WorldWideScience

Sample records for ignition capsule designs

  1. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs

    International Nuclear Information System (INIS)

    Clark, D. S.; Haan, S. W.; Cook, A. W.; Edwards, M. J.; Hammel, B. A.; Koning, J. M.; Marinak, M. M.

    2011-01-01

    Ignition capsule designs for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)] have continued to evolve in light of improved physical data inputs, improving simulation techniques, and, most recently, experimental data from a growing number of NIF sub-ignition experiments. This paper summarizes a number of recent changes to the cryogenic capsule design and some of our latest techniques in simulating its performance. Specifically, recent experimental results indicated harder x-ray drive spectra in NIF hohlraums than were predicted and used in previous capsule optimization studies. To accommodate this harder drive spectrum, a series of high-resolution 2-D simulations, resolving Legendre mode numbers as high as 2000, were run and the germanium dopant concentration and ablator shell thicknesses re-optimized accordingly. Simultaneously, the possibility of cooperative or nonlinear interaction between neighboring ablator surface defects has motivated a series of fully 3-D simulations run with the massively parallel HYDRA code. These last simulations include perturbations seeded on all capsule interfaces and can use actual measured shell surfaces as initial conditions. 3-D simulations resolving Legendre modes up to 200 on large capsule sectors have run through ignition and burn, and higher resolution simulations resolving as high as mode 1200 have been run to benchmark high-resolution 2-D runs. Finally, highly resolved 3-D simulations have also been run of the jet-type perturbation caused by the fill tube fitted to the capsule. These 3-D simulations compare well with the more typical 2-D simulations used in assessing the fill tube's impact on ignition. Coupled with the latest experimental inputs from NIF, our improving simulation capability yields a fuller and more accurate picture of NIF ignition capsule performance.

  2. Equilibrium ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-01-01

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative

  3. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-01-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  4. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Science.gov (United States)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  5. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  6. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    Science.gov (United States)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  7. Capsule performance optimization in the national ignition campaign

    International Nuclear Information System (INIS)

    Landen, O L; MacGowan, B J; Haan, S W; Edwards, J

    2010-01-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [1] to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  8. Capsule performance optimization in the National Ignition Campaigna)

    Science.gov (United States)

    Landen, O. L.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Kyrala, G. A.; Michel, P.; Milovich, J.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Robey, H. F.; Spears, B. K.; Thomas, C. A.; Weber, S. V.; Wilson, D. C.; Marinak, M. M.; Suter, L. J.; Hammel, B. A.; Meyerhofer, D. D.; Atherton, J.; Edwards, J.; Haan, S. W.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.

    2010-05-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  9. Capsule performance optimization in the national ignition campaign

    Science.gov (United States)

    Landen, O. L.; MacGowan, B. J.; Haan, S. W.; Edwards, J.

    2010-08-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [1] to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  10. Capsule performance optimization in the National Ignition Campaign

    International Nuclear Information System (INIS)

    Landen, O. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Michel, P.; Milovich, J.; Munro, D. H.; Robey, H. F.; Spears, B. K.; Thomas, C. A.

    2010-01-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  11. Capsule Performance Optimization in the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; MacGowan, B J; Haan, S W; Edwards, J

    2009-10-13

    A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  12. Physics of ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1989-01-01

    The implosion of an ICF capsule must accomplish both compression of the main fuel to several hundred grams per cubic centimeter and heating and compression of the central region of the fuel to ignition. This report discusses the physics of these conditions

  13. Capsule Performance Optimization for the National Ignition Facility

    Science.gov (United States)

    Landen, Otto

    2009-11-01

    The overall goal of the capsule performance optimization campaign is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. This will be accomplished using a variety of targets that will set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix. The targets include high Z re-emission spheres setting foot symmetry through foot cone power balance [1], liquid Deuterium-filled ``keyhole'' targets setting shock speed and timing through the laser power profile [2], symmetry capsules setting peak cone power balance and hohlraum length [3], and streaked x-ray backlit imploding capsules setting ablator thickness [4]. We will show how results from successful tuning technique demonstration shots performed at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design meet the required sensitivity and accuracy. We will also present estimates of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors, and show that these get reduced after a number of shots and iterations to meet an acceptable level of residual uncertainty. Finally, we will present results from upcoming tuning technique validation shots performed at NIF at near full-scale. Prepared by LLNL under Contract DE-AC52-07NA27344. [4pt] [1] E. Dewald, et. al. Rev. Sci. Instrum. 79 (2008) 10E903. [0pt] [2] T.R. Boehly, et. al., Phys. Plasmas 16 (2009) 056302. [0pt] [3] G. Kyrala, et. al., BAPS 53 (2008) 247. [0pt] [4] D. Hicks, et. al., BAPS 53 (2008) 2.

  14. First beryllium capsule implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  15. A polar-drive shock-ignition design for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

    2013-05-15

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  16. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. V.; Casey, D. T.; Eder, D. C.; Pino, J. E.; Smalyuk, V. A.; Remington, B. A.; Rowley, D. P.; Yeamans, C. B.; Tipton, R. E.; Barrios, M.; Benedetti, R.; Berzak Hopkins, L.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Divol, L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    Gas-filled capsules imploded with indirect drive on the National Ignition Facility have been employed as symmetry surrogates for cryogenic-layered ignition capsules and to explore interfacial mix. Plastic capsules containing deuterated layers and filled with tritium gas provide a direct measure of mix of ablator into the gas fuel. Other plastic capsules have employed DT or D{sup 3}He gas fill. We present the results of two-dimensional simulations of gas-filled capsule implosions with known degradation sources represented as in modeling of inertial confinement fusion ignition designs; these are time-dependent drive asymmetry, the capsule support tent, roughness at material interfaces, and prescribed gas-ablator interface mix. Unlike the case of cryogenic-layered implosions, many observables of gas-filled implosions are in reasonable agreement with predictions of these simulations. Yields of TT and DT neutrons as well as other x-ray and nuclear diagnostics are matched for CD-layered implosions. Yields of DT-filled capsules are over-predicted by factors of 1.4–2, while D{sup 3}He capsule yields are matched, as well as other metrics for both capsule types.

  17. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  18. Positron radiography of ignition-relevant ICF capsules

    Science.gov (United States)

    Williams, G. J.; Chen, Hui; Field, J. E.; Landen, O. L.; Strozzi, D. J.

    2017-12-01

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 × 1012 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2 g/cm2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. We evaluate the effects of magnetic fields near the capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.

  19. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    International Nuclear Information System (INIS)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.

    2011-01-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  20. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    Science.gov (United States)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.

    2011-05-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  1. Polar tent for reduced perturbation of NIF ignition capsules

    Science.gov (United States)

    Hammel, B. A.; Pickworth, L.; Stadermann, M.; Field, J.; Robey, H.; Scott, H. A.; Smalyuk, V.

    2016-10-01

    In simulations, a tent that contacts the capsule near the poles and departs tangential to the capsule surface greatly reduces the capsule perturbation, and the resulting mass injected into the hot-spot, compared to current capsule support methods. Target fabrication appears feasible with a layered tent (43-nm polyimide + 8-nm C) for increased stiffness. We are planning quantitative measurements of the resulting shell- ρR perturbation near peak implosion velocity (PV) using enhanced self-emission backlighting, achieved by adding 1% Ar to the capsule fill in Symcaps (4He + H). Layered DT implosions are also planned for an integrated test of capsule performance. We will describe the design and simulation predictions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    Stotler, D.P.; Goldston, R.J.

    1989-09-01

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  3. Ignition capsules with aerogel-supported liquid DT fuel for the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Ho D.D.-M.

    2013-11-01

    Full Text Available For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to β-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65 – 75% at peak velocity. A scan (in ablator and fuel thickness parameter space is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  4. Status of irradiation capsule design

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Yamaura, Takayuki; Nagao, Yoshiharu

    2013-01-01

    For the irradiation test after the restart of JMTR, further precise temperature control and temperature prediction are required. In the design of irradiation capsule, particularly sophisticated irradiation temperature prediction and evaluation are urged. Under such circumstance, among the conventional design techniques of irradiation capsule, the authors reviewed the evaluation method of irradiation temperature. In addition, for the improvement of use convenience, this study examined and improved FINAS/STAR code in order to adopt the new calculation code that enables a variety of analyses. In addition, the study on the common use of the components for radiation capsule enabled the shortening of design period. After the restart, the authors will apply this improved calculation code to the design of irradiation capsule. (A.O.)

  5. Polyimide capsules may hold high pressure DT fuel without cryogenic support for the National Ignition Facility indirect-drive targets

    International Nuclear Information System (INIS)

    Sanchez, J.J.; Letts, S.A.

    1997-01-01

    New target designs for the Omega upgrade laser and ignition targets in the National Ignition Facility (NIF) require thick (80 - 100 microm) cryogenic fuel layers. The Omega upgrade target will require cryogenic handling after initial fill because of the high fill pressures and the thin capsule walls. For the NIF indirectly driven targets, a larger capsule size and new materials offer hope that they can be built, filled and stored in a manner similar to the targets used in the Nova facility without requiring cryogenic handling

  6. The use of tritium rich capsules with 25-35% deuterium to achieve ignition at the National Ignition Facility

    Science.gov (United States)

    Wilson, D. C.; Spears, B. K.; Hatchett, S. P., Ii; Cerjan, C. J.; Springer, P. T.; Clark, D. S.; Edwards, M. J.; Salmonson, J. D.; Weber, S. V.; Hammel, B. A.; Grim, G. P.; Herrmann, H. W.; Wilke, M. D.

    2010-08-01

    Diagnostics such as neutron yield, ion temperature, image size and shape, and bang time in capsules with >~25 % deuterium fuel show changes due to burn product heating. The comparison of performance between a THD(2%) and THD(35%) can help predict ignition in a TD(50%) capsule. Surrogacy of THD capsules to TD(50%) is incomplete due to variations in fuel molecular vapour pressures. TD(25-35%) capsules might be preferred to study hot spot heating, but at the risk of increased fuel/ablator mixing.

  7. The use of tritium rich capsules with 25-35% deuterium to achieve ignition at the National Ignition Facility

    International Nuclear Information System (INIS)

    Wilson, D C; Grim, G P; Herrmann, H W; Wilke, M D; Spears, B K; Ii, S P Hatchett; Cerjan, C J; Springer, P T; Clark, D S; Edwards, M J; Salmonson, J D; Weber, S V; Hammel, B A

    2010-01-01

    Diagnostics such as neutron yield, ion temperature, image size and shape, and bang time in capsules with >∼25 % deuterium fuel show changes due to burn product heating. The comparison of performance between a THD(2%) and THD(35%) can help predict ignition in a TD(50%) capsule. Surrogacy of THD capsules to TD(50%) is incomplete due to variations in fuel molecular vapour pressures. TD(25-35%) capsules might be preferred to study hot spot heating, but at the risk of increased fuel/ablator mixing.

  8. The use of tritium rich capsules with 25-35% deuterium to achieve ignition at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D C; Grim, G P; Herrmann, H W; Wilke, M D [Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Spears, B K; Ii, S P Hatchett; Cerjan, C J; Springer, P T; Clark, D S; Edwards, M J; Salmonson, J D; Weber, S V; Hammel, B A, E-mail: dcw@lanl.go [Lawrence Livermore National Laboratory, Livermore, CA, 94550 (United States)

    2010-08-01

    Diagnostics such as neutron yield, ion temperature, image size and shape, and bang time in capsules with >{approx}25 % deuterium fuel show changes due to burn product heating. The comparison of performance between a THD(2%) and THD(35%) can help predict ignition in a TD(50%) capsule. Surrogacy of THD capsules to TD(50%) is incomplete due to variations in fuel molecular vapour pressures. TD(25-35%) capsules might be preferred to study hot spot heating, but at the risk of increased fuel/ablator mixing.

  9. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility

    International Nuclear Information System (INIS)

    Town, R. P. J.; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L.

    2014-01-01

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments

  10. Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules

    International Nuclear Information System (INIS)

    Hayes, A. C.; Bradley, P. A.; Grim, G. P.; Jungman, Gerard; Wilhelmy, J. B.

    2010-01-01

    Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.

  11. National Ignition Facility design focuses on optics

    International Nuclear Information System (INIS)

    Hogan, W.J.; Atherton, L.J.; Paisner, J.A.

    1996-01-01

    Sometime in the year 2002, scientists at the National Ignition Facility (NIF) will focus 192 separate high-power ultraviolet laser beams onto a tiny capsule of deuterium and tritium, heating and compressing the material until it ignites and burns with a burst of fusion energy. The mission of NIF, which will contain the largest laser in the world, is to obtain fusion ignition and gain and to use inertial confinement fusion capabilities in nuclear weapons science experiments. The physics data provided by NIF experiments will help scientists ensure nuclear weapons reliability without the need for actual weapons tests; basic sciences such as astrophysics will also benefit. The facility faces stringent weapons-physics user requirements demanding peak pulse powers greater than 750 TW at 0.35 microm (only 500 TW is required for target ignition), pulse durations of 0.1 to 20 ns, beam steering on the order of several degrees, and target isolation from residual 1- and 0.5-microm radiation. Additional requirements include 50% fractional encircled beam energy in a 100-microm-diameter spot, with 95% encircled in a 200-microm spot. The weapons-effects community requires 1- and 0.5-microm light on target, beam steering to widely spaced targets, a target chamber accommodating oversized objects, well-shielded diagnostic areas, and elimination of stray light in the target chamber. The beamline design, amplifier configuration and requirements for optics are discussed here

  12. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; Robey, H. F.; Kritcher, A. L.; Milovich, J. L.; Salmonson, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-07-15

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.

  13. Simulations of laser imprint for Nova experiments and for ignition capsules. Revision 1

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Key, M.H.; Remington, B.A.; Rothenberg, J.L.; Wolfrum, E.; Verdon, C.P.; Knauer, J.P.

    1996-12-01

    In direct drive ICF, nonuniformities in laser illumination seed ripples at the ablation front in a process called ''imprint''. These nonuniformities grow during the capsule implosion and, if initially large enough, can penetrate the capsule shell, impede ignition, or degrade burn. Imprint has been simulated for recent experiments performed on the Nova laser at LLNL examining a variety of beam smoothing conditions. Most used laser intensities similar to the early part of an ignition capsule pulse shape, 1 ≅ 10 13 W/cm 2 . The simulations matched most of the measurements of imprint modulation. The effect of imprint upon National Ignition Facility (NIF) direct drive ignition capsules has also been simulated. Imprint is predicted to give modulation comparable to an intrinsic surface finish of ∼10 nm RMS. Modulation growth was examined using the Haan [Phys. Rev. A 39, 5812 (1989)] model, with linear growth factors as a function of spherical harmonic mode number obtained from an analytic dispersion relation. Ablation front amplitudes are predicted to become substantially nonlinear, so that saturation corrections are large. Direct numerical simulations of two-dimensional multimode growth were also performed. The capsule shell is predicted to remain intact, which gives a basis for believing that ignition can be achieved. 27 refs., 10 figs

  14. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  15. A generalized scaling law for the ignition energy of inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Herrmann, M.C.

    2001-01-01

    The minimum energy needed to ignite an inertial confinement fusion capsule is of considerable interest in the optimization of an inertial fusion driver. Recent computational work investigating this minimum energy has found that it depends on the capsule implosion history, in particular, on the capsule drive pressure. This dependence is examined using a series of LASNEX simulations to find ignited capsules which have different values of the implosion velocity, fuel adiabat and drive pressure. It is found that the main effect of varying the drive pressure is to alter the stagnation of the capsule, changing its stagnation adiabat, which, in turn, affects the energy required for ignition. To account for this effect a generalized scaling law has been devised for the ignition energy, E ign ∝α if 1.88±0.05 υ -5.89±0.12 P -0.77±0.03 . This generalized scaling law agrees with the results of previous work in the appropriate limits. (author)

  16. New designs of LMJ targets for early ignition experiments

    International Nuclear Information System (INIS)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P

    2008-01-01

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress

  17. New designs of LMJ targets for early ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P [Commissariat a l' Energie Atomique, DAM-Ile de France, BP 12 91680 Bruyeres-le-Chatel (France)], E-mail: catherine.cherfils@cea.fr

    2008-05-15

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.

  18. Shock ignition of high gain inertial fusion capsules

    International Nuclear Information System (INIS)

    Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.

    2010-01-01

    Complete text of publication follows. Inertial Confinement Fusion relies on the compression of small amounts of an equimolar mix of Deuterium and Tritium (DT) up to volumic masses of several hundreds of g/cm 3 . Such high densities are obtained by means of the implosion of a spherical shell made of cryogenic DT fuel. In the conventional scheme a hot spot is formed in the central part of the pellet at the end of the implosion. If the pressure of this hot spot is large enough (several hundreds of Gbars), thermonuclear heating occurs with a characteristic time shorter than the hydrodynamic confinement time and the target self ignites. Since the central hot spot pressure results from the conversion of the shell kinetic energy into thermal energy, the threshold for the ignition of a given mass of DT is a direct function of the implosion velocity. Typical implosion velocities for central self ignition are of the order of 400 km/s. Such high velocities imply both a strong acceleration of the shell and the use of large aspect ration shells in order to optimize the hydrodynamic efficiency of the implosion, at least in direct drive. These two features strongly enhance the risk of shell beak up at time of acceleration under the Rayleigh-Taylor instability. Furthermore the formation of the hot spot may itself the unstable, this reducing its effective mass. High compression may be achieved at much lower velocities, thus reducing the energy budget and enhancing the implosion safety, but the corresponding fuel assembly requires an additional heating in order to reach ignition. This heating may be obtained from a 70-100 kJ laser pulse, delivered in 10-15 ps (Fast Ignition). An alternative idea is to boost up the central pressure of a target imploded at a sub-ignition velocity by means of a convergent strong shock launched at the end of the compression phase. This Shock Ignition (SI) concept has been suggested in 1983 by Scherbakov et al. More recently, R. Betti et al. developed

  19. Capsule physics comparison of different ablators for NIF implosion designs

    Science.gov (United States)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    International Nuclear Information System (INIS)

    Dittrich, T R; Hurricane, O A; Berzak-Hopkins, L F; Callahan, D A; Casey, D T; Clark, D; Dewald, E L; Doeppner, T; Haan, S W; Hammel, B A; Harte, J A; Hinkel, D E; Kozioziemski, B J; Kritcher, A L; Ma, T; Nikroo, A; Pak, A E; Parham, T G; Park, H-S; Patel, P K

    2016-01-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO 2 ) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented. (paper)

  1. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    Science.gov (United States)

    Dittrich, T. R.; Hurricane, O. A.; Berzak-Hopkins, L. F.; Callahan, D. A.; Casey, D. T.; Clark, D.; Dewald, E. L.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Kozioziemski, B. J.; Kritcher, A. L.; Ma, T.; Nikroo, A.; Pak, A. E.; Parham, T. G.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Weber, C. R.; Zimmerman, G. B.; Kline, J. L.

    2016-05-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO2) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented.

  2. Impacts of Implosion Asymmetry And Hot Spot Shape On Ignition Capsules

    Science.gov (United States)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Yi, S. Austin; Batha, Steve

    2017-10-01

    Implosion symmetry plays a critical role in achieving high areal density and internal energy at stagnation during hot spot formation in ICF capsules. Asymmetry causes hot spot irregularity and stagnation de-synchronization that results in lower temperatures and areal densities of the hot fuel. These degradations significantly affect the alpha heating process in the DT fuel as well as on the thermonuclear performance of the capsules. In this work, we explore the physical factors determining the shape of the hot spot late in the implosion and the effects of shape on Î+/-particle transport. We extend our ignition theory [1-4] to include the hot spot shape and quantify the effects of the implosion asymmetry on both the ignition criterion and capsule performance. We validate our theory with the NIF existing experimental data Our theory shows that the ignition criterion becomes more restrictive with the deformation of the hot spot. Through comparison with the NIF data, we demonstrate that the shape effects on the capsules' performance become more explicit as the self-heating and yield of the capsules increases. The degradation of the thermonuclear burn by the hot spot shape for high yield shots to date can be as high as 20%. Our theory is in good agreement with the NIF data. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  3. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    International Nuclear Information System (INIS)

    Wilson, D C; Yi, S A; Simakov, A N; Kline, J L; Kyrala, G A; Olson, R E; Zylstra, A B; Dewald, E L; Tommasini, R; Ralph, J E; Strozzi, D J; Celliers, P M; Schneider, M B; MacPhee, A G; Callahan, D A; Hurricane, O A; Milovich, J L; Hinkel, D E; Rygg, J R; Rinderknecht, H G

    2016-01-01

    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%. (paper)

  4. Transition from equilibrium ignition to non-equilibrium burn for ICF capsules surrounded by a high-Z pusher

    International Nuclear Information System (INIS)

    Li, Ji W.; Chang, Lei; Li, Yun S.; Li, Jing H.

    2011-01-01

    For the ICF capsule surrounded by a high-Z pusher which traps the radiation and confines the hot fuel, the fuel will first be ignited in thermal equilibrium with radiation at a much lower temperature than hot-spot ignition, which is also the low temperature ignition. Because of the lower areal density for ICF capsules, the equilibrium ignition must be developed into a non-equilibrium burn to shorten the reaction time and lower the drive energy. In this paper, the transition from the equilibrium ignition to non-equilibrium burn is discussed and the energy deposited by α particles required for the equilibrium ignition and non-equilibrium burn to occur is estimated.

  5. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  6. Effects on Implosion Characteristics of High-Z Dopant Profiles in ICF Ignition Capsule Ablators

    Science.gov (United States)

    Li, Yongsheng; Wang, Min; Gu, Jianfa; Zou, Shiyang; Kang, Dongguo; Ye, Wenhua; Zhang, Weiyan

    2012-10-01

    For ignition target design (ITD) of indirect drive ICF [J. Lindl, PoP 2, 3933(1995)], high-Z dopants in capsule ablators were used to prevent preheat of DTadjacentablators by Au M-band flux in laser-driven gold Hohlraums, therefore to restrain the growth of high-mode hydro-instabilities and to improve the targetrobustness.Based on NIC's Rev. 5 ITD[S. W. Haan et al., PoP 18, 051001(2011)], we investigated the effect of thickness and dopant concentration of doped layers on implosion characteristics, including the Atwood number (AWN) of fuel-ablator interface, the density gradient scale length (DGSL) of ablation front and the implosion velocity (VIM); all three variables decrease with increment of dopant dosage, and increase with dopant concentration while keeping dosage constant. Since a smaller AWN, a larger DGSL, and a faster VIM always characterize a more robust ITD, one should make tradeoff among them by adjusting the dopant profiles in ablators.A Gaussian spectrum (GS) was used to imitate the Au M-band flux [Y. S. Li et al., PoP 18, 022701(2011)], and the impact of GScenter on implosion characteristics of Rev. 5 ITD was studied while moving the GScenter towards higher energy, the ablatorpreheat got severe, AWN got larger, DGSL got larger, and VIM got faster.

  7. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    Science.gov (United States)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  8. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  9. Foot-pulse radiation drive necessary for ICF ignition capsule demonstrated on Z generator

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Olson, R.E.; Chandler, G.A.

    1999-01-01

    Implosion and ignition of an indirectly-driven ICF capsule operating near a Fermi-degenerate isentrope requires initial Planckian-radiation-drive temperatures of 70-to-90 eV to be present for a duration of 10-to-15 ns prior to the main drive pulse. Such capsules are being designed for high pulsed-power generators. This foot-pulse drive capability has been recently demonstrated in a NIF-sized (φ = 6-mm 1 = 7-mm), gold hohlraum, using a one-sided static-wall hohlraum geometry on the Z generator. The general arrangement utilized nested tungsten-wire arrays of radii (mass) 20 mm (2 mg) and 10 mm (1 mg) that had an axial length of approximately 10 mm. The arrays were driven by a peak current of approximately 21 MA and were made to implode on a 2-microm-thick Cu annulus (mass = 4.5 mg), which had a radius of 4 mm and was filled with a low-density CH foam, all centered about the z-axis. The gold hohlraum was mounted on axis and above the Cu/foam target. A 2.9-mm-radius axial hole between the top of the target and hohlraum permitted the x-rays generated from the implosion to enter the hohlraum. The radiation within the hohlraum was monitored by viewing the hohlraum through a 3-mm diameter hole on the lateral side of the hohlraum with a suite of diagnostics.The radiation entering the hohlraum was estimated by an additional suite of on-axis diagnostics, in a limited number of separate shots, when the hohlraum was not present. Additionally, the radiation generated outside the Cu annulus was monitored, for all shots, through a 3-mm diameter aperture located on the outside of the current return can. In the full paper, the characteristics of the radiation measured from these diagnostic sets, including the Planckian temperature of the hohlraum and radiation images, will be discussed as a function of the incident wire-array geometry (single vs nested array and array mass), target length (10, or 20 mm), annulus material (Cu, Au, or nothing), and CH-foam-fill density (10, 6, 2

  10. National Ignition Facility Title II Design Plan

    International Nuclear Information System (INIS)

    Kumpan, S

    1997-01-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed

  11. Design of Endoscopic Capsule With Multiple Cameras.

    Science.gov (United States)

    Gu, Yingke; Xie, Xiang; Li, Guolin; Sun, Tianjia; Wang, Dan; Yin, Zheng; Zhang, Pengfei; Wang, Zhihua

    2015-08-01

    In order to reduce the miss rate of the wireless capsule endoscopy, in this paper, we propose a new system of the endoscopic capsule with multiple cameras. A master-slave architecture, including an efficient bus architecture and a four level clock management architecture, is applied for the Multiple Cameras Endoscopic Capsule (MCEC). For covering more area of the gastrointestinal tract wall with low power, multiple cameras with a smart image capture strategy, including movement sensitive control and camera selection, are used in the MCEC. To reduce the data transfer bandwidth and power consumption to prolong the MCEC's working life, a low complexity image compressor with PSNR 40.7 dB and compression rate 86% is implemented. A chipset is designed and implemented for the MCEC and a six cameras endoscopic capsule prototype is implemented by using the chipset. With the smart image capture strategy, the coverage rate of the MCEC prototype can achieve 98% and its power consumption is only about 7.1 mW.

  12. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  13. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    International Nuclear Information System (INIS)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.; Hoover, D. E.; Nikroo, A.; Peterson, K. J.

    2014-01-01

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF

  14. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  15. The design, fabrication, and testing of beryllium capsules for resonant ultrasound experiments

    International Nuclear Information System (INIS)

    Salazar, M.A.; Salzer, L.; Day, R.

    1999-01-01

    Inertial Confinement Fusion (ICF) ignition targets require smooth and well-characterized deuterium/tritium (DT) ice layers. Los Alamos is developing Resonant Ultrasound Spectroscopy (RUS) to measure the internal pressure in the targets at room temperature after filling with DT. RUS techniques also can detect and measure the amplitudes of low modal surface roughness perturbations of the target shell interior. The experiments required beryllium capsules with a nominal inside radius of 1 mm and a spherical outside radius of 3 mm. The capsules have various spherical harmonic contours up to mode 12 machined into their interior surfaces. The capsules are constructed from hemispheres using an epoxy adhesive and then filled to ∼270 atm with helium or deuterium gas. This paper describes the adhesive joint design, machining techniques, and interior geometry inspection techniques. It also describes the fixtures needed to assemble, fill, and pressure test the capsules

  16. New tuning method of the low-mode asymmetry for ignition capsule implosions

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Zou, Shiyang; Song, Peng; Ye, Wenhua; Zheng, Wudi; Gu, Peijun

    2015-01-01

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry; while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries

  17. Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Dittrich, T.R.; Fetterman, A.J.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Salmonson, J.D.; Strobel, G.L.; Suter, L.J.

    2005-01-01

    Targets meant to achieve ignition on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)] have been redesigned and their performance simulated. Simulations indicate dramatically reduced growth of short wavelength hydrodynamic instabilities, resulting from two changes in the designs. First, better optimization results from systematic mapping of the ignition target performance over the parameter space of ablator and fuel thickness combinations, using techniques developed by one of us (Herrmann). After the space is mapped with one-dimensional simulations, exploration of it with two-dimensional simulations quantifies the dependence of instability growth on target dimensions. Low modes and high modes grow differently for different designs, allowing a trade-off of the two regimes of growth. Significant improvement in high-mode stability can be achieved, relative to previous designs, with only insignificant increase in low-mode growth. This procedure produces capsule designs that, in simulations, tolerate several times the surface roughness that could be tolerated by capsules optimized by older more heuristic techniques. Another significant reduction in instability growth, by another factor of several, is achieved with ablators with radially varying dopant. In this type of capsule the mid-Z dopant, which is needed in the ablator to minimize x-ray preheat at the ablator-ice interface, is optimally positioned within the ablator. A fabrication scenario for graded dopants already exists, using sputter coating to fabricate the ablator shell. We describe the systematics of these advances in capsule design, discuss the basis behind their improved performance, and summarize how this is affecting our plans for NIF ignition

  18. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser

    Science.gov (United States)

    Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.

    2018-05-01

    We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.

  19. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    Science.gov (United States)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  20. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2016-05-15

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  1. Design procedure of capsule with multistage heater control (named MUSTAC)

    International Nuclear Information System (INIS)

    Someya, Hiroyuki; Endoh, Yasuichi; Hoshiya, Taiji; Niimi, Motoji; Harayama, Yasuo

    1990-11-01

    A capsule with electric heaters at multistage (named MUSTAC) is a type of capsule used in JMTR. The heaters are assembled in the capsule. Supply electric current to the heaters can be independently adjusted with a control systems that keeps irradiation specimens to constant temperature. The capsule being used, the irradiation specimen are inserted into specimen holders. Gas-gap size, between outer surface of specimen holders and inner surface of capsule casing, is calculated and determined to be flatten temperature of loaded specimens over the region. The rise or drop of specimen temperature in accordance with reactor power fluctuations is corrected within the target temperature of specimen by using the heaters filled into groove at specimen holder surface. The present report attempts to propose a reasonable design procedure of the capsules by means of compiling experience for designs, works and irradiation data of the capsules and to prepare for useful informations against onward capsule design. The key point of the capsule lies on thermal design. Now design thermal calculations are complicated in case of specimen holder with multihole. Resolving these issues, it is considered from new on that an emphasis have to placed on settling a thermal calculation device, for an example, a computer program on calculation specimen temperature. (author)

  2. Conceptual design of the National Ignition Facility

    International Nuclear Information System (INIS)

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-01-01

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 μm) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program's site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002

  3. High-gain capsule design for the HIDIF project

    International Nuclear Information System (INIS)

    Honrubia, J.J.; Cerrada, J.A.; Gomez, R.

    2000-01-01

    A high-gain capsule has been designed for the HIDIF project. The goal has been to relax the accelerator requirements by using a radiation pulse with lower peak temperature (220 eV) than previous designs (260 eV). The ablator material is beryllium doped with a very low concentration (0.2 atom %) of copper. The capsule absorbs 1.3 MJ and yields, approximately, 450 MJ in I-D simulations. The effect of the opacity of the ablator on capsule performance has been studied in detail. (authors)

  4. Low Convergence path to Fusion I: Ignition physics and high margin design

    Science.gov (United States)

    Molvig, Kim; Schmitt, M. J.; McCall, G. H.; Betti, R.; Foula, D. H.; Campbell, E. M.

    2016-10-01

    A new class of inertial fusion capsules is presented that combines multi-shell targets with laser direct drive at low intensity (280 TW/cm2) to achieve robust ignition. These Revolver targets consist of three concentric metal shells, enclosing a volume of 10s of µg of liquid deuterium-tritium fuel. The inner shell pusher, nominally of gold, is compressed to over 2000 g/cc, effectively trapping the radiation and enabling ignition at low temperature (2.5 keV) and relatively low implosion velocity (20 cm/micro-sec) at a fuel convergence of 9. Ignition is designed to occur well ``upstream'' from stagnation, with implosion velocity at 90% of maximum, so that any deceleration phase mix will occur only after ignition. Mix, in all its non-predictable manifestations, will effect net yield in a Revolver target - but not the achievement of ignition and robust burn. Simplicity of the physics is the dominant principle. There is no high gain requirement. These basic physics elements can be combined into a simple analytic model that generates a complete target design specification given the fuel mass and the kinetic energy needed in the middle (drive) shell (of order 80 kJ). This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  5. Mitigate the tent-induced perturbation in ignition capsules by supersonic radiation propagation

    Science.gov (United States)

    Dai, Zhensheng; Gu, Jianfa; Zheng, Wudi

    2017-10-01

    In the inertial confinement fusion (ICF) scheme, to trap the alpha particle products of the D-T reaction, the capsules needs to be imploded and compressed with high symmetry In the laser indirect drive scheme, the capsules are held at the center of high-Z hohlraums by thin membranes (tents). However, the tents are recognized as one of the most important contributors to hot spot asymmetries, areal density perturbations and reduced performance. To improve the capsule implosion performance, various alternatives such as the micro-scale rods, a larger fill-tube and a low-density foam layer around the capsule have been presented. Our simulations show that the radiation propagates supersonically in the low-density foam layer and starts to ablate the capsule before the perturbations induced by the tents reach the ablating fronts. The tent induced perturbations are remarkably weakened when they are propagating in the blow-off plasma.

  6. Target designs for energetics experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Meezan, N B; Glenzer, S H; Suter, L J

    2008-01-01

    The goal of the first hohlraum energetics experiments on the National Ignition Facility (NIF) [G. H. Miller et al, Optical Eng. 43, 2841 (2004)] is to select the hohlraum design for the first ignition experiments. Sub-scale hohlraums heated by 96 of the 192 laser beams on the NIF are used to emulate the laser-plasma interaction behavior of ignition hohlraums. These 'plasma emulator' targets are 70% scale versions of the 1.05 MJ, 300 eV ignition hohlraum and have the same energy-density as the full-scale ignition designs. Radiation-hydrodynamics simulations show that the sub-scale target is a good emulator of plasma conditions inside the ignition hohlraum, reproducing density n e within 10% and temperature T e within 15% along a laser beam path. Linear backscatter gain analysis shows the backscatter risk to be comparable to that of the ignition target. A successful energetics campaign will allow the National Ignition Campaign to focus its efforts on optimizing ignition hohlraums with efficient laser coupling

  7. Design aspects of low activation fusion ignition experiments

    International Nuclear Information System (INIS)

    Cheng, E.T.; Creedon, R.L.; Hopkins, G.R.; Trester, P.W.; Wong, C.P.C.; Schultz, K.R.

    1986-01-01

    Preliminary design studies have been done exploring (1) materials selection, (2) shutdown biological dose rates, (3) mechanical design and (4) thermal design of a fusion ignition experiment made of low activation materials. From the results of these preliminary design studies it appears that an ignition experiment could be built of low activation materials, and that this design would allow hands-on access for maintenance

  8. Design point selection for an ignited ITER

    International Nuclear Information System (INIS)

    Spears, W.R.; Mizoguchi, T.; Perkins, J.; Putvinskij, S.; Flanagan, C.

    1989-01-01

    The parameter choice for the ITER design is dominated by the need to achieve ignition. Different energy confinement time scalings extrapolate to different device parameters, and the final design chosen must have a reasonable chance of success under the presently favoured scalings. This study investigates the device performance over the plasma current - aspect ratio design space, using sets of simplified equations and more detailed parametric analysis codes, with a view to clarifying the acceptable parameter region. Alterations to the initial assumptions of plasma elongation, plasma safety factor and peak toroidal field, and the effect of limiting the wall load, are also investigated. The study concludes that a device with aspect ratio around 3 and plasma current about 20 MA would be an appropriate choice. Under the assumptions of the study such a device would have a major radius of about 5.8m and would require the attainment of enhancement factors around 1.5 over L-mode scaling. (author). 6 refs, 11 figs, 3 tabs

  9. Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Terry, Matthew R.; Perkins, L. John; Sepke, Scott M.

    2012-01-01

    Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes “day one” NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

  10. Design and fabrication of non-instrumented capsule

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, Jeong Young; Kim, Joon Yeon; Lee, Sung Ho; Ji, Dae Young; Kim, Suk Hoon; Ahn, Sung Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    The use of non-instrumented capsule designed and fabricated in this time is for the evaluation of material irradiation performance, it is to be installed in the inner core of HANARO. The design process of non-instrumented capsule was accomplished by the decision of the quality of material and the shape, thermal analysis, structural analysis. The temperature of the specimen and the stress in capsule during irradiation test was calculated by the thermal analysis and the structural analysis. GGENGTC code and ABAQUS code were used for the calculation of non-instrumented capsule. In case of installing the capsule in irradiation hole, the coolant flow rate and the pressure drop in the hole is changed, which will affect the coolant flow rate of the fuel region. Eventually the coolant flow rate outside capsule have to be restricted to the allowable range. In order to obtain the required pressure drop, the flow rate control mechanism, end plate and orifice ring were used in this test. The test results are compared with 36-element fuel pressure drop data which AECL performed by the SCTR facility.

