WorldWideScience

Sample records for ignition facility demonstrating

  1. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm 3 -sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  2. Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1

    Science.gov (United States)

    1992-07-01

    The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.

  3. The national ignition facility: path to ignition in the laboratory

    International Nuclear Information System (INIS)

    Moses, E.I.; Bonanno, R.E.; Haynam, C.A.; Kauffman, R.L.; MacGowan, B.J.; Patterson Jr, R.W.; Sawicki, R.H.; Van Wonterghem, B.M.

    2007-01-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at Lawrence Livermore National Laboratory. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition of deuterium-tritium plasmas in ICF (Inertial Confinement Fusion) targets and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. The NIF facility will consist of 2 laser bays, 4 capacitor areas, 2 laser switchyards, the target area and the building core. The laser is configured in 4 clusters of 48 beams, 2 in each laser bay. Four of the NIF beams have been already commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF has demonstrated on a single-beam basis that it will meet its performance goals and has demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed 4 important experiments for ICF and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition. (authors)

  4. Progress Towards Ignition on the National Ignition Facility

    Science.gov (United States)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  6. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  7. Recent progress in ignition fusion research on the National Ignition Facility

    International Nuclear Information System (INIS)

    Leeper, Ramon J.

    2011-01-01

    This paper will review the ignition fusion research program that is currently being carried out on the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory. This work is being conducted under the auspices of the National Ignition Campaign (NIC) that is a broad collaboration of national laboratories and universities that together have developed a detailed research plan whose goal is ignition in the laboratory. The paper will begin with a description of the NIF facility and associated experimental facilities. The paper will then focus on the ignition target and hohlraum designs that will be tested in the first ignition attempts on NIF. The next topic to be introduced will be a description of the diagnostic suite that has been developed for the initial ignition experiments on NIF. The paper will then describe the experimental results that were obtained in experiments conducted during the fall of 2009 on NIF. Finally, the paper will end with a description of the detailed experimental plans that have been developed for the first ignition campaign that will begin later this year. (author)

  8. The Ignition Target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-01-01

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10 8 K), pressures (10-GBar) and matter densities (> 100 g/cm 3 ). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art

  9. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F.

    2007-01-01

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≅4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≅790 atm) in the inner shell, strict concentricity requirements on the two shells ( 2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010

  10. Progress Toward Ignition on the National Ignition Facility

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    2011-01-01

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is ∼0.5 cm diameter by ∼1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a ∼2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer

  11. Advances in inertial confinement fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2010-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory-temperatures over 100 million K, densities of 1000 g/cm 3 , and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  12. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  13. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  14. The National Ignition Facility. The path to ignition and inertial fusion energy

    International Nuclear Information System (INIS)

    Eric Storm

    2010-01-01

    Complete text of publication follows. The National Ignition Facility (NIF), the world's largest and most energetic laser system built for studying inertial confinement fusion (ICF) and high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF's 192 beams are capable of producing 1.8 MJ and 500 TW of ultraviolet light and are configured to create pressures as high as 100 GB, matter temperatures approaching 10 9 and densities over 1000 g/cm 3 . With these capabis70lities, the NIF will enable exploring scientific problems in strategic defense, basic science and fusion energy. One of the early NIF campaigns is focusing on demonstrating laboratory-scale thermonuclear ignition and burn to produce net fusion energy gains of 10-20 with 1.2 to 1.4 MJ of 0.35 μm light. NIF ignition experiments began late in FY2009 as part of the National Ignition Campaign (NIC). Participants of NIC include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the University of Rochester Laboratory for Energetics (LLE) as well as variety of national and international collaborators. The results from these initial experiments show great promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with low overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. The goal for NIC is to demonstrate a predictable fusion experimental platform by the end of 2012. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and

  15. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  16. The National Ignition Facility and Industry

    Science.gov (United States)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  17. The National Ignition Facility and industry

    International Nuclear Information System (INIS)

    Harri, J.G.; Lowdermilk, W.H.; Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.S.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of national construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project

  18. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  19. A polar-drive shock-ignition design for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

    2013-05-15

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  20. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10{sup 13} and ∼0.3 g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  1. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    International Nuclear Information System (INIS)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D.; Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C.; McCrory, R. L.

    2014-01-01

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10 13 and ∼0.3 g/cm 2 , respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA

  2. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  3. Gas-filled hohlraum experiments at the National Ignition Facility

    International Nuclear Information System (INIS)

    Fernandez, Juan C.; Goldman, S.R.; Kline, J.L.; Dodd, E.S.; Gautier, C.; Grim, G.P.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.; Schmidt, D.W.; Workman, J.B.; Braun, D.G.; Dewald, E.L.; Landen, O.L.; Campbell, K.M.; Holder, J.P.; MacKinnon, A.J.; Niemann, C.; Schein, J.

    2006-01-01

    Experiments done at the National Ignition Facility laser [J. A. Paisner, E. M. Campbell, and W. Hogan, Fusion Technol. 26, 755 (1994)] using gas-filled hohlraums demonstrate a key ignition design feature, i.e., using plasma pressure from a gas fill to tamp the hohlraum-wall expansion for the duration of the laser pulse. Moreover, our understanding of hohlraum energetics and the ability to predict the hohlraum soft-x-ray drive has been validated in ignition-relevant conditions. Finally, the laser reflectivity from stimulated Raman scattering in the fill plasma, a key threat to hohlraum performance, is shown to be suppressed by choosing a design with a sufficiently high ratio of electron temperature to density

  4. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    Science.gov (United States)

    Amendt, Peter

    2006-10-01

    The goal of demonstrating ignition on the National Ignition Facility (NIF) has motivated a revisit of double-shell (DS) [1] targets as a complementary path to the baseline cryogenic single-shell approach [2]. Benefits of DS targets include room-temperature deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances [3], and loose shock timing requirements. On the other hand, DS ignition presents several challenges, including room-temperature containment of high-pressure DT (790 atm) in the inner shell; strict concentricity requirements on the two shells; development of nanoporous, low-density, metallic foams for structural support of the inner shell and hydrodynamic instability mitigation; and effective control of perturbation growth on the high-Atwood number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition target designs using vacuum hohlraums is described, offering the potential for low levels of laser backscatter from stimulated Raman and Brillouin processes. In addition, vacuum hohlraums have the operational advantages of room temperature fielding and fabrication simplicity, as well as benefiting from extensive benchmarking on the Nova and Omega laser facilities. As an alternative to standard cylindrical hohlraums, a rugby-shaped geometry is also introduced that may provide energetics and symmetry tuning benefits for more robust DS designs with yields exceeding 10 MJ for 2 MJ of 3w laser energy. The recent progress in hohlraum designs and required advanced materials development are scheduled to culminate in a prototype demonstration of a NIF-scale ignition-ready DS in 2007. [1] P. Amendt et al., PoP 9, 2221 (2002). [2] J.D. Lindl et al., PoP 11, 339 (2004). [3] M.N. Chizhkov et al., Laser Part. Beams 23, 261 (2005). In collaboration with C. Cerjan, A. Hamza, J. Milovich and H. Robey.

  5. Evaluation of the Revolver Ignition Design at the National Ignition Facility Using Polar-Direct-Drive Illumination

    Science.gov (United States)

    McKenty, P. W.; Collins, T. J. B.; Marozas, J. A.; Campbell, E. M.; Molvig, K.; Schmitt, M.

    2017-10-01

    The direct-drive ignition design Revolver employs a triple-shell target using a beryllium ablator, a copper driver, and an eventual gold pusher. Symmetric numerical calculations indicate that each of the three shells exhibit low convergence ( 3to 5) resulting in a modest gain (G 4) for 1.7 MJ of incident laser energy. Studies are now underway to evaluate the robustness of this design employing polar direct drive (PDD) at the National Ignition Facility. Integral to these calculations is the leveraging of illumination conditioning afforded by research done to demonstrate ignition for a traditional PDD hot-spot target design. Two-dimensional simulation results, employing nonlocal electron-thermal transport and cross-beam energy transport, will be presented that indicate ignition using PDD. A study of the allowed levels of long-wavelength perturbations (target offset and power imbalance) not precluding ignition will also be examined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-01-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  7. The national ignition facility performance status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C.; Auerbach, J.; Bowers, M.; Di-Nicola, J.M.; Dixit, S.; Erbert, G.; Heestand, G.; Henesian, M.; Jancaitis, K.; Manes, K.; Marshall, C.; Mehta, N.; Nostrand, M.; Orth, C.; Sacks, R.; Shaw, M.; Sutton, S.; Wegner, P.; Williams, W.; Widmayer, C.; White, R.; Yang, S.; Van Wonterghem, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2006-06-15

    The National Ignition Facility (NIF) laser has been designed to support high energy density science, including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single 'quad' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the precision diagnostic system (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements. (authors)

  8. The National Ignition Facility Performance Status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C; Auerbach, J; Nicola, J D; Dixit, S; Heestand, G; Henesian, M; Jancaitis, K; Manes, K; Marshall, C; Mehta, N; Nostrand, M; Orth, C; Sacks, R; Shaw, M; Sutton, S; Wegner, P; Williams, W; Widmayer, C; White, R; Yang, S; Van Wonterghem, B

    2005-08-30

    The National Ignition Facility (NIF) laser has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single ''quad'' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the Precision Diagnostics System (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements.

  9. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  10. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  11. Preparing for polar-drive ignition on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    McKenty P.W.

    2013-11-01

    Full Text Available The implementation of polar drive (PD at the National Ignition Facility (NIF will enable the execution of direct-drive implosions while the facility is configured for x-ray drive. The Laboratory for Laser Energetics (LLE, in collaboration with LLNL, LANL and GA, is implementing PD on the NIF. LLE has designed and participates in the use of PD implosions for diagnostic commissioning on the NIF. LLE has an active experimental campaign to develop PD in both warm and cryogenic target experiments on OMEGA. LLE and its partners are developing a Polar Drive Project Execution Plan, which will provide a detailed outline of the requirements, resources, and timetable leading to PD-ignition experiments on the NIF.

  12. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  13. Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA

    International Nuclear Information System (INIS)

    Goncharov, V N; Regan, S P; Sangster, T C; Betti, R; Boehly, T R; Campbell, E M; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Froula, D H; Glebov, V Yu; Harding, D R; Hu, S X; Igumenshchev, I V; Marshall, F J; McCrory, R L; Michel, D T; Myatt, J F; Radha, P B

    2016-01-01

    Achieving ignition in a direct-drive cryogenic implosion at the National Ignition Facility (NIF) requires reaching central stagnation pressures in excess of 100 Gbar, which is a factor of 3 to 4 less than what is required for indirect-drive designs. The OMEGA Laser System is used to study the physics of cryogenic implosions that are hydrodynamically equivalent to the spherical ignition designs of the NIF. Current cryogenic implosions on OMEGA have reached 56 Gbar, and implosions with shell convergence CR< 17 and fuel adiabat α > 3.5 proceed close to 1-D predictions. Demonstrating hydrodynamic equivalence on OMEGA will require reducing coupling losses caused by cross-beam energy transfer (CBET), minimizing long- wavelength nonuniformity seeded by power imbalance and target offset, and removing target debris occumulated during cryogenic target production. (paper)

  14. Progress towards ignition on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  15. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  16. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    Science.gov (United States)

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  17. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  18. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  19. Target Visualization at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel Abraham [Univ. of California, Davis, CA (United States)

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  20. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  1. Characterization of third-harmonic target plan irradiance on the National Ignition Facility Beamlet demonstration project

    International Nuclear Information System (INIS)

    Wegner, P.J.; Van Wonterghem, B.M.; Dixit, S.N.; Henesian, M.A.; Barker, C.E.; Thompson, C.E.; Seppala, L.G.; Caird, J.A.

    1997-01-01

    The Beamlet laser is a single-aperture prototype for the National Ignition Facility (NIF). We have recently installed and activated a 55 m 3 vacuum vessel and associated diagnostic package at the output of the Beamlet that we are using to characterize target plane irradiance at high power. Measurements obtained both with and without a kinoform diffractive optic are reported. Dependences on critical laser parameters including output power, spatial filtering, and wavefront correction are discussed and compared with simulations

  2. Inertial confinement fusion target insertion concepts for the National Ignition Facility

    International Nuclear Information System (INIS)

    Laughon, G.J.; Schultz, K.R.

    1996-01-01

    The National Ignition Facility (NIF) will be used to demonstrate fusion ignition in a laboratory environment in order to support development of inertial fusion as a potential fusion energy source for civilian use. However, target insertion must first be addressed before inertial fusion can become a practical energy source. Since target insertion systems currently utilized are not suitable for multiple shots in quick succession, insertion concepts involving free-falling and artificially accelerated targets are developed and evaluated against a set of predetermined guidelines. It is shown that a system involving a fast retraction positioner would be suitable. 5 refs., 4 figs

  3. Preparing for polar-drive ignition on the National Ignition Facility

    OpenAIRE

    McKenty P.W.; Collins T.J.B.; Marozas J.A.; Kessler T.J.; Zuegel J.D.; Shoup M.J.; Craxton R.S.; Marshall F.J.; Shvydky A.; Skupsky S.; Goncharov V.N.; Radha P.B.; Epstein R.; Sangster T.C.; Meyerhofer D.D.

    2013-01-01

    The implementation of polar drive (PD) at the National Ignition Facility (NIF) will enable the execution of direct-drive implosions while the facility is configured for x-ray drive. The Laboratory for Laser Energetics (LLE), in collaboration with LLNL, LANL and GA, is implementing PD on the NIF. LLE has designed and participates in the use of PD implosions for diagnostic commissioning on the NIF. LLE has an active experimental campaign to develop PD in both warm and cryogenic target experimen...

  4. Compact Ignition Tokamak conventional facilities optimization

    International Nuclear Information System (INIS)

    Commander, J.C.; Spang, N.W.

    1987-01-01

    A high-field ignition machine with liquid-nitrogen-cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed for the next phase of the United States magnetically confined fusion program. A team of national laboratory, university, and industrial participants completed the conceptual design for the CIT machine, support systems and conventional facilities. Following conceptual design, optimization studies were conducted with the goal of improving machine performance, support systems design, and conventional facilities configuration. This paper deals primarily with the conceptual design configuration of the CIT conventional facilities, the changes that evolved during optimization studies, and the revised changes resulting from functional and operational requirements (F and ORs). The CIT conventional facilities conceptual design is based on two premises: (1) satisfaction of the F and ORs developed in the CIT building and utilities requirements document, and (2) the assumption that the CIT project will be sited at the Princeton Plasma Physics Laboratory (PPPL) in order that maximum utilization can be made of existing Tokamak Fusion Test Reactor (TFTR) buildings and utilities. The optimization studies required reevaluation of the F and ORs and a second look at TFTR buildings and utilities. Some of the high-cost-impact optimization studies are discussed, including the evaluation criteria for a change from the conceptual design baseline configuration. The revised conventional facilities configuration are described and the estimated cost impact is summarized

  5. Status of Indirect Drive ICF Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, E.

    2016-01-01

    In the quest to demonstrate Inertial Confinement Fusion (ICF) ignition of deuterium-tritium (DT) filled capsules and propagating thermonuclear burn with net energy gain (fusion energy/laser energy >1), recent experiments on the National Ignition Facility (NIF) have shown progress towards increasing capsule hot spot temperature (T ion >5 keV) and fusion neutron yield (~10 16 ), while achieving ~2x yield amplification by alpha particle deposition. At the same time a performance cliff was reached, resulting in lower fusion yields than expected as the implosion velocity was increased. Ongoing studies of the hohlraum and capsule physics are attempting to disseminate possible causes for this performance ceiling.

  6. Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kline J.L.

    2013-11-01

    Full Text Available Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, “symcaps”, which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be “round.” In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry.

  7. National direct-drive program on OMEGA and the National Ignition Facility

    Science.gov (United States)

    Goncharov, V. N.; Regan, S. P.; Campbell, E. M.; Sangster, T. C.; Radha, P. B.; Myatt, J. F.; Froula, D. H.; Betti, R.; Boehly, T. R.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Gatu-Johnson, M.

    2017-01-01

    A major advantage of the laser direct-drive (DD) approach to ignition is the increased fraction of laser drive energy coupled to the hot spot and relaxed hot-spot requirements for the peak pressure and convergence ratios relative to the indirect-drive approach at equivalent laser energy. With the goal of a successful ignition demonstration using DD, the recently established national strategy has several elements and involves multiple national and international institutions. These elements include the experimental demonstration on OMEGA cryogenic implosions of hot-spot conditions relevant for ignition at MJ-scale energies available at the National Ignition Facility (NIF) and developing an understanding of laser-plasma interactions and laser coupling using DD experiments on the NIF. DD designs require reaching central stagnation pressures in excess of 100 Gbar. The current experiments on OMEGA have achieved inferred peak pressures of 56 Gbar (Regan et al 2016 Phys. Rev. Lett. 117 025001). Extensive analysis of the cryogenic target experiments and two- and three-dimensional simulations suggest that power balance, target offset, and target quality are the main limiting factors in target performance. In addition, cross-beam energy transfer (CBET) has been identified as the main mechanism reducing laser coupling. Reaching the goal of demonstrating hydrodynamic equivalence on OMEGA includes improving laser power balance, target position, and target quality at shot time. CBET must also be significantly reduced and several strategies have been identified to address this issue.

  8. Confinement of ignition and yield on the National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-01-01

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented

  9. National Ignition Facility design focuses on optics

    International Nuclear Information System (INIS)

    Hogan, W.J.; Atherton, L.J.; Paisner, J.A.

    1996-01-01

    Sometime in the year 2002, scientists at the National Ignition Facility (NIF) will focus 192 separate high-power ultraviolet laser beams onto a tiny capsule of deuterium and tritium, heating and compressing the material until it ignites and burns with a burst of fusion energy. The mission of NIF, which will contain the largest laser in the world, is to obtain fusion ignition and gain and to use inertial confinement fusion capabilities in nuclear weapons science experiments. The physics data provided by NIF experiments will help scientists ensure nuclear weapons reliability without the need for actual weapons tests; basic sciences such as astrophysics will also benefit. The facility faces stringent weapons-physics user requirements demanding peak pulse powers greater than 750 TW at 0.35 microm (only 500 TW is required for target ignition), pulse durations of 0.1 to 20 ns, beam steering on the order of several degrees, and target isolation from residual 1- and 0.5-microm radiation. Additional requirements include 50% fractional encircled beam energy in a 100-microm-diameter spot, with 95% encircled in a 200-microm spot. The weapons-effects community requires 1- and 0.5-microm light on target, beam steering to widely spaced targets, a target chamber accommodating oversized objects, well-shielded diagnostic areas, and elimination of stray light in the target chamber. The beamline design, amplifier configuration and requirements for optics are discussed here

  10. Radiological assessments for the National Ignition Facility

    International Nuclear Information System (INIS)

    Hong, Kou-John; Lazaro, M.A.

    1996-01-01

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer

  11. Capsule Performance Optimization for the National Ignition Facility

    Science.gov (United States)

    Landen, Otto

    2009-11-01

    The overall goal of the capsule performance optimization campaign is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. This will be accomplished using a variety of targets that will set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix. The targets include high Z re-emission spheres setting foot symmetry through foot cone power balance [1], liquid Deuterium-filled ``keyhole'' targets setting shock speed and timing through the laser power profile [2], symmetry capsules setting peak cone power balance and hohlraum length [3], and streaked x-ray backlit imploding capsules setting ablator thickness [4]. We will show how results from successful tuning technique demonstration shots performed at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design meet the required sensitivity and accuracy. We will also present estimates of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors, and show that these get reduced after a number of shots and iterations to meet an acceptable level of residual uncertainty. Finally, we will present results from upcoming tuning technique validation shots performed at NIF at near full-scale. Prepared by LLNL under Contract DE-AC52-07NA27344. [4pt] [1] E. Dewald, et. al. Rev. Sci. Instrum. 79 (2008) 10E903. [0pt] [2] T.R. Boehly, et. al., Phys. Plasmas 16 (2009) 056302. [0pt] [3] G. Kyrala, et. al., BAPS 53 (2008) 247. [0pt] [4] D. Hicks, et. al., BAPS 53 (2008) 2.

  12. Target designs for energetics experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Meezan, N B; Glenzer, S H; Suter, L J

    2008-01-01

    The goal of the first hohlraum energetics experiments on the National Ignition Facility (NIF) [G. H. Miller et al, Optical Eng. 43, 2841 (2004)] is to select the hohlraum design for the first ignition experiments. Sub-scale hohlraums heated by 96 of the 192 laser beams on the NIF are used to emulate the laser-plasma interaction behavior of ignition hohlraums. These 'plasma emulator' targets are 70% scale versions of the 1.05 MJ, 300 eV ignition hohlraum and have the same energy-density as the full-scale ignition designs. Radiation-hydrodynamics simulations show that the sub-scale target is a good emulator of plasma conditions inside the ignition hohlraum, reproducing density n e within 10% and temperature T e within 15% along a laser beam path. Linear backscatter gain analysis shows the backscatter risk to be comparable to that of the ignition target. A successful energetics campaign will allow the National Ignition Campaign to focus its efforts on optimizing ignition hohlraums with efficient laser coupling

  13. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhauasen, R C; Bowers, G A; Carey, R W; Edwards, O D; Estes, C M; Demaret, R D; Ferguson, S W; Fisher, J M; Ho, J C; Ludwigsen, A P; Mathisen, D G; Marshall, C D; Matone, J M; McGuigan, D L; Sanchez, R J; Shelton, R T; Stout, E A; Tekle, E; Townsend, S L; Van Arsdall, P J; Wilson, E F

    2007-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and

  14. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the path to ignition

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J.

    2008-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system together with a 10-m diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of eight beams each using laser hardware that is modularized into more than 6000 line replaceable units such as optical assemblies, laser amplifiers, and multi-function sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-MJ capability of infrared light. During the next 2 years, the control system will be expanded in preparation for project completion in 2009 to include automation of target area systems including final optics

  15. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  16. The National Ignition Facility and the Promise of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Moses, E.I.

    2010-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm 3 -sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm 3 , and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  17. The National Ignition Facility and the Promise of Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  18. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  19. Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Terry, Matthew R.; Perkins, L. John; Sepke, Scott M.

    2012-01-01

    Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes “day one” NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

  20. Robustness studies of ignition targets for the National Ignition Facility in two dimensions

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.

    2008-01-01

    Inertial confinement fusion capsules are critically dependent on the integrity of their hot spots to ignite. At the time of ignition, only a certain fractional perturbation of the nominally spherical hot spot boundary can be tolerated and the capsule still achieve ignition. The degree to which the expected hot spot perturbation in any given capsule design is less than this maximum tolerable perturbation is a measure of the ignition margin or robustness of that design. Moreover, since there will inevitably be uncertainties in the initial character and implosion dynamics of any given capsule, all of which can contribute to the eventual hot spot perturbation, quantifying the robustness of that capsule against a range of parameter variations is an important consideration in the capsule design. Here, the robustness of the 300 eV indirect drive target design for the National Ignition Facility [Lindl et al., Phys. Plasmas 11, 339 (2004)] is studied in the parameter space of inner ice roughness, implosion velocity, and capsule scale. A suite of 2000 two-dimensional simulations, run with the radiation hydrodynamics code LASNEX, is used as the data base for the study. For each scale, an ignition region in the two remaining variables is identified and the ignition cliff is mapped. In accordance with the theoretical arguments of Levedahl and Lindl [Nucl. Fusion 37, 165 (1997)] and Kishony and Shvarts [Phys. Plasmas 8, 4925 (2001)], the location of this cliff is fitted to a power law of the capsule implosion velocity and scale. It is found that the cliff can be quite well represented in this power law form, and, using this scaling law, an assessment of the overall (one- and two-dimensional) ignition margin of the design can be made. The effect on the ignition margin of an increase or decrease in the density of the target fill gas is also assessed

  1. Power conditioning for the National Ignition Facility

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1994-01-01

    A cost-effective, 320-MJ power-conditioning system has been completed for the proposed National Ignition Facility (NIF). The design features include metallized dielectric capacitors, a simple topology, and large (1.6-MJ) module size. Experimental results address the technical risks associated with the design

  2. Laser imprint and implications for direct drive ignition with the National Ignition Facility

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Remington, B.A.; Rothenberg, J.E.

    1996-01-01

    For direct drive ICF, nonuniformities in laser illumination can seed ripples at the ablation front in a process called imprint. Such nonuniformities will grow during the capsule implosion and can penetrate the capsule shell impede ignition, or degrade burn. We have simulated imprint for a number of experiments on tile Nova laser. Results are in generally good agreement with experimental data. We leave also simulated imprint upon National Ignition Facility (NIF) direct drive ignition capsules. Imprint modulation amplitude comparable to the intrinsic surface finish of ∼40 nm is predicted for a laser bandwidth of 0.5 THz. Ablation front modulations experience growth factors up to several thousand, carrying modulation well into the nonlinear regime. Saturation modeling predicts that the shell should remain intact at the time of peak velocity, but penetration at earlier times appears more marginal

  3. Impacts assessment for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bay Area Economics

    1996-12-01

    This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

  4. National Ignition Facility frequency converter development

    International Nuclear Information System (INIS)

    Barker, C.E.; Auerbach, J.M.; Adams, C.H.

    1996-01-01

    A preliminary error budget for the third harmonic converter for the National Ignition Facility (NIF) laser driver has been developed using a root-sum-square-accumulation of error sources. Such a budget sets an upper bound on the allowable magnitude of the various effects that reduce conversion efficiency. Development efforts on crystal mounting technology and crystal quality studies are discussed

  5. Safety overview of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  6. National Ignition Facility site requirements

    International Nuclear Information System (INIS)

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline

  7. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  8. The National Ignition Facility 2007 laser performance status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C A; Sacks, R A; Wegner, P J; Bowers, M W; Dixit, S N; Erbert, G V; Heestand, G M; Henesian, M A; Hermann, M R; Jancaitis, K S; Manes, K R; Marshall, C D; Mehta, N C; Menapace, J; Nostrand, M C; Orth, C D; Shaw, M J; Sutton, S B; Williams, W H; Widmayer, C C [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)], E-mail: haynam1@llnl.gov (and others)

    2008-05-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory contains a 192-beam 3.6 MJ neodymium glass laser that is frequency converted to 351nm light. It has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8-MJ total energy at 351nm, with peak power of 500 TW and precisely-controlled temporal pulse shapes spanning two orders of magnitude. The focal spot fluence distribution of these pulses is conditioned, through a combination of special optics in the 1{omega} (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion (SSD), and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). In 2006 and 2007, a series of measurements were performed on the NIF laser, at both 1{omega} and 3{omega} (351 nm). When scaled to full 192-beam operation, these results lend confidence to the claim that NIF will meet its laser performance design criteria and that it will be able to simultaneously deliver the temporal pulse shaping, focal spot conditioning, peak power, shot-to-shot reproducibility, and power balance requirements of indirect-drive fusion ignition campaigns. We discuss the plans and status of NIF's commissioning, and the nature and results of these measurement campaigns.

  9. Shock timing on the National Ignition Facility: First Experiments

    International Nuclear Information System (INIS)

    Celliers, P.M.; Robey, H.F.; Boehly, T.R.; Alger, E.; Azevedo, S.; Berzins, L.V.; Bhandarkar, S.D.; Bowers, M.W.; Brereton, S.J.; Callahan, D.; Castro, C.; Chandrasekaran, H.; Choate, C.; Clark, D.; Coffee, K.R.; Datte, P.S.; Dewald, E.L.; DiNicola, P.; Dixit, S.; Doeppner, T.; Dzenitis, E.; Edwards, M.J.; Eggert, J.H.; Fair, J.; Farley, D.R.; Frieders, G.; Gibson, C.R.; Giraldez, E.; Haan, S.; Haid, B.; Hamza, A.V.; Haynam, C.; Hicks, D.G.; Holunga, D.M.; Horner, J.B.; Jancaitis, K.; Jones, O.S.; Kalantar, D.; Kline, J.L.; Krauter, K.G.; Kroll, J.J.; LaFortune, K.N.; Pape, S.L.; Malsbury, T.; Maypoles, E.R.; Milovich, J.L.; Moody, J.D.; Moreno, K.; Munro, D.H.; Nikroo, A.; Olson, R.E.; Parham, T.; Pollaine, S.; Radousky, H.B.; Ross, G.F.; Sater, J.; Schneider, M.B.; Shaw, M.; Smith, R.F.; Thomas, C.A.; Throop, A.; Town, R.J.; Trummer, D.; Van Wonterghem, B.M.; Walters, C.F.; Widmann, K.; Widmayer, C.; Young, B.K.; Atherton, L.J.; Collins, G.W.; Landen, O.L.; Lindl, J.D.; MacGowan, B.J.; Meyerhofer, D.D.; Moses, E.I.

