling high-temperature combustion flows are generated. A series of research trials were conducted using wood shavings as the gasifier feedstock. Maximum tar cracking temperatures were above 1100°C. Average volumetric concentration levels of major combustible components in the product gas were 22% CO and 11% H(2). Hot and cold gas efficiencies were 72% and 66%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Using neuronal nets for modelling and control of internal combustion engines; Der Einsatz neuronaler Netze zur Modellierung, Steuerung und Regelung von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R.; Hafner, M.; Mueller, N.; Schueler, M. [Technische Univ. Darmstadt (Germany). Inst. fuer Regelungstechnik

    1999-07-01

    Design and testing of digital electronic control systems necessitate relatively accurate mathematical models of the static and dynamic characteristics of internal combustion engines. Control variables are injection volume, injection angle, ignition point and several others, which means a large number of characteristic fields and long measuring times in engine test stands. Neuronal nets enable a more compact description than characteristic field grids and are also more easily adaptable in test stand measurements. The contribution describes a particularly favourable local linear radial basis function net (LOLIMOT) and shows how it can be used for modelling the steady-state and dynamic exhaust characteristics of a diesel engine and the dynamic characteristics of an exhaust turbocharger. It also shows how combustion chamber control with adaptive control of the ignition pooint can be designed for a spark ignition engine with the aid of a neuronal net. [German] Entwurf und Test von digitalelektronischen Steuerungen und Regelungen erfordern in zunehmendem Masse relativ genaue mathematische Modelle fuer das statische und dynamische Gesamtverhalten von Verbrennungsmotoren. Ausser den Stellgroessen Einspritzmenge, Einspritzwinkel und Zuendzeitpunkt kommen noch weitere Stellgroessen hinzu. Die Zahl der in modernen Motorsteuerungen zu realisierenden Kennfelder steigt deshalb sehr stark an und damit auch die erforderliche Messzeit an Motorenpruefstaenden. Kuenstliche neuronale Netze bieten nun die Moeglichkeit, mehrdimensionale Kennfelder wesentlich kompakter zu beschreiben als Rasterkennfelder. Sie erlauben ausserdem eine wesentlich bessere Adaption bei Pruefstandsversuchen. Im Beitrag wird ein besonders geeignetes lokal lineares Radial-Basis-Funktions-Netz (LOLIMOT) beschrieben und dessen Anwendung gezeigt zur Modellierung des stationaeren und dynamischen Abgasverhaltens eines Dieselmotors und des dynamischen Verhaltens eines Abgas-Turboladers. Dann wird gezeigt, wie man eine

  13. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  14. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  15. Modifying intake flow to increase EGR tolerance in an Internal Combustion Engine

    Science.gov (United States)

    Rubio, Daniel; Drabo, Mebougna; Puzinauskas, Paul

    2010-11-01

    The worldwide effort to reduce vehicle emissions and increase fuel efficiencies has continuously intensified as the need to improve air quality and reduce fuel consumption becomes more acute. Exhaust gas recirculation (EGR) is a method that has long been employed to reduce combustion temperatures and therefore reduce thermal NOx formation and accommodate higher compression ratios and more optimum combustion phasing for improved efficiency. Generally the effective EGR level as a percent of trapped charge is limited by its affect on combustion stability. Inducing flow structures such as swirl, squish and tumble in the trapped charge have proven to extend this EGR limit in homogeneous charge spark-ignited engines at part load, but this enhancement has not been significantly studied at full loads in such engines. This research explored modifying the intake flow into an engine to create tumble and evaluate its effect at high loads in such engines. This exploration included characterizing the flow on a steady flow bench and quantifying the results using engine dynamometer tests.

  16. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  17. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  18. Banyan latex: a facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route

    International Nuclear Information System (INIS)

    Anil Kumar, M R; Nagaswarupa, H P; Gurushantha, K; Pratapkumar, C; Prashantha, S C; Shashishekar, T R; Anantharaju, K S; Nagabhushana, H; Sharma, S C; Vidya, Y S; Daruka Prasad, B; Vivek Babu, C S; Vishnu Mahesh, K R

    2015-01-01

    MgO nanoparticles (MNPs) were prepared by a solution combustion route using banyan tree (BT) latex and glycine as fuels. The powder x-ray diffraction results indicate the formation of a single cubic phase and the crystallite size obtained from transmission electron microscopy was found to be ∼10–15 nm. Scanning electron microscopy result reveals spherical-shaped particles obtained with BT latex. However, in a chemical route, porous and agglomerated particles were obtained. The energy band gap of MNPs obtained using BT latex and a chemical route were found to be in the range 4.85–5.0 eV. Photoluminescence peaks observed at 473, 514, and 588 nm when excited at 433 nm, which were attributed to surface defects. The enhanced photocatalytic activities of spherical MgO were due to smaller crystallite size, higher surface defects, dye sensitization, and capability to reduce the electron–hole pair recombination. Further, green-synthesized MNPs exhibit superior antifungal activity against various plant pathogens. The present studies demonstrated a green engineering route for the synthesis of multifunctional MNPs using BT latex. (paper)

  19. Researches on direct injection in internal-combustion engines

    Science.gov (United States)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  20. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour

    2017-07-24

    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector\\'s environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.