  11. Design and fabrication of non-instrumented capsule

    International Nuclear Information System (INIS)

    Kim, Yong Sung; Lee, Jeong Young; Kim, Joon Yeon; Lee, Sung Ho; Ji, Dae Young; Kim, Suk Hoon; Ahn, Sung Ho

    1995-04-01

    The use of non-instrumented capsule designed and fabricated in this time is for the evaluation of material irradiation performance, it is to be installed in the inner core of HANARO. The design process of non-instrumented capsule was accomplished by the decision of the quality of material and the shape, thermal analysis, structural analysis. The temperature of the specimen and the stress in capsule during irradiation test was calculated by the thermal analysis and the structural analysis. GGENGTC code and ABAQUS code were used for the calculation of non-instrumented capsule. In case of installing the capsule in irradiation hole, the coolant flow rate and the pressure drop in the hole is changed, which will affect the coolant flow rate of the fuel region. Eventually the coolant flow rate outside capsule have to be restricted to the allowable range. In order to obtain the required pressure drop, the flow rate control mechanism, end plate and orifice ring were used in this test. The test results are compared with 36-element fuel pressure drop data which AECL performed by the SCTR facility

  12. Configuration and structural design of Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Brown, T.G.

    1985-01-01

    Viewgraphs are presented on the configuration and structural design of the Compact Ignition Tokamak, originally presented to the US/Japan Workshop on Next Step Machine Design. Items discussed in this presentation include: PPPL 0424 ref design; MIT LITE ref design; IGNITOR 1.01 M ref design; and IGNITOR 1.08 M press configuration

  13. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    Science.gov (United States)

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  14. SrF2 capsule design for heat engine applications

    International Nuclear Information System (INIS)

    Lester, D.H.

    1976-04-01

    A number of design changes were considered to improve heat transfer characteristics of the WESF capsule. This capsule was evaluated in a design concept for use as a heat source in a helium-working fluid, Stirling heat engine. Throughout the study a heat block concept was used. The helium was assumed to be at 1200 0 F and 200 atm. The upper temperature limit at the fuel-metal interface was assumed to be 800 0 C because of material compatibility considerations. A 0.6-in. thick outer can was considered since it may be required for impact resistance and high pressure accident environments. The modifications considered were: (1) filling all gaps with helium rather than air, (2) filling gaps with powdered metal, and (3) adding a third can to the existing capsule. Also, enhancement of emissivity on metal surfaces was considered as a possible modification

  15. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  16. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  17. Optimization of the NIF ignition point design hohlraum

    International Nuclear Information System (INIS)

    Callahan, D A; Hinkel, D E; Berger, R L; Divol, L; Dixit, S N; Edwards, M J; Haan, S W; Jones, O S; Lindl, J D; Meezan, N B; Michel, P A; Pollaine, S M; Suter, L J; Town, R P J; Bradley, P A

    2008-01-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt

  18. Optimization of the NIF ignition point design hohlraum

    Science.gov (United States)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  19. SATCAP-C : a program for thermal hydraulic design of pressurized water injection type capsule

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Someya, Hiroyuki; Asoh, Tomokazu; Niimi, Motoji

    1992-10-01

    There are capsules called 'Pressure Water Injection Type Capsule' as a kind of irradiation devices at the Japan Materials Testing Reactor (JMTR). A type of the capsules is a 'Boiling Water Capsule' (usually named BOCA). The other type is a 'Saturated Temperature Capsule' (named SATCAP). When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature so far as the water does not fully change to steam. These type capsules are designed on the basis of the conception of applying the water characteristic to the control of irradiation temperature of specimens in the capsules. In designing of the capsules in which the pressurized water is injected, thermal performances have to be understood as exactly as possible. It is not easy however to predict thermal performances such as axially temperature distribution of water injected in the capsule, because there are heat-sinks at both side of inner and outer of capsule casing as the result that the water is fluid. Then, a program (named SATCAP-C) for the BOCA and SATCAP was compiled to grasp the thermal performances in the capsules and has been used the design of the capsules and analysis of the data obtained from some actual irradiation capsules. It was confirmed that the program was effective in thermal analysis for the capsules. The analysis found out the values for heat transfer coefficients at various surfaces of capsule components and some thermal characteristics of capsules. (author)

  20. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  1. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  2. Robustness studies of ignition targets for the National Ignition Facility in two dimensions

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.

    2008-01-01

    Inertial confinement fusion capsules are critically dependent on the integrity of their hot spots to ignite. At the time of ignition, only a certain fractional perturbation of the nominally spherical hot spot boundary can be tolerated and the capsule still achieve ignition. The degree to which the expected hot spot perturbation in any given capsule design is less than this maximum tolerable perturbation is a measure of the ignition margin or robustness of that design. Moreover, since there will inevitably be uncertainties in the initial character and implosion dynamics of any given capsule, all of which can contribute to the eventual hot spot perturbation, quantifying the robustness of that capsule against a range of parameter variations is an important consideration in the capsule design. Here, the robustness of the 300 eV indirect drive target design for the National Ignition Facility [Lindl et al., Phys. Plasmas 11, 339 (2004)] is studied in the parameter space of inner ice roughness, implosion velocity, and capsule scale. A suite of 2000 two-dimensional simulations, run with the radiation hydrodynamics code LASNEX, is used as the data base for the study. For each scale, an ignition region in the two remaining variables is identified and the ignition cliff is mapped. In accordance with the theoretical arguments of Levedahl and Lindl [Nucl. Fusion 37, 165 (1997)] and Kishony and Shvarts [Phys. Plasmas 8, 4925 (2001)], the location of this cliff is fitted to a power law of the capsule implosion velocity and scale. It is found that the cliff can be quite well represented in this power law form, and, using this scaling law, an assessment of the overall (one- and two-dimensional) ignition margin of the design can be made. The effect on the ignition margin of an increase or decrease in the density of the target fill gas is also assessed

  3. Update on design simulations for NIF ignition targets, and the roll-up of all specifications into an error budget

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Salmonson, J.D.; Amendt, P.A.; Callahan, D.A.; Dittrich, T.R.; Edwards, M.J.; Jones, O.S.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Spears, B.K.; Suter, L.J.

    2007-01-01

    Targets intended to produce ignition on NIF are being simulated and the simulations are used to set specifications for target fabrication and other program elements. Recent design work has focused on designs that assume only 1.0 MJ of laser energy instead of the previous 1.6 MJ. To perform with less laser energy, the hohlraum has been redesigned to be more efficient than previously, and the capsules are slightly smaller. Three hohlraum designs are being examined: gas fill, SiO 2 foam fill, and SiO 2 lined. All have a cocktail wall, and shields mounted between the capsule and the laser entrance holes. Two capsule designs are being considered. One has a graded doped Be(Cu) ablator, and the other graded doped CH(Ge). Both can perform acceptably with recently demonstrated ice layer quality, and with recently demonstrated outer surface roughness. Complete tables of specifications are being prepared for both targets, to be completed this fiscal year. All the specifications are being rolled together into an error budget indicating adequate margin for ignition with the new designs. The dominant source of error is hohlraum asymmetry at intermediate modes 4-8, indicating the importance of experimental techniques to measure and control this asymmetry. (authors)

  4. Spectroscopic diagnostics of NIF ICF implosions using line ratios of Kr dopant in the ignition capsule

    Science.gov (United States)

    Dasgupta, Arati; Ouart, Nicholas; Giuiani, John; Clark, Robert; Schneider, Marilyn; Scott, Howard; Chen, Hui; Ma, Tammy

    2017-10-01

    X ray spectroscopy is used on the NIF to diagnose the plasma conditions in the ignition target in indirect drive ICF implosions. A platform is being developed at NIF where small traces of krypton are used as a dopant to the fuel gas for spectroscopic diagnostics using krypton line emissions. The fraction of krypton dopant was varied in the experiments and was selected so as not to perturb the implosion. Our goal is to use X-ray spectroscopy of dopant line ratios produced by the hot core that can provide a precise measurement of electron temperature. Simulations of the krypton spectra using a 1 in 104 atomic fraction of krypton in direct-drive exploding pusher with a range of electron temperatures and densities show discrepancies when different atomic models are used. We use our non-LTE atomic model with a detailed fine-structure level atomic structure and collisional-radiative rates to investigate the krypton spectra at the same conditions. Synthetic spectra are generated with a detailed multi-frequency radiation transport scheme from the emission regions of interest to analyze the experimental data with 0.02% Kr concentration and compare and contrast with the existing simulations at LLNL. Work supported by DOE/NNSA; Part of this work was also done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  5. Direct-drive–ignition designs with mid-Z ablators

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  6. Four ignition TNS tokamak reactor systems: design summary

    International Nuclear Information System (INIS)

    Flanagan, C.A.

    1977-10-01

    Principal TNS objectives assumed included: (1) demonstration of ignition and burning dynamics; and (2) reactor technology forcing. The selection of an overall design approach for TNS required an early quantitative assessment of the most important design issues; namely, choice of ignition plasma design conditions (principally size and confining field of axis), and choice of toroidal field coil technology (resistive or superconducting windings). The design space investigated in this study ranged from ignited plasmas (elongated) with minor radii varying between 0.8 m (TFTR-like) and approximately 2.0 m (EPR-like). Four TF coil types were examined; these included copper, NbTi, Nb 3 Sn, and a hybrid design employing nested coils of copper and NbTi. A final step involved a further comparison of the four reference concepts using decision modeling techniques as a mechanism for selecting a preferred design approach for the TNS mission. Section 3.0 describes the TNS study process. Section 4.0 presents a summary of the parameters for the four reference point designs. Finally, Section 5.0 presents a brief description of the design features of many of the systems comprising the TNS design

  7. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  8. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    Science.gov (United States)

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; Milovich, J.; Casey, D. T.; Weber, C. R.; Robey, H. F.; Chen, K.-C.; Clark, D. S.; Crippen, J.; Farrell, M.; Felker, S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Stadermann, M.; Hsing, W. W.; Kroll, J. J.; Landen, O. L.; Nikroo, A.; Pickworth, L.; Rice, N.

    2017-10-01

    Hydrodynamic instability growth of the capsule support membranes (or "tents") and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF) [Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new "sub-scale" version of the existing x-ray radiography platform was developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ˜2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ˜3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. The effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.

  9. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions

    Directory of Open Access Journals (Sweden)

    Jianfa Gu

    2017-01-01

    Full Text Available The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility (NIF implosion experiments. The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L = 24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations. It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase. The later flow field not only shows large areal density P2 asymmetry in the main fuel, but also generates large-amplitude spikes and bubbles. In the deceleration phase, the increasing mode coupling generates more new modes, and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions. The combination of the low-mode and high-mode perturbations breaks up the capsule shell, resulting in a significant reduction of the hot spot temperature and implosion performance.

  10. Recent results relevant to ignition physics and machine design issues

    International Nuclear Information System (INIS)

    Coppi, B.; Airoldi, A.; Bombarda, F.

    2001-01-01

    The plasma regimes under which ignition can be achieved involve a characteristic range of parameters and issues on which information has been provided by recent experiments. In particular, these results have motivated a new, in-depth analysis of the expected performance of the Ignitor machine as well as of the plasma processes that it can investigate. The main results and recent advances in the design of key systems of the machine are reported. (author)

  11. Recent results relevant to ignition physics and machine design issues

    International Nuclear Information System (INIS)

    Coppi, B.; Airoldi, A.; Bombarda, F.

    1999-01-01

    The plasma regimes under which ignition can be achieved involve a characteristic range of parameters and issues on which information has been provided by recent experiments. In particular, these results have motivated a new, in-depth analysis of the expected performance of the Ignitor machine as well as of the plasma processes that it can investigate. The main results and recent advances in the design of key systems of the machine are reported. (author)

  12. Pulse length assessment of compact ignition tokamak designs

    International Nuclear Information System (INIS)

    Stotler, D.P.; Pomphrey, N.

    1989-07-01

    A time-dependent zero-dimensional code has been developed to assess the pulse length and auxiliary heating requirements of Compact Ignition Tokamak (CIT) designs. By taking a global approach to the calculation, parametric studies can be easily performed. The accuracy of the procedure is tested by comparing with the Tokamak Simulation Code which uses theory-based thermal diffusivities. A series of runs is carried out at various levels of energy confinement for each of three possible CIT configurations. It is found that for cases of interest, ignition or an energy multiplication factor Q /approxreverse arrowgt/ 7 can be attained within the first half of the planned five-second flattop with 10--40 MW of auxiliary heating. These results are supported by analytic calculations. 18 refs., 7 figs., 2 tabs

  13. TIBER: Tokamak Ignition/Burn Experimental Research. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Barr, W.L.

    1985-01-01

    The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs

  14. A new metric of the low-mode asymmetry for ignition target designs

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Fan, Zhengfeng; Zou, Shiyang; Ye, Wenhua; Pei, Wenbing; Zhu, Shaoping

    2014-01-01

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the measured neutron yield and hot spot pressure are significantly lower than simulations. Understanding the underlying physics of the deficit is essential to achieving ignition. This paper investigates the low-mode areal density asymmetry in the main fuel of ignition capsule. It is shown that the areal density asymmetry breaks up the compressed shell and significantly reduces the conversion of implosion kinetic energy to hot spot internal energy, leading to the calculated hot spot pressure and neutron yield quite close to the experimental data. This indicates that the low-mode shell areal density asymmetry can explain part of the large discrepancy between simulations and experiments. Since only using the hot spot shape term could not adequately characterize the effects of the shell areal density asymmetry on implosion performance, a new metric of the low-mode asymmetry is developed to accurately measure the probability of ignition

  15. Evaluation of the Revolver Ignition Design at the National Ignition Facility Using Polar-Direct-Drive Illumination

    Science.gov (United States)

    McKenty, P. W.; Collins, T. J. B.; Marozas, J. A.; Campbell, E. M.; Molvig, K.; Schmitt, M.

    2017-10-01

    The direct-drive ignition design Revolver employs a triple-shell target using a beryllium ablator, a copper driver, and an eventual gold pusher. Symmetric numerical calculations indicate that each of the three shells exhibit low convergence ( 3to 5) resulting in a modest gain (G 4) for 1.7 MJ of incident laser energy. Studies are now underway to evaluate the robustness of this design employing polar direct drive (PDD) at the National Ignition Facility. Integral to these calculations is the leveraging of illumination conditioning afforded by research done to demonstrate ignition for a traditional PDD hot-spot target design. Two-dimensional simulation results, employing nonlocal electron-thermal transport and cross-beam energy transport, will be presented that indicate ignition using PDD. A study of the allowed levels of long-wavelength perturbations (target offset and power imbalance) not precluding ignition will also be examined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2009-12-15

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  17. Progress on LMJ targets for ignition

    International Nuclear Information System (INIS)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L

    2009-01-01

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  18. Optimization of the National Ignition Facility primary shield design

    International Nuclear Information System (INIS)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F.

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries

  19. Influence of interface conditions on laser diode ignition of pyrotechnic mixtures: application to the design of an ignition device

    Energy Technology Data Exchange (ETDEWEB)

    Opdebeck, Frederic; Gillard, Philippe [Laboratoire Energetique Explosions et Structures de l' Universite d' Orleans, 63 boulevard de Lattre de Tassigny, 18020 cedex, Bourges (France); Radenac, D' Erwann [Laboratoire de combustion et de detonique, ENSMA, BP 109, 86960 cedex, Futuroscope (France)

    2003-01-01

    This paper treats of numerical modelling which simulates the laser ignition of pyrotechnic mixtures. The computation zone is divided into two fields. The first is used to take account of the heat loss with the outside. It can represent an optical fibre or a sapphire protective porthole. The second field represents the reactive tablet which absorbs the laser diode's beam. A specific feature of the model is that it incorporates a thermal contact resistance R{sub c} between the two computation fields. Through knowledge of the thermal, optical and kinetic properties, this code makes it possible to compute the ignition conditions. The latter are defined by the energy E{sub 50} and the time t{sub i} of ignition of any pyrotechnic mixture and for various ignition systems.This work was validated in the case of an ignition system consisting of a laser diode with an optical lens re-focussing system. The reactive tablet contains 62% by mass of iron and 38% by mass of KClO{sub 4}. Its porosity is 25.8%. After an evaluation of the laser's coefficient of absorption, the variations of the ignition parameters E{sub 50} and t{sub i} are studied as a function of the thermal contact resistance R{sub c}. Temperature profiles are obtained as a function of time and for various values of the thermal contact resistance R{sub c}. More fundamental observations are made concerning the position of the hot spot corresponding to priming. From this study, which concerns the heat exchange between the two media, several practical conclusions are given concerning the design of an ignition device. By evaluation of the thermal contact resistance R{sub c}, comparison with test results becomes possible and the results of the computations are in reasonable agreement with the test measurements. (authors)

  20. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Herrmann, H. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States)

    2014-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80–140 mg/cm{sup 2} and CH-ablator ρR's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  1. Design and manufacturing of 05F-01K instrumented capsule for nuclear fuel irradiation in Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Shin, Y. T.; Park, S. J. (and others)

    2007-07-15

    An instrumented capsule was developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel pellet elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in Hanaro. The instrumented capsule(02F-11K) for measuring and monitoring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. It was successfully irradiated in the test hole OR5 of Hanaro from March 14, 2003 to June 1, 2003 (53.84 full power days at 24 MW). In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and manufactured to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule was irradiated in the test hole OR5 of Hanaro reactor from April 26, 2004 to October 1, 2004 (59.5 EFPD at 24 {approx} 30 MW). The six typed dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been designed and manufactured to enhance the efficiency of the irradiation test using the instrumented fuel capsule. The 05F-01K instrumented fuel capsule was designed and manufactured for a design verification test of the three dual instrumented fuel rods. The irradiation test of the 05F-01K instrumented fuel capsule will be carried out at the OR5 vertical experimental hole of Hanaro.

  2. Design Improvements of the Capsule Components and the Handling Tools for an Effective Utilization of the Capsule Assembly Machine

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, Jong Kium; Youm, Ki Un; Yoon, Ki Byung; Choi, Myung Hwan; Kim, Bong Gu

    2006-01-01

    Various in-pile test programs for the development of new fuels and materials are planned for the HANARO reactor. To meet the demands for the required tests in the HANARO reactor, new capsule assembling technology is required in the HANARO reactor. For this reason, a series of analyses and experiments was performed in 2005. For the assembly workability tests of the capsule components, three different kinds of protection tubes and two different shapes of the locking bolt heads were proposed and tested. It was confirmed that the newly designed protection tube and bolts worked quite well without any problems. Since the new structure is quite similar to that of the currently used capsule, it was assumed that an additional vibration tests and seismic analysis would not be needed. Through the stress analysis of the three proposed structures by using ANSYS code, it showed that the maximum displacement and stress intensity for the tube reducer were 1.57mm and 21MPa, respectively. To improve the workability and handling capability of the bolting and clamping tools of stainless steel 304, Al6061/T6 was selected as one of the candidates and thus new tools were manufactured and tested. The assembly test results showed that the new tools were found to be useful for executing key tasks such as a bolting and a clamping and they were much faster than the old tools made of stainless steel, thereby increasing the workability rate and lowering the manufacturing costs

  3. Design of the target area for the National Ignition Facility

    International Nuclear Information System (INIS)

    Foley, R.J.; Karpenko, V.P.; Adams, C.H.

    1997-01-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described

  4. National Ignition Facility (NIF) Control Network Design and Analysis

    International Nuclear Information System (INIS)

    Bryant, R M; Carey, R W; Claybourn, R V; Pavel, G; Schaefer, W J

    2001-01-01

    The control network for the National Ignition Facility (NIF) is designed to meet the needs for common object request broker architecture (CORBA) inter-process communication, multicast video transport, device triggering, and general TCP/IP communication within the NIF facility. The network will interconnect approximately 650 systems, including the embedded controllers, front-end processors (FEPs), supervisory systems, and centralized servers involved in operation of the NIF. All systems are networked with Ethernet to serve the majority of communication needs, and asynchronous transfer mode (ATM) is used to transport multicast video and synchronization triggers. CORBA software infra-structure provides location-independent communication services over TCP/IP between the application processes in the 15 supervisory and 300 FEP systems. Video images sampled from 500 video cameras at a 10-Hz frame rate will be multicast using direct ATM Application Programming Interface (API) communication from video FEPs to any selected operator console. The Ethernet and ATM control networks are used to broadcast two types of device triggers for last-second functions in a large number of FEPs, thus eliminating the need for a separate infrastructure for these functions. Analysis, design, modeling, and testing of the NIF network has been performed to provide confidence that the network design will meet NIF control requirements

  5. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  6. Capsule Design for Blue Light Therapy against Helicobacter pylori.

    Science.gov (United States)

    Li, Zhangyong; Ren, Binbin; Tan, Haiyan; Liu, Shengrong; Wang, Wei; Pang, Yu; Lin, Jinzhao; Zeng, Chen

    2016-01-01

    A photo-medical capsule that emits blue light for Helicobacter pylori treatment was described in this paper. The system consists of modules for pH sensing and measuring, light-emitting diode driver circuit, radio communication and microcontroller, and power management. The system can differentiate locations by monitoring the pH values of the gastrointestinal tract, and turn on and off the blue light according to the preset range of pH values. Our experimental tests show that the capsule can operate in the effective light therapy mode for more than 32 minutes and the wireless communication module can reliably transmit the measured pH value to a receiver located outside the body.

  7. Shock timing on the National Ignition Facility: First experiments

    Directory of Open Access Journals (Sweden)

    Celliers P.M.

    2013-11-01

    Full Text Available An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  8. Shock timing on the National Ignition Facility: First Experiments

    International Nuclear Information System (INIS)

    Celliers, P.M.; Robey, H.F.; Boehly, T.R.; Alger, E.; Azevedo, S.; Berzins, L.V.; Bhandarkar, S.D.; Bowers, M.W.; Brereton, S.J.; Callahan, D.; Castro, C.; Chandrasekaran, H.; Choate, C.; Clark, D.; Coffee, K.R.; Datte, P.S.; Dewald, E.L.; DiNicola, P.; Dixit, S.; Doeppner, T.; Dzenitis, E.; Edwards, M.J.; Eggert, J.H.; Fair, J.; Farley, D.R.; Frieders, G.; Gibson, C.R.; Giraldez, E.; Haan, S.; Haid, B.; Hamza, A.V.; Haynam, C.; Hicks, D.G.; Holunga, D.M.; Horner, J.B.; Jancaitis, K.; Jones, O.S.; Kalantar, D.; Kline, J.L.; Krauter, K.G.; Kroll, J.J.; LaFortune, K.N.; Pape, S.L.; Malsbury, T.; Maypoles, E.R.; Milovich, J.L.; Moody, J.D.; Moreno, K.; Munro, D.H.; Nikroo, A.; Olson, R.E.; Parham, T.; Pollaine, S.; Radousky, H.B.; Ross, G.F.; Sater, J.; Schneider, M.B.; Shaw, M.; Smith, R.F.; Thomas, C.A.; Throop, A.; Town, R.J.; Trummer, D.; Van Wonterghem, B.M.; Walters, C.F.; Widmann, K.; Widmayer, C.; Young, B.K.; Atherton, L.J.; Collins, G.W.; Landen, O.L.; Lindl, J.D.; MacGowan, B.J.; Meyerhofer, D.D.; Moses, E.I.

    2011-01-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  9. Mission and design of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Meade, D.M.; Jardin, S.C.; Schmidt, J.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q≥5) that are sustained for durations comparable to the characteristic plasma time scales (≥20 τ E and ∼τ skin , where τ skin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B. (author)

  10. Design Improvements of a Fuel Capsule for Re-irradiation Tests

    International Nuclear Information System (INIS)

    Kang, Young-Hwan; Choi, Myung-Hwan; Kim, Jong Kiun; Youm, Ki Un; Yoon, Ki Byeong; Kim, Bong Goo

    2006-01-01

    The development of an advanced reactor system such as the next generation nuclear plant and other generation IV systems require new fuels, claddings, and structural materials. To characterize the performance of these new materials, it is necessary for us to have leading-edge technology to satisfy the specific test requirements of the recent R and D activities such as the high-fluence- and high burnup- related tests. Thus, new capsule assembling technology and re-instrumentation technology has been developed to meet the demands for the high burnup test at HANARO since 2003. In 2003, a mockup of the capsule assembly machine was designed and fabricated. The performance test which started in 2004 was undertaken to determine and present the main performance characteristics of the capsule assembly machine (CAM) including the special tools. In 2005, a series of analyses using a finite element analysis program, ANSYS and full scale tests in air were performed to improve the design of the capsule's components for an effective utilization of the CAM. The handling tools were fully qualified through the performance tests in 2006. KAERI is now reviewing the water flow area in the top region of a fuel capsule main body for re-irradiation tests and optimizing the design of the central region area of a capsule to be joined with special bolts

  11. Design and manufacturing of instrumented capsule(03F-05K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Shin, Y. T. [and others

    2004-06-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule(02F-11K) for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (self-powered neutron detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and fabricated to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule is being irradiated in the test hole OR5 of HANARO reactor from April 26, 2004.

  12. Progress on LMJ targets for ignition

    International Nuclear Information System (INIS)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Lambert, F; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L

    2010-01-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  13. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Lambert, F; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2010-08-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  14. Design verification test of instrumented capsule (02F-11K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Oh, J. M. [and others

    2004-01-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (Self-Powered Neutron Detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. The test fuel rods were irradiated at less than 350 W/cm to 5.13 GWD/MTU with fuel centerline peak temperature below 1,375 .deg. C. The structural stability of the capsule was satisfied by the naked eye in service pool of HANARO. The capsule and test fuel rods were dismantled and test fuel rods were examined at the hot cell of IMEF (Irradiated Material Examination Facility)

  15. Features of a point design for Fast Ignition

    International Nuclear Information System (INIS)

    Tabak, M; Clark, D; Town, R P J; Key, M H; Amendt, P; Ho, D; Meeker, D J; Shay, H D; Lasinski, B F; Kemp, A; Divol, L; Mackinnon, A J; Patel, P; Strozzi, D; Grote, D P

    2010-01-01

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  16. Features of a point design for fast ignition

    International Nuclear Information System (INIS)

    Tabak, M.; Clark, D.; Town, R.J.; Key, M.H.; Amendt, P.; Ho, D.; Meeker, D.J.; Shay, H.D.; Lasinski, B.F.; Kemp, A.; Divol, L.; Mackinnon, A.J.; Patel, P.; Strozzi, D.; Grote, D.P.

    2009-01-01

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  17. Ignition tuning for the National Ignition Campaign

    Directory of Open Access Journals (Sweden)

    Landen O.

    2013-11-01

    Full Text Available The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix.

  18. Development of a design methodology for hydraulic pipelines carrying rectangular capsules

    International Nuclear Information System (INIS)

    Asim, Taimoor; Mishra, Rakesh; Abushaala, Sufyan; Jain, Anuj

    2016-01-01

    The scarcity of fossil fuels is affecting the efficiency of established modes of cargo transport within the transportation industry. Efforts have been made to develop innovative modes of transport that can be adopted for economic and environmental friendly operating systems. Solid material, for instance, can be packed in rectangular containers (commonly known as capsules), which can then be transported in different concentrations very effectively using the fluid energy in pipelines. For economical and efficient design of such systems, both the local flow characteristics and the global performance parameters need to be carefully investigated. Published literature is severely limited in establishing the effects of local flow features on system characteristics of Hydraulic Capsule Pipelines (HCPs). The present study focuses on using a well validated Computational Fluid Dynamics (CFD) tool to numerically simulate the solid-liquid mixture flow in both on-shore and off-shore HCPs applications including bends. Discrete Phase Modelling (DPM) has been employed to calculate the velocity of the rectangular capsules. Numerical predictions have been used to develop novel semi-empirical prediction models for pressure drop in HCPs, which have then been embedded into a robust and user-friendly pipeline optimisation methodology based on Least-Cost Principle. - Highlights: • Local flow characteristics in a pipeline transporting rectangular capsules. • Development of prediction models for the pressure drop contribution of capsules. • Methodology developed for sizing of Hydraulic Capsule Pipelines. • Implementation of the developed methodology to obtain optimal pipeline diameter.

  19. SATCAP-B: a program for thermal-hydraulic design of 'Saturated Temperature Capsule'

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Someya, Hiroyuki; Niimi, Motoji

    1989-11-01

    As an advanced irradiation technique, the JMTR (Japan Materials Testing Reactor) project is developing a 'Saturated Temperature Capsule' which water is injected in and boiled. When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature. This type capsule is based on the conception of keeping the coolant to the saturated temperature and using the temperature control. In designing the capsule in which the inner coolant is injected, thermal performances have to be understood as exactly as possible. Then, a program (named SATCAP) was compiled to graps the thermal performance within the capsule. On the other hand, a 'Saturated Temperature Capsule' was made and irradiated in the JMTR core. It was indicated from supplied water temperatures recorded by thermo-couples attached in the capsule that heat transfer coefficients prefered models due to natural convection to models incorporated in the initial version of the program. Then, the program was revised by adding mainly heat transfer model based on natural convection. The present report describes the calculation procedure and guides of input and output for the revised program (SATCAP version-B). (author)

  20. SATCAP: a program for thermal-hydraulic design of saturated temperature capsule

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Niimi, Motoji; Someya, Hiroyuki; Kobayashi, Toshiki.

    1988-02-01

    For material irradiation tests at JMTR, user's technical requirements are gradually becoming more rigid, permitting only a small temperature deviation from the desired during irradiation of test materials. As specimen temperature control equipment, several conception were proposed and some of them were translated into actual machines with the capsule having electrical seath heaters in it. This system is highly reliable unless the integrity of the heaters is threatened. However, in a test with the object of achieving a high exposure of specimen to neutrons, the break of a heater or deterioration of a heater caused by irradiation lowers the reliability of the system. To cope with this drawback, as a part of the irradiation technique improvement program, ''Satulated Temperature Capsule'' has been developing. This type capsule, in which the water suplied is boiled, bases on the conception of keeping the coolant at the saturated temperature facilitates the temperature control. Though there are various types of capsules employed at JMTR, the experience of the capsule into which the coolant is injected lacks. In designing, thermal performances have to fully understood. Therefore, a program was compiled to evaluate the thermal behavior in the capsule. The present report describes the calculation procedure and guides of input and output for the program. (author)

  1. Irradiation capsule design capable of continuously monitoring the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Thoms, K.R.; Dodd, C.V.; van der Kaa, T.; Hobson, D.O.

    1978-01-01

    An irradiation capsule which permits continuous monitoring of the creepdown of Zircaloy tubing has been designed and given preliminary tests. This design effort is the major element of a cooperative research program between the United States Nuclear Regulatory Commission and the Netherlands Energy Research Foundation (ECN) and is a part of the NRC-sponsored Zircaloy creepdown program. The purpose of the Zircaloy creepdown program is to provide data on the deformation characteristics of Zircaloy tubes, typical of LWR fuel element cladding, under combined axial and tangential compressive stresses. These data will be used to verify and improve the material behavior codes that are used for the description of fuel pin behavior. The first capsule of this series contains a mockup test specimen which was machined with three different diameters, nominally 10.92-mm, 10.54-mm and 11.30-mm (.430-in., .415-in., and .445-in.). This test specimen can be moved axially thereby varying the lift-off and serving as a calibration device for the eddy-current deformation monitoring probes. Fabrication of this capsule has been completed and during out-or-reactor checkout we were able to obtain a resolution of better than 0.01-mm (0.0004-in.). The capsule is scheduled for installation in the HFR on February 8, 1978, for a 26 day irradiation test. The first pressurized capsule, and therefore the first one to monitor in-reactor cladding deformation, will be installed in the HFR on May 3, 1978

  2. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis

    International Nuclear Information System (INIS)

    Amendt, Peter; Colvin, J.D.; Tipton, R.E.; Hinkel, D.E.; Edwards, M.J.; Landen, O.L.; Ramshaw, J.D.; Suter, L.J.; Varnum, W.S.; Watt, R.G.

    2002-01-01

    Analysis and design of indirect-drive National Ignition Facility double-shell targets with hohlraum temperatures of 200 eV and 250 eV are presented. The analysis of these targets includes the assessment of two-dimensional radiation asymmetry and nonlinear mix. Two-dimensional integrated hohlraum simulations indicate that the x-ray illumination can be adjusted to provide adequate symmetry control in hohlraums specially designed to have high laser-coupling efficiency [Suter et al., Phys. Plasmas 7, 2092 (2000)]. These simulations also reveal the need to diagnose and control localized 10-15 keV x-ray emission from the high-Z hohlraum wall because of strong absorption by the high-Z inner shell. Preliminary estimates of the degree of laser backscatter from an assortment of laser-plasma interactions suggest comparatively benign hohlraum conditions. The application of a variety of nonlinear mix models and phenomenological tools, including buoyancy-drag models, multimode simulations and fall-line optimization, indicates a possibility of achieving ignition, i.e., fusion yields greater than 1 MJ. Planned experiments on the Omega laser will test current understanding of high-energy radiation flux asymmetry and mix-induced yield degradation in double-shell targets

  3. Re-Imagining Specialized STEM Academies: Igniting and Nurturing "Decidedly Different Minds", by Design

    Science.gov (United States)

    Marshall, Stephanie Pace

    2010-01-01

    This article offers a personal vision and conceptual design for reimagining specialized science, technology, engineering, and mathematics (STEM) academies designed to nurture "decidedly different" STEM minds and ignite a new generation of global STEM talent, innovation, and entrepreneurial leadership. This design enables students to engage…

  4. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongsheng [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Graduate School, China Academy of Engineering Physics, Beijing 100088 (China); Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Lan, Ke; Ye, Wenhua, E-mail: ye-wenhua@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zhang, Weiyan [China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-07-15

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  5. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    Science.gov (United States)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-07-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting "tent." Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  6. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    International Nuclear Information System (INIS)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-01-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  7. Non-instrumented capsule design of HANARO irradiation test for the high burn-up large grain UO2 pellets

    International Nuclear Information System (INIS)

    Kim, D. H.; Lee, C. B.; Oh, D. S.

    2001-01-01

    Non-instrumented capsule was designed to irradiate the large grain UO 2 pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. UO 2 pelletes will be irradiated up to the burn-up higher than 70 MWD/kgU in HANARO. To irradiate the UO 2 pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. In addition, to satisfy the safety criteria of HANARO such as prevention of ONB(Onset of Nucleate Boiling), fuel melting and wear damage of the capsule during the long term irradiation, design of the non-instrumented capsule was optimized

  8. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  9. History of Road Design Standards in LADOTD : Research Project Capsule

    Science.gov (United States)

    2012-10-01

    According to the Louisiana Statewide Transportation Plan, Louisianas highway : network is comprised of over 60,000 miles, of which over 16,000 miles are : maintained by the state. The roadways were designed and constructed : according to the desig...

  10. Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract.

    Science.gov (United States)

    Liu, Gang; Yan, Guozheng; Zhu, Bingquan; Lu, Li

    2016-11-01

    In recent years, wireless capsule endoscopy (WCE) has been a state-of-the-art tool to examine disorders of the human gastrointestinal tract painlessly. However, system miniaturization, enhancement of the image-data transfer rate and power consumption reduction for the capsule are still key challenges. In this paper, a video capsule endoscopy system with a low-power controlling and processing application-specific integrated circuit (ASIC) is designed and fabricated. In the design, these challenges are resolved by employing a microimage sensor, a novel radio frequency transmitter with an on-off keying modulation rate of 20 Mbps, and an ASIC structure that includes a clock management module, a power-efficient image compression module and a power management unit. An ASIC-based prototype capsule, which measures Φ11 mm × 25 mm, has been developed here. Test results show that the designed ASIC consumes much less power than most of the other WCE systems and that its total power consumption per frame is the least. The image compression module can realize high near-lossless compression rate (3.69) and high image quality (46.2 dB). The proposed system supports multi-spectral imaging, including white light imaging and autofluorescence imaging, at a maximum frame rate of 24 fps and with a resolution of 400 × 400. Tests and in vivo trials in pigs have proved the feasibility of the entire system, but further improvements in capsule control and compression performance inside the ASIC are needed in the future.