    2011-01-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  10. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; Zylstra, A. B.; Yi, S. A.; Biener, J.; Braun, T.; Kozioziemski, B. J.; Sater, J. D.; Bradley, P. A.; Peterson, R. R.; Haines, B. M.; Yin, L.; Berzak Hopkins, L. F.; Meezan, N. B.; Walters, C.; Biener, M. M.; Kong, C.; Crippen, J. W.; Kyrala, G. A.; Shah, R. C.; Herrmann, H. W.; Wilson, D. C.; Hamza, A. V.; Nikroo, A.; Batha, S. H.

    2016-12-01

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12 30 ) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  11. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  12. Shock timing technique for the National Ignition Facility

    International Nuclear Information System (INIS)

    Munro, David H.; Celliers, Peter M.; Collins, Gilbert W.; Gold, David M.; Silva, Luiz B. da; Haan, Steven W.; Cauble, Robert C.; Hammel, Bruce A.; Hsing, Warren W.

    2001-01-01

    Among the final shots at the Nova laser [Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)] was a series testing the VISAR (velocity interferometry system for any reflector) technique that will be the primary diagnostic for timing the shocks in a NIF (National Ignition Facility) ignition capsule. At Nova, the VISAR technique worked over the range of shock strengths and with the precision required for the NIF shock timing job--shock velocities in liquid D 2 from 12 to 65 μm/ns with better than 2% accuracy. VISAR images showed stronger shocks overtaking weaker ones, which is the basis of the plan for setting the pulse shape for the NIF ignition campaign. The technique is so precise that VISAR measurements may also play a role in certifying beam-to-beam and shot-to-shot repeatability of NIF laser pulses

  13. National Ignition Facility Title II Design Plan

    International Nuclear Information System (INIS)

    Kumpan, S

    1997-01-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed

  14. Shock timing on the National Ignition Facility: First experiments

    Directory of Open Access Journals (Sweden)

    Celliers P.M.

    2013-11-01

    Full Text Available An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  15. Power conditioning development for the National Ignition Facility

    International Nuclear Information System (INIS)

    Newton, M.A.; Larson, D.W.; Wilson, J.M.; Harjes, H.C.; Savage, M.E.; Anderson, R.L.

    1996-10-01

    The National Ignition Facility (NIF) is a high energy glass laser system and target chamber that will be used for research in inertial confinement fusion. The 192 beams of the NIF laser system are pumped by over 8600 Xenon flashlamps. The power conditioning system for NIF must deliver nearly 300 MJ of energy to the flashlamps in a cost effective and reliable manner. The present system design has over 200 capacitive energy storage modules that store approximately 1.7 MJ each and deliver that energy through a single switch assembly to 20 parallel sets of two series flashlamps. Although there are many possible system designs, few will meet the aggressive cost goals necessary to make the system affordable. Sandia National Laboratory (SNL) and Lawrence Livermore National Laboratory (LLNL) are developing the system and component technologies that will be required to build the power conditioning system for the National Ignition Facility. This paper will describe the ongoing development activities for the NIF power conditioning system

  16. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    Science.gov (United States)

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  17. A Kirkpatrick-Baez microscope for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pickworth, L. A., E-mail: pickworth1@llnl.gov; McCarville, T.; Decker, T.; Pardini, T.; Ayers, J.; Bell, P.; Bradley, D.; Brejnholt, N. F.; Izumi, N.; Mirkarimi, P.; Pivovaroff, M.; Smalyuk, V.; Vogel, J.; Walton, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. [General Atomics, San Diego, California 92121 (United States)

    2014-11-15

    Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10–25 μm) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 μm resolution over a 300 μm field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 μm field of view.

  18. The first target experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.

    2007-01-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  19. The first target experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P

    2007-08-15

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  20. Shock timing on the National Ignition Facility: The first precision tuning series

    Directory of Open Access Journals (Sweden)

    Robey H.F.

    2013-11-01

    Full Text Available Ignition implosions on the National Ignition Facility (NIF [Lindl et al., Phys. Plasmas 11, 339 (2004] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT layered capsule implosions by measurement of fuel areal density (ρR, which show the highest fuel compression (ρR ∼ 1.0 g/cm2 measured to date.

  1. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs

    International Nuclear Information System (INIS)

    Clark, D. S.; Haan, S. W.; Cook, A. W.; Edwards, M. J.; Hammel, B. A.; Koning, J. M.; Marinak, M. M.

    2011-01-01

    Ignition capsule designs for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)] have continued to evolve in light of improved physical data inputs, improving simulation techniques, and, most recently, experimental data from a growing number of NIF sub-ignition experiments. This paper summarizes a number of recent changes to the cryogenic capsule design and some of our latest techniques in simulating its performance. Specifically, recent experimental results indicated harder x-ray drive spectra in NIF hohlraums than were predicted and used in previous capsule optimization studies. To accommodate this harder drive spectrum, a series of high-resolution 2-D simulations, resolving Legendre mode numbers as high as 2000, were run and the germanium dopant concentration and ablator shell thicknesses re-optimized accordingly. Simultaneously, the possibility of cooperative or nonlinear interaction between neighboring ablator surface defects has motivated a series of fully 3-D simulations run with the massively parallel HYDRA code. These last simulations include perturbations seeded on all capsule interfaces and can use actual measured shell surfaces as initial conditions. 3-D simulations resolving Legendre modes up to 200 on large capsule sectors have run through ignition and burn, and higher resolution simulations resolving as high as mode 1200 have been run to benchmark high-resolution 2-D runs. Finally, highly resolved 3-D simulations have also been run of the jet-type perturbation caused by the fill tube fitted to the capsule. These 3-D simulations compare well with the more typical 2-D simulations used in assessing the fill tube's impact on ignition. Coupled with the latest experimental inputs from NIF, our improving simulation capability yields a fuller and more accurate picture of NIF ignition capsule performance.

  2. The National Ignition Facility (NIF) as a User Facility

    Science.gov (United States)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  3. Target diagnostic system for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests

  4. X-ray emission from National Ignition Facility indirect drive targets

    International Nuclear Information System (INIS)

    Anderson, A.T.; Managan, R.A.; Tobin, M.T.; Peterson, P.F.

    1996-01-01

    We have performed a series of 1-D numerical simulations of the x-ray emission from National Ignition Facility (NIF) targets. Results are presented in terms of total x-ray energy, pulse length, and spectrum. Scaling of x-ray emissions is presented for variations in both target yield and hohlraum thickness. Experiments conducted on the Nova facility provide some validation of the computational tools and methods

  5. Physical studies of fast ignition in China

    International Nuclear Information System (INIS)

    He, X T; Cai, Hong-bo; Wu, Si-zhong; Cao, Li-hua; Zhang, Hua; He, Ming-qing; Chen, Mo; Wu, Jun-feng; Zhou, Cang-tao; Zhou, Wei-Min; Shan, Lian-qiang; Wang, Wei-wu; Zhang, Feng; Bi, Bi; Zhao, Zong-qing; Gu, Yu-qiu; Zhang, Bao-han; Wang, Wei; Fang, Zhi-heng; Lei, An-le

    2015-01-01

    Fast ignition approach to inertial confinement fusion is one of the important goals today, in addition to central hot spot ignition in China. The SG-IIU and PW laser facilities are coupled to investigate the hot spot formation for fast ignition. The SG-III laser facility is almost completed and will be coupled with tens kJ PW lasers for the demonstration of fast ignition. In recent years, for physical studies of fast ignition, we have been focusing on the experimental study of implosion symmetry, M-band radiation preheating and mixing, advanced fast ignition target design, and so on. In addition, the modeling capabilities and code developments enhanced our ability to perform the hydro-simulation of the compression implosion, and the particle-in-cell (PIC) and hybrid-PIC simulation of the generation, transport and deposition of relativistic electron beams. Considerable progress has been achieved in understanding the critical issues of fast ignition. (paper)

  6. Capsule Performance Optimization in the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; MacGowan, B J; Haan, S W; Edwards, J

    2009-10-13

    A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  7. Capsule performance optimization in the national ignition campaign

    International Nuclear Information System (INIS)

    Landen, O L; MacGowan, B J; Haan, S W; Edwards, J

    2010-01-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [1] to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  8. Capsule performance optimization in the national ignition campaign

    Science.gov (United States)

    Landen, O. L.; MacGowan, B. J.; Haan, S. W.; Edwards, J.

    2010-08-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [1] to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  9. The First Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Glenzer, S. H.; Dewald, E. L.; Landen, O. L.; Suter, L. J.; Jones, O. S.; Schein, J.; Froula, L.; Divol, K.; Campbell, K.; Schneider, M. S.; McDonal, J. W.; Niemann, C.; Mackinnon, A. J.

    2005-01-01

    Recently the first hohlraum and laser propagation experiments have been performed at the National Ignition Facility (NIF) in support of indirect dd drive Inertial Confinement Fusion (ICR) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several drive diagnostics, to study the hohlraum radiation temperature scaling with the lase power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The experiments have validated analytical models and LASNEX calculations of hohlraum plasma filling and coronal hohlraum radiation production. furthermore, the effects of laser beam smooching by spectral dispersion (SSD) and polarization smoothing (PS) on the laser beam propagation has been studied in plasmas with sizes that reach for the first time the laser propagation length in indirect-drive gas-filled ignition hohlraum designs. the long scale gas-filled target experiments have shown propagation over 7 mm of low Z plasma without filamentation and beam break up when using full laser smoothing. The comparison of these results with modeling will be discussed. (Author)

  10. The First Experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S. H.; Dewald, E. L.; Landen, O. L.; Suter, L. J.; Jones, O. S.; Schein, J.; Froula, L.; Divol, K.; Campbell, K.; Schneider, M. S.; McDonal, J. W.; Niemann, C.; Mackinnon, A. J.

    2005-07-01

    Recently the first hohlraum and laser propagation experiments have been performed at the National Ignition Facility (NIF) in support of indirect dd drive Inertial Confinement Fusion (ICR) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several drive diagnostics, to study the hohlraum radiation temperature scaling with the lase power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The experiments have validated analytical models and LASNEX calculations of hohlraum plasma filling and coronal hohlraum radiation production. furthermore, the effects of laser beam smooching by spectral dispersion (SSD) and polarization smoothing (PS) on the laser beam propagation has been studied in plasmas with sizes that reach for the first time the laser propagation length in indirect-drive gas-filled ignition hohlraum designs. the long scale gas-filled target experiments have shown propagation over 7 mm of low Z plasma without filamentation and beam break up when using full laser smoothing. The comparison of these results with modeling will be discussed. (Author)

  11. Status of the US inertial fusion program and the National Ignition Facility

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1997-01-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) copyright 1997 American Institute of Physics

  12. Pressure Effects Analysis of National Ignition Facility Capacitor Module Events

    International Nuclear Information System (INIS)

    Brereton, S; Ma, C; Newton, M; Pastrnak, J; Price, D; Prokosch, D

    1999-01-01

    Capacitors and power conditioning systems required for the National Ignition Facility (NIF) have experienced several catastrophic failures during prototype demonstration. These events generally resulted in explosion, generating a dramatic fireball and energetic shrapnel, and thus may present a threat to the walls of the capacitor bay that houses the capacitor modules. The purpose of this paper is to evaluate the ability of the capacitor bay walls to withstand the overpressure generated by the aforementioned events. Two calculations are described in this paper. The first one was used to estimate the energy release during a fireball event and the second one was used to estimate the pressure in a capacitor module during a capacitor explosion event. Both results were then used to estimate the subsequent overpressure in the capacitor bay where these events occurred. The analysis showed that the expected capacitor bay overpressure was less than the pressure tolerance of the walls. To understand the risk of the above events in NIF, capacitor module failure probabilities were also calculated. This paper concludes with estimates of the probability of single module failure and multi-module failures based on the number of catastrophic failures in the prototype demonstration facility

  13. Proton pinhole imaging on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Park, H.-S.; Ross, J. S.; Higginson, D. P.; Huntington, C.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Turnbull, D.; Wilks, S. C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fiuza, F. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

  14. Filter-fluorescer diagnostic system for the National Ignition Facility

    International Nuclear Information System (INIS)

    McDonald, J.W.; Kauffman, R.L.; Celeste, J.R.; Rhodes, M.A.; Lee, F.D.; Suter, L.J.; Lee, A.P.; Foster, J.M.; Slark, G.

    2004-01-01

    An early filter-fluorescer diagnostic system is being fielded at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to measure the amount of hard x rays (20< hν<150 keV) generated in laser fusion experiments. From these measurements we hope to quantify the number of hot electrons produced in laser fusion experiments. The measurement of hot electron production is important for ignition experiments because these electrons can preheat the fuel capsule. Hot electrons can also be employed in experimentation by preheating hydrodynamic packages or by driving plasmas out of equilibrium. The experimental apparatus, data collection, analysis and calibration issues are discussed. Expected data signal levels are predicted and discussed

  15. First hohlraum drive studies on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, E.L.; Landen, O.L.; Suter, L.J.; Schein, J.; Holder, J.; Campbell, K.; Glenzer, S.H.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Schneider, M.S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2006-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] using the first four laser beams have activated the indirect-drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 9 TW, 1 to 9 ns long square pulses and energies of up to 17 kJ to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed previously at other laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  16. Electrostatic hazards of charging of bedclothes and ignition in medical facilities.

    Science.gov (United States)

    Endo, Yuta; Ohsawa, Atsushi; Yamaguma, Mizuki

    2018-02-26

    We investigated the charge generated on bedclothes (cotton and polyester) during bedding exchange with different humidities and the ignitability of an alcohol-based hand sanitizer (72.3 mass% ethanol) due to static spark with different temperatures to identify the hazards of electrostatic shocks and ignitions occurring previously in medical facilities. The results indicated that charging of the polyester bedclothes may induce a human body potential of over about 10 kV, resulting in shocks even at a relative humidity of 50%, and a human body potential of higher than about 8 kV can cause a risk for the ignition of the hand sanitizer. The grounding of human bodies via footwear and flooring, therefore, is essential to avoid such hazards (or to reduce such risks).

  17. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  18. Implosion dynamics measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  19. Implosion dynamics measurements at the National Ignition Facility

    International Nuclear Information System (INIS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.

    2012-01-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%–70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  20. Implosion dynamics measurements at the National Ignition Facility

    Science.gov (United States)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  1. Diagnosing and controlling mix in National Ignition Facility implosion experiments

    International Nuclear Information System (INIS)

    Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J.; Regan, S. P.; Epstein, R.; Kyrala, G. A.; Wilson, D. C.; Peterson, K.

    2011-01-01

    High mode number instability growth of ''isolated defects'' on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce ''isolated defects.'' An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

  2. The National Ignition Facility

    International Nuclear Information System (INIS)

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.M.

    2001-01-01

    The National Ignition Facility (NIF) is the largest construction project ever undertaken at Lawrence Livermore National Laboratory (LLNL). NIF consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. NIF is being designed and built by an LLNL-led team from Los Alamos National Laboratory, Sandia National Laboratories, the University of Rochester, and LLNL. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. (author)

  3. National Ignition Facility environmental protection systems

    International Nuclear Information System (INIS)

    Mintz, J.M.; Reitz, T.C.; Tobin, M.T.

    1994-06-01

    The conceptual design of Environmental Protection Systems (EPS) for the National Ignition Facility (NIF) is described. These systems encompass tritium and activated debris handling, chamber, debris shield and general decontamination, neutron and gamma monitoring, and radioactive, hazardous and mixed waste handling. Key performance specifications met by EPS designs include limiting the tritium inventory to 300 Ci and total tritium release from NIF facilities to less than 10 Ci/yr. Total radiation doses attributable to NIF shall remain below 10 mrem/yr for any member of the general public and 500 mrem/yr for NIF staff. ALARA-based design features and operational procedures will, in most cases, result in much lower measured exposures. Waste minimization, improved cycle time and reduced exposures all result from the proposed CO2 robotic arm cleaning and decontamination system, while effective tritium control is achieved through a modern system design based on double containment and the proven detritiation technology

  4. Implementation of a near backscattering imaging system on the National Ignition Facility

    International Nuclear Information System (INIS)

    Mackinnon, A.J.; McCarville, T.; Piston, K.; Niemann, C.; Jones, G.; Reinbachs, I.; Costa, R.; Celeste, J.; Holtmeier, G.; Griffith, R.; Kirkwood, R.; MacGowan, B.; Glenzer, S.H.; Latta, M.R.

    2004-01-01

    A near backscattering imaging diagnostic system is being implemented on the first quad of beams on the National Ignition Facility. This diagnostic images diffusing scatter plates, placed around the final focus lenses on the National Ignition Facility target chamber, to quantitatively measure the fraction of light backscattered outside of the focusing cone angle of incident laser beam. A wide-angle imaging system relays an image of light scattered outside the lens onto a gated charge coupled device camera, providing 3 mm resolution over a 2 m field of view. To account for changes of the system throughput due to exposure to target debris the system will be routinely calibrated in situ at 532 and 355 nm using a dedicated pulsed laser source

  5. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  6. Capsule performance optimization in the National Ignition Campaigna)

    Science.gov (United States)

    Landen, O. L.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Kyrala, G. A.; Michel, P.; Milovich, J.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Robey, H. F.; Spears, B. K.; Thomas, C. A.; Weber, S. V.; Wilson, D. C.; Marinak, M. M.; Suter, L. J.; Hammel, B. A.; Meyerhofer, D. D.; Atherton, J.; Edwards, J.; Haan, S. W.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.

    2010-05-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  7. Capsule performance optimization in the National Ignition Campaign

    International Nuclear Information System (INIS)

    Landen, O. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Michel, P.; Milovich, J.; Munro, D. H.; Robey, H. F.; Spears, B. K.; Thomas, C. A.

    2010-01-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  8. Note: A monoenergetic proton backlighter for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rygg, J. R.; LePape, S.; Bachmann, B.; Khan, S. F.; Sayre, D. B. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Zylstra, A. B.; Séguin, F. H.; Gatu-Johnson, M.; Lahmann, B. J.; Petrasso, R. D.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Rinderknecht, H. G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-11-15

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF’s 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the {sup 3}He(d,p){sup 4}He nuclear reaction reveal a bright (10{sup 10} protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n){sup 3}He reactions also show 2 × 10{sup 10} isotropically distributed 3-MeV protons.

  9. Polar-Drive Experiments at the National Ignition Facility

    Science.gov (United States)

    Hohenberger, M.

    2014-10-01

    To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Safety analysis and risk assessment of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; McLouth, L.; Odell, B.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF and the methodology used to study them. It provides a summary of the methodology, an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  11. Present status of Fast Ignition Realization EXperiment (FIREX) and inertial fusion energy development

    International Nuclear Information System (INIS)

    Azechi, H.; Fujimoto, Y.; Fujioka, S.

    2012-11-01

    Controlled thermonuclear ignition and subsequent burn will be demonstrated in a couple of years on the central ignition scheme. Fast ignition has the high potential to ignite a fuel using only about one tenth of laser energy necessary to the central ignition. This compactness may largely accelerate inertial fusion energy development. One of the most advanced fast ignition programs is the Fast Ignition Realization Experiment (FIREX). The goal of its first phase is to demonstrate ignition temperature of 5 keV, followed by the second phase to demonstrate ignition-and-burn. The second series experiment of FIREX-I from late 2010 to early 2011 has demonstrated a high (≈20%) coupling efficiency from laser to thermal energy of the compressed core, suggesting that one can achieve the ignition temperature at the laser energy below 10 kJ. Given the demonstrations of the ignition temperature at FIREX-I and the ignition-and-burn at the National Ignition Facility, the inertial fusion research would then shift from the plasma physics era to power generation era. (author)

  12. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-01-15

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  13. Safety and environmental process for the design and construction of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  14. Conceptual design of the National Ignition Facility

    International Nuclear Information System (INIS)

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-01-01

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 μm) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program's site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002

  15. National Ignition Facility Control and Information System Operational Tools

    International Nuclear Information System (INIS)

    Marshall, C.D.; Beeler, R.G.; Bowers, G.A.; Carey, R.W.; Fisher, J.M.; Foxworthy, C.B.; Frazier, T.M.; Mathisen, D.G.; Lagin, L.J.; Rhodes, J.J.; Shaw, M.J.

    2009-01-01

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a ∼2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint the size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.

  16. The First Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J.

    2005-01-01

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options

  17. Laser beam smoothing and backscatter saturation processes in plasmas relevant to national ignition facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Cohen, B.I.

    2001-01-01

    We have used gas-filled targets irradiated by the Nova laser to simulate National Ignition Facility (NIF) hohlraum plasmas and to study the dependence of Stimulated Raman (SRS) and Brillouin (SBS) Scattering on beam smoothing at a range of laser intensities (3ω, 2-410 15 Wcm -2 ) and plasma conditions. We have demonstrated the effectiveness of polarization smoothing as a potential upgrade to the NIF. Experiments with higher intensities and higher densities characteristic of 350eV hohlraum designs indicate that with appropriate beam smoothing the backscatter from such hohlraums may be tolerable. (author)

  18. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, D L; Landen, O L; Suter, L J; Schein, J; Holder, J.; Campbell, K.; Glenzer, S H.; McDonald, J W.; Niemann, C.; Mackinnon, A J.; Schneider, M S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2005-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) using the first four laser beams have activated the indirect drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1 ns to 9 ns long square pulses and energies of up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  19. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  20. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  1. Signal and background considerations for the MRSt on the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Wink, C. W., E-mail: cwink@mit.edu; Frenje, J. A.; Gatu Johnson, M.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States); Bionta, R.; Khater, H. Y. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5–10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50–100 times.

  2. Signal and background considerations for the MRSt on the National Ignition Facility (NIF).

    Science.gov (United States)

    Wink, C W; Frenje, J A; Hilsabeck, T J; Bionta, R; Khater, H Y; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5-10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50-100 times.

  3. Measurements of gas filled halfraum energetics at the national ignition facility using a single quad

    Energy Technology Data Exchange (ETDEWEB)

    Kline, J.L.; Fernandez, J.C.; Goldman, S.R.; Gautier, D.C.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Workman, J.B. [Los Alamos National Laboratory, Los Alamos, NM (United States); Braun, D.; Landen, O.; Niemann, C.; Campbell, K.; Celeste, J.; Dewald, E.; Glenzer, S.; Hinkel, D.; Holder, J.; Kalantar, D.; Kamperschroer, J.; Kimbrough, J.; Kirkwood, R.; Lee, F.D.; MacGowan, B.; MacKinnon, A.; McDonald, J.; Schein, J.; Schneider, M.; Suter, L.; Young, B. [Lawrence Livermore National Lab., CA (United States)

    2006-06-15

    Gas filled halfraum experiments were conducted at the National Ignition Facility which provided an excellent test of the tools needed to understand halfraum energetics in an ignition relevant regime. The experiments used a highly shaped laser pulse and measured large levels of backscattered laser energy. These two components challenge the ability of radiation hydrodynamic simulations to model the experiments. The results show good agreement between experimental measurements and simulations. (authors)

  4. Measurements of gas filled halfraum energetics at the national ignition facility using a single quad

    International Nuclear Information System (INIS)

    Kline, J.L.; Fernandez, J.C.; Goldman, S.R.; Gautier, D.C.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Workman, J.B.; Braun, D.; Landen, O.; Niemann, C.; Campbell, K.; Celeste, J.; Dewald, E.; Glenzer, S.; Hinkel, D.; Holder, J.; Kalantar, D.; Kamperschroer, J.; Kimbrough, J.; Kirkwood, R.; Lee, F.D.; MacGowan, B.; MacKinnon, A.; McDonald, J.; Schein, J.; Schneider, M.; Suter, L.; Young, B.

    2006-01-01

    Gas filled halfraum experiments were conducted at the National Ignition Facility which provided an excellent test of the tools needed to understand halfraum energetics in an ignition relevant regime. The experiments used a highly shaped laser pulse and measured large levels of backscattered laser energy. These two components challenge the ability of radiation hydrodynamic simulations to model the experiments. The results show good agreement between experimental measurements and simulations. (authors)

  5. Recent progress on the National Ignition Facility advanced radiographic capability

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P.; Bowers, M.; Chen, H.; Heebner, J.; Hermann, M.; Kalantar, D.; Martinez, D.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore, this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.

  6. Nova Upgrade program: ignition and beyond

    International Nuclear Information System (INIS)

    Storm, E.; Campbell, E.M.; Hogan, W.J.; Lindl, J.D.

    1993-01-01

    The Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program is addressing the critical physics and technology issues directed toward demonstrating and exploiting ignition and propagating burn to high gain with ICF targets for both defense and civilian applications. Nova is the primary U.S. facility employed in the study of the X-ray-driven (indirect drive) approach to ICF. Nova's principal objective is to demonstrate that laser-driven hohlraums can achieve the conditions of driver-target coupling efficiency, driver irradiation symmetry, driver pulseshaping, target preheat, and hydrodynamic stability required by hot-spot ignition and fuel compression to realize a fusion gain. (author)

  7. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

    OpenAIRE

    Zhengfeng Fan; Yuanyuan Liu; Bin Liu; Chengxin Yu; Ke Lan; Jie Liu

    2017-01-01

    The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016)], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into...

  8. Introduction to the National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E I

    2004-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear bum, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10 8 K and 10 11 bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF

  9. Risk management plan for the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; Lane, M.; Smith, C.; Yatabe, J.

    1998-01-01

    The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of energy. The NIF will focus 192 laser beams onto spherical targets containing a mixture of deuterium and tritium, causing them to implode. This will create the high temperatures and pressures necessary for these targets to undergo fusion. The plan is for NIF to achieve ignition (i.e., self-heating of the fuel) and energy gain (i.e., more fusion energy produced than laser energy deposited) in the laboratory for the first time. A Risk Management Plan was prepared for the NIF design and construction Project. The plan was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide. The objectives of the plan were to: (1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, (2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES ampersand H (environment, safety and health), costs, and schedule, and (3) address each risk in terms of suitable risk management measures. Major risk elements were identified for the NIF Project. A risk assessment methodology was developed, which was utilized to rank the Project risks with respect to one another. Those elements presenting greater risk were readily identified by this process. This paper describes that methodology and the results

  10. Design of a Gamma Reaction History Diagnostic for the National Ignition Facility

    International Nuclear Information System (INIS)

    Malone, R.M.; Cox, B.C.; Frogget, B.C.; Kaufman, M.I.; Tunnell, T.W.; Herrmann, H.W.; Evans, S.C.; Mack, J.M; Young, C.S.; Stoeffl, W.

    2009-01-01

    Gas Cherenkov detectors have been used to convert fusion gammas into photons to achieve gamma reaction history (GRH) measurements. These gas detectors include a converter, pressurized gas volume, relay optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90 o Off-Axis Parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion.1 Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (our response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The detector optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. Because light is collected from source locations throughout the gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation locations along the gas cell. This design incorporates a fixed time delay that allows the detector to recover from prompt radiation. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they traverse the gas volume. A Monte Carlo model of the conversion process from gammas to Cherenkov photons is used to generate photon trajectories. The collection efficiencies for different gamma energies are evaluated. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds. This GRH design is compared to a gas Cherenkov detector that utilizes a Cassegrain reflector now used at the OMEGA laser facility. 1. R. M. Malone, H. W. Herrmann, W. Stoeffl, J. M. Mack, C. S. Young, 'Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 o off-axis parabolic mirrors', Rev. Sci. Instrum. 79, 10E532 (2008)

  11. Modeling characterization of the National Ignition Facility focal spot

    International Nuclear Information System (INIS)

    Williams, W.H.

    1998-01-01

    The predicted focal spot size of the National Ignition Facility laser is parameterized against the finish quality of the optics in the system. Results are reported from simulations which include static optics aberrations, as well as pump-induced distortions, beam self-focusing, and the effect of an adaptive optic. The simulations do not include contributions from optics mounting errors, residual thermal noise in laser slabs from previous shots, air turbulence, a kinoform phase plate, or smoothing by spectral dispersion (SSD). Consequently, these results represent ''first shot of the day'', without-SSD, predictions

  12. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O.; Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A.; Igumenshchev, I.; Chicanne, C.

    2012-01-01

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  13. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Igumenshchev, I. [Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Chicanne, C. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2012-08-15

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  14. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis

    International Nuclear Information System (INIS)

    Amendt, Peter; Colvin, J.D.; Tipton, R.E.; Hinkel, D.E.; Edwards, M.J.; Landen, O.L.; Ramshaw, J.D.; Suter, L.J.; Varnum, W.S.; Watt, R.G.