  1. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Anqi [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Munidhar [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Matusik, Katarzyna E. [Argonne National Lab. (ANL), Argonne, IL (United States); Duke, Daniel J. [Argonne National Lab. (ANL), Argonne, IL (United States); Powell, Christopher F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kastengren, Alan L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  2. Control of internal combustion engines and hybrid engines; Regelung von Verbrennungsmotoren und Hybridantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [TU Darmstadt (Germany). Forschungsgruppe Regelungstechnik und Prozessautomatisierung

    2007-07-15

    In the development of internal combustion engines, there are increasingly rigid specifications for further reduction of consumption, exhaust and noise emissions, better specific performance, lower weight, and good driving characteristics. The contributions in this special issue provide an insight into the many aspects of internal combustion engine and hybrid engine control. The editors of at journal took care to select interesting papers presented at the 3. VDI/VDE-GMA conference AUTOREG 2006. They show how control and mechatronics support the high demands on functionality in motor car engineering. (orig.)

  3. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  4. An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2015-01-01

    Highlights: • H 2 energy share increased from 18% with DDM to 36% with WDM (water injection). • H 2 energy share improved marginally with retarded injection timing mode (RDM). • Energy efficiency increased with increasing amount of H 2 in dual-fuel engine. • NO x emission decreased with water injection and retarded pilot fuel injection. • HC, CO and smoke emissions increased slightly with low temperature combustion. - Abstract: A limited hydrogen (H 2 ) energy share due to knocking is the major hurdle for effective utilization of H 2 in compression ignition (CI) engines under dual-fuel operation. The present study aims at improvement of H 2 energy share in a 7.4 kW direct injection CI engine under dual-fuel mode with two low temperature combustion (LTC) strategies; (i) retarded pilot fuel injection timing and (ii) water injection. Experiments were carried out under conventional strategies of diesel dual-fuel mode (DDM) and B20 dual-fuel mode (BDM); and LTC strategies of retarded injection timing dual-fuel mode (RDM) and water injected dual-fuel mode (WDM). The results explored that the H 2 energy share increased significantly from 18% with conventional DDM to 24, and 36% with RDM, and WDM respectively. The energy efficiency increased with increasing H 2 energy share under dual-fuel operation; however, for a particular energy share of 18% H 2 , it decreased from 34.8% with DDM to 33.7% with BDM, 32.7% with WDM and 29.9% with RDM. At 18% H 2 energy share, oxides of nitrogen emission decreased by 37% with RDM and 32% with WDM as compared to conventional DDM due to reduction of in-cylinder temperature, while it increased slightly about 5% with BDM. It is emerged from the study that water injection technique is the viable option among all other strategies to enhance the H 2 energy share in the engine with a slight penalty of increase in smoke, hydrocarbon, and carbon monoxide emissions

  5. LES/FMDF of turbulent jet ignition in a rapid compression machine

    Science.gov (United States)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  6. Numerical investigation on the combined effects of varying piston bowl geometries and ramp injection rate-shapes on the combustion characteristics of a kerosene-diesel fueled direct injection compression ignition engine

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Zhao, Feiyang; Yu, Wenbin; Mohan, Balaji