  11. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  12. Design of a cone target for fast ignition

    Directory of Open Access Journals (Sweden)

    Sunahara Atsushi

    2013-11-01

    Full Text Available We propose a new type of target for the fast ignition of inertial confinement fusion. Pre-formed plasma inside a cone target can significantly reduce the energy coupling efficiency from the ultra-high intense short-pulse laser to the imploded core plasma. Also, in order to protect the tip of the cone and reduce generation of pre-formed plasma, we propose pointed shaped cone target. In our estimation, the shock traveling time can be delayed 20–30 ps by lower-Z material with larger areal density compared to the conventional gold flat tip. Also, the jet flow can sweep the blow-off plasma from the tip of the cone, and the implosion performance is not drastically affected by the existence of pointed tip. In addition, the self-generated magnetic field is generated along the boundary of cone tip and surrounding CD or DT plasma. This magnetic field can confine fast electrons and focus to the implosion core plasma. Resultant heating efficiency is improved by 30% compared to that with conventional gold flat tip.

  13. Safety and environmental process for the design and construction of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  14. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  15. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-01-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  16. Development of a High Efficiency Dry Powder Inhaler: Effects of Capsule Chamber Design and Inhaler Surface Modifications

    Science.gov (United States)

    Behara, Srinivas R.B.; Farkas, Dale R.; Hindle, Michael; Longest, P. Worth

    2013-01-01

    Purpose The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. Methods DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. Results The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. Conclusions High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD 90%, and ED > 80%. PMID:23949304

  17. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications.

    Science.gov (United States)

    Behara, Srinivas R B; Farkas, Dale R; Hindle, Michael; Longest, P Worth

    2014-02-01

    The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD  90%, and ED > 80%.

  18. Sensitivity of ICF ignition conditions to non-Maxwellian DT fusion reactivity

    International Nuclear Information System (INIS)

    Garbett, W. J.

    2013-01-01

    The hotspot ignition conditions in ICF are determined by considering the power balance between fusion energy deposition and energy loss terms. Uncertainty in any of these terms has potential to modify the ignition conditions, changing the optimum ignition capsule design. This paper considers the impact of changes to the DT fusion reaction rate due to non-thermal ion energy distributions. The DT fusion reactivity has been evaluated for a class of non-Maxwellian distributions representing a perturbation to the tail of a thermal distribution. The resulting reactivity has been used to determine hotspot ignition conditions as a function of the characteristic parameter of the modified distribution. (authors)

  19. The first capsule implosion experiments on Orion

    International Nuclear Information System (INIS)

    Garbett, W J; Horsfield, C J; Gales, S G; Leatherland, A E; Rubery, M S; Coltman, J E; Meadowcroft, A E; Rice, S J; Simons, A J; Woolhead, V E

    2016-01-01

    Direct drive capsule implosions are being developed on the Orion laser at AWE as a platform for ICF and HED physics experiments. The Orion facility combines both long pulse and short-pulse beams, making it well suited for studying the physics of alternative ignition approaches. Orion implosions also provide the opportunity to study aspects of polar direct drive. Limitations on drive symmetry from the relatively small number of laser beams makes predictive modelling of the implosions challenging, resulting in some uncertainty in the expected capsule performance. Initial experiments have been fielded to evaluate baseline capsule performance and inform future design optimization. Highly promising DD fusion neutron yields in excess of 10 9 have been recorded. Results from the experiments are presented alongside radiation-hydrocode modelling. (paper)

  20. Conceptual design of a fast-ignition laser fusion reactor FALCON-D

    International Nuclear Information System (INIS)

    Goto, T.; Ogawa, Y.; Okano, K.; Hiwatari, R.; Asaoka, Y.; Someya, Y.; Sunahara, A.; Johzaki, T.

    2008-10-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (∼100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5 - 6 m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (∼400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R and D issues required for this design are also discussed. (author)

  1. Simulation of the Compact Ignition Tokamak (CIT) conceptual design

    International Nuclear Information System (INIS)

    Carlson, K.E.; Wareing, T.L.

    1988-01-01

    Calculations have been made using the Advanced Thermal Hydraulic Energy Network Analysis (ATHENA) code that simulate the cool down of the cryostat and the performance of the condensing heat exchanger. The purpose of this simulation was to confirm the estimated 30 minute cool down time and to size a condensing heat exchanger for the CIT liquid nitrogen cooling system. This report includes a brief description of the ATHENA code, descriptions of proposed CIT cryostat and condenser designs, and the associated ATHENA models representing these design. This is followed by the ATHENA calculated results and conclusions concerning the results. 6 refs., 17 figs

  2. National Ignition Facility system design requirements Laser System SDR002

    International Nuclear Information System (INIS)

    Larson, D.W.; Bowers, J.M.; Bliss, E.S.; Karpenko, V.P.; English, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIP Laser System. The Laser System generates and delivers high-power optical pulses to the target chamber, and is composed of all optical puke creating and transport elements from Puke Generation through Final Optics as well as the special equipment that supports, energizes and controls them. The Laser System consists of the following WBS elements: 1.3 Laser System 1.4 Beam Transport System 1.6 Optical Components 1.7 Laser Control 1.8.7 Final Optics

  3. Reaching ignition in the tokamak

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-06-01

    This review covers the following areas: (1) the physics of burning plasmas, (2) plasma physics requirements for reaching ignition, (3) design studies for ignition devices, and (4) prospects for an ignition project

  4. Diagnosing and controlling mix in National Ignition Facility implosion experiments

    International Nuclear Information System (INIS)

    Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J.; Regan, S. P.; Epstein, R.; Kyrala, G. A.; Wilson, D. C.; Peterson, K.

    2011-01-01

    High mode number instability growth of ''isolated defects'' on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce ''isolated defects.'' An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

  5. Shock ignition: a brief overview and progress in the design of robust targets

    International Nuclear Information System (INIS)

    Atzeni, S; Marocchino, A; Schiavi, A

    2015-01-01

    Shock ignition is a laser direct-drive inertial confinement fusion (ICF) scheme in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF, reducing the threats due to Rayleigh–Taylor instability. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. This paper starts with a brief overview of the theoretical studies, target design and experimental results on shock ignition. The second part of the paper illustrates original work aiming at the design of robust targets and computation of the relevant gain curves. Following Chang et al (2010 Phys. Rev. Lett. 104 135002) a safety factor for high gain, ITF* (analogous to the ignition threshold factor ITF introduced by Clark et al (2008 Phys. Plasmas 15 056305)), is evaluated by means of parametric 1D simulations with artificially reduced reactivity. SI designs scaled as in Atzeni et al (2013 New J. Phys. 15 045004) are found to have nearly the same ITF*. For a given target, such ITF* increases with implosion velocity and laser spike power. A gain curve with a prescribed ITF* can then be simply generated by upscaling a reference target with that value of ITF*. An interesting option is scaling in size by reducing the implosion velocity to keep the ratio of implosion velocity to self-ignition velocity constant. At a given total laser energy, targets with higher ITF* are driven to higher implosion velocity and achieve a somewhat lower gain. However, a 1D gain higher than 100 is achieved at an (incident) energy below 1 MJ, an implosion velocity below 300 km s −1 and a peak incident power below 400 TW. 2D simulations of mispositioned targets show that targets with a higher ITF* indeed tolerate larger displacements. (paper)

  6. Design of an ion cyclotron resonance heating system for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Yugo, J.J.; Goranson, P.L.; Swain, D.W.; Baity, F.W.; Vesey, R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) requires 10-20 MW of ion cyclotron resonance heating (ICRH) power to raise the plasma temperature to ignition. The initial ICRH system will provide 10 MW of power to the plasma, utilizing a total of six rf power units feeding six current straps in three ports. The systems may be expanded to 20 MW with additional rf power units, antennas, and ports. Plasma heating will be achieved through coupling to the fundamental ion cyclotron resonance of a 3 He minority species (also the second harmonic of tritium). The proposed antenna is a resonant double loop (RDL) structure with vacuum, shorted stubs at each end for tuning and impedance matching. The antennas are of modular, compact construction for installation and removal through the midplane port. Remote maintainability and the reactorlike operating environment have a major impact on the design of the launcher for this machine. 6 refs., 7 figs., 5 tabs

  7. Spatial filter lens design for the main laser of the National Ignition Facility

    International Nuclear Information System (INIS)

    Korniski, R.J.

    1998-01-01

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1ω) of 1 053microm Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3ω or λ=351microm) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ''Optical system design of the National Ignition Facility,'' by R Edward English. et al also found in this volume

  8. A survey of pulse shape options for a revised plastic ablator ignition design

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.; Salmonson, J. D.; Peterson, J. L.; Berzak Hopkins, L. F.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory Livermore, California 94550 (United States)

    2014-11-15

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.

  9. Design, fabrication and irradiation test report on HANARO instrumented capsule (03M-06U) for researches of universities in 2003

    International Nuclear Information System (INIS)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Choi, M. H.; Cho, M. S.; Son, J. M.; Shin, Y. T.; Park, S. J.

    2005-03-01

    As a part of 2003 project for active utilization of HANARO, an instrumented capsule (03M-06U) was designed, fabricated and irradiated for the irradiation test of various nuclear materials under irradiation conditions requested by external researchers from universities. The basic structure of 03M-06U capsule was based on the 00M-01U, 01M-05U and 02M-05U capsules successfully irradiated in HANARO as 2000, 2001 and 2002 projects. However, because of the limited number of specimens and budget of 4 universities, the remained space of the capsule was charged with KAERI specimens for the development of the precise temperature control technology under irradiation. The material of the specimens is mainly Fe-based alloys partially mixed with Zr, Al and Cu-Ag alloys. The capsule is composed of 5 stages having many kinds of specimens and independent electric heater in each stage. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 5 sets of Ni-Ti-Fe neutron fluence monitors installed in the capsule. Various types of specimens such as tensile, Charpy, TEM, toughness, electrical resistance specimens were inserted in the capsule. The capsule was firstly irradiated in the CT test hole of HANARO of 30MW thermal output at 275∼500±10 .deg. C up to a fast neutron fluence of 5.4 x 10 20 (n/cm 2 ) (E>1.0MeV). The obtained results will be very valuable for the related researches of the users

  10. Design, Fabrication and Test Report on a Verification Capsule (05M-06K) for the Control of a Neutron Irradiation Fluence of Specimens in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Cho, M. S.; Son, J. M.; Shin, Y. T.; Park, S. J.; Choi, M. H.; Lee, D. S.

    2007-02-15

    As a part of a project for a capsule development and utilization for an irradiation test, a verification capsule (05M-06K) was designed, fabricated and tested for the development of new instrumented capsule technology for a more precise control of the irradiation fluence of a specimen, irrespective of the reactor operation condition. The basic structure of the 05M-06K capsule was based on the 04M-22K mock-up capsule which was successfully designed and out-pile tested to confirm the various key technologies necessary for the fluence control of a specimen. 21 square and round shaped specimens made of STS 304 were inserted into the capsule. The capsule was constructed in 5 stages with specimens and an independent electric heater at each stage. Each of the five specimens which were accommodated in the 1st stage (top) of the capsule can be taken out of the HANARO core during a normal reactor operation. The specimen is extracted by a specimen extraction mechanism using a steel wire. During the out-pile test, the temperatures of the specimens were measured by 12 thermocouples installed in the capsule. The capsule was successfully out-pile tested in a single channel test loop. The obtained results will be used for a safety evaluation of the new irradiation capsule for controlling the irradiation fluence of specimens in HANARO.

  11. Conceptual design of initial opacity experiments on the national ignition facility

    Science.gov (United States)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  12. Results from MARBLE DT Experiments on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    Science.gov (United States)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Cooley, J. H.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2017-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first experiments using deuterated foam and tritium gas have been performed. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  13. Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

    International Nuclear Information System (INIS)

    McKenty, P. W.; Wittman, M. D.; Harding, D. R.

    2006-01-01

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs

  14. Design of an ignition target for the laser megajoule, mitigating parametric instabilities

    International Nuclear Information System (INIS)

    Laffite, S.; Loiseau, P.

    2010-01-01

    Laser plasma interaction (LPI) is a critical issue in ignition target design. Based on both scaling laws and two-dimensional calculations, this article describes how we can constrain a laser megajoule (LMJ) [J. Ebrardt and J. M. Chaput, J. Phys.: Conf. Ser. 112, 032005 (2008)] target design by mitigating LPI. An ignition indirect drive target has been designed for the 2/3 LMJ step. It requires 0.9 MJ and 260 TW of laser energy and power, to achieve a temperature of 300 eV in a rugby-shaped Hohlraum and give a yield of about 20 MJ. The study focuses on the analysis of linear gain for stimulated Raman and Brillouin scatterings. Enlarging the focal spot is an obvious way to reduce linear gains. We show that this reduction is nonlinear with the focal spot size. For relatively small focal spot area, linear gains are significantly reduced by enlarging the focal spot. However, there is no benefit in too large focal spots because of necessary larger laser entrance holes, which require more laser energy. Furthermore, this leads to the existence, for a given design, of a minimum value for linear gains for which we cannot go below.

  15. Design of an ignition target for the laser megajoule, mitigating parametric instabilities

    Science.gov (United States)

    Laffite, S.; Loiseau, P.

    2010-10-01

    Laser plasma interaction (LPI) is a critical issue in ignition target design. Based on both scaling laws and two-dimensional calculations, this article describes how we can constrain a laser megajoule (LMJ) [J. Ebrardt and J. M. Chaput, J. Phys.: Conf. Ser. 112, 032005 (2008)] target design by mitigating LPI. An ignition indirect drive target has been designed for the 2/3 LMJ step. It requires 0.9 MJ and 260 TW of laser energy and power, to achieve a temperature of 300 eV in a rugby-shaped Hohlraum and give a yield of about 20 MJ. The study focuses on the analysis of linear gain for stimulated Raman and Brillouin scatterings. Enlarging the focal spot is an obvious way to reduce linear gains. We show that this reduction is nonlinear with the focal spot size. For relatively small focal spot area, linear gains are significantly reduced by enlarging the focal spot. However, there is no benefit in too large focal spots because of necessary larger laser entrance holes, which require more laser energy. Furthermore, this leads to the existence, for a given design, of a minimum value for linear gains for which we cannot go below.

  16. Resolving a central ICF issue for ignition: Implosion symmertry

    International Nuclear Information System (INIS)

    Cray, M.; Delamater, N.D.; Fernandez, J.C.

    1994-01-01

    The Los Alamos National Laboratory Inertial Confinement Fusion (ICF) Program focuses on resolving key target-physics issues and developing technology needed for the National Ignition Facility (NIF). This work is being performed in collaboration with Lawrence Livermore National Laboratory (LLNL). A major requirement for the indirect-drive NIF ignition target is to achieve the irradiation uniformity on the capsule surface needed for a symmetrical high-convergence implosion. Los Alamos employed an integrated modeling technique using the Lasnex radiation-hydrodynamics code to design two different targets that achieve ignition and moderate gain. Los Alamos is performing experiments on the Nova Laser at LLNL in order to validate our NIF ignition calculations

  17. Design and fabrication of irradiation testing capsule for research reactor materials

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu

    2012-01-01

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed

  18. Design and fabrication of irradiation testing capsule for research reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed.

  19. Comparison of posterior capsule folds following intracapsular implantation of three types of intraocular lenses with different haptic design

    Directory of Open Access Journals (Sweden)

    Ling-Lin Zhang

    2018-04-01

    Full Text Available AIM: To compare the incidence of posterior capsule folds among different types of intraocular lens(IOLto determine risk factors of posterior capsule folds. METHODS:It was a retrospective study. We collected the cases in which the patients underwent phacoemulsification(PHACOand IOL implantation and at least one of the three types of IOL was implanted, including 2-haptic 3-piece IOLs(HOYA PY60AD, 4-haptic 1-piece IOLs(Bausch & Lomb AO, 2-haptic 1-piece IOLs(AMO Tecnis ZCB00. The posterior capsule folds were measured using slit lamp microscope 2d after the surgery. Information of patient's age, gender, length of ocular axis, intraocular pressure, types of IOL were recorded. Posterior capsule fold risk indicators were identified by using logistic regression analysis. RESULTS: One hundred eighty-seven patients(242 eyeshad been collected, including 80 eyes implanted with HOYA PY60AD IOLs, 81 eyes implanted with Bausch & Lomb AO IOLs, 81 eyes implanted with AMO Tecnis ZCB00 IOLs. The incidence of posterior capsule folds of patients implanted with HOYA PY60AD IOLs was significantly higher than those of patients implanted with AMO Tecnis ZCB00 IOLs(56.3% vs 38.3%, P=0.027. While the incidence of patients implanted with Bausch & Lomb AO IOLs was significantly lower than those of patients implanted with AMO Tecnis ZCB00 IOLs(14.8% vs 38.3%, P=0.001. Multi-factor logistics regression analysis demonstrated that independent risk factors were type of IOLs and length of ocular axis. Compared with AMO Tecnis ZCB00 IOLs, using HOYA PY60AD IOLs increased the risk of posterior capsule folds \\〖P=0.020, OR(95%CI=2.145(1.129,4.073\\〗, while using Bausch & Lomb AO IOLs reduced the risk \\〖P=0.001, OR(95%CI=0.274(0.127, 0.591\\〗. Shorter ocular axis might increase the risk of posterior capsule folds \\〖P=0.012, OR(95%CI=0.669(0.489, 0.915\\〗. CONCLUSION: Haptic design should be an important consideration in IOL design. Compared with AMO Tecnis ZCB00 IOLs

  20. Ignition tuning for the National Ignition Campaign

    OpenAIRE

    Landen O.; Edwards J.; Haan S.W.; Lindl J.D.; Boehly T.R.; Bradley D.K.; Callahan D.A.; Celliers P.M.; Dewald E.L.; Dixit S.; Doeppner T.; Eggert J.; Farley D.; Frenje J.A.; Glenn S.

    2013-01-01

    The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and caps...

  1. Status Report on Irradiation Capsules Designed to Evaluate FeCrAl-UO2 Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-24

    This status report provides the background and current status of a series of irradiation capsules that were designed and are being built to test the interactions between candidate FeCrAl cladding for enhanced accident tolerant applications and prototypical enriched commercial UO2 fuel in a neutron radiation environment. These capsules will test the degree, if any, of fuel cladding chemical interactions (FCCI) between FeCrAl and UO2. The capsules are to be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to burn-ups of 10, 30, and 50 GWd/MT with a nominal target temperature at the interfaces between the pellets and clad of 350°C.

  2. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O.; Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A.; Igumenshchev, I.; Chicanne, C.

    2012-01-01

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  3. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Igumenshchev, I. [Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Chicanne, C. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2012-08-15

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  4. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    International Nuclear Information System (INIS)

    Ogawa, Y; Goto, T; Okano, K; Asaoka, Y; Hiwatari, R; Someya, Y

    2008-01-01

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G∼100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ∼ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive

  5. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y [High Temperature Plasma Center, University of Tokyo, Chiba (Japan); Goto, T; Okano, K [Graduate School of Frontier Sciences, University of Tokyo, Chiba (Japan); Asaoka, Y; Hiwatari, R [Central Research Institute for Electric Power Industry, Komae, Tokyo (Japan); Someya, Y [Graduate School of Engineering, Musashi Institute of Technology, Tokyo (Japan)], E-mail: ogawa@ppl.k.u-tokyo.ac.jp

    2008-05-15

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G{approx}100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 {approx} 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.

  6. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    Science.gov (United States)

    Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.

    2008-05-01

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.

  7. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles

  8. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    International Nuclear Information System (INIS)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-01-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots (∼100 (micro)m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with ρr ∼ 2 g/cm 2 for a small demo/pilot plant producing ∼40 MJ of fusion yield per target, and (2) a large target with ρr ∼ 10 g/cm 2 producing ∼1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q ∼ 26) ion sources for short (∼5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of ∼10 MG fields to provide steep focusing angles close-in to the target (built-in as part of each target); (4) beam space charge

  9. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule

    Science.gov (United States)

    Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong

    2018-06-01

    To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.

  10. Conceptual design of the fast ignition laser fusion power plant (KOYO-Fast). 6. Design of chamber and reactor system

    International Nuclear Information System (INIS)

    Kozaki, Yasuji; Norimatsu, Takayoshi; Furukawa, Hiroyuki; Hayashi, Takumi; Souman, Yoshihito; Nishikawa, Masabumi; Tomabechi, Ken

    2007-01-01

    A conceptual design of the reactor chamber system with LiPb liquid wall based on the fast ignition cone target design and the related reactor systems with exhaust system, laser beam shutter, blanket and cooling system are summarized. The multi overflow fall method was investigated as the structure of chamber and repeating 4 Hz pulse potential. The ablation depth of LiPb liquid wall was estimated and the conditions of repeat of operation were evaluated. The basic design of chamber, selection and conditions of liquid wall chamber, recycle type multi overflow fall (MOF) wall, LiPb two layers blanket structure, basic specification of reactor system, laser beam line shutter, design of chamber exhaust system, cooling system, tritium recovery system, power plant total design and arrangement of chamber and laser beam, and issues are stated. (S.Y.)

  11. Conceptual design of low activation target chamber and components for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schultz, K.R.; Sager, G.T.; Kantner, R.D.

    1996-01-01

    The baseline design for the target chamber and chamber components for the National Ignition Facility (NIF) consists of aluminum alloy structural material. Low activation composite chamber and components have important advantages including enhanced environmental and safety characteristics and improved accessibility due to reduced neutron-induced radioactivity. A low activation chamber can be fabricated from carbon fiber reinforced epoxy using thick wall laminate technology similar to submarine bow dome fabrication for the U.S. Navy. A risk assessment analysis indicates that a composite chamber has a reasonably high probability of success, but that an aluminum alloy chamber represents a lower risk. Use of low activation composite materials for several chamber components such as the final optics assemblies, the target positioner and inserter, the diagnostics manipulator tubes, and the optics beam tubes would offer an opportunity to make significant reductions in post-shot radiation dose rate with smaller, less immediate impact on the NIF design. 7 refs., 3 figs

  12. Laser fusion reactor design in a fast ignition with a dry wall chamber

    International Nuclear Information System (INIS)

    Ogawa, Yichi; Goto, Takuya; Ninomiya, Daisuke; Hiwatari, Ryoji; Asaoka, Yoshiyuki; Okano, Kunihiko

    2007-01-01

    One of the critical issues in laser fusion reactor design is high pulse heat load on the first wall by the X-rays and the fast/debris ions from fusion burn. There are mainly two concepts for the first wall of laser fusion reactor, a dry wall and a liquid metal wall. We should notice that the fast ignition method can achieve sufficiently high pellet gain with smaller (about 1/10 of the conventional central ignition method) input energy. To take advantage of this property, the design of a laser fusion reactor with a small size dry wall chamber may become possible. Since a small fusion pulse leads to a small electric power, high repetition of laser irradiation is required to keep sufficient electric power. Then we tried to design a laser fusion reactor with a dry wall chamber and a high repetition laser. This is a new challenging path to realize a laser fusion plant. Based on the point model of the core plasma, we have estimated that fusion energy in one pulse can be reduced to be 40 MJ with a pellet gain around G>100. To evaluate the validity of this simple estimation and to optimize the pellet design and the pulse shaping for the fast ignition scenario, we have introduced 1-D hydrodynamic simulation code ILESTA-1D and carried out implosion simulations. Since the code is one-dimensional, the detailed physics process of fast heating cannot be reproduced. Thus the fast heating is reflected in the code as the additional artificial heating source in the energy equation. It is modeled as a homogeneous heating of electrons in core region at the time just before when the maximum compression is achieved. At present we obtained the pellet gain G∝100 with the same input energy as the above estimation by a simple point model (350kJ for implosion, 50kJ for heating and assuming 20% coupling of heating laser). A dry wall is exposed to several threats due to the cyclic load by the high energy X-ray and charged particles: surface melting, physical and chemical sputtering

  13. Magnetically-driven medical robots: An analytical magnetic model for endoscopic capsules design

    Science.gov (United States)

    Li, Jing; Barjuei, Erfan Shojaei; Ciuti, Gastone; Hao, Yang; Zhang, Peisen; Menciassi, Arianna; Huang, Qiang; Dario, Paolo

    2018-04-01

    Magnetic-based approaches are highly promising to provide innovative solutions for the design of medical devices for diagnostic and therapeutic procedures, such as in the endoluminal districts. Due to the intrinsic magnetic properties (no current needed) and the high strength-to-size ratio compared with electromagnetic solutions, permanent magnets are usually embedded in medical devices. In this paper, a set of analytical formulas have been derived to model the magnetic forces and torques which are exerted by an arbitrary external magnetic field on a permanent magnetic source embedded in a medical robot. In particular, the authors modelled cylindrical permanent magnets as general solution often used and embedded in magnetically-driven medical devices. The analytical model can be applied to axially and diametrically magnetized, solid and annular cylindrical permanent magnets in the absence of the severe calculation complexity. Using a cylindrical permanent magnet as a selected solution, the model has been applied to a robotic endoscopic capsule as a pilot study in the design of magnetically-driven robots.

  14. Design of a Gamma Reaction History Diagnostic for the National Ignition Facility

    International Nuclear Information System (INIS)

    Malone, R.M.; Cox, B.C.; Frogget, B.C.; Kaufman, M.I.; Tunnell, T.W.; Herrmann, H.W.; Evans, S.C.; Mack, J.M; Young, C.S.; Stoeffl, W.

    2009-01-01

    Gas Cherenkov detectors have been used to convert fusion gammas into photons to achieve gamma reaction history (GRH) measurements. These gas detectors include a converter, pressurized gas volume, relay optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90 o Off-Axis Parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion.1 Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (our response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The detector optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. Because light is collected from source locations throughout the gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation locations along the gas cell. This design incorporates a fixed time delay that allows the detector to recover from prompt radiation. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they traverse the gas volume. A Monte Carlo model of the conversion process from gammas to Cherenkov photons is used to generate photon trajectories. The collection efficiencies for different gamma energies are evaluated. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds. This GRH design is compared to a gas Cherenkov detector that utilizes a Cassegrain reflector now used at the OMEGA laser facility. 1. R. M. Malone, H. W. Herrmann, W. Stoeffl, J. M. Mack, C. S. Young, 'Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 o off-axis parabolic mirrors', Rev. Sci. Instrum. 79, 10E532 (2008)

  15. Thulium oxide fuel characterization study (thulium-170 fueled capsule parametric design)

    Energy Technology Data Exchange (ETDEWEB)

    DesChamps, N.H.

    1968-10-01

    A doubly encapsulated thulia wafer, i.e., individually lined wafers stacked one upon another inside a fuel capsule was studied. The temperature profiles were determined for thulia power densities ranging from 8 to 24 W/cc and fuel capsule surface temperatures ranging from 1000/sup 0/F (538/sup 0/C) to 2000/sup 0/F (1093/sup 0/C). Parametric studies were also carried out on a singly encapsulated configuration in which the thulia wafers were stacked face to face in an infinitely long, lined cylinder. The doubly encapsulated wafer configuration yielded a lower centerline temperature than the singly encapsulated capsule. Only in extreme cases of a large wafer diameter in combination with a high thulia power density did the fuel capsule centerline temperature exceed the thulia melt temperature of 4172/sup 0/F (2300/sup 0/C). Results are also given for the maximum radius attainable without having centerline melting when using a thulia microsphere fuel form.

  16. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  17. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  18. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  19. Design and manufacturing of instrumented capsule (02F-06K/02F-11K) for nuclear fuel irradiation test in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Kang, Y. H.; Cho, M. S.; Sohn, J. M.; Choo, K. N.; Kim, D. S.; Oh, J. M.; Shin, Y.T.; Park, S.J.; Kim, Y. J.; Seo, C.G.; Ryu, J.S.; Cho, Y. G.

    2003-02-01

    To measure the characteristics of nuclear fuel during irradiation test, it is necessary to develop the instrumented capsule for the nuclear fuel irradiation test. Then considering the requirements for the nuclear fuel irradiation test and the compatibility with OR test hole in HANARO as well as the requirements for HANARO operation and related equipments, the instrumented capsule for the nuclear fuel irradiation test was designed and successfully manufactured. The structural integrity of the capsule design was verified by performing nuclear physics, structural and thermal analyses. And, not only out-of-pile tests such as pressure drop test, vibration test, endurance test, were performed in HANARO design verification test facility, but the mechanical and hydraulic safety of the capsule and the compatibility of the capsule with HANARO was verified

  20. Remote maintenance design activities and research and development accomplishments for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1989-01-01

    The use of deuterium-tritium (D-T) fuel for the Compact Ignition Tokamak (CIT) requires the use of remote handling technology in order to carry out maintenance operations. The remote operations consist of removing and replacing such components as first wall armor protection tiles, radio-frequency (RF) heating modules, and diagnostic modules. The major pieces of equipment being developed for maintenance operations internal to the vacuum vessel include an articulated boom manipulator (ABM), an inspection manipulator, and special tooling. For operations external to the vessel, the equipment includes a bridge-mounted manipulator system, decontamination equipment, hot cell equipment, and solid radioactive waste (rad-waste) handling and packaging equipment. The CIT Project is completing the conceptual design phase; research and development (R and D) activities, which include demonstrations of remote maintenance operations on full-size partial mock-ups are under way. (orig.)

  1. Remote maintenance design activities and research and development accomplishments for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1988-01-01

    The use of deuterium-tritium (D-T) fuel for the Compact Ignition Tokamak (CIT) requires the use of remote handling technology to carry out maintenance operations. The remote operations consist of removing and replacing such components as first wall armor protection tiles, radio-frequency (rf) heating modules, and diagnostic modules. The major pieces of equipment being developed for maintenance activities internal to the vacuum vessel include an articulated boom manipulator (ABM), an inspection manipulator, and special tooling. For activities external to the vessel, the equipment includes a bridge-mounted manipulator system, decontamination equipment, hot cell equipment, and solid radiation-waste (rad-waste) handling and packaging equipment. The CIT Project is completing the conceptual design phase; research and development (R and D) activities, which include demonstrations of remote maintenance operations on full-size partial mock-ups are under way. 5 figs

  2. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  3. Design of type X-IV atmospheric pressure capsule for irradiation test based on JSME S NC-1 2005

    International Nuclear Information System (INIS)

    Murao, Hiroyuki; Muramatsu, Yasuyuki; Ohkawara, Masami; Shibata, Isao

    2007-02-01

    In NSRR (Nuclear Safety Research Reactor) experiments, test fuels are inserted in the especial capsule and the capsule will be inserted into the experimental tube which is located in the center of reactor core. In NSRR, there are 17 types of atmospheric pressure capsule, and one of them Type X-IV atmospheric pressure capsule has been produced 6 times under authorization of Ministry of Education, Culture, Sports, Science and Technology (MEXT). Application for the 7th time of authorization was submitted to the MEXT in June 2006. On this application, standard which is used to design was changed to The Japan Society of Mechanical Engineers (JSME) S NC1-2005 from the Notification 501 of the Ministry of Economy, Trade and Industry (METI). The JSME S NC1-2005 introduced the service condition in addition to the reactor condition which has been used in the Notification 501. In this application, stress limits were calculated based on the service condition. The JSME S NC1-2005 requires estimation of combined stress for Class1 support structures, which was unnecessary in the Notification 501. In this application, combined stresses were calculated and confirmed not to exceed the stress limits. (author)

  4. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  5. High-Performance Cryogenic Designs for OMEGA and the National Ignition Facility

    Science.gov (United States)

    Goncharov, V. N.; Collins, T. J. B.; Marozas, J. A.; Regan, S. P.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Froula, D. H.; Igumenshchev, I. V.; McCrory, R. L.; Myatt, J. F.; Radha, P. B.; Sangster, T. C.; Shvydky, A.

    2016-10-01

    The main advantage of laser symmetric direct drive (SDD) is a significantly higher coupled drive laser energy to the hot-spot internal energy at stagnation compared to that of laser indirect drive. Because of coupling losses resulting from cross-beam energy transfer (CBET), however, reaching ignition conditions on the NIF with SDD requires designs with excessively large in-flight aspect ratios ( 30). Results of cryogenic implosions performed on OMEGA show that such designs are unstable to short-scale nonuniformity growth during shell implosion. Several CBET reduction strategies have been proposed in the past. This talk will discuss high-performing designs using several CBET-mitigation techniques, including using drive laser beams smaller than the target size and wavelength detuning. Designs that are predicted to reach alpha burning regimes as well as a gain of 10 to 40 at the NIF-scale will be presented. Hydrodynamically scaled OMEGA designs with similar CBET-reduction techniques will also be discussed. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Design of the polar neutron-imaging aperture for use at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fatherley, V. E., E-mail: vef@lanl.gov; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

    2016-11-15

    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

  7. A Unique Capsule Locus in the Newly Designated Actinobacillus pleuropneumoniae Serovar 16 and Development of a Diagnostic PCR Assay.

    Science.gov (United States)

    Bossé, Janine T; Li, Yanwen; Sárközi, Rita; Gottschalk, Marcelo; Angen, Øystein; Nedbalcova, Katerina; Rycroft, Andrew N; Fodor, László; Langford, Paul R

    2017-03-01

    Actinobacillus pleuropneumoniae causes pleuropneumonia, an economically significant lung disease of pigs. Recently, isolates of A. pleuropneumoniae that were serologically distinct from the previously characterized 15 serovars were described, and a proposal was put forward that they comprised a new serovar, serovar 16. Here we used whole-genome sequencing of the proposed serovar 16 reference strain A-85/14 to confirm the presence of a unique capsular polysaccharide biosynthetic locus. For molecular diagnostics, primers were designed from the capsule locus of strain A-85/14, and a PCR was formulated that differentiated serovar 16 isolates from all 15 known serovars and other common respiratory pathogenic/commensal bacteria of pigs. Analysis of the capsule locus of strain A-85/14 combined with the previous serological data show the existence of a sixteenth serovar-designated serovar 16-of A. pleuropneumoniae . Copyright © 2017 Bossé et al.

  8. Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete

    Science.gov (United States)

    Šavija, Branko; Feiteira, João; Araújo, Maria; Chatrabhuti, Sutima; Raquez, Jean-Marie; Van Tittelboom, Kim; Gruyaert, Elke; De Belie, Nele; Schlangen, Erik

    2016-01-01

    Polymeric capsules can have an advantage over glass capsules used up to now as proof-of-concept carriers in self-healing concrete. They allow easier processing and afford the possibility to fine tune their mechanical properties. Out of the multiple requirements for capsules used in this context, the capability of rupturing when crossed by a crack in concrete of a typical size is one of the most relevant, as without it no healing agent is released into the crack. This study assessed the fitness of five types of polymeric capsules to fulfill this requirement by using a numerical model to screen the best performing ones and verifying their fitness with experimental methods. Capsules made of a specific type of poly(methyl methacrylate) (PMMA) were considered fit for the intended application, rupturing at average crack sizes of 69 and 128 μm, respectively for a wall thickness of ~0.3 and ~0.7 mm. Thicker walls were considered unfit, as they ruptured for crack sizes much higher than 100 μm. Other types of PMMA used and polylactic acid were equally unfit for the same reason. There was overall good fitting between model output and experimental results and an elongation at break of 1.5% is recommended regarding polymers for this application. PMID:28772370

  9. Design and testing of tubular polymeric capsules for self-healing of concrete

    Science.gov (United States)

    Araújo, M.; Van Tittelboom, K.; Feiteira, J.; Gruyaert, E.; Chatrabhuti, S.; Raquez, J.-M.; Šavija, B.; Alderete, N.; Schlangen, E.; De Belie, N.

    2017-10-01

    Polymeric healing agents have proven their efficiency to heal cracks in concrete in an autonomous way. However, the bottleneck for valorisation of self-healing concrete with polymeric healing agents is their encapsulation. In the present work, the suitability of polymeric materials such as poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(lactic acid) (PLA) as carriers for healing agents in self-healing concrete has been evaluated. The durability of the polymeric capsules in different environments (demineralized water, salt water and simulated concrete pore solution) and their compatibility with various healing agents have been assessed. Next, a numerical model was used to simulate capsule rupture when intersected by a crack in concrete and validated experimentally. Finally, two real-scale self-healing concrete beams were made, containing the selected polymeric capsules (with the best properties regarding resistance to concrete mixing and breakage upon crack formation) or glass capsules and a reference beam without capsules. The self-healing efficiency was determined after crack creation by 3-point-bending tests.

  10. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.; Galbraith, J.; Hatch, B.; Landen, O.; Manuel, A. M.; Molander, W.; Moody, J. D.; Swadling, G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Froula, D. H.; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kilkenny, J. [General Atomics, San Diego, California 92186 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Weaver, J. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{sup −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  11. Ex-vessel remote maintenance design for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Macdonald, D.