    2002-01-01

    Analysis and design of indirect-drive National Ignition Facility double-shell targets with hohlraum temperatures of 200 eV and 250 eV are presented. The analysis of these targets includes the assessment of two-dimensional radiation asymmetry and nonlinear mix. Two-dimensional integrated hohlraum simulations indicate that the x-ray illumination can be adjusted to provide adequate symmetry control in hohlraums specially designed to have high laser-coupling efficiency [Suter et al., Phys. Plasmas 7, 2092 (2000)]. These simulations also reveal the need to diagnose and control localized 10-15 keV x-ray emission from the high-Z hohlraum wall because of strong absorption by the high-Z inner shell. Preliminary estimates of the degree of laser backscatter from an assortment of laser-plasma interactions suggest comparatively benign hohlraum conditions. The application of a variety of nonlinear mix models and phenomenological tools, including buoyancy-drag models, multimode simulations and fall-line optimization, indicates a possibility of achieving ignition, i.e., fusion yields greater than 1 MJ. Planned experiments on the Omega laser will test current understanding of high-energy radiation flux asymmetry and mix-induced yield degradation in double-shell targets

  15. Target experimental area and systems of the Us national ignition facility

    International Nuclear Information System (INIS)

    Tobin, M.; Van Wonterghem, B.; MacGowan, B.J.; Hibbard, W.; Kalantar, D.; Lee, F.D.; Pittenger, L.; Wong, K.

    2000-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition we will describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools. (authors)

  16. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a ≥ 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of ∼50 separated in time by ∼0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments

  17. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    International Nuclear Information System (INIS)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-01-01

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view

  18. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  19. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    Science.gov (United States)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  20. Polyimide capsules may hold high pressure DT fuel without cryogenic support for the National Ignition Facility indirect-drive targets

    International Nuclear Information System (INIS)

    Sanchez, J.J.; Letts, S.A.

    1997-01-01

    New target designs for the Omega upgrade laser and ignition targets in the National Ignition Facility (NIF) require thick (80 - 100 microm) cryogenic fuel layers. The Omega upgrade target will require cryogenic handling after initial fill because of the high fill pressures and the thin capsule walls. For the NIF indirectly driven targets, a larger capsule size and new materials offer hope that they can be built, filled and stored in a manner similar to the targets used in the Nova facility without requiring cryogenic handling

  1. The high-foot implosion campaign on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O. A., E-mail: hurricane1@llnl.gov; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15

    The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×10{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

  2. PROMPT DOSE ANALYSIS FOR THE NATIONAL IGNITION FACILITY

    International Nuclear Information System (INIS)

    Khater, H.; Dauffy, L.; Sitaraman, S.; Brereton, S.

    2008-01-01

    Detailed 3-D modeling of the NIF facility is developed to accurately understand the prompt radiation environment within NIF. Prompt dose values are calculated for different phases of NIF operation. Results of the analysis were used to determine the final thicknesses of the Target Bay (TB) and secondary doors as well as the required shield thicknesses for all unused penetrations. Integrated dose values at different locations within the facility are needed to formulate the personnel access requirements within different parts of the facility. The conclusions of this presentation are: (1) The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration; (2) All shielding requirements for Phase I operation are met; (3) Negligible dose values (a fraction of mrem) are expected in normally occupied areas during Phase I; (4) In preparation for the Ignition Campaign and Phase IV of operation, all primary and secondary shield doors will be installed; (5) Unused utility penetrations in the Target Bay and Switchyard walls (∼50%) will be shielded by 1 foot thick concrete to reduce prompt dose inside and outside the NIF facility; (6) During Phase IV, a 20 MJ shot will produce acceptable dose levels in the occupied areas as well as at the nearest site boundary; (7) A comprehensive radiation monitoring plan will be put in place to monitor dose values at large number of locations; and (8) Results of the dose monitoring will be used to modify personnel access requirements if needed

  3. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lee, J. J. [National Security Technologies LLC, Livermore, California 94551 (United States)

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ∼300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub β}). The detectors impulse response function was measured in situ on NIF short-pulse (∼90 ps) experiments, and in off-line tests.

  4. Review of the National Ignition Campaign 2009-2012

    International Nuclear Information System (INIS)

    Lindl, John; Landen, Otto; Edwards, John; Moses, Ed

    2014-01-01

    The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked

  5. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  6. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    International Nuclear Information System (INIS)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.; Hoover, D. E.; Nikroo, A.; Peterson, K. J.

    2014-01-01

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF

  7. Study on the RF power necessary to ignite plasma for the ICP test facility at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haikun [School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China); Li, Dong; Wang, Chenre; Li, Xiaofei; Chen, Dezhi; Liu, Kaifeng; Zhou, Chi; Pan, Ruimin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China)

    2015-10-15

    An Radio-Frequency (RF) Inductively Coupled Plasma (ICP) ion source test facility has been successfully developed at Huazhong University of Science and Technology (HUST). As part of a study on hydrogen plasma, the influence of three main operation parameters on the RF power necessary to ignite plasma was investigated. At 6 Pa, the RF power necessary to ignite plasma influenced little by the filament heating current from 5 A to 9 A. The RF power necessary to ignite plasma increased rapidly with the operation pressure decreasing from 8 Pa to 4 Pa. The RF power necessary to ignite plasma decreased with the number of coil turns from 6 to 10. During the experiments, plasma was produced with the electron density of the order of 10{sup 16}m{sup -3} and the electron temperature of around 4 eV. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Hydro-scaling of DT implosions on the National Ignition Facility

    Science.gov (United States)

    Patel, Pravesh; Spears, Brian; Clark, Dan

    2017-10-01

    Recent implosion experiments on the National Ignition Facility (NIF) exceed 50 kJ in fusion yield and exhibit yield amplifications of >2.5-3x due to alpha-particle self-heating of the hot-spot. Two methods to increase the yield are (i) to improve the implosion quality, or stagnation pressure, at fixed target scale (by increasing implosion velocity, reducing 3D effects, etc.), and (ii) to hydrodynamically scale the capsule and absorbed energy. In the latter case the stagnation pressure remains constant, but the yield-in the absence of alpha-heating-increases as Y S 4 . 5 , where the capsule radius is increased by S, and the absorbed energy by S3 . With alpha-heating the increase with scale is considerably stronger. We present projections in the performance of current DT experiments, and the extrapolations to ignition, based on applying hydro-scaling theory and accounting for the effect of alpha-heating. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Optical Propagation Modeling for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  10. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. V.; Casey, D. T.; Eder, D. C.; Pino, J. E.; Smalyuk, V. A.; Remington, B. A.; Rowley, D. P.; Yeamans, C. B.; Tipton, R. E.; Barrios, M.; Benedetti, R.; Berzak Hopkins, L.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Divol, L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    Gas-filled capsules imploded with indirect drive on the National Ignition Facility have been employed as symmetry surrogates for cryogenic-layered ignition capsules and to explore interfacial mix. Plastic capsules containing deuterated layers and filled with tritium gas provide a direct measure of mix of ablator into the gas fuel. Other plastic capsules have employed DT or D{sup 3}He gas fill. We present the results of two-dimensional simulations of gas-filled capsule implosions with known degradation sources represented as in modeling of inertial confinement fusion ignition designs; these are time-dependent drive asymmetry, the capsule support tent, roughness at material interfaces, and prescribed gas-ablator interface mix. Unlike the case of cryogenic-layered implosions, many observables of gas-filled implosions are in reasonable agreement with predictions of these simulations. Yields of TT and DT neutrons as well as other x-ray and nuclear diagnostics are matched for CD-layered implosions. Yields of DT-filled capsules are over-predicted by factors of 1.4–2, while D{sup 3}He capsule yields are matched, as well as other metrics for both capsule types.

  11. Gated x-ray detector for the National Ignition Facility

    International Nuclear Information System (INIS)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal

    2006-01-01

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections

  12. Target experimental area and systems of the U.S. National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M; Van Wonterghem, B; MacGowan, B J; Hibbard, W; Kalantar, D; Lee, F D; Pittenger, L; Wong, K

    1999-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools

  13. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Megajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i ≥ 0.5 GeV u -1 ) heavy ions, has been proposed

  14. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    Science.gov (United States)

    Basko, M. M.

    2005-10-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Mégajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (Ei>~ 0.5 GeV u-1) heavy ions, has been proposed.

  15. Wavelength Detuning Cross-Beam Energy Transfer Mitigation Scheme for Direct-Drive: Modeling and Evidence from National Ignition Facility Implosions

    Science.gov (United States)

    Marozas, J. A.

    2017-10-01

    Cross-beam energy transfer (CBET) has been shown to significantly reduce the laser absorption and implosion speed in direct-drive implosion experiments on OMEGA and the National Ignition Facility (NIF). Mitigating CBET assists in achieving ignition-relevant hot-spot pressures in deuterium-tritium cryogenic OMEGA implosions. In addition, reducing CBET permits lower, more hydrodynamically stable, in-flight aspect ratio ignition designs with smaller nonuniformity growth during the acceleration phase. Detuning the wavelengths of the crossing beams is one of several techniques under investigation at the University of Rochester to mitigate CBET. This talk will describe these techniques with an emphasis on wavelength detuning. Recent experiments designed and predicted using multidimensional hydrodynamic simulations including CBET on the NIF have exploited the wavelength arrangement of the NIF beam geometry to demonstrate CBET mitigation through wavelength detuning in polar-direct-drive (PDD) implosions. Shapes and trajectories inferred from time-resolved x-ray radiography of the imploding shell, scattered-light spectra, and hard x-ray spectra generated by suprathermal electrons all indicate a reduction in CBET. These results and their implications for direct-drive ignition will be presented and discussed. In addition, hydrodynamically scaled ignition-relevant designs for OMEGA implosions exploiting wavelength detuning will be presented. Changes required to the OMEGA laser to permit wavelength detuning will be discussed. Future plans for PDD on the NIF including more-uniform implosions with CBET mitigation will be explored. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Status and update of the National Ignition Facility radiation effects testing program

    International Nuclear Information System (INIS)

    Davis, J F; Serduke, F J; Wuest, C R.

    1998-01-01

    We are progressing in our efforts to make the National Ignition Facility (NIF) available to the nation as a radiation effects simulator to support the Services needs for nuclear hardness and survivability testing and validation. Details of our program were summarized in a paper presented at the 1998 HEART Conference [1]. This paper describes recent activities and updates plans for NIF radiation effects testing. research. Radiation Effects Testing

  17. Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.

    2017-03-01

    Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the

  18. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  19. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  20. Producing National Ignition Facility (NIF)-quality beams on the Nova and Beamlet lasers

    International Nuclear Information System (INIS)

    Widmayer, C.C.; Auerbach, J.M.; Ehrlich, R.B.

    1996-08-01

    The Nova and Beamlet lasers were used to simulate the beam propagation conditions that will be encountered during the National Ignition Facility operation. Perturbation theory predicts that there is a 5mm scale length propagation mode that experiences large nonlinear power growth. This mode was observed in the tests. Further tests have confirmed that this mode can be suppressed with improved spatial filtering

  1. First laser-plasma interaction and hohlraum experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; Holder, J; McDonald, J W; Niemann, C; Mackinnon, A J; Hammel, B A [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550 (United States)

    2005-12-15

    Recently the first laser-plasma interaction and hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive inertial confinement fusion designs. The effects of laser beam smoothing by spectral dispersion and polarization smoothing on the intense (2 x 10{sup 15} W cm{sup -2}) beam propagation in gas-filled tubes has been studied at up to 7 mm plasma scales as found in indirect drive gas filled ignition hohlraum designs. These experiments have shown the expected full propagation without filamentation and beam break up when using full laser smoothing. In addition, vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the Nova and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment using in analytical models and radiation hydrodynamics calculations with the code LASNEX has been proven in these studies. The comparison of these results with modelling will be discussed.

  2. Electron Shock Ignition of Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  3. Ultraviolet Light Generation and Transport in the Final Optics Assembly of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Feit, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kozlowski, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitman, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-12

    The design of the National Ignition Facility (NIF) includes a Final Optics Assembly (FOA) subsystem for ultraviolet (UV) light generation and transport for each of the 192 beamlines. Analytical and experimental work has been done to help understand and predict the performance of FOA.

  4. Ultra-stable, diode-pumped Nd-doped glass regenerative amplifier for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Crane, J.K.; Martinez, M.; Beach, R.J.; Mitchell, S.; Pratt, G.; Christensen, J.J.

    1995-12-01

    We describe a diode laser-pumped Nd:glass regenerative amplifier that amplifies temporally shaped pulses with low distortion, high pulse-to- pulse stability, and high gain. This laser amplifier is a prototype subsystem for the National Ignition Facility (NIF) laser system. 2 refs., 1 fig

  5. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  6. Beam Diagnostics Systems for the National Ignition Facility

    International Nuclear Information System (INIS)

    Demaret, R D; Boyd, R D; Bliss, E S; Gates, A J; Severyn, J R

    2001-01-01

    The National Ignition Facility (NIF) laser focuses 1.8 megajoules of ultraviolet light (wavelength 351 nanometers) from 192 beams into a 600-micrometer-diameter volume. Effective use of this output in target experiments requires that the power output from all of the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beamline contains 110 major optical components distributed over a 510-meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the interbeam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at three locations along each beamline using 335 photodiodes, 215 calorimeters, and 36 digitizers. Successful operation of such a system requires a high level of automation of the widely distributed sensors. Computer control systems provide the basis for operating the shot diagnostics with repeatable accuracy, assisted by operators who oversee system activities and setup, respond to performance exceptions, and complete calibration and maintenance tasks

  7. Spatial filter lens design for the main laser of the National Ignition Facility

    International Nuclear Information System (INIS)

    Korniski, R.J.

    1998-01-01

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1ω) of 1 053microm Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3ω or λ=351microm) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ''Optical system design of the National Ignition Facility,'' by R Edward English. et al also found in this volume

  8. Gamma Reaction History ablator areal density constraints upon correlated diagnostic modeling of National Ignition Facility implosion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, C., E-mail: cerjan1@llnl.gov; Sayre, D. B.; Landen, O. L.; Church, J. A.; Stoeffl, W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Grafil, E. M. [Colorado School of Mines, Golden, Colorado 80401 (United States); Herrmann, H. W.; Hoffman, N. M.; Kim, Y. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-03-15

    The inelastic neutron scattering induced γ-ray signal from {sup 12}C in an Inertial Confinement Fusion capsule is demonstrated to be an effective and general diagnostic for shell ablator areal density. Experimental acquisition of the time-integrated signal at 4.4 MeV using threshold detection from four gas Čerenkov cells provides a direct measurement of the {sup 12}C areal density near stagnation. Application of a three-dimensional isobaric static model of data acquired in a recent high neutron yield National Ignition Facility experimental campaign reveals two general trends: smaller remaining ablator mass at stagnation and higher shell density with increasing laser drive.

  9. Switch evaluation test system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Reynolds, F.D.

    1997-01-01

    Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100's of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches

  10. User Interface Framework for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Fisher, J M; Bowers, G A; Carey, R W; Daveler, S A; Herndon Ford, K B; Ho, J C; Lagin, L J; Lambert, C J; Mauvais, J; Stout, E A; West, S L

    2007-01-01

    A user interface (UI) framework supports the development of user interfaces to operate the National Ignition Facility (NIF) using the Integrated Computer Control System (ICCS). [1] This framework simplifies UI development and ensures consistency for NIF operators. A comprehensive, layered collection of UIs in ICCS provides interaction with system-level processes, shot automation, and subsystem-specific devices. All user interfaces are written in Java, employing CORBA to interact with other ICCS components. ICCS developers use these frameworks to compose two major types of user interfaces: broadviews and control panels. Broadviews provide a visual representation of the NIF beamlines through interactive schematic drawings. Control panels provide status and control at a device level. The UI framework includes a suite of display components to standardize user interaction through data entry behaviors, common connection and threading mechanisms, and a common appearance. With these components, ICCS developers can more efficiently address usability issues in the facility when needed. The ICCS UI framework helps developers create consistent and easy-to-understand user interfaces for NIF operators

  11. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1993-01-01

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow (∼ 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos' concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable

  12. Los Alamos contribution to target diagnostics on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E. [and others

    1994-07-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ``phase I diagnostics.`` Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given.

  13. Los Alamos contribution to target diagnostics on the National Ignition Facility

    International Nuclear Information System (INIS)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E.

    1994-01-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ''phase I diagnostics.'' Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given

  14. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-03-15

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions

  15. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-01-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P_2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using

  16. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Science.gov (United States)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different

  17. Variable convergence liquid layer implosions on the National Ignition Facility

    Science.gov (United States)

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.; Olson, R. E.; Leeper, R. J.; Braun, T.; Biener, J.; Kline, J. L.; Batha, S. H.; Berzak Hopkins, L.; Bhandarkar, S.; Bradley, P. A.; Crippen, J.; Farrell, M.; Fittinghoff, D.; Herrmann, H. W.; Huang, H.; Khan, S.; Kong, C.; Kozioziemski, B. J.; Kyrala, G. A.; Ma, T.; Meezan, N. B.; Merrill, F.; Nikroo, A.; Peterson, R. R.; Rice, N.; Sater, J. D.; Shah, R. C.; Stadermann, M.; Volegov, P.; Walters, C.; Wilson, D. C.

    2018-05-01

    Liquid layer implosions using the "wetted foam" technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. We report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ˜ 12, but we observe a significant discrepancy at CR ˜ 20. This may be due to suppressed hot-spot formation or an anomalous energy loss mechanism.

  18. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  19. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    International Nuclear Information System (INIS)

    Perkins, L.J.; Betti, R.; Schurtz, G.P.; Craxton, R.S.; Dunne, A.M.; LaFortune, K.N.; Schmitt, A.J.; McKenty, P.W.; Bailey, D.S.; Lambert, M.A.; Ribeyre, X.; Theobald, W.R.; Strozzi, D.J.; Harding, D.R.; Casner, A.; Atzemi, S.; Erbert, G.V.; Andersen, K.S.; Murakami, M.; Comley, A.J.; Cook, R.C.; Stephens, R.B.

    2010-01-01

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term (∼3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of ∼60 may be achievable on NIF at laser drive energies around ∼0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R and D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  20. Opto-mechanical assembly procurement for the National Ignition Facility

    International Nuclear Information System (INIS)

    House, W.; Simon, T.

    1999-01-01

    A large number of the small optics procurements for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be in the form of completely assembled, tested, and cleaned subsystems. These subsystems will be integrated into the NIF at LLNL. To accomplish this task, the procurement packages will include, optical and mechanical drawings, acceptance test and cleanliness requirements. In January 1999, the first such integrated opto-mechanical assembly was received and evaluated at LLNL. With the successful completion of this important trial procurement, we were able to establish the viability of purchasing clean, ready to install, opto-mechanical assemblies from vendors within the optics industry. 32 vendors were chosen from our supplier database for quote, then five were chosen to purchase from. These five vendors represented a cross section of the optics industry. From a ''value'' catalog supplier (that did the whole job internally) to a partnership between three specialty companies, these vendors demonstrated they have the ingenuity and capability to deliver cost competitive, NIF-ready, opto- mechanical assemblies. This paper describes the vendor selection for this procurement, technical requirements including packaging, fabrication, coating, and cleanliness specifications, then testing and verification. It also gives real test results gathered from inspections performed at LLNL that show how our vendors scored on the various requirements. Keywords: Opto-Mechanical, assembly, NIF, packaging, shipping, specifications, procurement, MIL-STD-1246C, surface cleanliness

  1. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  2. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    International Nuclear Information System (INIS)

    Dobson, D.; Churby, A.; Krieger, E.; Maloy, D.; White, K.

    2011-01-01

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance and Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  3. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  4. Summary of the first neutron image data collected at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Grim Gary P.

    2013-11-01

    Full Text Available A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF, Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of data and measurements made to date. Data from directly driven, DT filled microballoons, as well as indirectly driven, cryogenically layered ignition experiments are presented. The data show that the primary cores from directly driven implosions are approximately twice as large, 64 ± 3 μm, as indirectly driven cores, 25 ± 4 and 29 ± 4 μm and more asymmetric, P2/P0 = 47% vs. − 14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

  5. National ignition facility environment, safety, and health management plan

    International Nuclear Information System (INIS)

    1995-11-01

    The ES ampersand H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES ampersand H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK

  6. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  7. Demonstration of Efficient Core Heating of Magnetized Fast Ignition in FIREX project

    Science.gov (United States)

    Johzaki, Tomoyuki

    2017-10-01

    Extensive theoretical and experimental research in the FIREX ``I project over the past decade revealed that the large angular divergence of the laser generated electron beam is one of the most critical problems inhibiting efficient core heating in electron-driven fast ignition. To solve this problem, beam guiding using externally applied kilo-tesla class magnetic field was proposed, and its feasibility has recently been numerically demonstrated. In 2016, integrated experiments at ILE Osaka University demonstrated core heating efficiencies reaching > 5 % and heated core temperatures of 1.7 keV. In these experiments, a kilo-tesla class magnetic field was applied to a cone-attached Cu(II) oleate spherical solid target by using a laser-driven capacitor-coil. The target was then imploded by G-XII laser and heated by the PW-class LFEX laser. The heating efficiency was evaluated by measuring the number of Cu-K- α photons emitted. The heated core temperature was estimated by the X-ray intensity ratio of Cu Li-like and He-like emission lines. To understand the detailed dynamics of the core heating process, we carried out integrated simulations using the FI3 code system. Effects of magnetic fields on the implosion and electron beam transport, detailed core heating dynamics, and the resultant heating efficiency and core temperature will be presented. I will also discuss the prospect for an ignition-scale design of magnetized fast ignition using a solid ball target. This work is partially supported by JSPA KAKENHI Grant Number JP16H02245, JP26400532, JP15K21767, JP26400532, JP16K05638 and is performed with the support and the auspices of the NIFS Collaboration Research program (NIFS12KUGK057, NIFS15KUGK087).

  8. Analysis of thermal issues associated with the pre-amplifier modules in the National Ignition Facility

    International Nuclear Information System (INIS)

    Lam, K.L.

    1998-01-01

    The design of the National Ignition Facility (NIF) calls for a desired temperature field of 20.00 ± 0.28 C throughout the facility. This design requirement is needed to prevent degradation of the operating performance and net yield of the NIF by heat loads generated within the facility. In particular, the potential interference of waste heat from the lighting fixtures and equipment such as the electronics racks, and pre-amplifier modules (PAMs), and its impact on the operational performance of the laser beam transport tubes and optical alignment components must be evaluated. This report describes the thermal analyses associated with the PAMs. Evaluation of thermal issues for the other equipment is discussed elsewhere

  9. Optimization of the National Ignition Facility primary shield design

    International Nuclear Information System (INIS)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F.

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries

  10. A recoverable gas-cell diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A., E-mail: ratkiewicz1@llnl.gov; Berzak Hopkins, L.; Bleuel, D. L.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 95440 (United States); Bernstein, L. A.; Bibber, K. van; Goldblum, B. L. [University of California, Berkeley, California 94720 (United States); Siem, S. [University of Oslo, N-0316 Oslo (Norway); Wiedeking, M. [iThemba LABS, Somerset West 7129 (South Africa)

    2016-11-15

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of {sup nat}Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  11. A recoverable gas-cell diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Ratkiewicz, A; Berzak Hopkins, L; Bleuel, D L; Bernstein, L A; van Bibber, K; Cassata, W S; Goldblum, B L; Siem, S; Velsko, C A; Wiedeking, M; Yeamans, C B

    2016-11-01

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of nat Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  12. PLASMA ELECTRODE POCKELS CELL SUBSYSTEM PERFORMANCE IN THE NATIONAL IGNITION FACILITY

    International Nuclear Information System (INIS)

    Barbosa, F; Arnold, P; Hinz, A; Zacharias, R; Ollis, C; Fulkerson, E; Mchale, B; Runtal, A; Bishop, C

    2007-01-01

    The Plasma Electrode Pockels Cell (PEPC) subsystem is a key component of the National Ignition Facility, enabling the laser to employ an efficient four-pass main amplifier architecture. PEPC relies on a pulsed power technology to initiate and maintain plasma within the cells and to provide the necessary high voltage bias to the cells nonlinear crystals. Ultimately, nearly 300 high-voltage, high-current pulse generators will be deployed in the NIF in support of PEPC. Production of solid-state plasma pulse generators and thyratron-switched pulse generators is now complete, with the majority of the hardware deployed in the facility. An entire cluster (one-fourth of a complete NIF) has been commissioned and is operating on a routine basis, supporting laser shot operations. Another cluster has been deployed, awaiting final commissioning. Activation and commissioning of new hardware continues to progress in parallel, driving toward a goal of completing the PEPC subsystem in late 2007

  13. Planning Tools For Estimating Radiation Exposure At The National Ignition Facility

    International Nuclear Information System (INIS)

    Verbeke, J.; Young, M.; Brereton, S.; Dauffy, L.; Hall, J.; Hansen, L.; Khater, H.; Kim, S.; Pohl, B.; Sitaraman, S.

    2010-01-01

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10 16 D-T shot and will be presented in this paper.

  14. Management Of Experiments And Data At The National Ignition Facility

    International Nuclear Information System (INIS)

    Azevedo, S.; Casey, A.; Beeler, R.; Bettenhausen, R.; Bond, E.; Chandrasekaran, H.; Foxworthy, C.; Hutton, M.; Krammen, J.; Liebman, J.; Marsh, A.; Pannell, T.; Rhodes, J.; Tappero, J.; Warrick, A.

    2011-01-01

    Experiments, or 'shots', conducted at the National Ignition Facility (NIF) are discrete events that occur over a very short time frame (tens of nanoseconds) separated by many hours. Each shot is part of a larger campaign of shots to advance scientific understanding in high-energy-density physics. In one campaign, scientists use energy from the 192-beam, 1.8-Megajoule pulsed laser in the NIF system to symmetrically implode a hydrogen-filled target, thereby creating conditions similar to the interior of stars in a demonstration of controlled fusion. Each NIF shot generates gigabytes of data from over 30 diagnostics that measure optical, x-ray, and nuclear phenomena from the imploding target. We have developed systems to manage all aspects of the shot cycle. Other papers will discuss the control of the lasers and targets, while this paper focuses on the setup and management of campaigns and diagnostics. Because of the low duty cycle of shots, and the thousands of adjustments for each shot (target type, composition, shape; laser beams used, their power profiles, pointing; diagnostic systems used, their configuration, calibration, settings) it is imperative that we accurately define all equipment prior to the shot. Following the shot, and capture of the data by the automatic control system, it is equally imperative that we archive, analyze and visualize the results within the required 30 minutes post-shot. Results must be securely archived, approved, web-visible and downloadable in order to facilitate subsequent publication. To-date NIF has successfully fired over 2,500 system shots, as well as thousands of test firings and dry-runs. We will present an overview of the highly-flexible and scalable campaign management systems and tools employed at NIF that control experiment configuration of the facility all the way through presentation of analyzed results.

  15. Opportunities for Integrated Fast Ignition program

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Key, M. H.; Hatchett, S. P.; Tabak, M.; Town, R.; Gregori, G.; Patel, P. K.; Snavely, R.; Freeman, R. R.; Stephens, R. B.; Beg, F.

    2005-01-01

    Experiments designed to investigate the physics of particle transport and heating of dense plasmas have been carried out in an number of facilities around the world since the publication of the fast ignition concept in 1997. To date a number of integrated experiments, examining the capsule implosion and subsequent heating have been carried out on the Gekko facility at the Institute of Laser Engineering (ILE) Osaka, Japan. The coupling of energy by the short pulse into the pre-compressed core in these experiments was very encouraging. More facilities capable of carrying out integrated experiments are currently under construction: Firex at ILEm the Omega EP facility at the University of Rochester, Z PW at Sandia National Lab, LIL in France and eventually high energy PW beams on the NIF. This presentation will review the current status of experiments in this area and discuss the capabilities of integrated fast ignition research that will be required to design the proof of principle and scaling experiments for fast ignition to be carried on the NIF. (Author)

  16. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  17. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  18. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, M.A.; Vinikour, W. [Argonne National Lab., IL (United States). Environmental Assessment Div.; Allison, T. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.] [and others

    1996-09-01

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  19. Pulse heating and ignition for off-centre ignited targets

    International Nuclear Information System (INIS)

    Mahdy, A.I.; Takabe, H.; Mima, K.