    2017-01-01

    Highlights: • Effect of injection rate-shaping on heat-release is significant with less turbulence. • Two peak heat-releases are seen for the shallow-depth re-entrant piston. • Significant combustion phasing occurs with kerosene usage and high turbulence. - Abstract: In this work, the combustion characteristics of a direct injection compression ignition (DICI) engine fueled with kerosene-diesel blends, using different piston bowl geometries together with varying injection rate-shapes were investigated. A total of three combustion bowl geometries, namely the omega combustion chamber (OCC), the shallow-depth combustion chamber (SCC) and the shallow-depth re-entrant combustion chamber (SRCC), were used together with six different ramp injection rate-shapes and pure diesel, kerosene-diesel and pure kerosene fuels. It is seen that the SRCC geometry, which has the shortest throat length, gives the highest turbulence kinetic energy (TKE) and this resulted in two peak heat-releases, with a primary peak heat-release during the premixed combustion phase and a secondary peak heat-release during the mixing-controlled combustion phase. In addition, the SCC geometry gives rather distinct premixed combustion and mixing-controlled combustion phases due to the fact that combustion is predominantly controlled by the injected fuel spray itself because of less turbulence. Also, when kerosene is used in place of diesel, the heat-release during the premixed combustion phase increases and diminishes during the mixing-controlled and late combustion phases. It is interesting to note that the effect of injection rate-shaping on the heat-release rate is more obvious for bowl geometries that generate less TKE. Moreover, bowl geometries that generate higher TKEs as well as fuels with lower viscosities generally give lower carbon monoxide (CO) emissions and higher nitrogen oxide (NO) emissions. More importantly, it is possible to achieve low NO and CO emissions simultaneously by using the

  7. Laser-induced multi-point ignition for enabling high-performance engines

    KAUST Repository

    Chung, Suk-Ho

    2015-01-01

    Various multi-point laser-induced ignition techniques were reviewed, which adopted conical cavity and prechamber configurations. Up to five-point ignitions have been achieved with significant reduction in combustion duration, demonstrating potential increase in combustion system efficiency.

  8. Technical evaluation of vehicle ignition systems: conduct differences between a high energy capacitive system and a standard inductive system

    Directory of Open Access Journals (Sweden)

    Bruno Santos Goulart

    2014-09-01

    Full Text Available An efficient combustion depends on many factors, such as injection, turbulence and ignition characteristics. With the improvement of internal combustion engines the turbulence intensity and internal pressure have risen, demanding more efficient and powerful ignition systems. In direct injection engines, the stratified charge resultant from the wall/air-guided or spray-guided system requires even more energy. The Paschen’s law shows that spark plug gap and mixture density are proportional to the dielectric rupture voltage. It is known that larger spark gaps promote higher efficiency in the internal combustion engines, since the mixture reaction rate rises proportionally. However, the ignition system must be adequate to the imposed gap, not only on energy, but also on voltage and spark duration. For the reported study in this work two test benches were built: a standard inductive ignition system and a capacitive discharge high energy ignition system, with variable voltage and capacitance. The influence of the important parameters energy and ignition voltage on the spark duration, as well as the electrode gap and shape were analyzed. It was also investigated the utilization of a coil with lower resistance and inductance values, as well as spark plugs with and without internal resistances.

  9. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    Science.gov (United States)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine

  10. Cylinder head seal for piston engines especially internal combustion engines. Zylinderkopfdichtung fuer Hubkolbenmaschinen, insbesondere Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.; Winter, J.

    1991-01-17

    The invention concerns a cylinder head seal for reciprocating piston engines especially internal combustion engines and preferentially those with cylinder sleeves. With performances of internal combustion engines encreasing all the time it is becoming more and more difficult to seal the cylinder heat. The invention proposes a ring seal whose sides are plastically deformed when the cylinder headed screws are tightened. The inner deformations of the cylinder head resulting from the pressure forces inside the cylinder are compensated by means of elastic spring action of the combustion chamber sealing ring. The dimension of land, groove and sides are matched in such a way as to prevent any seal squeezing during plastification which would result in a deformation of the cylinder sleeve. The ring can therefore be set directly into the centering of the cylinder sleeve. Separate centering devices are not required.

  11. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  12. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  13. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  14. LES of Internal Combustion Engine Flows Using Cartesian Overset Grids

    Directory of Open Access Journals (Sweden)

    Falkenstein Tobias

    2017-11-01

    Full Text Available Accurate computations of turbulent flows using the Large-Eddy Simulation (LES technique with an appropriate SubFilter Scale (SFS model require low artificial dissipation such that the physical energy cascade process is not perturbed by numerical artifacts. To realize this in practical simulations, energy-conserving numerical schemes and high-quality computational grids are needed. If unstructured meshes are used, the latter requirement often makes grid generation for complex geometries very difficult. Structured Cartesian grids offer the advantage that uncertainties in mesh quality are reduced to choosing appropriate resolution. However, two intrinsic challenges of the structured approach are local mesh refinement and representation of complex geometries. In this work, the effectiveness of numerical methods which can be expected to reduce both drawbacks is assessed in engine flows, using a multi-physics inhouse code. The overset grid approach is utilized to arbitrarily combine grid patches of different spacing to a flow domain of complex shape during mesh generation. Walls are handled by an Immersed Boundary (IB method, which is combined with a wall function to treat underresolved boundary layers. A statistically stationary Spark Ignition (SI engine port flow is simulated at Reynolds numbers typical for engine operation. Good agreement of computed and measured integral flow quantities like overall pressure loss and tumble number is found. A comparison of simulated velocity fields to Particle Image Velocimetry (PIV measurement data concludes the validation of the enhanced numerical framework for both mean velocity and turbulent fluctuations. The performance of two SFS models, the dynamic Smagorinsky model with Lagrangian averaging along pathlines and the coherent structure model, is tested on different grids. Sensitivity of pressure loss and tumble ratio to the wall treatment and mesh refinement is presented. It is shown that increased wall