    1987-01-01

    The use of deuterium-tritium (D-T) fuel for operation of the Compact Ignition Tokamak (CIT) imposes a requirement for remote handling technology for ex-vessel maintenance operations on auxiliary machine components. These operations consist of repairing and replacing components such as diagnostic, radio-frequency (rf) heating, and fueling systems using remotely operated maintenance equipment in the test cell. In addition, ex-vessel maintenance design also includes developing hot cell facilities for equipment decontamination, repair, and solid radioactive waste handling. The test cell maintenance philosophy is markedly influenced by the neutron/gamma shield surrounding the machine that allows personal access into the test cell one day after shutdown. Hence, maintenance operations can be performed hands-on in the test cell with the shield intact and must be remotely performed when the shield is disassembled for machine access. The constricted access to the auxiliary components of the machine affect the design requirements for the maintenance equipment and impose major spatial constraints. Several major areas of the maintenance system design are being addressed in fiscal year 1987. These include conceptual design of the manipulator system, preliminary remote equipment research and development, and definition of the hot cell, decontamination, and equipment repair facility requirements. The manipulator work includes investigating transporters and viewing/lighting subsystems. 2 figs

  12. Design and performance of the main amplifier system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Beullier, J; Erlandson, A; Grebot, E; Guenet, J; Guenet, M; Horvath, J; Jancaitis, K; Larson, D; Lawson, J; LeTouze, G; Maille, X; Manes, K; Marshall, C; Mengue, T; Moor, E; Payne, S; Pedrotti, L; Rotter, M; Seznec, S; Sutton, S; Zapata, L.

    1999-01-01

    This paper describes the design and performance of flashlamp-pumped, Nd:glass. Brewster-angle slab amplifiers intended to be deployed in the National Ignition Facility (NIF). To verify performance, we tested a full-size, three-slab-long, NIF prototype amplifier, which we believe to be the largest flashlamp-pumped Nd:glass amplifier ever assembled. Like the NIF amplifier design, this prototype amplifier had eight 40-cm-square apertures combined in a four-aperture-high by two-aperture-wide matrix. Specially-shaped reflectors, anti-reflective coatings on the blastshields, and preionized flashlamps were used to increase storage efficiency. Cooling gas was flowed over the flashlamps to remove waste pump heat and to accelerate thermal wavefront recovery. The prototype gain results are consistent with model predictions and provide high confidence in the final engineering design of the NIF amplifiers. Although the dimensions, internal positions, and shapes of the components in the NIF amplifiers will be slightly different from the prototype, these differences are small and should produce only slight differences in amplifier performance

  13. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    Science.gov (United States)

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.

    2017-07-01

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).

  14. Conceptual design of initial opacity experiments on the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.; DeVolder, B.  G.; Dodd, E.  S.; Garcia, E.  M.; Huffman, E.  J.; Iglesias, C.  A.; King, J.  A.; Kline, J.  L.; Liedahl, D.  A.; McKenty, P.  W.; Opachich, Y.  P.; Rochau, G.  A.; Ross, P.  W.; Schneider, M.  B.; Sherrill, M.  E.; Wilson, B.  G.; Zhang, R.; Perry, T.  S.

    2017-01-09

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures${\\geqslant}150$ eV and electron densities${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$. The iron will be probed using continuum X-rays emitted in a${\\sim}200$ ps,${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design

  15. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    International Nuclear Information System (INIS)

    Spears, B.K.; Glenzer, S.; Edwards, M.J.; Brandon, S.; Clark, D.; Town, R.; Cerjan, C.; Dylla-Spears, R.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.; Weber, S.; Hatchett, S.; Haan, S.; Springer, P.; Moses, E.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.

    2011-01-01

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  16. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  17. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Science.gov (United States)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  18. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule.

    Science.gov (United States)

    Smith, Derrick M; Kapoor, Yash; Klinzing, Gerard R; Procopio, Adam T

    2018-06-10

    Fused deposition modeling (FDM) 3D printing (3DP) has a potential to change how we envision manufacturing in the pharmaceutical industry. A more common utilization for FDM 3DP is to build upon existing hot melt extrusion (HME) technology where the drug is dispersed in the polymer matrix. However, reliable manufacturing of drug-containing filaments remains a challenge along with the limitation of active ingredients which can sustain the processing risks involved in the HME process. To circumvent this obstacle, a single step FDM 3DP process was developed to manufacture thin-walled drug-free capsules which can be filled with dry or liquid drug product formulations. Drug release from these systems is governed by the combined dissolution of the FDM capsule 'shell' and the dosage form encapsulated in these shells. To prepare the shells, the 3D printer files (extension '.gcode') were modified by creating discrete zones, so-called 'zoning process', with individual print parameters. Capsules printed without the zoning process resulted in macroscopic print defects and holes. X-ray computed tomography, finite element analysis and mechanical testing were used to guide the zoning process and printing parameters in order to manufacture consistent and robust capsule shell geometries. Additionally, dose consistencies of drug containing liquid formulations were investigated in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    International Nuclear Information System (INIS)

    Perkins, L.J.; Betti, R.; Schurtz, G.P.; Craxton, R.S.; Dunne, A.M.; LaFortune, K.N.; Schmitt, A.J.; McKenty, P.W.; Bailey, D.S.; Lambert, M.A.; Ribeyre, X.; Theobald, W.R.; Strozzi, D.J.; Harding, D.R.; Casner, A.; Atzemi, S.; Erbert, G.V.; Andersen, K.S.; Murakami, M.; Comley, A.J.; Cook, R.C.; Stephens, R.B.

    2010-01-01

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term (∼3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of ∼60 may be achievable on NIF at laser drive energies around ∼0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R and D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  20. X-ray diffraction diagnostic design for the National Ignition Facility

    Science.gov (United States)

    Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.

    2013-09-01

    This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.

  1. Ex-vessel remote maintenance design for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Macdonald, D.

    1987-01-01

    The use of deuterium-tritium (D-T) fuel for operation of the Compact Ignition Tokamak (CIT) imposes a requirement for remote handling technology to carry out maintenance operations on auxiliary machine components. These operations consist of removing and repairing components such as diagnostics and radio frequency (rf) heating modules using remotely operated maintenance equipment. The major equipment that is being developed to accomplish maintenance external to the plasma chamber includes the bridge-mounted manipulator system for test cell operations, decontamination (decon) equipment, hot cell equipment, and solid rad-waste handling equipment. Wherever possible, the project will use commercially available equipment. Several areas of the maintenance system design have been addressed in fiscal year (FY) 1987. These included conceptual designs of manipulator systems, the start of a remote equipment research and development (R and D) program, and definition of the hot cell, decon, and equipment repair facility requirements. The manipulator work included investigating transporters and viewing/lighting subsystems. In each case, existing commercial units are being assessed initially, along with viable alternative approaches. R and D work also included demonstrations of remote handling operations on full-size, partial mock-ups of the CIT machine at the Oak Ridge National Laboratory (ORNL) Remote Operations and Maintenance Development Facility

  2. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Casey, D.; Clancy, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T. [General Atomics, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States)

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})

  3. Design and construction of a Gamma reaction history diagnostic for the National Ignition Facility

    International Nuclear Information System (INIS)

    Malone, R M; Cox, B C; Frogget, B C; Kaufman, M I; Tibbitts, A; Tunnell, T W; Evans, S C; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; McGillivray, K D; Palagi, M; Stoeffl, W

    2010-01-01

    Gas Cherenkov detectors have been used to convert fusion gammas into photons to record gamma reaction history measurements. These gas detectors include a converter, pressurized gas volume, relay collection optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90 0 off-axis parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion. Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The relay optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO 2 or SF 6 ) volume. The parabolic mirrors were electroformed instead of diamond turned to reduce scattering of the UV light. All mirrors are bare aluminum coated for maximum reflectivity. This design incorporates a 4.2-ns time delay that allows the detector to recover from prompt radiation before it records the gamma signal. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds.

  4. Development of a Cost-Effective Design for the Fusion Ignition Research Experiment

    International Nuclear Information System (INIS)

    Philip J. Heitzenroeder

    1999-01-01

    The Fusion Ignition Research Experiment (FIRE) is one of the components of a US Next Step Options (NSO) study which is considering what major experiments might be undertaken in a restructured US Fusion Sciences Program. FIRE is designed for a plasma current of ∼6.5 MA, a burn time of at least 10 s, and a Q in the range of 5 to 10. FIRE has a major radius of 2.0 m, a minor radius of 0.525 m, and a field on axis of 10T. All of the coils are inertially cooled by liquid nitrogen. FIRE will operate primarily in a double null configuration with an x-point triangularity of 0.8 and an x-point elongation of 2.2. In addition to these technical requirements, a major goal for the FIRE project is for a total project cost of approximately $1B (in FY 99 dollars). This paper describes the process and rationale for the engineering design chosen for FIRE, taking into account both the performance and cost goals

  5. A Novel Design of Rescue Capsule considering the Pressure Characteristics and Thermal Dynamic Response with Thermomechanical Coupling Action Subjected to Gas Explosion Load

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhai

    2017-01-01

    Full Text Available To ensure the structural safety and reliability of coal mine rescue capsule in disastrous surroundings after gas explosion, in this paper, the thermomechanical coupling effect on a certain structure subjected to gas explosion was analyzed, and then a novel rescue capsule with a combination of radius and square features was designed according to the underground surroundings and relevant regulations on mine rescue devices. Foremost, the coupling mechanism of thermal-fluid-solid interaction between gas explosion shock wave and rescue capsule and the thermal dynamic response of the capsule subjected to explosion load of gas/air mixture was investigated and revealed by employing LS-DYNA. The variation laws and characteristics of stress field, displacement field, and temperature field of the capsule were analyzed based on the simulation results. Results show that the structural safety, tightness, and reliability of the capsule meet the requirements of the national safety regulations. The design method presented in this work provides a new thought for design of coal mine rescue capsule.

  6. Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

    Science.gov (United States)

    Shang, W.; Betti, R.

    2016-10-01

    Shock ignition uses a late strong shock to ignite the hot spot of an inertial confinement fusion capsule. In the standard shock-ignition scheme, an ignitor shock is launched by the ablation pressure from a spike in laser intensity. Recent experiments on OMEGA have shown that focused beams with intensity up to 6 ×1015 W /cm2 can produce copious amounts of hot electrons. The hot electrons are produced by laser-plasma instabilities (LPI's) and can carry up to 15 % of the instantaneous laser power. Megajoule-scale targets will likely produce even more hot electrons because of the large plasma scale length. We show that it is possible to design ignition targets with low implosion velocities that can be shock ignited using LPI-generated hot electrons to obtain high energy gains. These designs are robust to low-mode asymmetries and they ignite even for highly distorted implosions. Electron shock ignition requires tens of kilojoules of hot electrons, which can only be produced on a large laser facility like the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Probability of ignition - a better approach than ignition margin

    International Nuclear Information System (INIS)

    Ho, S.K.; Perkins, L.J.

    1989-01-01

    The use of a figure of merit - the probability of ignition - is proposed for the characterization of the ignition performance of projected ignition tokamaks. Monte Carlo and analytic models have been developed to compute the uncertainty distribution function for ignition of a given tokamak design, in terms of the uncertainties inherent in the tokamak physics database. A sample analysis with this method indicates that the risks of not achieving ignition may be unacceptably high unless the accepted margins for ignition are increased. (author). Letter-to-the-editor. 12 refs, 2 figs, 2 tabs

  8. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    Science.gov (United States)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  9. Introduction to the physics of ICF capsules

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1989-01-01

    Inertial Confinement Fusion is an approach to fusion which relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which this confinement is sufficient for efficient thermonuclear burn, high gain ICF targets designed to be imploded directly by laser light. These capsules are generally a spherical shell which is filled with low density DT gas. The shell is composed of an outer region which forms the ablator and an inner region of frozen or liquid DT which forms the main fuel. Energy from the driver is delivered to the ablator which heats up and expands. As the ablator expands and blows outward, the rest of the shell is forced inward to conserve momentum. In this implosion process, several features are important. We define the in-flight-aspect-ratio (IFAR) as the ratio of the shell radius R as it implodes to its thickness ΔR. Hydrodynamic instabilities during the implosion impose limits on this ratio which results in a minimum pressure requirement of about 100 Mbar. The convergence ratio is defined as the ratio of the initial outer radius of the ablator to the final compressed radius of the hot spot. This hot spot is the central region of the compressed fuel which is required to ignite the main fuel in high gain designs. Typical convergence ratios are 30--40. To maintain a nearly spherical shape during the implosion, when convergence ratios are this large, the flux delivered to the capsule must be uniform to a few percent. The remainder of this paper discusses the conditions necessary to achieve thermonuclear ignition in these ICF capsules

  10. Posterior capsule opacification.

    Science.gov (United States)

    Wormstone, I Michael; Wang, Lixin; Liu, Christopher S C

    2009-02-01

    Posterior Capsule Opacification (PCO) is the most common complication of cataract surgery. At present the only means of treating cataract is by surgical intervention, and this initially restores high visual quality. Unfortunately, PCO develops in a significant proportion of patients to such an extent that a secondary loss of vision occurs. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens. The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. However, on the remaining anterior capsule, lens epithelial cells stubbornly reside despite enduring the rigours of surgical trauma. This resilient group of cells then begin to re-colonise the denuded regions of the anterior capsule, encroach onto the intraocular lens surface, occupy regions of the outer anterior capsule and most importantly of all begin to colonise the previously cell-free posterior capsule. Cells continue to divide, begin to cover the posterior capsule and can ultimately encroach on the visual axis resulting in changes to the matrix and cell organization that can give rise to light scatter. This review will describe the biological mechanisms driving PCO progression and discuss the influence of IOL design, surgical techniques and putative drug therapies in regulating the rate and severity of PCO.

  11. National Ignition Facility subsystem design requirements optics assembly building (OAB) SSDR 1.2.2.3

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirement (SSDR) document establishes the performance, design, and verification requirements 'for the conventional building systems and subsystems of the Optics Assembly Building (OAB). These building system requirements are associated with housing and supporting the operational flow of personnel and materials throughout the OAB for preparing and repairing optical and mechanical components used in the National Ignition Facility (NIF) Laser and Target Building (LTAB). This SSDR addresses the following subsystems associated with the OAB: * Structural systems for the building spaces and operational-support equipment and building- support equipment. * Architectural building features associated with housing the space, operational cleanliness, and functional operation of the facility. * Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facility. * Plumbing systems that provide potable water and sanitary facilities for the occupants and stormwater drainage for transporting rainwater. * Fire Protection systems that guard against fire damage to the facility and its contents. * Material handling equipment for transferring optical assemblies and other materials within building areas and to the LTAB. * Mechanical process piping systems for liquids and gases that provide cooling, cleaning, and other service to optical and mechanical components. * Electrical power and grounding systems that provide service to the building and equipment, including lighting distribution and communications systems for the facilities. * Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Generic design criteria, such as siting data, seismic requirements, utility availability, and other information that contributes to the OAB design, are not addressed in this document

  12. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    International Nuclear Information System (INIS)

    Thoms, K.R.

    1975-04-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 (Ta-8 percent W-2 percent Hf) and uranium dioxide (UO 2 ) fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1 percent Zr. A total of nine fuel pins was irradiated (four containing porous UN, two containing dense, nonporous UN, and three containing dense UO 2 ) at average cladding temperatures ranging from 931 to 1015 0 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO 2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of 10 -5 . (U.S.)

  13. Design and fabrication report on capsule (11M 19K for out of pile test) for irradiation testing of research reactor materials at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Yang, S.W.; Park, S.J.; Shim, K.T.; Choo, K.N.; Oh, J.M.; Lee, B.C.; Choi, M.H.; Kim, D.J.; Kim, J.M.; Kang, S.H.; Chun, Y.B.; Kim, T.K.; Jeong, Y.H.

    2012-05-15

    As a part of the research reactor development project with a plate type fuel, the irradiation tests of graphite (Gr), beryllium (Be), and zircaloy 4 materials using the capsule have been investigating to obtain the mechanical characteristics such as an irradiation growth, hardness, swelling and tensile strength at the temperature below 100 .deg. C and the 30 MW reactor power. Then, A capsule to be able to irradiate materials(graphite, Be, zircaloy 4) under 100 .deg. C at the HANARO was designed and fabricated. After performing out of pile testing in single channel test loop by using the capsule, the final design of the capsules to be irradiated in CT and IR2 test hole of HANARO was approved, and 2 sets of capsule were fabricated. These capsules will be loaded in CT and IR2 test hole of HANARO, and be started the irradiation from the end of June, 2012. After performing the irradiation testing of 2 sets of capsule, PIE (Post Irradiation Examination) on irradiated specimens (Gr, Be, and zircaloy 4) will be carry out in IMEF (Irradiated Material Examination Facility). So, the irradiation testing will be contributed to obtain the characteristic data induced neutron irradiation on Gr, Be, and zircaloy 4. And then, it is convinced that these data will be also contributed to obtain the license for JRTR (Jordan Research and Training Reactor) and new research reactor in Korea, and export research reactors.

  14. Design considerations for the TF center conductor post for the Ignition Spherical Torus (IST)

    International Nuclear Information System (INIS)

    Dalton, G.R.; Haines, J.R.

    1986-01-01

    A trade-off study has been carried out to compare the differential costs of using high-strength alloy copper versus oxygen-free, high-conductivity (OFHC) copper for the center legs of the toroidal field (TF) coils of an Ignition Spherical Torus (IST). The electrical heating, temperatures, stresses, cooling requirements, material costs, pump costs, and power to drive the TF coils and pumps are all assessed for both materials for a range of compact tokamak reactors. The alloy copper material is found to result in a more compact reactor and to allow use of current densities of up to 170 MA/m 2 versus 40 MA/m 2 for the OFHC copper. The OFHC conductor system with high current density is $24 million less expensive than more conventional copper systems with 30 MA/m 2 . The alloy copper system costs $32 million less than conventional systems. Therefore, the alloy system offers a net savings of $8 million compared to the 50% cold-worked OFHC copper system. Although the savings are a significant fraction of the center conductor post cost, they are relatively insignificant in terms of the total device cost. It is concluded that the use of alloy copper contributes very little to the economic or technical viability of the compact IST. It is recommended that a similar systematic approach be applied to evaluating coil material and current density trade-offs for other compact copper-TF-coil tokamak designs. 9 refs., 13 figs., 13 tabs

  15. Low fuel convergence path to ignition on the NIF

    Science.gov (United States)

    Schmitt, M. J.; Molvig, Kim; Gianakon, T. A.; Woods, C. N.; Krasheninnikova, N. S.; Hsu, S. C.; Schmidt, D. W.; Dodd, E. S.; Zylstra, Alex; Scheiner, B.; McKenty, P.; Campbell, E. M.; Froula, D.; Betti, R.; Michel, T.

    2017-10-01

    A novel concept for achieving ignition on the NIF is proposed that obviates current issues plaguing single-shell high-convergence capsules. A large directly-driven Be shell is designed to robustly implode two nested internal shells by efficiently converting 1.7MJ of laser energy from a 6 ns, low intensity laser pulse, into a 1 ns dynamic pressure pulse to ignite and burn a central liquid DT core after a fuel convergence of only 9. The short, low intensity laser pulse mitigates LPI allowing more uniform laser drive of the target and eliminates hot e-, preheat and laser zooming issues. Preliminary rad-hydro simulations predict ignition initiation with 90% maximum inner shell velocity, before deceleration Rayleigh-Taylor growth can cause significant pusher shell mix into the compressed DT fuel. The gold inner pusher shell reduces pre-ignition radiation losses from the fuel allowing ignition to occur at 2.5keV. Further 2D simulations show that the short pulse design results in a spatially uniform kinetic drive that is tolerant to variations in laser cone power. A multi-pronged effort, in collaboration with LLE, is progressing to optimize this design for NIF's PDD laser configuration. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under contract DE-FG02-051ER54810.

  16. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626-34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion-fission energy (LIFE) as a path to achieve carbon-free sustainable energy.

  17. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626-34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion-fission energy (LIFE) as a path to achieve carbon-free sustainable energy.

  18. Design, fabrication and irradiation test report on HANARO instrumented capsule (05M-07U) for the researches of universities in 2005

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Choi, M. H.; Cho, M. S.; Son, J. M.; Choi, M. H.; Shin, Y. T.; Park, S. J.

    2006-09-15

    As a part of the 2005 project for an active utilization of HANARO, an instrumented capsule (05M-07U) was designed, fabricated and irradiated for an irradiation test of various unclear materials under irradiation conditions which was requested by external researchers from universities. The basic structure of the 05M-07U capsule was based on the 00M-01U, 01M-05U, 02M-05U, 03M-06U and 04M-07U capsules which had been successfully irradiated in HANARO as part of the 2000, 2001, 2002, 2003 and 2004 projects. However, because of a limited number of specimens and the budget of one university, the remaining space in the capsule was filled with various KAERI specimens for researches on a nuclear core and SMART materials, and parts of a nuclear fuel assembly of KNFC. Various types of specimens such as tensile, Charpy, TEM, hardness, compression and growth specimens made of Zr 702, Ti and Ni alloys, Zirlo, Inconel, STS 316L and Cr-Mo alloys were placed in the capsule. Especially, this capsule was designed to evaluate the nuclear characteristics of the parts of a nuclear fuel assembly and the Ti tubes in HANARO. The capsule was composed of 5 stages having many kinds of specimens and an independent electric heater at each stage. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 5 sets of Ni-Ti-Fe neutron fluence monitors installed in the capsule. The capsule was irradiated in the CT test hole of HANARO of a 30MW thermal output at 270 ∼ 400 .deg. C up to a fast neutron fluence of 5.7 x 10{sup 20} (n/cm{sup 2}) (E >1.0MeV). The obtained results will be very valuable for the related research of the users.

  19. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Olson, R. E.; Leeper, R. J.

    2013-01-01

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry

  20. Preliminary Study of the Onset of Nucleate Boiling (ONB) for the Thermal-hydraulic Design of HANARO Irradiation non-instrumented Capsule during the Natural Convection

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The HANARO reactor is an open-tank-in-pool type for easy access, and the capsules are being utilized for the irradiation test of materials and nuclear fuel in HANARO. The concept of the capsule is the direct contact with the coolant to cool the temperature of specimen down. To successfully accomplish the irradiation test, it is essential that the capsule should be designed considering the thermal margin such as the margin to Onset of Nucleate Boiling (ONB), the margin to Departure from Nucleate Boiling (DNB). In this paper, the preliminary study was performed by focusing on the ONB and the capsule design will be performed using the heat flux and temperature at ONB condition calculated in this paper. In this paper, the temperature and heat flux under ONB condition are simply calculated for the thermal design of fuel capsule for irradiation test. These values will be considered to design the non-instrumented capsule for natural circulation. To confirm the calculated value, detailed calculation will be performed using the one dimensional and multi-dimensional codes.

  1. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  2. Progress towards ignition on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  3. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  4. Opportunities for Integrated Fast Ignition program

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Key, M. H.; Hatchett, S. P.; Tabak, M.; Town, R.; Gregori, G.; Patel, P. K.; Snavely, R.; Freeman, R. R.; Stephens, R. B.; Beg, F.

    2005-01-01

    Experiments designed to investigate the physics of particle transport and heating of dense plasmas have been carried out in an number of facilities around the world since the publication of the fast ignition concept in 1997. To date a number of integrated experiments, examining the capsule implosion and subsequent heating have been carried out on the Gekko facility at the Institute of Laser Engineering (ILE) Osaka, Japan. The coupling of energy by the short pulse into the pre-compressed core in these experiments was very encouraging. More facilities capable of carrying out integrated experiments are currently under construction: Firex at ILEm the Omega EP facility at the University of Rochester, Z PW at Sandia National Lab, LIL in France and eventually high energy PW beams on the NIF. This presentation will review the current status of experiments in this area and discuss the capabilities of integrated fast ignition research that will be required to design the proof of principle and scaling experiments for fast ignition to be carried on the NIF. (Author)

  5. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    International Nuclear Information System (INIS)

    Pan, Guobing; Chen, Jiaoliao; Xin, Wenhui; Yan, Guozheng

    2011-01-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic

  6. Capsule Endoscopy

    Science.gov (United States)

    ... because experience with it is limited and traditional upper endoscopy is widely available. Why it's done Your doctor might recommend a capsule endoscopy procedure to: Find the cause of gastrointestinal bleeding. If you have unexplained bleeding in your digestive ...

  7. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  8. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  9. Diagnosing ignition with DT reaction history

    International Nuclear Information System (INIS)

    Wilson, D. C.; Bradley, P. A.; Herrmann, H. W.; Cerjan, C. J.; Salmonson, J. D.; Spears, B. K.; Hatchet, S. P. II; Glebov, V. Yu.

    2008-01-01

    A full range DT reaction history of an ignition capsule, from 10 9 to 10 20 neutrons/ns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final ∼100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within ∼50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium (∼1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules.

  10. Progress Towards Ignition on the National Ignition Facility

    Science.gov (United States)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. The Ignition Target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-01-01

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10 8 K), pressures (10-GBar) and matter densities (> 100 g/cm 3 ). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art

  12. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm 3 -sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  13. Development and utilization of irradiational capsule - Mechanical and thermal performance analysis and development of design program on the cylindrical structures with multi-holes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Shin; Choi, M. H.; Shin, D. S. [Chungnam National University, Taejon (Korea)

    2000-04-01

    Irradiation tests in the research reactor are used with the specially designed capsules for irradiation test and loop. Accordingly, suitable instrumented capsule for HANARO must be designed and manufactured. To satisfy the requirements of users and to conduct irradiation test effectively, the accurate informations on the thermal and mechanical characteristics of capsule should be understood. The structural analysis results show that stress characteristics of the cylinder with multi-holes is not significantly effected by the sizes of specimen hole, numbers of specimen and eccentric characteristics. The thermal and structural analysis of the capsule with multi-holes under thermal loading shows that the peak temperature in the circular cylinder is occurred in the specimens inserted in the center or specimen holes and is significantly effected by gap size between the holder and the external tube. In this study, CAPSYS program is developed by interfacing finite element analysis program, ANSYS with graphic user interface program, VISUAL C++. This program will be useful on the design and safety analysis of the capsule for material irradiation test. 20 refs., 37 figs., 9 tabs. (Author)

  14. A carbon-carbon panel design concept for the inboard limiter of the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    Mantz, H.C.; Bowers, D.A.; Williams, F.R.; Witten, M.A.

    1989-01-01

    The inboard limiter of the Compact Ignition Tokamak (CIT) must protect the vacuum vessel from the plasma energy. This limiter region must withstand nominal heat fluxes in excess of 10 MW/m 2 and in addition it must be designed to be remotely maintained. Carbon-carbon composite material was selected over bulk graphite materials for the limiter design because of its ability to meet the thermal and structural requirements. The structural design concept consists of carbon-carbon composite panels attached to the vacuum vessel by a hinged rod/retainer concept. Results of the preliminary design study to define this inboard limiter are presented. The design concept is described along with the analyses of the thermal and structural response during nominal plasma operation and during plasma disruption events. 2 refs., 8 figs

  15. Progress Toward Ignition on the National Ignition Facility

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    2011-01-01

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is ∼0.5 cm diameter by ∼1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a ∼2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer

  16. [Design of extracorporeal apparatus of capsule endoscopy based on ARM+FPGA].

    Science.gov (United States)

    Wang, Shenghua; Zhang, Sijie; Wang, Yue; Wang, Zhenxing

    2011-10-01

    Considering that the patients would bear the annoyance of fixed posture for long time when they are examined with gastrointestinal wireless endoscopy, even though portable devices have been developed, the treatments still depend on PC so much, we proposed an embedded solution based on ARM + FPGA. It used embedded ARM9 S3C2440 as processor core, collected images from digestive tract through capsule endoscopy which can be swallowed down there, and wirelessly transferred these images to the receiving system, then used video decoder chip SAA7114H for analog of NTSC video image decode. And under FPGA's logic controlling, effective digital video signal was transferred to S3C2440 for further treatment. Finally within the embedded Linux environment, we programmed the visual user interfaces using the QT/Embedded, realizing the offline record of the real-time video images of digestive tract portable and preferences. It can make patients move more freely and even without PC when examining. In addition, the method greatly improves the efficiency of the doctor, and is more intelligent and with more humane nature.

  17. Summary Report for Capsule Dry Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  18. Design of single-walled NaK capsules for fast breeder fuel pins irradiation (IVO-FR2-Vg7 program)

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Hafner, H.E.

    1979-01-01

    In Frame of the Joint Irradiation Program IVO-FR2 between the Nuclear Research Centre of Karlsruhe (RFA) and the Junta de Energia Nuclear (Spain) is carried out in the FR2 reactor (Karlsruhe) the irradiation of 12 mixed-oxide fuel rods of 172 mm length. These test rods are first irradiated under various conditions in four modified FR2 capsule (Typ 7). Two versions of single-walled NaK (78% K) are used for this purpose. This report contains the design and description of these two capsule versions as well as the considerations required to oftain the operations licence, supplemented by the relevant figures. (author)

  19. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  20. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  1. The LLNL [Lawrence Livermore National Laboratory] ICF [Inertial Confinement Fusion] Program: Progress toward ignition in the Laboratory

    International Nuclear Information System (INIS)

    Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann, C.W.; Lerche, R.A.; Letts, S.A.; Lindl, J.D.; Lowdermilk, W.H.; Mauger, G.J.; Montgomery, D.S.; Munro, D.H.; Murray, J.R.; Phillion, D.W.; Powell, H.T.; Remington, B.R.; Ress, D.B.; Speck, D.R.; Suter, L.J.; Tietbohl, G.L.; Thiessen, A.R.; Trebes, J.E.; Trenholme, J.B.; Turner, R.E.; Upadhye, R.S.; Wallace, R.J.; Wiedwald, J.D.; Woodworth, J.G.; Young, P.M.; Ze, F.

    1990-01-01

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 μm) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade

  2. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  3. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Science.gov (United States)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  4. Laser imprint and implications for direct drive ignition with the National Ignition Facility

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Remington, B.A.; Rothenberg, J.E.

    1996-01-01

    For direct drive ICF, nonuniformities in laser illumination can seed ripples at the ablation front in a process called imprint. Such nonuniformities will grow during the capsule implosion and can penetrate the capsule shell impede ignition, or degrade burn. We have simulated imprint for a number of experiments on tile Nova laser. Results are in generally good agreement with experimental data. We leave also simulated imprint upon National Ignition Facility (NIF) direct drive ignition capsules. Imprint modulation amplitude comparable to the intrinsic surface finish of ∼40 nm is predicted for a laser bandwidth of 0.5 THz. Ablation front modulations experience growth factors up to several thousand, carrying modulation well into the nonlinear regime. Saturation modeling predicts that the shell should remain intact at the time of peak velocity, but penetration at earlier times appears more marginal

  5. Antiproton fast ignition for inertial confinement fusion

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1999-01-01

    With 180 MJ/microg, antiprotons offer the highest stored energy per unit mass of any known entity. The use of antiprotons to promote fast ignition in an inertial confinement fusion (ICF) capsule and produce high target gains with only modest compression of the main fuel is investigated. Unlike standard fast ignition where the ignition energy is supplied by energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. This can be considered in-situ fast ignition as it obviates the need for the external injection of the ignition energy. In the first of two candidate schemes, the antiproton package is delivered by a low-energy ion beam. In the second, autocatalytic scheme, the antiprotons are preemplaced at the center of the capsule prior to compression. In both schemes, the author estimates that ∼10 12 antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition within the ignitor zone. In addition to eliminating the need for a second, energetic fast laser and vulnerable final optics, this scheme would achieve central ignition without reliance on laser channeling through halo plasma or Hohlraum debris. However, in addition to the practical difficulties of storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a speculative scheme is the ultimate efficiency of antiproton production in an external, optimized facility. Estimates suggest that the electrical wall plug energy per pulse required for the separate production of the antiprotons is of the same order as that required for the conventional slow compression driver

  6. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    Science.gov (United States)

    Orth, Charles D.

    2016-02-01

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot "mix" may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields—not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or "grains" of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation and (2) this solid material spalls under shock loading and sudden decompression. We describe this mix mechanism, support it with simulations and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.

  7. 14 CFR 33.69 - Ignitions system.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignitions system. 33.69 Section 33.69...

  8. Design risk analysis comparison between low-activation composite and aluminum alloy target chamber for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schleicher, R.W.

    1997-01-01

    The baseline design for the target chamber for the National Ignition Facility (NIF) consists of an aluminum alloy spherical shell. A low-activation composite chamber (e.g., carbon fiber/epoxy) has important advantages such as enhanced environmental and safety characteristics, improved chamber accessibility due to reduced neutron-induced radioactivity, and elimination of the concrete shield. However, it is critical to determine the design and manufacturing risk for the first application. The replacement of such a critical component requires a detailed development risk assessment. A semiquantitative approach to risk assessment has been applied to this problem based on failure modes, effects, and criticality analysis. This analysis consists of a systematic method for organizing the collective judgment of the designers to identify failure modes, estimate probabilities, judge the severity of the consequence, and illustrate risk in a matrix representation. The results of the analyses indicate that the composite chamber has a reasonably high probability of success in the NIF application. The aluminum alloy chamber, however, represents a lower risk, partially based on a more mature technology. 8 refs., 4 figs., 5 tabs

  9. National Ignition Facility subsystem design requirements target positioning subsystem SSDR 1.8.2

    International Nuclear Information System (INIS)

    Pittenger, L.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development and test requirements for the target positioner subsystem (WBS 1.8.2) of the NIF Target Experimental System (WBS 1.8)

  10. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    He, X. T., E-mail: xthe@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China); Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240 (China); Institute of Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Li, J. W.; Wang, L. F.; Liu, J.; Lan, K.; Ye, W. H. [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China); Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240 (China); Fan, Z. F.; Wu, J. F. [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China)

    2016-08-15

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiation ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.

  11. Innovative Comparison of Transient Ignition Temperature at the Booster Interface, New Stainless Steel Pyrovalve Primer Chamber Assembly "V" (PCA) Design Versus the Current Aluminum "Y" PCA Design

    Science.gov (United States)

    Saulsberry, Regor L.; McDougle, Stephen H.; Garcia,Roberto; Johnson, Kenneth L.; Sipes, William; Rickman, Steven; Hosangadi, Ashvin

    2011-01-01

    An assessment of four spacecraft pyrovalve anomalies that occurred during ground testing was conducted by the NASA Engineering & Safety Center (NESC) in 2008. In all four cases, a common aluminum (Al) primer chamber assembly (PCA) was used with dual NASA Standard Initiators (NSIs) and the nearly simultaneous (separated by less than 80 microseconds) firing of both initiators failed to ignite the booster charge. The results of the assessment and associated test program were reported in AIAA Paper AIAA-2008-4798, NESC Independent Assessment of Pyrovalve Ground Test Anomalies. As a result of the four Al PCA anomalies, and the test results and findings of the NESC assessment, the Mars Science Laboratory (MSL) project team decided to make changes to the PCA. The material for the PCA body was changed from aluminum (Al) to stainless steel (SS) to avoid melting, distortion, and potential leakage of the NSI flow passages when the device functioned. The flow passages, which were interconnected in a Y-shaped configuration (Y-PCA) in the original design, were changed to a V-shaped configuration (V-PCA). The V-shape was used to more efficiently transfer energy from the NSIs to the booster. Development and qualification testing of the new design clearly demonstrated faster booster ignition times compared to the legacy AL Y-PCA design. However, the final NESC assessment report recommended that the SS V-PCA be experimentally characterized and quantitatively compared to the Al Y-PCA design. This data was deemed important for properly evaluating the design options for future NASA projects. This test program has successfully quantified the improvement of the SS V-PCA over the Al Y-PCA. A phase B of the project was also conducted and evaluated the effect of firing command skew and enlargement of flame channels to further assist spacecraft applications.