    1999-01-01

    An off-centre ignition model has been used to study the ignition conditions for laser targets related to the fast ignition scheme. A 2-D hydrodynamic code has been used, including alpha particle heating. The main goal of the study is the possibility of obtaining a high gain ICF target with fast ignition. In order to determine the ignition conditions, samples with various compressed core densities having different spark density-radius product (i.e. areal density) values were selected. The study was carried out in the presence of an external heating source, with a constant heating rate. A dependence of the ignition conditions on the heating rate of the external pulse is demonstrated. For a given set of ignition conditions, our simulation showed that an 11 ps pulse with 17 kJ of injected energy into the spark area was required to achieve ignition for a compressed core with a density of 200 g/cm 3 and 0.5 g/cm 2 spark areal density. It is shown that the ignition conditions are highly dependent on the heating rate of the external pulse. (author)

  20. National Ignition Facility (NIF) Control Network Design and Analysis

    International Nuclear Information System (INIS)

    Bryant, R M; Carey, R W; Claybourn, R V; Pavel, G; Schaefer, W J

    2001-01-01

    The control network for the National Ignition Facility (NIF) is designed to meet the needs for common object request broker architecture (CORBA) inter-process communication, multicast video transport, device triggering, and general TCP/IP communication within the NIF facility. The network will interconnect approximately 650 systems, including the embedded controllers, front-end processors (FEPs), supervisory systems, and centralized servers involved in operation of the NIF. All systems are networked with Ethernet to serve the majority of communication needs, and asynchronous transfer mode (ATM) is used to transport multicast video and synchronization triggers. CORBA software infra-structure provides location-independent communication services over TCP/IP between the application processes in the 15 supervisory and 300 FEP systems. Video images sampled from 500 video cameras at a 10-Hz frame rate will be multicast using direct ATM Application Programming Interface (API) communication from video FEPs to any selected operator console. The Ethernet and ATM control networks are used to broadcast two types of device triggers for last-second functions in a large number of FEPs, thus eliminating the need for a separate infrastructure for these functions. Analysis, design, modeling, and testing of the NIF network has been performed to provide confidence that the network design will meet NIF control requirements

  1. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S ampersand H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules

  2. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  3. Design of the target area for the National Ignition Facility

    International Nuclear Information System (INIS)

    Foley, R.J.; Karpenko, V.P.; Adams, C.H.

    1997-01-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described

  4. Advances in shock timing experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Robey, H F; Celliers, P M; Moody, J D; Sater, J; Parham, T; Kozioziemski, B; Dylla- Spears, R; Ross, J S; LePape, S; Ralph, J E; Hohenberger, M; Dewald, E L; Berzak Hopkins, L; Kroll, J J; Yoxall, B E; Hamza, A V; Landen, O L; Edwards, M J; Boehly, T R; Nikroo, A

    2016-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. (paper)

  5. Advances in shock timing experiments on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  6. Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.

    1996-10-01

    We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)

  7. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    Science.gov (United States)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a

  8. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    Science.gov (United States)

    Leach, Richard R.; Awwal, Abdul A. S.; Lowe-Webb, Roger; Miller-Kamm, Victoria; Orth, Charles; Roberts, Randy; Wilhelmsen, Karl

    2016-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.

  9. First beryllium capsule implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  10. Polar-direct-drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); and others

    2015-05-15

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D{sub 2} gas were imploded with total drive energies ranging from ∼500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 × 10{sup 14} to 1.2 × 10{sup 15 }W/cm{sup 2}. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  11. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  12. Inertial Confinement Fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Most important recent advances in inertial confinement fusion (ICF) are highlighted. With the construction of the NIF and LMJ facilities, and a number of improvements in the target design, the conventional indirect-drive approach is making a steady progress towards demonstration of ignition and high gain. The development of the polar direct-drive concept made also the prospects for direct-drive ignition on the NIF extremely favorable. A substantial progress has been reported from the Institute of Laser Engineering in Osaka on exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at a lowest possible cost. In heavy ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i > or ∼ 0.5 GeV/u) heavy ions, has been proposed. (author)

  13. Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis

    Science.gov (United States)

    Amendt, Peter; Shestakov, A. I.; Landen, O. L.; Bradley, D. K.; Pollaine, S. M.; Suter, L. J.; Turner, R. E.

    2001-06-01

    Several techniques for inferring the degree of flux symmetry in indirectly driven cylindrical hohlraums have been developed over the past several years for eventual application to the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. These methods use various ignition capsule surrogates, including non-cryogenic imploded capsules [Hauer et al., Phys. Plasmas 2, 2488 (1995)], backlit aerogel foamballs [Amendt et al., Rev. Sci. Instrum. 66, 785 (1995)], reemission balls [Delamater, Magelssen, and Hauer, Phys. Rev. E 53, 5240 (1996)], and backlit thinshells [Pollaine et al., Phys. Plasmas 8, 2357 (2001)]. Recent attention has focussed on the backlit thinshells as a promising means for detecting higher-order Legendre flux asymmetries, e.g., P6 and P8, which are predicted to be important sources of target performance degradation on the NIF for levels greater than 1% [Haan et al., Phys. Plasmas 2, 2490 (1995)]. A key property of backlit thinshells is the strong amplification of modal flux asymmetry imprinting with shell convergence. A simple single-parameter analytic description based on a rocket model is presented which explores the degree of linearity of the shell response to an imposed flux asymmetry. Convergence and mass ablation effects introduce a modest level of nonlinearity in the shell response. The effect of target fabrication irregularities on shell distortion is assessed with the rocket model and particular sensitivity to shell thickness variations is shown. The model can be used to relate an observed or simulated backlit implosion trajectory to an ablation pressure asymmetry history. Ascertaining this history is an important element for readily establishing the degree of surrogacy of a symmetry target for a NIF ignition capsule.

  14. Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis

    International Nuclear Information System (INIS)

    Amendt, Peter; Shestakov, A.I.; Landen, O.L.; Bradley, D.K.; Pollaine, S.M.; Suter, L.J.; Turner, R.E.

    2001-01-01

    Several techniques for inferring the degree of flux symmetry in indirectly driven cylindrical hohlraums have been developed over the past several years for eventual application to the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. These methods use various ignition capsule surrogates, including non-cryogenic imploded capsules [Hauer et al., Phys. Plasmas 2, 2488 (1995)], backlit aerogel foamballs [Amendt et al., Rev. Sci. Instrum. 66, 785 (1995)], reemission balls [Delamater, Magelssen, and Hauer, Phys. Rev. E 53, 5240 (1996)], and backlit thinshells [Pollaine et al., Phys. Plasmas 8, 2357 (2001)]. Recent attention has focussed on the backlit thinshells as a promising means for detecting higher-order Legendre flux asymmetries, e.g., P6 and P8, which are predicted to be important sources of target performance degradation on the NIF for levels greater than 1% [Haan et al., Phys. Plasmas 2, 2490 (1995)]. A key property of backlit thinshells is the strong amplification of modal flux asymmetry imprinting with shell convergence. A simple single-parameter analytic description based on a rocket model is presented which explores the degree of linearity of the shell response to an imposed flux asymmetry. Convergence and mass ablation effects introduce a modest level of nonlinearity in the shell response. The effect of target fabrication irregularities on shell distortion is assessed with the rocket model and particular sensitivity to shell thickness variations is shown. The model can be used to relate an observed or simulated backlit implosion trajectory to an ablation pressure asymmetry history. Ascertaining this history is an important element for readily establishing the degree of surrogacy of a symmetry target for a NIF ignition capsule

  15. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Science.gov (United States)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  16. Hydrodynamic instability growth and mix experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L. [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States); and others

    2014-05-15

    Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ∼2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

  17. Study of the shock ignition scheme in inertial confinement fusion

    International Nuclear Information System (INIS)

    Lafon, M.

    2011-01-01

    The Shock Ignition (SI) scheme is an alternative to classical ignition schemes in Inertial Confinement Fusion. Its singularity relies on the relaxation of constraints during the compression phase and fulfilment of ignition conditions by launching a short and intense laser pulse (∼500 ps, ∼300 TW) on the pre-assembled fuel at the end of the implosion.In this thesis, it has been established that the SI process leads to a non-isobaric fuel configuration at the ignition time thus modifying the ignition criteria of Deuterium-Tritium (DT) against the conventional schemes. A gain model has been developed and gain curves have been inferred and numerically validated. This hydrodynamical modeling has demonstrated that the SI process allows higher gain and lower ignition energy threshold than conventional ignition due to the high hot spot pressure at ignition time resulting from the ignitor shock propagation.The radiative hydrodynamic CHIC code developed at the CELIA laboratory has been used to determine parametric dependences describing the optimal conditions for target design leading to ignition. These numerical studies have enlightened the potential of SI with regards to saving up laser energy, obtain high gains but also to safety margins and ignition robustness.Finally, the results of the first SI experiments performed in spherical geometry on the OMEGA laser facility (NY, USA) are presented. An interpretation of the experimental data is proposed from mono and bidimensional hydrodynamic simulations. Then, different trails are explored to account for the differences observed between experimental and numerical data and alternative solutions to improve performances are suggested. (author) [fr

  18. Ignition properties of nuclear grade activated carbons

    International Nuclear Information System (INIS)

    Freeman, W.P.; Hunt, J.R.; Kovach, J.L.

    1983-01-01

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH 3 131 I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  19. Visualization of target inspection data at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel, E-mail: potter15@llnl.gov [Lawrence Livermore National Laboratory (United States); Antipa, Nick, E-mail: antipa1@llnl.gov [Lawrence Livermore National Laboratory (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Target surfaces are measured using a phase-shifting diffraction interferometer. Black-Right-Pointing-Pointer Datasets are several gigabytes that consist of tens to hundreds of files. Black-Right-Pointing-Pointer Software tools that provide a high-level overview of the entire dataset. Black-Right-Pointing-Pointer Single datasets loaded into the visualization session can be individually rotated. Black-Right-Pointing-Pointer Multiple datasets with common features are found then datasets can be aligned. - Abstract: As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

  20. The Full Aperture Backscatter Station Measurement System on the National Ignition Facility

    International Nuclear Information System (INIS)

    Bower, D; McCarville, T; Alvarez, S; Ault, L; Brown, M; Chrisp, M; Damian, C; DeHope, W; Froula, D; Glenzer, S; Grace, S; Gu, K; Holdener, F; Huffer, C; Kamperschroer, J; Kelleher, T; Kimbrough, J

    2004-01-01

    A Full Aperture Backscatter Station (FABS) target diagnostic has been activated on the first four beams of the National Ignition Facility (NIF). Backscattered light from the target propagates back down the beam path into the FABS diagnostic system. FABS measures both stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) with a suite of measurement instruments. Digital cameras and spectrometers record spectrally resolved energy for both P and S polarized light. Streaked spectrometers measure the spectral and temporal behavior of the backscattered light. Calorimeters and fast photodetectors measure the integrated energy and temporal behavior of the light, respectively. This paper provides an overview of the FABS measurements system and detailed descriptions of the diagnostic instruments and the optical path

  1. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    International Nuclear Information System (INIS)

    1995-01-01

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States

  2. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-19

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

  3. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

    Directory of Open Access Journals (Sweden)

    Zhengfeng Fan

    2017-01-01

    Full Text Available The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into the hot spot are less than unity assuming electrons and ions have the same temperature [Meezan et al., Phys. Plasmas 22, 062703 (2015], which is not self-consistent because it can lead to negative ablator mixing into the hot spot. Actually, this non-consistency implies ion-electron non-equilibrium within the hot spot. From our study, we can infer that ion-electron non-equilibrium exists in high-foot implosions and the ion temperature could be ∼9% larger than the equilibrium temperature in some NIF shots.

  4. Three-Dimensional Simulations of Flat-Foil Laser-Imprint Experiments at the National Ignition Facility

    Science.gov (United States)

    Shvydky, A.; Radha, P. B.; Rosenberg, M. J.; Anderson, K. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Hohenberger, M.; di Nicola, J. M.; Koning, J. M.; Marinak, M. M.; Masse, L.; Karasik, M.

    2017-10-01

    Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical for the success of direct-drive ignition at the National Ignition Facility (NIF). To measure a level of imprint and its reduction by the NIF smoothing by spectral dispersion (SSD), we performed experiments that employed flat CH foils driven with a single NIF beam with either no SSD or the NIF indirect-drive SSD applied to the laser pulse. Face-on x-ray radiography was used to measure optical depth variations, from which the amplitudes of the foil areal-density modulations were obtained. Results of 3-D, radiation-hydrodynamic code HYDRA simulations of the growth of the imprint-seeded perturbations are presented and compared with the experimental data. This work was supported by the U.S. Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract Number DE-AC52-07NA27344.

  5. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  6. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    Science.gov (United States)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  7. National Ignition Facility and Managing Location, Component, and State

    Energy Technology Data Exchange (ETDEWEB)

    Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

    2011-07-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  8. National Ignition Facility and Managing Location, Component, and State

    International Nuclear Information System (INIS)

    Foxworthy, C.; Fung, T.; Beeler, R.; Li, J.; Dugorepec, J.; Chang, C.

    2011-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  9. Control System For Cryogenic THD Layering At The National Ignition Facility

    International Nuclear Information System (INIS)

    Fedorov, M.; Blubaugh, J.; Edwards, O.; Mauvais, M.; Sanchez, R.; Wilson, B.

    2011-01-01

    The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 (micro)m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

  10. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

    2014-11-15

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10 keV is optimized for scattering experiments using a Zn He-α x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/ΔE = 220 at 9.8 keV.

  11. Software quality assurance plan for the National Ignition Facility integrated computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project`s controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy`s (DOE`s) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project.

  12. Software quality assurance plan for the National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project's controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy's (DOE's) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project

  13. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Science.gov (United States)

    Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Kyrala, G. A.; Springer, P.; Bradley, D. K.; Town, R. P. J.

    2016-11-01

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ˜4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  14. Development of a High Resolution X-ray Spectrometer on the National Ignition Facility

    Science.gov (United States)

    Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.

    2017-10-01

    A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  15. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. F., E-mail: khan9@llnl.gov; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Springer, P.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  16. Shock ignition targets: gain and robustness vs ignition threshold factor

    Science.gov (United States)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  17. Experiment archive, analysis, and visualization at the National Ignition Facility

    International Nuclear Information System (INIS)

    Hutton, Matthew S.; Azevedo, Stephen; Beeler, Richard; Bettenhausen, Rita; Bond, Essex; Casey, Allan; Liebman, Judith; Marsh, Amber; Pannell, Thomas; Warrick, Abbie

    2012-01-01

    Highlights: ► We show the computing architecture to manage scientific data from NIF experiments. ► NIF laser “shots” generate GBs of data for sub-microsec events separated by hours. ► Results are archived, analyzed and displayed with parallel and scalable code. ► Data quality and pedigree, based on calibration of each part, are tracked. ► Web-based visualization tools present data across shots and diagnostics. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is the world's most energetic laser, providing a scientific research center to study inertial confinement fusion and matter at extreme energy densities and pressures. A target shot involves over 30 specialized diagnostics measuring critical x-ray, optical and nuclear phenomena to quantify ignition results for comparison with computational models. The Shot Analysis and Visualization System (SAVI) acquires and analyzes target diagnostic data for display within a time-budget of 30 min. Laser and target diagnostic data are automatically loaded into the NIF archive database through clustered software data collection agents. The SAVI Analysis Engine distributes signal and image processing tasks to a Linux cluster where computation is performed. Intermediate results are archived at each step of the analysis pipeline. Data is archived with metadata and pedigree. Experiment results are visualized through a web-based user interface in interactive dashboards tailored to single or multiple shot perspectives. The SAVI system integrates open-source software, commercial workflow tools, relational database and messaging technologies into a service-oriented and distributed software architecture that is highly parallel, scalable, and flexible. The architecture and functionality of the SAVI system will be presented along with examples.

  18. Direct drive: Simulations and results from the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2016-05-15

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  19. National Ignition Facility TestController for automated and manual testing

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Jason, E-mail: fishler2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2012-12-15

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  20. National Ignition Facility TestController for automated and manual testing

    International Nuclear Information System (INIS)

    Zielinski, Jason

    2012-01-01

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  1. Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

    Science.gov (United States)

    Shang, W.; Betti, R.

    2016-10-01

    Shock ignition uses a late strong shock to ignite the hot spot of an inertial confinement fusion capsule. In the standard shock-ignition scheme, an ignitor shock is launched by the ablation pressure from a spike in laser intensity. Recent experiments on OMEGA have shown that focused beams with intensity up to 6 ×1015 W /cm2 can produce copious amounts of hot electrons. The hot electrons are produced by laser-plasma instabilities (LPI's) and can carry up to 15 % of the instantaneous laser power. Megajoule-scale targets will likely produce even more hot electrons because of the large plasma scale length. We show that it is possible to design ignition targets with low implosion velocities that can be shock ignited using LPI-generated hot electrons to obtain high energy gains. These designs are robust to low-mode asymmetries and they ignite even for highly distorted implosions. Electron shock ignition requires tens of kilojoules of hot electrons, which can only be produced on a large laser facility like the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility.

    Science.gov (United States)

    Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T

    2018-02-23

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3  Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

  3. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  4. Large optics for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baisden, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.

  5. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  6. Large optics for the National Ignition Facility

    International Nuclear Information System (INIS)

    Baisden, P.

    2015-01-01

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world's largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF's high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.

  7. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J.

    2016-01-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  8. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-05-15

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  9. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    International Nuclear Information System (INIS)

    Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.; Regan, S. P.; Epstein, R.; Kyrala, G. A.

    2013-01-01

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer

  10. Reconstruction of 2D x-ray radiographs at the National Ignition Facility using pinhole tomography (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Field, J. E., E-mail: field9@llnl.gov; Rygg, J. R.; Barrios, M. A.; Benedetti, L. R.; Döppner, T.; Izumi, N.; Jones, O.; Khan, S. F.; Ma, T.; Nagel, S. R.; Pak, A.; Tommasini, R.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15

    Two-dimensional radiographs of imploding fusion capsules are obtained at the National Ignition Facility by projection through a pinhole array onto a time-gated framing camera. Parallax among images in the image array makes it possible to distinguish contributions from the capsule and from the backlighter, permitting correction of backlighter non-uniformities within the capsule radiograph. Furthermore, precise determination of the imaging system geometry and implosion velocity enables combination of multiple images to reduce signal-to-noise and discover new capsule features.

  11. Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)

    International Nuclear Information System (INIS)

    Kim, Yong Ho; Evans, Scott C.; Herrmann, Hans W.; Mack, Joseph M.; Young, Carl S.; Malone, Robert M.; Cox, Brian C.; Frogget, Brent C.; Kaufman, Morris I.; Tunnell, Thomas W.; Tibbitts, Aric; Palagi, Martin J.; Stoeffl, Wolfgang

    2010-01-01

    The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

  12. Hot-wire ignition of AN-based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Richard; Goldthorp, Sandra; Badeen, Christopher M. [Canadian Explosives Research Laboratory, Natural Resources Canada, Ottawa, Ontario, K1A 0G1 (Canada); Chan, Sek Kwan [Orica Canada Inc., Brownsburg-Chatham, Quebec (Canada)

    2008-12-15

    Emulsions based on ammonium nitrate (AN) and water locally ignited by a heat source do not undergo sustained combustion when the pressure is lower than some threshold value usually called the Minimum Burning Pressure (MBP). This concept is now being used by some manufacturers as a basis of safety. However, before a technique to reliably measure MBP values can be designed, one must have a better understanding of the ignition mechanism. Clearly, this is required to avoid under ignitions which could lead to the erroneous interpretation of failures to ignite as failures to propagate. In the present work, facilities to prepare and characterize emulsions were implemented at the Canadian Explosives Research Laboratory. A calibrated hot-wire ignition system operated in a high-pressure vessel was also built. The system was used to study the ignition characteristics of five emulsion formulations as a function of pressure and ignition source current. It was found that these mixtures exhibit complicated pre-ignition stages and that the appearance of endotherms when the pressure is lowered below some threshold value correlates with the MBP. Thermal conductivity measurements using this hot-wire system are also reported. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  13. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    International Nuclear Information System (INIS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  14. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Labaria, George R. [Univ. of California, Santa Cruz, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warrick, Abbie L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, Peter M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kalantar, Daniel H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  15. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-09-15

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T{sub 2}-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  16. Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project.

    Science.gov (United States)

    Vick, James E.

    These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…

  17. Role of the laboratory for laser energetics in the National Ignition Facility Project

    International Nuclear Information System (INIS)

    Soures, J.M.; Loucks, S.J.; McCrory, R.L.

    1996-01-01

    The National Ignition Facility (NIF) is a 192-beam, 1.8-MJ (ultraviolet) laser facility that is currently planned to start operating in 2002. The NIF mission is to provide data critical to this Nation's science-based stockpile stewardship (SBSS) program and to advance the understanding of inertial confinement fusion and assess its potential as an energy source. The NIF project involves a collaboration among the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester's Laboratory for Laser Energetics (UR/LLE). In this paper, the role of the University of Rochester in the research, development, and planning required to assure the success of the NIF will be presented. The principal roles of the UR/LLE in the NIF are (1) validation of the direct-drive approach to NIF using the OMEGA 60-beam, 40-kJ UV laser facility; (2) support of indirect-drive physics experiments using OMEGA in collaboration with LLNL and LANL; (3) development of plasma diagnostics for NIF; (4) development of beam-smoothing techniques; and (5) development of thin-film coatings for NIF and cryogenic-fuel-layer targets for eventual application to NIF. 3 refs., 6 figs

  18. National Ignition Facility, High-Energy-Density and Inertial Confinement Fusion, Peer-Review Panel (PRP) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keane, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-28

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is operated as a National Nuclear Security Administration (NNSA) user facility in accordance with Department of Energy (DOE) best practices, including peer-reviewed experiments, regular external reviews of performance, and the use of a management structure that facilitates user and stakeholder feedback. NIF facility time is managed using processes similar to those in other DOE science facilities and is tailored to meet the mix of missions and customers that NIF supports. The NIF Governance Plan describes the process for allocating facility time on NIF and for creating the shot schedule. It also includes the flow of responsibility from entity to entity. The plan works to ensure that NIF meets its mission goals using the principles of scientific peer review, including transparency and cooperation among the sponsor, the NIF staff, and the various user communities. The NIF Governance Plan, dated September 28, 2012, was accepted and signed by LLNL Director Parney Albright, NIF Director Ed Moses, and Don Cook and Thomas D’Agostino of NNSA. Figure 1 shows the organizational structure for NIF Governance.

  19. Hohlraum modeling for opacity experiments on the National Ignition Facility

    Science.gov (United States)

    Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.

    2018-06-01

    This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.

  20. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  1. Shock Timing Plan for the National Ignition Campaign

    Science.gov (United States)

    Munro, D. H.; Robey, H. F.; Spears, B. K.; Boehly, T. R.

    2006-10-01

    We report progress on the design of the shock timing tuning procedure for the 2010 ignition campaign at the National Ignition Facility. Our keyhole target design provides adequate drive surrogacy for us to time the first three shocks empirically. The major risk to our plan is hard x-ray preheat, which can cause the diagnostic window to become opaque.

  2. Laser driven inertial fusion: the physical basis of current and recently proposed ignition experiments

    International Nuclear Information System (INIS)

    Atzeni, S

    2009-01-01

    A brief overview of the inertial fusion principles and schemes is presented. The bases for the laser driven ignition experiments programmed for the near future at the National Ignition Facility are outlined. These experiments adopt indirect-drive and aim at central ignition. The principles of alternate approaches, based on direct-drive and different routes to ignition (fast ignition and shock ignition) are also discussed. Gain curves are compared and discussed.

  3. Modeling the National Ignition Facility neutron imaging system.

    Science.gov (United States)

    Wilson, D C; Grim, G P; Tregillis, I L; Wilke, M D; Patel, M V; Sepke, S M; Morgan, G L; Hatarik, R; Loomis, E N; Wilde, C H; Oertel, J A; Fatherley, V E; Clark, D D; Fittinghoff, D N; Bower, D E; Schmitt, M J; Marinak, M M; Munro, D H; Merrill, F E; Moran, M J; Wang, T-S F; Danly, C R; Hilko, R A; Batha, S H; Frank, M; Buckles, R

    2010-10-01

    Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.

  4. Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester

    KAUST Repository

    Jaasim, Mohammed

    2018-04-04

    Numerical simulations were conducted to systematically assess the effects of different spray models on the ignition delay predictions and compared with experimental measurements obtained at the KAUST ignition quality tester (IQT) facility. The influence of physical properties and chemical kinetics over the ignition delay time is also investigated. The IQT experiments provided the pressure traces as the main observables, which are not sufficient to obtain a detailed understanding of physical (breakup, evaporation) and chemical (reactivity) processes associated with auto-ignition. A three-dimensional computational fluid dynamics (CFD) code, CONVERGE™, was used to capture the detailed fluid/spray dynamics and chemical characteristics within the IQT configuration. The Reynolds-averaged Navier-Stokes (RANS) turbulence with multi-zone chemistry sub-models was adopted with a reduced chemical kinetic mechanism for n-heptane and iso-octane. The emphasis was on the assessment of two common spray breakup models, namely the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) and linearized instability sheet atomization (LISA) models, in terms of their influence on auto-ignition predictions. Two spray models resulted in different local mixing, and their influence in the prediction of auto-ignition was investigated. The relative importance of physical ignition delay, characterized by spray evaporation and mixing processes, in the overall ignition behavior for the two different fuels were examined. The results provided an improved understanding of the essential contribution of physical and chemical processes that are critical in describing the IQT auto-ignition event at different pressure and temperature conditions, and allowed a systematic way to distinguish between the physical and chemical ignition delay times.

  5. Shot Automation for the National Ignition Facility

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R.; Casavant, D.D.; Cline, B.D.; Demaret, R.D.; Domyancic, D.M.; Elko, S.D.; Fisher, J.M.; Hermann, M.R.; Krammen, J.E.; Kohut, T.R.; Marshall, C.D.; Mathisen, D.G.; Ludwigsen, A.P.; Patterson, Jr. R.W.; Sanchez, R.J.; Stout, E.A.; Van Arsdall, P.J.; Van Wonterghem, B.M.

    2005-01-01

    A shot automation framework has been developed and deployed during the past year to automate shots performed on the National Ignition Facility (NIF) using the Integrated Computer Control System This framework automates a 4-8 hour shot sequence, that includes inputting shot goals from a physics model, set up of the laser and diagnostics, automatic alignment of laser beams and verification of status. This sequence consists of set of preparatory verification shots, leading to amplified system shots using a 4-minute countdown, triggering during the last 2 seconds using a high-precision timing system, followed by post-shot analysis and archiving. The framework provides for a flexible, model-based execution driven of scriptable automation called macro steps. The framework is driven by high-level shot director software that provides a restricted set of shot life cycle state transitions to 25 collaboration supervisors that automate 8-laser beams (bundles) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification. Collaboration supervisors translate shot life cycle state commands from the shot director into sequences of ''macro steps'' to be distributed to each of its shot supervisors. Each Shot supervisor maintains order of macro steps for each subsystem and supports collaboration between macro steps. They also manage failure, restarts and rejoining into the shot cycle (if necessary) and manage auto/manual macro step execution and collaborations between other collaboration supervisors. Shot supervisors execute macro step shot functions commanded by collaboration supervisors. Each macro step has database-driven verification phases and a scripted perform phase. This provides for a highly flexible methodology for performing a variety of NIF shot types. Database tables define the order of work and dependencies (workflow) of macro steps to be performed for a

  6. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  7. Observations and modeling of debris and shrapnel impacts on optics and diagnostics at the National Ignition Facility

    International Nuclear Information System (INIS)

    Eder, D.; Bailey, D.; Chambers, F.; Darnell, I.; Nicola, P. D.; Dixit, S.; Fisher, A.; Gururangan, G.; Kalantar, D.; Koniges, A.; Liu, W.; Marinak, M.; Masters, N.; Mlaker, V.; Prasad, R.; Sepke, S.; Whitman, P.

    2013-01-01

    A wide range of targets with laser energies spanning two orders of magnitude have been shot at the National Ignition Facility (NIF). The National Ignition Campaign (NIC) targets are cryogenic with Si supports and cooling rings attached to an Al Thermo-Mechanical Package (TMP) with a thin (30 micron) Au hohlraum inside. Particular attention is placed on the low-energy shots where the TMP is not completely vaporized. In addition to NIC targets, a range of other targets has also been fielded on NIF. For all targets, simulations play a critical role in determining if the risks associated with debris and shrapnel are acceptable. In a number of cases, experiments were redesigned, based on simulations, to reduce risks or to obtain data. The majority of these simulations were done using the ALE-AMR code, which provides efficient late-time (100 - 1000 X the pulse duration) 3 D calculations of complex NIF targets. (authors)

  8. Observations and Modeling of Debris and Shrapnel Impacts on Optics and Diagnostics at the National Ignition Facility

    International Nuclear Information System (INIS)

    Eder, D.; Bailey, D.; Chamgers, F.; Darnell, I.; Nicola, P.D.; Dixit, S.; Fisher, A.; Gururangan, G.; Kalantar, D.; Koniges, A.; Liu, W.; Marinak, M.; Masters, N.; Mlaker, V.; Prasad, R.; Sepke, S.; Whitman, P.