  15. Optical Engines as Representative Tools in the Development of New Combustion Engine Concepts Moteurs transparents comme outils représentatifs dans le développement de nouveaux concepts des moteurs à combustion interne

    Directory of Open Access Journals (Sweden)

    Kashdan J.

    2011-11-01

    Full Text Available Single cylinder optical engines are used for Internal Combustion (IC engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline Homogeneous Charge Compression Ignition (HCCI and Diesel Low Temperature Combustion (LTC. In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study. The objective was to investigate the principal differences between optical and all-metal engines and understand how these differences ultimately affect mixing, combustion and emissions formation processes. Experimental results reveal the significant impact of differences in combustion chamber wall temperatures between optical and standard engine piston bowls on combustion phasing and engine-out emissions. Quantitative measurements of piston wall temperatures using a laser-induced phosphorescence technique were performed which allowed the subsequent definition of appropriate engine operating strategies so as to compensate for differences in heat transfer properties. Furthermore, differences in combustion chamber geometry were also studied. Geometrical differences can arise as a result of dynamic (compressive/tensile and thermal loading of the extended piston-liner assembly on the optical engine, potentially leading to changes in the effective Compression Ratio. In addition, intake charge dilution in optical engines is often achieved via the use of simulated Exhaust Gas Recirculation

  16. Internal combustion engines in stationary installations for the efficient use of energy. VDI-meeting at Stuttart

    Energy Technology Data Exchange (ETDEWEB)

    Titl, A

    1976-11-01

    The efficient use of stationary internal combustion engines for energy supply is discussed: the state of technology and the scientific significance of internal combustion engines; thermal power coupling with unit-type thermal power plants which supply current as well as heat; and operational experience with unit-type thermal power plants for living districts, sport centers, industries etc.

  17. Combustion research in the Internal Fluid Mechanics Division

    Science.gov (United States)

    Mularz, Edward J.

    1986-01-01

    The goal of this research is to bring computational fluid dynamics to a state of practical application for the aircraft engine industry. The approach is to have a strongly integrated computational and experimental program for all the disciplines associated with the gas turbine and other aeropropulsion systems by advancing the understanding of flow physics, heat transfer, and combustion processes. The computational and experimental research is integrated in the following way: the experiments that are performed provide an empirical data set so that physical models can be formulated to describe the processes that are occurring - for example, turbulence or chemical reaction. These experiments also form a data base for those who are doing code development by providing experimental data against which the codes can be verified and assesed. Models are generated as closure to some of the numerical codes, and they also provide physical insight for experiments. At the same time, codes which solve the complete Navier-Stokes equations can be used as a kind of numerical experiment from which far more extensive data can be obtained than ever could be obtained experimentally. This could provide physical insight into the complex processes that are taking place. These codes are also exercised against experimental data to assess the accuracy and applicability of models.

  18. New type of microengine using internal combustion of hydrogen and oxygen

    Science.gov (United States)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  19. New type of microengine using internal combustion of hydrogen and oxygen.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-03-06

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  20. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment. 1915.136 Section 1915.136 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related Equipment §...

  1. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  2. Hydrogen enrichment of an internal combustion engine via closed loop thermochemical recuperation

    NARCIS (Netherlands)

    Zwitserlood, J.G.; Hofman, T.; Erickson, P.A.

    2013-01-01

    Hydrogen enrichment in an internal combustion engine can greatly improve efficiency and at the same time reduce emissions without the need for extensive engine modifications. One option for a hydrogen source for the enrichment is actively producing hydrogen on-board the vehicle through steam

  3. Convex modeling and sizing of electrically supercharged internal combustion engine powertrain

    NARCIS (Netherlands)

    Marinkov, S.; Murgovski, N.; de Jager, B.

    2016-01-01

    This paper investigates a concept of an electrically supercharged internal combustion engine powertrain. A supercharger consists of an electric motor and a compressor. It draws its power from an electric energy buffer (e.g., a battery) and helps the engine during short-duration high-power demands.