  12. National Ignition Facility system design requirements NIF integrated computer controls SDR004

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIF Integrated Computer Control System. The Integrated Computer Control System (ICCS) is covered in NIF WBS element 1.5. This document responds directly to the requirements detailed in the NIF Functional Requirements/Primary Criteria, and is supported by subsystem design requirements documents for each major ICCS Subsystem

  13. Status of the material capsule irradiation and the development of the new capsule technology in HANARO

    International Nuclear Information System (INIS)

    Choo, Kee-Nam; Kang, Young-Hwan; Choi, Myoung-Hwan; Cho, Man-Soon; Kim, Bong-Goo

    2006-01-01

    A material capsule system including a main capsule, fixing, control, cutting, and transport systems was developed for an irradiation test of non-fissile materials in HANARO. 14 irradiation capsules (12 instrumented and 2 non-instrumented capsules) have been designed, fabricated and successfully irradiated in the HANARO CT and IR test holes since 1995. The capsules were mainly designed for an irradiation of the RPV (Reactor Pressure Vessel), reactor core materials, and Zr-based alloys. Most capsules were made for KAERI material research projects, but 5 capsules were made as a part of national projects for the promotion of the HANARO utilization for universities. Based on the accumulated irradiation experience and the user's sophisticated requirements, development of new instrumented capsule technologies for a more precise control of the irradiation temperature and fluence of a specimen irrespective of the reactor operation has been performed in HANARO. (author)

  14. Studies of electron and proton isochoric heating for fast ignition

    International Nuclear Information System (INIS)

    Mackinnon, A; Key, M; Akli, K; Beg, F; Clarke, R; Clarke, D; Chen, M; Chung, H; Chen, S; Freeman, R; Green, J; Gu, P; Gregori, G; Highbarger, K; Habara, H; Hatchett, S; Hey, D; Heathcote, R; Hill, J; King, J; Kodama, R; Koch, J; Lancaster, K; Langdon, B; Murphy, C; Norreys, P; Neely, D; Nakatsutsumi, M; Nakamura, H; Patel, N; Patel, P; Pasley, J; Snavley, R; Stephens, R; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Tanaka, K; Tempo, M; Toley, M; Town, R; Wilks, S; VanWoerkom, L; Weber, R; Yabuuchi, T; Zhang, B

    2006-01-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) proposal to use this technique to initiate burn in a fusion capsule. Experiments designed to investigate electron isochoric heating have measured heating in two limiting cases of interest to fast ignition, small planar foils and hollow cones. Data from Cu Kα fluorescence, crystal x-ray spectroscopy of Cu K shell emission, and XUV imaging at 68eV and 256 eV are used to test PIC and Hybrid PIC modeling of the interaction. Isochoric heating by focused proton beams generated at the concave inside surface of a hemi-shell and from a sub hemi-shell inside a cone have been studied with the same diagnostic methods plus imaging of proton induced Kα. Conversion efficiency to protons has also been measured and modeled. Conclusions from the proton and electron heating experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed

  15. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    Science.gov (United States)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  16. National Ignition Facility sub-system design requirements computer system SSDR 1.5.1

    International Nuclear Information System (INIS)

    Spann, J.; VanArsdall, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development and test requirements for the Computer System, WBS 1.5.1 which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1.5) which is the document directly above

  17. National Ignition Facility subsystem design requirements supervisory control software SSDR 1.5.2

    International Nuclear Information System (INIS)

    Woodruff, J.; VanArsdall, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Supervisory Control Software, WBS 1.5.2, which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1-5)

  18. National Ignition Facility sub-system design requirements integrated timing system SSDR 1.5.3

    International Nuclear Information System (INIS)

    Wiedwald, J.; Van Aersau, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Timing System, WBS 1.5.3 which is part of the NIF Integrated Computer Control System (ICCS). The Integrated Timing System provides all temporally-critical hardware triggers to components and equipment in other NIF systems

  19. National Ignition Facility subsystem design requirements transportation and handling, SSDR 1.1.1.3.2

    International Nuclear Information System (INIS)

    Yakuma, S.; McNairy, R.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Transportation ampersand Material Handling Systems (WBS 1.1.1.3.2) of the NIF Laser System (WBS 1.3 and 1.4). The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 5 figs

  20. Impact of fuel molecular structure on auto-ignition behavior – Design rules for future high performance gasolines

    KAUST Repository

    Boot, Michael D.

    2016-12-29

    At a first glance, ethanol, toluene and methyl tert-butyl ether look nothing alike with respect to their molecular structures. Nevertheless, all share a similarly high octane number. A comprehensive review of the inner workings of such octane boosters has been long overdue, particularly at a time when feedstocks for transport fuels other than crude oil, such as natural gas and biomass, are enjoying a rapidly growing market share. As high octane fuels sell at a considerable premium over gasoline, diesel and jet fuel, new entrants into the refining business should take note and gear their processes towards knock resistant compounds if they are to maximize their respective bottom lines. Starting from crude oil, the route towards this goal is well established. Starting from biomass or natural gas, however, it is less clear what dots on the horizon to aim for. The goal of this paper is to offer insight into the chemistry behind octane boosters and to subsequently distill from this knowledge, taking into account recent advances in engine technology, multiple generic design rules that guarantee good anti-knock performance. Careful analysis of the literature suggests that highly unsaturated (cyclic) compounds are the preferred octane boosters for modern spark-ignition engines. Additional side chains of any variety will dilute this strong performance. Multi-branched paraffins come in distant second place, owing to their negligible sensitivity. Depending on the type and location of functional oxygen groups, oxygenates can have a beneficial, neutral or detrimental impact on anti-knock quality.

  1. Conceptual design of a Bitter-magnet toroidal-field system for the ZEPHYR Ignition Test Reactor

    International Nuclear Information System (INIS)

    Williams, J.E.C.; Becker, H.D.; Bobrov, E.S.; Bromberg, L.; Cohn, D.R.; Davin, J.M.; Erez, E.

    1981-05-01

    The following problems are described and discussed: (1) parametric studies - these studies examine among other things the interdependence of throat stresses, plasma parameters (margins of ignition) and stored energy. The latter is a measure of cost and is minimized in the present design; (2) magnet configuration - the shape of the plates are considered in detail including standard turns, turns located at beam ports, diagnostic and closure flanges; (3) ripple computation - this section describes the codes by which ripple is computed; (4) field diffusion and nuclear heating - the effect of magnetic field diffusion on heating is considered along with neutron heating. Current, field and temperature profiles are computed; (5) finite element analysis - the two and three dimensional finite element codes are described and the results discussed in detail; (6) structures engineering - this considers the calculation of critical stresses due to toroidal and overturning forces and discusses the method of constraint of these forces. The Materials Testing Program is also discussed; (7) fabrication - the methods available for the manufacture of the constituent parts of the Bitter plates, the method of assembly and remote maintenance are summarized

  2. The use of beam propagation modeling of Beamlet and Nova to ensure a ''safe'' National Ignition Facility laser system design

    International Nuclear Information System (INIS)

    Henesian, M.A.; Renard, P.; Auerbach, J.

    1997-01-01

    An exhaustive set of Beamlet and Nova laser system simulations were performed over a wide range of power levels in order to gain understanding about the statistical trends in Nova and Beamlet's experimental data sets, and to provide critical validation of propagation tools and design ''rules'' applied to the 192-arm National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). The experiments considered for modeling were at 220-ps FWHM duration with unpumped booster slabs on Beamlet, and 100-ps FWHM with pumped 31.5-cm and 46-cm disk amplifiers on Nova. Simulations indicated that on Beamlet, the AB (the intensity pendent phase shift parameter characterizing the tendency towards beam filamentation) for the booster amplifier stage without pumping, would be nearly identical to the AB expected on NIF at the peak of a typical 20-ns long shaped pulse intended for ICF target irradiation. Therefore, with energies less than I kJ in short-pulses, we examined on Beamlet the comparable AB-driven filamentation conditions predicted for long ICF pulseshapes in the 18 kJ regime on the NIF, while avoiding fluence dependent surface damage. Various spatial filter pinhole configurations were examined on Nova and Beamlet. Open transport spatial filter pinholes were used in some experiments to allow the direct measurement of the onset of beam filamentation. Schlieren images on Beamlet of the far field irradiance measuring the scattered light fraction outside of 33-microradians were also obtained and compared to modeled results

  3. Comments on the article A generalized scaling law for the ignition energy of inertial confinement fusion capsules by M.C. Herrmann, M. Tabak, J.D. Lindl, Nucl. Fusion 41 (2001) 99

    International Nuclear Information System (INIS)

    Atzeni, S.; Meyer-ter-Vehn, J.

    2001-01-01

    A recent article (details in the title) reported a generalized scaling law for the ignition energy of inertial confinement fusion targets in terms of the in-flight fuel adiabat, the peak implosion velocity, and the peak drive pressure. Previous scaling laws had not taken into account the scaling with the peak drive pressure. The key point of the analysis was the realization that the adiabat of the stagnated fuel is not simply given by the in-flight adiabat, as previously assumed implicitly, but instead depends on implosion history, and involves the drive pressure. In these comments it is pointed out that, while the simulations in said recent article account for complicated transport and equations of state, a simpler physical model based on ideal gas dynamics without heat conduction or any other transport physics advanced previously by one of the authors of these comments (for instance, Meyer-ter-Vehn, J. and Schalk, C., Z. Nat. forsch. 37A, 955 (1982)) yields quite similar scaling. This observation leads to a form of the scaling laws in terms of only the drive pressure and the Mach number, indicating the central importance of these variables, rather than the complicated transport and equations of state, for the determination of the ignition temperature

  4. National Ignition Facility, subsystem design requirements beam control and laser diagnostics SSDR 1.7

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control ampersand Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs

  5. National Ignition Facility subsystem design requirements final optics assembly subsystem SSDR 1.8.7

    International Nuclear Information System (INIS)

    Adams, C.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Final Optic Assembly (FOA). The FOA (WBS 1.8.7) as part of the Target Experimental System (1.8) includes vacuum windows, frequency conversion crystals, focus lens, debris shields and supporting mechanical equipment

  6. National Ignition Facility subsystem design requirements target diagnostics subsystem SSDR 1.8.3

    International Nuclear Information System (INIS)

    Lee, D.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Target Experimental System's Diagnostic, WBS 1.8. 3. This includes the individual diagnostic components, the Target Diagnostic Data Acquisition System (Target DAS), the diagnostic vacuum system, the timing/fiducial system, and the EMI protection system

  7. High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums

    Science.gov (United States)

    Robey, Harry F.

    2009-11-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).

  8. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.

    1996-01-01

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  9. Design of a Lossless Image Compression System for Video Capsule Endoscopy and Its Performance in In-Vivo Trials

    Science.gov (United States)

    Khan, Tareq H.; Wahid, Khan A.

    2014-01-01

    In this paper, a new low complexity and lossless image compression system for capsule endoscopy (CE) is presented. The compressor consists of a low-cost YEF color space converter and variable-length predictive with a combination of Golomb-Rice and unary encoding. All these components have been heavily optimized for low-power and low-cost and lossless in nature. As a result, the entire compression system does not incur any loss of image information. Unlike transform based algorithms, the compressor can be interfaced with commercial image sensors which send pixel data in raster-scan fashion that eliminates the need of having large buffer memory. The compression algorithm is capable to work with white light imaging (WLI) and narrow band imaging (NBI) with average compression ratio of 78% and 84% respectively. Finally, a complete capsule endoscopy system is developed on a single, low-power, 65-nm field programmable gate arrays (FPGA) chip. The prototype is developed using circular PCBs having a diameter of 16 mm. Several in-vivo and ex-vivo trials using pig's intestine have been conducted using the prototype to validate the performance of the proposed lossless compression algorithm. The results show that, compared with all other existing works, the proposed algorithm offers a solution to wireless capsule endoscopy with lossless and yet acceptable level of compression. PMID:25375753

  10. Implosion dynamics measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  11. Implosion dynamics measurements at the National Ignition Facility

    International Nuclear Information System (INIS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.

    2012-01-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%–70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  12. Implosion dynamics measurements at the National Ignition Facility

    Science.gov (United States)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  13. National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services

  14. Hohlraum designs for high velocity implosions on NIF

    Directory of Open Access Journals (Sweden)

    Meezan Nathan B.

    2013-11-01

    Full Text Available In this paper, we compare experimental shock and capsule trajectories to design calculations using the radiation-hydrodynamics code hydra. The measured trajectories from surrogate ignition targets are consistent with reducing the x-ray flux on the capsule by about 85%. A new method of extracting the radiation temperature from x-ray data shows that about half of the apparent 15% flux deficit in the data with respect to the simulations can be explained by hydra overestimating the x-ray flux on the capsule.

  15. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    Science.gov (United States)

    Leach, Richard R.; Awwal, Abdul A. S.; Lowe-Webb, Roger; Miller-Kamm, Victoria; Orth, Charles; Roberts, Randy; Wilhelmsen, Karl

    2016-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.

  16. Progress on the physics of ignition for radiation driven inertial confinement fusion (ICF) targets

    International Nuclear Information System (INIS)

    Lindl, J.D.; Marinak, M.M.

    1996-09-01

    Extensive modeling of proposed National Ignition Facility (NIF) ignition targets has resulted in a variety of targets using different materials in the fuel shell, using driving temperatures which range from 250-300 eV, and requiring energies from 15 W/cm 2 for this type of hohlraum. The symmetry in Nova gas- filled hohlraums is affected by the gas fill. A large body of evidence now exists which indicates that this effect is due to laser beam filamentation which can be largely controlled by beam smoothing. We present here the firs 3-D simulations of hydrodynamic instability for the NIF point design capsule. These simulations, with the HYDRA radiation hydrodynamics code, indicate that spikes can penetrate up to 10 μm into the 30μm radius hot spot before ignition is quenched. Using capsules whose surface is modified by laser ablation, Nova experiments have been used to quantify the degradation of implosions subject to near NIF levels of hydrodynamic instability

  17. Control System For Cryogenic THD Layering At The National Ignition Facility

    International Nuclear Information System (INIS)

    Fedorov, M.; Blubaugh, J.; Edwards, O.; Mauvais, M.; Sanchez, R.; Wilson, B.

    2011-01-01

    The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 (micro)m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

  18. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums

    International Nuclear Information System (INIS)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Doeppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Seguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.

    2010-01-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D 2 -filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≅20x more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≅3x more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D 3 He rather than D 2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  19. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraumsa)

    Science.gov (United States)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Séguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2010-05-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≈20× more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≈3× more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D H3e rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  20. Physical studies of fast ignition in China

    International Nuclear Information System (INIS)

    He, X T; Cai, Hong-bo; Wu, Si-zhong; Cao, Li-hua; Zhang, Hua; He, Ming-qing; Chen, Mo; Wu, Jun-feng; Zhou, Cang-tao; Zhou, Wei-Min; Shan, Lian-qiang; Wang, Wei-wu; Zhang, Feng; Bi, Bi; Zhao, Zong-qing; Gu, Yu-qiu; Zhang, Bao-han; Wang, Wei; Fang, Zhi-heng; Lei, An-le

    2015-01-01

    Fast ignition approach to inertial confinement fusion is one of the important goals today, in addition to central hot spot ignition in China. The SG-IIU and PW laser facilities are coupled to investigate the hot spot formation for fast ignition. The SG-III laser facility is almost completed and will be coupled with tens kJ PW lasers for the demonstration of fast ignition. In recent years, for physical studies of fast ignition, we have been focusing on the experimental study of implosion symmetry, M-band radiation preheating and mixing, advanced fast ignition target design, and so on. In addition, the modeling capabilities and code developments enhanced our ability to perform the hydro-simulation of the compression implosion, and the particle-in-cell (PIC) and hybrid-PIC simulation of the generation, transport and deposition of relativistic electron beams. Considerable progress has been achieved in understanding the critical issues of fast ignition. (paper)

  1. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  2. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  3. The National Ignition Facility Neutron Imaging System

    International Nuclear Information System (INIS)

    Wilke, Mark D.; Batha, Steven H.; Bradley, Paul A.; Day, Robert D.; Clark, David D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary P.; Jaramillo, Steven A.; Montoya, Andrew J.; Morgan, George L.; Oertel, John A.; Ortiz, Thomas A.; Payton, Jeremy R.; Pazuchanics, Peter; Schmidt, Derek W.; Valdez, Adelaida C.; Wilde, Carl H.

    2008-01-01

    The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y n >10 14 neutrons. The shielding will also permit the NIS to function at neutron yields >10 18 , which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical

  4. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation. (J.P.N.)

  5. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation.

  6. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part I: performance estimation and design considerations unique to small dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Research and development activities pertaining to the development of a 10 W, homogeneous charge compression ignition free-piston engine-compressor are presented. Emphasis is place upon the miniature engine concept and design rationale. Also, a crankcase-scavenged, two-stroke engine performance estimation method (slider-crank piston motion) is developed and used to explore the influence of engine operating conditions and geometric parameters on power density and establish plausible design conditions. The minimization of small-scale effects such as enhanced heat transfer, is also explored. (author)

  7. Hohlraum energetics scaling to 520 TW on the National Ignition Facilitya)

    Science.gov (United States)

    Kline, J. L.; Callahan, D. A.; Glenzer, S. H.; Meezan, N. B.; Moody, J. D.; Hinkel, D. E.; Jones, O. S.; MacKinnon, A. J.; Bennedetti, R.; Berger, R. L.; Bradley, D.; Dewald, E. L.; Bass, I.; Bennett, C.; Bowers, M.; Brunton, G.; Bude, J.; Burkhart, S.; Condor, A.; Di Nicola, J. M.; Di Nicola, P.; Dixit, S. N.; Doeppner, T.; Dzenitis, E. G.; Erbert, G.; Folta, J.; Grim, G.; Glenn, S.; Hamza, A.; Haan, S. W.; Heebner, J.; Henesian, M.; Hermann, M.; Hicks, D. G.; Hsing, W. W.; Izumi, N.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Khan, S. F.; Kirkwood, R.; Kyrala, G. A.; LaFortune, K.; Landen, O. L.; Lagin, L.; Larson, D.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Michel, P. A.; Miller, P.; Montincelli, M.; Moore, A. S.; Nikroo, A.; Nostrand, M.; Olson, R. E.; Pak, A.; Park, H. S.; Patel, J. P.; Pelz, L.; Ralph, J.; Regan, S. P.; Robey, H. F.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Shaw, M.; Smalyuk, V. A.; Strozzi, D. J.; Suratwala, T.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Van Wonterghem, B.; Wegner, P.; Widmann, K.; Widmayer, C.; Wilkens, H.; Williams, E. A.; Edwards, M. J.; Remington, B. A.; MacGowan, B. J.; Kilkenny, J. D.; Lindl, J. D.; Atherton, L. J.; Batha, S. H.; Moses, E.

    2013-05-01

    Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ˜330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.

  8. Confinement of ignition and yield on the National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-01-01

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented

  9. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  10. Electron Shock Ignition of Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  11. Target diagnostic system for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests

  12. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-03-15

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions

  13. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-01-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P_2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using

  14. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Science.gov (United States)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different

  15. Final Report on Design, Fabrication and Test of HANARO Instrumented Capsule (07M-13N) for the Researches of Irradiation Performance of Parts of X-Gen Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H. (and others)

    2008-08-15

    An instrumented capsule of 07M-13N was designed, fabricated and irradiated for an evaluation of the neutron irradiation properties of the parts of a X-Gen nuclear fuel assembly for PWR requested by KNF. Some specimens of control rod materials of AP1000 reactor requested by Westinghouse Co. were inserted in this capsule as a preliminary irradiation test and Polyimide specimens requested by Hanyang university were also inserted. 463 specimens such as buckling and spring test specimens of cell spacer grid, tensile, microstructure and tensile of welded parts, irradiation growth, spring test specimens made of HANA tube, Zirlo, Zircaloy-4, Inconel-718, Polyimide, Ag and Ag-In-Cd alloys were placed in the capsule. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 7 sets of neutron fluence monitors installed in the capsule. A new friction welded tube between STS304 and Al1050 alloys was introduced in the capsule to prevent a coolant leakage into a capsule during a capsule cutting process in HANARO. The capsule was irradiated for 95.19 days (4 cycles) in the CT test hole of HANARO of a 30MW thermal output at 230 {approx} 420 .deg. C. The specimens were irradiated up to a maximum fast neutron fluence of 1.27x10{sup 21}(n/cm{sup 2}) (E>1.0MeV) and the dpa of the irradiated specimens were evaluated as 1.21 {approx} 1.97. The irradiated specimens were tested to evaluate the irradiation performance of the parts of an X-Gen fuel assembly in the IMEF hot cell and the obtained results will be very valuable for the related researches of the users.

  16. Status of the US inertial fusion program and the National Ignition Facility

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1997-01-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) copyright 1997 American Institute of Physics

  17. Endurance test for DUPIC capsule

    International Nuclear Information System (INIS)

    Chung, Heung June; Bae, K. K.; Lee, C. Y.; Park, J. M.; Ryu, J. S.

    1999-07-01

    This report presents the pressure drop, vibration and endurance test results for mini-plate fuel rig which were designed fabricately by KAERI. From the pressure drop test results, it is noted that the flow rate across the capsule corresponding to the pressure drop of 200 kPa is measured to be about 9.632 kg/sec. Vibration frequency for the capsule ranges from 14 to 18.5 Hz. RMS (Root Mean Square) displacement for the fuel rig is less than 14 μm, and the maximum displacement is less than 54 μm. Based on the endurance test results, the appreciable fretting wear for the DUPIC capsule was not detected. Oxidation on the support tube is observed, also tiny trace of wear between contact points observed. (author). 4 refs., 10 tabs., 45 figs

  18. Ignition inhibitors for cellulosic materials

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1976-01-01

    By exposing samples to various irradiance levels from a calibrated thermal radiation source, the ignition responses of blackened alpha-cellulose and cotton cloth with and without fire-retardant additives were compared. Samples treated with retardant compounds which showed the most promise were then isothermally pyrolyzed in air for comparisons between the pyrolysis rates. Alpha-cellulose samples containing a mixture of boric acid, borax, and ammonium di-hydrogen phosphate could not be ignited by irradiances up to 4.0 cal cm -2 s-1 (16.7 W/cm 2 ). At higher irradiances the specimens ignited, but flaming lasted only until the flammable gases were depleted. Cotton cloth containing a polymeric retardant with the designation THPC + MM was found to be ignition-resistant to all irradiances below 7.0 cal cm -2 s -1 (29.3 W/cm 2 ). Comparison of the pyrolysis rates of the retardant-treated alpha-cellulose and the retardant-treated cotton showed that the retardant mechanism is qualitatively the same. Similar ignition-response measurements were also made with specimens exposed to ionizing radiation. It was observed that gamma radiation results in ignition retardance of cellulose, while irradiation by neutrons does not

  19. Analytical criterion for shock ignition of fusion reaction in hot spot

    OpenAIRE

    Ribeyre X.; Tikhonchuk V.T.; Breil J.; Lafon M.; Vallet A.; Bel E. Le

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latt...

  20. Magnetic control system targeted for capsule endoscopic operations in the stomach--design, fabrication, and in vitro and ex vivo evaluations.

    Science.gov (United States)

    Lien, Gi-Shih; Liu, Chih-Wen; Jiang, Joe-Air; Chuang, Cheng-Long; Teng, Ming-Tsung

    2012-07-01

    This paper presents a novel solution of a hand-held external controller to a miniaturized capsule endoscope in the gastrointestinal (GI) tract. Traditional capsule endoscopes move passively by peristaltic wave generated in the GI tract and the gravity, which makes it impossible for endoscopists to manipulate the capsule endoscope to the diagnostic disease areas. In this study, the main objective is to present an endoscopic capsule and a magnetic field navigator (MFN) that allows endoscopists to remotely control the locomotion and viewing angle of an endoscopic capsule. The attractive merits of this study are that the maneuvering of the endoscopic capsule can be achieved by the external MFN with effectiveness, low cost, and operation safety, both from a theoretical and an experimental point of view. In order to study the magnetic interactions between the endoscopic capsule and the external MFN, a magnetic-analysis model is established for computer-based finite-element simulations. In addition, experiments are conducted to show the control effectiveness of the MFN to the endoscopic capsule. Finally, several prototype endoscopic capsules and a prototype MFN are fabricated, and their actual capabilities are experimentally assessed via in vitro and ex vivo tests using a stomach model and a resected porcine stomach, respectively. Both in vitro and ex vivo test results demonstrate great potential and practicability of achieving high-precision rotation and controllable movement of the capsule using the developed MFN.

  1. Compact ignition experiments

    International Nuclear Information System (INIS)

    Angelini, A.; Coppi, B.; Nassi, M.

    1992-01-01

    This paper reports on high magnetic field experiments which can be designed to investigate D-T ignition conditions based on present-day experimental results and theoretical understanding of plasma phenomena. The key machine elements are: large plasma currents, compact dimensions, tight aspect ratios, moderate elongations and significant triangularities of the plasma column. High plasma densities, strong ohmic heating, the needed degree of energy confinement, good plasma purity and robust stability against ideal and resistive instabilities can be achieved simultaneously. The Ignitor design incorporates all these characteristics and involves magnet technology developments, started with the Alcator experiment, that use cryogenically cooled normal conductors

  2. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  3. Progress in Fast Ignition Studies with Electrons and Protons

    Science.gov (United States)

    MacKinnon, A. J.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Chen, H.; Chen, S.; Chowdhury, E.; Fedosejevs, R.; Freeman, R. R.; Hey, D.; Higginson, D.; Key, M. H.; King, J. A.; Link, A.; Ma, T.; MacPhee, A. G.; Offermann, D.; Ovchinnikov, V.; Pasley, J.; Patel, P. K.; Ping, Y.; Schumacher, D. W.; Stephens, R. B.; Tsui, Y. Y.; Wei, M. S.; Van Woerkom, L. D.

    2009-09-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone—wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.

  4. Laser Ignition Microthruster Experiments on KKS-1

    Science.gov (United States)

    Nakano, Masakatsu; Koizumi, Hiroyuki; Watanabe, Masashi; Arakawa, Yoshihiro

    A laser ignition microthruster has been developed for microsatellites. Thruster performances such as impulse and ignition probability were measured, using boron potassium nitrate (B/KNO3) solid propellant ignited by a 1 W CW laser diode. The measured impulses were 60 mNs ± 15 mNs with almost 100 % ignition probability. The effect of the mixture ratios of B/KNO3 on thruster performance was also investigated, and it was shown that mixture ratios between B/KNO3/binder = 28/70/2 and 38/60/2 exhibited both high ignition probability and high impulse. Laser ignition thrusters designed and fabricated based on these data became the first non-conventional microthrusters on the Kouku Kousen Satellite No. 1 (KKS-1) microsatellite that was launched by a H2A rocket as one of six piggyback satellites in January 2009.

  5. Reproducibility of hohlraum-driven implosion symmetry on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kyrala G.A.

    2013-11-01

    Full Text Available Indirectly driven Symcap capsules are used at the NIF to obtain information about ignition capsule implosion performance, in particular shape. Symcaps replace the cryogenic fuel layer with an equivalent ablator mass and can be similarly diagnosed. Symcaps are good symmetry surrogates to an ignition capsule after the peak of the drive, radiation-hydrodynamics simulations predict that doping of the symcaps vary the behavior of the implosion. We compare the equatorial shapes of a symcap doped with Si or Ge, as well as examine the reproducibility of the shape measurement using two symcaps with the same hohlraum and laser conditions.

  6. Status of Indirect Drive ICF Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, E.

    2016-01-01

    In the quest to demonstrate Inertial Confinement Fusion (ICF) ignition of deuterium-tritium (DT) filled capsules and propagating thermonuclear burn with net energy gain (fusion energy/laser energy >1), recent experiments on the National Ignition Facility (NIF) have shown progress towards increasing capsule hot spot temperature (T ion >5 keV) and fusion neutron yield (~10 16 ), while achieving ~2x yield amplification by alpha particle deposition. At the same time a performance cliff was reached, resulting in lower fusion yields than expected as the implosion velocity was increased. Ongoing studies of the hohlraum and capsule physics are attempting to disseminate possible causes for this performance ceiling.

  7. Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility

    Science.gov (United States)

    Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.

    2017-10-01

    A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.

  8. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-01-15

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  9. Analytical Model for the Probability Characteristics of a Crack Penetrating Capsules in Capsule-Based Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Zhong LV

    2017-08-01

    Full Text Available Autonomous crack healing using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of capsule-based self-healing materials. Continuing our previous study, in this contribution a more practical rupturing mode of capsules characterizing the rupturing manner of capsules fractured by cracks in cementitious materials is presented, i.e., penetrating mode. With the underlying assumption that a crack penetrating capsules undoubtedly leads to crack healing, geometrical probability theory is employed to develop the quantitative relationship between crack size and capsule size, capsule concentration in capsule-based self-healing virtual cementitious material. Moreover, an analytical expression of probability of a crack penetrating with randomly dispersed capsules is developed in two-dimensional material matrix setup. The influences of the induced rupturing modes of capsules embedded on the self-healing efficiency are analyzed. Much attention is paid to compare the penetrating probability and the hitting probability, in order to assist the designer to make a choice of the optimal rupturing modes of capsules embedded. The accuracy of results of the theoretical model is also compared with Monte-Carlo numerical analysis of crack interacting with capsules. It shows that the developed probability characteristics of a crack interaction with capsules for different rupturing modes is helpful to provide guidelines for designer working with capsule-based self-healing cementitious materials.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16888

  10. Studies into laser ignition of confined pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.R.; Russell, D.A. [Centre for Applied Laser Spectroscopy, DASSR, Defence Academy, Cranfield University, Shrivenham, Swindon (United Kingdom)

    2008-10-15

    Ignition tests were carried out on three different pyrotechnics using laser energy from the multimode output from an Ar-Ion laser (av) at 500 nm and a near-IR diode laser pigtailed to a fibre optic cable and operating at 808 nm. The pyrotechnics investigated were: G20 black powder, SR44 and SR371C. The confined ignition tests were conducted in a specially designed ignition chamber. Pyrotechnics were ignited by a free space beam entering the chamber through an industrial sapphire window in the case of the Ar-ion laser. For the NIR diode laser, fibre was ducted through a block into direct contact with the pyrotechnic. The Ar-Ion laser was chosen as this was found to ignite all three pyrotechnics in the unconfined condition. It also allowed for a direct comparison of confined/unconfined results to be made. The threshold laser flux densities to initiate reproducible ignitions at this wavelength were found to be between {proportional_to}12.7 and {proportional_to}0.16 kW cm{sup -2}. Plotted on the ignition maps are the laser flux densities versus the start of ignition times for the three confined pyrotechnics. It was found from these maps that the times for confined ignition were substantially lower than those obtained for unconfined ignition under similar experimental conditions. For the NIR diode laser flux densities varied between {proportional_to}6.8 and {proportional_to}0.2 kW cm{sup -2}. The minimum ignition times for the NIR diode laser for SR371C ({proportional_to}11.2 ms) and G20 ({proportional_to}17.1 ms) were faster than those achieved by the use of the Ar-ion laser. However, the minimum ignition time was shorter ({proportional_to}11.7 ms) with the Ar-ion laser for SR44. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  11. Investigation of fusion gain in fast ignition with conical targets

    Directory of Open Access Journals (Sweden)

    MJ Tabatabaei

    2011-03-01

    Full Text Available Fast ignition is a new scheme for inertial confinement fusion (ICF. In this scheme, at first the interaction of ultraintense laser beam with the hohlraum wall surrounding a capsule containing deuterium-tritium (D-T fuel causes implosion and compression of fuel to high density and then laser produced protons penetrate in the compressed fuel and deposit their energy in it as the ignition hot spot is created. In this paper, following the energy gain of spherical target and considering relationship of the burn fraction to burn duration, we have obtained the energy gain of conical targets characterized by the angle β, and found a hemispherical capsule (β=π/2 has a gain as high as 96% of that of the whole spherical capsule. The results obtained in this study are qualitatively consistent with Atzeni et al.'s studies of simulations.

  12. Stability of Ignition Transients

    OpenAIRE

    V.E. Zarko

    1991-01-01

    The problem of ignition stability arises in the case of the action of intense external heat stimuli when, resulting from the cut-off of solid substance heating, momentary ignition is followed by extinction. Physical pattern of solid propellant ignition is considered and ignition criteria available in the literature are discussed. It is shown that the above mentioned problem amounts to transient burning at a given arbitrary temperature distribution in the condensed phase. A brief survey...

  13. 正交设计优选鼻炎灵胶囊的提取工艺%Optimization for the Extraction of Biyanling Capsules with Orthogonal Design

    Institute of Scientific and Technical Information of China (English)

    陆萍; 谭兴起; 郭良君; 倪东杰; 韦庆

    2012-01-01

    目的 用正交试验优选鼻炎灵胶囊的最佳提取工艺条件.方法 以绿原酸为研究指标,对鼻炎灵胶囊的质量控制方法进行了研究,确定合理的提取工艺.采用正交设计法,考察提取次数、加水量、提取时间对鼻炎灵胶囊中绿原酸的含量的影响.用高效液相法测定绿原酸含量,Symmetry C18色谱柱(3.9 mm×150 mm,5 μm),以乙腈-0.4%磷酸(12:88)为流动相;检测波长为327 nm;流速:1.0 mL·min-1;理论塔板数按绿原酸峰计算应不得低于3000,分离度大于1.5.结果 鼻炎灵胶囊最佳提取工艺为中药材和水煎煮2次,第一次加12倍量水,煎煮2.0 h,第二次加10倍量水,煎煮1.5 h,绿原酸含量达10.7 mg·g-1.结论 该工艺简便易行,绿原酸提取率高,稳定性好.%Objective To opiimize the exlraclion process of biyanling capsules with orthogonal Lesl. Methods The chlorogenic acid was Laken as the indicator Lo sludy the quality conlrol of biyanling capsules and delermine the ralional exlraclion process. The orthogonal design was adopled Lo invesligale the impacls of the exlraclion frequency, waler adding amounl and the exlraclion lime on the conlenl of chlorogenic acid in biyanling capsules. HPLC ( high performance liquid chromalography) was used lo delermine the conlenl of chlorogenic acid,in which,color column; Symmetry C18(3. 9 mm × 150 mm,5 μm) ; mobile phase: aceloni-trile -0.4% phosphoric acid(12: 88) ;wavelength;327 nm;flow rale:l mL · Min-1 ; the number of theoreli-cal plales according lo the peak of chlorogenic acid:nol less than 3000;resolution;larger than 1.5. Results The best exlraclion process of biyanling capsules; waler decoding Iwice for herbal malerials, adding waler of 12 limes in the first decoclion for 2. 0 h;adding waler of 10 limes for the second decoclion for 1. 5 h. The conlenl of chlorogenic acid reached 10. 7 mg · G-1. Conclusion The process is sample in operalion and ensures the high exlraclion and slable properly of

  14. PITR: Princeton Ignition Test Reactor

    International Nuclear Information System (INIS)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection

  15. First shock tuning and backscatter measurements for large case-to-capsule ratio beryllium targets

    Science.gov (United States)

    Loomis, Eric; Yi, Austin; Kline, John; Kyrala, George; Simakov, Andrei; Wilson, Doug; Ralph, Joe; Dewald, Eduard; Strozzi, David; Celliers, Peter; Millot, Marius; Tommasini, Riccardo

    2016-10-01

    The current under performance of target implosions on the National Ignition Facility (NIF) has necessitated scaling back from high convergence ratio to access regimes of reduced physics uncertainties. These regimes, we expect, are more predictable by existing radiation hydrodynamics codes giving us a better starting point for isolating key physics questions. One key question is the lack of predictable in-flight and hot spot shape due to a complex hohlraum radiation environment. To achieve more predictable, shape tunable implosions we have designed and fielded a large 4.2 case-to-capsule ratio (CCR) target at the NIF using 6.72 mm diameter Au hohlraums and 1.6 mm diameter Cu-doped Be capsules. Simulations show that at these dimensions during a 10 ns 3-shock laser pulse reaching 270 eV hohlraum temperatures, the interaction between hohlraum and capsule plasma, which at lower CCR lead to beam propagation impedance by artificial plasma stagnation, are reduced. In this talk we will present measurements of early time drive symmetry using two-axis line-imaging velocimetry (VISAR) and streaked radiography measuring velocity of the imploding shell and their comparisons to post-shot calculations using the code HYDRA (Lawrence Livermore National Laboratory).

  16. Polydopamine-coated capsules

    Science.gov (United States)

    White, Scott R.; Sottos, Nancy R.; Kang, Sen; Baginska, Marta B.

    2018-04-17

    One aspect of the invention is a polymer material comprising a capsule coated with PDA. In certain embodiments, the capsule encapsulates a functional agent. The encapsulated functional agent may be an indicating agent, healing agent, protecting agent, pharmaceutical drug, food additive, or a combination thereof.