    2011-01-01

    A wide range of targets with laser energies spanning two orders of magnitude have been shot at the National Ignition Facility (NIF). The National Ignition Campaign (NIC) targets are cryogenic with Si supports and cooling rings attached to an Al thermo-mechanical package (TMP) with a thin (30 micron) Au hohlraum inside. Particular attention is placed on the low-energy shots where the TMP is not completely vaporized. In addition to NIC targets, a range of other targets has also been fielded on NIF. For all targets, simulations play a critical role in determining if the risks associated with debris and shrapnel are acceptable. In a number of cases, experiments were redesigned, based on simulations, to reduce risks or to obtain data. The majority of these simulations were done using the ALE-AMR code, which provides efficient late-time (100-1000X the pulse duration) 3D calculations of complex NIF targets.

  9. Vendor-based laser damage metrology equipment supporting the National Ignition Facility

    International Nuclear Information System (INIS)

    Campbell, J. H; Jennings, R. T.; Kimmons, J. F.; Kozlowski, M. R.; Mouser, R. P.; Schwatz, S.; Stolz, C. J.; Weinzapfel, C. L.

    1998-01-01

    A sizable laser damage metrology effort is required as part of optics production and installation for the 192 beam National Ignition Facility (NIF) laser. The large quantities, high damage thresholds, and large apertures of polished and coated optics necessitates vendor-based metrology equipment to assure component quality during production. This equipment must be optimized to provide the required information as rapidly as possible with limited operator experience. The damage metrology tools include: (1) platinum inclusion damage test systems for laser amplifier slabs, (2) laser conditioning stations for mirrors and polarizers, and (3) mapping and damage testing stations for UV transmissive optics. Each system includes a commercial Nd:YAG laser, a translation stage for the optics, and diagnostics to evaluate damage. The scanning parameters, optical layout, and diagnostics vary with the test fluences required and the damage morphologies expected. This paper describes the technical objectives and milestones involved in fulfilling these metrology requirements

  10. Simulations of a phase corrector plate for the National Ignition Facility

    International Nuclear Information System (INIS)

    Williams, W. H. LLNL

    1998-01-01

    Simulations are presented on the effect of placing a static phase corrector plate in each beamline of the National Ignition Facility (NIF) to assist the adaptive optic in correcting beam phase aberrations. Results indicate such a plate could significantly improve the focal spot, reducing a 3ω, 80% spot half-angle from 21 to 8 microrad for poorer-qualtiy optics, and 17 to 7 for better optics. Such a plate appears to be within the range of current fabrication technologies. It would have an alignment requiremnt of ±0.5 mm, if placed in the front end. In NIF operation, the occasional replacement of laser slabs would slowly degrade the beam quality for a fixed corrector plate, with the spot size increasing from 8 to 15 microrad after four new slabs for poorer optics, and 7 to 12 microrad for better optics. The energy fraciton clipped on the injection pinhole (±100 microrad) would be <0.5% due to this pre-correction

  11. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  12. Physics issues related to the confinement of ICF experiments in the US National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M.; Anderson, A.; Latkowski, J.

    1995-04-01

    ICF experiments planned for the proposed US National Ignition Facility (NIF) will produce emissions of neutrons, x rays, debris, and shrapnel. The NIF Target Area (TA) must acceptably confine these emissions and respond to their effects to allow an efficient rate of experiments, from 600 to possibly 1500 per year, and minimal down time for maintenance. Detailed computer code predictions of emissions are necessary to study their effects and impacts on Target Area operations. Preliminary results show that the rate of debris shield transmission loss (and subsequent periodicity of change-out) due to ablated material deposition is acceptable, neutron effects on optics are manageable, and preliminary safety analyses show a facility rating of low hazard, non-nuclear. Therefore, NIF Target Area design features such as fused silica debris shields, refractory first wall coating, and concrete shielding are effective solutions to confinement of ICF experiment emissions

  13. Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry

    International Nuclear Information System (INIS)

    Frenje, J.A.; Casey, D.T.; Johnson, M. Gatu; Bionta, R.; Bond, E.J.; Caggiano, J.A.; Cerjan, C.; Edwards, J.; Eckart, M.; Fittinghoff, D.N.; Friedrich, S.; Glenzer, S.; Haan, S.; Hatarik, R.; Hatchett, S.; Jones, O.S.; Glebov, V.Yu.; Knauer, J.P.; Grim, G.; Kilkenny, J.D.

    2013-01-01

    The neutron spectrum from a cryogenically layered deuterium–tritium (dt) implosion at the National Ignition Facility (NIF) provides essential information about the implosion performance. From the measured primary-neutron spectrum (13–15 MeV), yield (Y n ) and hot-spot ion temperature (T i ) are determined. From the scattered neutron yield (10–12 MeV) relative to Y n , the down-scatter ratio, and the fuel areal density (ρR) are determined. These implosion parameters have been diagnosed to an unprecedented accuracy with a suite of neutron-time-of-flight spectrometers and a magnetic recoil spectrometer implemented in various locations around the NIF target chamber. This provides good implosion coverage and excellent measurement complementarity required for reliable measurements of Y n , T i and ρR, in addition to ρR asymmetries. The data indicate that the implosion performance, characterized by the experimental ignition threshold factor, has improved almost two orders of magnitude since the first shot taken in September 2010. ρR values greater than 1 g cm −2 are readily achieved. Three-dimensional semi-analytical modelling and numerical simulations of the neutron-spectrometry data, as well as other data for the hot spot and main fuel, indicate that a maximum hot-spot pressure of ∼150 Gbar has been obtained, which is almost a factor of two from the conditions required for ignition according to simulations. Observed Y n are also 3–10 times lower than predicted. The conjecture is that the observed pressure and Y n deficits are partly explained by substantial low-mode ρR asymmetries, which may cause inefficient conversion of shell kinetic energy to hot-spot thermal energy at stagnation. (paper)

  14. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility

    International Nuclear Information System (INIS)

    Town, R. P. J.; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L.

    2014-01-01

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments

  15. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  16. National Ignition Facility monthly status report--February 2000

    International Nuclear Information System (INIS)

    Moses, E

    2000-01-01

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement. Safety: The Incident Analysis and Construction Management Safety Review Teams were formed to review the January 13, 2000, accident in which a worker received a back injury when a 42-in.-diameter duct fell during installation. One action is to contract DuPont to review the Safety Program. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering; (2) laser glass--a second pilot run at one of the two commercial suppliers is ongoing successfully; and (3) operational costs associated with final optics assembly (FOA) optics components--methods are being developed to mitigate 3ω damage and to resolve beam rotation issues. Schedule: The completion of the Title II design of laser equipment is now approximately 83% complete. The Beampath Infrastructure System is on the critical schedule path. The procurement strategy was evaluated by commercial construction management and Architectural/Engineering (A/E) contractors with a panel of independent experts, the Beampath Infrastructure System (BIS) Implementation Review Committee Advisory Group. The BIS Integration Management and Installation Services (IMI) Subcontractor solicitation package and approach were

  17. Preliminary conceptual study of engineering-scale pyroprocess demonstration facility

    International Nuclear Information System (INIS)

    Moon, Seong-In; Chong, Won-Myung; You, Gil-Sung; Ku, Jeong-Hoe; Kim, Ho-Dong

    2013-01-01

    Highlights: ► The conceptual design of a pyroprocess demonstration facility was performed. ► The design requirements for the pyroprocess hot cell and equipment were determined. ► The maintenance concept for the pyroprocess hot cell was presented. -- Abstract: The development of an effective management technology of spent fuel is important to enhance environmental friendliness, cost viability and proliferation resistance. In Korea, pyroprocess technology has been considered as a fuel cycle option to solve the spent fuel accumulation problems. PRIDE (PyRoprocess Integrated inactive DEmonstration facility) has been developed from 2007 to 2012 in Korea as a cold test facility to support integrated pyroprocessing and an equipment demonstration, which is essential to verify the pyroprocess technology. As the next stage of PRIDE, the design requirements of an engineering-scale demonstration facility are being developed, and the preliminary conceptual design of the facility is being performed for the future. In this paper, the main design requirements for the engineering-scale pyroprocess demonstration facility were studied in the throughput of 10tHM a year. For the preliminary conceptual design of the facility, the design basis of the pyroprocess hot cell was suggested, and the main equipment, main process area, operation area, maintenance area, and so on were arranged in consideration of the effective operation of the hot cells. Also, the argon system was designed to provide and maintain a proper inert environment for the pyroprocess. The preliminary conceptual design data will be used to review the validity of the engineering-scale pyroprocess demonstration facility that enhances both safety and nonproliferation

  18. Resolving a central ICF issue for ignition: Implosion symmertry

    International Nuclear Information System (INIS)

    Cray, M.; Delamater, N.D.; Fernandez, J.C.

    1994-01-01

    The Los Alamos National Laboratory Inertial Confinement Fusion (ICF) Program focuses on resolving key target-physics issues and developing technology needed for the National Ignition Facility (NIF). This work is being performed in collaboration with Lawrence Livermore National Laboratory (LLNL). A major requirement for the indirect-drive NIF ignition target is to achieve the irradiation uniformity on the capsule surface needed for a symmetrical high-convergence implosion. Los Alamos employed an integrated modeling technique using the Lasnex radiation-hydrodynamics code to design two different targets that achieve ignition and moderate gain. Los Alamos is performing experiments on the Nova Laser at LLNL in order to validate our NIF ignition calculations

  19. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  20. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  1. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  2. National Ignition Facility subsystem design requirements optics assembly building (OAB) SSDR 1.2.2.3

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirement (SSDR) document establishes the performance, design, and verification requirements 'for the conventional building systems and subsystems of the Optics Assembly Building (OAB). These building system requirements are associated with housing and supporting the operational flow of personnel and materials throughout the OAB for preparing and repairing optical and mechanical components used in the National Ignition Facility (NIF) Laser and Target Building (LTAB). This SSDR addresses the following subsystems associated with the OAB: * Structural systems for the building spaces and operational-support equipment and building- support equipment. * Architectural building features associated with housing the space, operational cleanliness, and functional operation of the facility. * Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facility. * Plumbing systems that provide potable water and sanitary facilities for the occupants and stormwater drainage for transporting rainwater. * Fire Protection systems that guard against fire damage to the facility and its contents. * Material handling equipment for transferring optical assemblies and other materials within building areas and to the LTAB. * Mechanical process piping systems for liquids and gases that provide cooling, cleaning, and other service to optical and mechanical components. * Electrical power and grounding systems that provide service to the building and equipment, including lighting distribution and communications systems for the facilities. * Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Generic design criteria, such as siting data, seismic requirements, utility availability, and other information that contributes to the OAB design, are not addressed in this document

  3. National Ignition Facility and managing location, component, and state

    International Nuclear Information System (INIS)

    Foxworthy, Cemil; Fung, Tracy; Beeler, Rich; Li, Joyce; Dugorepec, Jasna; Chang, Cathy

    2012-01-01

    Highlights: ► NIF in comprised of over 100k serialized parts that must be tracked and maintained. ► We discuss a web-based integrated parts management system designed for NIF. ► The parts database stores associated calibration data with effective dates. ► The system interfaces with the NIF control system and performance models. ► Work activity (Permits, Problem Logs, Work Orders) are managed by the system. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system coupled with a 10-m diameter target chamber. There are over 6200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  4. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  5. The National Ignition Facility modular Kirkpatrick-Baez microscope

    Energy Technology Data Exchange (ETDEWEB)

    Pickworth, L. A., E-mail: pickworth1@llnl.gov; Ayers, J.; Bell, P.; Brejnholt, N. F.; Buscho, J. G.; Bradley, D.; Decker, T.; Hau-Riege, S.; McCarville, T.; Pardini, T.; Vogel, J.; Walton, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766–774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a “narrow band” energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

  6. National Ignition Facility risk management plan, rev. 1

    International Nuclear Information System (INIS)

    Brereton, S J; Lane, M A

    1998-01-01

    The initial release of the National Ignition Facility (AUF) Risk Management Plan (LLNL, 1997a) was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported Critical Decision 3 (CD3), Approval to Initiate Construction (DOE, 1997a). The objectives of the plan were to: (1) Identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule. (2) Assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES and H (environmental, safety and health), costs, and schedule. (3) Address suitable risk mitigation measures for each identified risk. This revision of the Risk Management Plan considers project risks and vulnerabilities after CD3 (DOE, 1997a) was approved by the Secretary of Energy. During the one-year period since the initial release, the vulnerabilities of greatest concern have been the litigation of the Programmatic Environmental Impact Statement (PEIS) (DOE, 1996b) by a group of environmental organizations led by the Natural Resources Defense Council; the finding and successful clean-up of polychlorinated biphenyl (PCB)-filled electrical capacitors at the NIF site excavation; the FY98 congressional budget authorization and request for the FY99 budget authorization; funding for Inertial Confinement Fusion (ICF)/NIF programmatic activities (including French and other sources of funding); and finally, progress in the core science and technology, and optics program that form the basis for the NIF design

  7. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Herrmann, H. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States)

    2014-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80–140 mg/cm{sup 2} and CH-ablator ρR's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  8. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  9. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    International Nuclear Information System (INIS)

    Dobson, Darwin; Churby, Al; Krieger, Ed; Maloy, Donna; White, Kevin

    2012-01-01

    Highlights: ► NIF is a complex experimental facility composed of ∼4 million components. ► We describe business tools to define, build, operate, and maintain all components. ► CAD tools generate virtual models and assemblies under configuration control. ► Items requiring preventive, reactive, and/or calibration maintenance are tracked. ► Radiological or hazardous materials undergo additional controls. - Abstract: The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of experimental data and the safe operation of the facility. A major programmatic challenge is to deploy software solutions to effectively manage the definition, build, operation, and maintenance, and configuration control of all components of NIF. The strategy for meeting this challenge involves deploying and integrating an enterprise application suite of solutions consisting of both Commercial-Off-The-Shelf (COTS) products and custom developed software.This paper describes how this strategy has been implemented along with a discussion on the successes realized and the ongoing challenges associated with this approach.

  10. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  11. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  12. Observation of a reflected shock in an indirectly driven spherical implosion at the national ignition facility.

    Science.gov (United States)

    Le Pape, S; Divol, L; Berzak Hopkins, L; Mackinnon, A; Meezan, N B; Casey, D; Frenje, J; Herrmann, H; McNaney, J; Ma, T; Widmann, K; Pak, A; Grimm, G; Knauer, J; Petrasso, R; Zylstra, A; Rinderknecht, H; Rosenberg, M; Gatu-Johnson, M; Kilkenny, J D

    2014-06-06

    A 200  μm radius hot spot at more than 2 keV temperature, 1  g/cm^{3} density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.

  13. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  14. 40 CFR 264.312 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ..., AND DISPOSAL FACILITIES Landfills § 264.312 Special requirements for ignitable or reactive waste. (a... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.312 Section 264.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  15. 40 CFR 265.256 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.256 Special requirements for ignitable or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.256 Section 265.256 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  16. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ..., AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  17. 40 CFR 264.256 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ..., AND DISPOSAL FACILITIES Waste Piles § 264.256 Special requirements for ignitable or reactive waste... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.256 Section 264.256 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  18. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  19. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.

    Science.gov (United States)

    Park, H-S; Hurricane, O A; Callahan, D A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; Ma, T; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Kline, J L

    2014-02-07

    This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ∼300  eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ρR was (0.86±0.063)  g/cm2, and the measured Tion was (4.2±0.16)  keV, corresponding to 8 kJ of fusion yield, with ∼1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ∼70% of the value predicted by simulations that include α-particle self-heating.

  20. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    International Nuclear Information System (INIS)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.

    2011-01-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  1. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    Science.gov (United States)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.

    2011-05-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  2. Experiment of ablative Rayleigh-Taylor instability in a strongly non linear regime on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Delorme, B.; Jacquet, L.; Loiseau, P.; Smalyuk, V. A.; Martinez, D.; Remington, B. A.

    2012-01-01

    As the control of the development of Rayleigh-Taylor-type hydrodynamic instabilities is crucial to achieve efficient implosions on the Laser Megajoule, and as the complexity of these instabilities requires an experimental validation of theoretical models and of the associated numerical simulations, the authors briefly present a proposition of experiments aimed at studying the strongly non linear Rayleigh-Taylor instability on the National Ignition Facility (NIF). This should allow a regime of competition between bubbles to be achieved for the first time in direct attack. They evoke the first experiment performed in March 2013

  3. H_Hyd_Shktub_Mshock_III, JJJ, KKK (S01,S02,S03) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Desjardins, Tiffany [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmidt, Derek William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Di Stefano, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Doss, Forrest William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Merritt, Elizabeth Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-15

    These experiments are the first experiments in the Mshock campaign at the National Ignition Facility. The experiment is scheduled to be conducted on Dec. 14, 2017. The goal of the Mshock campaign is to study feedthrough dynamics of the Richtmyer- Meshkov instability in a thin layer. These dynamics will be studied in both a reshock configuration (initially) and then in a multi-shock configuration where it is planned to reshock the RM instability up to 3 times (four shocks total).

  4. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B., E-mail: fournier2@llnl.gov; Brown, C. G.; Yeoman, M. F.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Blue, B. E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Fisher, J. H.; Newlander, C. D.; Gilliam, R. P.; Froula, N. [Fifth Gait Technologies, Inc., 14040 Camden Circle, Huntsville, Alabama 35803 (United States); Seiler, S. W.; Davis, J. F.; Lerch, MAJ. A. [Defense Threat Reduction Agency, 8725 John J. Kingman Road, Fort Belvoir, Virginia 22060-6201 (United States); Hinshelwood, D. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States); Lilly, M. [Dynasen, Inc., 20 Arnold Pl., Goleta, California 93117 (United States)

    2016-11-15

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.

  5. The National Ignition Facility: Ushering in a new age for high energy density science

    International Nuclear Information System (INIS)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-01-01

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  6. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  7. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Clark, D S; Weber, C R; Eder, D C; Haan, S W; Hammel, B A; Hinkel, D E; Jones, O S; Kritcher, A L; Marinak, M M; Milovich, J L; Patel, P K; Robey, H F; Salmonson, J D; Sepke, S M

    2016-01-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF. (paper)

  8. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Hinkel, D E; Callahan, D A; Moody, J D; Amendt, P A; Lasinski, B F; MacGowan, B J; Meeker, D; Michel, P A; Ralph, J; Rosen, M D; Ross, J S; Schneider, M B; Storm, E; Strozzi, D J; Williams, E A

    2016-01-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented. (paper)

  9. Flow Friction or Spontaneous Ignition?

    Science.gov (United States)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  10. High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koch, J. A.; Stewart, R. E.; Beiersdorfer, P.; Shepherd, R.; Schneider, M. B.; Miles, A. R.; Scott, H. A.; Smalyuk, V. A.; Hsing, W. W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-493, Livermore, California 94550 (United States)

    2012-10-15

    Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-{alpha} at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

  11. Development on the National Ignition Facility of a High Energy Density Opacity Platform

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dodd, Evan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeVolder, Barbara Gloria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Heather Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cardenas, Tana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archuleta, Thomas Nick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sherrill, Manolo Edgar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Bernhard Heinz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Douglas, Melissa Rae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liedahl, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, B. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iglesias, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martin, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahmed, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Emig, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zika, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Opachich, Y. P. [Nevada National Security Site (NNSS), NV (United States); King, J. A. [Nevada National Security Site (NNSS), NV (United States); Ross, P. W. [Nevada National Security Site (NNSS), NV (United States); Huffman, E. J. [Nevada National Security Site (NNSS), NV (United States); Knight, R. A. [Nevada National Security Site (NNSS), NV (United States); Koch, J. A. [Nevada National Security Site (NNSS), NV (United States); Pond, T. D. [Nevada National Security Site (NNSS), NV (United States); Craxton, R. S. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Zhang, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; McKenty, P. W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Garcia, E. M. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Bailey, J. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, G. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, S. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-02

    X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results, but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.

  12. National Ignition Facility quality assurance plan for laser materials and optical technology

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  13. Implementation of ISO 10110 optics drawing standards for the National Ignition Facility

    International Nuclear Information System (INIS)

    Aikens, D. M.; English, R. E.; Wang, D. Y.

    1999-01-01

    The National Ignition Facility (NIF) project elected to implement ISO 10110 standard for the specifications of NIF optics drawings in 1996. More than 7,000 NIF large optics and 20,000 NIF small optics will be manufactured based on ISO 10110 indications. ISO 10110 standard meets many of the needs of the NIF optics specifications. It allows the optical engineer to quantify and clearly communicate the desired optical specifications. While no single drawing standard specifies all the requirements of high energy laser system, a combination of ISO 10110 standard with detailed notes make it possible to apply international drawing standards to the NIF laser system. This paper will briefly describe LLNL's interpretation and implementation of the ISO 10110 drawing standard, present some examples of NIF optics drawings, and discuss pros and cons of the indications from the perspective of this application. Emphasis will be given to the surface imperfection specifications, known as 5/, for the NIF optics

  14. National Ignition Facility quality assurance plan for laser materials and optical technology

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials ampersand Optical Technology (LM ampersand OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM ampersand OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies

  15. Implementation of ISO 10110 optics drawing standards for the National Ignition Facility

    Science.gov (United States)

    Wang, David Y.; English, R. Edward, Jr.; Aikens, David M.

    1999-11-01

    The National Ignition Facility (NIF) project elected to implement ISO 10110 standard for the specifications of NIF optics drawings in 1996. More than 7,000 NIF large optics and 20,000 NIF small optics will be manufactured based on ISO 10110 indications. ISO 10110 standard meets many of the needs of the NIF optics specifications. It allows the optical engineer to quantify and clearly communicate the desired optical specifications. While no single drawing standard specifies all the requirements of high energy laser system, a combination of ISO 10110 standard with detailed notes make it possible to apply international drawing standards to the NIF laser system. This paper will briefly describe LLNL's interpretation and implementation of the ISO 10110 drawing standard, present some examples of NIF optics drawings, and discuss pros and cons of the indications from the perspective of this application. Emphasis will be given to the surface imperfection specifications, known as 5/, for the NIF optics.

  16. Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Morris I. Kaufman, John R. Celeste, Brent C. Frogget, Tony L. Lee, Brian J. GacGowan, Robert M. Malone, Edmund W. Ng, Tom W. Tunnell, Phillip W. Watts

    2006-01-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The velocity interferometer for any reflector measures shock velocities at a location remote to the NIF target chamber. Our team designed two systems, one for a polar port orientation, and the other to accommodate two equatorial ports. The polar-oriented design requires a 48-m optical relay to move the light from inside the target chamber to a separately housed measurement and laser illumination station. The currently operational equatorial design requires a much shorter relay of 21 m. Both designs posed significant optomechanical challenges due to the long optical path length, large quantity of optical elements, and stringent NIF requirements. System design had to tightly control the use of lubricants and materials, especially those inside the vacuum chamber; tolerate earthquakes and radiation; and consider numerous other tolerance, alignment, and steering adjustment issues. To ensure compliance with NIF performance requirements, we conducted a finite element analysis

  17. Creating stars, supernovae, and the big bang in the laboratory: Nuclear Astrophysics with the National Ignition Facility

    International Nuclear Information System (INIS)

    Mathews, G.J.

    1994-02-01

    This talk has been prepared for the Symposium on Novel Approaches to Nuclear Astrophysics hosted by the ACS Division of Nuclear Chemistry and Technology for the San Diego ACS meeting. This talk indeed describes a truly novel approach. It discusses a proposal for the construction of the National Ignition Facility which could provide the most powerful concentration of laser energy yet attempted. The energy from such a facility could be concentrated in such a way as to reproduce, for the first time in a terrestrial laboratory, an environment which nearly duplicates that which occurs within stars and during the first few moments of cosmic creation during the big bang. These miniature versions of cosmic explosions may allow us to understand better the tumultuous astrophysical environments which have profoundly influenced the origin and evolution of the universe

  18. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, D. B., E-mail: sayre4@llnl.gov; Barbosa, F.; Caggiano, J. A.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); DiPuccio, V. N.; Weber, F. A. [National Security Technologies, Livermore, California 94551 (United States)

    2016-11-15

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the National Ignition Facility.

  19. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  20. Progress towards polar-drive ignition for the NIF

    Science.gov (United States)

    McCrory, R. L.; Betti, R.; Boehly, T. R.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Frenje, J. A.; Froula, D. H.; Gatu-Johnson, M.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Kessler, T. J.; Knauer, J. P.; Li, C. K.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nilson, P. M.; Padalino, S. J.; Petrasso, R. D.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Short, R. W.; Shvydky, A.; Skupsky, S.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Zuegel, J. D.

    2013-11-01

    The University of Rochester's Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. LLE's Omega Laser Facility is used to study direct-drive ICF ignition concepts, developing an understanding of the underlying physics that feeds into the design of ignition targets for the National Ignition Facility (NIF). The baseline symmetric-illumination, direct-drive-ignition target design consists of a 1.5 MJ multiple-picket laser pulse that generates four shock waves (similar to the NIF baseline indirect-drive design) and is predicted to produce a one-dimensional (1D) gain of 48. LLE has developed the polar-drive (PD) illumination concept (for NIF beams in the x-ray-drive configuration) to allow the pursuit of direct-drive ignition without significant reconfiguration of the beam paths on the NIF. Some less-invasive changes in the NIF infrastructure will be required, including new phase plates, polarization rotators, and a PD-specific beam-smoothing front end. A suite of PD ignition designs with implosion velocities from 3.5 to 4.3 × 107 cm s-1 are predicted to have significant 2D gains (Collins et al 2012 Bull. Am. Phys. Soc. 57 155). Verification of the physics basis of these simulations is a major thrust of direct-drive implosion experiments on both OMEGA and the NIF. Many physics issues are being examined with symmetric beam irradiation on OMEGA, varying the implosion parameters over a wide region of design space. Cryogenic deuterium-tritium target experiments with symmetric irradiation have produced areal densities of ˜0.3 g cm-2, ion temperatures over 3 keV, and neutron yields in excess of 20% of the ‘clean’ 1D predicted value. The inferred Lawson criterion figure of merit (Betti R. et al 2010 Phys. Plasmas 17 058102) has increased from 1.7 atm s (IAEA 2010) to 2.6 atm s.

  1. Direct-drive shock-ignition for the Laser MégaJoule

    Directory of Open Access Journals (Sweden)

    Canaud B.

    2013-11-01

    Full Text Available We present a review of direct-drive shock ignition studies done as an alternative for the Laser MégaJoule (LMJ. One and two dimensional systematic analyses of HiPER-like shock-ignited target designs are performed for the fuel assembly irradiation uniformity using the whole LMJ configuration or a part of the facility, and for the uniformity of the ignitor spike. High-gain shock-ignition is shown to be possible with intensity of each quad less than 1015 W/cm2 but low modes asymmetries displace the power required in the ignitor spike towards higher powers. Shock-ignition of Direct-Drive Double-Shell non-cryogenic targets is also addressed.