  4. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  5. Use of a perfume composition as a fuel for internal combustion engines

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to fuel compositions containing perfume fractions, that is to say compositions of fragrance materials, and to the use of such perfume fractions containing fuel compositions to provide a fuel for internal combustion engines and burners. According to the present fuel

  6. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Broerman, III, Eugene L.; Bourn, Gary D [Laramie, WY

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  7. Combustion of Liquid Bio-Fuels in an Internal Circulating Fluidized Bed

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Kalisz, S.; Baxter, D.; Svoboda, Karel

    2008-01-01

    Roč. 143, 1-3 (2008), s. 172-179 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40720504 Keywords : internal circulating fluidized bed * liquid fuel * combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2008

  8. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hickson, Allister; Phillips, Al; Morales, Gene

    2007-01-01

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  9. Ionization in the Knock Zone of an Internal-combustion Engine

    Science.gov (United States)

    Hasting, Charles E

    1940-01-01

    The ionization in the knock zone of an internal-combustion engine was investigated. A suspected correlation between the intensity of knock and the degree of ionization was verified and an oscillation in the degree of ionization corresponding in frequency to the knock vibrations in the cylinder pressure was observed.

  10. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2016-01-01

    This study discusses the model of operation of a dual-fuel compression-ignition engine, powered by gaseous fuel with an initial dose of diesel fuel as the ignition inhibitor. The study used a zero-dimensional multiphase mathematical model of a dual-fuel engine to simulate the impact of enhancing

  11. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  12. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  13. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  14. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  15. Occurrence, emission and ignition of combustible strata gases in Witwatersrand gold mines and Bushveld platinum mines, and means of ameliorating related ignition and explosion hazards, Part 1: literature and technical review.

    CSIR Research Space (South Africa)

    Cook, AP

    1998-10-01

    Full Text Available 60 62 63 64 9 Terminology and abbreviations The terms combustible, flammable and inflammable, to describe gases encountered in mining, are all used commonly in literature and within the South African mining industry. The Concise Oxford English... dictionary defines them as: combustible: capable of burning inflammable: easily set on fire flammable: rarely used except in “nonflammable”. In this report combustible and flammable are used to describe gas or gases that will burn or explode in air...

  16. Numerical and Experimental Study on the Combustion and Emission Characteristics of a Dimethyl Ether (DME Fueled Compression Ignition Engine Études numériques et expérimentales sur les caractéristiques de combustion et d’émissions d’un éther diméthylique (EDM- moteur à auto-allumage rempli de combustible

    Directory of Open Access Journals (Sweden)

    Kim Hyung Jun

    2012-05-01

    Full Text Available A numerical investigation was carried out to study on the combustion and emission characteristics of dimethyl ether (DME with wide ranges of injection timings in compression ignition engines. In order to simulate DME combustion processes, a KIVA-3V code coupled with a chemistry solver was used to solve the detailed chemical kinetics model of DME oxidation. In addition, the Kelvin-Helmholtz-Rayleigh-Taylor (KH-RT hybrid breakup model and Renormalization Group (RNG k-ε  models were applied to analyze the spray characteristics and turbulent flow, respectively. To predict the NOx formation during DME combustion, a reduced Gas Research Institute (GRI NO mechanism was used. From these results on the combustion and emission, the calculated results were compared with experimental ones for the same operating conditions. In the combustion characteristics, the calculated combustion pressure and heat release rates agreed well with experimental results. The levels of experimental NOx emissions was reduced as the start of the injection timing retarded, and also these trends appeared in calculated emission characteristics. Additionally, the calculated CO and HC emissions show an increasing trend as the start of the injection is retarded. Dans cette étude, nous considérons la simulation de la combustion du dimethyl ether (DME dans un moteur à allumage par compression. Les caractéristiques de la combustion ainsi que les émissions polluantes sont analysées sur une large gamme d’avance à l’injection. Afin de simuler le processus de combustion du EDM, le code KIVA-3V couplé à un solveur chimique a été utilisé pour résoudre la cinétique détaillée de l’oxydation du EDM. Le modèle de rupture de Kelvin-Helmholtz-Rayleigh- Taylor (KH-RT ainsi que le modèle de turbulence k-ε  RNG ont été appliqués pour analyser respectivement les caractéristiques du jet et l’écoulement turbulent. Pour prévoir la formation de NOx pendant la combustion