  17. Ignition and burn propagation with suprathermal electron auxiliary heating

    International Nuclear Information System (INIS)

    Han Shensheng; Wu Yanqing

    2000-01-01

    The rapid development in ultrahigh-intensity lasers has allowed the exploration of applying an auxiliary heating technique in inertial confinement fusion (ICF) research. It is hoped that, compared with the 'standard fast ignition' scheme, raising the temperature of a hot-spot over the ignition threshold based on the shock-heated temperature will greatly reduce the required output energy of an ignition ultrahigh-intensity pulse. One of the key issues in ICF auxiliary heating is: how can we transport the exogenous energy efficiently into the hot-spot of compressed DT fuel? A scheme is proposed with three phases. First, a partial-spherical-shell capsule, such as double-conical target, is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration with a hot-spot of temperature lower than the ignition threshold. Second, a hole is bored through the shell outside the hot-spot by suprathermal electron explosion boring. Finally, the fuel is ignited by suprathermal electrons produced in the high-intensity ignition laser-plasma interactions. Calculations with a simple hybrid model show that the new scheme can possibly lead to ignition and burn propagation with a total drive energy of a few tens of kilojoules and an output energy as low as hundreds of joules for a single ignition ultrahigh-intensity pulse. (author)

  18. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux - CNRS - CEA, UMR 5107,351 Cours de la Libération, 33400 Talence (France)

    2016-07-15

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200–300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  19. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  20. Fusion ignition via a magnetically-assisted fast ignition approach

    OpenAIRE

    Wang, W. -M.; Gibbon, P.; Sheng, Z. -M.; Li, Y. T.; Zhang, J.

    2016-01-01

    Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-pr...

  1. The Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  2. Oxygen fugacity and piston cylinder capsule assemblies

    Science.gov (United States)

    Jakobsson, S.

    2011-12-01

    A double capsule assembly designed to control oxygen fugacity in piston cylinder experiments has been tested at 1200 °C and 10 kbar. The assembly consists of an outer Pt-capsule containing a solid buffer (Ni-NiO or Co-CoO plus H2O) and an inner AuPd-capsule containing the sample, H2O and a Pt-wire. To prevent direct contact with the buffer phases the AuPd-capsule is embedded in finely ground Al2O3 along with some coarser, fractured Al2O3 facilitating fluid inclusion formation. No water loss is observed in the sample even after 48 hrs but a slight increase in water content is observed in longer duration runs due to oxygen and hydrogen diffusion into the AuPd-capsule. Carbon from the furnace also diffuses through the outer Pt-capsule but reacts with H2O in the outer capsule to form CO2 and never reaches the inner capsule. Oxygen fugacity of runs in equilibrium with the Ni-NiO and Co-CoO buffers was measured by analyzing the Fe content of the Pt-wire in the sample1 and by analyzing Fe dissolved in the AuPd capsule2. The second method gives values that are in good agreement with established buffer whereas results from the first method are one half to one log units higher than the established values. References 1. E. Medard, C. A. McCammon, J. A. Barr, T. L. Grove, Am. Mineral. 93, 1838 (2008). 2. J. Barr, T. Grove, Contrib. Mineral. Petrol. 160, 631 (2010)

  3. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-02

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.

  4. Magnetically guided capsule endoscopy.

    Science.gov (United States)

    Shamsudhin, Naveen; Zverev, Vladimir I; Keller, Henrik; Pane, Salvador; Egolf, Peter W; Nelson, Bradley J; Tishin, Alexander M

    2017-08-01

    Wireless capsule endoscopy (WCE) is a powerful tool for medical screening and diagnosis, where a small capsule is swallowed and moved by means of natural peristalsis and gravity through the human gastrointestinal (GI) tract. The camera-integrated capsule allows for visualization of the small intestine, a region which was previously inaccessible to classical flexible endoscopy. As a diagnostic tool, it allows to localize the sources of bleedings in the middle part of the gastrointestinal tract and to identify diseases, such as inflammatory bowel disease (Crohn's disease), polyposis syndrome, and tumors. The screening and diagnostic efficacy of the WCE, especially in the stomach region, is hampered by a variety of technical challenges like the lack of active capsular position and orientation control. Therapeutic functionality is absent in most commercial capsules, due to constraints in capsular volume and energy storage. The possibility of using body-exogenous magnetic fields to guide, orient, power, and operate the capsule and its mechanisms has led to increasing research in Magnetically Guided Capsule Endoscopy (MGCE). This work shortly reviews the history and state-of-art in WCE technology. It highlights the magnetic technologies for advancing diagnostic and therapeutic functionalities of WCE. Not restricting itself to the GI tract, the review further investigates the technological developments in magnetically guided microrobots that can navigate through the various air- and fluid-filled lumina and cavities in the body for minimally invasive medicine. © 2017 American Association of Physicists in Medicine.

  5. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  6. Soft gelatin capsules (softgels).

    Science.gov (United States)

    Gullapalli, Rampurna Prasad

    2010-10-01

    It is estimated that more than 40% of new chemical entities (NCEs) coming out of the current drug discovery process have poor biopharmaceutical properties, such as low aqueous solubility and/or permeability. These suboptimal properties pose significant challenges for the oral absorption of the compounds and for the development of orally bioavailable dosage forms. Development of soft gelatin capsule (softgel) dosage form is of growing interest for the oral delivery of poorly water soluble compounds (BCS class II or class IV). The softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound, delivering a low melting compound, and minimizing potential generation of dust during manufacturing and thereby improving the safety of production personnel. However, due to the very dynamic nature of the softgel dosage form, its development and stability during its shelf-life are fraught with several challenges. The goal of the current review is to provide an in-depth discussion on the softgel dosage form to formulation scientists who are considering developing softgels for therapeutic compounds.

  7. The National Ignition Facility

    International Nuclear Information System (INIS)

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.M.

    2001-01-01

    The National Ignition Facility (NIF) is the largest construction project ever undertaken at Lawrence Livermore National Laboratory (LLNL). NIF consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. NIF is being designed and built by an LLNL-led team from Los Alamos National Laboratory, Sandia National Laboratories, the University of Rochester, and LLNL. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. (author)

  8. Thermal characteristic test for saturated temperature type capsule

    International Nuclear Information System (INIS)

    Niimi, Motoji; Someya, Hiroyuki; Kobayashi, Toshiki; Ohuchi, Mitsuo; Harayama, Yasuo

    1989-08-01

    The Japan Material Testing Reactor Project is developing a new type capsule so-called 'Saturated Temperature Capsule', as a part of irradiation technique improvement program. This type capsule, in which the water is supplied and boiled, bases on the conception of keeping the coolant at the saturated temperature and facilitating the temperature setting of specimens heated by gamma-ray in reactor. However, out-pile test was planned, because there were few usable data for design and operation of the capsule into which the coolant was injected. A out-pile apparatus, simulated the capsule with electric heaters, was fabricated and experiments were carried out, to obtain data concerning design and operation for the capsule into which the water was injected. As a structure of simulated capsule, a type of downward coolant supply was adopted. The downward coolant tube type injectes the water in the bottom of capsule by tube through the upper flange. Major objects of experiences were to grasp thermal features under operation and to provide performances of capsule control equipment. Experimental results proved that the temperature of water within the capsule was easily varied by controlling supply water flow rate, and that the control equipment was operated stably and safety. (author)

  9. Capsule development and utilization for material irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N. [and others

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules.

  10. Capsule development and utilization for material irradiation tests

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N.

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules

  11. Capsule-odometer: a concept to improve accurate lesion localisation.

    Science.gov (United States)

    Karargyris, Alexandros; Koulaouzidis, Anastasios

    2013-09-21

    In order to improve lesion localisation in small-bowel capsule endoscopy, a modified capsule design has been proposed incorporating localisation and - in theory - stabilization capabilities. The proposed design consists of a capsule fitted with protruding wheels attached to a spring-mechanism. This would act as a miniature odometer, leading to more accurate lesion localization information in relation to the onset of the investigation (spring expansion e.g., pyloric opening). Furthermore, this capsule could allow stabilization of the recorded video as any erratic, non-forward movement through the gut is minimised. Three-dimensional (3-D) printing technology was used to build a capsule prototype. Thereafter, miniature wheels were also 3-D printed and mounted on a spring which was attached to conventional capsule endoscopes for the purpose of this proof-of-concept experiment. In vitro and ex vivo experiments with porcine small-bowel are presented herein. Further experiments have been scheduled.

  12. Capsule development and utilization for material irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Kim, B G; Joo, K N [and others

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules.

  13. Imaging of High-Z doped, Imploded Capsule Cores

    Science.gov (United States)

    Prisbrey, Shon T.; Edwards, M. John; Suter, Larry J.

    2006-10-01

    The ability to correctly ascertain the shape of imploded fusion capsules is critical to be able to achieve the spherical symmetry needed to maximize the energy yield of proposed fusion experiments for the National Ignition Facility. Implosion of the capsule creates a hot, dense core. The introduction of a high-Z dopant into the gas-filled core of the capsule increases the amount of bremsstrahlung radiation produced in the core and should make the imaging of the imploded core easier. Images of the imploded core can then be analyzed to ascertain the symmetry of the implosion. We calculate that the addition of Ne gas into a deuterium gas core will increase the amount of radiation emission while preserving the surrogacy of the radiation and hydrodynamics in the indirect drive NIF hohlraum in the proposed cryogenic hohlraums. The increased emission will more easily enable measurement of asymmetries and tuning of the implosion.

  14. Comprehensive study of ignition and combustion of single wooden particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass co-firing design and optimization. In this paper, the ignition and burnout of the largest possible...... for all the test conditions. As the particle is further heated up and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement...... with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced...

  15. Development of a pre-ignition submodel for hydrogen engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Sadiq [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2005-10-15

    In hydrogen-fuelled spark ignition engine applications, the onset of pre-ignition remains one of the prime limitations that needs to be addressed to avoid its incidence and achieve superior performance. This paper describes a new pre-ignition submodel for engine modelling codes. The effects of changes in key operating variables, such as compression ratio, spark timing, intake pressure, and temperature on pre-ignition limiting equivalence ratios are established both analytically and experimentally. With the established pre-ignition model, it is possible not only to investigate whether pre-ignition is observed with changing operating and design parameters, but also to evaluate those parameters' effects on the maximum possible pre-ignition intensity. (author)

  16. Piezoelectrically Initiated Pyrotechnic Igniter

    Science.gov (United States)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    activation fails to ignite, the device is capable of multiple attempts. Another unique aspect is in the design of the pyrotechnic device. There is an electrode that aids the generation of a directed spark and the use of a conductive matrix to support the first-fire material so that the spark will penetrate to the second electrode.

  17. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  18. Hollow wall to stabilize and enhance ignition hohlraums

    Science.gov (United States)

    Vandenboomgaerde, M.; Grisollet, A.; Bonnefille, M.; Clérouin, J.; Arnault, P.; Desbiens, N.; Videau, L.

    2018-01-01

    In the context of the indirect-drive scheme of the inertial-confinement fusion, performance of the gas-filled hohlraums at the National Ignition Facility appears to be reduced. Experiments ascertain a limited efficacy of the laser beam propagation and x-ray conversion. One identified issue is the growth of the gold plasma plume (or bubble) which is generated near the ends of the hohlraum by the impact of the laser beams. This bubble impedes the laser propagation towards the equator of the hohlraum. Furthermore, for high foot or low foot laser pulses, the gold-gas interface of the bubble can be unstable. If this instability should grow to mixing, the x-ray conversion could be degraded. A novel hollow-walled hohlraum is designed, which drastically reduces the growth of the gold bubble and stabilizes the gold-gas interface. The hollow walls are built from the combination of a thin gold foil and a gold domed-wall. We theoretically explain how the bubble expansion can be delayed and the gold-gas interface stabilized. This advanced design lets the laser beams reach the waist of the hohlraum. As a result, the x-ray drive on the capsule is enhanced, and more spherical implosions are obtained. Furthermore, this design only requires intermediate gas fill density to be efficient.

  19. Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kline J.L.

    2013-11-01

    Full Text Available Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, “symcaps”, which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be “round.” In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry.

  20. Recent progress in ignition fusion research on the National Ignition Facility

    International Nuclear Information System (INIS)

    Leeper, Ramon J.

    2011-01-01

    This paper will review the ignition fusion research program that is currently being carried out on the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory. This work is being conducted under the auspices of the National Ignition Campaign (NIC) that is a broad collaboration of national laboratories and universities that together have developed a detailed research plan whose goal is ignition in the laboratory. The paper will begin with a description of the NIF facility and associated experimental facilities. The paper will then focus on the ignition target and hohlraum designs that will be tested in the first ignition attempts on NIF. The next topic to be introduced will be a description of the diagnostic suite that has been developed for the initial ignition experiments on NIF. The paper will then describe the experimental results that were obtained in experiments conducted during the fall of 2009 on NIF. Finally, the paper will end with a description of the detailed experimental plans that have been developed for the first ignition campaign that will begin later this year. (author)

  1. NIF capsule performance modeling

    Directory of Open Access Journals (Sweden)

    Weber S.

    2013-11-01

    Full Text Available Post-shot modeling of NIF capsule implosions was performed in order to validate our physical and numerical models. Cryogenic layered target implosions and experiments with surrogate targets produce an abundance of capsule performance data including implosion velocity, remaining ablator mass, times of peak x-ray and neutron emission, core image size, core symmetry, neutron yield, and x-ray spectra. We have attempted to match the integrated data set with capsule-only simulations by adjusting the drive and other physics parameters within expected uncertainties. The simulations include interface roughness, time-dependent symmetry, and a model of mix. We were able to match many of the measured performance parameters for a selection of shots.

  2. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    International Nuclear Information System (INIS)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-01-01

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities

  3. Design and implementation plan for indirect-drive highly nonlinear ablative Rayleigh-Taylor instability experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Delorme, B.; Jacquet, L.; Liberatore, S.; Smalyuk, V.; Martinez, D.; Seugling, R.; Park, H.S.; Remington, B.A.; Moore, A.; Igumenshev, I.; Chicanne, C.

    2013-01-01

    In the context of National Ignition Facility Basic Science program we propose to study on the NIF ablative Rayleigh-Taylor (RT) instability in transition from weakly nonlinear to highly nonlinear regimes. Based on the analogy between flame front and ablation front, highly nonlinear RT instability measurements at the ablation front can provide important insights into the initial deflagration stage of thermonuclear supernovae of type Ia. NIF provides a unique platform to study the rich physics of nonlinear and turbulent mixing flows in High Energy Density plasmas because it can accelerate targets over much larger distances and longer time periods than previously achieved on the NOVA and OMEGA lasers. In one shot, growth of RT modulations can be measured from the weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes and perhaps into a turbulent-like regime. The role of ablation on highly-nonlinear RT instability evolution will be comprehensively studied by varying ablation velocity using indirect and direct-drive platforms. We present a detailed hydro-code design of the indirect-drive platform and discuss the implementation plan for these experiments which only use NIF diagnostics already qualified. (authors)

  4. Ignition properties of nuclear grade activated carbons

    International Nuclear Information System (INIS)

    Freeman, W.P.; Hunt, J.R.; Kovach, J.L.

    1983-01-01

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH 3 131 I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  5. Heavy ion fusion targets; issues for fast ignition

    International Nuclear Information System (INIS)

    Bangerter, Roger O.

    2014-01-01

    During the last 36 years researchers have suggested and evaluated a large number of target designs for heavy ion inertial fusion. The different target designs can be classified according to their mode of ignition, their method of implosion, and their size. Ignition modes include hot-spot ignition and fast ignition. Methods of implosion include direct drive and indirect drive. Historically there has been significant work on indirectly driven targets with hot-spot ignition. Recently there has been increasing interest in directly driven targets with ion driven fast ignition. In principle, fast ignition might lead to improved target performance. On the other hand, fast ignition imposes stringent requirements on accelerators and beam physics. Furthermore, fast ignition magnifies the importance of a number of traditional target physics issues associated with ion beam energy deposition and fuel preheat. This paper will discuss the advantages and disadvantages of the various classes of targets. It will also discuss some issues that must be resolved to assess the feasibility of ion fast ignition

  6. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    Science.gov (United States)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  7. Production of 131I gelatin capsules

    International Nuclear Information System (INIS)

    Freud, A.; Hirshfeld, N.; Canfi, A.; Melamud, Y.

    1997-01-01

    Radioiodine ( 131 I) hard-gelatin capsules are widely used for the diagnosis and treatment of various thyroid disorders. Until 1980 radioiodine was supplied by us as a liquid dosage. This proved to be a rather inconvenient form since it resulted in inaccurate dosing by the physicians and caused frequent contamination of the patients and the hospital personnel. In an attempt to overcome these problems we have designed and constructed a production facility for capsules in which 1311 is packaged. Because of the extreme precautions necessary in handling radioactive compounds, encapsulation of radioactive materials requires specifically designed production techniques, special instrumentation and unique quality control procedures that are not encountered in the standard capsule production processes in the pharmaceutical industry

  8. Short Pulse Laser Applications Design

    International Nuclear Information System (INIS)

    Town, R.J.; Clark, D.S.; Kemp, A.J.; Lasinski, B.F.; Tabak, M.

    2008-01-01

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense (∼300 g/cm 3 ) fuel mass with an areal density of ∼3.0 g/cm 2 . To ignite such a fuel assembly requires depositing ∼20kJ into a ∼35 (micro)m spot delivered in a short time compared to the fuel disassembly time (∼20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI facility, called HiPER, designed to

  9. Shock Timing Plan for the National Ignition Campaign

    Science.gov (United States)

    Munro, D. H.; Robey, H. F.; Spears, B. K.; Boehly, T. R.

    2006-10-01

    We report progress on the design of the shock timing tuning procedure for the 2010 ignition campaign at the National Ignition Facility. Our keyhole target design provides adequate drive surrogacy for us to time the first three shocks empirically. The major risk to our plan is hard x-ray preheat, which can cause the diagnostic window to become opaque.

  10. Development of a High Resolution X-ray Spectrometer on the National Ignition Facility

    Science.gov (United States)

    Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.

    2017-10-01

    A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  11. Reconstruction of 2D x-ray radiographs at the National Ignition Facility using pinhole tomography (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Field, J. E., E-mail: field9@llnl.gov; Rygg, J. R.; Barrios, M. A.; Benedetti, L. R.; Döppner, T.; Izumi, N.; Jones, O.; Khan, S. F.; Ma, T.; Nagel, S. R.; Pak, A.; Tommasini, R.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15

    Two-dimensional radiographs of imploding fusion capsules are obtained at the National Ignition Facility by projection through a pinhole array onto a time-gated framing camera. Parallax among images in the image array makes it possible to distinguish contributions from the capsule and from the backlighter, permitting correction of backlighter non-uniformities within the capsule radiograph. Furthermore, precise determination of the imaging system geometry and implosion velocity enables combination of multiple images to reduce signal-to-noise and discover new capsule features.

  12. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10{sup 13} and ∼0.3 g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  13. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    International Nuclear Information System (INIS)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D.; Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C.; McCrory, R. L.

    2014-01-01

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10 13 and ∼0.3 g/cm 2 , respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA

  14. Shock timing technique for the National Ignition Facility

    International Nuclear Information System (INIS)

    Munro, David H.; Celliers, Peter M.; Collins, Gilbert W.; Gold, David M.; Silva, Luiz B. da; Haan, Steven W.; Cauble, Robert C.; Hammel, Bruce A.; Hsing, Warren W.

    2001-01-01

    Among the final shots at the Nova laser [Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)] was a series testing the VISAR (velocity interferometry system for any reflector) technique that will be the primary diagnostic for timing the shocks in a NIF (National Ignition Facility) ignition capsule. At Nova, the VISAR technique worked over the range of shock strengths and with the precision required for the NIF shock timing job--shock velocities in liquid D 2 from 12 to 65 μm/ns with better than 2% accuracy. VISAR images showed stronger shocks overtaking weaker ones, which is the basis of the plan for setting the pulse shape for the NIF ignition campaign. The technique is so precise that VISAR measurements may also play a role in certifying beam-to-beam and shot-to-shot repeatability of NIF laser pulses

  15. Plasma transport in a compact ignition tokamak

    International Nuclear Information System (INIS)

    Singer, C.E.; Ku, L.P; Bateman, G.

    1987-02-01

    Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the 3 He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved

  16. Increasing Z-pinch vacuum hohlraum capsule coupling efficiency

    International Nuclear Information System (INIS)

    Callahan, Debbie; Vesey, Roger Alan; Cochrane, Kyle Robert; Nikroo, A.; Bennett, Guy R.; Schroen, Diana Grace; Ruggles, Laurence E.; Porter, John L.; Streit, Jon; Mehlhorn, Thomas Alan; Cuneo, Michael Edward

    2004-01-01

    Symmetric capsule implosions in the double-ended vacuum hohlraum (DEH) on Z have demonstrated convergence ratios of 14-21 for 2.15-mm plastic ablator capsules absorbing 5-7 kJ of x-rays, based on backlit images of the compressed ablator remaining at peak convergence (1). Experiments with DD-filled 3.3-mm diameter capsules designed to absorb 14 kJ of x-rays have begun as an integrated test of drive temperature and symmetry, complementary to thin-shell symmetry diagnostic capsules. These capsule implosions are characterized by excellent control of symmetry (< 3% time-integrated), but low hohlraum efficiency (< 2%). Possible methods to increase the capsule absorbed energy in the DEH include mixed-component hohlraums, large diameter foam ablator capsules, transmissive shine shields between the z-pinch and capsule, higher spoke electrode x-ray transmission, a double-sided power feed, and smaller initial radius z-pinch wire arrays. Simulations will explore the potential for each of these modifications to increase the capsule coupling efficiency for near-term experiments on Z and ZR

  17. Acoustic Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  18. High performance capsule implosions driven by the Z-pinch dynamic hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Bailey, J E [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Chandler, G A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Cooper, G [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Dunham, G S [K-tech Corporation, 10800 Gibson S E, Albuquerque, NM 87123 (United States); Lake, P W [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Leeper, R J [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Lemke, R W [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Mehlhorn, T A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Nikroo, A [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Peterson, K J [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Ruiz, C L [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Schroen, D G [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Slutz, S A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Steinman, D [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Stygar, W A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Varnum, W [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States)

    2007-12-15

    The Z-pinch dynamic hohlraum (ZPDH) is a high-power x-ray source that has been used in a variety of high energy-density experiments including inertial confinement fusion (ICF) studies. The system consists of a tungsten wire-array Z pinch that implodes onto a low-density CH{sub 2} foam converter launching a radiating shock that heats the hohlraum to radiation temperatures >200 eV. Through time-gated pinhole camera measurements, the mean shock speed is measured from 28 experiments to be 326 {+-} 4 {mu}m ns{sup -1} with a shot-to-shot standard deviation of 7%. Broad-band x-ray measurements indicate that the shot-to-shot reproducibility in the power emission and pulse-shape of the source shock is <15% and {approx}5%, respectively. Calculations have shown that an ICF capsule placed at the center of the foam in the ZPDH can absorb >40 kJ of x-ray energy, within a factor of 4 of the energy believed sufficient for ICF ignition. The capsule types imploded by the ZPDH have evolved over four years culminating in a design that produces record indirect-drive DD thermonuclear neutron yields of up to 3.5E11.

  19. National Ignition Facility subsystem design requirements laser and target area building (LTAB) SSDR 1.2.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS)

  20. Progress of impact ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Johzaki, T.

    2010-11-01

    In impact ignition scheme, a portion of the fuel (the impactor) is accelerated to a super-high velocity, compressed by convergence, and collided with a precompressed main fuel. This collision generates shock waves in both the impactor and the main fuel. Since the density of the impactor is generally much lower than that of the main fuel, the pressure balance ensures that the shock-heated temperature of the impactor is significantly higher than that of the main fuel. Hence, the impactor can reach ignition temperature and thus become an igniter. Here we report major new results on recent impact ignition research: (1) A maximum velocity ∼ 1000 km/s has been achieved under the operation of NIKE KrF laser at Naval Research Laboratory (laser wavelength=0.25μm) in the use of a planar target made of plastic and (2) We have performed two-dimensional simulation for burn and ignition to show the feasibility of the impact ignition. (author)

  1. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  2. Chord length distribution for a compound capsule

    International Nuclear Information System (INIS)

    Pitřík, Pavel

    2017-01-01

    Chord length distribution is a factor important in the calculation of ionisation chamber responses. This article describes Monte Carlo calculations of the chord length distribution for a non-convex compound capsule. A Monte Carlo code was set up for generation of random chords and calculation of their lengths based on the input number of generations and cavity dimensions. The code was written in JavaScript and can be executed in the majority of HTML viewers. The plot of occurrence of cords of different lengths has 3 peaks. It was found that the compound capsule cavity cannot be simply replaced with a spherical cavity of a triangular design. Furthermore, the compound capsule cavity is directionally dependent, which must be taken into account in calculations involving non-isotropic fields of primary particles in the beam, unless equilibrium of the secondary charged particles is attained. (orig.)

  3. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    International Nuclear Information System (INIS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  4. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Labaria, George R. [Univ. of California, Santa Cruz, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warrick, Abbie L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, Peter M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kalantar, Daniel H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  5. Analytical criterion for shock ignition of fusion reaction in hot spot

    International Nuclear Information System (INIS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Bel, E. L.

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations. (authors)

  6. The National Ignition Facility. The path to ignition and inertial fusion energy

    International Nuclear Information System (INIS)

    Eric Storm

    2010-01-01

    Complete text of publication follows. The National Ignition Facility (NIF), the world's largest and most energetic laser system built for studying inertial confinement fusion (ICF) and high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF's 192 beams are capable of producing 1.8 MJ and 500 TW of ultraviolet light and are configured to create pressures as high as 100 GB, matter temperatures approaching 10 9 and densities over 1000 g/cm 3 . With these capabis70lities, the NIF will enable exploring scientific problems in strategic defense, basic science and fusion energy. One of the early NIF campaigns is focusing on demonstrating laboratory-scale thermonuclear ignition and burn to produce net fusion energy gains of 10-20 with 1.2 to 1.4 MJ of 0.35 μm light. NIF ignition experiments began late in FY2009 as part of the National Ignition Campaign (NIC). Participants of NIC include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the University of Rochester Laboratory for Energetics (LLE) as well as variety of national and international collaborators. The results from these initial experiments show great promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with low overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. The goal for NIC is to demonstrate a predictable fusion experimental platform by the end of 2012. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and

  7. Fast ignition breakeven scaling

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Vesey, Roger Alan

    2005-01-01

    A series of numerical simulations have been performed to determine scaling laws for fast ignition break even of a hot spot formed by energetic particles created by a short pulse laser. Hot spot break even is defined to be when the fusion yield is equal to the total energy deposited in the hot spot through both the initial compression and the subsequent heating. In these simulations, only a small portion of a previously compressed mass of deuterium-tritium fuel is heated on a short time scale, i.e., the hot spot is tamped by the cold dense fuel which surrounds it. The hot spot tamping reduces the minimum energy required to obtain break even as compared to the situation where the entire fuel mass is heated, as was assumed in a previous study [S. A. Slutz, R. A. Vesey, I. Shoemaker, T. A. Mehlhorn, and K. Cochrane, Phys. Plasmas 7, 3483 (2004)]. The minimum energy required to obtain hot spot break even is given approximately by the scaling law E T = 7.5(ρ/100) -1.87 kJ for tamped hot spots, as compared to the previously reported scaling of E UT = 15.3(ρ/100) -1.5 kJ for untamped hotspots. The size of the compressed fuel mass and the focusability of the particles generated by the short pulse laser determines which scaling law to use for an experiment designed to achieve hot spot break even

  8. The volume ignition for ICF ignition target

    International Nuclear Information System (INIS)

    Li, Y. S.; He, X. T.; Yu, M.

    1997-01-01

    Compared with central model, volume ignition has no hot spot, avoids the mixing at the hot-cold interface, the α-particle escaping, and the high convergence, greatly reduces the sharp demanding for uniformity. In laser indirect driving, from theoretical estimation and computational simulation, we have proved that using a tamper with good heat resistance, the DT fuel can be ignited in LTE at ∼3 KeV and then evolves to the non-LTE ignition at >5 KeV. In this case, 1 MJ radiation energy in the hohlraum could cause near 10 MJ output for a pellet with 0.2 mg DT fuel. We have compared results with and without α-particle transport, it shows that in the condition of ρR>0.5 g/cm 2 of DT fuel, both have the same results. For the system with ρR≅0.5 g/cm 2 we can use α-particle local deposition scheme. The non-uniformly doped tamper with density ρ≅1-5 g/cc can reduce mixing due to the small convergence ratio. The input energy is deposited in DT and tamper during the implosion, we try to reduce the tamper energy by changing the ratio of CH and doped Au and the thickness of the tamper

  9. Hydrodynamic modeling and simulations of shock ignition thresholds

    Directory of Open Access Journals (Sweden)

    Lafon M.

    2013-11-01

    Full Text Available The Shock Ignition (SI scheme [1] offers to reduce the laser requirements by relaxing the implosion phase to sub-ignition velocities and later adding an intense laser spike. Depending on laser energy, target characteristics and implosion velocity, high gains are expected [2,3]. Relevant intensities for scaled targets imploded in the velocity range from 150 to 400 km/s are defined at ignition thresholds. A range of moderate implosion velocities is specified to match safe implosions. These conditions for target design are then inferred for relevant NIF and LMJ shock-ignited targets.

  10. Physics aspects of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Post, D.; Bateman, G.; Houlberg, W.

    1986-11-01

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ ∼ 2 x 10 20 sec m -3 required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k ∼ 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided

  11. Power conditioning for the National Ignition Facility

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1994-01-01

    A cost-effective, 320-MJ power-conditioning system has been completed for the proposed National Ignition Facility (NIF). The design features include metallized dielectric capacitors, a simple topology, and large (1.6-MJ) module size. Experimental results address the technical risks associated with the design

  12. Nuclear imaging of the fuel assembly in ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T.; Arnold, P. A.; Ashabranner, R. C.; Atherton, L. J.; Barrios, M. A.; Batha, S.; Bell, P. M.; Benedetti, L. R.; Berger, R. L.; Bernstein, L. A.; Berzins, L. V.; Betti, R.; Bhandarkar, S. D.; Bionta, R. M.; Bleuel, D. L.; Boehly, T. R.; Bond, E. J.; Bowers, M. W.; Bradley, D. K.; Brunton, G. K.; Buckles, R. A.; Burkhart, S. C.; Burr, R. F.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Castro, C.; Celliers, P. M.; Cerjan, C. J.; Chandler, G. A.; Choate, C.; Cohen, S. J.; Collins, G. W.; Cooper, G. W.; Cox, J. R.; Cradick, J. R.; Datte, P. S.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Dylla-Spears, R.; Dzenitis, E. G.; Eckart, M. J.; Eder, D. C.; Edgell, D. H.; Edwards, M. J.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Felker, B.; Fortner, R. J.; Frenje, J. A.; Frieders, G.; Friedrich, S.; Gatu-Johnson, M.; Gibson, C. R.; Giraldez, E.; Glebov, V. Y.; Glenn, S. M.; Glenzer, S. H.; Gururangan, G.; Haan, S. W.; Hahn, K. D.; Hammel, B. A.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Haynam, C.; Hermann, M. R.; Herrmann, H. W.; Hicks, D. G.; Holder, J. P.; Holunga, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Jackson, M. C.; Jancaitis, K. S.; Kalantar, D. H.; Kauffman, R. L.; Kauffman, M. I.; Khan, S. F.; Kilkenny, J. D.; Kimbrough, J. R.; Kirkwood, R.; Kline, J. L.; Knauer, J. P.; Knittel, K. M.; Koch, J. A.; Kohut, T. R.; Kozioziemski, B. J.; Krauter, K.; Krauter, G. W.; Kritcher, A. L.; Kroll, J.; Kyrala, G. A.; Fortune, K. N. La; LaCaille, G.; Lagin, L. J.; Land, T. A.; Landen, O. L.; Larson, D. W.; Latray, D. A.; Leeper, R. J.; Lewis, T. L.; LePape, S.; Lindl, J. D.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malone, R. M.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Mathisen, D. G.; McKenty, P.; McNaney, J. M.; Meezan, N. B.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Moran, M. J.; Moreno, K.; Moses, E. I.; Munro, D. H.; Nathan, B. R.; Nelson, A. J.; Nikroo, A.; Olson, R. E.; Orth, C.; Pak, A. E.; Palma, E. S.; Parham, T. G.; Patel, P. K.; Patterson, R. W.; Petrasso, R. D.; Prasad, R.; Ralph, J. E.; Regan, S. P.; Rinderknecht, H.; Robey, H. F.; Ross, G. F.; Ruiz, C. L.; Seguin, F. H.; Salmonson, J. D.; Sangster, T. C.; Sater, J. D.; Saunders, R. L.; Schneider, M. B.; Schneider, D. H.; Shaw, M. J.; Simanovskaia, N.; Spears, B. K.; Springer, P. T.; Stoeckl, C.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Traille, A. J.; Wonterghem, B. Van; Wallace, R. J.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wood, R. D.; Young, B. K.; Zacharias, R. A.; Zylstra, A.

    2013-05-01

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models’ prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  13. Nuclear imaging of the fuel assembly in ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Batha, S.; Herrmann, H. W.; Kline, J. L.; Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); and others

    2013-05-15

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  14. Nano-Ignition Torch Applied to Cryogenic H2/O2 Coaxial Jet

    Science.gov (United States)

    2016-01-04

    16197 4 III. Instrumentation A high-speed pyrometer, model KGA 740 HS from Mikron Infrared Inc., covering a temperature range from 300...oxidizer and aluminum powder as a fuel. The granulated SRF was used in the ignition capsules that are reported here and they were made from rubber

  15. Structural features of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Citrolo, J.; Brown, G.; Rogoff, P.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is undergoing preliminary structural design and definitions. It will be relatively inexpensive with ignition capabilities. During the definition phase it was concluded that the TF coil should be assembled from the laminate copper-Inconel plates since copper alone cannot sustain the expected magnetic and thermal loads. An extensive test program is being initiated to investigate the various materials, and their elastic and inelastic response and to develop the constitutive equations required for the selection of design criteria and for the stress analysis of this device. Finite element analysis nonlinear material capabilities are being used to study, predict and correlate the machine behavior

  16. Recent progress on the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule

  17. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  18. Performance of high-density-carbon (HDC) ablator implosion experiments on the National Ignition Facility (NIF)

    Science.gov (United States)

    MacKinnon, Andy

    2013-10-01

    A series of experiments on the National Ignition Facility (NIF) have been performed to measure high-density carbon (HDC) ablator performance for indirect drive inertial confinement fusion (ICF). HDC is a very promising ablator material; being 3x denser than plastic, it absorbs more hohlraum x-rays, leading to higher implosion efficiency. For the HDC experiments the NIF laser generated shaped laser pulses with peak power up to 410 TW and total energy of 1.3 MJ. Pulse shapes were designed to drive 2, 3 or 4 shocks in cryogenic layered implosions. The 2-shock pulse, with a designed fuel adiabat of ~3 is 6-7ns in duration, allowing use of near vacuum hohlraums, which greatly increases the coupling efficiency due to low backscatter losses. Excellent results were obtained for 2,3 and 4 shock pulses. In particular a deuterium-tritium gas filled HDC capsule driven by a 4-shock pulse in a gas-filled hohlraum produced a neutron yield of 1.6 × 1015, a record for a non-cryogenically layered capsule driven by a gas-filled hohlraum. The first 2-shock experiment used a vacuum hohlraum to drive a DD gas filled HDC capsule with a 6.5 ns, laser pulse. This hohlraum was 40% more efficient than the gas-filled counterpart used for 3 and 4 shock experiments, producing near 1D performance at 11 x convergence ratio, peak radiation temperature of 317 eV, 98% laser-hohlraum coupling, and DD neutron yield of 2.2e13, a record for a laser driven DD implosion. The HDC campaigns will be presented, including options for pushing towards the alpha dominated regime. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Review of the National Ignition Campaign 2009-2012

    International Nuclear Information System (INIS)

    Lindl, John; Landen, Otto; Edwards, John; Moses, Ed

    2014-01-01

    The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked

  20. Development of a Low Temperature Irradiation Capsule for Research Reactor Materials

    International Nuclear Information System (INIS)

    Choo, Kee Nam; Cho, Man Soon; Lee, Cheol Yong; Yang, Sung Woo; Shin, Yoon Taek; Park, Seng Jae; Kang, Suk Hoon; Kang, Young Hwan; Park, Sang Jun

    2013-01-01

    A new capsule design was prepared and tested at HANARO for a neutron irradiation of core materials of research reactors as a part of the research reactor development project. Irradiation testing of the materials including graphite, beryllium, and zircaloy-4 that are supposed to be used as core materials in research reactors was required for irradiation at up to 8 reactor operation cycles at low temperature (<100 .deg. C). Therefore, three instrumented capsules were designed and fabricated for an evaluation of the neutron irradiation properties of the core materials (Graphite, Be, Zircaloy-4) of research reactors. The capsules were first designed and fabricated to irradiate materials at low temperature (<100 .deg. C) for a long cycle of 8 irradiation cycles at HANARO. Therefore, the safety of the new designed capsule should be fully checked before irradiation testing. Out-pile performance and endurance testing before HANARO irradiation testing was performed using a capsule under a 110% condition of a reactor coolant flow amount. The structural integrity of the capsule was analyzed in terms of a vibration-induced fatigue cracking of a rod tip of the capsule that is suspected to be the most vulnerable part of a capsule. Another two capsules were irradiated at HANARO for 4 cycles, and one capsule was transferred to a hot cell to examine the integrity of the rod tip of the capsule. After confirming the soundness of the 4 cycle-irradiated capsule, the remaining capsule was irradiated at up to 8 cycles at HANARO. Based on the structural integrity analysis of the capsule, an improved capsule design will be suggested for a longer irradiation test at HANARO

  1. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  2. Magnetically Assisted Fast Ignition

    OpenAIRE

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.