  2. First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility

    International Nuclear Information System (INIS)

    Glenzer, Siegfried H; Spears, Brian K; Edwards, M John; Berger, Richard L; Bleuel, Darren L; Bradley, David K; Caggiano, Joseph A; Callahan, Debra A; Castro, Carlos; Choate, Christine; Clark, Daniel S; Cerjan, Charles J; Collins, Gilbert W; Dewald, Eduard L; Di Nicola, Jean-Michel G; Di Nicola, Pascale; Divol, Laurent; Dixit, Shamasundar N; Alger, Ethan T; Casey, Daniel T

    2012-01-01

    Non-burning thermonuclear fuel implosion experiments have been fielded on the National Ignition Facility to assess progress toward ignition by indirect drive inertial confinement fusion. These experiments use cryogenic fuel ice layers, consisting of mixtures of tritium and deuterium with large amounts of hydrogen to control the neutron yield and to allow fielding of an extensive suite of optical, x-ray and nuclear diagnostics. The thermonuclear fuel layer is contained in a spherical plastic capsule that is fielded in the center of a cylindrical gold hohlraum. Heating the hohlraum with 1.3 MJ of energy delivered by 192 laser beams produces a soft x-ray drive spectrum with a radiation temperature of 300 eV. The radiation field produces an ablation pressure of 100 Mbar which compresses the capsule to a spherical dense fuel shell that contains a hot plasma core 80 µm in diameter. The implosion core is observed with x-ray imaging diagnostics that provide size, shape, the absolute x-ray emission along with bangtime and hot plasma lifetime. Nuclear measurements provide the 14.1 MeV neutron yield from fusion of deuterium and tritium nuclei along with down-scattered neutrons at energies of 10–12 MeV due to energy loss by scattering in the dense fuel that surrounds the central hot-spot plasma. Neutron time-of-flight spectra allow the inference of the ion temperature while gamma-ray measurements provide the duration of nuclear activity. The fusion yield from deuterium–tritium reactions scales with ion temperature, which is in agreement with modeling over more than one order of magnitude to a neutron yield in excess of 10 14 neutrons, indicating large confinement parameters on these first experiments. (paper)

  3. Drive development for an 10 Mbar Rayleigh-Taylor strength experiment on the National Ignition Facility

    Science.gov (United States)

    Prisbrey, Shon; Park, Hye-Sook; Huntington, Channing; McNaney, James; Smith, Raym; Wehrenberg, Christopher; Swift, Damian; Panas, Cynthia; Lord, Dawn; Arsenlis, Athanasios

    2017-10-01

    Strength can be inferred by the amount a Rayleigh-Taylor surface deviates from classical growth when subjected to acceleration. If the acceleration is great enough, even materials highly resistant to deformation will flow. We use the National Ignition Facility (NIF) to create an acceleration profile that will cause sample metals, such as Mo or Cu, to reach peak pressures of 10 Mbar without inducing shock melt. To create such a profile we shock release a stepped density reservoir across a large gap with the stagnation of the reservoir on the far side of the gap resulting in the desired pressure drive history. Low density steps (foams) are a necessary part of this design and have been studied in the last several years on the Omega and NIF facilities. We will present computational and experimental progress that has been made on the 10 Mbar drive designs - including recent drive shots carried out at the NIF. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734781.

  4. National Ignition Facility and managing location, component, and state

    Energy Technology Data Exchange (ETDEWEB)

    Foxworthy, Cemil, E-mail: foxworthy3@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Fung, Tracy; Beeler, Rich; Li, Joyce; Dugorepec, Jasna; Chang, Cathy [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer NIF in comprised of over 100k serialized parts that must be tracked and maintained. Black-Right-Pointing-Pointer We discuss a web-based integrated parts management system designed for NIF. Black-Right-Pointing-Pointer The parts database stores associated calibration data with effective dates. Black-Right-Pointing-Pointer The system interfaces with the NIF control system and performance models. Black-Right-Pointing-Pointer Work activity (Permits, Problem Logs, Work Orders) are managed by the system. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system coupled with a 10-m diameter target chamber. There are over 6200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements

  5. 124Xe(n,γ)125Xe and 124Xe(n,2n)123Xe measurements for National Ignition Facility

    Science.gov (United States)

    Bhike, Megha; Ludin, Nurin; Tornow, Werner

    2015-05-01

    The cross section for the 124Xe(n,γ)125Xe reaction has been measured for the first time for neutron energies above 100 keV. In addition, the 124Xe(n,2n)123Xe reaction has been studied between threshold and 14.8 MeV. The results of these measurements provide sensitive diagnostic tools for investigating properties of the inertial confinement fusion plasma in Deuterium-Tritium (DT) capsules at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory.

  6. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  7. Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility

    Science.gov (United States)

    Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.

    2017-10-01

    A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.

  8. Demonstration of Enhanced Radiation Drive in Hohlraums Made from a Mixture of High-Z Wall Materials

    International Nuclear Information System (INIS)

    Schein, Jochen; Jones, Ogden; Rosen, Mordecai; Dewald, Eduard; Glenzer, Siegfried; Gunther, Janelle; Hammel, Bruce; Landen, Otto; Suter, Laurence; Wallace, Russell

    2007-01-01

    We present results from experiments, numerical simulations and analytic modeling, demonstrating enhanced hohlraum performance. Care in the fabrication and handling of hohlraums with walls consisting of high-Z mixtures (cocktails) has led to our demonstration, for the first time, of a significant increase in radiation temperature compared to a pure Au hohlraum that is in agreement with predictions and is ascribable to reduced wall losses. The data suggest that a National Ignition Facility ignition hohlraum made of a U:Au:Dy cocktail should have ∼17% reduction in wall losses compared to a similar gold hohlraum

  9. Reproducibility of hohlraum-driven implosion symmetry on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kyrala G.A.

    2013-11-01

    Full Text Available Indirectly driven Symcap capsules are used at the NIF to obtain information about ignition capsule implosion performance, in particular shape. Symcaps replace the cryogenic fuel layer with an equivalent ablator mass and can be similarly diagnosed. Symcaps are good symmetry surrogates to an ignition capsule after the peak of the drive, radiation-hydrodynamics simulations predict that doping of the symcaps vary the behavior of the implosion. We compare the equatorial shapes of a symcap doped with Si or Ge, as well as examine the reproducibility of the shape measurement using two symcaps with the same hohlraum and laser conditions.

  10. Fusion ignition via a magnetically-assisted fast ignition approach

    OpenAIRE

    Wang, W. -M.; Gibbon, P.; Sheng, Z. -M.; Li, Y. T.; Zhang, J.

    2016-01-01

    Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-pr...

  11. Neutron activation diagnostics at the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D. L.; Yeamans, C. B.; Bernstein, L. A.; Bionta, R. M.; Caggiano, J. A.; Drury, O. B.; Hagmann, C. A.; Hatarik, R.; Knittel, K. M.; McNaney, J. M.; Moran, M.; Schneider, D. H. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Casey, D. T.; Frenje, J. A.; Johnson, M. Gatu [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Cooper, G. W. [University of New Mexico, Albuquerque, New Mexico 87131 (United States); Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Leeper, R. J.; Ruiz, C. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2012-10-15

    Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.45 MeV deuterium-deuterium fusion neutrons through the {sup 115}In(n,n'){sup 115m} In reaction. Outside the chamber, zirconium and copper are used to measure 14 MeV deuterium-tritium fusion neutrons via {sup 90}Zr(n,2n), {sup 63}Cu(n,2n), and {sup 65}Cu(n,2n) reactions. An array of 16 zirconium samples are located on port covers around the chamber to measure relative yield anisotropies, providing a global map of fuel areal density variation. Neutron yields are routinely measured with activation to an accuracy of 7% and are in excellent agreement both with each other and with neutron time-of-flight and magnetic recoil spectrometer measurements. Relative areal density anisotropies can be measured to a precision of less than 3%. These measurements reveal apparent bulk fuel velocities as high as 200 km/s in addition to large areal density variations between the pole and equator of the compressed fuel.

  12. 124Xe(n,γ125Xe and 124Xe(n,2n123Xe measurements for National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Bhike Megha

    2015-01-01

    Full Text Available The cross section for the 124Xe(n,γ125Xe reaction has been measured for the first time for neutron energies above 100 keV. In addition, the 124Xe(n,2n123Xe reaction has been studied between threshold and 14.8 MeV. The results of these measurements provide sensitive diagnostic tools for investigating properties of the inertial confinement fusion plasma in Deuterium-Tritium (DT capsules at the National Ignition Facility (NIF located at Lawrence Livermore National Laboratory.

  13. The US ICF Ignition Program and the Inertial Fusion Program

    International Nuclear Information System (INIS)

    Lindl, J D; Hammel, B A; Logan, B G; Meyerhofer, D D; Payne, S A; Stehian, J D

    2003-01-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets

  14. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-06-15

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

  15. eHXI: a permanently installed, hard x-ray imager for the National Ignition Facility

    International Nuclear Information System (INIS)

    Döppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E.L.; Huntington, C.M.; Izumi, N.; LaCaille, G.; Landen, O.L.; Palmer, N.; Park, H.-S.; Thomas, C.A.; Hohenberger, M.

    2016-01-01

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  16. Mach-Zehnder Fiber-Optic Links for Reaction History Measurements at the National Ignition Facility

    International Nuclear Information System (INIS)

    Miller, E. Kirk; Herrmann, H.W.; Stoeffl, W.; Horsfield, C.J.

    2009-01-01

    We present the details of the analog fiber-optic data link that will be used in the chamber-mounted Gamma Reaction History (GRH) diagnostic at the National Ignition Facility (NIF) located at the Lawrence Livermore Laboratory in Livermore, California. The system is based on Mach-Zehnder (MZ) modulators integrated into the diagnostic, with the source lasers and bias control electronics located remotely to protect the active electronics. A complete recording system for a single GRH channel comprises two MZ modulators, with the fiber signals split onto four channels on a single digitizer. By carefully selecting the attenuation, the photoreceiver, and the digitizer settings, the dynamic range achievable is greater than 1000:1 at the full system bandwidth of greater than 10 GHz. The system is designed to minimize electrical reflections and mitigate the effects of transient radiation darkening on the fibers.

  17. A survey of pulse shape options for a revised plastic ablator ignition design

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.; Salmonson, J. D.; Peterson, J. L.; Berzak Hopkins, L. F.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory Livermore, California 94550 (United States)

    2014-11-15

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.

  18. First Measurement of Reaction-in-Flight Neutrons at the National Ignition Facility

    Science.gov (United States)

    Tonchev, A.; Becker, J.; Bleuel, D.; Bionta, R.; Fortner, D.; Henry, E.; Khater, H.; Shaughnessy, D.; Schnider, D.; Stoeffl, W.; Yeamans, C.; Boswell, M.; Bredeweg, T.; Grim, G.; Jungman, G.; Fowler, M.; Hayes, A.; Obst, A.; Rundberg, R.; Schulz, A.; Wilhelmy, J.; Tornow, W.; Bhike, M.; Howell, C.; Gooden, M.; LLNL/LANL/TUNL Collaboration

    2013-10-01

    The first measurement of reaction-in-flight (RIF) neutrons, also known as tertiary neutrons, has been performed at the National Ignition Facility (NIF) using an activation technique. Thulium foils positioned at 50 cm from the burning deuterium-tritium (DT) capsule have been exposed to the characteristic DT neutron spectrum. The high-energy part of these neutrons with energies above 15.0 MeV can produce 167Tm via the 169Tm(n,3n) reaction. The 208-keV γ-ray, emitted from the decay of 167Tm with a half-life of 9.2 days, has been measured using two clover detectors. The first preliminary result implies that the ratio of RIF neutrons (En > 15.0 MeV) versus the total neutrons is 1 × 10 -4 +/- 3 × 10 -5. The important implication of these measurements on our knowledge of the charged-particle stopping power in strongly coupled quantum-degenerate plasma will be presented. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  19. A new streaked soft x-ray imager for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Moore, A. S.; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bedzyk, M.; Shoup, M. J.; Reagan, S.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-05-15

    A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

  20. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Kabanov, S.N.; Korolev, A.A.; Kul'beda, V.E.; Razumovskij, A.I.; Trukhin, V.A.

    1990-01-01

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  1. Direct-drive–ignition designs with mid-Z ablators

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  2. The National Ignition Facility Neutron Imaging System

    International Nuclear Information System (INIS)

    Wilke, Mark D.; Batha, Steven H.; Bradley, Paul A.; Day, Robert D.; Clark, David D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary P.; Jaramillo, Steven A.; Montoya, Andrew J.; Morgan, George L.; Oertel, John A.; Ortiz, Thomas A.; Payton, Jeremy R.; Pazuchanics, Peter; Schmidt, Derek W.; Valdez, Adelaida C.; Wilde, Carl H.

    2008-01-01

    The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y n >10 14 neutrons. The shielding will also permit the NIS to function at neutron yields >10 18 , which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical

  3. Concept of operations for channel characterization and simulation of coaxial transmission channels at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jr., Charles G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) executes experiments for inertial con nement fusion (ICF), world-class high energy density physics (HEDP), and critical national security missions. While the laser systems, target positioners, alignment systems, control systems, etc. enable the execution of such experiments, NIF’s utility would be greatly reduced without its suite of diagnostics. It would be e ectively “blind” to the incredible physics unleashed in its target chamber. Since NIF diagnostics are such an important part of its mission, the quality and reliability of the diagnostics, and of the data recorded from them, is crucial.

  4. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  5. Laser performance operations model (LPOM): a computational system that automates the setup and performance analysis of the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M; House, R; Williams, W; Haynam, C; White, R; Orth, C; Sacks, R [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)], E-mail: shaw7@llnl.gov

    2008-05-15

    The National Ignition Facility (NIF) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for many target diagnostics. NIF will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed that automates the laser setup process, and accurately predict laser energetics. LPOM determines the settings of the injection laser system required to achieve the desired main laser output, provides equipment protection, determines the diagnostic setup, and supplies post shot data analysis and reporting.

  6. Gamma Bang Time/Reaction History Diagnostics for the National Ignition Facility (NIF) Using 900 Off-axis Parabolic Mirrors

    International Nuclear Information System (INIS)

    H.W. Herrmann; R.M. Malone; W. Stoeffl; J.M. Mack; C.S. Young

    2008-01-01

    Gas Cherenkov detectors (GCD) have been used to convert fusion gamma into photons to achieve gamma bang time (GBT) and reaction history measurements. The GCD designed for Omega used Cassegrain reflector optics in order to fit inside a ten-inch manipulator. A novel design for the National Ignition Facility (NIF) using 90 o Off-Axis Parabolic (OAP) mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO2 gas volume, the detector is positioned at the stop position rather than an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100-mm diameter by 500-mm-long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO2 gas volume. A cluster of four channels will allow for increased dynamic range as well as different gamma energy threshold sensitivities

  7. Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 degrees off-axis parabolic mirrors.

    Science.gov (United States)

    Malone, R M; Herrmann, H W; Stoeffl, W; Mack, J M; Young, C S

    2008-10-01

    Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 degrees off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO(2) gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO(2) gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.

  8. Vitrification facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project's vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project's background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing

  9. Ignition condition and gain prediction for perturbed inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Kishony, Roy; Shvarts, Dov

    2001-01-01

    The effect of perturbations on hot spot ignition is studied using full two-dimensional (2D) numerical simulations of the National Ignition Facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] direct drive Laboratory for Laser Energetics target design and newly derived 2D self-similar solutions for a perturbed burn wave propagation. It is shown that the required implosion velocity needed for ignition increases with the perturbation mode number and final amplitude, reaching an asymptotic value for high enough perturbation mode numbers, when the entire mixing zone no longer contributes to the ignition of the hot spot. Using the new self-similar solutions, ignition conditions for various perturbation mode numbers and amplitudes are obtained. These ignition conditions, which correspond to areal densities higher than needed for ignition in the symmetric case, are translated to a required increase in the implosion velocity needed for ignition, using the 1D Levendahl-Lindl scaling, in good agreement with the full 2D numerical simulation results. Finally, using the above results, a model for predicting the gain of a perturbed targets as a function of the perturbation spectra (single-mode and multi-mode) is presented, in good agreement with full numerical simulations

  10. Progress towards polar-drive ignition for the NIF

    International Nuclear Information System (INIS)

    McCrory, R.L.; Betti, R.; Boehly, T.R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Froula, D.H.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Hohenberger, M.; Hu, S.X.; Igumenshchev, I.V.; Kessler, T.J.; Knauer, J.P.; Casey, D.T.; Frenje, J.A.; Gatu-Johnson, M.

    2013-01-01

    The University of Rochester's Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. LLE's Omega Laser Facility is used to study direct-drive ICF ignition concepts, developing an understanding of the underlying physics that feeds into the design of ignition targets for the National Ignition Facility (NIF). The baseline symmetric-illumination, direct-drive–ignition target design consists of a 1.5 MJ multiple-picket laser pulse that generates four shock waves (similar to the NIF baseline indirect-drive design) and is predicted to produce a one-dimensional (1D) gain of 48. LLE has developed the polar-drive (PD) illumination concept (for NIF beams in the x-ray–drive configuration) to allow the pursuit of direct-drive ignition without significant reconfiguration of the beam paths on the NIF. Some less-invasive changes in the NIF infrastructure will be required, including new phase plates, polarization rotators, and a PD-specific beam-smoothing front end. A suite of PD ignition designs with implosion velocities from 3.5 to 4.3 × 10 7 cm s −1 are predicted to have significant 2D gains (Collins et al 2012 Bull. Am. Phys. Soc. 57 155). Verification of the physics basis of these simulations is a major thrust of direct-drive implosion experiments on both OMEGA and the NIF. Many physics issues are being examined with symmetric beam irradiation on OMEGA, varying the implosion parameters over a wide region of design space. Cryogenic deuterium–tritium target experiments with symmetric irradiation have produced areal densities of ∼0.3 g cm −2 , ion temperatures over 3 keV, and neutron yields in excess of 20% of the ‘clean’ 1D predicted value. The inferred Lawson criterion figure of merit (Betti R. et al 2010 Phys. Plasmas 17 058102) has increased from 1.7 atm s (IAEA 2010) to 2.6 atm s. (paper)

  11. Probability of ignition - a better approach than ignition margin

    International Nuclear Information System (INIS)

    Ho, S.K.; Perkins, L.J.

    1989-01-01

    The use of a figure of merit - the probability of ignition - is proposed for the characterization of the ignition performance of projected ignition tokamaks. Monte Carlo and analytic models have been developed to compute the uncertainty distribution function for ignition of a given tokamak design, in terms of the uncertainties inherent in the tokamak physics database. A sample analysis with this method indicates that the risks of not achieving ignition may be unacceptably high unless the accepted margins for ignition are increased. (author). Letter-to-the-editor. 12 refs, 2 figs, 2 tabs

  12. Magnetic Fields on the National Ignition Facility (MagNIF)

    International Nuclear Information System (INIS)

    Mason, D.; Folta, J.

    2016-01-01

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders' needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentally relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs - full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.

  13. Magnetic Fields on the National Ignition Facility (MagNIF)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Folta, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders’ needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentally relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs – full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.

  14. National Ignition Facility monthly status report-January 2000

    International Nuclear Information System (INIS)

    Moses, E

    2000-01-01

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement. Safety: On January 13, 2000, a worker received a back injury when a 42-in.-diameter duct fell during installation. He was taken by helicopter to the hospital and released on January 16, 2000. All work in the area was suspended, and the construction contractors went through a thorough safety review before work was started. A DOE occurrence report was filed. An independent LLNL Incident Analysis Team is reviewing the cause of the accident and will report out on March 1. A Project management review team is reviewing construction line management and safety support and will also report out on March 1. Several changes in work planning and site management have been incorporated to increase site safety. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering; (2) laser glass--a second pilot run at one of the two commercial suppliers is ongoing; and (3) operational costs associated with final optics assembly (FOA) optics components--methods are being developed to mitigate 3 ωdamage and resolve beam rotation issues. Schedule: The completion of the Title II design of laser equipment is now approximately 80% complete. The Beampath Infrastructure System is

  15. Orchestrating Shots for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Mathisen, D G; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R W; Casavant, D D; Cline, B D; Demaret, R D; Domyancic, D M; Elko, S D; Fisher, J M; Krammen, J E; Lagin, L J; Ludwigsen, A P; Patterson, R W; Sanchez, R J; Stout, E A

    2005-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terawatt, ultra-violet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and physics of matter at extreme densities and pressures. The NIF is operated by the Integrated Computer Control System (ICCS), which is a layered architecture of over 700 lower-level front-end processors attached to nearly 60,000 control points and coordinated by higher-level supervisory subsystems in the main control room. A shot automation framework has been developed and deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. The Shot Automation framework is designed to automate 4-8 hour shot sequences, that includes deriving shot goals from an experiment definition, set up of the laser and diagnostics, automatic alignment of laser beams, and a countdown to charge and fire the lasers. These sequences consist of set of preparatory verification shots, leading to amplified system shots followed by post-shot analysis and archiving. The framework provides for a flexible, model-based work-flow execution, driven by scripted automation called macro steps. The shot director software is the orchestrating component of a very flexible automation layer which allows us to define, coordinate and reuse simpler automation sequences. This software provides a restricted set of shot life cycle state transitions to 26 collaboration supervisors that automate 8-laser beams (bundle) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification

  16. Moderator Demonstration Facility Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producing target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  17. Effect of amplifier component maintenance on laser system availability and reliability for the US National Ignition Facility

    International Nuclear Information System (INIS)

    Erlandson, A.C.; Lambert, H.; Zapata, L.E.

    1996-12-01

    We have analyzed the availability and reliability of the flashlamp-pumped, Nd:glass amplifiers that, as a part of a laser now being designed for future experiments, in inertial confinement fusion (ICF), will be used in the National Ignition Facility (NIF). Clearly , in order for large ICF systems such as the NIF to operate effectively as a whole, all components must meet demanding availability and reliability requirements. Accordingly, the NIF amplifiers can achieve high reliability and availability by using reliable parts, and by using a cassette-based maintenance design that allows most key amplifier parts to be 1744 replaced within a few hours. In this way, parts that degrade slowly, as the laser slabs, silver reflectors, and blastshields can be expected to do, based on previous experience, can be replaced either between shots or during scheduled maintenance periods, with no effect on availability or reliability. In contrast, parts that fail rapidly, such as the flashlamps, can and do cause unavailability or unreliability. Our analysis demonstrates that the amplifiers for the NIF will meet availability and reliability goals, respectively, of 99.8% and 99.4%, provided that the 7680 NIF flashlamps in NIF have failure rates of less than, or equal to, those experienced on Nova, a 5000-lamp laser at Lawrence Livermore National Laboratory (LLNL)

  18. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed

    2017-02-07

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  19. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed; Javed, Tamour; Khaled, Fathi; Badra, Jihad; Farooq, Aamir

    2017-01-01

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  20. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observables

    International Nuclear Information System (INIS)

    Spears, Brian K.; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-01-01

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding

  1. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observables

    Energy Technology Data Exchange (ETDEWEB)

    Spears, Brian K., E-mail: spears9@llnl.gov; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Knauer, James [Laboratory for Laser Energetics, 250 E. River Road, Rochester, New York 14623-1212 (United States); Hilsabeck, Terry; Kilkenny, Joe [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-05-15

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  2. Conceptual design of low activation target chamber and components for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schultz, K.R.; Sager, G.T.; Kantner, R.D.

    1996-01-01

    The baseline design for the target chamber and chamber components for the National Ignition Facility (NIF) consists of aluminum alloy structural material. Low activation composite chamber and components have important advantages including enhanced environmental and safety characteristics and improved accessibility due to reduced neutron-induced radioactivity. A low activation chamber can be fabricated from carbon fiber reinforced epoxy using thick wall laminate technology similar to submarine bow dome fabrication for the U.S. Navy. A risk assessment analysis indicates that a composite chamber has a reasonably high probability of success, but that an aluminum alloy chamber represents a lower risk. Use of low activation composite materials for several chamber components such as the final optics assemblies, the target positioner and inserter, the diagnostics manipulator tubes, and the optics beam tubes would offer an opportunity to make significant reductions in post-shot radiation dose rate with smaller, less immediate impact on the NIF design. 7 refs., 3 figs

  3. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    International Nuclear Information System (INIS)

    Spears, Brian K.; Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J.; Kilkenny, J.; Knauer, J.

    2014-01-01

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P 1 has a significant impact on implosion performance and must be carefully controlled in NIF implosions

  4. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Spears, Brian K., E-mail: spears9@llnl.gov; Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Knauer, J. [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)

    2014-04-15

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

  5. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  6. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Science.gov (United States)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  7. Design and performance of the main amplifier system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Beullier, J; Erlandson, A; Grebot, E; Guenet, J; Guenet, M; Horvath, J; Jancaitis, K; Larson, D; Lawson, J; LeTouze, G; Maille, X; Manes, K; Marshall, C; Mengue, T; Moor, E; Payne, S; Pedrotti, L; Rotter, M; Seznec, S; Sutton, S; Zapata, L.

    1999-01-01

    This paper describes the design and performance of flashlamp-pumped, Nd:glass. Brewster-angle slab amplifiers intended to be deployed in the National Ignition Facility (NIF). To verify performance, we tested a full-size, three-slab-long, NIF prototype amplifier, which we believe to be the largest flashlamp-pumped Nd:glass amplifier ever assembled. Like the NIF amplifier design, this prototype amplifier had eight 40-cm-square apertures combined in a four-aperture-high by two-aperture-wide matrix. Specially-shaped reflectors, anti-reflective coatings on the blastshields, and preionized flashlamps were used to increase storage efficiency. Cooling gas was flowed over the flashlamps to remove waste pump heat and to accelerate thermal wavefront recovery. The prototype gain results are consistent with model predictions and provide high confidence in the final engineering design of the NIF amplifiers. Although the dimensions, internal positions, and shapes of the components in the NIF amplifiers will be slightly different from the prototype, these differences are small and should produce only slight differences in amplifier performance

  8. X-ray diffraction diagnostic design for the National Ignition Facility

    Science.gov (United States)

    Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.

    2013-09-01

    This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.

  9. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    Science.gov (United States)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.

    2018-05-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.

  10. Low power arcjet thruster pulse ignition

    Science.gov (United States)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  11. Antiproton fast ignition for inertial confinement fusion

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1999-01-01

    With 180 MJ/microg, antiprotons offer the highest stored energy per unit mass of any known entity. The use of antiprotons to promote fast ignition in an inertial confinement fusion (ICF) capsule and produce high target gains with only modest compression of the main fuel is investigated. Unlike standard fast ignition where the ignition energy is supplied by energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. This can be considered in-situ fast ignition as it obviates the need for the external injection of the ignition energy. In the first of two candidate schemes, the antiproton package is delivered by a low-energy ion beam. In the second, autocatalytic scheme, the antiprotons are preemplaced at the center of the capsule prior to compression. In both schemes, the author estimates that ∼10 12 antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition within the ignitor zone. In addition to eliminating the need for a second, energetic fast laser and vulnerable final optics, this scheme would achieve central ignition without reliance on laser channeling through halo plasma or Hohlraum debris. However, in addition to the practical difficulties of storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a speculative scheme is the ultimate efficiency of antiproton production in an external, optimized facility. Estimates suggest that the electrical wall plug energy per pulse required for the separate production of the antiprotons is of the same order as that required for the conventional slow compression driver

  12. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu

    2016-08-10

    and oxygen concentration. Sensitivity analysis was performed using the TSL model to elucidate the reactions that control the overall ignition process. The present TSL modeling approach demonstrates the suitability of using detailed chemical kinetic models to provide insights into spray combustion processes. © 2016 Elsevier Ltd

  13. Progress in hohlraum physics for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D., E-mail: moody4@llnl.gov; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15

    Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry “swings.” A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8–4 keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.

  14. Developing the Physics Basis of Fast Ignition Experiments at Future Large Fusion-class lasers

    International Nuclear Information System (INIS)

    Mackinnon, A J; Key, M H; Hatchett, S; MacPhee, A G; Foord, M; Tabak, M; Town, R J; Patel, P K

    2008-01-01

    The Fast Ignition (FI) concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional 'central hot spot' (CHS) target ignition by using one driver (laser, heavy ion beam or Z-pinch) to create a dense fuel and a separate ultra-short, ultra-intense laser beam to ignite the dense core. FI targets can burn with ∼ 3X lower density fuel than CHS targets, resulting in (all other things being equal) lower required compression energy, relaxed drive symmetry, relaxed target smoothness tolerances, and, importantly, higher gain. The short, intense ignition pulse that drives this process interacts with extremely high energy density plasmas; the physics that controls this interaction is only now becoming accessible in the lab, and is still not well understood. The attraction of obtaining higher gains in smaller facilities has led to a worldwide explosion of effort in the studies of FI. In particular, two new US facilities to be completed in 2009/2010, OMEGA/OMEGA EP and NIF-ARC (as well as others overseas) will include FI investigations as part of their program. These new facilities will be able to approach FI conditions much more closely than heretofore using direct drive (dd) for OMEGA/OMEGA EP and indirect drive (id) for NIF-ARC. This LDRD has provided the physics basis for the development of the detailed design for integrated Fast ignition experiments on these facilities on the 2010/2011 timescale. A strategic initiative LDRD has now been formed to carry out integrated experiments using NIF ARC beams to heat a full scale FI assembled core by the end of 2010

  15. Linear induction accelerator requirements for ion fast ignition

    International Nuclear Information System (INIS)

    Logan, G.