  17. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  18. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  19. International cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes an international cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity. In June, 1994, NEDO and NASA reached a basic agreement with each other about this cooperative R and D on combustion under microgravity conditions. In fiscal 2000, Japan proposed an experiment using the drop tower facilities and parabolic aircraft at NASA Glen Research Center and at JAMIC (Japan Microgravity Center). In other words, the proposals from Japan included experiments on combustion of droplets composed of diversified fuels under different burning conditions (vaporization), flame propagation in smoldering porous materials and dispersed particles under microgravity conditions, and control of interactive combustion of two droplets by acoustical and electrical perturbations. Additionally proposed were experiments on effect of low external air flow on solid material combustion under microgravity, and sooting and radiation effects on the burning of large droplets under microgravity conditions. This report gives an outline of the results of these five cooperative R and D projects. The experiments were conducted under ordinary normal gravity and microgravity conditions, with the results compared and examined mutually. (NEDO)

  20. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  1. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  2. A Robust Model Predictive Control for efficient thermal management of internal combustion engines

    International Nuclear Information System (INIS)

    Pizzonia, Francesco; Castiglione, Teresa; Bova, Sergio

    2016-01-01

    Highlights: • A Robust Model Predictive Control for ICE thermal management was developed. • The proposed control is effective in decreasing the warm-up time. • The control system reduces coolant flow rate under fully warmed conditions. • The control strategy operates the cooling system around onset of nucleate boiling. • Little on-line computational effort is required. - Abstract: Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO_2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for

  3. Contribution to the study of an lpg jet in the combustion chamber of a spark-ignition engine; Contribution a l'etude d'un jet de gpl dans la chambre de combustion d'un moteur a allumage commande, pour differentes strategies d'injection

    Energy Technology Data Exchange (ETDEWEB)

    Duong Viet, D.

    2002-07-01

    It appears tempting to combine the less polluting combustion of LPG with the energy performances of a direct injection spark-ignition engine. To this aim the study of high pressure injection of a liquid LPG jet, directly inside the combustion chamber of an engine was performed in two ways: Experimental studies: one with fast cinematography and another with the method of Doppler phases in an one-cylinder 'transparent' engine for various conditions of injection and without combustion. They respectively deliver empirical laws for the jet development and some informations about size and speed of the droplets of LPG. A modeling of the jet could then be made on the basis of a turbulent and deviated jet the parameters of which could be adjusted using results of the preceding experimental study. (author)

  4. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion

    KAUST Repository

    Luong, Minh Bau; Yu, Gwang Hyeon; Lu, Tianfeng; Chung, Suk-Ho; Yoo, Chun Sang

    2015-01-01

    The effects of temperature and composition stratifications on the ignition of a lean n-heptane/air mixture at three initial mean temperatures under elevated pressure are investigated using direct numerical simulations (DNSs) with a 58-species

  5. Influence of biofuels usage in internal combustion engines of agricultural tractors on output parametrs

    Directory of Open Access Journals (Sweden)

    Tomáš Šmerda

    2010-01-01

    Full Text Available Application of alternative fuels brings the social benefits in terms of reducing dependence on oil industry and its products as well as decreasing of damage of the environment together with using of na­tu­ral resources, especially in field of renewable energy resources. The use of biofuels is the most important part of energy strategy in European Union, whose member states have agreed the content of biofuels will achieve 5.75% of the total energy sum of fuel for transport purposes in 2010. Operation of internal combustion engine fueled by RME brings environmental benefits as described several authors in analysis of the life cycle. The contribution deals with technical difficulties of the RME usage in internal combustion engine used in agricultural tractors. Different fuel causes different process of combustion which means changes in output power and pollution. The aim of this experiment was to determine these effects. Experimental work was divided into two parts according to various fuel systems. The first tractor was equipped with mechanical injection system, the second one was provided with common-rail fuel system. The test procedures consisted of measurement of power- torque curves where the engine load was created by Eddy current dynamometer. Exhaust gas analyzer sampled the pollution of carbon monoxide, carbon dioxide and hydrocarbons as the most important indicators of combustion process.

  6. SYNTHESIS OF AUTOMOBILE IGNITION SYSTEM USING OZONIZED FUEL

    Directory of Open Access Journals (Sweden)

    O. M. Pilipenko

    2015-01-01

    Full Text Available The paper presents a mathematical model for electronic control system of the angular ignition timing (AIT in the (ICE, which is running on ozonized fuel. An algorithm for  ignition system control of internal combustion engine using ozonized fuel has been developed in the paper. A structure of the dynamic ignition system while using a control unit for supplying  ozone into fuel with a purpose to improve automobile ecological and economical indices adapted to operational conditions. Application of the given system allows to ensure minimum reduction of operational petrol consumption and concentration of incomplete combustion products due to optimum ozone dosage into the fuel.  The paper proposes a controlled automobile ignition system as a sequential scheme which has a great number of discrete inputs and outputs and many discrete internal  states. The scheme establishes a functional dependence between input and output states. The paper provides an assessment of ecological indices according to massive emissions of carbon monoxide СО, hydrocarbon СпНт and nitric oxide NOx .  The analysis of  investigations results has been carried out in the paper.