    2015-01-01

    Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation andtransport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of300 g cm−3 and areal density of 0.49 g cm−2 at the core are taken. When a 20 MG static magnetic field isimposed across a conventional cone-free target, the energy coupling from the laser to the core is enhancedby sevenfold and reaches 14%. This value even exceeds that obtained u...

  3. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  4. Effect of Heat Flux on the Specimen Temperature of an LBE Capsule

    International Nuclear Information System (INIS)

    Kang, Y. H.; Park, S. J.; Cho, M. S.; Choo, K. N.; Lee, Y. S.

    2011-01-01

    For application of high-temperature irradiation tests in the HANARO reactor for Gen IV reactor material development, a number of newly designed LBE capsules have been investigated at KAERI since 2008. Recent study on heat transfer experiment of an LBE capsule with a single heater has shown that the specimen temperature of the mock-up increased linearly with an increase of heat input. The work highlighted only the heat transfer capability of an LBE capsule with a single heater as a simulated specimen in a liquid metal medium. Hence, a new LBE capsule with multi specimen sets has been designed and fabricated for the heat transfer experiment of an LBE capsule of 11M-01K. In this paper, a series of thermal analyses and heat transfer experiments for a newly designed LBE capsule was implemented to study the effect of an increase in the value of heat input and its influence on temperature distribution in the capsule mock-up

  5. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    Science.gov (United States)

    Yamanaka, C.

    1999-06-01

    ignition targets. The NIF has a 192 beam, frequency tripled Nd:glass laser system with routine target energies and powers of 1.8 MJ and 500 TW, appropriately pulse shaped. The 192 beams are clustered in groups of 4, so that there are effectively 8 spots in each of the inner cones, and 16 in the outer cones in the hohlraum. Each cluster of 4 beams combines to form an effective f/8 optic. Various kinds of target design are described, for instance, a baseline design 300 eV hohlraum capsule, which absorbs 1.35 MJ of light, an ignition point hydrocarbon (CH) capsule, which is aimed at determining the requirements for symmetry, stability and ignition, and a lower temperature 250 eV capsule with a beryllium ablator, which provides a trade-off between hydroinstabilities and laser-plasma effects. The NIF baseline capsule designs absorb 150 kJ, of which about 25 kJ ends up in the compressed fuel. The central temperature increases to 10 keV when the capsule produces 400 kJ. The fuel energy gain is about 16 at ignition, or when the alpha particle deposition is about 3 times the initial energy delivered to the compressed fuel. The NIF baseline targets are then expected to yield up to 15 MJ and a fuel gain of about 600. Estimates based on NOVA experiments and modelling indicate that SBS, SRS and other plasma hazard processes can be kept within acceptable limits. If these are not attained, the ultimate recourse is to increase the hohlraum size, reduce the laser intensity and reduce the drive temperature to that of the 250 eV design, which has significantly less plasma. The remaining uncertainties can be mitigated by changes in the target design. The author has confidence ignition will be achieved in NIF, which seems to be strongly supported by the Centurion-Halite underground nuclear experiments demonstrating the excellent performance and the basic feasibility of achieving high gain. He thoughtfully adds a comment that developments in direct drive have reached the point where this

  6. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    Science.gov (United States)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  7. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  8. The National Ignition Facility and Industry

    Science.gov (United States)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  9. The National Ignition Facility and industry

    International Nuclear Information System (INIS)

    Harri, J.G.; Lowdermilk, W.H.; Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.S.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of national construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project

  10. Ignition in the next step tokamak

    International Nuclear Information System (INIS)

    Johner, J.

    1990-07-01

    A 1/2-D model for thermal equilibrium of a thermonuclear plasma with transport described by an empirical global energy confinement time is described. Ignition in NET and ITER is studied for a number of energy confinement time scaling expressions. Ignited operation of these machines at the design value of the neutron wall load is shown to satisfy both beta and density constraints. The value of the confinement time enhancement factor required for such operation is found to be lower for the more recently proposed scaling expressions than it is for the oldest ones. With such new scalings, ignition could be obtained in H-mode in NET and ITER even with relatively flat density profiles

  11. Multimodal Friction Ignition Tester

    Science.gov (United States)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  12. Tests of an experimental slash ignition unit

    Science.gov (United States)

    James L. Murphy; Harry E. Schimke

    1965-01-01

    A prototype ignition package containing an incendiary powder and designed for slash and brush burning jobs showed some promise, but the unit tested was not superior to such conventional devices as fusees, diesel backpack type flamethrowers, Very pistols, and drip torches.

  13. Ignition experiment - alternatives

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1979-10-01

    This report comprises three short papers on cost estimates, integral burn time and alternative versions of Tokamak ignition experiments. These papers were discussed at the ZEPHYR workshop with participants from IPP Garching, MIT Cambridge and PPPL Princeton (Garching July 30 - August 2 1979) (Chapters A, B, C). It is shown, that starting from a practical parameter independent minimum integral burn time of Tokamak ignition experiments (some 10 3 s) by adding a shield for protection of the magnet insulation (permitted neutron dose 10 9 rad) an integral burn time of some 10 4 s can be achieved for only about 30% more outlay. For a substantially longer integral burn time the outlay approaches rather quickly that for a Tokamak reactor. Some examples for alternatives to ZEPHYR are being given, including some with low or no compression. In a further chapter D some early results of evaluating an ignition experiment on the basis of the energy confinement scaling put forward by Coppi and Mazzucato are presented. As opposed to the case of the Alcator scaling used in chapters A through C the minimum integral burn time of Tokamak ignition experiments here depends on the plasma current. Provided neutral injectors up to about 160 keV are available compression boosting is not required with this scaling. The results presented have been obtained neglecting the effects of the toroidal field ripple. (orig.) 891 HT/orig. 892 RKD [de

  14. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  15. The use of design-of-experiments methodology to optimize polymer capsule fabrication. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Lai, L.

    1999-03-01

    Future inertial-fusion experiments on Omega will utilize ∼ 1 mm-diameter cryogenic targets that have a ∼ 100-microm-thick, uniformly-frozen fuel layer on their interior. It is desired that they have a stress-free wall thickness < 1 microm and an rms surface roughness < 20 nm. A design-of-experiments (DOE) approach was used to characterize a glow-discharge-polymerization coater built at LLE to fabricate smooth, stress-free capsules with submicron wall thicknesses. The DOE approach was selected because several parameters can be changed simultaneously in a manner which allows the minimum number of runs to be performed to obtain statistically-relevant data. Planar, silicon substrates were coated with ∼ 3--5 microm of polymer and profilometry was used to determine the coating rate, the film stress, and the surface roughness. The coating rate was found to depend on the trans-2-butene/hydrogen ratio, the total gas-flow rate, the total chamber pressure, and the RF power. In addition, a two-parameter interaction between the total pressure and the RF power also affects the coating rate. The film stress depends on the total chamber pressure and the total mass-flow rate. The surface roughness is independent of the parameters studied. Preliminary results indicate that capsules can be produced rapidly without affecting the smoothness of their outside surface and without residual stress in their walls

  16. Fabrication of Non-instrumented capsule for DUPIC simulated fuel irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Kang, Y.H.; Park, S.J.; Shin, Y.T. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In order to develope DUPIC nuclear fuel, the irradiation test for simulated DUPIC fuel was planed using a non-instrumented capsule in HANARO. Because DUPIC fuel is highly radioactive material the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO was designed to remotely assemble and disassemble in hot cell. And then, according to the design requirements the non-instrumented DUPIC capsule was successfully manufactured. Also, the manufacturing technologies of the non-instrumented capsule for irradiating the nuclear fuel in HANARO were established, and the basic technology for the development of the instrumented capsule technology was accumulated. This report describes the manufacturing of the non-instrumented capsule for simulated DUPIC fuel. And, this report will be based to develope the instrumented capsule, which will be utilized to irradiate the nuclear fuel in HANARO. 26 refs., 4 figs. (Author)

  17. Capsule endoscopy: Beyond small bowel

    Directory of Open Access Journals (Sweden)

    Samuel N Adler

    2012-01-01

    Full Text Available In this article the brief and dramatic history of capsule endoscopy of the digestive tract is reviewed. Capsule endoscopy offers a non invasive method to diagnose diseases that affect the esophagus, small bowel and colon. Technological improvements relating to optics, software, data recorders with two way communication have revolutionized this field. These advancements have produced better diagnostic performance.

  18. Development of the re-emit technique for ICF foot symmetry tuning for indirect drive ignition on NIF

    Science.gov (United States)

    Dewald, Eduard; Milovich, Jose; Edwards, John; Thomas, Cliff; Kalantar, Dan; Meeker, Don; Jones, Ogden

    2007-11-01

    Tuning of the the symmetry of the hohlraum radiation drive for the first 2 ns of the ICF pulse on NIF will be assessed by the re-emit technique [1] which measures the instantaneous x-ray drive asymmetry based on soft x-ray imaging of the re-emission of a high-Z sphere surrogate capsule. We will discuss the design of re-emit foot symmetry tuning measurements planned on NIF and their surrogacy for ignition experiments, including assessing the residual radiation asymmetry of the patches required for soft x-ray imaging. We will present the tuning strategy and expected accuracies based on calculations, analytical estimates and first results from scaled experiments performed at the Omega laser facility. [1] N. Delamater, G. Magelssen, A. Hauer, Phys. Rev. E 53, 5241 (1996.)

  19. Activation analysis of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  20. Hot-wire ignition of AN-based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Richard; Goldthorp, Sandra; Badeen, Christopher M. [Canadian Explosives Research Laboratory, Natural Resources Canada, Ottawa, Ontario, K1A 0G1 (Canada); Chan, Sek Kwan [Orica Canada Inc., Brownsburg-Chatham, Quebec (Canada)

    2008-12-15

    Emulsions based on ammonium nitrate (AN) and water locally ignited by a heat source do not undergo sustained combustion when the pressure is lower than some threshold value usually called the Minimum Burning Pressure (MBP). This concept is now being used by some manufacturers as a basis of safety. However, before a technique to reliably measure MBP values can be designed, one must have a better understanding of the ignition mechanism. Clearly, this is required to avoid under ignitions which could lead to the erroneous interpretation of failures to ignite as failures to propagate. In the present work, facilities to prepare and characterize emulsions were implemented at the Canadian Explosives Research Laboratory. A calibrated hot-wire ignition system operated in a high-pressure vessel was also built. The system was used to study the ignition characteristics of five emulsion formulations as a function of pressure and ignition source current. It was found that these mixtures exhibit complicated pre-ignition stages and that the appearance of endotherms when the pressure is lowered below some threshold value correlates with the MBP. Thermal conductivity measurements using this hot-wire system are also reported. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  1. Isochoric Implosions for Fast Ignition

    International Nuclear Information System (INIS)

    Clark, D S; Tabak, M

    2007-01-01

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hot spot ignition counterpart [e.g., S. Atzeni, Phys. Plasmas 6, 3316 (1999); M. Tabak et al., Fusion Sci. and Technology 49, 254 (2006)]. These gain models, however, all assume nearly uniform-density fuel assemblies. In contrast, conventional ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hot spot. Hence, to realize fully the advantages of FI, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hot spots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters and at the scales and energies of interest in ICF. A direct-drive implosion scheme is presented which meets all of these requirements and reaches a nearly isochoric assembled density of 300 g=cm 3 and areal density of 2.4 g=cm 2 using 485 kJ of laser energy

  2. National Ignition Facility site requirements

    International Nuclear Information System (INIS)

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline

  3. Collapse of experimental capsules under external pressure

    International Nuclear Information System (INIS)

    Simonen, F.A.; Shippell, R.J. Jr.

    1980-01-01

    Stress analyses and developmental tests of capsules fabricated from thick-walled tubing were performed for an external pressure design condition. In the design procedure no credit was taken for the expected margin in pressure between yielding of the capsule wall and catastrophic collapse or flattening. In tests of AISI-1018 low carbon steel capsules, a significant margin was seen between yield and collapse pressure. However, the experimental yield pressures were significantly below predictions, essentially eliminating the safety margin present in the conservative design approach. The differences between predictions and test results are attributed to deficiencies in the plasticity theories commonly in use for engineering stress analyses. The results of this study show that the von Mises yield condition does not accurately describe the yield behavior of the AISI-1018 steel tubing material for the triaxial stress conditions of interest. Finite element stress analyses successfully predicted the transition between uniform inward plastic deformation and ovalization that leads to catastrophic collapse. After adjustments to correct for the unexpected yield behavior of the tube material, the predicted pressure-deflection trends were found to follow the experimental data

  4. Water Landing Impact of Recovery Space Capsule: A Research Overview

    OpenAIRE

    Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu

    2014-01-01

    For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...

  5. Filter-fluorescer diagnostic system for the National Ignition Facility

    International Nuclear Information System (INIS)

    McDonald, J.W.; Kauffman, R.L.; Celeste, J.R.; Rhodes, M.A.; Lee, F.D.; Suter, L.J.; Lee, A.P.; Foster, J.M.; Slark, G.

    2004-01-01

    An early filter-fluorescer diagnostic system is being fielded at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to measure the amount of hard x rays (20< hν<150 keV) generated in laser fusion experiments. From these measurements we hope to quantify the number of hot electrons produced in laser fusion experiments. The measurement of hot electron production is important for ignition experiments because these electrons can preheat the fuel capsule. Hot electrons can also be employed in experimentation by preheating hydrodynamic packages or by driving plasmas out of equilibrium. The experimental apparatus, data collection, analysis and calibration issues are discussed. Expected data signal levels are predicted and discussed

  6. Recent advances in ignition target physics at CEA

    International Nuclear Information System (INIS)

    Tassart, J.

    2003-01-01

    The objective of the Ignition Physics Program at CEA is to burn DT capsules on the Laser Mega Joule (LMJ) at the beginning of the next decade. Recent progress on Laser Plasma Interaction, hohlraum energetics, symmetry, ablator physics and hydrodynamic instabilities allow to remove most of these latter, to precise laser and target specifications and to elaborate a strategy toward ignition. These studies include theoretical work, numerical simulations, diagnostics developments and experiments partly done in collaboration with the US DOE. Construction of facilities is ongoing: LMJ beam prototype is planed to fire 7 kJ at the center of the target chamber at 0.35 mm at the end of 2002 and the LMJ (a 240 beams 1.8 MJ laser) is planned to be ready for experiments at the end of 2009. (author)

  7. Fast ignition: Physics progress in the US fusion energy program and prospects for achieving ignition

    International Nuclear Information System (INIS)

    Key, M.; Andersen, C.; Cowan, T.

    2003-01-01

    Fast ignition (FI) has significant potential advantages for inertial fusion energy and it is therefore being studied as an exploratory concept in the US fusion energy program. FI is based on short pulse isochoric heating of pre-compressed DT by intense beams of laser accelerated MeV electrons or protons. Recent experimental progress in the study of these two heating processes is discussed. The goal is to benchmark new models in order to predict accurately the requirements for full-scale fast ignition. An overview is presented of the design and experimental testing of a cone target implosion concept for fast ignition. Future prospects and conceptual designs for larger scale FI experiments using planned high energy petawatt upgrades of major lasers in the US are outlined. A long-term road map for FI is defined. (author)

  8. Residual mercury content and leaching of mercury and silver from used amalgam capsules.

    Science.gov (United States)

    Stone, M E; Pederson, E D; Cohen, M E; Ragain, J C; Karaway, R S; Auxer, R A; Saluta, A R

    2002-06-01

    The objective of this investigation was to carry out residual mercury (Hg) determinations and toxicity characteristic leaching procedure (TCLP) analysis of used amalgam capsules. For residual Hg analysis, 25 capsules (20 capsules for one brand) from each of 10 different brands of amalgam were analyzed. Total residual Hg levels per capsule were determined using United States Environmental Protection Agency (USEPA) Method 7471. For TCLP analysis, 25 amalgam capsules for each of 10 brands were extracted using a modification of USEPA Method 1311. Hg analysis of the TCLP extracts was done with USEPA Method 7470A. Analysis of silver (Ag) concentrations in the TCLP extract was done with USEPA Method 6010B. Analysis of the residual Hg data resulted in the segregation of brands into three groups: Dispersalloy capsules, Group A, retained the most Hg (1.225 mg/capsule). These capsules were the only ones to include a pestle. Group B capsules, Valliant PhD, Optaloy II, Megalloy and Valliant Snap Set, retained the next highest amount of Hg (0.534-0.770 mg/capsule), and were characterized by a groove in the inside of the capsule. Group C, Tytin regular set double-spill, Tytin FC, Contour, Sybraloy regular set, and Tytin regular set single-spill retained the least amount of Hg (0.125-0.266 mg/capsule). TCLP analysis of the triturated capsules showed Sybraloy and Contour leached Hg at greater than the 0.2 mg/l Resource Conservation and Recovery Act (RCRA) limit. This study demonstrated that residual mercury may be related to capsule design features and that TCLP extracts from these capsules could, in some brands, exceed RCRA Hg limits, making their disposal problematic. At current RCRA limits, the leaching of Ag is not a problem.

  9. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour

    2016-12-29

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times. Such measurements may potentially be affected by some non-ideal phenomena. The purpose of this work is to measure long ignition delay times for fuels exhibiting negative temperature coefficient (NTC) and to assess the impact of shock tube non-idealities on ignition delay data. Ignition delay times of n-heptane and n-hexane were measured over the temperature range of 650 – 1250 K and pressures near 1.5 atm. Driver gas tailoring and long length of shock tube driver section were utilized to measure ignition delay times as long as 32 ms. Measured ignition delay times agree with chemical kinetic models at high (> 1100 K) and low (< 700 K) temperatures. In the intermediate temperature range (700 – 1100 K), however, significant discrepancies are observed between the measurements and homogeneous ignition delay simulations. It is postulated, based on experimental observations, that localized ignition kernels could affect the ignition delay times at the intermediate temperatures, which lead to compression (and heating) of the bulk gas and result in expediting the overall ignition event. The postulate is validated through simple representative computational fluid dynamic simulations of post-shock gas mixtures which exhibit ignition advancement via a hot spot. The results of the current work show that ignition delay times measured by shock tubes may be affected by non-ideal phenomena for certain conditions of temperature, pressure and fuel reactivity. Care must, therefore, be exercised in using such data for chemical kinetic model development and validation.

  10. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review

    International Nuclear Information System (INIS)

    Fathi, Morteza; Jahanian, Omid; Shahbakhti, Mahdi

    2017-01-01

    Highlights: • Addressing accuracy-speed compromise of HCCI representation is very important. • Phasing, load, exhaust temperature and emissions are the most important outputs. • Separability between the effects of the inputs on the outputs is of great interest. • Existing actuation systems combining inputs are favorable. • An HCCI controller should be a fast and robust one to become a viable solution. - Abstract: Homogeneous charge compression ignition (HCCI) combustion engines are advantageous in terms of good fuel economy and low levels of soot-nitrogen oxides (NOx) emissions. However, they are accompanied with some intrinsic challenges, the most important of which is the lack of any direct control method for ignition trigger. Thus, implementation of HCCI combustion is in fact a control problem, and an optimized control structure is required for attaining the inherent benefits of HCCI. The control structure consists of a proper representation of engine processes; a suitable selection of state variables; useful and applicable set of inputs, outputs and observers; appropriate fixed or variable set-points for controlled parameters; instrumentations including sensors and actuators; and an applicable control law implemented in a controller. The present paper aims at addressing these issues altogether by introducing HCCI engine control structure in progress and presenting highlights from literature. Research should result in appropriately controlled HCCI engines which can provide desired load at rated speed with acceptable performance and emissions characteristics.

  11. Pulse heating and ignition for off-centre ignited targets

    International Nuclear Information System (INIS)

    Mahdy, A.I.; Takabe, H.; Mima, K.

    1999-01-01

    An off-centre ignition model has been used to study the ignition conditions for laser targets related to the fast ignition scheme. A 2-D hydrodynamic code has been used, including alpha particle heating. The main goal of the study is the possibility of obtaining a high gain ICF target with fast ignition. In order to determine the ignition conditions, samples with various compressed core densities having different spark density-radius product (i.e. areal density) values were selected. The study was carried out in the presence of an external heating source, with a constant heating rate. A dependence of the ignition conditions on the heating rate of the external pulse is demonstrated. For a given set of ignition conditions, our simulation showed that an 11 ps pulse with 17 kJ of injected energy into the spark area was required to achieve ignition for a compressed core with a density of 200 g/cm 3 and 0.5 g/cm 2 spark areal density. It is shown that the ignition conditions are highly dependent on the heating rate of the external pulse. (author)

  12. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  13. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  14. Study of the shock ignition scheme in inertial confinement fusion

    International Nuclear Information System (INIS)

    Lafon, M.

    2011-01-01

    The Shock Ignition (SI) scheme is an alternative to classical ignition schemes in Inertial Confinement Fusion. Its singularity relies on the relaxation of constraints during the compression phase and fulfilment of ignition conditions by launching a short and intense laser pulse (∼500 ps, ∼300 TW) on the pre-assembled fuel at the end of the implosion.In this thesis, it has been established that the SI process leads to a non-isobaric fuel configuration at the ignition time thus modifying the ignition criteria of Deuterium-Tritium (DT) against the conventional schemes. A gain model has been developed and gain curves have been inferred and numerically validated. This hydrodynamical modeling has demonstrated that the SI process allows higher gain and lower ignition energy threshold than conventional ignition due to the high hot spot pressure at ignition time resulting from the ignitor shock propagation.The radiative hydrodynamic CHIC code developed at the CELIA laboratory has been used to determine parametric dependences describing the optimal conditions for target design leading to ignition. These numerical studies have enlightened the potential of SI with regards to saving up laser energy, obtain high gains but also to safety margins and ignition robustness.Finally, the results of the first SI experiments performed in spherical geometry on the OMEGA laser facility (NY, USA) are presented. An interpretation of the experimental data is proposed from mono and bidimensional hydrodynamic simulations. Then, different trails are explored to account for the differences observed between experimental and numerical data and alternative solutions to improve performances are suggested. (author) [fr

  15. Central ignition scenarios for TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Redi, M.H.; Bateman, G.

    1986-03-01

    The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs

  16. Transport Simulations for Fast Ignition on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Strozzi, D J; Tabak, M; Grote, D P; Cohen, B I; Shay, H D; Town, R J; Kemp, A J; Key, M

    2009-10-26

    We are designing a full hydro-scale cone-guided, indirect-drive FI coupling experiment, for NIF, with the ARC-FIDO short-pulse laser. Current rad-hydro designs with limited fuel jetting into cone tip are not yet adequate for ignition. Designs are improving. Electron beam transport simulations (implicit-PIC LSP) show: (1) Magnetic fields and smaller angular spreads increase coupling to ignition-relevant 'hot spot' (20 um radius); (2) Plastic CD (for a warm target) produces somewhat better coupling than pure D (cryogenic target) due to enhanced resistive B fields; and (3) The optimal T{sub hot} for this target is {approx} 1 MeV; coupling falls by 3x as T{sub hot} rises to 4 MeV.

  17. Failure of the capsule for coated particles irradiation

    International Nuclear Information System (INIS)

    Yamaki, Jikei; Nomura, Yasushi; Nagamatsuya, Takaaki; Yamahara, Takeshi; Sakai, Haruyuki

    1975-10-01

    During operation cycle No. 27 of the JMTR (Japan Material Testing Reactor) on May 20, 1974, leakage of the fission product gas occurred from the capsule 72F-7A, which contained coated particles for the irradiation; the coated particles are for the development of a multi-purpose high temperature gas cooled reactor. The capsule was designed for heat 1600 0 C. Three nickel plates as the heat reflector were sandwiched in between the plates of titanium and zirconium, which were adsorbents for the impurity gases in the cladding tube (Nb-1%Zr). Temperatures of the plates were about 1000 0 C under the irradiation, so one metal diffused into the other metal through interfaces, resulting in the formation of an alloy. Its melting point was lower than those of metals in the capsule. The cladding material Nb-1%Zr was melted by the alloy and finally a pin hole developed through the cladding. The process of failure, design of the capsule, post-irradiation test of the capsule and the failure-reproducing experiment with a mock-up capsule are described. (auth.)

  18. Thermal analysis of an instrumented capsule using an ANSYS program

    International Nuclear Information System (INIS)

    Choi, Myoung Hwan; Choo, Kee Nam; Kang, Young Hwan; Cho, Man Soon; Sohn, Jae Min; Kim, Bong Goo

    2006-01-01

    An instrumented capsule has been used for an irradiation test of various nuclear materials in the research reactor, HANARO. To obtain the design data of the instrumented capsule, a thermal analysis is performed using a finite element analysis program, ANSYS. The 2-dimensional model for a cross section of the capsule including the specimens is generated, and a gamma-heating rate of the materials for the HANARO power of 24 or 30 MW is considered as an input force. The effect of the gap size and the control rod position on the temperature of the specimens or other components is discussed. From the analysis it is found that the gap between the thermal media and the external tube has a significant effect on the temperature of the specimen. In the case of the material capsule, the maximum temperature for the reactor power of 24 MW is 255degC for an irradiation test and 257degC for a FE analysis at the center stage of the capsule in the axial direction. It is expected that the analysis models using an ANSYS program will be useful in designing the instrumented capsules for an irradiation test and estimating the test results. (author)

  19. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  20. The National Ignition Facility modular Kirkpatrick-Baez microscope

    Energy Technology Data Exchange (ETDEWEB)

    Pickworth, L. A., E-mail: pickworth1@llnl.gov; Ayers, J.; Bell, P.; Brejnholt, N. F.; Buscho, J. G.; Bradley, D.; Decker, T.; Hau-Riege, S.; McCarville, T.; Pardini, T.; Vogel, J.; Walton, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766–774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a “narrow band” energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

  1. Measurement of Preheat and Shock Melting in Be Ablators During the First Few ns of the NIF Ignition Pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D K; Prisbrey, S T; Page, R H; Braun, D G; Edwards, M J; Hibbard, R L; Moreno, K A; Mauldin, M P; Nikroo, A

    2008-05-28

    We have developed a scaled hohlraum platform to experimentally measure preheat in ablator materials during the first few nanoseconds of the radiation drive proposed for ignition experiments at the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, et al., Laser Focus World 30, 75 (1994)]. The platform design approximates the radiation environment of the pole of the capsule by matching both the laser spot intensity and illuminated hohlraum wall fraction in scaled halfraums driven by the OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton, et al., Optics Communications 133, 495 (1997)]. A VISAR reflecting from the rear surface of the sample was used to measure sample motion prior to shock breakout. The experiments show that the first {approx}20 {micro}m of a Be ablator will be melted by radiation preheat, with subsequent material melted by the initial shock, in agreement with simulations. The experiments also show no evidence of anomalous heating of buried high-z doped layers in the ablator.

  2. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    International Nuclear Information System (INIS)

    Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.; Regan, S. P.; Epstein, R.; Kyrala, G. A.

    2013-01-01

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer

  3. The national ignition facility performance status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C.; Auerbach, J.; Bowers, M.; Di-Nicola, J.M.; Dixit, S.; Erbert, G.; Heestand, G.; Henesian, M.; Jancaitis, K.; Manes, K.; Marshall, C.; Mehta, N.; Nostrand, M.; Orth, C.; Sacks, R.; Shaw, M.; Sutton, S.; Wegner, P.; Williams, W.; Widmayer, C.; White, R.; Yang, S.; Van Wonterghem, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2006-06-15

    The National Ignition Facility (NIF) laser has been designed to support high energy density science, including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single 'quad' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the precision diagnostic system (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements. (authors)

  4. The National Ignition Facility Performance Status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C; Auerbach, J; Nicola, J D; Dixit, S; Heestand, G; Henesian, M; Jancaitis, K; Manes, K; Marshall, C; Mehta, N; Nostrand, M; Orth, C; Sacks, R; Shaw, M; Sutton, S; Wegner, P; Williams, W; Widmayer, C; White, R; Yang, S; Van Wonterghem, B

    2005-08-30

    The National Ignition Facility (NIF) laser has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single ''quad'' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the Precision Diagnostics System (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements.

  5. Ignition behavior of aviation fuels and some hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, F.

    1975-01-01

    Air relighting of jet engines is an important contribution to the operation safety of aircraft engines. Reignition is influenced by fuel properties in addition to the engine design. A survey is presented on the problems, considering the specific fuel properties. Investigations were made on the ignition behavior of aviation fuels and hydrocarbons in a simplified model combustion chamber. Air inlet conditions were 200 to 800 mbar and 300 to 500 K. Correlation between physical and chemical properties and ignitability is discussed.

  6. A study for the development of the capsule assembly machine for the re-irradiation test

    International Nuclear Information System (INIS)

    Kang, Y. H.; Kim, J. K.; Yeom, K. Y.; Yoon, K. B.; Choi, M. H.; Kim, B. K.

    2004-01-01

    A series of in-pile tests are being carried out to support the advanced fuel development programs at the HANARO reactor. There are still some limitations for satisfying the test requirements. To meet the demands for the high burnup test at HANARO, new capsule assembling technology is required. This paper describes the design requirements, design and fabrication of the mockup, and pre-operational tests performed for the development of the new capsule assembly machine. The mockup manufactured consists of a base plate, a capsule stand, a capsule guide pipe and clamping device and is 1m in outer diameter, 1.8m in height and 136kg in weight. From the pre-operation tests, the optimum clamping torque was 450kgf·cm for preventing rotation and shaking of the capsule main body during assembling capsule main body and protection tube, and this remote assembling procedure can be applicable to the high burnup test

  7. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1985-12-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross-section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design dose not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  8. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1986-01-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design does not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  9. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  10. Capsule Development and Utilization for Material Irradiation Tests

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N.

    2003-05-01

    The objective of this project was to establish basic capsule irradiation technology using the multi-purpose research reactor [HANARO] to eventually support national R and D projects of advanced fuel and materials related to domestic nuclear power plants and next generation reactors. There are several national nuclear projects in KAERI, which require several irradiation tests to investigate in-pile behavior of nuclear reactor fuel and materials for the R and D of several types of fuels such as advanced PWR and DUPIC fuels and for the R and D of structural materials such as RPV(reactor pressure vessel) steel, Inconel, zirconium alloy, and stainless steel. At the moment, internal and external researchers in institutes, industries and universities are interested in investigating the irradiation characteristics of materials using the irradiation facilities of HANARO. For these kinds of material irradiation tests, it is important to develop various capsules using our own techniques. The development of capsules requires several leading-edge technologies and our own experiences related to design and fabrication. In the second phase from April 1,2000 to March 31, 2003, the utilization technologies were developed using various sensors for the measurements of temperature, pressure and displacement, and instrumented capsule technologies for the required fuel irradiation tests were developed. In addition, the improvement of the existing capsule technologies and the development of an in-situ measurable creep capsule for specific purposes were done to meet the various requirements of users

  11. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    Science.gov (United States)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  12. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    Science.gov (United States)

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  13. Shock timing on the National Ignition Facility: The first precision tuning series

    Directory of Open Access Journals (Sweden)

    Robey H.F.

    2013-11-01

    Full Text Available Ignition implosions on the National Ignition Facility (NIF [Lindl et al., Phys. Plasmas 11, 339 (2004] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT layered capsule implosions by measurement of fuel areal density (ρR, which show the highest fuel compression (ρR ∼ 1.0 g/cm2 measured to date.

  14. Fast ignition: Dependence of the ignition energy on source and target parameters for particle-in-cell-modelled energy and angular distributions of the fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bellei, C.; Divol, L.; Kemp, A. J.; Key, M. H.; Larson, D. J.; Strozzi, D. J.; Marinak, M. M.; Tabak, M.; Patel, P. K. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2013-05-15

    The energy and angular distributions of the fast electrons predicted by particle-in-cell (PIC) simulations differ from those historically assumed in ignition designs of the fast ignition scheme. Using a particular 3D PIC calculation, we show how the ignition energy varies as a function of source-fuel distance, source size, and density of the pre-compressed fuel. The large divergence of the electron beam implies that the ignition energy scales with density more weakly than the ρ{sup −2} scaling for an idealized beam [S. Atzeni, Phys. Plasmas 6, 3316 (1999)], for any realistic source that is at some distance from the dense deuterium-tritium fuel. Due to the strong dependence of ignition energy with source-fuel distance, the use of magnetic or electric fields seems essential for the purpose of decreasing the ignition energy.

  15. A modular and programmable development platform for capsule endoscopy system.

    Science.gov (United States)

    Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A

    2014-06-01

    The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results.

  16. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  17. Ignited tokamak devices with ohmic-heating dominated startup

    International Nuclear Information System (INIS)

    Cohn, D.R.; Bromberg, L.; Jassby, D.L.

    1986-01-01

    Startup of tokamaks such that the auxiliary heating power is significantly less than the ohmic heating power at all times during heating to ignition can be referred to as ''Ohmic-heating dominated startup.'' Operation in this mode could increase the certainty of heating to ignition since energy confinement during startup may be described by present scaling laws for ohmic heating. It could also reduce substantially the auxiliary heating power (the required power may be quite large for auxiliary-heating dominated startup). These advantages might be realized without the potentially demanding requirements for pure ohmic heating to ignition. In this paper the authors discuss the requirements for ohmic-heating dominated startup and present illustrative design parameters for compact experiment ignition devices that use high performance copper magnets

  18. Rotating shield ceiling for the compact ignition tokamak test cell

    International Nuclear Information System (INIS)

    Commander, J.C.

    1986-01-01

    For the next phase of the United States fusion program, a compact, high-field, toroidal ignition machine with liquid nitrogen cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed. The CIT machine will be housed in a test cell with design features developed during preconceptual design. Configured as a right cylinder, the selected test cell design features: a test cell and basement with thick concrete shielding walls, and floor; leak tight tritium seals; and operational characteristics well suited to the circular CIT machine configuration and radially oriented ancillary equipment and systems

  19. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  20. Experimental Investigation of the Spiral Structure of a Magnetic Capsule Endoscope

    Directory of Open Access Journals (Sweden)

    Wanan Yang

    2016-06-01

    Full Text Available Fitting a wireless capsule endoscope (WCE with a navigation feature can maximize its functional benefits. The rotation of a spiral-type capsule can be converted to translational motion. The study investigated how the spiral structure and rotational speed affected the capsule's translation speed. A hand-held instrument, including two permanent magnets, a stepper motor, a controller and a power supplier, were designed to generate rotational magnetic fields. The surfaces of custom-built permanent magnet rings magnetized radially were mounted in spiral lines with different lead angles and diameters, acting as mock-up capsules. The experimental results demonstrate that the rotational speed of the magnetic field and the spiral have significant effects on the translational speed of a capsule. The spiral line with a larger lead angle and the rotating magnetic field with a higher speed can change the capsule's rotation into a translational motion more efficiently in the intestine.