    1998-01-01

    Fast ignition (fast heating of DT cores afief compression) reduces driver energy (by 10 X or more) by reducing the implosion velocity and energy for a given fuel compression ratio. For any type of driver that can deliver the ignition energy fast enough, fast ignition increases the target gain compared to targets using fast implosions for central ignition, as long as the energy to heat the core after compression is comparable to or less than the slow compression energy, and as long as the coupling efficiency of the fast ignitor beam to heat the core is comparable to the overall efficiency of compressing the core (in terms of beam energy-to-DT-efficiency). Ion driven fast ignition, compared to laser-driven fast ignition, has the advantage of direct (dE/dx) deposition of beam energy to the DT, eliminating inefficiencies for conversion into hot electrons, and direct ion heating also has a more favorable deposition profile with the Bragg-peak near the end of an ion range chosen to be deep inside a compressed DT core. While Petawatt laser experiments at LLNL have demonstrated adequate light-to-hot-electron conversion efficiency, it is not yet known if light and hot electrons can channel deeply enough to heat a small portion of a IOOOxLD compressed DT core to ignition. On the other hand, lasers with chirped-pulse amplification giving thousand-fold pulse compressions have been demonstrated to produce the short pulses, small focal spots and Petawatt peak powers approaching those required for fast ignition, whereas ion accelerators that can produce sufficient beam quality for similar compression ratios and focal spot sizes of ion bunches have not yet been demonstrated, where an imposed coherent velocity tilt plays the analogous role for beam compression as does frequency chirp with lasers. Accordingly, it is the driver technology, not the target coupling physics, that poses the main challenge to ion-driven fast ignition. As the mainline HIF program is concentrating on

  16. The Overview of the National Ignition Facility Distributed Computer Control System

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Carey, R.A.; Estes, C.M.; Fisher, J.M.; Krammen, J.E.; Reed, R.K.; VanArsdall, P.J.; Woodruff, J.P.

    2001-01-01

    The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is a layered architecture of 300 front-end processors (FEP) coordinated by supervisor subsystems including automatic beam alignment and wavefront control, laser and target diagnostics, pulse power, and shot control timed to 30 ps. FEP computers incorporate either VxWorks on PowerPC or Solaris on UltraSPARC processors that interface to over 45,000 control points attached to VME-bus or PCI-bus crates respectively. Typical devices are stepping motors, transient digitizers, calorimeters, and photodiodes. The front-end layer is divided into another segment comprised of an additional 14,000 control points for industrial controls including vacuum, argon, synthetic air, and safety interlocks implemented with Allen-Bradley programmable logic controllers (PLCs). The computer network is augmented asynchronous transfer mode (ATM) that delivers video streams from 500 sensor cameras monitoring the 192 laser beams to operator workstations. Software is based on an object-oriented framework using CORBA distribution that incorporates services for archiving, machine configuration, graphical user interface, monitoring, event logging, scripting, alert management, and access control. Software coding using a mixed language environment of Ada95 and Java is one-third complete at over 300 thousand source lines. Control system installation is currently under way for the first 8 beams, with project completion scheduled for 2008

  17. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    Science.gov (United States)

    Lindl, J. D.; Hammel, B. A.; Logan, B. Grant; Meyerhofer, David D.; Payne, S. A.; Sethian, John D.

    2003-12-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5 10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  18. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    International Nuclear Information System (INIS)

    Lindl, J D; Hammel, B A; Logan, B Grant; Meyerhofer, David D; Payne, S A; Sethian, John D

    2003-01-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  19. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour

    2016-12-29

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times. Such measurements may potentially be affected by some non-ideal phenomena. The purpose of this work is to measure long ignition delay times for fuels exhibiting negative temperature coefficient (NTC) and to assess the impact of shock tube non-idealities on ignition delay data. Ignition delay times of n-heptane and n-hexane were measured over the temperature range of 650 – 1250 K and pressures near 1.5 atm. Driver gas tailoring and long length of shock tube driver section were utilized to measure ignition delay times as long as 32 ms. Measured ignition delay times agree with chemical kinetic models at high (> 1100 K) and low (< 700 K) temperatures. In the intermediate temperature range (700 – 1100 K), however, significant discrepancies are observed between the measurements and homogeneous ignition delay simulations. It is postulated, based on experimental observations, that localized ignition kernels could affect the ignition delay times at the intermediate temperatures, which lead to compression (and heating) of the bulk gas and result in expediting the overall ignition event. The postulate is validated through simple representative computational fluid dynamic simulations of post-shock gas mixtures which exhibit ignition advancement via a hot spot. The results of the current work show that ignition delay times measured by shock tubes may be affected by non-ideal phenomena for certain conditions of temperature, pressure and fuel reactivity. Care must, therefore, be exercised in using such data for chemical kinetic model development and validation.

  20. Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility.

    Science.gov (United States)

    Smalyuk, V A; Tipton, R E; Pino, J E; Casey, D T; Grim, G P; Remington, B A; Rowley, D P; Weber, S V; Barrios, M; Benedetti, L R; Bleuel, D L; Bradley, D K; Caggiano, J A; Callahan, D A; Cerjan, C J; Clark, D S; Edgell, D H; Edwards, M J; Frenje, J A; Gatu-Johnson, M; Glebov, V Y; Glenn, S; Haan, S W; Hamza, A; Hatarik, R; Hsing, W W; Izumi, N; Khan, S; Kilkenny, J D; Kline, J; Knauer, J; Landen, O L; Ma, T; McNaney, J M; Mintz, M; Moore, A; Nikroo, A; Pak, A; Parham, T; Petrasso, R; Sayre, D B; Schneider, M B; Tommasini, R; Town, R P; Widmann, K; Wilson, D C; Yeamans, C B

    2014-01-17

    We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294  eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

  1. Auto-ignitions of a methane/air mixture at high and intermediate temperatures

    Science.gov (United States)

    Leschevich, V. V.; Martynenko, V. V.; Penyazkov, O. G.; Sevrouk, K. L.; Shabunya, S. I.

    2016-09-01

    A rapid compression machine (RCM) and a shock tube (ST) have been employed to study ignition delay times of homogeneous methane/air mixtures at intermediate-to-high temperatures. Both facilities allow measurements to be made at temperatures of 900-2000 K, at pressures of 0.38-2.23 MPa, and at equivalence ratios of 0.5, 1.0, and 2.0. In ST experiments, nitrogen served as a diluent gas, whereas in RCM runs the diluent gas composition ranged from pure nitrogen to pure argon. Recording pressure, UV, and visible emissions identified the evolution of chemical reactions. Correlations of ignition delay time were generated from the data for each facility. At temperatures below 1300 K, a significant reduction of average activation energy from 53 to 15.3 kcal/mol was obtained. Moreover, the RCM data showed significant scatter that dramatically increased with decreasing temperature. An explanation for the abnormal scatter in the data was proposed based on the high-speed visualization of auto-ignition phenomena and experiments performed with oxygen-free and fuel-free mixtures. It is proposed that the main reason for such a significant reduction of average activation energy is attributable to the premature ignition of ultrafine particles in the reactive mixture.

  2. Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility

    International Nuclear Information System (INIS)

    Lin, E.

    2009-01-01

    The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the creation

  3. Nuclear Diagnostics at the National Ignition Facility, 2013-2015

    Science.gov (United States)

    Yeamans, C. B.; Cassata, W. S.; Church, J. A.; Fittinghoff, D. N.; Gatu Johnson, M.; Gharibyan, N.; Határik, R.; Sayre, D. B.; Sio, H. W.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cerjan, C. J.; Cooper, G. W.; Eckart, M. J.; Edwards, E. R.; Faye, S. A.; Forrest, C. J.; Frenje, J. A.; Glebov, V. Yu; Grant, P. M.; Grim, G. P.; Hartouni, E. P.; Herrmann, H. W.; Kilkenny, J. D.; Knauer, J. P.; Mackinnon, A. J.; Merrill, F. E.; Moody, K. J.; Moran, M. J.; Petrasso, R. D.; Phillips, T. W.; Rinderknecht, H. G.; Schneider, D. H. G.; Sepke, S. M.; Shaughnessy, D. A.; Stoeffl, W.; Velsko, C. A.; Volegov, P.

    2016-05-01

    The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic output of experiments. Neutron time-of-flight (NTOF) and neutron activation diagnostics (NAD) provide performance metrics of absolute neutron yield and neutron spectral content: spectral width and non-thermal content, from which implosion physical quantities of temperature and scattering mass are inferred. Spatially-distributed flange- mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron field. An automated FNAD system is being developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable NTOF and NAD devices, and as such is deployed for independent measurement of the primary neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records four energy channels of time-resolved gamma emission to measure nuclear bang time and burn width, as well as to infer carbon areal density in experiments utilizing plastic or diamond capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically gated to create coregistered 13-15 MeV primary and 6-12 MeV downscattered images. The radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a chemical reaction and fractionation system configured with gamma counters, allowing measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemistry collectors (SRC) with backing NAD foils collect target debris, where activated materials from the target assembly are used as indicators of neutron spectrum content, and also serve as the primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF) measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using D3He-protons for implosions with lower x-ray background. In concert, these diagnostics serve to measure the basic and advanced

  4. A geophysical shock and air blast simulator at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, C. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Compton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, O. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shingleton, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, J. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holtmeier, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Loey, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mirkarimi, P. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, W. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guyton, R. L. [National Security Technologies, Livermore, CA (United States); Huffman, E. [National Security Technologies, Livermore, CA (United States)

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  5. A geophysical shock and air blast simulator at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-481, Livermore, California 94550 (United States); Guyton, R. L.; Huffman, E. [National Securities Technologies, Vasco Rd., Livermore, California 94551 (United States)

    2014-09-15

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  6. Research on non-destructive testing (NDT) aerospace igniter fuse with neutron radiography (NR)

    International Nuclear Information System (INIS)

    Mo Dawei; Liu Yisi; Cai Qingsheng; Chen Boxian

    1995-01-01

    The research works, facilities and results of NDT aerospace igniter fuse with neutron radiography at Tsinghua University swimming-pool reactor are introduced. The image quality (NR) of ASTM E545-85 I level was approached. The NR experimental research of the typical and possible defects was performed. The theoretical analysis was performed too. The feasibility of NDT aerospace igniter fuse with NR was proved experimentally

  7. 'Defense-in-Depth' Laser Safety and the National Ignition Facility

    International Nuclear Information System (INIS)

    King, J.J.

    2010-01-01

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential

  8. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  9. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M.

    2014-01-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3 He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3 He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R cm ) from the downshift of the shock-produced D 3 He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR

  10. Laser-induced multi-point ignition for enabling high-performance engines

    KAUST Repository

    Chung, Suk-Ho

    2015-01-01

    Various multi-point laser-induced ignition techniques were reviewed, which adopted conical cavity and prechamber configurations. Up to five-point ignitions have been achieved with significant reduction in combustion duration, demonstrating potential increase in combustion system efficiency.

  11. A mechanistic approach to safe igniter implementation for hydrogen mitigation

    International Nuclear Information System (INIS)

    Breitung, W.; Dorofeev, S.B.; Travis, J.R.

    1997-01-01

    A new methodology for safe igniter implementation in a full-scale 3-d containment is described. The method consists of the following steps: determination of bounding H 2 /steam sources; high-resolution analysis of the 3-d transport and mixing processes; evaluation of the detonation potential at the time of ignition; optimization of the igniter system such that only early ignition and nonenergetic combustion occurs; and modelling of the continuous deflagration processes during H 2 -release. The method was implemented into the GASFLOW code. The principle and the feasibility is demonstrated for a single room geometry. A full-scale 3-d reactor case is analyzed without and with deliberate ignition, assuming a severe dry H 2 release sequence (1200 kg). In the unmitigated case significant DDT potential in the whole containment develops, including the possibility of global detonations. The analysis with igniters in different positions predicted deflagration or detonation in the break compartment, depending on the igniter location. Igniter positions were found which lead to early ignition, effective H 2 -removal, and negligible pressure loads. The approach can be used to determine number, position and frequency of a safe igniter system for a given large dry containment. (author)

  12. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  13. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    Science.gov (United States)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  14. Laser Performance Operations Model (LPOM): A Tool to Automate the Setup and Diagnosis of the National Ignition Facility

    International Nuclear Information System (INIS)

    Shaw, M; House, R; Haynam, C; Williams, W

    2005-01-01

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory (LLNL) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. The first four beamlines (a quad) have recently been commissioned, and operations on the first bundle (units of eight beamlines) will begin in Summer 2005. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed to automate the laser setup process, and accurately predict laser energetics. For each shot on NIF, the LPOM determines the characteristics of the injection laser system required to achieve the desired main laser output, provides parameter checking for equipment protection, determines the required diagnostic setup, and supplies post-shot data analysis and reporting

  15. Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility

    Science.gov (United States)

    Walsh, C. A.; Chittenden, J. P.; McGlinchey, K.; Niasse, N. P. L.; Appelbe, B. D.

    2017-04-01

    Three-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 104 T . Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%. However, Righi-Leduc heat transport effectively cools the hot spot and lowers the neutron spectra-inferred ion temperatures compared to the unmagnetized case. The Nernst effect qualitatively changes the results by demagnetizing the hot-spot core, while increasing magnetizations at the edge and near regions of large heat loss.

  16. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  17. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser

    Science.gov (United States)

    Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.

    2018-05-01

    We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.

  18. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2016-05-15

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  19. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.; Galbraith, J.; Hatch, B.; Landen, O.; Manuel, A. M.; Molander, W.; Moody, J. D.; Swadling, G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Froula, D. H.; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kilkenny, J. [General Atomics, San Diego, California 92186 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Weaver, J. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{sup −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  20. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; Robey, H. F.; Kritcher, A. L.; Milovich, J. L.; Salmonson, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-07-15

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.

  1. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF).

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Efthimion, P C; Ellis, R; Gao, L; Maddox, J; Pablant, N A; Schneider, M B; Chen, H; Ayers, S; Kauffman, R L; MacPhee, A G; Beiersdorfer, P; Bettencourt, R; Ma, T; Nora, R C; Scott, H A; Thorn, D B; Kilkenny, J D; Nelson, D; Shoup, M; Maron, Y

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s 2 -1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s 2 -1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  2. Inertial fusion program in Japan and ignition experiment facility by laser

    International Nuclear Information System (INIS)

    Nakai, S.

    1989-01-01

    The recent progress in laser fusion research is remarkable with respect to obtaining the high density and high temperature plasma which produces thermonuclear neutrons of 10 13 per shot (pellet gain of 0.2%) and to the understanding of implosion physics. Data bases for laser fusion have been accumulated and technologies for advanced experiments have been developed, both of which enable us to make the reserarch step toward the fusion ignition experiment and the achievement of the breakeven condition, which is estimated to be possible with a 100 kJ blue laser. The demonstration of high gain pellets requires laser energy in the range MJ in blue light. The design studies of the MJ laser are continue in the framework of the solid state laser at ILE. The design studies on the commercial reactor of ICF have proceeded and several conceptual designs have been proposed. These designs utilize a liquid metal first wall and blanket which enable long life for commercial use. As a consequence, the ICF reactor has technically a high feasibility for commercial application. (orig.)

  3. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-02

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.

  4. PITR: Princeton Ignition Test Reactor

    International Nuclear Information System (INIS)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection

  5. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  6. Progress on establishing guidelines for National Ignition Facility (NIF) experiments to extend debris shield lifetime

    International Nuclear Information System (INIS)

    Tobin, M.; Eder, D.; Braun, D.; MacGowan, B.

    2002-01-01

    The survivability of the debris shields on the National Ignition Facility (NIF) are a key factor for the affordable operation of the facility. The improvements required over Nova debris shields are described. Estimates of debris shield lifetimes in the presence of target emissions with 4-8 J/cm 2 laser fluences indicate lifetimes that may contribute unacceptably to operations costs for NIF. We are developing detailed suggested guidance for target and experiment designers for NIF to assist in minimizing the damage to, and therefore the cost of, maintaining NIF debris shields. The guidance suggests a target mass quantity that as particulate on the debris shields (300 mg) may be within current operating budgets. It also suggests the amount of material that should become shrapnel on a shot (10 mg). Finally, it suggests the level of non-volatile residue (NVR) that would threaten the sol-gel coatings on the debris shields (1 μg/cm 2 ). We review the experimentation on the Nova chamber that included measuring quantities of particulate on debris shields by element and capturing shrapnel pieces in aerogel samples mounted in the chamber. We also describe computations of X-ray emissions from a likely NIF target and the associated ablation expected from this X-ray exposure on supporting target hardware. We describe progress in assessing the benefits of a pre-shield and the possible impact on the guidance for target experiments on NIF. Plans for possible experimentation on Omega and other facilities to improve our understanding of target emissions and their impacts are discussed. Our discussion of planned future work provides a forum to invite possible collaboration with the IFE community

  7. Ignition analysis for burn control and diagnostic developments in ITER

    International Nuclear Information System (INIS)

    Mitarai, O.; Muraoka, K.

    1997-01-01

    The temporal evolutions of the operating point during the ignition access and ignited operation phases are analysed on the basis of zero dimensional (0-D) equations in order to clarify the requirements for safe control of ignited operation and for the development of diagnostic systems in ITER. A stable and safe method of reaching the ignited operating point is identified as the 'higher temperature access' method, being compatible with the H mode power threshold constraints. It is found that the ignition boundary can be experimentally determined by a 'thermonuclear oscillation' of the operating point without knowing the power balance equation. On the other hand, the ignition boundary determined by the power balance equation has a larger error bar depending on the accuracy of the diagnostic system. The plasma waveform response to sudden changes in the various plasma parameters during ignited operation is also calculated, and fusion power regulation is demonstrated by feedback control of the fuelling and auxiliary heating power. (author)

  8. Sodium Fire Demonstration Facility Design and Operation

    International Nuclear Information System (INIS)

    Cho, Youngil; Kim, Jong-Man; Lee, Jewhan; Hong, Jonggan; Yeom, Sujin; Cho, Chungho; Jung, Min-Hwan; Gam, Da-Young; Jeong, Ji-Young

    2014-01-01

    Although sodium has good characteristics such as high heat transfer rate and stable nuclear property, it is difficult to manage because of high reactivity. Sodium is solid at the room temperature and it easily reacts with oxygen resulting in fire due to the reaction heat. Thus, sodium must be stored in a chemically stable place, i.e., an inert gas-sealed or oil filled vessel. When a sodium fire occurs, the Na 2 O of white fume is formed. It is mainly composed of Na 2 O 2 , NaOH, and Na 2 CO 3 , ranging from 0.1 to several tens of micrometers in size. It is known that the particle size increases by aggregation during floating in air. Thus, the protection method is important and should be considered in the design and operation of a sodium system. In this paper, sodium fire characteristics are described, and the demonstration utility of outbreak of sodium fire and its extinguishing is introduced. In this paper, sodium fire characteristics and a demonstration facility are described. The introduced sodium fire demonstration facility is the only training device used to observe a sodium fire and extinguish it domestically. Furthermore, the type of sodium fire will be diversified with the enhancement of the utility. It is expected that this utility will contribute to experience in the safe treatment of sodium by the handlers

  9. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  10. HYDROGEN ENERGY: TERCEIRA ISLAND DEMONSTRATION FACILITY

    Directory of Open Access Journals (Sweden)

    MARIO ALVES

    2008-07-01

    Full Text Available The present paper gives a general perspective of the efforts going on at Terceira Island in Azores, Portugal, concerning the implementation of an Hydrogen Economy demonstration campus. The major motivation for such a geographical location choice was the abundance of renewable resources like wind, sea waves and geothermal enthalpy, which are of fundamental importance for the demonstration of renewable hydrogen economy sustainability. Three main campus will be implemented: one at Cume Hill, where the majority of renewable hydrogen production will take place using the wind as the primary energy source, a second one at Angra do Heroismo Industrial park, where a cogen electrical – heat power station will be installed, mainly to feed a Municipal Solid Waste processing plant and a third one, the Praia da Vitoria Hydrogenopolis, where several final consumer demonstrators will be installed both for public awareness and intensive study of economic sustainability and optimization. Some of these units are already under construction, particularly the renewable hydrogen generation facilities.

  11. Tumulus Disposal Demonstration Facility for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Clapp, R.B.; van Hoesen, S.D.

    1987-01-01

    This disposal concept is based on the Tumulus design developed by the French at the La Manche facility. Waste units are stacked above-grade on a concrete pad. The facility currently under development at the Oak Ridge National Laboratory (ORNL) involves sealing waste in concrete vaults, placing the vaults on a grade level concrete pad, and covering the pad and vaults with a soil cover after vault emplacement is complete. Emplacement is expected to continue until the facility exhausts its approximate 800 m 3 (28,000 ft 3 ) capacity. The facility incorporates engineered barriers to radionuclide migration; a monitoring system to ensure barrier performance; and a newly developed set of Demonstration Waste Acceptance Criteria to reduce the likelihood of groundwater contamination

  12. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  13. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani; Kukkadapu, Goutham; Mehl, Marco; Wang, Weijing; Javed, Tamour; Park, Sungwoo; Oehlschlaeger, Matthew A.; Farooq, Aamir; Pitz, William J.; Sung, Chihjen

    2015-01-01

    Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from

  14. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  15. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    International Nuclear Information System (INIS)

    Wilson, D C; Yi, S A; Simakov, A N; Kline, J L; Kyrala, G A; Olson, R E; Zylstra, A B; Dewald, E L; Tommasini, R; Ralph, J E; Strozzi, D J; Celliers, P M; Schneider, M B; MacPhee, A G; Callahan, D A; Hurricane, O A; Milovich, J L; Hinkel, D E; Rygg, J R; Rinderknecht, H G

    2016-01-01

    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%. (paper)

  16. Gas-filled hohlraum experiments at the national ignition facility.

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, J. C. (Juan C.); Gautier, D. C. (Donald Cort); Goldman, S. R. (Sanford R.); Grimm, B. M.; Hegelich, B. M. (Bjorn M.); Kline, J. L. (John L.); Montgomery, D. S. (David S.); Lanier, N. E. (Nicholas E.); Rose, H. A. (Harvey A.); Schmidt, D. M. (David M.); Swift, D. C.; Workman, J. B. (Jonathan B.); Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K. (Katherine); DeWald, E.; Glenzer, S. (Siegfried); Holder, J. (Joe P.); Kamperschroer, J. H. (James H.); Kimbrough, Joe (Joseph R.); Kirkwood, Robert (Bob); Landen, O. L. (Otto L.); Mccarville, Tom (Tomas J.); Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li [number : znumber] 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  17. Gas-filled hohlraum experiments at the national ignition facility

    International Nuclear Information System (INIS)

    Fernandez, J.C.; Gautier, D.C.; Goldman, S.R.; Grimm, B.M.; Hegelich, B.M.; Kline, J.L.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Schmidt, D.M.; Swift, D.C.; Workman, J.B.; Alvarez, Sharon; Bower, Dan; Braun, Dave; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J.H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O.L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M.; Watts, Phil; Young, Ben-li; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  18. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    gas temperature is suitable for combustion (T=2000-3000 K). This technique is demonstrated by attempting ignition of various mixtures of propane-air and it is shown to have distinct advantages when compared to the classical approach: lower ignition energy for given stoichiometry than conventional laser ignition ( 20% lower), extension of the lean limit ( 15% leaner) and improvement in combustion efficiency. Moreover, it is demonstrated that careful alignment of the two pulses influences the fluid dynamics of the early flame kernel growth. This finding has a number of implications for practical uses as it demonstrates that the flame kernel dynamics can be tailored using various combinations of laser pulses and opens the door for implementing such a technique to applications such as: flame holding and flame stabilization in high speed flow combustors (such as ramjet and scramjet engines), reducing flame stretching in highly turbulent combustion devices and increasing combustion efficiency for stationary natural gas engines. As such, the work presented in this dissertation should be of interest to a broad audience including those interested in combustion research, engine operation, chemically reacting flows, plasma dynamics and laser diagnostics.

  19. Development of Demonstration Facility Design Technology for Advanced Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.

    2010-04-01

    The main objective of this R and D is to develop the PRIDE (PyRoprocess Integrated inactive DEmonstration) facility for engineering-scale inactive test using fresh uranium, and to establish the design requirements of the ESPF (Engineering Scale Pyroprocess Facility) for active demonstration of the pyroprocess. Pyroprocess technology, which is applicable to GEN-IV systems as one of the fuel cycle options, is a solution of the spent fuel accumulation problems. PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. The PRIDE evaluation data, such as performance evaluation data of equipment and operation experiences, will be directly utilized for the design of ESPF

  20. Ex-vessel remote maintenance for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Macdonald, D.

    1987-01-01

    The use of deuterium-tritium (D-T) fuel for operation of the Compact Ignition Tokamak (CIT) requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist in removing and repairing such components as diagnostic modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the plasma chamber includes a bridge-mounted manipulator system for test cell operations, decontamination (decon) equipment, hot cell equipment, and solid-radiation-waste-handling equipment. Wherever possible, the project will use commercially available equipment. Several areas of the maintenance system design were addressed in fiscal year (FY) 1987, including conceptual designs of manipulator systems, the start of a remote equipment research and development (RandD) program, and definition of the hot cell, decon, and equipment repair facility requirements. R and D work included preliminary demonstrations of remote handling operations on full-size, partial mock-ups of the CIT machine at the Oak Ridge National Laboratory (ORNL) Remote Operations and Maintenance Development (ROMD) Facility. 1 ref., 6 figs

  1. A proton-recoil neutron spectrometer for time-dependent ion temperatures on the National Ignition Facility

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1995-01-01

    Ion temperatures from inertial confinement fusion targets are usually determined by measuring the Doppler broadening of the neutron spectrum using the time-of-flight method. Measurement systems are generally designed so that the contribution of the duration of neutron production (∼100 ps) to the width of the neutron signal is negligible. This precludes the possibility of time-dependent ion temperature. If, however, one could measure the neutron energy and arrival time at a detector independently, then time-dependent neutron spectra could be obtained, and ion temperature information deduced. A concept utilizing a proton-recoil neutron spectrometer has been developed in which recoil protons from a small plastic foil are measured. From the energy, arrival time, and recoil angle of the recoil proton, the birth time and energy of the incident neutron can be deduced. The sensitivity of the system is low, but the higher anticipated neutron yields from the proposed National Ignition Facility may make the technique feasible. Large scintillator arrays currently in use on the Nova facility for neutron spectral measurements consist of ∼1,000 channels and detect between 50 and 500 counts for typical time-integrated data. Time-dependent results would then require about an order of magnitude larger system. Key issues for making this system feasible will be keeping the cost per channel low while allowing adequately time (∼ 50 ps), energy (20 keV), and angular resolution (2 mrad) for each of the proton detectors

  2. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    Science.gov (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  3. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    Science.gov (United States)

    Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.

    2018-04-01

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.

  4. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-09-15

    Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

  5. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  6. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  7. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Bleuel D.L.

    2013-11-01

    Full Text Available Neutron yields at the National Ignition Facility (NIF are measured with a suite of diagnostics, including activation of ∼20–200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM, 25–50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n′ reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  8. 2x1 prototype plasma-electrode pockels cell (PEPC) for the National Ignition Facility

    International Nuclear Information System (INIS)

    Rhodes, M. A.

    1996-10-01

    A large aperture optical switch based on plasma electrode Pockels cell (PEPC) technology is an integral part of the National Ignition Facility (NIP) laser design. This optical switch will trap the input optical pulse in the NIF amplifier cavity for four gain passes and then switch the high-energy output optical pulse out of the cavity. The switch will consist of arrays of plasma electrode Pockels cells working in conjunction with thin-film, Brewster's angle polarizes. The 192 beams in the NIF will be arranged in 4x2 bundles. To meet the required beam-to-beam spacing within each bundle, we have proposed a NIF PEPC design based on a 4x1 mechanical module (column) which is in turn comprised of two electrically independent 2x1 PEPC units. In this paper, we report on the design a single 2x1 prototype module and experimental tests of important design issues using our single, 32 cm aperture PEPC prototype. The purpose the 2x1 prototype is to prove the viability of a 2x1 PEPC and to act, as an engineering test bed for the NIF PEPC design

  9. The Shock/Shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Doss, F. W., E-mail: fdoss@lanl.gov; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-05-15

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (∼ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  10. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Casey, D.; Clancy, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T. [General Atomics, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States)

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})

  11. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K. [Lawrence Livermore National Laboratory, P.O. Box 808 L170, Livermore, California 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  12. Computational investigation of reshock strength in hydrodynamic instability growth at the National Ignition Facility

    Science.gov (United States)

    Bender, Jason; Raman, Kumar; Huntington, Channing; Nagel, Sabrina; Morgan, Brandon; Prisbrey, Shon; MacLaren, Stephan

    2017-10-01

    Experiments at the National Ignition Facility (NIF) are studying Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities in multiply-shocked plasmas. Targets feature two different-density fluids with a multimode initial perturbation at the interface, which is struck by two X-ray-driven shock waves. Here we discuss computational hydrodynamics simulations investigating the effect of second-shock (``reshock'') strength on instability growth, and how these simulations are informing target design for the ongoing experimental campaign. A Reynolds-Averaged Navier Stokes (RANS) model was used to predict motion of the spike and bubble fronts and the mixing-layer width. In addition to reshock strength, the reshock ablator thickness and the total length of the target were varied; all three parameters were found to be important for target design, particularly for ameliorating undesirable reflected shocks. The RANS data are compared to theoretical models that predict multimode instability growth proportional to the shock-induced change in interface velocity, and to currently-available data from the NIF experiments. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-ABS-734611.