  7. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  8. 柴油在甲烷氛围及在甲醇氛围下的着火燃烧特性%Ignition and Combustion Characteristics of Diesel in Premixed Methane and Methanol Atmosphere

    Institute of Scientific and Technical Information of China (English)

    耿培林; 姚春德; 胡江涛; 张德福; 马明

    2017-01-01

    为了解不同着火性质燃料之间的相互作用,在定容燃烧弹上结合高压燃油共轨系统,通过高速摄像光学系统,研究了柴油分别在两种不同的单碳高辛烷值燃料氛围下的着火和燃烧行为.结果表明:降低环境温度和增加预混甲烷的浓度均延长柴油着火滞燃期,增大燃烧放热率峰值,且较低的环境温度和高的甲烷浓度有利于减少碳烟的生成;相比于甲烷,甲醇对柴油着火的抑制作用更强,具有较长的滞燃期,为油气混合赢得更多的时间,预混燃烧部分增加,因此柴油在甲醇氛围下的放热率峰值略高于甲烷氛围,同时产生碳烟的扩散燃烧比例降低,生成的碳烟减少.%In order to understand the interaction between fuels of different ignition properties,the ignition and combustion characteristics of diesel injected in either methanol or methane mixture were researched in a constant volume combustion chamber coupled with high pressure common rail system by using high speed camera optical system.The premixed atmospheres are the mixture of methane and the mixture of methanol and air, respectively.Results show that the ignition delay period and the peak combustion release heat rate increase as the ambient temperature decreases or the premixed methane concentration increases.Under low ambient temperature or premixed methane atmosphere,the soot formation decreases.Compared with methanemethanol has a greater inhibitory effect on diesel ignitionso the ignition delay period of the methanol atmosphere is longer than that of the methane atmosphere.There are much time for diesel fuel to mix with airso the peak release heat rate of the methanol atmosphere is bigger and less soot is generated.

  9. Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine

    International Nuclear Information System (INIS)

    Wu, Zhijun; Kang, Zhe; Deng, Jun; Hu, Zongjie; Li, Liguang

    2016-01-01

    Highlights: • n-Heptane HCCI combustion under air and oxygen intake was compared. • n-Heptane auto-ignition postponed due to higher specific heat capacity as oxygen increase. • The increment of heat release fraction during low temperature reaction is studied. • Oxygen enrichment lead to suppressed negative temperature coefficient. • The mechanism of low temperature reaction enhancement as oxygen increase is investigated. - Abstract: To take maximum advantage of the high efficiency of homogeneous charge compression ignition combustion mode and internal combustion Rankine cycle concept, in this study, the n-heptane auto-ignition characteristics have been investigated using a compression ignition internal combustion Rankine cycle engine test bench and a zero-dimensional thermodynamic model coupled with a detailed kinetic model. The n-heptane auto-ignition process shows that under both air and oxygen intake, a typical two-stage combustion in which oxygen enrichment has very minor effects on the n-heptane high temperature reaction. The higher specific heat capacity of oxygen compared with nitrogen leads to an overall increased specific heat capacity, which lowers the in-cylinder temperature during compression stroke, thereby delaying the low temperature reaction initial timing. The higher oxygen content also improves the H-atom abstraction, first O_2 addition, second O_2 addition and peroxyalkylhydroperoxide isomerization, thereby improving the overall reaction rate and the heat release fraction of low temperature reaction. As a result, the in-cylinder temperature at the end of low temperature reaction also increases, thereby shortening significantly the negative temperature coefficient duration compared with a combustion cycle using air as oxidizer.