  1. Stability analysis of directly driven Nif capsules

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V.N.; Skupsky, S.; McKenty, P.W.; Delettrez, J.A.; Town, R.P.J. [Rochester Univ., NY (United States). Lab. for Laser Energetics; Cherfils-Clerouin, C. [CEA/DAM-Ile de France, DIF, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    An analytical model is presented to study perturbation evolution at the ablation and inner surfaces of the imploding shell. The model describes the ablative Rayleigh-Taylor and Bell-Plesset instabilities. The initial conditions for the model are determined by using existing theories of laser imprint, ablative Richtmyer-Meshkov instability, 'feed-out' and by performing a series of 2-D ORCHID simulations. The model and simulations show that the direct-drive cryogenic {alpha} = 3 NIF capsules remain intact during the implosion if laser nonuniformities are smoothed by 2-D SSD used in the current direct-drive target designs. (authors)

  2. Visualization of target inspection data at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel, E-mail: potter15@llnl.gov [Lawrence Livermore National Laboratory (United States); Antipa, Nick, E-mail: antipa1@llnl.gov [Lawrence Livermore National Laboratory (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Target surfaces are measured using a phase-shifting diffraction interferometer. Black-Right-Pointing-Pointer Datasets are several gigabytes that consist of tens to hundreds of files. Black-Right-Pointing-Pointer Software tools that provide a high-level overview of the entire dataset. Black-Right-Pointing-Pointer Single datasets loaded into the visualization session can be individually rotated. Black-Right-Pointing-Pointer Multiple datasets with common features are found then datasets can be aligned. - Abstract: As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

  3. Triggered Release from Polymer Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Esser-Kahn, Aaron P. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry; Odom, Susan A. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry; Sottos, Nancy R. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Materials Science and Engineering; White, Scott R. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Aerospace Engineering; Moore, Jeffrey S. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  4. Capsule endoscopy in neoplastic diseases

    Science.gov (United States)

    Pennazio, Marco; Rondonotti, Emanuele; de Franchis, Roberto

    2008-01-01

    Until recently, diagnosis and management of small-bowel tumors were delayed by the difficulty of access to the small bowel and the poor diagnostic capabilities of the available diagnostic techniques. An array of new methods has recently been developed, increasing the possibility of detecting these tumors at an earlier stage. Capsule endoscopy (CE) appears to be an ideal tool to recognize the presence of neoplastic lesions along this organ, since it is non-invasive and enables the entire small bowel to be visualized. High-quality images of the small-bowel mucosa may be captured and small and flat lesions recognized, without exposure to radiation. Recent studies on a large population of patients undergoing CE have reported small-bowel tumor frequency only slightly above that reported in previous surgical series (range, 1.6%-2.4%) and have also confirmed that the main clinical indication to CE in patients with small-bowel tumors is obscure gastrointestinal (GI) bleeding. The majority of tumors identified by CE are malignant; many were unsuspected and not found by other methods. However, it remains difficult to identify pathology and tumor type based on the lesion’s endoscopic appearance. Despite its limitations, CE provides crucial information leading in most cases to changes in subsequent patient management. Whether the use of CE in combination with other new diagnostic (MRI or multidetector CT enterography) and therapeutic (Push-and-pull enteroscopy) techniques will lead to earlier diagnosis and treatment of these neoplasms, ultimately resulting in a survival advantage and in cost savings, remains to be determined through carefully-designed studies. PMID:18785274

  5. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  6. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF).

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Efthimion, P C; Ellis, R; Gao, L; Maddox, J; Pablant, N A; Schneider, M B; Chen, H; Ayers, S; Kauffman, R L; MacPhee, A G; Beiersdorfer, P; Bettencourt, R; Ma, T; Nora, R C; Scott, H A; Thorn, D B; Kilkenny, J D; Nelson, D; Shoup, M; Maron, Y

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s 2 -1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s 2 -1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  7. Automated alignment of the Advanced Radiographic Capability (ARC) target area at the National Ignition Facility

    Science.gov (United States)

    Roberts, Randy S.; Awwal, Abdul A. S.; Bliss, Erlan S.; Heebner, John E.; Leach, Richard R.; Orth, Charles D.; Rushford, Michael C.; Lowe-Webb, Roger R.; Wilhelmsen, Karl C.

    2015-09-01

    The Advanced Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a petawatt-class, short-pulse laser system designed to provide x-ray backlighting of NIF targets. ARC uses four NIF beamlines to produce eight beamlets to create a sequence of eight images of an imploding fuel capsule using backlighting targets and diagnostic instrumentation. ARC employs a front end that produces two pulses, chirps the pulses out to 2 ns, and then injects the pulses into the two halves of each of four NIF beamlines. These pulses are amplified by NIF pre- and main amplifiers and transported to compressor vessels located in the NIF target area. The pulses are then compressed and pointed into the NIF target chamber where they impinge upon an array of backlighters. The interaction of the ARC laser pulses and the backlighting material produces bursts of high-energy x-rays that illuminate an imploding fuel capsule. The transmitted x-rays are imaged by diagnostic instrumentation to produce a sequence of radiograph images. A key component of the success of ARC is the automatic alignment system that accomplishes the precise alignment of the beamlets to avoid damaging equipment and to ensure that the beamlets are directed onto the tens-of-microns scale backlighters. In this paper, we describe the ARC automatic alignment system, with emphasis on control loops used to align the beampaths. We also provide a detailed discussion of the alignment image processing, because it plays a critical role in providing beam centering and pointing information for the control loops.

  8. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour; Badra, J.; Jaasim, Mohammed; Es-sebbar, Et-touhami; Labastida, M.F.; Chung, Suk-Ho; Im, Hong G.; Farooq, Aamir

    2016-01-01

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times

  9. Whist code calculations of ignition margin in an ignition tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    A simple global model was developed to determine the ignition margin of tokamaks including electron and ion conduction losses. A comparison of this model with results from a 1 1/2 dimensional Whist code is made

  10. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    Science.gov (United States)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  11. Development and testing of hydrogen ignition devices

    International Nuclear Information System (INIS)

    Renfro, D.; Smith, L.; Thompson, L.; Clever, R.

    1982-01-01

    Controlled ignition systems for the mitigation of hydrogen produced during degraded core accidents have been installed recently in several light water reactor (LWR) containments. This paper relates the background of the thermal igniter approach and its application to LWR controlled ignition systems. The process used by the Tennessee Valley Authority (TVA) to select a hydrogen mitigation system in general and an igniter type in particular is described. Descriptions of both the Interim Distributed Ignition System and the Permanent Hydrogen Mitigation System installed by TVA are included as examples. Testing of igniter durability at TVA's Singleton Materials Engineering Laboratory and of igniter performance at Atomic Energy of Canada's Whiteshell Nuclear Research Establishment is presented

  12. Compact Ignition Tokamak conventional facilities optimization

    International Nuclear Information System (INIS)

    Commander, J.C.; Spang, N.W.

    1987-01-01

    A high-field ignition machine with liquid-nitrogen-cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed for the next phase of the United States magnetically confined fusion program. A team of national laboratory, university, and industrial participants completed the conceptual design for the CIT machine, support systems and conventional facilities. Following conceptual design, optimization studies were conducted with the goal of improving machine performance, support systems design, and conventional facilities configuration. This paper deals primarily with the conceptual design configuration of the CIT conventional facilities, the changes that evolved during optimization studies, and the revised changes resulting from functional and operational requirements (F and ORs). The CIT conventional facilities conceptual design is based on two premises: (1) satisfaction of the F and ORs developed in the CIT building and utilities requirements document, and (2) the assumption that the CIT project will be sited at the Princeton Plasma Physics Laboratory (PPPL) in order that maximum utilization can be made of existing Tokamak Fusion Test Reactor (TFTR) buildings and utilities. The optimization studies required reevaluation of the F and ORs and a second look at TFTR buildings and utilities. Some of the high-cost-impact optimization studies are discussed, including the evaluation criteria for a change from the conceptual design baseline configuration. The revised conventional facilities configuration are described and the estimated cost impact is summarized

  13. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  14. Safety Analysis Report for Primary Capsule of Ir-192 Radiation Source

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Choi, W. S.; Seo, K. S.; Son, K. J.; Park, W. J.

    2008-12-01

    All of the source capsules to transport a special form radioactive material should be designed and fabricated in accordance with the design criteria prescribed in IAEA standards and domestic regulations. The objective of this project is to prove the safety of a primary capsule for Ir-192 radiation source which produced in the HANARO. The safety tests of primary capsules were carried out for the impact, percussion and heat conditions. And leakage tests were carried out before and after the each tests. The capsule showed slight scratches and their deformations were not found after each tests. It also met the allowable limits of leakage rate after each test. Therefore, it has been verified that the capsule was designed and fabricated to meet all requirements for the special form radioactive materials

  15. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  16. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  17. Utilization of the capsule out-pile test facilities(2000-2003)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M. S.; Oh, J. M.; Cho, Y. G. and others

    2003-06-01

    Two out-pile test facilities were installed and being utilized for the non-irradiation tests outside the HANARO. The names of the facilities are the irradiation equipment design verification test facilities and the one-channel flow test device. In these facilities, the performance test of all capsules manufactured before loading in the HANARO and the design verification test for newly developed capsules were performed. The tests in these facilities include loading/unloading, pressure drop, endurance and vibration test etc. of capsules. In the period 2000{approx}2003, the performance tests for 8 material capsules of 99M-01K{approx}02M-05U were carried out, and the design verification tests of creep and fuel capsules developed newly were performed. For development of the creep capsule, pressure drop measurement, operation test of heater, T/C, LVDT and stress loading test were performed. In the design stage of the fuel capsule, the endurance and vibration test besides the above mentioned tests were carried out for verification of the safe operation during irradiation test in the HANARO. And in-chimeny bracket and the capsule supporting system were fixed and the flow tubes and the handling tools were manufactured for use at the facilities.

  18. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

    International Nuclear Information System (INIS)

    Mehlhorn, T A; Bailey, J E; Bennett, G; Chandler, G A; Cooper, G; Cuneo, M E; Golovkin, I; Hanson, D L; Leeper, R J; MacFarlane, J J; Mancini, R C; Matzen, M K; Nash, T J; Olson, C L; Porter, J L; Ruiz, C L; Schroen, D G; Slutz, S A; Varnum, W; Vesey, R A

    2003-01-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a ∼220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6±1.3) x 10 10 . Argon spectra confirm a hot fuel with T e ∼ 1 keV and n e ∼ (1-2) x 10 23 cm -3 . Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a ∼70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P 2 radiation asymmetries to ±2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL

  19. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

    International Nuclear Information System (INIS)

    Bailey, James E.; Chandler, Gordon Andrew; Vesey, Roger Alan; Hanson, David Lester; Olson, Craig Lee; Nash, Thomas J.; Matzen, Maurice Keith; Ruiz, Carlos L.; Porter, John Larry Jr.; Cuneo, Michael Edward; Varnum, William S.; Bennett, Guy R.; Cooper, Gary Wayne; Schroen, Diana Grace; Slutz, Stephen A.; MacFarlane, Joseph John; Leeper, Ramon Joe; Golovkin, I.E.; Mehlhorn, Thomas Alan; Mancini, Roberto Claudio

    2003-01-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a ∼220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 ± 1.3) x 10 10 . Argon spectra confirm a hot fuel with Te ∼ 1 keV and n e ∼ (1-2) x 10 23 cm -3 . Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a ∼70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P 2 radiation asymmetries to ±2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

  20. Neutral beam system for an ignition tokamak

    International Nuclear Information System (INIS)

    Fasolo, J.; Fuja, R.; Jung, J.; Moenich, J.; Norem, J.; Praeg, W.; Stevens, H.

    1978-01-01

    We have attempted to make detailed designs of several neutral beam systems which would be applicable to a large machine, e.g. an ITR (Ignition Test Reactor), EPR (Experimental Power Reactor), or reactor. Detailed studies of beam transport to the reactor and neutron transport from the reactor have been made. We have also considered constraints imposed by the neutron radiation environment in the injectors, and the resulting shielding, radiation-damage, and maintenance problems. The effects of neutron heat loads on cryopanels and ZrAl getter panels have been considered. Design studies of power supplies, vacuum systems, bending magnets, and injector layouts are in progress and will be discussed

  1. Advanced ignition for automotive engines

    OpenAIRE

    Pineda, Daniel Ivan

    2017-01-01

    Spark plugs have been igniting combustible mixtures like those found in automotive engines for over a century, and the principles of the associated ignition techniques using thermal plasma (inductive or capacitive sparks) have remained relatively unchanged during that time. However, internal combustion engines are increasingly operating with boosted intake pressures (i.e. turbo- or super-charged) in order to maintain power output while simultaneously reducing engine size and weight, and they ...

  2. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1985-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8 to 12 T) and high toroidal currents (7 to 10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  3. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1986-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8-12 T) and high toroidal currents (7-10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  4. National Ignition Facility monthly status report--February 2000

    International Nuclear Information System (INIS)

    Moses, E

    2000-01-01

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement. Safety: The Incident Analysis and Construction Management Safety Review Teams were formed to review the January 13, 2000, accident in which a worker received a back injury when a 42-in.-diameter duct fell during installation. One action is to contract DuPont to review the Safety Program. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering; (2) laser glass--a second pilot run at one of the two commercial suppliers is ongoing successfully; and (3) operational costs associated with final optics assembly (FOA) optics components--methods are being developed to mitigate 3ω damage and to resolve beam rotation issues. Schedule: The completion of the Title II design of laser equipment is now approximately 83% complete. The Beampath Infrastructure System is on the critical schedule path. The procurement strategy was evaluated by commercial construction management and Architectural/Engineering (A/E) contractors with a panel of independent experts, the Beampath Infrastructure System (BIS) Implementation Review Committee Advisory Group. The BIS Integration Management and Installation Services (IMI) Subcontractor solicitation package and approach were

  5. Potential value of Cs-137 capsules

    Energy Technology Data Exchange (ETDEWEB)

    Bloomster, C.H.; Brown, D.R.; Bruno, G.A.; Hazelton, R.F.; Hendrickson, P.L.; Lezberg, A.J.; Tingey, G.L.; Wilfert, G.L.

    1985-04-01

    We determined the value of Cs-137 compared to Co-60 as a source for the irradiation of fruit (apples and cherries), pork and medical supplies. Cs-137, in the WESF capsule form, had a value of approximately $0.40/Ci as a substitute for Co-60 priced at approximately $1.00/Ci. The comparison was based on the available curies emitted from the surface of each capsule. We developed preliminary designs for fourteen irradiation facilities; seven were based on Co-60 and seven were based on Cs-137. These designs provided the basis for estimating capital and operating costs which, in turn, provided the basis for determining the value of Cs-137 relative to Co-60 in these applications. We evaluated the effect of the size of the irradiation facility on the value of Cs-137. The cost of irradiation is low compared to the value of the product. Irradiation of apples for disinfestation costs $.01 to .02 per pound. Irradiation for trichina-safe pork costs $.02 per pound. Irradiation of medical supplies for sterilization costs $.07 to .12 per pound. The cost of the irradiation source, either Co-60 or Cs-137, contributed only a minor amount to the total cost of irradiation, about 5% for the fruit and hog cases and about 20% for the medical supply cases. We analyzed the sensitivity of the irradiation costs and Cs-137 value to several key assumptions.

  6. Potential value of Cs-137 capsules

    International Nuclear Information System (INIS)

    Bloomster, C.H.; Brown, D.R.; Bruno, G.A.; Hazelton, R.F.; Hendrickson, P.L.; Lezberg, A.J.; Tingey, G.L.; Wilfert, G.L.

    1985-04-01

    We determined the value of Cs-137 compared to Co-60 as a source for the irradiation of fruit (apples and cherries), pork and medical supplies. Cs-137, in the WESF capsule form, had a value of approximately $0.40/Ci as a substitute for Co-60 priced at approximately $1.00/Ci. The comparison was based on the available curies emitted from the surface of each capsule. We developed preliminary designs for fourteen irradiation facilities; seven were based on Co-60 and seven were based on Cs-137. These designs provided the basis for estimating capital and operating costs which, in turn, provided the basis for determining the value of Cs-137 relative to Co-60 in these applications. We evaluated the effect of the size of the irradiation facility on the value of Cs-137. The cost of irradiation is low compared to the value of the product. Irradiation of apples for disinfestation costs $.01 to .02 per pound. Irradiation for trichina-safe pork costs $.02 per pound. Irradiation of medical supplies for sterilization costs $.07 to .12 per pound. The cost of the irradiation source, either Co-60 or Cs-137, contributed only a minor amount to the total cost of irradiation, about 5% for the fruit and hog cases and about 20% for the medical supply cases. We analyzed the sensitivity of the irradiation costs and Cs-137 value to several key assumptions

  7. Evaulation of B4C as an ablator material for NIF capsules. Revision 1

    International Nuclear Information System (INIS)

    Burnham, A.K.; Alford, C.S.; Makowiecki, D.M.; Dittrich, T.R.; Wallace, R.J.; Honea, E.C.; King, C.M.; Steinman, D.

    1997-01-01

    Boron carbide (B 4 C) is examined as a potential fuel container and ablator for implosion capsules on the National Ignition Facility (NIF). A capsule of pure B 4 C encasing a layer of solid DT implodes stably and ignites with anticipated NIF x-ray drives, producing 18 MJ of energy. Thin films of B 4 C were found to be resistant to oxidation and modestly transmitting in the infrared (IR), possibly enabling IR fuel characterization and enhancement for thin permeation barriers but not for full-thickness capsules. Polystyrene mandrels 0.5 mm in diameter were successfully coated with 0.15-2.0 micrometers of B 4 C. Thickness estimated from optical density agreed well with those measured by scanning electron microscopy (SEM). The B 4 C microstructure was columnar but finer than for Be made at the same conditions. B 4 C is a very strong material, with a fiber tensile strength capable of holding NIF fill pressures at room temperature, but it is also very brittle, and microscopic flaws or grain structure may limit the noncryogenic fill pressure. Argon (Ar) permeation rates were measured for a few capsules that had been further coated with 5 micrometers of plasma polymer. The B 4 C coatings tended to crack under tensile load. Some shells filled more slowly than they leaked, suggesting that the cracks open and close under opposite pressure loading. As observed earlier for Ti coatings, 0.15-micrometer layers of B 4 C had better gas retention properties than 2-micrometer layers, possibly because of fewer cracks. Permeation and fill strength issues for capsules with a full ablator thickness of B 4 C are unresolved. 21 refs., 6 figs

  8. Contactless ignition device for an internal combustion engine. Kontaktfreie Zuendanlage fuer eine Brennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Y; Komiya, H

    1980-01-16

    The invention deals with the design of a contactless ignition device with semiconductor elements of the induction discharge type, provided with a self actuator. A short circuit current of the primary transformer coil flows through the transistor system. The emitter is capacitively connected with the primary transformer coil. When the primary short circuit current reaches its maximum, the circuit is interrupted and the ignition begins. Changes of the short circuit current are monitored. The ignition time can be pre-selected. The ignition process is independent from the engine speed.

  9. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.

    Science.gov (United States)

    Glass, Paul; Cheung, Eugene; Sitti, Metin

    2008-12-01

    This paper presents a new concept for an anchoring mechanism to enhance existing capsule endoscopes. The mechanism consists of three actuated legs with compliant feet lined with micropillar adhesives to be pressed into the intestine wall to anchor the device at a fixed location. These adhesive systems are inspired by gecko and beetle foot hairs. Single-leg and full capsule mathematical models of the forces generated by the legs are analyzed to understand capsule performance. Empirical friction models for the interaction of the adhesives with an intestinal substrate were experimentally determined in vitro using dry and oil-coated elastomer micropillar arrays with 140 microm pillar diameter, 105 microm spacing between pillars, and an aspect ratio of 1:1 on fresh porcine small intestine specimens. Capsule prototypes were also tested in a simulated intestine environment and compared with predicted peristaltic loads to assess the viability of the proposed design. The experimental results showed that a deployed 10 gr capsule robot can withstand axial peristaltic loads and anchor reliably when actuation forces are greater than 0.27 N using dry micropillars. Required actuation forces may be reduced significantly by using micropillars coated with a thin silicone oil layer.

  10. Wireless powered capsule endoscopy for colon diagnosis and treatment

    International Nuclear Information System (INIS)

    Chen, Wenwen; Yan, Guozheng; He, Shu; Ke, Quan; Wang, Zhiwu; Liu, Hua; Jiang, Pingping

    2013-01-01

    This paper presents a wireless power transfer system integrated with an active locomotion and biopsy module in an endoscopic capsule for colon inspection. The capsule, which can move automatically, is designed for non-invasive biopsy and visual inspection of the intestine. To supply enough power for multiple functions and ensure safety for the human body, the efficiency of the current power transmission system needs to be improved. To take full advantage of the volume in the capsule body, a novel structure of receiving coils wound on a multi-core of MnZn ferrite hollow cylinder was used; with this new core, the efficiency increased to more than 7.98%. Up to 1.4 W of dc power can be delivered to the capsule as it travels along the gastrointestinal tract. Three micro motors were integrated for pumping, anchoring, locomotion and biopsy. A user interface and RF communication enables the operator to drive the capsule in an intuitive manner. To gauge the efficacy of the wireless power supply in a simulated real-world application, the biopsy and locomotion capabilities of the device were successfully tested in a slippery, soft tube and gut environment in vitro. (paper)

  11. Capsule safety analysis of PRTF irradiation facility

    International Nuclear Information System (INIS)

    Suwarto

    2013-01-01

    Power Ramp Test Facility (PRTF) is an irradiation facility used for fuel testing of power reactor. PRTF has a capsule which is a test fuel rod container. During operation, pressurized water of 160 bars flows through in the capsule. Due to the high pressure it should be analyzed the impact of the capsule on reactor core safety. This analysis has purpose to calculate the ability of capsule pressure capacity. The analysis was carried out by calculating pressure capacity. From the calculating results it can be concluded that the capsule with pressure capacity of 438 bars will be safe to prevent the operation pressure of PRTF. (author)

  12. Probing cell internalisation mechanics with polymer capsules.

    Science.gov (United States)

    Chen, Xi; Cui, Jiwei; Ping, Yuan; Suma, Tomoya; Cavalieri, Francesca; Besford, Quinn A; Chen, George; Braunger, Julia A; Caruso, Frank

    2016-10-06

    We report polymer capsule-based probes for quantifying the pressure exerted by cells during capsule internalisation (P in ). Poly(methacrylic acid) (PMA) capsules with tuneable mechanical properties were fabricated through layer-by-layer assembly. The P in was quantified by correlating the cell-induced deformation with the ex situ osmotically induced deformation of the polymer capsules. Ultimately, we found that human monocyte-derived macrophage THP-1 cells exerted up to approximately 360 kPa on the capsules during internalisation.

  13. Simulation of instability growth on ICF capsule ablators

    Science.gov (United States)

    Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    It is believed that the ablation-front instabilities are mainly responsible for the hot-spot mix that impacts the performance of ICF capsules. Understanding the formation of these instabilities is therefore a first step towards a better control of the implosion dynamics and the optimization of the fusion yield. Using the Chimera code currently in development at Imperial College, we have performed several spherical wedge simulations of the low and high adiabat ablation phase pre-imposing different single-mode 2D and 3D perturbations on the capsule surface. Synthetic Sc, Fe and V X-ray backlighter images are generated by the Spk code and used to measure the growth of modes 30-160 with initial amplitude <= 3.4 μm PTV. The growth of imposed 2D perturbations is assessed for both low-foot and high-foot radiation pulse shapes on the National Ignition Facility. Results showing the merger of spike and bubble structures in multi-mode perturbations in both 2D and 3D simulations are explored and preliminary assessments of the difference between 2D and 3D non-linear behaviour is discussed. The sensitivity of shock timing to NLTE changes in opacity is also assessed.

  14. Preparing for polar-drive ignition on the National Ignition Facility

    OpenAIRE

    McKenty P.W.; Collins T.J.B.; Marozas J.A.; Kessler T.J.; Zuegel J.D.; Shoup M.J.; Craxton R.S.; Marshall F.J.; Shvydky A.; Skupsky S.; Goncharov V.N.; Radha P.B.; Epstein R.; Sangster T.C.; Meyerhofer D.D.

    2013-01-01

    The implementation of polar drive (PD) at the National Ignition Facility (NIF) will enable the execution of direct-drive implosions while the facility is configured for x-ray drive. The Laboratory for Laser Energetics (LLE), in collaboration with LLNL, LANL and GA, is implementing PD on the NIF. LLE has designed and participates in the use of PD implosions for diagnostic commissioning on the NIF. LLE has an active experimental campaign to develop PD in both warm and cryogenic target experimen...

  15. Overview of tritium systems for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Gruetzmacher, K.M.; Fleming, R.B.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is being designed at several laboratories to produce and study fully ignited plasma discharges. The tritium systems which will be needed for CIT include fueling systems and radiation monitoring and safety systems. Design of the tritium systems is the responsibility of the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Major new tritium systems for CIT include a pellet injector, an air detritiation system and a glovebox atmosphere detritiation system. The pellet injector is being developed at Oak Ridge National Laboratory. 7 refs., 2 figs

  16. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M.

    2014-01-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3 He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3 He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R cm ) from the downshift of the shock-produced D 3 He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR

  17. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  18. A probabilistic method for determining the volume fraction of pre-embedded capsules in self-healing materials

    International Nuclear Information System (INIS)

    Lv, Zhong; Chen, Huisu

    2014-01-01

    Autonomous healing of cracks using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of self-healing materials. Assuming that the pre-embedded capsules are randomly dispersed we theoretically model flat ellipsoidal crack interaction with capsules and determine the probability of a crack intersecting the pre-embedded capsules i.e. the self-healing probability. We also develop a probabilistic model of a crack simultaneously meeting with capsules and catalyst carriers in two-component self-healing system matrix. Using a risk-based healing approach, we determine the volume fraction and size of the pre-embedded capsules that are required to achieve a certain self-healing probability. To understand the effect of the shape of the capsules on self-healing we theoretically modeled crack interaction with spherical and cylindrical capsules. We compared the results of our theoretical model with Monte-Carlo simulations of crack interaction with capsules. The formulae presented in this paper will provide guidelines for engineers working with self-healing structures in material selection and sustenance. (paper)

  19. Progress towards polar-drive ignition for the NIF

    Science.gov (United States)

    McCrory, R. L.; Betti, R.; Boehly, T. R.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Frenje, J. A.; Froula, D. H.; Gatu-Johnson, M.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Kessler, T. J.; Knauer, J. P.; Li, C. K.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nilson, P. M.; Padalino, S. J.; Petrasso, R. D.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Short, R. W.; Shvydky, A.; Skupsky, S.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Zuegel, J. D.

    2013-11-01

    The University of Rochester's Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. LLE's Omega Laser Facility is used to study direct-drive ICF ignition concepts, developing an understanding of the underlying physics that feeds into the design of ignition targets for the National Ignition Facility (NIF). The baseline symmetric-illumination, direct-drive-ignition target design consists of a 1.5 MJ multiple-picket laser pulse that generates four shock waves (similar to the NIF baseline indirect-drive design) and is predicted to produce a one-dimensional (1D) gain of 48. LLE has developed the polar-drive (PD) illumination concept (for NIF beams in the x-ray-drive configuration) to allow the pursuit of direct-drive ignition without significant reconfiguration of the beam paths on the NIF. Some less-invasive changes in the NIF infrastructure will be required, including new phase plates, polarization rotators, and a PD-specific beam-smoothing front end. A suite of PD ignition designs with implosion velocities from 3.5 to 4.3 × 107 cm s-1 are predicted to have significant 2D gains (Collins et al 2012 Bull. Am. Phys. Soc. 57 155). Verification of the physics basis of these simulations is a major thrust of direct-drive implosion experiments on both OMEGA and the NIF. Many physics issues are being examined with symmetric beam irradiation on OMEGA, varying the implosion parameters over a wide region of design space. Cryogenic deuterium-tritium target experiments with symmetric irradiation have produced areal densities of ˜0.3 g cm-2, ion temperatures over 3 keV, and neutron yields in excess of 20% of the ‘clean’ 1D predicted value. The inferred Lawson criterion figure of merit (Betti R. et al 2010 Phys. Plasmas 17 058102) has increased from 1.7 atm s (IAEA 2010) to 2.6 atm s.

  20. Contraindications for video capsule endoscopy

    OpenAIRE

    Bandorski, Dirk; Kurniawan, Niehls; Baltes, Peter; Hoeltgen, Reinhard; Hecker, Matthias; Stunder, Dominik; Keuchel, Martin

    2016-01-01

    Video capsule endoscopy (VCE) has been applied in the last 15 years in an increasing field of applications. Although many contraindications have been put into perspective, some precautions still have to be considered. Known stenosis of the gastrointestinal tract is a clear contraindication for VCE unless surgery is already scheduled or at least has been considered as an optional treatment modality. In patients with a higher incidence of stenosis, as in an established diagnosis of Crohn?s dise...

  1. Solid propellant ignition motors for LH_2/LOX rocket engine system

    OpenAIRE

    ARAKI, Tetsuo; AKIBA, Ryojiro; HASHIMOTO, Yasunari; AIHARA, Kenji; TOMITA, Etsu; YASUDA, Seiichi; 荒木, 哲夫; 秋葉, 鐐二郎; 橋本, 保成; 相原, 賢二; 富田, 悦; 安田, 誠一

    1983-01-01

    Solid propellant ignition motors are used in the series of experiments of the 10 ton LH_2/LOX engine featured by the channel wall thrust chamber, This paper presents design specification, experiments and results obtained by actual applications of those ignition motors.

  2. Review: laser ignition for aerospace propulsion

    Directory of Open Access Journals (Sweden)

    Steven A. O’Briant

    2016-03-01

    This paper aims to provide the reader an overview of advanced ignition methods, with an emphasis on laser ignition and its applications to aerospace propulsion. A comprehensive review of advanced ignition systems in aerospace applications is performed. This includes studies on gas turbine applications, ramjet and scramjet systems, and space and rocket applications. A brief overview of ignition and laser ignition phenomena is also provided in earlier sections of the report. Throughout the reading, research papers, which were presented at the 2nd Laser Ignition Conference in April 2014, are mentioned to indicate the vast array of projects that are currently being pursued.

  3. Gas-filled hohlraum experiments at the National Ignition Facility

    International Nuclear Information System (INIS)

    Fernandez, Juan C.; Goldman, S.R.; Kline, J.L.; Dodd, E.S.; Gautier, C.; Grim, G.P.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.; Schmidt, D.W.; Workman, J.B.; Braun, D.G.; Dewald, E.L.; Landen, O.L.; Campbell, K.M.; Holder, J.P.; MacKinnon, A.J.; Niemann, C.; Schein, J.

    2006-01-01

    Experiments done at the National Ignition Facility laser [J. A. Paisner, E. M. Campbell, and W. Hogan, Fusion Technol. 26, 755 (1994)] using gas-filled hohlraums demonstrate a key ignition design feature, i.e., using plasma pressure from a gas fill to tamp the hohlraum-wall expansion for the duration of the laser pulse. Moreover, our understanding of hohlraum energetics and the ability to predict the hohlraum soft-x-ray drive has been validated in ignition-relevant conditions. Finally, the laser reflectivity from stimulated Raman scattering in the fill plasma, a key threat to hohlraum performance, is shown to be suppressed by choosing a design with a sufficiently high ratio of electron temperature to density

  4. Development of target capsules for muon catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Watts, K.D.; Jones, S.E.; Caffrey, A.J.

    1983-01-01

    A series of Muon Catalyzed Fusion experiments has been conducted at the Los Alamos Meson Physics Facility to determine how many fusion reactions one muon would catalyze under various temperature, pressure, contamination, and tritium concentration conditions. Target capsules to contain deuterium and tritium at elevated temperatures and pressures were engineered for a maximum temperature of 540 K (512 0 F) and a maximum pressure of 103 MPa (15,000 psig). Experimental data collected with these capsules indicated that the number of fusion reactions per muon continued to increase with temperature up to the 540-K design limit. Theory had indicated that the reaction rate should peak at approximately 540 K, but this was not confirmed during the experiments. A second generation of capsules which have a maximum design temperature of 800 K (980 0 F) and a maximum design pressure of 103 MPa (15,000 psig) has now been engineered. These new capsules will be used to further study the muon catalysis rate versus deuterium-tritium mixture temperature

  5. Enhanced Model for Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Rodney J. [Research Applications Corporation, Los Alamos, NM (United States)

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  6. Encapsulation of low density plastic foam materials for the fast ignition realization experiment (FIREX). Control of microstructure and density

    International Nuclear Information System (INIS)

    Nagai, Keiji; Yang, H.; Iwamoto, A.

    2008-10-01

    Development of foam capsule fabrication for cryogenically cooled fuel targets is overviewed in the present paper. The fabrication development was initiated as a part of the Fast Ignition Realization Experiment (FIREX) Project at the ILE, Osaka University in the way of bilateral collaboration between Osaka University and National Institute for Fusion Science (NIFS). A foam cryogenic target was designed where low-density foam shells with a conical light guide will be cooled down to the cryogenic temperature and will be fueled through a narrow pipe. The required diameter and thickness of the capsule are 500 μm and 20 μm, respectively. The material should be low-density plastics foam. We have prepared such capsules using 1) mixtureing a new material of (phloroglucinolcarboxylic acid)/formalin (PF) linear polymer to control kinematic viscosity of the precursor, 2) phase-transfer-catalyzed gelation process to keep density matching of three phases of the emulsion. 3) non-volatile silicone oil as outer oil of emulsion in order to prevent hazard halogenated hydrocarbon and flammable mineral oil. The obtained foam capsule had fine structure of 180 nm (outer surface) to 220 nm (inner surface) and uniform thickness reaching to resolution limit of optical analysis (∼0.5 μm). A small hole was made before the solvent exchange and the drying process to prevent distortion due to volume changes. The density of dried foam was 0.29 g/cm 3 . After attaching the petawatt laser guiding cone and fueling glass tube, poly([2,2]paracyclophane) was coated on the foam surface and supplied for a fueling test of cryogenic hydrogen. Generally, lower density is from larger pore, then precise control of thickness and its encapsulation becomes more difficult. We have clarified the relation between pore size and preparation conditions using several precursor materials, and revealed how to control pore size of low density foams, where the solvent affinity for the polymer chain plays fundamental

  7. Analysis of lomustine drug content in FDA-approved and compounded lomustine capsules.

    Science.gov (United States)

    KuKanich, Butch; Warner, Matt; Hahn, Kevin

    2017-02-01

    OBJECTIVE To determine the lomustine content (potency) in compounded and FDA-approved lomustine capsules. DESIGN Evaluation study. SAMPLE 2 formulations of lomustine capsules (low dose [7 to 11 mg] and high dose [40 to 48 mg]; 5 capsules/dose/source) from 3 compounders and from 1 manufacturer of FDA-approved capsules. PROCEDURES Lomustine content was measured by use of a validated high-pressure liquid chromatography method. An a priori acceptable range of 90% to 110% of the stated lomustine content was selected on the basis of US Pharmacopeia guidelines. RESULTS The measured amount of lomustine in all compounded capsules was less than the stated content (range, 59% to 95%) and was frequently outside the acceptable range (failure rate, 2/5 to 5/5). Coefficients of variation for lomustine content ranged from 4.1% to 16.7% for compounded low-dose capsules and from 1.1% to 10.8% for compounded high-dose capsules. The measured amount of lomustine in all FDA-approved capsules was slightly above the stated content (range, 104% to 110%) and consistently within the acceptable range. Coefficients of variation for lomustine content were 0.5% for low-dose and 2.3% for high-dose FDA-approved capsules. CONCLUSIONS AND CLINICAL RELEVANCE Compounded lomustine frequently did not contain the stated content of active drug and had a wider range of lomustine content variability than did the FDA-approved product. The sample size was small, and larger studies are needed to confirm these findings; however, we recommend that compounded veterinary formulations of lomustine not be used when appropriate doses can be achieved with FDA-approved capsules or combinations of FDA-approved capsules.

  8. Preparing for polar-drive ignition on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    McKenty P.W.

    2013-11-01

    Full Text Available The implementation of polar drive (PD at the National Ignition Facility (NIF will enable the execution of direct-drive implosions while the facility is configured for x-ray drive. The Laboratory for Laser Energetics (LLE, in collaboration with LLNL, LANL and GA, is implementing PD on the NIF. LLE has designed and participates in the use of PD implosions for diagnostic commissioning on the NIF. LLE has an active experimental campaign to develop PD in both warm and cryogenic target experiments on OMEGA. LLE and its partners are developing a Polar Drive Project Execution Plan, which will provide a detailed outline of the requirements, resources, and timetable leading to PD-ignition experiments on the NIF.

  9. Options for an ignited tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon β/sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed

  10. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  11. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.

    Science.gov (United States)

    Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J

    2008-10-01

    We present the calculations and preliminary results from experiments on the Omega laser facility usi