  13. Design and construction of a Gamma reaction history diagnostic for the National Ignition Facility

    International Nuclear Information System (INIS)

    Malone, R M; Cox, B C; Frogget, B C; Kaufman, M I; Tibbitts, A; Tunnell, T W; Evans, S C; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; McGillivray, K D; Palagi, M; Stoeffl, W

    2010-01-01

    Gas Cherenkov detectors have been used to convert fusion gammas into photons to record gamma reaction history measurements. These gas detectors include a converter, pressurized gas volume, relay collection optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90 0 off-axis parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion. Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The relay optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO 2 or SF 6 ) volume. The parabolic mirrors were electroformed instead of diamond turned to reduce scattering of the UV light. All mirrors are bare aluminum coated for maximum reflectivity. This design incorporates a 4.2-ns time delay that allows the detector to recover from prompt radiation before it records the gamma signal. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds.

  14. Construction safety program for the National Ignition Facility, July 30, 1999 (NIF-0001374-OC)

    International Nuclear Information System (INIS)

    Benjamin, D. W.

    1999-01-01

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules-Code of Safe Practices shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S and H A-l that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Rules-Code of Safe Practices. (An interpreter must brief those employees who do not speak or read English fluently.) In addition, all contractors and subcontractors shall adopt a written General Rules-Code of Safe Practices that relates to their operations. The General Rules-Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory employee who shall have it readily available. Copies of the General Rules-Code of Safe Practices can also be included in employee safety pamphlets

  15. A new metric of the low-mode asymmetry for ignition target designs

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Fan, Zhengfeng; Zou, Shiyang; Ye, Wenhua; Pei, Wenbing; Zhu, Shaoping

    2014-01-01

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the measured neutron yield and hot spot pressure are significantly lower than simulations. Understanding the underlying physics of the deficit is essential to achieving ignition. This paper investigates the low-mode areal density asymmetry in the main fuel of ignition capsule. It is shown that the areal density asymmetry breaks up the compressed shell and significantly reduces the conversion of implosion kinetic energy to hot spot internal energy, leading to the calculated hot spot pressure and neutron yield quite close to the experimental data. This indicates that the low-mode shell areal density asymmetry can explain part of the large discrepancy between simulations and experiments. Since only using the hot spot shape term could not adequately characterize the effects of the shell areal density asymmetry on implosion performance, a new metric of the low-mode asymmetry is developed to accurately measure the probability of ignition

  16. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility.

    Science.gov (United States)

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.

  17. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  18. Integrated thermodynamic model for ignition target performance

    Directory of Open Access Journals (Sweden)

    Springer P.T.

    2013-11-01

    Full Text Available We have derived a 3-dimensional synthetic model for NIF implosion conditions, by predicting and optimizing fits to a broad set of x-ray and nuclear diagnostics obtained on each shot. By matching x-ray images, burn width, neutron time-of-flight ion temperature, yield, and fuel ρr, we obtain nearly unique constraints on conditions in the hotspot and fuel in a model that is entirely consistent with the observables. This model allows us to determine hotspot density, pressure, areal density (ρr, total energy, and other ignition-relevant parameters not available from any single diagnostic. This article describes the model and its application to National Ignition Facility (NIF tritium–hydrogen–deuterium (THD and DT implosion data, and provides an explanation for the large yield and ρr degradation compared to numerical code predictions.

  19. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani; Kukkadapu, Goutham; Mehl, Marco; Javed, Tamour; Ahmed, Ahfaz; Naser, Nimal; Tekawade, Aniket; Kosiba, Graham; Alabbad, Mohammed; Singh, Eshan; Park, Sungwoo; Rashidi, Mariam Al; Chung, Suk-Ho; Roberts, William L.; Oehlschlaeger, Matthew A.; Sung, Chih-Jen; Farooq, Aamir

    2016-01-01

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  20. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  1. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  2. Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lin, E

    2009-08-06

    The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the

  3. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    Science.gov (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  4. Progress toward ignition with direct-drive

    International Nuclear Information System (INIS)

    McCrory, R.L. Jr.

    1993-01-01

    The goal of the direct-drive laser fusion program is to validate high-performance, direct-drive targets. A decision to construct a direct-drive capability on the proposed 1-to-2-MJ National Ignition Facility (NIF) in the USA will be based on target physics experiments conducted on the OMEGA Upgrade laser system now under construction at the LLE. The OMEGA Upgrade will provide up to 30 kJ of UV laser energy in precisely shaped pulses with irradiation nonuniformities in the range of 1 pc. to 2 pc. An understanding and predictive capability for direct-drive targets are required to assure reliable estimates of ignition and gain with 1-2 MJ of incident laser energy. This paper reviews the target physics efforts currently underway to assess the critical physics issues of direct-drive ICF; plans for the experimental program to be carried out on the OMEGA Upgrade laser are also presented. 14 figs., 15 refs

  5. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-06-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  6. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-02-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  7. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  8. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  9. Recent advances in ignition target physics at CEA

    International Nuclear Information System (INIS)

    Tassart, J.

    2003-01-01

    The objective of the Ignition Physics Program at CEA is to burn DT capsules on the Laser Mega Joule (LMJ) at the beginning of the next decade. Recent progress on Laser Plasma Interaction, hohlraum energetics, symmetry, ablator physics and hydrodynamic instabilities allow to remove most of these latter, to precise laser and target specifications and to elaborate a strategy toward ignition. These studies include theoretical work, numerical simulations, diagnostics developments and experiments partly done in collaboration with the US DOE. Construction of facilities is ongoing: LMJ beam prototype is planed to fire 7 kJ at the center of the target chamber at 0.35 mm at the end of 2002 and the LMJ (a 240 beams 1.8 MJ laser) is planned to be ready for experiments at the end of 2009. (author)

  10. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal

    2017-04-21

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  11. Calculating the shrapnel generation and subsequent damage to first wall and optics components for the National Ignition Facility

    International Nuclear Information System (INIS)

    Tokheim, R.E.; Seaman, L.; Cooper, T.; Lew, B.; Curran, D.R.; Sanchez, J.; Anderson, A.; Tobin, M.

    1996-01-01

    This study computationally assesses the threat from shrapnel generation on the National Ignition Facility (NIF) first wall, final optics, and ultimately other target chamber components. Motion of the shrapnel is determined both by particle velocities resulting from the neutron deposition and by x-ray and ionic debris loading arising from explosion of the hohlraum. Material responses of different target area components are computed from one-dimensional and two-dimensional stress wave propagation codes. Well developed rate-dependent spall computational models are used for stainless steel spall and splitting. Severe cell distortion is accounted for in shine-shield and hohlraum-loading computations. Resulting distributions of shrapnel particles are traced to the first wall and optics and damage is estimated for candidate materials. First wall and optical material damage from shrapnel includes crater formation and associated extended cracking. 5 refs., 10 figs

  12. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR (Integral Fast Reactor) program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. (author)

  13. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs

  14. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  15. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  16. Prechamber ignition concepts for stationary large bore gas engines; Vorkammerzuendkonzepte fuer stationaer betriebene Grossgasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Christoph [MTU Friedrichshafen GmbH (Germany); Kammerstaetter, Stefan; Sattelmayer, Thomas [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Thermodynamik

    2012-01-15

    A testing facility for the optical investigation of ignition and combustion in large bore gas engines is described. The test rig was developed at the Institute of Thermodynamics at Technical University of Munich. Core element of the setup is an optically accessible high pressure combustion cell which can be charged, ignited, and discharged repeatedly according to the cycle times of a real engine. Until now the apparatus was used for the investigation of two different prechamber concepts. (orig.)

  17. Waste immobilization demonstration program for the Hanford Site's Mixed Waste Facility

    International Nuclear Information System (INIS)

    Burbank, D.A.; Weingardt, K.M.

    1994-05-01

    This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation

  18. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  19. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

    Science.gov (United States)

    Gatu Johnson, M.; Casey, D. T.; Hohenberger, M.; Zylstra, A. B.; Bacher, A.; Brune, C. R.; Bionta, R. M.; Craxton, R. S.; Ellison, C. L.; Farrell, M.; Frenje, J. A.; Garbett, W.; Garcia, E. M.; Grim, G. P.; Hartouni, E.; Hatarik, R.; Herrmann, H. W.; Hohensee, M.; Holunga, D. M.; Hoppe, M.; Jackson, M.; Kabadi, N.; Khan, S. F.; Kilkenny, J. D.; Kohut, T. R.; Lahmann, B.; Le, H. P.; Li, C. K.; Masse, L.; McKenty, P. W.; McNabb, D. P.; Nikroo, A.; Parham, T. G.; Parker, C. E.; Petrasso, R. D.; Pino, J.; Remington, B.; Rice, N. G.; Rinderknecht, H. G.; Rosenberg, M. J.; Sanchez, J.; Sayre, D. B.; Schoff, M. E.; Shuldberg, C. M.; Séguin, F. H.; Sio, H.; Walters, Z. B.; Whitley, H. D.

    2018-05-01

    Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T2/3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at a set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2/3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.

  20. 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with Zircaloy-2 and copper silicon allo , uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets (7.5-gal containers) in the 304 Concretion Facility (304 Facility), located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA) and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040 (Ecology 1991). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Facility. The strategy for closure of the 304 Facility is presented in Section 6.0

  1. Optimization of the NIF ignition point design hohlraum

    International Nuclear Information System (INIS)

    Callahan, D A; Hinkel, D E; Berger, R L; Divol, L; Dixit, S N; Edwards, M J; Haan, S W; Jones, O S; Lindl, J D; Meezan, N B; Michel, P A; Pollaine, S M; Suter, L J; Town, R P J; Bradley, P A

    2008-01-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt

  2. Optimization of the NIF ignition point design hohlraum

    Science.gov (United States)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  3. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    International Nuclear Information System (INIS)

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC

  4. Hot-spot mix in ignition-scale inertial confinement fusion targets.

    Science.gov (United States)

    Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J

    2013-07-26

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50)  ng and 4000(-2970,+17 160)  ng are observed.

  5. National Ignition Facility (NIF) FY2015 Facility Use Plan

    Energy Technology Data Exchange (ETDEWEB)

    Folta, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wisoff, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  6. The use of tritium rich capsules with 25-35% deuterium to achieve ignition at the National Ignition Facility

    Science.gov (United States)

    Wilson, D. C.; Spears, B. K.; Hatchett, S. P., Ii; Cerjan, C. J.; Springer, P. T.; Clark, D. S.; Edwards, M. J.; Salmonson, J. D.; Weber, S. V.; Hammel, B. A.; Grim, G. P.; Herrmann, H. W.; Wilke, M. D.

    2010-08-01

    Diagnostics such as neutron yield, ion temperature, image size and shape, and bang time in capsules with >~25 % deuterium fuel show changes due to burn product heating. The comparison of performance between a THD(2%) and THD(35%) can help predict ignition in a TD(50%) capsule. Surrogacy of THD capsules to TD(50%) is incomplete due to variations in fuel molecular vapour pressures. TD(25-35%) capsules might be preferred to study hot spot heating, but at the risk of increased fuel/ablator mixing.

  7. The use of tritium rich capsules with 25-35% deuterium to achieve ignition at the National Ignition Facility

    International Nuclear Information System (INIS)

    Wilson, D C; Grim, G P; Herrmann, H W; Wilke, M D; Spears, B K; Ii, S P Hatchett; Cerjan, C J; Springer, P T; Clark, D S; Edwards, M J; Salmonson, J D; Weber, S V; Hammel, B A

    2010-01-01

    Diagnostics such as neutron yield, ion temperature, image size and shape, and bang time in capsules with >∼25 % deuterium fuel show changes due to burn product heating. The comparison of performance between a THD(2%) and THD(35%) can help predict ignition in a TD(50%) capsule. Surrogacy of THD capsules to TD(50%) is incomplete due to variations in fuel molecular vapour pressures. TD(25-35%) capsules might be preferred to study hot spot heating, but at the risk of increased fuel/ablator mixing.

  8. The use of tritium rich capsules with 25-35% deuterium to achieve ignition at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D C; Grim, G P; Herrmann, H W; Wilke, M D [Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Spears, B K; Ii, S P Hatchett; Cerjan, C J; Springer, P T; Clark, D S; Edwards, M J; Salmonson, J D; Weber, S V; Hammel, B A, E-mail: dcw@lanl.go [Lawrence Livermore National Laboratory, Livermore, CA, 94550 (United States)

    2010-08-01

    Diagnostics such as neutron yield, ion temperature, image size and shape, and bang time in capsules with >{approx}25 % deuterium fuel show changes due to burn product heating. The comparison of performance between a THD(2%) and THD(35%) can help predict ignition in a TD(50%) capsule. Surrogacy of THD capsules to TD(50%) is incomplete due to variations in fuel molecular vapour pressures. TD(25-35%) capsules might be preferred to study hot spot heating, but at the risk of increased fuel/ablator mixing.

  9. Stability of Ignition Transients

    OpenAIRE

    V.E. Zarko

    1991-01-01

    The problem of ignition stability arises in the case of the action of intense external heat stimuli when, resulting from the cut-off of solid substance heating, momentary ignition is followed by extinction. Physical pattern of solid propellant ignition is considered and ignition criteria available in the literature are discussed. It is shown that the above mentioned problem amounts to transient burning at a given arbitrary temperature distribution in the condensed phase. A brief survey...

  10. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weilacher, F.; Radha, P. B., E-mail: rbah@lle.rochester.edu; Collins, T. J. B.; Marozas, J. A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ∼10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.

  11. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    International Nuclear Information System (INIS)

    Weilacher, F.; Radha, P. B.; Collins, T. J. B.; Marozas, J. A.

    2015-01-01

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ∼10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes

  12. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    Stotler, D.P.; Goldston, R.J.

    1989-09-01

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  13. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.; Loiseau, P.; Masson-Laborde, P. E.; Jacquet, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Martinez, D.; Moore, A. S.; Seugling, R.; Felker, S.; Haan, S. W.; Remington, B. A.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M.; Giraldez, E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States)

    2015-05-15

    Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.

  14. The LLNL [Lawrence Livermore National Laboratory] ICF [Inertial Confinement Fusion] Program: Progress toward ignition in the Laboratory

    International Nuclear Information System (INIS)

    Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann, C.W.; Lerche, R.A.; Letts, S.A.; Lindl, J.D.; Lowdermilk, W.H.; Mauger, G.J.; Montgomery, D.S.; Munro, D.H.; Murray, J.R.; Phillion, D.W.; Powell, H.T.; Remington, B.R.; Ress, D.B.; Speck, D.R.; Suter, L.J.; Tietbohl, G.L.; Thiessen, A.R.; Trebes, J.E.; Trenholme, J.B.; Turner, R.E.; Upadhye, R.S.; Wallace, R.J.; Wiedwald, J.D.; Woodworth, J.G.; Young, P.M.; Ze, F.

    1990-01-01

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 μm) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade

  15. Radiation effects on active camera electronics in the target chamber at the National Ignition Facility

    Science.gov (United States)

    Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.

    2017-08-01

    The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.

  16. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    Science.gov (United States)

    Kabadi, N. V.; Sio, H.; Glebov, V.; Gatu Johnson, M.; MacPhee, A.; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.; Forrest, C.; Knauer, J.; Rinderknecht, H. G.

    2016-11-01

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out.

  17. Demountable toroidal fusion core facility for physics optimization and fusion engineering

    International Nuclear Information System (INIS)

    Bogart, S.L.; Wagner, C.E.; Krall, N.A.; Dalessandro, J.A.; Weggel, C.F.; Lund, K.O.; Sedehi, S.

    1986-01-01

    Following a successful compact ignition tokamak (CIT) experiment, a fusion facility will be required for physics optimization (POF) and fusion engineering research (FERF). The POF will address issues such as high-beta operation, current drive, impurity control, and will test geometric and configurational variations such as the spherical torus or the reversed-field pinch (RFP). The FERF will be designed to accumulate rapidly a large neutron dose in prototypical fusion subsystems exposed to radiation. Both facilities will require low-cost replacement cores and rapid replacement times. The Demountable Toroidal Fusion Core (DTFC) facility is designed to fulfill these requirements. It would be a cost-effective stepping stone between the CIT and a demonstration fusion reactor

  18. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  19. Support structures for optical components in the Laser Demonstration Facility

    International Nuclear Information System (INIS)

    Finucane, R.G.

    1985-01-01

    The laser system in the Laser Demonstration Facility is mounted on an array of 108 support columns. This milestone report describes the design, analyses, testing, fabrication, installation, and performance characteristics of these supports

  20. Progress of impact ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Johzaki, T.

    2010-11-01

    In impact ignition scheme, a portion of the fuel (the impactor) is accelerated to a super-high velocity, compressed by convergence, and collided with a precompressed main fuel. This collision generates shock waves in both the impactor and the main fuel. Since the density of the impactor is generally much lower than that of the main fuel, the pressure balance ensures that the shock-heated temperature of the impactor is significantly higher than that of the main fuel. Hence, the impactor can reach ignition temperature and thus become an igniter. Here we report major new results on recent impact ignition research: (1) A maximum velocity ∼ 1000 km/s has been achieved under the operation of NIKE KrF laser at Naval Research Laboratory (laser wavelength=0.25μm) in the use of a planar target made of plastic and (2) We have performed two-dimensional simulation for burn and ignition to show the feasibility of the impact ignition. (author)

  1. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    Science.gov (United States)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  2. Use of the target diagnostic control system in the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R; Lagin, L; Nelson, J

    2011-07-25

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  3. Use of the target diagnostic control system in the National Ignition Facility

    International Nuclear Information System (INIS)

    Shelton, R.; Lagin, L.; Nelson, J.

    2011-01-01

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  4. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Powell, H.T.; Kilkenny, J.D. [eds.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  5. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    International Nuclear Information System (INIS)

    Powell, H.T.; Kilkenny, J.D.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program

  6. A description of the demonstration Integral Fast Reactor fuel cycle facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Carnes, M.D.; Dwight, C.C.; Forrester, R.J.

    1991-01-01

    A fuel examination facility at the Idaho National Engineering Laboratory is being converted into a facility that will electrochemically process spent fuel. This is an important step in the demonstration of the Integral Fast Reactor concept being developed by Argonne National Laboratory. Renovations are designed to bring the facility up to current health and safety and environmental standards and to support its new mission. Improvements include the addition of high-reliability earthquake hardened off-gas and electrical power systems, the upgrading of radiological instrumentation, and the incorporation of advances in contamination control. A major task is the construction of a new equipment repair and decontamination facility in the basement of the building to support operations

  7. Equilibrium ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-01-01

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative

  8. Innovative ICF scheme-impact fast ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Sakaiya, T.; Karasik, M.; Gardner, J.; Bates, J.

    2007-01-01

    A totally new ignition scheme for ICF, impact fast ignition (IFI), is proposed [1], in which the compressed DT main fuel is to be ignited by impact collision of another fraction of separately imploded DT fuel, which is accelerated in the hollow conical target. Two-dimensional hydrodynamic simulation results in full geometry are presented, in which some key physical parameters for the impact shell dynamics such as 10 8 cm/s of the implosion velocity, 200- 300 g/cm 3 of the compressed density, and the converted temperature beyond 5 keV are demonstrated. As the first step toward the proof-of-principle of IFI, we have conducted preliminary experiments under the operation of GEKKO XII/HYPER laser system to achieve a hyper-velocity of the order of 108 cm/s. As a result we have observed a highest velocity, 6.5 x 10 7 cm/s, ever achieved. Furthermore, we have also done the first integrated experiments using the target and observed substantial amount of neutron yields. Reference: [1] M. Murakami and Nagatomo, Nucl. Instrum. Meth. Phys. Res. A 544(2005) 67

  9. Auto-ignition generated combustion. Pt. 2. Thermodynamic fundamentals; Verbrennungssteuerung durch Selbstzuendung. T. 2. Experimentelle Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, P. [Paris-6 Univ. (France). Lab. de Mecanique Physique; Morin, C. [Paris-6 Univ. (France); Mokhtari, S.

    2004-02-01

    The combustion initiation by auto-ignition demonstrates benefits in NO{sub x} reduction and in process stability for both spark-ignited and compression ignited engines. Based on the better thermodynamic particularities of the auto-ignition, which have been presented in the first part, the characteristics of this process are demonstrated in the second part by experimental analysis. For comparison with similar studies, the analyses have been carried out in base of a two stroke loop scavenged spark-ignition single cylinder engine. (orig.) [German] Die Steuerung der Verbrennung durch Selbstzuendung zeigt Vorteile bezueglich Senkung der NO{sub x}-Emission und Prozessstabilitaet, sowohl bei Otto- als auch bei Dieselmotoren. Auf Grundlage der thermodynamischen Besonderheiten der Selbstzuendvorgaenge, die im ersten Teil praesentiert wurden, erfolgt im zweiten Teil eine experimentelle Betrachtung der Prozesscharakteristika. Zur Vergleichbarkeit mit aehnlichen Untersuchungen wird die experimentelle Analyse auf Basis eines Zweitakt-Einzylinder-Ottomotors mit Umkehrspuelung durchgefuehrt. (orig.)

  10. Experimental room temperature hohlraum performance study on the National Ignition Facility

    Science.gov (United States)

    Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.

    2016-12-01

    Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (˜20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ˜2.5 × less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.

  11. Shock ignition of high gain inertial fusion capsules

    International Nuclear Information System (INIS)

    Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.

    2010-01-01

    the theoretical approach of SI, and Lafon et al. established its gain curves using an extension of the Rosen Lindl model. The efficiency of shock ignition comes from the fact that, unlike conventional central ignition, the final fuel assembly is not isobaric, i.e., the low density hot spot pressure significantly exceeds the pressure of the surrounding cold dense fuel. This high hot spot pressure is obtained from two pressure amplification stages: the first amplification mechanism is spherical convergence. A converging shock increases its strength as C 0.9 where C is the shock convergence ratio. A second amplification stage occurs when the ignition shock collides with the outward directed shock that results from the shell stagnation at target centre. Under optimal matching conditions, shock collision produces a x 6 amplification of pressure. We discuss in the presentation the conditions for the obtention of optimal pressure amplification, at first by studying the ignition window in the space spanned by laser power and launching time, and secondly by modelling the relation ship between the laser intensity required for shock production and the implosion velocity. This latter study indicates a sensible safety trade off using a 250 km/s implosion velocity and a laser spike of ∼ 5 x 10 15 W/cm 2 for the shock production. First kinetic calculations and implosion experiments indicate that laser plasma interaction in the regime of shock ignition may remain under control, provided that the SRS generated hot electrons energy stay below 80 keV. Shock Ignition has been proposed as the baseline of the HiPER project and shock ignition experiments have been proposed on the National Ignition Facility with gains expected between 60 and 100 at laser energies below 500 kJ. Acknowledgments. This work is partly supported by the Aquitaine Region Council.

  12. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  13. Demonstration of safety of decommissioning of facilities using radioactive material

    International Nuclear Information System (INIS)

    Batandjieva, Borislava; O'Donnell, Patricio

    2008-01-01

    Full text:The development of nuclear industry worldwide in the recent years has particular impact on the approach of operators, regulators and interested parties to the implementation of the final phases (decommissioning) of all facilities that use radioactive material (from nuclear power plants, fuel fabrication facilities, research reactors to small research or medical laboratories). Decommissioning is becoming an increasingly important activity for two main reasons - termination of the practice in a safe manner with the view to use the facility or the site for other purposes, or termination of the practice and reuse the facility or site for new built nuclear facilities. The latter is of special relevance to multi-facility sites where for example new nuclear power plants and envisaged. However, limited countries have the adequate legal and regulatory framework, and experience necessary for decommissioning. In order to respond to this challenge of the nuclear industry and assist Member States in the adequate planning, conduct and termination of decommissioning of wide range of facilities, over the last decade the IAEA has implemented and initiated several projects in this field. One of the main focuses of this assistance to operators, regulators and specialists involved in decommissioning is the evaluation and demonstration of safety of decommissioning. This importance of these Agency activities was also highlighted in the International Action Plan on Decommissioning, during the second Joint Convention meeting in 2006 and the International Conference on Lessons Learned from Decommissioning in Athens in 2006. The IAEA has been providing technical support to its Member States in this field through several mechanisms: (1) the establishment of a framework of safety standards on decommissioning and development of a supporting technical documents; (2) the establishment of an international peer review mechanism for decommissioning; (3) the technical cooperation projects

  14. Low current approach to ignition

    International Nuclear Information System (INIS)

    Cenacchi, G.; Sugiyama, L.; Airoldi, A.; Coppi, B.

    1996-01-01

    The open-quotes standardclose quotes path to achieve ignition conditions so far has been that of producing plasmas with the maximum current and poloidal field that axe compatible with the applied toroidal field and the geometry of the adopted configuration (the low q a approach.) The other approach is that motivated by recent experiments with reversed shear configurations, with relatively low currents and high fields corresponding to high values of q a (e-g., q a ≅ 6). While the first approach can be pursued with ohmic heating alone, the second one necessarily involves an auxiliary heating system. One of the advantages of this approach is that the onset of large scale internal modes can be avoided as q(ψ) is kept above 1 over the entire plasma column. Since quite peaked density profiles are produced in the regimes where enhanced confinement is observed, the α-particle power levels for which ignition can be reached and therefore the thermal wall loading on the first wall, can be reduced relatively to the standard, low q a , approach. The possibility is considered that ignition is reached in the reversed shear, high q a , regime and that this is followed by a transition to non-reversed profiles, or even the low q a regime, assuming that the excitation of modes involving magnetic reconnection will not undermine the needed degree of confinement. These results have been demonstrated by numerical transport simulation for the Ignitor-Ult machine, but are applicable to all high field ignition experiments

  15. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  16. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  17. Photothermally activated motion and ignition using aluminum nanoparticles

    International Nuclear Information System (INIS)

    Abboud, Jacques E.; Chong Xinyuan; Zhang Mingjun; Zhang Zhili; Jiang Naibo; Roy, Sukesh; Gord, James R.

    2013-01-01

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be ∼6 mm. Ignition delay can be ∼0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  18. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms

    Science.gov (United States)

    Starikovskaia, S. M.

    2014-09-01

    This review covers the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma-combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P-T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

  19. Simulations of laser imprint for Nova experiments and for ignition capsules. Revision 1

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Key, M.H.; Remington, B.A.; Rothenberg, J.L.; Wolfrum, E.; Verdon, C.P.; Knauer, J.P.

    1996-12-01

    In direct drive ICF, nonuniformities in laser illumination seed ripples at the ablation front in a process called ''imprint''. These nonuniformities grow during the capsule implosion and, if initially large enough, can penetrate the capsule shell, impede ignition, or degrade burn. Imprint has been simulated for recent experiments performed on the Nova laser at LLNL examining a variety of beam smoothing conditions. Most used laser intensities similar to the early part of an ignition capsule pulse shape, 1 ≅ 10 13 W/cm 2 . The simulations matched most of the measurements of imprint modulation. The effect of imprint upon National Ignition Facility (NIF) direct drive ignition capsules has also been simulated. Imprint is predicted to give modulation comparable to an intrinsic surface finish of ∼10 nm RMS. Modulation growth was examined using the Haan [Phys. Rev. A 39, 5812 (1989)] model, with linear growth factors as a function of spherical harmonic mode number obtained from an analytic dispersion relation. Ablation front amplitudes are predicted to become substantially nonlinear, so that saturation corrections are large. Direct numerical simulations of two-dimensional multimode growth were also performed. The capsule shell is predicted to remain intact, which gives a basis for believing that ignition can be achieved. 27 refs., 10 figs

  20. Reaching ignition in the tokamak

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-06-01

    This review covers the following areas: (1) the physics of burning plasmas, (2) plasma physics requirements for reaching ignition, (3) design studies for ignition devices, and (4) prospects for an ignition project