  10. EXPERIMENTAL INSTALLATION FOR AN ASSESSMENT OF METHODS OF WATER SUPPLY IN AN INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    A. V. Bizhaev

    2015-01-01

    Full Text Available The water additive to fuel became one of effective ways of the solution of the main problems of the piston internal combustion engines (ICE as it reduces thermal factor of the engine, toxic emissions of exhaust products, and also increases efficiency by some operating modes. The way of fuel and air mix with water feeding in the combustion chamber has a great influence on process of combustion. Experimental installation for obtaining comparative characteristics of the main methods of water supply in the ICE combustion chamber was created. It was defined that there are two ways of water supply in the combustion chamber. At the first way water feed is carried out in the form of a water fuel emulsion which moves to the combustion chamber through a nozzle by means of the fuel pump with a high pressure. At the second way water arrives with air through the spraying element - the carburetor or a nozzle. This way is very simple in difference of emulsion feeding. The easiest way is nozzles application. It was established that the emulsion as the non-uniform highly dispersed fluid can be divide into components. Therefore it is necessary to use during the feeding system operation special emulsifiers with air for the uniformity water getting to the cylinder. The system for each nozzle opening at some point was offered. System of feedback with sensors of exhaust gases temperature in a final collector for adjustment of duration of injection was worked out. It was showed that at the developed experimental stand it is possible to carry out tests at various power modes. As result it will be possible to estimate both ways of fuel and air mix with water feeding.

  11. A high efficiency 10 kWe microcogenerator based on an Atkinson cycle internal combustion engine

    International Nuclear Information System (INIS)

    Capaldi, Pietro

    2014-01-01

    The paper focuses on the design and the overall performance of a 10 kW electric power microcogeneration plant suitable for local energy production, based on an Atkinson-cycle internal combustion engine prototype and entirely set by Istituto Motori of the Italian National Research Council. The engine was originally a wide-spread Diesel automotive unit, then converted into a methane spark ignition system and finally modified to perform an Atkinson/Miller cycle with an extended expansion, capable of a higher global efficiency and low gaseous emissions. The paper starts by defining the ratio which leaded to this specific choice among many other automotive and industrial engines, in order to obtain a reliable, long endurance, cost effective, high efficiency base, suitable for microcogeneration in residential or commercial applications. The new engine has been coupled with a liquid cooled induction generator, a set of heat exchangers and finally placed in a sealed containing case, to reduce both noise emission and heat losses. Then the plant has been tested as an electricity and heat production system, ready for grid connection thanks to a new designed management/control system. During endurance test a complete description of its functioning behaviour has been given. - Highlights: • A new high efficiency microcogenerator based on an Atkinson/Miller cycle engine. • Atkinson cycle together with stoichiometric operation deliver better performance. • A cost-effective microcogenerator based on widespread elements (automotive engine). • The chosen automotive engine has heavy duty characteristics (Diesel derived). • A conversion criteria from a Diesel to an Atkinson cycle engine was individuated

  12. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  13. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  14. Waste heat recovery systems for internal combustion engines: classification and benefits

    OpenAIRE

    Marchenko, A.; Samoilenko, D.; Adel Hamzah, Ali; Adel Hamzah, Omar

    2014-01-01

    Recent trend about the best ways of using the deployable sources of energy in to useful work in order to reduce the rate of consumption of fossil fuel as well as pollution. Out of all the available sources, the internal combustion engines are the major consumer of fossil fuel around the globe. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste ...

  15. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    OpenAIRE

    Weerasinghe, Rohitha; Hounsham, Sandra

    2017-01-01

    Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders [1]. Dependable data for small steam expanders will allow us to predict on their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Wankel Engines, with its lower resistance properties at small scale provide excellent contenders for bottoming cycle expanders. Present paper is based on results of experiments carried ...

  16. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  17. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  18. Numerical Study on the Performance Characteristics of Hydrogen Fueled Port Injection Internal Combustion Engine

    OpenAIRE

    Rosli A. Bakar; Mohammed K. Mohammed; M. M. Rahman

    2009-01-01

    This study was focused on the engine performance of single cylinder hydrogen fueled port injection internal combustion engine. GT-Power was utilized to develop the model for port injection engine. One dimensional gas dynamics was represented the flow and heat transfer in the components of the engine model. The governing equations were introduced first, followed by the performance parameters and model description. Air-fuel ratio was varied from stoichiometric limit to a lean limit and the rota...

  19. The dynamic interaction between combustible renewables and waste consumption and international tourism: The case of Tunisia

    OpenAIRE

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2014-01-01

    This paper employs the Autoregressive Distributed Lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald-test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of es...

  20. Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine

    OpenAIRE

    İPCİ, Duygu; KARABULUT, Halit

    2016-01-01

    In this study the combined dynamic and thermodynamic analysis of a two-stroke internal combustion engine was carried out. The variation of the heat, given to the working fluid during the heating process of the thermodynamic cycle, was modeled with the Gaussian function. The dynamic model of the piston driving mechanism was established by means of nine equations, five of them are motion equations and four of them are kinematic relations. Equations are solved by using a numerical method based o...